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ABSTRACT
Oblivious RAM (ORAM) allows a client to securely outsource mem-

ory storage to an untrusted server. It has been shown that no ORAM

can simultaneously achieve small bandwidth blow-up, small client

storage, and a single roundtrip of latency.

We consider a weakening of the RAM model, which we call

the Single Access Machine (SAM) model. In the SAM model, each

memory slot can be written to at most once and read from at most

once. We adapt existing tree-based ORAM to obtain an oblivious

SAM (OSAM) that has 𝑂 (log𝑛) bandwidth blow-up (which we

show is optimal), small client storage, and a single roundtrip.

OSAM unlocks improvements to oblivious data structures/algo-

rithms. For instance, we achieve oblivious unbalanced binary trees

(e.g. tries, splay trees). By leveraging splay trees, we obtain a notion

of caching ORAM, where an access in the worst case incurs amor-

tized𝑂 (log2 𝑛) bandwidth blow-up and𝑂 (log𝑛) roundtrips, but in
many common cases (e.g. sequential scans) incurs only amortized

𝑂 (log𝑛) bandwidth blow-up and 𝑂 (1) roundtrips. We also give

new oblivious graph algorithms, including computing minimum

spanning trees and single source shortest paths, in which the OSAM

client reads/writes 𝑂 ( |𝐸 | · log |𝐸 |) words using 𝑂 ( |𝐸 |) roundtrips,
where |𝐸 | is the number of edges. This improves over prior custom

solutions by a log factor.

At a higher level, OSAM provides a general model for oblivious

computation. We construct a programming interface around OSAM

that supports arbitrary pointer-manipulating programs such that

dereferencing a pointer to an object incurs𝑂 (log𝑑 log𝑛) bandwidth
blowup and𝑂 (log𝑑) roundtrips, where 𝑑 is the number of pointers

to that object. This new interface captures a wide variety of data

structures and algorithms (e.g., trees, tries, doubly-linked lists) while

matching or exceeding prior best asymptotic results. It both unifies

much of our understanding of oblivious computation and allows

the programmer to write oblivious algorithms combining various

common data structures/algorithms and beyond.

1 INTRODUCTION
Oblivious RAM allows a client to outsource memory to an untrusted

server while hiding both the data being accessed and the memory

access pattern, and thus provides a general framework for oblivious

computation. The most important efficiency metrics of ORAM are

the bandwidth blow-up and the number of roundtrips. Bandwidth

blow-up is the number of blocks transferred between the client and

the server for every block (unit of memory access) requested. One

roundtrip is defined as a batch of read-then-write operations that

can be dispatched in parallel. These costs are heavily affected by

the block size and client storage assumed. In the typical setting, the

client storage is small compared to the total memory size 𝑛, and

the block size is Θ(log𝑛) bits.

Table 1: Comparison of our construction with existing
ORAMs for a block size of Θ(log𝑛) bits. No existing ORAM
construction simultaneously achieves optimal bandwidth
blow-up, roundtrips and client storage.

Bandwidth Round- Client Server Stat.

blow-up trips storage compute secure

Circuit OSAM 𝑂 (𝜆) 𝑂 (1) 𝑂 (1) ✗ ✓

Path OSAM 𝑂 (log𝑛) 1 𝑂 (𝜆) ✗ ✓

Circuit ORAM [24] 𝑂 (𝜆 log𝑛) 𝑂 (log𝑛) 𝑂 (1) ✗ ✓

Path ORAM [23] 𝑂 (log2 𝑛) 𝑂 (log𝑛) 𝑂 (𝜆) ✗ ✓

OptORAMa [1] 𝑂 (log𝑛)† 𝑂 (log𝑛) 𝑂 (1) ✗ ✗

SR-ORAM [26] 𝑂 (log3 𝑛) 1 𝑂 (1) ✓ ✗√
𝑛-ORAM [10] �̃� (

√
𝑛) 1 𝑂 (1) ✗ ✗

†
With a hidden constant of ≈ 2

228
, later reduced to ≈ 9400.

- 𝜆 (typically 128) is the statistical security parameter. Some prior works set their

statistical security parameters to𝜔 (1) log𝑛 for a negligible in𝑛 probability of failure.

We choose to write it explicitly as 𝜆 to make the failure probability concrete.

- �̃� ( ·) hides poly-logarithmic factors.

First proposed by Goldreich and Ostrovsky [10], numerous ef-

forts have been made towards reducing the cost of ORAM, and

the community has made encouraging progress [1, 2, 11, 12, 14, 17,

20, 23, 24]. But an overall efficient scheme remains elusive. Table 1

summarizes costs incurred by existing works. The recent break-

through work of OptORAMa [1] achieves a bandwidth blow-up

of 𝑂 (log𝑛), which is asymptotically optimal but has a very large

hidden constant. The more practical tree-based ORAMs [23, 24]

incur a sub-optimal bandwidth blow-up of 𝑂 (log2 𝑛) (for Θ(log𝑛)
block size) with small hidden constants. Moreover, all the above

schemes require𝑂 (log𝑛) roundtrips. Existing ORAM schemes that

achieve constant roundtrips [8, 9, 26], on the other hand, require

expensive server computation and incur high bandwidth blow-up

with Θ(log𝑛) block size. A lower bound has been shown that a

single-roundtrip ORAM (without server computation) must incur

Ω(
√
𝑁 ) bandwidth blow-up or Ω(

√
𝑁 ) client storage [5] .

In sum, it is difficult to construct an ORAM that is optimal in

every aspect. Thus, while ORAM provides a general framework

for oblivious computation, it does not serve as an efficient general

framework.

Our contribution. We introduce a new model of computation

called the Single Access Machine (SAM) model. In short, a single

access machine is a RAM, with the restriction that each memory

address can be written to at most once, and read from at most once.

Because the capabilities of SAM are strictly weaker than that

of RAM, OSAM is easier to instantiate than ORAM. We show

that a straightforward simplification of existing tree-based ORAMs

achieves OSAM that is optimal in every aspect: a single roundtrip,

𝑂 (log𝑛) bandwidth blow-up with small hidden constants, small

client storage, and no server computation.
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Table 2: Amortized bandwidth blowups and roundtrips of
our OSAM-based solution as compared to existing practical
oblivious solutions to the same problems. In all considered
cases, our approach matches or exceeds the asymptotic per-
formance of prior work.

Algo Ours Prior Work

Bandwidth Rounds Bandwidth Rounds Ref

DLL 𝑂 (log𝑛) 𝑂 (1) 𝑂 (log𝑛) 𝑂 (1) [25]

BBST 𝑂 (log2 𝑛) 𝑂 (log𝑛) 𝑂 (log2 𝑛) 𝑂 (log𝑛) [25]

Splay

Tree

𝑂 (log2 𝑛) 𝑂 (log𝑛) 𝑂 (log2 𝑛)† 𝑂 (log2 𝑛) [1]

Trie 𝑂 (ℓ · log𝑛) 𝑂 (ℓ) 𝑂 (ℓ · log𝑛)† 𝑂 (ℓ · log𝑛) [1]

DFS/

BFS

𝑂 ( |𝐸 | log |𝐸 |) 𝑂 ( |𝐸 |) 𝑂 ( |𝐸 | log |𝐸 |)† 𝑂 ( |𝐸 | log |𝐸 |) [1]

SSSP 𝑂 ( |𝐸 | log |𝐸 |)★ 𝑂 ( |𝐸 |) 𝑂 ( |𝐸 | log2 |𝐸 |) 𝑂 ( |𝐸 | log |𝐸 |) [15]
MST 𝑂 ( |𝐸 | log |𝐸 |)★ 𝑂 ( |𝐸 |) 𝑂 ( |𝐸 | log2 |𝐸 |) 𝑂 ( |𝐸 | log |𝐸 |) [15]
-
Acronyms - DLL : Doubly Linked List, BBST : Balanced Binary Search Tree, SSSP :

Single Source Shortest Path, MST : Minimum Spanning Tree

-
Symbol † indicates solving the problem with OptORAMa. In this case, the hidden

constant is ≈ 9400.

-
Symbol★ denotes that we extend OSAM with a priority queue [19].

-
A trie enables lookup of strings of arbitrary length; we use ℓ to denote the length of

the search string.

-
For graph algorithms, we consider arbitrary graphs, i.e., with arbitrary degrees and

where |𝐸 | and |𝑉 | are independent.

Although more restrictive, a surprising variety of oblivious data

structures and algorithms can be efficiently implemented in the

SAM model. Table 2 summarizes some of our results.

Linear data structures. Oblivious stacks, queues, deques, linked

lists, and doubly-linked lists can all be implemented using only𝑂 (1)
SAM operations per data structure operation, leading to optimal

𝑂 (log𝑛) bandwidth and a single roundtrip.

Balanced trees, arrays, and connections to ORAM. Tree-based data

structures can also be implemented in the SAMmodel. For instance,

balanced binary search trees can be implemented with 𝑂 (log𝑛)
SAM operations per insertion/update/lookup. This also implies that

we can use OSAM to implement an oblivious RAM at 𝑂 (log2 𝑛)
bandwidth blow-up and𝑂 (log𝑛) roundtrips, matching Path ORAM.

Unbalanced trees and caching ORAM. More interestingly, OSAM

can implement unbalanced binary trees with only 𝑂 (log𝑛) band-
width blow-up. This allows us to achieve oblivious data structures

including tries, as well as the fascinating splay tree [22]. Splay trees

are known to have good locality properties (see discussion in Ap-

pendix C), where, for example, recently accessed elements can be

more efficiently accessed a second time.

By using OSAM to implement a splay tree, we achieve a notion

of caching ORAM that (1) has worst-case amortized𝑂 (log2 𝑛) band-
width blow-up and𝑂 (log𝑛) roundtrips, (2) has amortized𝑂 (log𝑛)
bandwidth blow-up and 𝑂 (1) roundtrips for many “common” ac-

cess patterns, (3) is statistically secure, and (4) has constant factors

similar to the best tree-based ORAMs.

Graph algorithms.We show that the SAM model extends beyond

trees and captures common graph algorithms (for arbitrary graphs),

including depth-first search (DFS) and breadth-first search (BFS).

By augmenting the OSAM model with an oblivious priority queue

from [19], we obtain new oblivious algorithms for the minimum

spanning tree (MST) problem and the single source shortest path

problem (SSSP, most famously solved by Dijkstra’s algorithm). In

all four of our oblivious graph algorithms, we incur a bandwidth-

blowup of 𝑂 ( |𝐸 | log |𝐸 |) and 𝑂 ( |𝐸 |) roundtrips, where |𝐸 | is the
number of edges. These algorithms outperform prior best custom

solutions by a log factor and match commonly-used non-oblivious

algorithms for those problems.

General pointer manipulating programs. More generally, the SAM

model admits arbitrary pointer-manipulating programs. Derefer-

encing a pointer to access an object that has 𝑑 incoming pointers

incurs a cost of 𝑂 (log𝑑) SAM operations. When compiled to an

OSAM program, the bandwidth blow-up and roundtrips are respec-

tively𝑂 (log𝑑 log𝑛) and𝑂 (log𝑑), which are significantly less than

the𝑂 (log2 𝑛) bandwidth blow-up and𝑂 (log𝑛) roundtrips incurred
by practical tree-based ORAM (typically 𝑑 ≪ 𝑛).

Writing pointer-manipulating programs starting from bare-bones

SAM operations can be tedious, so we provide an interface – which

we call smart pointers – that handles the tedious details of enforcing

the single-access rules and makes OSAM programs almost identical

to their non-oblivious counterparts. In short, the smart pointer

abstraction automatically handles the details needed to properly

maintain more than one pointer to the same object.

2 BACKGROUND AND RELATEDWORK
2.1 Oblivious RAM
Oblivious RAM (ORAM) allows a client to outsource its main mem-

ory to an untrusted server [10]. An ORAM can be thought of as

a compiler that translates logical memory queries into physical

queries to the server’s memory, with the crucial security property

that the server learns nothing other than the number of logical

queries. At the highest level, ORAM clients achieve security by

continually shuffling the server’s encrypted memory content.

Tree-based ORAM and position maps. The ORAM constructions

most related to our work are tree-based ORAMs [6, 17, 21, 24]. In

state-of-the-art tree-based ORAMs [17, 23, 24], server memory is

organized as a binary tree where each tree node holds up to a

constant number of physical blocks. Each logical block is mapped

to a leaf in the tree. The crucial invariant of a tree-based ORAM is

that each logical block must reside somewhere on the path from

the root to its mapped leaf. To read a logical block, the client reads

that entire length-𝑂 (log𝑛) path from the server to find the block

of interest; this is guaranteed to succeed by the invariant. Once the

read finishes, the client remaps the block to a fresh random leaf

such that the same block can be securely queried again later. Lastly,

the client performs an eviction step, where blocks in client memory

are sent back to the server. The eviction step is carefully designed

to have the same 𝑂 (log𝑛) asymptotic cost as reading a path.

The client stores which leaf each logical block is mapped to in a

data structure called the position map. Ignoring the position map,

state-of-art tree-based ORAM like Path ORAM incur𝑂 (log𝑛) blow-
up and a single roundtrip. However, the position map has linear (in

𝑛) size, so it is too big for the client to store. The solution to this

issue is to recursively store the position map in another tree-based

ORAM until the final position map is small enough to fit in client

memory. This recursion step pushes the bandwidth blow-up of tree-

based ORAM from 𝑂 (log𝑛) to 𝑂 (log2 𝑛), and the roundtrips from
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𝑂 (1) to 𝑂 (log𝑛). Looking ahead, our OSAM saves a log factor in

both metrics over a tree-based ORAM precisely because the weaker

capability of single accesses obviates the need for a position map,

and hence avoids recursion and its associated cost.

