
MaSTer: Maliciously Secure Truncation for
Replicated Secret Sharing without Pre-Processing

Martin Zbudila , Erik Pohle , Aysajan Abidin , and Bart Preneel

COSIC, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. Secure multi-party computation (MPC) in a three-party, hon-
est majority scenario is currently the state-of-the-art for running machine
learning algorithms in a privacy-preserving manner. For efficiency rea-
sons, fixed-point arithmetic is widely used to approximate computation
over decimal numbers. After multiplication in fixed-point arithmetic,
truncation is required to keep the result’s precision. In this paper, we
present an efficient three-party truncation protocol secure in the pres-
ence of an active adversary without pre-processing and improve on the
current state-of-the-art in MPC over rings using replicated secret sharing
(RSS). By adding an efficient consistency check, we lift the efficient but
only passively secure three-party truncation protocol from the ABY3
framework by Mohassel and Rindal into the malicious setting without
pre-processed data. Our benchmark indicates performance improvements
of an order of magnitude in the offline phase for a single batch training.
Finally, we apply our protocol to a real-world application for diagnostic
prediction based on publicly available ECG heartbeat data. We achieve
an improvement by a factor of two in the total throughput for both LAN
and WAN settings.

Keywords: truncation · fixed-point arithmetic · replicated secret shar-
ing · privacy-preserving machine learning

1 Introduction

The advancements in artificial intelligence (AI) and machine learning (ML) have
brought about significant changes, ranging from predictive analytics to person-
alised recommendations, reshaping our interaction with the digital world. Be-
cause these technologies rely on substantial amounts of potentially sensitive
data, ensuring data privacy has become a critical concern during the train-
ing of AI/ML models and the execution of AI/ML model inference. This has
prompted the need for efficient privacy-enhancing tools to address these privacy
challenges. Secure multi-party computation (MPC), a cryptographic technique
that enables multiple distrustful parties to collaborate on computations without
exposing their input data, stands out as a promising privacy-enhancing solu-
tion in the fast evolving field of ML. As long as the adversary corresponds to
the threat model for the MPC protocol, data privacy can be ensured. Indeed,

https://orcid.org/0000-0002-0831-8123
https://orcid.org/0000-0001-8871-8532
https://orcid.org/0000-0002-5128-3608
https://orcid.org/0000-0003-2005-9651

privacy-preserving ML (or PPML) based on MPC has been an active area of
research in recent years, see for example [29,28,35,11,23,31] and the references
therein. Note that in MPC-based PPML, the data owners do not necessarily
participate in the computation. There are scenarios where the computing par-
ties are independent of the data owners, allowing the incorporation of data from
an arbitrary number of data owners. The state-of-the-art in MPC-based PPML
in the three-party setting considers security in an honest majority setting.

One of the key components for high-performance evaluation of PPML algo-
rithms over MPC is the efficient computation on secret-shared decimal numbers.
Since accurate floating point arithmetic is expensive, an approximation, namely
fixed-point arithmetic, is employed. Here, one encodes a decimal number with
fixed precision as an integer of size large enough to accommodate the expected
range. Multiplication of two fixed-point integers doubles the length of the frac-
tional part and thus requires efficient truncation afterwards to retain the original
precision. Since computation over the ring Z2ℓ , ℓ ≥ 1 allows for efficient utilisa-
tion of native instructions in modern processors, secret sharing over Z2ℓ enables
efficient MPC where one considers the fixed-point integers as ring elements.

Truncation is an essential part when working with fixed-point arithmetic.
Since it allows retaining the original precision by discarding the least significant
bits, one does not need to choose a large ring to accommodate the doubling of
the length of the fractional part, allowing us to limit the ring size. SecureML [29]
first proposed a technique allowing probabilistic truncation by local operations
on the shares in a two-party setting in semi-honest security. Here, “probabilistic”
means that the value reconstructed from the truncated shares is offset by at
most 1 from the correct value with high probability.

The current state-of-the-art three-party maliciously secure truncation is the
ABY3 protocol by Mohassel and Rindal [28], adopted by follow-up works such
as the Falcon protocol [35]. In the online phase, this truncation requires only
one round of communication and one ring element to be sent per party. The
pre-processing phase for truncation involves a costly evaluation of subtraction
circuits, resulting in lower combined throughput. However, in the context of real-
time applications such as diagnostic disease prediction based on sensitive data
(cf. Sect. 7), the bottleneck caused by the pre-processing phase can be more pro-
nounced. Real-time users would require immediate responses and queries with
batches of small sizes. Such real-time application scenarios underscore the inef-
ficiency of the offline phase and call for the elimination of the pre-processing.

