
ChaCha related 64 bit oriented ARX cipher

Daniel Nager

daniel.nager@gmail.com

January 2024

Abstract

A cipher scheme related to ChaCha [Ber] with the variation of using
64 bit operations instead of 32 bits, and the same 512 bit state size, is
presented. We will provide strong argumentation to assert that the same
security of ChaCha can be obtained with less number of instructions for
24 rounds, instead of Chacha's 20 rounds. Also, an strategy to implement
this cipher on SIMD extensions is presented, with a maximal throughput
of about 4 bytes per cycle on a 256 bit SIMD extension with at least 11
vector registers.

1 Introduction

The point of this document is to present an ARX algorithm that satis�es the
intuitive notion that using 64 bit instructions gives the same result with near
half instructions than using 32 bit instructions. Although, this is not obvious
per se, and some changes in the structure of the cipher must be done to achieve
this results. The simple idea is that a single 64 bit instruction does the work of
two 32 bit instructions so we need half of them. This can be pro�ted in several
ways in di�erent scenarios to achieve greater throughput of bytes.

Confusion and di�usion are the same in ChaCha, as the key and what we can
call plaintext are part of the state. We will use TestU01's Crush [LS] battery
of test to check that confusion and di�usion can be considerated the same in
ChaCha and in the ARX cipher presented here. This is just a check since we
will rationally argue that this is the case further on this document.

To �nish this introduction let's state that the confusion and di�usion in ARX
ciphers is achieved mainly by the rotation instructions, with no di�usion or con-
fusion from the xor and some residual di�usion and confusion in addition. We
assume as clear that each rotation roughly doubles the number of bits di�used
and confused, which is coherent with actual number of bits changed in a round
of ChaCha changing with respect to a changed bit in the previous state. As
a result we conclude that rotating once a 64 bit word that already has 32 bits
a�ected results, with a single rotation, in 64 bits a�ected, simplifying.

1

2 The algorithm

Here's a C programming language implementation of the algorithm, necessary
to understand next sections of this document:

#inc lude <s td i n t . h>

#de f i n e ro t (d , v) {v=v<<d | v>>(s i z e o f (uint64_t)*8=d) ; }

// t h i s i s the 8 64=b i t words s t a t e
uint64_t a , b , c , d , e , f , g , h ;
uint64_t a0 , b0 , c0 , d0 , e0 , f0 , g0 , h0=0;

#de f i n e QR(a , b , c , d){\
a+=b ; d^=c ; ro t (43 , a) ; \
c+=a ; b^=d ; ro t (17 , c) ; }

#de f i n e ROUNDS 24

void do_ARX()
{

i n t i ;

a=a0 ; b=b0 ; c=c0 ; d=d0 ;
e=e0 ; f=f0 ; g=g0 ; h=++h0 ;

f o r (i =0; i<ROUNDS; i++){
QR(a , b , c , d) ;
QR(e , f , g , h) ;
QR(a , b , e , f) ;
QR(c , d , g , h) ;

}

a^=a0 ; b^=b0 ; c^=c0 ; d^=d0 ;
e^=e0 ; f^=f0 ; h^=h0 ;

}

3 Number of rotations

As we've stated above half of instructions are executed in this code QR quar-
ter round than in the QR of ChaCha. We need to examine the four quarter
rounds in the main loop to see, this is clear from the code, that as we're using
just 8 state words of 64 bits instead of 16 state words of 32 bits, we can pass
to the quarter round each state word twice, resulting in the same number of
rotations per round. This is a strong argumentation, joint with the fact that 32
bit di�usion is just a rotation away from 64 bit di�usion, to be able to assert
that expected di�usion and confusion, and security in general in 24 rounds is
the same in this cipher than in ChaCha for 20 rounds.

2

Calculation of 24 rounds must be justi�ed. In particular, Chacha executes
20 · 16 = 320 rotations in 20 rounds. Dividing 320/5 = 64 gives us the number
of almost full di�usion and confusion on 16 words of 32 bits. 64 ·6 = 384 results
in the number of rotations needed to di�use and confuse 64 bit words, but di-
vided by 2 as we have half number of state words, so it's 384/2 = 192 rotations.
Each round of this variation of Chacha executes 8 rotations per round, so the
�nal number of rounds is 192/8 = 24.