Hierarchical ORAM. While this work focuses on tree-basedORAM,

the other major ORAM paradigm, known as hierarchical ORAM, is

also interesting as it gave rise to OptORAMa [1], the first ORAMcon-

struction with asymptotically optimal𝑂 (log𝑛) bandwidth blow-up.

Its concrete performance, however, is prohibitive due to its use of

an impractical primitive called “linear oblivious tight compaction”.

[7] improved tight compaction’s hidden constant from ≈ 2
228

to

≈ 9400, but the approach remains expensive. Recently, [3] showed

practical improvements to OptORAMa, but at the cost of greatly

increasing client storage.

2.2 Special-Purpose Oblivious Computations
In this section, we review priorworks that construct special-purpose

oblivious computations. [18] provides a good survey.

Oblivious Data Structures. [27] was one of the first works to

study custom oblivious data structures, i.e., without using ORAM.

They showed that stacks and queues can be implemented as small

Boolean circuits, which can be handled in an oblivious manner.

[25] studied oblivious data structures using tree-based ORAM,

and their work is closely related to ours. [25] also investigates cases

where the positionmap can be removed. They give constructions for

data structures based on linked lists and balanced binary trees, such

as sets, maps, stacks, queues, and priority queues. They also show

algorithms for graphs of low doubling dimension, which roughly

means that the graph is a grid in a low dimensional space. Our ap-

proach is more general and handles unbalanced trees and arbitrary

graphs. We discuss details of the [25] approach in Section 3.

Oblivious priority queue. Recently, [19] used tree-based ORAM

techniques to construct an efficient oblivious priority queue. The

author shows that each priority queue operation can be achieved

at only 𝑂 (log𝑛) blow-up and 𝑂 (1) roundtrips.
It is easy to combine the priority queue of [19] with our OSAM

construction since our OSAM is instantiated with a tree-based

ORAM. By augmenting our OSAM with a priority queue, we attain

efficient algorithms for graph SSSP and MST. We remark that it is

the combination of OSAM and priority queues that enables these

improved results.

Other works on special-purpose oblivious computation. [4] gave

oblivious graph algorithms for BFS, DFS, SSSP, and MST at a band-

width cost of𝑂 ( |𝑉 |2) words. This is optimal for dense graphs where

|𝐸 | = Θ( |𝑉 |2) but not for general graphs where |𝑉 | and |𝐸 | can be

independent.

[15] built a programming framework for secure computation.

As an application of their framework, they implement oblivious

algorithms for MST and SSSP with a blow-up of 𝑂 ( |𝐸 | log2 |𝑉 |)
and 𝑂 ( |𝐸 | log |𝐸 |) roundtrips, and for DFS with a bandwidth blow-

up of 𝑂 ( |𝑉 |2 log |𝑉 |) and 𝑂 ( |𝑉 | log |𝑉 |) roundtrips. Our oblivious
algorithms for all of these incur 𝑂 ( |𝐸 | log |𝐸 |) blow-up and 𝑂 ( |𝐸 |)
roundtrips.

[16] presented a framework for implementing secure parallel

algorithms for a class of data analytic algorithms such as computing

a histogram using MapReduce, matrix factorization, and PageRank,

but they do not solve the common graph traversal problems that

we consider in this paper.

2.3 Notation
• 𝜆 denotes a statistical security parameter.

• 𝑛 denotes the memory size in words.

• 𝑤 denotes the word size. We set𝑤 = Θ(log𝑛) to ensure that
words are big enough to index a memory while keeping

communication low.

• A block is a unit of memory of size Θ(𝑤) stored on the

server.

• Jumping ahead, we distinguish a single accessmachine (SAM)

from a SAM program. The program issues memory requests,

and the machine satisfies them; see Sections 3 and 4.

• 𝑚 denotes the number of memory requests issued. We as-

sume𝑚 = poly(𝑛), and hence log𝑚 = Θ(log𝑛) = Θ(𝑤).
• A pointer points to a pointee. A pointer has one pointee, but

a pointee may have many pointers.

3 OVERVIEW
In this section, we sketch our techniques at a level sufficient to

demonstrate the usefulness of the SAM model. Subsequent sections

formalize all the details of our approach.

A point on notation: we will routinely use tree-based ORAM to

implement tree-like data structures, so the terms “tree” and “path”

are overloaded. Unless otherwise stated, the words “tree” and “path”

will henceforth refer to those in the logical data structure to be

implemented, not to those in the ORAM. That is, we abstract ORAM

and ignore its tree-based structure. We will use the term ORAM

position to abstractly represent a set of physical addresses on the

server that a logical block is mapped to and may reside in.

3.1 Avoiding Position Maps; Review of [25]
Recall from Section 2.1 that in existing tree-based ORAM, the client

maintains a structure called the position map, which maps each

logical block to an ORAM position. The position map is linear in

size and is recursively instantiated. This recursive position map

blows up bandwidth and roundtrips by a log factor.

For particular oblivious computations, the position map can be

removed, and a non-recursive ORAM suffices. Such cases were first

studied in detail by [25]. The authors noticed that when the end

goal of an oblivious computation is to implement a constant-degree

rooted tree, the position map is not needed. The idea is to augment

nodes in the tree such that each parent node stores a pointer to each

of its children, and each pointer carries the ORAM position of the

child. The client, who holds a pointer to the root, can traverse a tree

path by simply chasing pointers stored in each node and storing

the path in local memory.

When the client completes its traversal, it must write the path

back to the server so that those same nodes can be accessed later.

However, the security requirements of the ORAM force the client

to write each node back to a fresh ORAM position. Thus, existing
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pointers to those nodes holding the old ORAM positions are in-

validated. [25] observe that for tree-like structures, it is easy to

eliminate invalid pointers, since all newly invalidated pointers lie

on the path itself. Hence, the client simply writes back nodes start-

ing from the leaf, and as it proceeds up the path, it updates pointers

to each node with the updated ORAM positions of its children.

Limitations. While [25]’s approach opened the door to many

improvements in oblivious computations, their approach is not

fully general. The main limitation is that they cannot generate two

pointers that point to the samememory block. In particular, imagine

we would like to implement a graph-like structure where two nodes

𝐴 and 𝐵 each hold a pointer to some shared node 𝐶 .

The challenge here is that if the client traverses a path from, say,

𝐴 to𝐶 , the client must write𝐴 and𝐶 back to fresh ORAM positions

so that they can be accessed again. But if the client does not also

update 𝐵, then 𝐵 holds an invalid pointer to𝐶 . If the client attempts

to dereference the invalid pointer from 𝐵 to𝐶 , it will not obtain the

latest copy of 𝐶 . Even worse, this dereference is not secure, since

the server will observe two accesses to the same ORAM position.

On the other hand, if the client does naïvely update 𝐵, then it must

also update all predecessors of 𝐵 with the new location of 𝐵, and

this can cascade and require that the client access essentially all

of memory. Note that tree-like structures circumvent this problem,

since each node has only one incoming pointer.

Beyond the inability to handle shared pointers to nodes, the [25]

approach is also limited in that they can only handle balanced trees.

This second limitation emerges from the fact that the client stores

entire tree paths in local memory, which must be small.

More generally, [25]’s approach only works for linked-list-like

data structures and balanced trees. In this work, we are interested

in a rich class of general pointer-manipulating programs.

3.2 SAM and OSAM
Our SAM model extends the capabilities of prior work. This section

explains the interesting aspects of the model.

The SAM model centers on an interaction between a SAM pro-

gram and the machine that it runs in. The SAM program itself

is an arbitrary randomized algorithm, with the restriction that it

runs in a small amount of space, e.g. 𝑂 (1) or 𝑂 (𝜆) words. If the
program needs more memory, it must issue memory requests to

the machine. The machine can hold any polynomial amount of

memory. Looking ahead, the machine component of our oblivious

SAM will further outsource all memory requests to an untrusted

random access memory (i.e., the server).

The limitation of the SAMmodel is that for each of the machine’s

logical memory addresses 𝑖 , the program can write to 𝑖 at most once,

and it can read from 𝑖 at most once. This constraint is meant to

capture limitations imposed by an ORAM: we can only write/read

each ORAM position once. Before the SAM program can read or

write a value, we insist that it first ask the machine to allocate an

address. The machine can respond with an arbitrary fresh address

(in our OSAM instantiation, an address encodes an ORAM position).

We will see how this preallocation of addresses is useful shortly.

Jumping ahead, our definition of OSAM will require that any

sequence of Read/Write operations (of the same length) should be

indistinguishable, and our OSAM construction will require that

for each Read/Write operation, the client will read/write Θ(log𝑛)
words from the server.

A basic example; stacks. The basic way a SAM program can use

machinememory is by allocating an address, writing to that address,

and then later reading from it:

addr← Alloc( ), . . . ,Write(addr, val), . . . , val← Read(addr)

As an example, we can easily implement a program that achieves a

stack data structure. To do so, the program canmaintain a pointer to

the top of the stack. Pushing/popping from the stack is a simple mat-

ter of issuing appropriate calls to Alloc/Read/Write and renaming

variables:

def push(x) :
top’← SAM.Alloc( )

SAM.Write(top’, { x, top })

top← top’

def pop( ) :
{ x, top’ }←
SAM.Read(top)

top← top’

return x

Similarly, we can implement binary trees in SAM by storing

pointers to child nodes in the parent nodes, as was done in [25].

Allocating before writing; unbalanced trees. So far, we have not

shown additional capabilities as compared to prior work. Suppose

we want to build an unbalanced binary tree. In [25], it was not

possible to traverse an arbitrary path through such a tree, since

client memory is bounded, and the path can be of arbitrary length.

In the SAMmodel, we can traverse paths of arbitrary length. The

key to this is our decoupling of the allocation of an address from the

writing to that address. Recall that the challenge of ORAM-based

path traversal is that we must rebuild the path after we traverse it,

since each pointer along the path will be invalidated. In the SAM

model, we can rebuild the path as we go. More specifically:

• Suppose we (the program) start with an address addr that

points to the tree root. We allocate a fresh address: addr
′ ←

Alloc( ) to store the updated root.

• We call Read(addr) to load the root from machine memory,

which invalidates addr. The machine returns a block that,

in particular, holds addresses of child nodes.

• Depending on the details of the traversal algorithm, we

choose some child address to read. Before we read that child

we (1) allocate a new address addr
′′ ← Alloc( ) where the

updated accessed child will be saved, (2) update the content

of the root node to point to addr
′′
, and (3) write the root

node to addr
′
. Thus, we have proactively rebuilt the root

node by updating it to point to where its child node will be,

before anything actually resides there.

• From here, we can recursively traverse the child node, and

so on, resulting in a full traversal of the target path.

The crucial point is that the program can traverse an arbitrary

path through a tree while maintaining only a constant number

of words of local memory; the program only needs to keep data

corresponding to the current node under consideration.

Section 6 formalizes our ability to handle unbalanced trees. Be-

cause we can handle arbitrary trees, we are able to handle oblivious

tries and oblivious splay trees with better efficiency than prior work.

Oblivious splay trees allow us to achieve an interesting notion of

caching ORAM; see Section 6.
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Sharing. Perhaps somewhat surprisingly, we allow a SAM pro-

gram to read from an allocated address without writing to it first.

In other words, the sequence below is valid.

addr← Alloc( ), . . . , val← Read(addr)

When such a sequence occurs, the machine responds to the Read by

returning a distinguished symbol None. A slight adjustment to tree-

based OSAM can easily handle read-without-write: the OSAM client

scans a path through the OSAM tree, and if the desired address is

not present, the lookup returns None.

The ability to read without write is surprisingly powerful. The

crucial point is that the program can use the None symbol to branch

its execution, depending on whether or not a particular address has

been written. Recall from Section 3.1 our discussion of two nodes𝐴

and 𝐵, each of which holds a pointer to some node𝐶 . This problem

is difficult for prior work, but by using read-without-write, we can

solve it. Consider the following picture:

A

B

C

X

Y

Here, we indeed give to 𝐴 and 𝐵 a pointer to 𝐶 , and we also give

each of these a pointer to an auxiliary address,𝑋 and𝑌 respectively.

These auxiliary addresses are also given to 𝐶 and are initially al-

located, but not written.When a SAM program wishes to traverse

from 𝐴 to𝐶 , it first reads 𝐴’s pointer to 𝑋 . Per SAM semantics, this

read returns None, which the program interprets as an indication

that it is safe to read 𝐶 . The memory cell pointed to by 𝐶 now

resides in SAM program local memory, but 𝐵’s pointer to 𝐶 is now

invalid. Since 𝐶 is in local memory, the program holds a pointer to

𝐵’s auxiliary address 𝑌 . The program writes a value to 𝑌 , indicating

that a traversal from 𝐵 to 𝐶 is not safe.

By using these auxiliary memory addresses, we can use just a

few SAM operations to convey a single bit of information – whether

a pointer is valid or not – and this is sufficient to enable𝐶 to alert 𝐵

without updating 𝐵 in memory. This means that we avoid the need

to recursively update 𝐵 and all of its predecessors, which would in

the worst case lead to updating all of memory.

Building on this basic technique, we can not only alert 𝐵 that its

pointer to𝐶 is invalid, we can also tell it where the new version of𝐶

resides. To achieve this, we implement a simple queue of addresses

between a pointer (e.g. 𝐵) and the pointee (e.g. 𝐶). The pointee

can push to the end of a queue to indicate its new location. The

pointer can traverse this queue from beginning to end; it knows it

has reached the end of the queue when it reads None from memory,

and it uses the last address in the queue to fetch the latest copy of

the pointee; see a full description in Section 5.