In this paper, we design and implement a replicated secret sharing (RSS)
based protocol that computes the truncation of fixed-point numbers without
pre-processing securely in the presence of one malicious adversary in the three-
party setting. Our protocol achieves an overall low cost of one amortised round
of communication and one ring element sent per party. Our protocol augments
the truncation method from SecureML [29] and is inspired by its extension to a
three-party RSS environment in the semi-honest setting from the ABY3 frame-
work [28]. We benchmark our proposal in MP-SPDZ [22] and compare its perfor-
mance with that of ABY3 [28]. We also report on the PPML training of MNIST

2

data in the SecureML (3-layer dense) and LeNet-5 network architectures and
the training of the CIFAR-10 dataset on the AlexNet architecture.

Contributions. We make the following contributions:

– We propose a novel maliciously secure truncation protocol designed specifi-
cally for replicated secret-sharing (RSS) for three parties. Our secure trunca-
tion protocol builds upon the SecureML [29] probabilistic truncation method
and its subsequent extension to a three-party RSS environment in the semi-
honest setting using the ABY3 framework [28]. Unlike other truncation pro-
tocols for malicious security, our truncation protocol does not require pre-
processing.

– We provide detailed error analysis on the errors occurring in the SecureML
truncation, expanding on the correctness analysis provided by [29, Theorem
1]. We further provide a thorough security analysis of our proposed protocol
and prove its security against a static malicious adversary with abort. Our
protocol gives the adversary a bit more power which is appropriately cap-
tured in the functionality. We show that a model evaluated with sufficiently
high fixed-point precision is robust to this adversarial influence.

– To assess the practical performance of our protocol, we conduct benchmark-
ing experiments using the MP-SPDZ [22] framework and compare the effi-
ciency of our truncation protocol against the state-of-the-art ABY3 malicious
truncation. We make our implementation public on github1. By eliminating
the pre-processing phase for truncation due to our protocol, the execution
time of the offline phase for training one epoch is improved by up to an order
of magnitude. Similarly, by removing the pre-processing phase of the trun-
cation protocol, the total communication of the offline phase for training is
lowered by an order of magnitude.

– To illustrate the practical relevance of our truncation protocol, we present an
application in the context of privacy-preserving neural network inference for
the classification of ECG heartbeat signals. Our neural network identifies the
occurrence of arrhythmia in a heartbeat signal, and classifies the signal into
one of five classes, in accordance to the AAMI EC57 standard, as described
by Kachuee et al. [21]. We achieve an accuracy of 95.9%. We improve the
total running time, and thus the overall throughput by up to a factor of
three in both LAN and WAN settings.

The remainder of the paper is organised as follows. After an overview of the
related works in Sect. 2, we introduce the preliminary background necessary
to understand the paper in Sect. 3. Section 4 presents our maliciously secure
three-party truncation protocol. We prove the security of the protocol in the
UC framework in Sect. 5. We benchmark our protocol in the MP-SPDZ [22]
framework and compare it to ABY3 malicious truncation in Sect. 6. We discuss
a concrete use-case for PPML in Sect. 7 and conclude the paper in Sect. 8.

1 https://github.com/KULeuven-COSIC/master-truncation

3

https://github.com/KULeuven-COSIC/master-truncation
https://github.com/KULeuven-COSIC/master-truncation

2 Related Work

Machine learning operations involve arithmetic on decimal numbers expressed
in a fixed-point representation to achieve maximal efficiency in MPC. Therefore,
truncation is a crucial component when designing an MPC framework for ma-
chine learning. Currently, the most efficient protocols for evaluating ML models
are based on three-party replicated secret sharing in the semi-honest security
setting. For practical deployments, semi-honest security might not be sufficient
as a security guarantee, however, only a few works focus on malicious security.

Regarding truncation in MPC over rings, we distinguish between relatively
efficient approaches achieving probabilistic truncation and approaches focusing
on a faithful truncation result that are much more heavy in communication. A
faithful, sometimes called precise truncation, denotes a truncation protocol that
outputs a secret-sharing of an arithmetic right shift of the value with probability
1. Some prior works achieving faithful truncation allow an error of ±1 on the
least significant bit (LSB), which we will refer to as “small”. On the other hand,
probabilistic truncation fails to output a correct truncation result (accounting
for the small error) with a non-zero probability, we will call such error “big”.

The probabilistic approaches follow the line of work proposed by Catrina et
al. [9], with ABY3 [28] formalising the approach for three-party RSS admitting
one malicious adversary. Multiple follow-up works adapted these truncation pro-
tocols, including Astra [10] and Falcon [35]. Trident [11] builds on the approach
of ABY3 by proposing optimisations to the pre-processing phase. Blaze [31] and
SWIFT [23] similarly adopt the optimisations proposed by Trident [11] elevating
the security to guaranteed output delivery (GOD) in both the three and four-
party settings. Taking a different approach to the pre-processing phase, Escudero
et al. [15] propose a protocol inspired by the online phase of ABY3 that removes
the big error by handling overflow using edaBits (extended daBits [33]). These
pre-processed shared bits help with arithmetic-to-Boolean conversions between
sharings and are directly applicable to comparison and truncation protocols,
compatible with any corruption setting.