Actually we're considering the state as a rectangular 4× 2 matrix:(
a b c d
e f g h

)
First two lines of a round mixes state in two rows:(

a b c d
)(

e f g h
)

Last two lines of a round mixes state, not in columns but in two submatrices:(
a b
e f

)(
c d
g h

)
So actually we're doing the same number of rotations in this ARX 64-bit ori-
ented cipher than in ChaCha, with half number of instructions, and providing
presumably equivalent security if we set the number of rounds to 24 to take into
account the increased bit size of words.

Let's comment that TestU01's Crush is passed both for this cipher in 4 rounds
and in ChaCha for 4 rounds, as expected.

4 Superscalarity and Single Instruction Multiple

Data

The quarter round is arranged in a way that every adjacent instruction can be
executed by a 2-superscalar processor at once. So the quarter round uses 3
processor cycles. We execute a total of 4 quarter rounds in 24 rounds, so the
amount of cycles is 3 ·4 ·24 = 288 cycles to generate 64 bytes. This is at most 4.5
cycles/byte in a modern computer without using SIMD, amounting to a total
of about 4.75 cycles/byte with state initialization and �nal xor.

In SIMD, as the state is just 8 words, there's no di�culty, if we consider the
register set of a SIMD extension as a matrix, where registers are rows, to do
parallel block execution of the cipher putting parallel states straight on columns.
So if we target a 256 bits SIMD we only need to use 10 registers if rotation must
be done with two shifts and a xor to process a total of 4 blocks, resulting in a
resulting amount of 4 ∗ 64 = 256 bytes of cipher stream data. We can count the
number of instructions executed that are 10 for the quarter round, 4 times per

3

round and for 24 rounds results into 10 · 4 · 24 = 960 SIMD instructions, with
the outcome of 3.75 cycles per byte excluding any auxiliary initialization and
post processing that will be treated in next section.

In other SIMD scenarios the throughput is no so high but let's note �rst that
this approach can be applied to almost every SIMD extension and second that
no permuting of elements in vector registers are needed, just applying sequen-
tially additions, xors and rotations as de�ned by the algorithm.

5 Pre and post processing in Single Instruction

Multiple Data

Let's take as an example a SIMD extension with at least 11 of 256 bits, which
corresponds to 4 64-bits registers.

First we need an initial setup of the whole stream generation. In memory we
set up a matrix where rows are SIMD registers and columns are initial states.
All columns are identical except the entry corresponding to the block counter.

Initially we load to the register 11th, as we need 10 registers to generate the
cipher stream, an incremental counter in the range [−4, . . . ,−1]. This is the
setup. Next we apply the following procedure:

1. We add 4 to every word in the 11th register which holds the counter and
we copy it to the corresponding register of the �rst 8, that's where we will
do the mixing.

2. We copy from memory or from spare registers the initial state to the rest
of the �rst 8 registers.

3. We do the mixing as explained in previous section.

4. We load from memory and xor the initial states and counters to the �rst
8 registers.

5. We save to a memory location the 8 �rst registers that hold 4 blocks of
stream data.

6. We do the transpose of the matrix in memory, whose elements are 64-bit
words, in order to get 4 consecutive blocks with incremental counter. This
data is ready to be used as stream data with no further changes.

So in the long run we do 7 moves from memory or registers to registers, an
update of the counters, a move of the counters, load 7 registers from memory
and xor it, along with the counter, to 8 registers, a write back of 8 registers to
memory and a 4× 8 memory matrix transpose, amounting to 32 SIMD instruc-
tions and 30 memory move instructions to get 4 stream blocks. This procedure
adds 0.2421 cycles per byte approximately in this scenario, while mixing takes

4

3.75 cycles per byte as explained previously and resulting in a total of 3.9921
cycles per byte.

References

[Ber] Daniel J. Berstein. ChaCha, a variant of Salsa20. url: https://cr.yp.
to/chacha/chacha-20080128.pdf.

[LS] Pierre L'Ecuyer and Richard Simard. TestU01: A C Library for Empir-

ical Testing of Random Number Generators. url: https://www.iro.
umontreal.ca/~lecuyer/myftp/papers/testu01.pdf.

5

https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

	Introduction
	The algorithm
	Number of rotations
	Superscalarity and Single Instruction Multiple Data
	Pre and post processing in Single Instruction Multiple Data