Smart pointers. SAM’s ability to manage multiple pointers to one

node, described above, is relatively intricate. It involves managing

and creating queues between nodes that must be updated carefully.

In light of this intricacy, we build a pointer model on top of the

basic operations of SAM. We call the pointers in this model ‘smart

pointers’. The idea is to provide a small number of operations on

smart pointers: (1) given a value, we can construct a pointer to a

value, (2) we can make an explicit copy of a pointer, (3) we can

delete a pointer, and (4) we can dereference a pointer.

The implementations of smart pointer operations are non-trivial.

For instance, copying a smart pointer involves setting up a new

queue between the new copy and the pointee. With these details

worked out, it becomes much easier to reason about SAM programs.

Algorithms/data structures written using these smart pointer oper-

ations tend to look very similar to their standard implementation in

the RAMmodel. We show that each of the smart pointer operations

reduces to (amortized) 𝑂 (log𝑑) SAM operations, where 𝑑 is the

number of pointers pointing to the pointee being dereferenced.

Smart pointers enable us to handle a broad class of pointer-

manipulating programs. Because of the ease with which smart

pointers can be used, we implement all of our oblivious data struc-

tures and algorithms on top of them; see Section 6.

Graph algorithms; priority queues. Dereferencing a pointer incurs

𝑂 (log𝑑) SAM operations. This immediately reduces bandwidth

blow-up and roundtrips while handling graphs of constant degree,

but does not do so for graphs of arbitrary degree. Despite this, we

achieve breadth-first search and depth-first search with asymptotics

that outperform prior works. We achieve this improvement by

emulating a graph of arbitrary degree via a graph of constant degree.

The considered algorithms traverse the entire graph, and we exploit

this to circumvent overhead imposed by the emulation.

Achieving our efficient algorithms for SSSP and minimum span-

ning tree is more nuanced. To achieve our stated costs (Table 2),

we need to integrate in our OSAM the oblivious priority queue

operations of [19]. This amounts to mainly adding two additional

operations to the SAM model: Insert, which inserts an element to

a global priority queue, and Pop, which extracts the element of

highest priority. We note that it is the combination of SAM and

priority queue operations that achieve our stated 𝑂 ( |𝐸 | · log |𝐸 |)
efficiency, and it is not clear how to achieve this cost with only one

or the other. See Section 7 and Appendix D for details on our graph

algorithms and priority queue integration.

4 OBLIVIOUS SINGLE ACCESS MACHINES
This section formalizes our definitions of SAM and OSAM, we give

our OSAM construction. We refer the reader to Section 3 for an

informal explanation of our model. Our construction is achieved

by removing the position map from tree-based ORAM.

Definition 4.1 (Single Access Machine (SAM)). A Single Access
Machine (SAM) is a memory storing a polynomial number of

addressable memory cells, each of some specified bit-width𝑤 . The

machine responds to three types of memory requests:

• addr← Alloc(): The machine responds with a fresh mem-

ory address (i.e., an address that has not been chosen be-

fore). The machine may choose addresses in any arbitrary

manner.

• Write(addr, val): The machine writes value val ∈ {0, 1}𝑤 to

address addr. If (1) addr was not allocated by the machine

or (2) addrwas already written to, then the machine instead

halts and outputs ⊥.
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• val← Read(addr): The machine responds with the value

written to addr, or it responds with None if nothing is writ-

ten. If (1) addr was not allocated or (2) addr was already

read from, then the machine instead halts and outputs ⊥.
A SAM program is an interactive, randomized algorithm that

issues memory requests to the machine. A program is valid if it

never issues a request that causes the machine to output ⊥. From
here on, we only consider valid SAM programs (i.e., programs that

properly allocate memory addresses and read/write each address

at most once).

For simplicity, we consider SAM programs that use at most

𝑂 (𝑤) bits of local space. Looking forward, we will instantiate obliv-
ious SAM by leveraging two tree-based ORAM techniques: Path

ORAM [23] – which requires that the client have 𝑂 (𝜆 ·𝑤) bits of
space – and Circuit ORAM [24] –which requires that the client have

𝑂 (𝑤) bits of space. Thus, the compilation of our SAM programs by

our OSAM compiler will use either 𝑂 (𝑤) bits of space or 𝑂 (𝑤 · 𝜆)
bits of space, depending on the underlying ORAM technique.

An oblivious single access machine (OSAM) is formally a compiler

that translates SAM memory requests into requests to a standard

random access memory (allowing repeated accesses to an address).

In an OSAM protocol, these requests are sent to the server, which

satisfies each request. The crucial security property is that these

requests can be simulated. This, in particular, means that the server

learns nothing more than the number of read/write SAM requests:

Definition 4.2 (Oblivious Single Access Machine (OSAM)). A single

access machine compiler Π is a poly-time, online algorithm that im-

plements the single access machine interface (it correctly responds

to Alloc/Read/Write requests) and issues random access memory

requests. We say that Π is an oblivious single access machine
(OSAM) if there exists a poly-time simulator S such that for any

polynomial-length sequence of requests R that form a valid SAM
program, the following ensembles are statistically close (in 𝜆):

Π(1𝜆,R) 𝑠= S(1𝜆,L(R))

Above, L(R) denotes the number of Read/Write requests (i.e., non-

Alloc requests). In other words, the RAM requests issued by the

OSAM can be simulated given only the total number of Read/Write

requests in the underlying SAM program.

4.1 Our OSAM Construction
Figure 1 formalizes our tree-based OSAM. We present three algo-

rithms – Alloc, Read, andWrite – that respectively formalize how

we compile the corresponding SAM operation into RAM opera-

tions. At a high level, our construction follows the handling of

existing tree-based ORAMS [23, 24], except that we have no need

for a position map – the underlying SAM program is responsible

for keeping track of ORAM positions. We leave two algorithms –

ReadAndRm and Evict – unspecified. These can be instantiated us-

ing tree-based ORAM techniques in [23, 24]. Our compiler (i.e., our

OSAM client) maintains the common tree-based ORAM structure

stash that temporarily holds a small number of blocks.

Alloc allocates fresh addresses by sampling a uniformly random

leaf position, and then concatenating this with a global and mono-

tonically increasing counter to ensure that each address is unique.

counter← 0

stash← empty-list

def Alloc()→ addr :
leaf←

$
[𝑁 ] // Uniformly

sample a leaf

a← counter ⊔ leaf

// symbol ⊔ denotes

concatenation

counter← counter + 1

return a

def Read(i : addr)→ val

| None :
v← ReadAndRm(𝑖)

// None if no such address

written to previously

Evict()

return v

def Write(i : addr, v : val) :
ReadAndRm(Alloc())

// Read a dummy address

stash.append({ i, v })

Evict()

def ReadAndRm(i : addr)→
val | None :

interpret addr as counter

⊔ leaf

// Read i from server by

loading the path to leaf;

See [23, 24]

def Evict :
// Store stash elements to

server by evicting paths;

See [23, 24]

Figure 1: Our OSAM removes the position map from tree-
based ORAM. In particular, procedures ReadAndRm and
Evict can be taken from the Path ORAM construction [23] or
the Circuit ORAM construction [24].

ReadAndRm and Evict are sub-procedures typical in tree-based

ORAM. ReadAndRm fetches the value (if any) written at a specified

address by reading a path from the root to the specified leaf. Note

that this deletes the value from server memory, and this space in

the ORAM tree can be used later. Hence, the space required on

the server scales only with the maximum number of written-but-

not-read addresses. If no value is written to the specified address,

then ReadAndRm returns None (recall, returning None is important

for allowing read-without-write). Evict moves values, including

those in the stash, towards their assigned leaves and is used to

write values back to the server. Thus, ReadAndRm can be used to

implement Read and Evict can be used to implement Write. Note

that Write also calls ReadAndRm on a dummy address to ensure

obliviousness: regardless of whether the memory request is a Read

or a Write, the server observes the client read a uniformly random

path, followed by an eviction.

Figure 1 can be instantiated with different underlying tree-based

ORAMs. The two most natural choices are Path ORAM [23] and

Circuit ORAM [24]. Path ORAM bounds the stash size (client mem-

ory) to 𝑂 (𝜆) words, and each read/write consumes 𝑂 (log𝑛) words
of communication [23]. Circuit ORAM can additionally outsource

the stash to server memory to achieve 𝑂 (1) client memory, at the

expense of 𝑂 (𝜆) read/write cost [24]. These immediately give the

following main results of this paper.

Theorem 4.3 (Oblivious SAM Construction). Let Π denote

the compiler formalized in Figure 1. Π is an oblivious SAM (Defini-

tion 4.2). Let R denote a length-𝑚 sequence of SAM requests, and

let the memory store 𝑛 words of size 𝑤 = Θ(log𝑛). If Figure 1 is

instantiated using Path ORAM [23], then Π achieves the following

performance characteristics:
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• Π(1𝜆,R) outputs 𝑂 (𝑚 · log𝑛) random access memory re-

quests,

• Π(1𝜆,R) runs in𝑂 (𝑤 ·𝜆) bits of space where 𝜆 is a statistical

security parameter,

• Π(1𝜆,R) incurs exactly𝑚 roundtrips.

If Figure 1 is instantiated using Circuit ORAM [24], then Π achieves

the following performance characteristics:

• Π(1𝜆,R) outputs 𝑂 (𝑚 · 𝜆) random access memory requests,

• Π(1𝜆,R) runs in 𝑂 (𝑤) bits of space,
• Π(1𝜆,R) incurs 𝑂 (𝑚) roundtrips.

Proof. We first prove that the construction is correct, i.e., a Read

operation to an address returns the written value to that address, or

None if the address has not been written. Observe that the address

contains the ORAM leaf (path) assigned to that address. If an address

has been written before, the tree-based ORAM invariant ensures

that a block containing the address and its written value will be

found on the path by the ReadAndRm of the Read (there can be

only one such Read in a SAM program). If the address has not been

written before, no block with that address exists in the ORAM, and

the ReadAndRm of the Read will return None as required.

We prove our construction is oblivious by constructing a sim-

ulator S. The simulator, and the corresponding indistinguisha-

bility argument, are essentially the same as those of tree-based

ORAM [23, 24]. Let𝑚 be the number of Read orWrite operations

in the sequence R (i.e., not counting Alloc). S does the following

𝑚 times: calls ReadAndRm(Alloc()) and then Evict(). In the simu-

lated view, the adversarial server A sees a sequence of physical

memory requests due to ReadAndRm being called on randomly gen-

erated paths, followed by those due to Evict. In the real world, by

inspection of Figure 1, for each Read or Write operation, the server

also sees physical memory requests resulting from ReadAndRm and

Evict. For each Read, the path for ReadAndRm corresponds to a fresh

random address, i.e., it has not been used in another ReadAndRm,

due to the validity of the SAM program. For eachWrite, the path

for ReadAndRm is randomly generated on the fly. The underlying

tree-based ORAM thus ensures the simulated view and the real

execution are statistically close.

The cost of Read/Write operations, client space, and roundtrips

required are straightforward from the respective underlying ORAM

construction. □

Augmenting SAM with Priority Queue Operations. We leverage

prior work [19] to extend the SAM model with the following op-

erations of a priority queue (1) Insert(val, 𝑝) : inserts value val ∈
{0, 1}𝑤 into a priority queue with priority 𝑝 (2) val← Pop() : reads
and removes the element with the highest priority from the queue

(3) IsQueueEmpty : checks if the queue is empty. In this extended

model, the number of Read/Write/Insert/Pop requests are leaked. Ap-

pendix D presents a formal definition, as well as our construction

and related theorems.

5 SMART POINTERS
In subsequent sections, we use the SAM model to construct specific

data structures and algorithms. Here, we develop smart pointers,

which abstract detailed handling needed to allow two nodes to

share the same SAM address. We begin by describing the interface

of our smart pointers; our implementation on top of the basic SAM

operations (Alloc/Read/Write) follows.

A smart pointer is conceptually a pointer that can be derefer-

enced to obtain a value of some user specified type, which we

henceforth refer to as userT. A user specified type is permitted to

hold a constant number of smart pointers. This allows us to build

up complex data structures. Operations on pointers, which are of

type ptr, include the following:

• new(userT) → ptr : Save an instance of the user datatype

to memory, and return a smart pointer to the allocated

address.

• get(ptr) → userT : Dereference a smart pointer. A pointer

can be dereferenced multiple times.

• put(ptr, userT) : Overwrite content of the pointee. A pointer

can be used to overwrite its pointee multiple times.

• operator ← (ptr, ptr) : Assign one smart pointer to another

by creating a copy, thereby creating multiple pointers that

point to the same content.

• delete(ptr) : Delete a smart pointer.

• isnull(ptr) → {0, 1} : Check if a given smart pointer is null.

There are two points worth exploring. First, we have overloaded

the syntax 𝑥 ← 𝑦. In particular, if 𝑥 and 𝑦 are smart pointers (are of

type ptr), then the statement 𝑥 ← 𝑦 does not mean that 𝑥 becomes

a verbatim, bitwise copy of 𝑦. Instead, an algorithm runs to set up

queues between nodes (see discussion in Section 3). As a result, 𝑦

becomes a “smart copy” of 𝑥 , and it is safe to dereference both 𝑥

and 𝑦.

Second, when a variable falls out of lexical scope, we automat-

ically call delete on that variable. Calling delete is important to

ensure that the cost of dereferencing a pointer depend solely on

the number of pointers currently referencing an object.

Our final two operations extend our assignment and delete op-

erators to user specified types in the natural manner:

• operator ← (userT, userT) : Assign one piece of user data

to another by smart-copying any contained pointers.

• delete(userT) : Delete the specified content by deleting any

contained pointers.