Our protocol is also designed for three-party RSS in a malicious setting.
However, we take a different approach to achieve malicious security compared
to the above-mentioned works. Instead, our protocol utilises the semi-honest
three-party truncation that was proposed by the ABY3 framework.

Following the line of work of edaBits [15], Baccarini et al. [3] propose an
improved generation of these pre-processed bits, designing multiple protocols
for n-party RSS. However, while their pre-processing phase for the truncation
triples improves on the approach of Escudero et al., they achieve probabilistic
truncation with a constant number of rounds in the semi-honest setting with high
communication cost (see Table 1). Finally, Piranha [36] and Fantastic Four [14]
build a truncation protocol on a combination of SWIFT [23] and the work of
Dalskov et al. [13]. Similar to SWIFT, Fantastic Four [14] also achieves malicious
security with GOD in the four-party setting.

In the two-party scenario, SecureML [29] proposed a local probabilistic trun-
cation, requiring no communication, with similar error probabilities as in the

4

three-party case. Subsequently, a line of works focusing on faithful truncation
emerged, with the most recent ones including Cryptflow2 [32] or the work of Zou
et al. [38]. Furthermore, Cheetah [20] reduces the communication cost compared
to the previous works at the cost of admitting the small error. Bicoptor 2.0 [37]
modifies the SecureML truncation protocol to obtain a faithful truncation. How-
ever, their resulting shares are in a smaller ring and thus would require an ad-
ditional modulo switch protocol for compatibility with subsequent protocols in
the circuit. Our protocol directly uses the SecureML truncation, in combination
with the three-party semi-honest protocol from ABY3 [28], achieving security
with abort.

A different approach for truncation uses function secret sharing (FSS) [19,18]
in a 2-online-party computation model admitting a semi-honest adversary. This
approach relies on a trusted third party (dealer) that pre-computes and dis-
tributes large function shares (keys), in order to avoid an expensive offline phase.
For a single truncation, O(ℓ) AES calls are required in the online phase, while
the communication cost is similar to the RSS-based schemes, with ℓ bits com-
municated in one round. Here ℓ denotes the size of the ring Z2ℓ , and k denotes
the fixed-point precision.

Hence, to the best of our knowledge, the current state-of-the-art in trunca-
tion protocols for three-party RSS with malicious security are protocols based
on the proposal of ABY3. While many follow-up works adapt the ABY3 trunca-
tion and its optimisations for pre-processing, the online phase remains identical.
Nevertheless, creating the required pre-processed truncation triples remains a
major bottleneck. The line of works of [11,31,23] try to minimise the communi-
cation cost in the offline phase by incorporating protocols with lower offline cost
but increasing the communication cost in the online phase. We give an overview
of the communication cost, round complexity, and security model of the most
relevant works for truncation and our protocol in Table 1.

3 Preliminaries

In this section, we explain our security model, then introduce fixed-point arith-
metic and the notation used throughout the paper. Later, we describe three-party
replicated secret sharing for which our truncation is designed, and revisit the two
main building blocks of our protocol, the two-party probabilistic truncation of
SecureML [29], and the three-party truncation of ABY3 [28].

3.1 Security Setting

We consider a setting consisting of three servers, P = {P1, P2, P3}, with pairwise
secure, authenticated channels. We work in the honest majority setting, i.e., tol-
erating up to one corrupted party. In this paper, we consider security with abort
against one malicious static adversary and prove the security of our protocol in
the UC framework [7].

5

Table 1: Semi-honest and maliciously secure truncation protocols in the two and
three-party setting over a ring Z2ℓ . The communication is in bits per party, κ is
a security parameter and k denotes the fixed-point precision.

Parties Comm. Rounds Result Security

SecureML [29] 2 - - Probabilistic Semi-honest

Cryptflow2 [32] 2 κℓ+ κk + κ+ ℓ ⌈log(ℓ)⌉+ 1 Faithful Semi-honest

Cheetah [20] 2 13ℓ ⌈log(ℓ)⌉ Faithful Semi-honest

Zou et al. [38] 2 κℓ+ κ+ ℓ+m∗ ⌈log(ℓ)⌉+ 1 Faithful Semi-honest

Llama [19] 2 ℓ+ k(κ+ ℓ+ 2) + κ+ ℓ 2 Faithful Semi-honest

Sigma [18] 2 O(κℓ) 3 Faithful Semi-honest

Baccarini et al. [3] n 2ℓ2 − 3ℓ− 2 2 Probabilistic Semi-honest

Dalskov et al. [13] 2 ℓ 1 Probabilistic Semi-honest
3 2ℓ 2 Probabilistic Semi-honest

edaBits [15] n O(ℓ · log(ℓ)) O(log(ℓ)) Probabilistic Malicious

SWIFT [23] 3 13ℓ 2 Probabilistic Malicious

ABY3 [28] 3 ℓ 1 Probabilistic Semi-honest
n 20(2ℓ− k) + 2ℓ O(ℓ) Probabilistic Malicious

MaSTer 3 ℓ 1 Probabilistic Malicious
∗m ∈ [0, 2κ⌈log⌈ k−1

4
⌉⌉)

3.2 Fixed-Point Arithmetic

Many of the currently most efficient MPC frameworks for privacy-preserving
machine learning are based on integer arithmetic in a ring Z2ℓ , e.g., [35,23,36],
or a field Fp [2]. For efficiency, fixed-point arithmetic is adopted to run ML
models. A real number x̃ ∈ R is transformed to a fixed-point approximation x
by setting x = ⌊x̃ · 2k⌋ ∈ Z, where k denotes the fixed precision and ⌊·⌋ denotes
the floor function. After multiplication, the precision is doubled, i.e., let x, y ∈ Z
be fixed-point encodings with precision k, then w = x · y has a precision of 2k,
and hence we need to truncate to preserve the fixed-point arithmetic. Truncation
denotes a division by 2k, or equivalently a logical right shift by k bits.

3.3 Notation

Given a fixed-point encoded secret x ∈ (−2ℓx , 2ℓx) with precision k, where ℓx
denotes the length of the input x and k < ℓx < ℓ − 1, we define z to be the
encoding in the ring Z2ℓ .

Definition 1 (Encoding of x). Let x be an integer, the encoding z of x in Z2ℓ

is z = x, if x ≥ 0, and z = 2ℓ − |x|, if x < 0.

We use the notation JzK to denote a 2-out-of-3 replicated secret sharing (RSS),
where JzK = (s1, s2, s3), such that s1 + s2 + s3 = z. We use JzKi = (si, si+1) for

6

1 ≤ i ≤ 3, where P0 = P3, P1 = P4 etc., to denote the shares of individual
parties. Further, we use ⟨z⟩ to denote a 2-out-of-2 additive sharing of z, i.e.,
⟨z⟩1 + ⟨z⟩2 = z and ⟨z⟩i denotes the share of party i. Similarly, we use [z] to
denote a 3-out-of-3 additive sharing of z. Moreover, we use the notation [z]B

to denote a binary sharing of z, i.e., z =
3⊕

i=1

[z]Bi . Further, rshift(z, k) denotes

logical right shift of z by k bits, and ⌊z⌋ denotes probabilistic truncation of
SecureML [29] (see Sect. 3.5). We use the notation ←$ A to denote uniformly
random sampling from a finite set A. More specifically, r ←$i,j Z2ℓ denotes a
uniformly random sampling of r ∈ Z2ℓ from shared randomness between parties
i and j (see Appendix A). In the context of pseudo-random functions (PRFs),
we use κ to denote the security parameter. We write ← to denote assignment
from probabilistic algorithms and := for deterministic assignment. Finally, we
use the notation E[X] to denote the expected value of a random variable X.

3.4 Three-Party Replicated Secret Sharing

In this work, we use a 3-party replicated secret sharing scheme, meaning an
additive secret sharing, so any two parties can reconstruct the secret as explained
in Sect. 3.3. Below, we briefly describe arithmetic operations using RSS. For more
details, we refer the reader to Araki et al. [1] for the semi-honest setting and to
Furukawa et al. [16] for the malicious setting.

Let a, b ∈ Z2ℓ be public constants. Let JxK = (x1, x2, x3) and JyK = (y1, y2, y3).

Linear operations. a · JxK + b = (ax1 + b, ax2, ax3).
Addition of two secret values. Jx+ yK = (x1 + y1, x2 + y2, x3 + y3).
Multiplication of two secret values. JzK = JxK · JyK is obtained by

si := xiyi + xiyi+1 + xi+1yi + αi, for i ∈ {1, 2, 3},

where α1+α2+α3 = 0, i.e., αi is a random share of zero that can be obtained
locally by a call to a pseudo-random function (PRF) with pre-shared keys
(see Fig. 8). Note that party i can obtain si locally. To transfer the 3-out-of-3
sharing of xy to RSS, party i sends si to Pi−1.