5.1 Implementing Smart Pointers

def initQueue()→ addr,addr :
head← SAM.Alloc()

tail← head

return head, tail

def enqueue(tail: addr, a:
addr)→ addr :

tail’← SAM.Alloc()

SAM.Write(tail, { a, tail’ })

return tail’

def dequeue(head)→ addr,

addr :
switch SAM.Read(head)

do
case None do

return null, null

case { c, head’ } do
return c, head’

Figure 2: SAM program fragment for an address queue.
Address queues. Recall from Section 3 that we enable multiple

pointers to share a pointee via address queues. The pointee uses

such queues to update pointers to it, alerting each pointer of its

latest SAM address. We start by constructing this simple address

queue data structure in the SAM model; see Figure 2.
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Figure 3: De-referencing pointer 1 in an inverted tree of 4
pointers. Black and blue arrows indicate queue heads and
tails, respectively. Yellow blocks indicate newly enqueued
addresses.

An address queue is a sequence of addresses sent from a sender

to a receiver. Each node in the queue stores (1) an address from

the sender and (2) the address of the next node in the queue. The

SAM program manipulates the queue via a pair of addresses – head

points to the queue’s first node, and tail is a pre-allocated address

that the next node will live at. Addresses are dequeued by reading

head, and they are enqueued by writing to the queue’s tail and

allocating a fresh tail. Note that calling dequeue when the head has

not been written to returns None, which indicates that the queue is

empty. It is clear from inspection that each of our address queue

operations uses only 𝑂 (1) SAM operations.

Overview of implementation of smart pointers. We first describe

how address queues can be used to allow two pointers to point to

the same pointee. We later extend this idea to allow an arbitrary

number of pointers to the same pointee.

A connection between a pointer and its pointee is established

by allowing them to share a queue, with the pointer as the receiver

and the pointee as the sender. Each pointer holds the head of an

address queue, and the pointee holds the two tails (as there is one

queue per pointer). When one of the two pointers is de-referenced,

the pointee is re-written to a new address and alerts both pointers

of this fact by calling enqueue to write the new address into both

queues using their tails. If the other pointer is de-referenced later,

the dequeue procedure can be used to chase addresses through the

queue until reaching the tail. The last address in the queue can then

be read to fetch the pointee. We can determine if the queue’s tail

has been reached due to SAM’s support for read-without-write.

To allow an arbitrary number of pointers to point to the same

pointee, we construct an “inverted” binary tree. The pointee is at

the root of this tree. A non-root node has a directed edge to its

parent, and has at most two address queues “leading to” it. Just like

the case with two pointers sharing the same pointee, after fetching

the node using one of these queues, we can still fetch the node

using the other queue. Thus, when a pointer is de-referenced, we

can fetch the pointee by fetching the parent until we reach the root.

Figure 3 provides an illustration.

Figure 4 implements helper procedures for our smart pointer

operations, building on basic SAM operations and address queues.

struct ptr :
head : addr

struct userT :
. . . // user-specified fields

// node in inverted tree

struct node :
tailL : addr

tailR : addr

isRoot : bool

// root holding the pointee

struct rootNode extends node
:

content : userT

isRoot : true

// non-root node

struct branchNode extends
node :

headP : addr

isRoot : false

def chase(head : addr)→
node :

target← null

latest← null

tail← null

while head ≠ null do
latest← target

tail← head

target, head←
dequeue(head)

n← OSAM.Read(latest)

if n.tailL = tail then
n.tailL← null

else n.tailR← null

return n

def saveNode(n: node) :
a← OSAM.Alloc()

if n.tailL then
n.tailL←
enqueue(tailL, a)

if n.tailR then
n.tailR←
enqueue(tailR, a)

OSAM.Write(a, v)

def addTail(n: node)→ addr :
head, tail← initQueue()

if n.tailL= null then
n.tailL← tail

else n.tailR← tail

return head

Figure 4: Smart pointers helper procedures.

At the top we declare our data types which include the type of smart

pointers (ptr), a user-specified datatype (userT) for the pointee, and

a type node for each node in the inverted tree. Figure 5 implements

smart pointer operations using the helper procedures.

Smart pointer helper procedures. The procedure chase is used to

fetch a node in the inverted tree. Once a node is fetched, it must be

saved back to SAM memory so that it can be dereferenced again

later. This involves allocating and writing the node to a new address,

and we enqueue the newly allocated address to each queue leading

to the node. The helper procedure saveNode handles these.

When we wish to create or copy a pointer, we must connect that

pointer to a node, which involves creating a new address queue

that is shared between them. addTail establishes such a connection

by initializing an address queue and storing the tail in the node.

Smart pointer operations. Each of our smart pointer operations

is primarily a delegation to the above three helper procedures.

get dereferences a pointer by repeatedly calling chase to fetch

the parent node to eventually fetch the root of the inverted tree

where the pointee resides. Note that chase chases down an address

queue, and then removes the tail of the chased queue from the deref-

erenced element. This is because after an address queue is chased

down, it is destroyed. get ensures that a dereferenced pointer can

be dereferenced again by re-establishing the connection between a

node and its parent (via addTail) before saving it back to memory.

get contains one subtle but important detail: get returns a smart

copy of the user data type i.e., any pointers within the user type are
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def get(p: ptr)→ userT :
n← chase(p.head)

p.head← addTail(n)

while ¬n.isRoot do
n’← chase(n.headP)

n.headP← addTail(n’)

saveNode(n)

n← n’

// out is a smart copy of n.content

out← n.content

saveNode(n)

return out

def put(p: ptr, c: userT) :
n← chase(p.head)

p.head← addTail(n)

while ¬n.isRoot do
n’← chase(n.headP)

n.headP← addTail(n’)

saveNode(n)

n← n’

// n.content is a smart copy of c

n.content← c

saveNode(n)

def delete(p: ptr) :
if p.head ≠ null then

n← chase(p.head)

if n.isRoot then
if ¬(n.tailL ∨ n.tailR) then

delete(n.content)

else saveNode(n)

else
if n.tailL then tail← n.tailL

else tail← n.tailR

n← chase(n.headP)

if ¬n.tailL then
n.tailL← tail

else n.tailR← tail

saveNode(n)

def delete(c: userT) :
// Delete user type by deleting

// its constituent pointers

...

def isnull(p: ptr)→ bool :
return p.head = null

def operator←(p0 : ptr, p1 : ptr) :
n← chase(p1.head)

if n.tailL ∨ n.tailR then
nNew← branchNode {

.headP← addTail(n) }

saveNode(nNew)

n← nNew

p0.head← addTail(n)

p1.head← addTail(n)

saveNode(n)

def operator←(c0 : userT, c1 : userT) :
// Copy user type by smart copying

// its constituent pointers

...

def new(c: userT)→ ptr :
// .content is a smart copy of c

v← val {

.tailL← null,

.tailR← null,

.content← c }

p← ptr { .head← addTail(v) }

saveNode(v)

return p

Figure 5: Smart pointers abstract the underlying SAM model, making SAM operations easier to work with. A smart pointer can
be created (new), deleted (delete), copied (←), dereferenced (get), or updated (put). When dereferenced, a smart pointer returns
a user-specified data type, which might hold other smart pointers. If a (smart) copy of that same pointer is also dereferenced, it
will yield a (smart) copy of the same content.

“smart copied”. This is crucial, because it ensures that the version

of the element stored in machine memory and the version stored

in the SAM program’s local memory do not hold two copies of the

same SAM address. This avoids a possible error where one could

(1) dereference an element stored in SAM memory, (2) read a SAM

address within that element, (3) dereference the element from SAM

memory a second time, and (4) read the exact same SAM address

within that element a second time. Such a sequence would yield an

invalid SAM program, and we avoid it by making a smart copy

when dereferencing.

put is similar to get: we repeatedly use chase to fetch the root,

make a smart copy of the value to be stored in memory, and save the

root back to memory.While doing this, we make sure to re-establish

queues between nodes and their parents. put makes a smart copy

for the same reasons as get.

new saves a user datatype (possibly some default initial value)

to memory and returns a pointer to it. This creates the root of the

inverted tree with the pointer directly pointing to this. To do so, we

initialize a single address queue (via addTail) and save the resulting

rootNode to memory (via saveNode). newmakes a smart copy of the

saved value for the same reasons as discussed above for get.

delete deletes a pointer by by deleting the node that the pointer

points to. This is done by copying the tail of the other queue leading

to the node to the node’s parent, and saving the parent back to

memory. Special care is taken when the pointer directly points to

the root. In this case, if the root does not have another pointer

pointing to it, we recursively delete the content of the pointee.

The overloaded← operator for pointers creates a smart copy of

a pointer by using the pointer’s address queue to fetch the node,

say n, being pointed to. If n already has a second queue leading to

it, a new pointer cannot be made to point to it. Instead, a new node

nNew is created, and the new pointer and the pointer being copied

are made to point to nNew, which is made to point to n.

5.2 Validity and Efficiency
In the subsequent sections, we will use smart pointers to implement

data structures and algorithms. To properly analyze such programs,

we must argue two points:

• A smart-pointer-based program is a valid SAM program.

• Smart-pointer operations have good efficiency.

Both of these points rely on the properties of the smart pointer in-

terface itself. Thus, we formalize the rules for using smart pointers:

Definition 5.1 (Smart-Pointer-Based Program). A SAM program

P makes legal use of the smart pointer interface if it satisfies the

following criteria:

• P issues no calls to Alloc/Read/Write, except those implied

by the implementation of smart pointers.

• P does not call get/put on null smart pointers. That is, P
does not dereference null smart pointers.
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If it satisfies the above criteria, we say that P is a smart-pointer-

based program.

We argue that any smart-pointer-based program is a valid SAM

program. The← operator for pointers is overloaded to create only

smart pointer copies. This ensures that, under the hood, every

address queue used by the program is unique. We provide a proof

sketch of the below Lemma in Appendix A.

Lemma 5.2. Let P be a smart-pointer-based SAM program (Defi-

nition 5.1). P is a valid SAM program (Definition 4.1).

We also argue the efficiency of smart-pointer-based programs.

Lemma 5.3. Consider a smart-pointer-based SAM program (Def-

inition 5.1). Each call to a smart pointer operation (Figure 5) issues

amortized 𝑂 (𝑑) SAM memory requests, where 𝑑 pointers point to the

associated pointee.

Proof. It suffices to show that addTail, chase, and saveNode each

issue amortized𝑂 (1) SAM requests. Since the height of the inverted

tree is 𝑑 in the worst case, each smart pointer operation makes𝑂 (𝑑)
calls to these sub-procedures, and the lemma is proved.

It is clear from inspection of Figures 2 and 4 that addTail and

saveNode each issue 𝑂 (1) SAM requests. chase is more nuanced:

a call to chase can cause the program to chase down a queue of

arbitrary length, incurring an arbitrary number of calls to dequeue.

However, we discharge this cost by charging in advance - for every

block that is read, we charge this cost at the time when block was

written to the queue during saveNode. □

We can reduce this cost to𝑂 (log𝑑) by maintaining the invariant

that the tree of pointers pointing to a pointee is always a complete

binary tree (which is balanced). This can be done with the following

changes to the implementations of← (copy) and delete. Our new

implementation of← creates a new node at the location expected

for a complete binary tree with one more node, and the new pointer

is made to point to this new node (irrespective of which source

pointer is being copied). Our new implementation of delete also

needs to keep the tree complete. This is done by swapping the

to-be-deleted pointer with the last pointer in the complete binary

tree, i.e., the one that points to the rightmost node in the last level.

We ensure that given the root, this rightmost node can be fetched

by 1) storing the value of 𝑑 in the root and 2) making each node also

store edges to its children. These edges are implemented as address

queues. We formally provide the changes required in Appendix B.

6 OBLIVIOUS DATA STRUCTURES
In this section, we apply the SAM model to construct oblivious

data structures. Table 2 summarizes the asymptotic performance

of our constructions. Our constructions themselves are formalized

using our smart pointer interface (Section 5); formally, each of our

constructions is a smart-pointer-based program (Definition 5.1)

that is almost identical to the equivalent RAM implementation. As

we present our constructions, we use them to prove interesting

properties of OSAM.

6.1 Doubly Linked Lists; OSAM Lower Bound
Doubly Linked Lists. We start with a doubly-linked list (DLL) to

showcase the capabilities of smart pointers. A DLL is a list of nodes

// The type userT is set to node

struct node :
prev : ptr

next : ptr

data : int

first : ptr← null

last : ptr← null

def next(p: ptr)→ ptr :
n← get(p)

return n.next

def prev(p: ptr)→ ptr :
n← get(p)

return n.prev

def insertAfter(p: ptr, d: int)
→ ptr :

n← get(p)

q← new(node {

.prev← p,

.next← n.next,

˙data← d })

if isnull(n.next) then
𝑙𝑎𝑠𝑡 ← q

else
nnext← get(n.next)

nnext.prev← q

put(n.next, nnext)

n.next← q

put(p, n)

return q

def insertBefore(last : ptr, d:
int)→ ptr :

// Analogous to insertAfter

def insertBeg(d: int)→ ptr :
if isnull(first) then

p← new(node{

.prev← null,

.next← null,

.data← d })

first← p

last← p

else insertBefore(first, d)

def insertEnd(d: int)→ ptr :
// Analogous to insertBeg

def remove(p: ptr) :
n← get(p)

if isnull(n.prev) then
first← n.next

else
nprev← get(n.prev)

nprev.next← n.next

put(n.prev, nprev)

if isnull(n.next) then
last← n.prev

else
nnext← get(n.next)

nnext.prev← n.prev

put(n.next, nnext)

Figure 6: Our SAM-based doubly-linked list.

where each node stores some data, as well as pointers to the next

and previous nodes in the list. The user can access the first and last

elements of the list, and if holding a pointer to an element in the

middle of the list, canmove to the left/right, and access/insert/delete

elements. Figure 6 lists our smart-pointer-based implementation.