In the presence of a malicious adversary, the multiplication result is checked
for correctness in a post-processing phase as described by Furukawa et al. [16].
The protocol for generating randomness αi is depicted in Fig. 8 in Appendix A
and is based on [16, Protocol 2.5] elevated to a ring setting as in [28].

3.5 Two-Party Probabilistic Truncation

The main building block of our protocol relies on the two-party semi-honest
probabilistic truncation proposed by SecureML [29]. The authors observe that
the following local operations on a two-party additive sharing of z amount to a
truncation by k bits with an error limited to the least significant bit (LSB) with

7

a large probability. If party P1 computes ⟨⌊z⌋⟩1 := rshift(⟨z⟩1, k) and party P2

computes ⟨⌊z⌋⟩2 := 2ℓ − rshift(2ℓ − ⟨z⟩2, k) locally, then the result is a sharing
of ⌊x⌋ = trc(x) ± 1 with probability 1 − 2ℓx+1−ℓ (see [29, Theorem 1]), where
trc(x) is defined in Def. 2. As previously mentioned, we will refer to the error of
±1 as a small error. However, with probability of 2ℓx+1−ℓ an error of magnitude
2ℓ−k can occur. Here k denotes the fixed-point precision. We will refer to this
error as large/big. We provide a thorough analysis of the errors in Theorem 1,
expanding on the results presented in SecureML [29]. We provide a proof of the
theorem in Appendix B.

Definition 2 (Truncation). Let x ∈ Z be a fixed point encoding of x̃ ∈ R,
with fixed-point precision of k bits, as described in Sect. 3.2. Then, we can write
x = x12

k + x2, with x2 ∈ [0, 2k). We define the truncation of x as trc(x) = x1.

Theorem 1 (SecureML truncation error). Let R ∈ [0, 2ℓ), and let z be the
encoding of x (cf. Def. 1). We decompose x = x12

k + x2 with 0 ≤ x1 < 2ℓ−k,
0 ≤ x2 < 2k, and R = R12

k + R2 with 0 ≤ R1 < 2ℓ−k, 0 ≤ R2 < 2k. Then,
rshift(z +R, k) + 2ℓ − rshift(R, k) = trc(x) + c1 + c22

ℓ−k, where

c1 =

1 if x ≥ 0 ∧ x2 +R2 ≥ 2k

−1 if x < 0 ∧ |x2| > R2

0 else
, c2 =

1 if x < 0 ∧ x1 +R1 ≥ 2ℓ−k

−1 if x ≥ 0 ∧ |x1| > R1

0 else
.

Furthermore, note that when R ∈ [2ℓx , 2ℓ − 2ℓx), c2 = 0 for all such R. The
probability of a uniformly random R being in this range is 1 − 2ℓx+1−ℓ. Thus,
with probability 1− 2ℓx+1−ℓ, rshift(z +R, k) + 2ℓ − rshift(R, k) = trc(x) + c1.

The truncation error c1 in Theorem 1 is therefore formally given by the
following function ek(z, k) in Def. 3.

Definition 3 (SecureML small truncation error). Let z be the encoding of
x (see Def. 1) and 0 ≤ R < 2ℓ. The truncation error ek(z, k) when truncating z
by k bits having randomness R in the shares (i.e. ⟨z⟩ = (z + R,−R), is defined
as

ek(z,R) =

1 if z < 2ℓ−1 ∧ (z mod 2k) + (R mod 2k) ≥ 2k

−1 if z > 2ℓ−1 ∧ (R mod 2k) < (2ℓ − z mod 2k)

0 else
.

3.6 Three-Party Probabilistic Truncation

ABY3 [28] introduces two truncation methods for three-party RSS schemes. The
authors note that the two-party local truncation of SecureML [29] fails when
naively extended to three parties. Nevertheless, assuming semi-honest security
and at most one corrupted party, two parties can transform a RSS sharing JzK to
a 2-out-of-2 sharing ⟨z⟩, perform the SecureML truncation with local operations
and re-share the result to obtain shares of J⌊z⌋K. This extended truncation Πtrunc1

8

is formally described in [28, Fig. 2] and is another building block of our protocol.
We use this protocol combined with the SecureML truncation to achieve a secure
truncation protocol against a malicious adversary, as described in Sect. 4.