Note that two nodes of the DLL can point to one another, and this

non-tree-like structure was out of scope for prior work.

Each of our DLL procedures uses a constant number of smart

pointer operations. Since each node has at most two pointers point-

ing to it, each procedure uses amortized𝑂 (1) SAMoperations. Thus,

when we compile our data structure with our OSAM, our DLL uses

amortized 𝑂 (log𝑛) words of communication per procedure call.

We remark that [25] also describes an oblivious doubly-linked list,

but theirs requires packing Θ(log𝑛) elements in each ORAM block,

requiring a block size of Ω(log2 𝑛).

OSAM Lower Bound. Using the same smart-pointer-based style

as Figure 6, it is trivial to construct stacks supporting push/pop and

deques/queues supporting enqueue/dequeue. Each such procedure

uses 𝑂 (1) smart pointer operations, and hence, in the oblivious

setting, incurs amortized 𝑂 (log𝑛) words of communication.
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Interestingly, these straightforward constructions immediately

imply a lower bound on the bandwidth cost of any OSAM. [13]

proved that any oblivious stack/queue/deque must have expected

amortized cost Ω(log𝑛), given that the client runs in sublinear

space and the data structure stores elements that match the server’s

word size of Θ(log𝑛) bits.

Theorem 6.1 (OSAM Lower Bound). LetΠ be an OSAM compiler

that runs in space 𝑛1−𝜖 , where 𝜖 > 0 and where the word size is

𝑤 = Θ(log𝑛). Given a length-𝑚 sequence of SAM requestsR,Π(R) in
expectation outputs a sequence of RAM requests of length Ω(𝑚 · log𝑛).

This implies that our tree-based OSAM construction (Figure 1)

is essentially optimal, as it issues sequences of length 𝑂 (𝑚 · log𝑛).

6.2 Trees
By again applying our smart-pointer-based methodology, we can

implement arbitrary tree data structures, so long as each tree node

has a constant number of children. We emphasize our ability to

handle arbitrarily unbalanced trees, i.e., trees with depth 𝜔 (log𝑛).
Our implementations are almost identical to their non-oblivious

versions and, for reference, we present some of them in Appendix C.

In particular, we highlight our ability to handle tries and splay trees,

and use these to connect OSAM with ORAM.

Tries and connections to RAM. A trie (or prefix-tree) is a search

tree where each key is a string over some alphabet. The tree is

structured such that each subtree contains all strings that start with

the same prefix, and each node has one child per character in the

alphabet. Thus, a given search string determines a path through

the tree, and we store the value associated with that string at the

end of that path. Because the height of a trie is determined by the

longest string in its key set, it may be unbalanced.

Appendix C formalizes our smart-pointer-based trie. This code

is standard and included for completeness. We limit our handling

to alphabets of constant size. When searching for a string of length

ℓ , our trie issues 𝑂 (ℓ) SAM memory requests. By compiling with

OSAM, we obtain an oblivious trie structure where each lookup

incurs 𝑂 (ℓ · log𝑛) bandwidth blow-up and 𝑂 (1) roundtrips.
Our oblivious trie’s lookup operation issues a number of mem-

ory requests that depends on the search string length ℓ , and this

may raise concern about security. However, the server’s view is

determined by the aggregate of all requests issued by an entire SAM

program. A particular SAM program might look up elements in a

trie multiple times, perhaps interleaved with operations to other

SAM-based data structures; the server learns only the total number

of SAM memory requests.

A trie on the alphabet {0, 1} can instantiate a random access

memory: each logical address is treated as a string, and by searching

for a logical address, we access the content of that logical access.

For a memory with 𝑛 elements, each logical address is a string of

length log𝑛, so the trie has log𝑛 depth. Since each node has a single

pointer pointing to it, searching for a logical address can be done

using 𝑂 (1) SAM operations. By implementing a trie in the SAM

model, we establish a connection between RAM and SAM:

Theorem 6.2 (RAM from SAM). Let P be a random access ma-

chine program with memory size 𝑛 and word-size𝑤 = Θ(log𝑛) that

halts in time 𝑇 . There exists a SAM program that on the same input

incurs while issuing 𝑇 ·𝑂 (log𝑛) SAM memory requests.

As a corollary, this means that we can plug SAM-based RAM

in our OSAM construction (Figure 1) and achieve an ORAM with

𝑂 (log2 𝑛) bandwidth blow-up and 𝑂 (log𝑛) roundtrips. This is not
surprising: the SAM program that emulates RAM via a trie embeds

the 𝑂 (log𝑛) position maps of a tree-based ORAM into a single

OSAM. While not surprising, it is reassuring that moving from the

RAM model to the SAM model does not lose asymptotic perfor-

mance: we can always compile RAM operations to SAM operations

without asymptotic overhead as compared to using RAM directly.

Splay trees and caching ORAM. A splay tree [22] is a self-adjusting

binary tree where each time a node is accessed, a splay operation ro-

tates that node to the tree’s root. Splay trees are known to have good

locality properties. For instance, performing an in-order traversal

of the leaves of a size-𝑛 splay tree only takes time𝑂 (𝑛); see further
discussion in Appendix C. The data structure also has good amor-

tized performance: its lookup procedure incurs amortized 𝑂 (log𝑛)
cost, regardless of the access pattern. As with any binary tree struc-

ture, it is easy to embed splay trees in our smart pointer framework.

Appendix C presents the code, which is standard and included for

completeness.

Splay trees are rightfully the focus of some theoretical attention.

Since their introduction [22], they have been conjectured to be

the “asymptotically best possible binary tree”. The long-standing

Dynamic Optimality Conjecture [22] roughly states that for any se-

quence of lookups, the tree will perform within a constant factor of

any binary tree algorithm that is custom designed for that sequence;

see Appendix C for the formal conjecture.

It is easy to implement random access memory with a splay tree

by using logical memory addresses as keys. Thus, by plugging a

splay tree into our OSAM, we immediately obtain an interesting

object that we refer to as caching ORAM:

Theorem 6.3 (Caching ORAM). Assume the Dynamic Optimal-

ity Conjecture holds. There exists a statistically-secure ORAM Π with

the following properties:
1

• The RAM has 𝑛 addressable memory cells.

• The client runs in 𝑂 (𝑤 · 𝜆) bits of space.
• Let R be a length-Ω(𝑛) sequence of memory requests issued

by the client, and suppose there exists some binary tree al-

gorithm that could satisfy the requests in R in time 𝑇 . Then

Π(R) issues 𝑂 (𝑇 · log𝑛) memory requests to the server.

This caching ORAM has amortized cost at most 𝑂 (log2 𝑛) per
access, but it can have cost as low as 𝑂 (log𝑛), depending on the

access pattern. Sequences that tend to repeatedly access a relatively

small number of elements, or that scan elements that are close

together, will be accelerated. Even if the Dynamic Optimality Con-

jecture proves false, this splay-tree-based statistical ORAM will

still have interesting properties, as splay trees are known to satisfy

certain weaker properties, such as the static optimality; see [22].

1
The stated efficiency is based on an instantiation with Path ORAM. If we instead

instantiate caching ORAM via Circuit ORAM, we achieve𝑂 (𝑤 ) bits of client space
and𝑂 (𝑇 · 𝜆) memory requests.
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7 OBLIVIOUS GRAPH ALGORITHMS
In this section, we use the SAMmodel to implement oblivious graph

algorithms for the breadth-first search (BFS), depth-first search

(DFS), single-source shortest path (SSSP), and minimum spanning

tree (MST) problems. We refer to these as our target algorithms. All

our algorithms run at cost 𝑂 ( |𝐸 | log |𝐸 |) memory requests, where

|𝐸 | is the number of edges. We remark that we consider directed

graphs. For SSSP and MST, we equip our OSAM with an oblivious

priority queue using the techniques of [19]. [19] adds no asymptotic

overhead, and allows us to efficiently solve SSSP and MST.

Smart pointers can be directly used to implement textbook ver-

sions for these problems (after some natural modifications). These

algorithms require dereferencing each pointer to a vertex to visit

it. Since smart pointer operations incur 𝑂 (log𝑑) SAM memory

requests when the dereferenced pointee is shared by 𝑑 pointers,

oblivious versions of these textbook algorithms are only efficient if

𝑑 is a small constant. But for graphs of arbitrary degree, the total

cost can be 𝑂 ( |𝐸 | log2 |𝐸 |) in the worst case.

We can reduce the cost to𝑂 ( |𝐸 | log |𝐸 |) even for arbitrary degree
graphs by ensuring that each vertex in the graph is visited only once.

We emulate the arbitrary degree graph, which we call the original

graph, by a larger graph of constant degree that stores information

about whether a vertex has been visited. If the original graph has

|𝑉 | vertices and |𝐸 | edges, then the emulating graph has 𝑂 ( |𝐸 |)
vertices and 𝑂 ( |𝐸 |) edges. Our approach is to specify a template

algorithm that traverses each edge in the emulating graph at most

twice. Being a graph of constant degree, this incurs only 𝑂 ( |𝐸 |)
SAM memory requests – and hence the compiled OSAM program

makes𝑂 ( |𝐸 | log |𝐸 |) requests to the server. Each target algorithm is

achieved by plugging in appropriate details to the template. More

precisely, our emulation proceeds as follows:

• For each vertex in the original graph, create an original

vertex in the emulating graph, denoted by 𝑢.

• Consider an original vertex 𝑢. For each of 𝑢’s incoming

edges (𝑣,𝑢) in the original graph, we add a vertex to the

emulating graph encoding that edge. Each such vertex is

called an incoming edge vertex, denoted 𝑣𝑢.

• For each edge (𝑣,𝑢) in the original graph, we create a smart

pointer to 𝑣𝑢. This pointer is called an original edge, denoted

by 𝑣 → 𝑢.

• For each edge (𝑢, 𝑣) in the original graph, we create a vertex
in the emulating graph. We call this vertex an outgoing edge

vertex, denoted 𝑢𝑣 . We store the original edge 𝑢 → 𝑣 (recall,

the original edge is a pointer) in 𝑢𝑣 .

• Consider all outgoing edge vertices originating from 𝑢. We

use smart pointers to create a binary tree where the original

vertex 𝑢 is the root and each outgoing edge node 𝑢𝑣 is a

leaf. This tree is called 𝑢’s outgoing edge tree.

• Consider all incoming edge vertices incident on 𝑢. We use

smart pointers to create a binary tree where the original

node 𝑢 is the root and each incoming edge node 𝑣𝑢 is a leaf.

We augment this tree with parent pointers. Namely, from a

tree node, we can traverse to its two children or its parent.

This tree is called 𝑢’s incoming edge tree.

Figure 12 in Appendix E depicts an example of an arbitrary

degree graph emulated by a constant degree graph. Note that the

number of edges in the emulating graph is only a constant factor

higher than the number of edges in the original graph.

7.1 Implementing Oblivious Graph Algorithms
We solve SSSP using Dijkstra’s algorithm and solve MST using

Prim’s algorithm. A common structure shared by these algorithms

is to traverse the graph and generate a labeling for the original

vertices. In the case of SSSP, each label is that vertex’s distance

from the source; in the other algorithms, each label is a pointer to

the parent in a tree that describes the traversal. Each algorithm’s

traversal is guided by a data structure that dictates the order in

which vertices should be visited. The particular traversal structure

is specific to the algorithm:

Problem Labels Traversal Structure
DFS pointer to parent in tree stack

BFS pointer to parent in tree queue

MST pointer to parent in tree priority queue

SSSP distance from source vertex priority queue

Typically, graph algorithms are written in a style where metadata

corresponding to each vertex (e.g., latest distance from the source

node in Dijkstra’s algorithm) is stored in an external array. For us,

it is more efficient to store such metadata in the vertices themselves.

In particular, we store whether an original vertex has been visited or

not in its incoming edge vertices, we store edge weights in outgoing

edge vertices, and the label in the original vertex itself.

The core loop of each of our algorithms follows the following

template formally given in Figure 13 in Appendix E .

• Pop a pointer to a vertex 𝑢 from the traversal structure.

More precisely, pop a pointer to some incoming edge vertex

𝑣𝑢, along with information needed to update 𝑢’s label.

• Check whether or not 𝑢 has been visited. We store whether

𝑢 has been visited in each incoming edge vertex 𝑣𝑢. If 𝑢 has

been visited, proceed to the next iteration of the loop.

• Otherwise, traverse the incoming edge tree to find the orig-

inal vertex 𝑢 and update 𝑢’s label.

• Add all neighbors of 𝑢 to the traversal structure. More pre-

cisely, we walk 𝑢’s outgoing edge tree, and for each leaf 𝑢𝑣 ,

we add 𝑢𝑣 to the structure, along with data (the output of

getL) needed to update that neighbor’s label.

• We mark 𝑢 as visited so that it will not be visited again.

More precisely, we walk 𝑢’s incoming edge tree, and for

each leaf 𝑣𝑢, we update 𝑣𝑢 to denote that𝑢 has already been

visited.

Instantiating our graph algorithms thus amounts to plugging

into the above template: (1) the correct traversal structure and (2)

algorithm-specific handling for labels. We remark that we tweak

Dijkstra’s algorithm in order to fit into the template. Appendix E

gives a side-by-side comparison of the original Dijkstra’s algorithm

and the tweaked version and presents formalized SAM programs

for BFS, DFS, SSSP, and MST .