The approach described above on its own is not secure in the presence of
a malicious adversary. ABY3, therefore, proposes another technique to achieve
a maliciously secure truncation based on the line of works started by [9]. The
protocol requires a pre-processed pair of shares of a random r ∈ Z2ℓ , JrK and
J⌊r⌋K, from which the parties can compute J⌊z⌋K = J⌊r⌋K+ ⌊(z − r)⌋. The online
phase consists of a single round where ℓ bits are sent to reveal z−r. In the offline
phase, the parties generate random Boolean shares [r]B ∈ Zℓ

2 in replicated secret
sharing form and locally compute the k-bit truncation [r′]B ∈ Zℓ

2 on the Boolean
shares. To convert the shares into arithmetic shares in Z2ℓ , ABY3 proposes that
the parties compute two subtraction circuits, one to obtain shares of r and one
for r′, to emulate Z2ℓ arithmetic on the Boolean shares using a protocol of
Furukawa et al. [16]. Note that this entails evaluating two subtraction circuits
per truncation triple. The line of works started by Trident [11] optimises this
approach by applying conversion of a binary to arithmetic sharing and then
trivially obtaining the difference. The latest work SWIFT [23] following this
approach achieves the cost of twelve ring elements sent over one round in the
offline phase with the same online cost as ABY3.

4 MaSTer

When we investigate the suitability of the semi-honest ABY3 truncation (Πtrunc1,
see Sect. 3.6) in the malicious setting, the only leverage the adversary has is
corrupting P1 and modifying the result share of ⌊z⌋ when re-sharing. All other
operations are local. Consequently, in order to employ Πtrunc1, we only need to
check if the re-sharing was done correctly. Furthermore, parties P2 and P3 have
sufficient information about z due to the RSS. In an abstract sense, we run
Πtrunc1 among all three parties and the two-party SecureML truncation protocol
among P2 and P3 in parallel. We, therefore, obtain unchecked RSS shares J⌊z⌋K
of the result for all parties. We then use the shares ⟨⌊z⌋⟩ of P2 and P3 to verify
the correctness of the RSS shares that were dealt by P1. This is illustrated in
Fig. 1. A corrupt P1 cannot modify J⌊z⌋K without being detected by P2 and
P3 while corrupt P2/P3 cannot influence the creation of J⌊z⌋K. Note that an
adversary controlling P2/P3 can force an abort by wrongfully claiming that P1

modified the result shares.
We can check the consistency of the RSS shares by checking the difference

of J⌊z⌋K and ⟨⌊z⌋⟩. However, due to the probabilistic error in the LSB of the
truncation protocols, the difference may not be zero even with correctly created
shares. We analyse the error and show that for an honest execution, the difference
is ±1 with high probability (see Sect. 4.3).

Note that the correctness of the truncation (disregarding malicious influence)
relies on the correctness of Πtrunc1, which is an extension of SecureML, and thus
requires the input z to be a valid encoding of x ∈ (−2ℓx , 2ℓx) (see Def. 1) to

9

P1 P2 P3

JzK1 JzK2 JzK3

J⌊z⌋K1 J⌊z⌋K2 J⌊z⌋K3

Πtrunc1 [28]

⟨⌊z⌋⟩1 ⟨⌊z⌋⟩2

SecureML

Check (ΠCheck)

Fig. 1: MaSTer truncation protocol visualised.

produce a correct truncation ⌊z⌋. Therefore, MaSTer cannot readily be used to
generate pre-processed random truncations (r, ⌊r⌋) where r ←$ Z2ℓ for the use in
other, maliciously secure truncation protocols such as [9,28,11,23]. As in Πtrunc1,
we require ℓx < ℓ− 1.

4.1 Protocol

We employ a similar approach as Furukawa et al. [16] does for multiplication,
with an optimistic execution of a semi-honest protocol in the online phase and
a check in the post-processing phase (cf. Sect. 3.4). The protocol (see Fig. 2)
hence consists of two phases. The first phase is analogous to the semi-honest
truncation with re-sharing afterwards and results in unchecked shares of the
truncated multiplication result in RSS. A cheating P1 must send s′2+∆ in the first
round, where ∆ is an additive error. In order to detect this potential malicious
behaviour in the first phase, we introduce a second phase where parties P2 and
P3 compute the two-party truncation where P1 does not contribute. Therefore,
P2 and P3 now hold two independently created sharings of the truncated value,
allowing them to compute the difference and hence verifying the correctness of
the value sent by P1, up to an error of ±1. Concretely, P2 and P3 compute
γi := s′i − s′′i , i ∈ {1, 2} and γ3 := s′3, where s′j , j ∈ {1, 2, 3} are components of
the RSS share dealt by P1 and s′′i is the sharing of the two-party truncation. P2

stores γ2,m and γ3,m of the m-th truncation and P3 stores γ1,m and γ3,m. After
M truncations (or at the output phase), P2 and P3 use one communication
round to send γ2,1, . . . , γ2,M and γ1,1, . . . , γ1,M , respectively, and then check
∀1 ≤ j ≤M |

∑3
i=1 γi,j | ≤ 1. The second phase thus consists of a batched check

of the optimistically executed truncations. The batched consistency check (Fig. 3
requires one round of communication among P2 and P3 to check M truncations
in parallel. Our protocol therefore achieves an amortised cost of one round of
communication. We outline optimisations of the consistency check in Sect. 4.2.