Crucially, each of our algorithms dereferences each emulating

graph vertex no more than twice. Indeed, we dereference each

original vertex, as well as each of its outgoing edge vertices, exactly

once. We dereference each incoming edge vertex once to set an

original vertex as visited, and some incoming edge vertices will

be dereferenced a second time to perform a visit. Since there are
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𝑂 ( |𝐸 |) vertices in the emulating graph, our algorithms perform a

total of 𝑂 ( |𝐸 |) SAM memory requests and, when compiled with

OSAM, our oblivious algorithms incur 𝑂 ( |𝐸 | · log |𝐸 |) bandwidth
blow-up and 𝑂 ( |𝐸 |) roundtrips.

REFERENCES
[1] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico,

and Elaine Shi. 2020. OptORAMa: Optimal Oblivious RAM. In EUROCRYPT 2020,

Part II (LNCS, Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Hei-

delberg, 403–432. https://doi.org/10.1007/978-3-030-45724-2_14

[2] Gilad Asharov, Ilan Komargodski, and Yehuda Michelson. 2023. FutORAMa: A

Concretely Efficient Hierarchical Oblivious RAM. In Proceedings of the 2023 ACM

SIGSAC Conference on Computer and Communications Security. 3313–3327.

[3] Gilad Asharov, Ilan Komargodski, and Yehuda Michelson. 2023. FutORAMa: A

Concretely Efficient Hierarchical Oblivious RAM. CCS (2023).

[4] Marina Blanton, Aaron Steele, and Mehrdad Aliasgari. 2013. Data-oblivious

graph algorithms for secure computation and outsourcing. In ASIACCS 13, Kefei

Chen, Qi Xie, Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng (Eds.). ACM Press,

207–218.

[5] David Cash, Andrew Drucker, and Alexander Hoover. 2020. A lower bound

for one-round oblivious RAM. In Theory of Cryptography: 18th International

Conference, TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part

I 18. Springer, 457–485.

[6] Kai-Min Chung, Zhenming Liu, and Rafael Pass. 2014. Statistically-secure ORAM

with �̃� (log2 𝑛) Overhead. In ASIACRYPT 2014, Part II (LNCS, Vol. 8874), Palash

Sarkar and Tetsu Iwata (Eds.). Springer, Heidelberg, 62–81. https://doi.org/10.

1007/978-3-662-45608-8_4

[7] Samuel Dittmer and Rafail Ostrovsky. 2020. Oblivious Tight Compaction In O(n)

Time with Smaller Constant. In SCN 20 (LNCS, Vol. 12238), Clemente Galdi and

Vladimir Kolesnikov (Eds.). Springer, Heidelberg, 253–274. https://doi.org/10.

1007/978-3-030-57990-6_13

[8] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Ste-

fanov. 2015. Bucket ORAM: single online roundtrip, constant bandwidth oblivious

RAM. Cryptology ePrint Archive (2015).

[9] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.

TWORAM: Efficient oblivious RAM in two rounds with applications to searchable

encryption. In Annual International Cryptology Conference. Springer, 563–592.

[10] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. J. ACM 43, 3 (1996), 431–473. https://doi.org/10.1145/

233551.233553

[11] Michael T Goodrich and Michael Mitzenmacher. 2011. Privacy-preserving access

of outsourced data via oblivious RAM simulation. In International Colloquium on

Automata, Languages, and Programming. Springer, 576–587.

[12] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto

Tamassia. 2012. Privacy-preserving group data access via stateless oblivious

RAM simulation. In Proceedings of the twenty-third annual ACM-SIAM symposium

on Discrete Algorithms. SIAM, 157–167.

[13] Riko Jacob, Kasper Green Larsen, and Jesper Buus Nielsen. 2019. Lower Bounds

for Oblivious Data Structures. In 30th SODA, Timothy M. Chan (Ed.). ACM-SIAM,

2439–2447. https://doi.org/10.1137/1.9781611975482.149

[14] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2012. On the (in) security

of hash-based oblivious RAM and a new balancing scheme. In Proceedings of

the twenty-third annual ACM-SIAM symposium on Discrete Algorithms. SIAM,

143–156.

[15] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.

ObliVM: A Programming Framework for Secure Computation. In 2015 IEEE

Symposium on Security and Privacy. IEEE Computer Society Press, 359–376.

https://doi.org/10.1109/SP.2015.29

[16] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft,

and Elaine Shi. 2015. GraphSC: Parallel Secure Computation Made Easy. In 2015

IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 377–394.

https://doi.org/10.1109/SP.2015.30

[17] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi,

Marten vanDijk, and Srinivas Devadas. 2015. Constants Count: Practical Improve-

ments to Oblivious RAM. In USENIX Security 2015, Jaeyeon Jung and Thorsten

Holz (Eds.). USENIX Association, 415–430.

[18] Zihao Shan, Kui Ren, Marina Blanton, and Cong Wang. 2018. Practical secure

computation outsourcing: A survey. ACM Computing Surveys (CSUR) 51, 2 (2018),

1–40.

[19] Elaine Shi. 2020. Path Oblivious Heap: Optimal and Practical Oblivious Priority

Queue. In 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, 842–858. https://doi.org/10.1109/SP40000.2020.00037

[20] Elaine Shi, T H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAM with O ((log N) 3) worst-case cost. In Advances in Cryptology–ASIACRYPT

2011: 17th International Conference on the Theory and Application of Cryptology

and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings 17.

Springer, 197–214.

[21] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAM with𝑂 ( (log𝑁 )3 ) Worst-Case Cost. In ASIACRYPT 2011 (LNCS, Vol. 7073),

Dong Hoon Lee and Xiaoyun Wang (Eds.). Springer, Heidelberg, 197–214. https:

//doi.org/10.1007/978-3-642-25385-0_11

[22] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-adjusting binary

search trees. Journal of the ACM (JACM) 32, 3 (1985), 652–686.

[23] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple

oblivious RAM protocol. InACMCCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor,

and Moti Yung (Eds.). ACM Press, 299–310. https://doi.org/10.1145/2508859.

2516660

[24] XiaoWang, T.-H. Hubert Chan, and Elaine Shi. 2015. Circuit ORAM:On Tightness

of the Goldreich-Ostrovsky Lower Bound. InACMCCS 2015, Indrajit Ray, Ninghui

Li, and Christopher Kruegel (Eds.). ACM Press, 850–861. https://doi.org/10.1145/

2810103.2813634

[25] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi,

Emil Stefanov, and Yan Huang. 2014. Oblivious Data Structures. In ACM CCS

2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM Press, 215–226.

https://doi.org/10.1145/2660267.2660314

[26] Peter Williams and Radu Sion. 2012. Single round access privacy on outsourced

storage. In Proceedings of the 2012 ACM conference on Computer and communica-

tions security. 293–304.

[27] Samee Zahur and David Evans. 2013. Circuit Structures for Improving Efficiency

of Security and Privacy Tools. In 2013 IEEE Symposium on Security and Privacy.

IEEE Computer Society Press, 493–507. https://doi.org/10.1109/SP.2013.40

https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-662-45608-8_4
https://doi.org/10.1007/978-3-662-45608-8_4
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1137/1.9781611975482.149
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/SP.2015.30
https://doi.org/10.1109/SP40000.2020.00037
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2660267.2660314
https://doi.org/10.1109/SP.2013.40


Ananya Appan, David Heath, and Ling Ren

Appendices

A PROOFS OF SECURITY
Smart Pointer Validity. Recall that a SAM program is valid if an

address is allocated before use, and each address is read from or

written to only once. It is essential that a SAM program is valid

for obliviousness since the security of our OSAM compiler holds

only for valid SAM programs. We provide a proof sketch that any

smart pointer-based smart program (Definition 5.1) is a valid SAM

program.

Lemma 5.2 Let P be a smart-pointer-based SAM program (Defi-

nition 5.1). P is a valid SAM program (Definition 4.1).

Proof Sketch. SAM program validity requires that each SAM

memory address is allocated before being written to and read from

at most once each. We argue that smart-pointer-based programs

automatically satisfy this constraint. Note that since dereferenc-

ing null pointers is disallowed by Definition 5.1, we only need to

consider potential invalid operations that occur as the result of

interacting with non-null pointers.

We argue that operations on a given smart pointer result in a

valid SAM program. First, note that the SAM memory requests

internal to addTail, saveNode and chase are valid. This is because

each directed edge is implemented as a separate address queue.

Calls made to get and put are valid since a different address is

read each time a node in the inverted tree is fetched by calling

chase. This is because each call to chase fetches a node that was

earlier saved to memory by calling saveNode during which a node

is written to a newly allocated address that is enqueued to both

its dependent queues. Calls made to chase while deleting a pointer

with delete or copying a pointer using← are also valid due to the

same reasons. Recall that while deleting a pointer, we copy the tail

of the other dependent queue to the parent and save the parent

back. This is valid since the copied tail was pre-allocated and has

not been written to.

We now show argue that P is valid since P cannot copy a smart

pointer, except by using the overloaded assignment operator pro-

vided in Figure 5. In other words, P cannot generate two copies of

the same address queue. Note that if two exact address of the same

pointer were created, then reading the head of both copies would

break validity. It is relatively straightforward from inspection that

P can only copy pointers via←. The only interesting corner cases

are in get, put, and new, where our operations copy a user-specified

datatype which might itself contain pointers. However, we overload

assignment for user-specified types as well, ensuring that copying

a user type applies our pointer assignment operator as well. Thus,

there simply is no syntactic mechanism by which P can copy a

pointer, except by calling←.

Now, notice that the only way to construct a non-null pointer is

by calling new or by copying with←. Both of these procedures use

addTail to establish address queues between each pointer and its

pointee. This – combined with the fact that saveNode alerts all in-

coming pointers via enqueue – ensures that each pointer has its own

address queue, and by calling chase, the pointer will obtain a single

address which has been written, but not read. Thus, dereferencing

a pointer leads to a valid SAM memory request.

□

B EFFICIENT SMART POINTER OPERATIONS
In Section 5, we implemented smart pointer operations such that

each operation incurred𝑂 (𝑑) SAMmemory requests, where𝑑 is the

number of shared pointers pointing to the pointee. The main reason

for this cost is that the tree may be unbalanced, with a worst-case

height of𝑑 . In this section, we describe how to reduce this amortized

cost to 𝑂 (log𝑑). At a high level, we do this by maintaining the

invariant that, after every smart pointer operation, the resulting

tree of pointers is always a complete binary tree that is balanced.

In a complete binary tree, each level except the last is completely

filled. Nodes in the last level are as much to the left as possible.

Recall our implementation of the← operator in Section 5: we

copy a pointer by chasing it to obtain the node 𝑛 that it points to,

create a new node nNew that points to 𝑛, and make the pointer

and its copy point to nNew. However, repeatedly copying the same

pointer results in many such new nodes being created and forming

a long path from the pointer to the root. This is precisely what

causes the tree to be unbalanced.

We present a new implementation for the ← operation that

ensures that the tree is balanced. In our new implementation, ir-

respective of the pointer being copied, a new node is created as

the rightmost node in the last level that is not yet filled. The new

pointer is then made to point to this new node. To determine how

this node must be created, we make two changes. First, the root

additionally stores the number of pointers pointing to the pointee.

Given the root, if nodes in the tree also had edges to their children,

this count could be used to determine the path of child nodes to

be traversed in order to determine where the new node must be

created. Thus, our second change is to use address queues to im-

plement edges from nodes to their children as well. Now, given a

pointer to be copied, we can first fetch the root and then create the

rightmost node in the tree.

To maintain our invariant, we additionally need to update the

implementation of the delete operation. In our new implementation,

we replace the deleted pointer with the pointer that was most

recently added. To do this, we first fetch the root. Then, we can

fetch the rightmost node in the last level, and copy the tail of the

most recently added pointer to replace the deleted pointer. We

finally delete the rightmost node and copy the tail of the other

pointer pointing to it to the rightmost node’s parent. As a result,

our new implementation of the delete operation has the effect of

“undoing” what is done when a pointer is copied.

Figure 7 presents our new implementation of the copy (←) and

delete operations. Our new implementations requiremaking changes

to the structure of the nodes in the tree. All nodes additionally store

heads of address queues that lead to their children, the root addi-

tionally stores a count of the pointers pointing to the pointee, and

non-root nodes additionally store the tail of the queue held by their

parent. The helper procedures saveNode and addTail are updated

to account for a node having three queues possibly leading to it.

We introduce two additional helper procedures: ascend - to fetch

the root given a pointer - and descend - to fetch the rightmost node

in the last level. We stress that our implementations of new, get and

put remain the same.
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// node in inverted tree

struct node :
tailL : addr

tailR : addr

headL : addr

headR : addr

isRoot : bool

// root holding the pointee

struct rootNode extends node :
content : userT

count : int

isRoot : true

// non-root node

struct branchNode extends node :
headP : addr

tailP : addr

isRoot : false

def saveNode(n: node) :
a← OSAM.Alloc()

if n.tailL then
n.tailL← enqueue(tailL, a)

if n.tailR then
n.tailR← enqueue(tailR, a)

if n.tailP then
n.tailP← enqueue(tailP, a)

OSAM.Write(a, v)

def addTail(n: node)→ addr :
head, tail← initQueue()

if n.tailP= null then
n.tailP← tail

if n.tailL= null then
n.tailL← tail

else n.tailR← tail

return head

def descend(root: node) :
pow← ⌊log

2
(root.count))⌋

rightmost← ⌊ root.count−2pow−1
2

⌋
n← root

for bit in rightmost from MSB to LSB

do
if bit = 0 then

if n.headL then
n’← chase(n.headL)

else
n’← newNode()

n’.tailL← n.tailL

n.tailL← null

n’.headP← addTail(n)

n.headL← addTail(n’)

else
if n.headR then

n’← chase(n.headR)

else
n’← newNode()

n’.tailR← n.tailR

n.tailR← null

n’.headP← addTail(n)

n.headR← addTail(n’)

saveNode(n)

n← n’

return n

def ascend(p: ptr)→ rootNode :
n← chase(p.head)

p.head← addTail(n)

while ¬n.isRoot do
n’← chase(n.headP)

n.headP← addTail(n’)

saveNode(n)

n← n’

return n

def newNode()→ branchNode :
return branchNode{

.tailL← null,

.tailR← null,

.headL← null,

.headR← null }

def operator←(p0 : ptr, p1 : ptr) :
root← ascend(p1)

root.count++

n← descend(root)

p0.head← addTail(n)

saveNode(n)

def delete(p: ptr) :
root← ascend(p)

root.count-=1

// get rightmost node and latest tail.