10

4.2 Further communication cost reduction

We now aim to reduce the communication cost in the parallel consistency check.
By computing a1 := γ1 (P3) and a2 := γ2 + γ3 (P2), the two parties now hold
a two-party additive sharing and wish to check whether a1 + a2 ∈ {−1, 0, 1}.
First note that if the check were a1 + a2 = 0, P2 could hash all of its shares
H(a

(1)
2 || . . . ||a

(m)
2) and P3 hashes the negation of its shares H(2ℓ−a

(1)
1 || . . . ||2ℓ−

a
(m)
1). The parties would only need to share the hash and compare. However, this

is no longer feasible since, for example, P3 needs to check 1 + 2ℓ − a
(i)
1 , 2ℓ − a

(i)
1

or 2ℓ−a
(i)
1 −1 without knowing which of the three options yields the same hash.

Instead, each party adds their share of a to a Bloom filter [5,34] and sends the
Bloom filter to the other party. Then, each party performs set membership tests
of 1+2ℓ−a

(i)
j , 2ℓ−a

(i)
1 and 2ℓ−a

(i)
1 −1, and aborts the consistency check if none

of the three elements are in the filter. Since Bloom filters are probabilistic, there
is a probability of ϵ of a false positive, i.e., in our context, a value a(j) does not
reconstruct to {−1, 0, 1}. Dimensioned such that ϵ ≤ min(2−σ, 2ℓx+2−ℓ) where
σ is the statistical security parameter and 2ℓx+2−ℓ is the failure probability of
the consistency check due to large errors happening (see Theorem 2), the size
of the Bloom filter is about c log2(1/ϵ) = c ·min(40, ℓ− ℓx − 2) bits per element
where 1 ≤ c ≤ 1.44 depends on the exact type of filter. For our parameters where
ℓ = 96, ℓx = 16, employing Bloom filters saves roughly 58% communication in
that phase. Further, one may choose a larger filter to reduce ϵ and compress the
filter during transit [27]. However, filling the filter and querying for membership
requires additional local computation.

Truncation protocol ΠTrunc

P1 P2 P3

JzK1 = (s1, s2) JzK2 = (s2, s3) JzK3 = (s3, s1)

s′1 := r′ ←$1,3 Z2ℓ s′1 := r′ ←$1,3 Z2ℓ

s′2 := rshift(s1 + s2, k)− r′
s′2−→ s′3 := 2ℓ − rshift(2ℓ − s3, k) s′3 := 2ℓ − rshift(2ℓ − s3, k)

s′′2 := 2ℓ − rshift(2ℓ − s2, k) s′′1 := rshift(s3 + s1, k)
γ2 := s′2 − s′′2 γ1 := s′1 − s′′1
γ3 := s′3 γ3 := s′3

Output J⌊z⌋K1 := (s′1, s
′
2) Output J⌊z⌋K2 := (s′2, s

′
3) Output J⌊z⌋K3 := (s′3, s

′
1)

Store γ2, γ3 Store γ1, γ3

Post-processing
...

...
ΠCheck ΠCheck

Fig. 2: The truncation protocol ΠTrunc to truncate z by k bits.

11

Consistency check protocol ΠCheck

P2 P3

γ2,1, . . . , γ2,M , γ3,1, . . . , γ3,M γ1,1, . . . , γ1,M , γ3,1, . . . , γ3,M

∀1 ≤ j ≤M ∀1 ≤ j ≤M
γ2,j := s′2,j − s′′2,j γ1,j := s′1,j − s′′1,j
γ3,j := s′3,j γ3,j := s′3,j

γ2,1,...,γ2,M−−−−−−−−→
γ1,1,...,γ1,M←−−−−−−−−

∀1 ≤ j ≤M ∀1 ≤ j ≤M

Check |
∑3

i=1 γi,j | ≤ 1 Check |
∑3

i=1 γi,j | ≤ 1

Fig. 3: The consistency check protocol to check a batch of M unchecked trunca-
tions.

4.3 Error Analysis

In this section, we detail the truncation errors and their role in the consistency
check (see Theorem 2). Later, we expand on the probability of detected mali-
cious behaviour and provide more details on the relation between the protocol
parameters and the multiplicative depth of the computed circuit.

In the following theorem, we show the correctness of the consistency check.
We provide a proof of the theorem in Appendix C.