Delete rightmost node by copying

remaining tail to parent

n← descend(root)

tailLatest← n.tailR

parent← chase(n.head)

if ¬parent.tailL then
parent.tailL← n.tailL

else
parent.tailR← n.tailL

saveNode(parent)

// copy latest tail to node that deleted

pointer points to

n’← chase(p)

if ¬n′ .tailR then
n’.tailR← tailLatest

else
n’.tailL← tailLatest

saveNode(n’)

Figure 7: Updated implementation of smart pointer operations for copying a pointer (←) and deleting a pointer (delete). As
a result, all our smart pointer operations incur a cost of 𝑂 (log𝑑) SAM memory requests, where 𝑑 is the number of pointers
pointing to the associated pointee.



Ananya Appan, David Heath, and Ling Ren

Lemma B.1. Consider a smart-pointer-based SAM program (Defi-

nition 5.1). Each call to a smart pointer operation (Figure 5, Figure 7)

issues amortized 𝑂 (log𝑑) SAM memory requests, where 𝑑 pointers

point to the associated pointee.

Proof. Since the tree is now always balanced, the height of the

tree is 𝑂 (log𝑑). The rest of the proof follows from the proof of

Lemma 5.3. □

C UNBALANCED SEARCH TREES
In this section, we discuss tries and splay trees. Tries and splay

trees are search trees that allow values associated with keys to be

efficiently retrieved, inserted, and deleted. We provide implemen-

tations of oblivious tries and splay trees using our smart pointer

interface. We also review the fascinating properties of splay trees.

C.1 Tries
Our trie implementation is given in Figure 8. Recall that a trie

is a prefix tree where each key is a string over some alphabet,

and each node represents the prefix of a key. Each node stores

(1) a list of smart pointers to its children, (2) a boolean value eow

indicating whether the associated prefix is a key, (3) whether the

value associated with it is a key. The root of the trie is initialized

to represent an empty string. We describe the procedures that we

implement for our trie.

search returns the value associated with a key by using each

letter in the key to traverse a path. If a null pointer is encountered

on this path, then the key is not found, and None is returned.

Insert is used to insert a key. It is similar to search. The difference

is that each time a null pointer is encountered, it is replaced with a

pointer to a new node created to represent the missing prefix.

delete deletes a string in the dictionary. It is also similar to search,

with the difference being that if the string is found, its boolean

value eow is set to false.

C.2 Splay Trees
Implementing an Oblivious Splay Tree. We implement an obliv-

ious splay tree in Figure 10. Each time a key is accessed, a splay

operation is performed that restructures the tree by repeatedly per-

forming rotations on the associated node’s ancestors to bring the

node to the tree’s root. These rotations are similar to those required

for regular balanced binary search trees. We give the splay opera-

tion, along with helper procedures to implement it, in Figure 9.

Our implementation of the splay operation follows the standard

implementation. We provide helper procedures to rotate a node

to the left or right to replace a node with its right or left child,

respectively. How the node is structured with respect to its parent

and grand-parent decide the direction in which it must be rotated,

and whether the parent or the grand-parent is rotated first. Thus,

each node stores pointers not only to its children, but also to its

parent. Note that this is possible only because of our support for

sharing. To help with performing rotations and splaying, we provide

procedures to fetch the node’s left child, right child, parent, and

grand-parent.

Operations to search for and insert a node are similar to those

used in balanced binary search trees, except that the node holding

struct node :
eow : {0,1}

children :

[ptr](AlphabetSize)

value : int

root: ptr← new(node{

.eow← 0,

.children← [null] })

def Insert(s : string, v : int) :
p← root

n← get(p)

for letter in 𝑠 do
label = letter - ‘a’

if
isnull(n.children[label])

then
n.children[label]

← new(node{

.eow← 0,

.children

← [null],

.value←
v})

put(p, n)

p← n.children[label]

n← get(p)

n.eow← true

put(p, n)

def search(s : string)→ int :
n← get(root)
for letter in 𝑠 do

label = letter - ‘a’

if n.children[label]
then

n←
get(n.children[label])

else return None

if n.eow then
return n.value

return None

def delete(s : string) :
p← root

n← get(p)

for letter in 𝑠 do
label = letter - ‘a’

if n.children[label]
then

p←
n.children[label]

n← get(p)

else return
n.eow← false

put(p, n)

Figure 8: Implementation of an oblivious trie using smart
pointers.

the key just accessed is immediately splayed to bring it to the root.

Deleting a key is, however, slightly different. To delete a key, we

first search for it to bring it to the root. We then “join” the left and

right subtrees of the root to delete it. This is done by splaying the

maximum value in the left sub-tree, thus ensuring that the root of

the left subtree has no right child, after which the root of the right

subtree is made its right child.

Properties of Splay Trees. Splay trees have been proven to have

good locality optimizing properties. On splaying a node, not only

is it brought to the root, but the average heights of all nodes on the

path to it are approximately halved. For a long enough sequence

of accesses, splay trees have been proven to have an amortized

cost that either matches that of balanced binary search trees, or

outperforms them. Consider the following theorems.

• Balance Theorem: The amortized cost of accessing a key 𝑘 is

𝑂 (log𝑛). This shows that, irrespective of the access pattern,
splay trees are as efficient as balanced binary search trees.

• Static Optimality Theorem: The amortized cost of accessing

a key 𝑘 is 𝑂 (log(𝑛/𝑞𝑘 )) where 𝑞𝑘 is the frequency with

which 𝑘 is accessed in the sequence. The more frequently a

key is accessed, the cost of accessing it decreases.
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struct node :
key : int

value : int

left : ptr

right : ptr

parent: ptr

def l(n: node)→ node :
return get(n.left)

def r(n: node)→ node :
return get(n.right)

def leftRot(yPtr: ptr) :
y← get(yPtr)

xPtr← y.right

x← get(xPtr)

pPtr← y.parent

p← get(pPtr)

if y.key == l(p) .key then
p.left← xPtr

else p.right← xPtr

x.parent← pPtr

put(pPtr, p)
zPtr← x.left

if zPtr then
z← get(zPtr)

y.right← zPtr

z.parent← yPtr

put(zPtr, z)

x.left← yPtr

y.parent← xPtr

put(xPtr, x)
put(yPtr, y)

def rightRot(yPtr: ptr) :
// Similar to leftRot

def p(n: node)→ node :
return get(n.parent)

def gp(n: node)→ node :
return p(p(n))

def splay(xPtr: ptr) :
x← get(xPtr)
while p(x) do

if !gp(x) then
if x.key ==

l(p(x)) .key then
rightRot(x.parent)

else
leftRot(x.parent)

else if
x.key == l(p(x)) .key
and p(x) .key ==

l(gp(x)).key then
rightRot(p(x) .parent)
rightRot(x.parent)

else if
x.key == r(p(x)) .key
and p(x) .key ==

r(gp(x)).key then
leftRot(p(x) .parent)
leftRot(x.parent)

else if
x.key == l(p(x)) .key
and p(x) .key ==

r(gp(x)).key then
rightRot(x.parent)
leftRot(x.parent)

else
leftRot(x.parent)
rightRot(x.parent)

x← get(xPtr)

Figure 9: Helper procedures to implement an oblivious splay
tree.

• Static Finger Theorem: For any fixed key 𝑓 , the amortized

cost of accessing a key 𝑘 is 𝑂 (log( |𝑘 − 𝑓 | + 1)). Thus, ac-
cesses within the vicinity of a “finger” are faster.

• Working Set Theorem: The amortized cost of accessing a

key 𝑘 is𝑂 (log(𝑡 (𝑘) + 1)) where 𝑡 (𝑘) is the number of keys

accessed since the last time 𝑘 was accessed. This means the

most recently accessed keys, which form a working set, are

easier to access.

While unproven, splay trees are conjectured to perform as well

as a binary search tree tailored to answer a sequence of queries.

Conjecture C.1 (Dynamic Optimality [22]). Let 𝐴 be any bi-

nary search tree algorithm where we charge unit cost to (1) perform a

tree rotation or (2) access a child from a parent. Let 𝑆 be a sequence

of queries to a search tree of size 𝑛, and let 𝐴(𝑆) be the total cost to
satisfy 𝑆 with algorithm𝐴. A splay tree handles 𝑆 at cost𝑂 (𝑛+𝐴(𝑆)).

struct node :
key : int

value : int

left : ptr

right : ptr

parent: ptr

root : ptr← null

def search(k: int)→ value :
p← root

while p do
n← get(p)

if k== n.key then
break

else if k > n.key then
n.right ? p←
n.right: break

else
n.left ? p← n.left:

break

splay(p)
root← p

def delete(key: int) :
search(key)

n← get(root)

if !isnull(n.left) then
root← n.left

search(key)

nl← get(root)

nl.right← n.right

put(root, nl)

else root← n.right

def Insert(k : int, v : int) :
p← root

q← null // Pointer to

parent

while 𝑝 do
n← get(p)

q← p

if k > n.key then
p← n.right

else
p← n.left

m← n // Leaf node acting

as parent

n← node {

.key← k, .value← v,

.left← null, .right←
null,

.parent← null }

p← new(n)

if isnull(q) then
root← p

else
if k > m.key then

m.right← p

else
m.left← p

n.parent← q

put(q, m)

put(p, n)

splay(p)

root← p

Figure 10: Implementation of an oblivious splay tree using
smart pointers.

D OBLIVIOUS
PRIORITY-QUEUE-AUGMENTED SAM

Recall that some of our graph algorithms require that we extend the

SAM model with operations of a priority queue. In this section, we

define this extended SAM model and modify our OSAM compiler

to additionally handle requests to a priority queue.

The Augmented SAM-PQmodel. The extension of the SAMmodel

to handle priority queue operations is straightforward, and involves

simply adding new operations to the interface of our single access

machine:

Definition D.1 (Priority-Queue-Augmented SAM (SAM-PQ)). A

Priority-Queue-Augmented SAM (SAM-PQ) is a memory storing

a polynomial number of addressable memory cells, each of some

specified bit-width 𝑤 . The machine also stores a priority queue

holding cells of width𝑤 . The machine responds to SAM memory

requests, as well as the following:
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counter← 0

stash← empty-list

addrMin← null

queueSize← 0

def Alloc()→ addr :
// Same as before

def Read(i : addr)→ val | None :
// Same as before

def Write(i : addr, v : val, p : T←∞) :
ReadAndRm(Alloc()) // Read a dummy address

stash.append({ p, i, v })

Evict()

def Pop()→ val | ⊥ :
if queueSize then

queueSize -= 1

return Read(addrMin)

return ⊥

def Insert(v : val, p : T) :
queueSize += 1

Write(Alloc(), v, p)

def IsQueueEmpty()→ {0, 1} :
return queueSize== 0

def ReadAndRm(i : addr)→ val | None :
. . .

// additionally calls P.updateMin(), where P is the path

identified by i

def Evict() :
. . .

// additionally calls P.updateMin(), for each path P
evicted along

Figure 11: OSAM client extended to include an oblivious pri-
ority queue.

• Insert(val, 𝑝): The machine inserts value val ∈ {0, 1}𝑤 into

a priority queue with priority 𝑝 .

• val ← Pop(): The machine responds with the element of

highest priority in the priority queue and removes that

value from the queue. If the queue is empty, the machine

instead halts and outputs ⊥.
• {0, 1} ← IsQueueEmpty: The machine responds with 1 if

the priority queue is empty and 0 otherwise.

A SAM-PQ program is an interactive, randomized algorithm that

issues memory requests to the machine. A SAM-PQ program is

valid if it does not cause the machine to output ⊥.

The OSAM-PQ compiler. By leveraging prior work [19], it is

straightforward to construct tree-based OSAM-PQ. We instanti-

ate our priority queue using a min heap, with smaller elements

having higher priorities. We give a brief overview of the ideas

presented in [19].

Recall that in tree-based ORAM, the server’s memory is arranged

as a binary tree, and each logical block is mapped to a particular path

through that tree. [19]’s elegant observation is that this structure

is naturally compatible with priority queue operations. Specifically,

[19] augments each node in the tree with the minimum element in

its subtree, along with the leaf assigned to it. Thus, the minimum

element in the root stores the minimum element in the priority

queue, and the client locally stores the address of this element.

Each time an element is inserted or popped, this augmented data

is updated for all nodes on the path to the element’s assigned leaf

using a procedure called updateMin.

Figure 11 presents our OSAM-PQ construction. Since each node

in the tree additionally stores a priority, the Write procedure is

updated to take a priority as a third input, with a default value

of∞. To update priorities on insert and pop, the ReadAndRm and

Evict procedures additionally call updateMin. The client stores two

additional values - the number of elements in the queue, and the

address of the minimum element. Insert inserts an element to the

priority queue by making a call to Write. Pop calls Read to read the

address of the minimum element. The number of elements in the

queue is updated accordingly.

Definition D.2 (Oblivious SAM-PQ (OSAM-PQ)). An SAM-PQ

compiler Π is a poly-time, online algorithm that implements the

SAM-PQ interface and issues random access memory requests.

We say that Π is an oblivious SAM-PQ (OSAM-PQ) if there ex-

ists a poly-time simulator S such that for any polynomial-length

sequence of SAM-PQ requests R, the following ensembles are sta-

tistically close (in 𝜆):

Π(1𝜆,R) 𝑠= S(1𝜆,L(R))
Above,L(R) denotes the number of Read/Write/Insert/Pop requests.

The following holds by the same reasoning as Theorem 4.3:

Theorem D.3 (Oblivious SAM-PQ Construction). Let Π de-

note the SAM-PQ compiler formalized in Figure 11. Π is an oblivious

SAM-PQ (Definition D.2). Let R denote a length-𝑚 sequence of SAM-

PQ requests, and let the memory store 𝑛 words of size𝑤 = Θ(log𝑛). If
Π is instantiated using Path ORAM [23], then it achieves the following

performance characteristics:

• Π(1𝜆,R) outputs a sequence of random access memory re-

quests of length 𝑂 (𝑚 · log𝑛).
• Π(1𝜆,R) runs in𝑂 (𝑤 ·𝜆) bits of space where 𝜆 is a statistical

security parameter.

• Π(1𝜆,R) incurs exactly𝑚 roundtrips.

If Π is instantiated using Circuit ORAM [24], then it achieves the

following performance characteristics:

• Π(1𝜆,R) outputs a sequence of random access memory re-

quests of length 𝑂 (𝑚 · 𝜆).
• Π(1𝜆,R) runs in 𝑂 (𝑤) bits of space.
• Π(1𝜆,R) incurs 𝑂 (𝑚) roundtrips.
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E OBLIVIOUS ALGORITHMS FOR ARBITRARY
GRAPHS

In this section we formally provide implementations of our graph

algorithms. We also explain how we modify the textbook Dijkstra’s

algorithm to fit into a common template that we use for our graph

algorithms.

E.1 Implementing our Target Algorithms
Recall that we obtain our algorithms by emulating an arbitrary

degree graph as a constant degree graph (see Section 7). Figure 12

gives an example of an emulating graph. Vertices in the emulating

graph are of three types. Original vertices correspond to the vertices

in the original graph, and store the label generated by the target

algorithm. Incoming edge vertices can be used to reach an original

vertex, and store whether the original vertex has already been vis-

ited. Outgoing edge vertices store pointers to incoming edge vertices.

Since incoming edge vertices can be used to reach an original ver-

tex, these pointers effectively serve as directed edges and are thus

called original edges.

Figure 12: Emulating an arbitrary degree graph (left) by a
constant degree graph (right). Green vertices encode outgoing
edge trees, and red nodes encode incoming edge trees.

Helper procedures. Recall that our target algorithms follow a

common template (Figure 13). All our target algorithms perform a

graph traversal by visiting vertices and adding pointers to neigh-

boring vertices in a data structure that determines the vertex to be

visited next. Figure 14 presents the helper procedures using which

we implement our target algorithms. At the top we provide data

types implementing the types of vertices in the emulating graph.

Each vertex contains fields to (1) help distinguish what type it is (2)

point to its neighbors in the incoming and outgoing edge trees (3)

indicate that it is a leaf node of a tree. We now describe our helper

procedures visit and addNgbrs.

• visit: Given a pointer to a vertex in an incoming edge tree,

returns the root of the incoming edge tree after marking it

as visited. Recall that this is an original vertex. This is done

by traversing a path in the tree from leaf to root. From the

root, a breadth-first-search traversal of the incoming edge

tree is performed to update all incoming edge vertices to

indicate that original vertex has been visited.

def traverse(p : ptr) :
// Visit the source node

𝑝 ← visit(𝑝, 𝜙) // 𝜙 is a pre-determined result for the

source

addNgbrs(𝑝, 𝑑𝑠𝑃𝑡𝑟, getL) // dsPtr is a pointer to the data

structure

setVisited(p)

while dsPtr do
// Visit a node if not visited

𝑑𝑠𝑃𝑡𝑟, {label, ogE} ← 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑑𝑠𝑃𝑡𝑟 )
𝑛 ← get(ogE)
if !n.visited then

𝑝 ← visit(ogE, label)
addNgbrs(𝑝, 𝑑𝑠𝑃𝑡𝑟, getL)
setVisited(𝑝)

Figure 13: Our template used to define our SAM-based oblivi-
ous algorithms for the graph DFS, BFS, MST, and SSSP prob-
lems. getRes is a function, defined differently for each target
algorithm, that computes a value needed to properly update
the vertex’s neighboring labels.

• addNgbrs: Given an original vertex, performs a breadth-

first-search traversal of its outgoing edge tree. As the tra-

versal is performed, original edges contained in outgoing

edge vertices, along with an updated label for the vertex

being pointed to, are added to a data structure.

Target algorithms. Instantiating our graph algorithms amounts

to plugging into Figure 13: (1) the correct traversal structure and

(2) algorithm-specific handling for labels.

Figure 15 presents algorithms for BFS, DFS, SSSP, and MST. Note

that our algorithms for SSSP and MST additionally define a function

getP that computes the priority with which a vertex and its label

should be inserted into the priority queue. Recall that whether a

vertex has been visited or not is stored in incoming edge vertices.

This visited bit toggles between 0 and 1, and checking if a vertex

has been visited amounts to comparing this bit with a global bit for

the graph that is also toggled before each traversal.

E.2 Modifying Dijkstra’s Algorithm
Our target algorithms broadly follow the template provided in Algo-

rithm 13. However, we slightly tweak Dijkstra’s algorithm for SSSP

to fit this template. Figure 16 gives a side-by-side comparison of

the tweaked algorithm with the original. We highlight key changes

made below.

(1) The array 𝑑 that stores the distance of a vertex is written

to only once for each vertex - when the distance for the

vertex is finalized. This array is never read.

(2) Each time a vertex is encountered through any path, an

entry for it is added to the priority queue, even if the path

is not shorter. This entry not only contains the identity of

the vertex, but also the distance of this path.
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struct vertex :
id : int

type : enum

inLeft : ptr

inRight : ptr

outLeft : ptr

outRight : ptr

label : int

struct outEdge :
type : enum

isLeaf : {0,1}

left : ptr

right : ptr

ogE : ptr

weight : int

struct inEdge :
type : enum

isLeaf : {0,1}

left : ptr

right : ptr

parent : ptr

visited : {0,1}

def visit(ogE : ptr, label : 𝑖𝑛𝑡) → vertex :
p← ogE

v← get(p)
while v.type ≠ VERTEX do

p← v.parent

v← get(p)
v.label← label

put(p, v)

// Updating incoming edge vertices to mark the vertex as visited

head, tail← initQueue()
ogV ← get(𝑝)
if ogV.inLeft then

tail← enqueue(tail, ogV.inLeft)

if ogV.inRight then
tail← enqueue(tail, ogV.inRight)

while head do
head, p← dequeue(head)
v← get(p)
if !v.isLeaf then

if v.left then
tail← enqueue(tail, v.left)

if v.right then
tail← enqueue(tail, v.right)

else
v.visited← globalVisited

put(p, v)
return ogV

def addNgbrs(ogV: vertex, ds: enum, pDS: ptr, getL: fn, getP: fn) :
head, tail← initQueue()
if ogV.outLeft then

tail← enqueue(tail, ogV.outLeft)
if ogV.outRight then

tail← enqueue(tail, ogV.outRight)
while head do

head, p← dequeue(head)
v← get(p)
if !v.isLeaf then

if v.left then
tail← enqueue(tail, v.left)

if v.right then
tail← enqueue(tail, v.right)

else
if getP then

pty← getP(ogV, v)

label← getL(ogV, v)

switch ds do
case QUEUE do

pDS← enqueue(pDS, {label, v.ogE})

case STACK do
pDS← push(pDS, {label, v.ogE})

case PQ do
OSAM.Insert({label, v.ogE}, pty)

Figure 14: Helper procedures to implement our oblivious graph algorithms.

(3) An additional visited array is maintained. This array is up-

dated to indicate that a vertex has been visited when it is

popped for the first time from the priority queue. A vertex

is visited only if it has not been visited earlier.

Note that adding multiple entries for a vertex does not change

the order in which vertices are traversed, since it still remains that

a vertex is visited only when it is the closest to the source among all

vertices that have not been visited yet. Thus, our modified algorithm

is still correct, while ensuring that the distance array need not be

updated multiple times.
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struct vertex :
id : int, label : int

visited : {0,1}, edges : [{ptr, int}]

def addDS(ds : 𝑒𝑛𝑢𝑚, pDS : ptr, getP : fn, data : {int, ptr}) :
switch ds do

case QUEUE do
pDS ← enqueue(pDS, data)

case STACK do
pDS ← push(pDS, data)

case PQ do
pty ← getP(𝑣,𝑤)
OSAM.Insert(data, pty)

globalVisited← 0

def visit(𝑝 : ptr, l : int) → vertex :
𝑣 ← get(𝑝)
𝑣 .label← l

𝑣 .visited← ¬𝑣 .visited
put(𝑝, 𝑣)
return 𝑣

def addNgbrs(𝑣 : vertex, ds : 𝑒𝑛𝑢𝑚, pDS : ptr, getL : fn, getP : fn) :
for {𝑒,𝑤} in 𝑣 .edges do

label ← getL(𝑣,𝑤)
addDS(ds, pDS, getP, {𝑤, 𝑒})

def BFS(pSrc : ptr) :
head, tail← initQueue()
globalVisited← ¬globalVisited
𝑠𝑟𝑐 ← visit(pSrc, null)
addNgbrs(𝑠𝑟𝑐, QUEUE, tail, getL, null)
while head do

head, {label, 𝑝} ← dequeue(head)
𝑣 ← get(𝑝)
if 𝑣 .visited ≠ globalVisited then

𝑣 ← visit(𝑝, label)
addNgbrs(v, QUEUE, tail, getL, null)

def getL(v: vertex, w : int)→ int :
return v.id

def Dijkstra(pSrc : ptr) :
globalVisited← ¬globalVisited
𝑠𝑟𝑐 ← visit(pSrc, 0)
addNgbrs(𝑠𝑟𝑐, PQ, null, getL, getP)
while !OSAM.isQueueEmpty() do

key, {label, 𝑝} ← OSAM.Pop()
𝑣 ← get(𝑝)
if 𝑣 .visited ≠ globalVisited then

𝑣 ← visit(𝑝, label)
addNgbrs(v, PQ, null, getL, getP)

def getL(v: vertex, w : int)→ int :
return v.label + w

def getP(v: vertex, w : int)→ int :
return v.label + w

def DFS(pSrc : ptr) :
top← initStack()
globalVisited← ¬globalVisited
𝑠𝑟𝑐 ← visit(pSrc, null)
addNgbrs(𝑠𝑟𝑐, STACK, top, getL, null)
while top do

top, {label, 𝑝} ← pop(top)
𝑣 ← get(𝑝)
if 𝑣 .visited ≠ globalVisited then

𝑣 ← visit(𝑝, label)
addNgbrs(𝑣, STACK, top, getL, null)

def getL(v: vertex, w : int)→ int :
return v.id

def Prims(pSrc : ptr) :
globalVisited← ¬globalVisited
𝑠𝑟𝑐 ← visit(pSrc, null)
addNgbrs(𝑠𝑟𝑐, PQ, null, getL, getP)
while !OSAM.isQueueEmpty() do

key, {label, 𝑝} ← OSAM.Pop()
v← get(𝑝)
if 𝑣 .visited ≠ globalVisited then

𝑣 ← visit(𝑝, label)
addNgbrs(𝑣, PQ, null, getL, getP)

def getL(v: vertex, w : int)→ int :
return v.id

def getP(v: vertex, w : int)→ int :
return w

Figure 15: Oblivious algorithms for our target algorithms. These are obtained by plugging in to Figure 13 the appropriate
data structure for performing the traversal and function for generating labels. For algorithms that use a priority queue, we
additionally provide a function for computing the priority
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for v ∈ V do
if v ≠ src then

𝑑 [𝑣] ← ∞
𝑝𝑞.Insert(𝑣, 𝑑 [𝑣])

𝑑 [𝑠𝑟𝑐] ← 0

𝑝𝑞.Insert(𝑠𝑟𝑐, 0)
while !pq.Empty() do

𝑣 = 𝑝𝑞.Pop()
for 𝑢 ∈ 𝑁 (𝑣) do

if 𝑑 [𝑣] +𝑤 (𝑢, 𝑣) < 𝑑 [𝑢] then
𝑑 [𝑢] ← 𝑑 [𝑣] +𝑤 (𝑢, 𝑣)
𝑝𝑞.𝑑𝑒𝑐𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑢,𝑑 [𝑢])

for 𝑣 ∈ 𝑉 do
𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] ← 𝑓 𝑎𝑙𝑠𝑒

𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] ← 𝑡𝑟𝑢𝑒

𝑝𝑞.Insert(𝑠𝑟𝑐, 0)
while !𝑝𝑞.𝐸𝑚𝑝𝑡𝑦 () do
{𝑑, 𝑣} = 𝑝𝑞.Pop()
if !𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] then

𝑑 [𝑣] ← 𝑑

𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] ← 𝑡𝑟𝑢𝑒

for 𝑢 ∈ 𝑁 (𝑣) do
𝑑 ← 𝑑 [𝑣] +𝑤 (𝑢, 𝑣)
𝑝𝑞.Insert({𝑑,𝑢}, 𝑑)

Figure 16: Dijkstra’s algorithm for SSSP (left) and a modified version of Dijkstra’s (right), where each node is visited only once.
Array accesses are required only to maintain the visited array, and to write the final result.
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