Theorem 2 (Correctness of consistency check). Let x1 be the result of a
truncated value x ∈ X. Let E[x1] denote the expected value of x1. In an honest
execution of ΠTrunc (see Fig. 2), the consistency check holds with probability
Pr
[∑3

i=1 γi ∈ {0,±1}
]
≥ 1− 2k+2−ℓ · E[x1] ≥ 1− 2ℓx+2−ℓ.

A variety of works focusing on precise or faithful truncation [38,20,32] mo-
tivate their work by arguing that the probability of a large error occurring in a
large neural network is rather high. In our protocol this large error would lead
to an abort even if no malicious error was introduced. We therefore stress the
necessity of a mindful selection of the input size ℓx in relation to the ring size ℓ,
based on the expected distribution of values to be truncated E[x]. We note that
for large networks with a number of multiplications exceeding the order of 1012,
the usual ring size of ℓ = 64 bits would not be sufficient, assuming a uniformly
distributed x. However, in ML applications x is expected to be rather small, re-
sulting in E[x1]≪ 2ℓx−k. Therefore a concrete model and ML network analysis
is required for a secure choice of parameters. To achieve statistical security with
parameter σ, the parameters would be required to satisfy n·2k+2−ℓ ·E[x1] ≤ 2−σ,
where n denotes the total number of multiplications in the computed circuit and
E[x1] ≤ 2ℓx−k. Recall x1 here denotes the result of a truncation.

12

We note that authors of Bicoptor 2.0 [37] made an observation about the large
truncation error. They noted the large error is always ±2ℓ−k and they proposed
mitigation of such error by interpreting the output shares modulo 2ℓ−k. However,
this approach is not directly applicable to our protocol. If it was to be applied to
the consistency check, such operation would allow an adversary to add an error
∆ > 2 when ∆ mod 2ℓ−k = 0 and the check would not be able to detect this.
Alternatively, the truncation result could be interpreted as sharing in Z2ℓ−k . This
in turn would require a modulo switch protocol which would introduce further
overhead. We leave the exploration of different techniques of mitigation as a
future work.

5 Security

We now turn to proving security of our proposed probabilistic truncation pro-
tocol. Importantly, and as many other PPML protocols, we require secure, i.e.,
confidential and mutually authenticated, channels between the parties. We as-
sume these are set up in advance before the protocol runs. This can be achieved
with, e.g., client- and server-side authentication in TLS.

5.1 Faithful and Probabilistic Truncation

At USENIX Security ’23, Li et al. [26] advocated for precise truncation proto-
cols as opposed to the line of work on probabilistic truncation protocols that
introduce errors on the result. They showed that truncation with a truncation
tuple JrK, J⌊r⌋K with r ←$ Z2ℓ in the style of [9,28] does not securely realise a
truncation functionality that adds the probabilistic truncation error in the ideal
world solely based on the plaintext value to be truncated. In the real world, the
error distribution also depends on r. In fact, the authors show that in the real
protocol the adversary learns some function of r and can thus distinguish the
worlds based on the reconstructed result of the truncation. This result highlights
the importance of a properly defined functionality and rigorous proofs even for
small sub-protocols in a PPML framework. Therefore, we give a formal defini-
tion of our desired functionality FTrunc (see Fig. 4) and provide a detailed proof.
To prevent these issues, our functionality has to extract the randomness in the
share and therefore takes all randomness into account when sampling the trun-
cation error. Unfortunately, this results in a less simple description of the ideal
behaviour of truncation.

5.2 Soundness

First, we investigate the soundness of the consistency check, i.e., the probability
that it detects cheating when cheating occurred. For this setting, we assume P1

is corrupted by the adversary and sends s′2,A = s′2+∆ for ∆ ̸= 0. Modifying the
expressions of Theorem 1, we get

∑3
i=1 γi +∆ = c′1− c′′1 +∆ with probability ≥

1−2k+2−ℓ ·E[x1] ≥ 1−2ℓx+2−ℓ, since E[x1] ≤ 2ℓx−k. The adversary can therefore

13

Functionality FTrunc

The functionality receives JzKj , k from all parties Pj and receives the adversaries
output share (s′i, s

′
i+1). If the adversary corrupts P1, it also receives an additive

error ∆.

– FTrunc unpacks the RSS sharing as (s1, s2, s3).
– FTrunc reconstructs z := s1 + s2 + s3 and sets r1 := 2ℓ − s3 and r2 := 2ℓ − s2.
– FTrunc computes b := ek(z, r1) and b′ := ek(z, r1)− ek(z, r2) (see Def. 3).
– FTrunc truncates z by k bits, ⌊z⌋k and sets s′i−1 := ⌊z⌋k +∆+ b− s′i − s′i+1.
– If |b′ +∆| ≤ 1, the functionality outputs (s′j , s

′
j+1) to party Pj , else the

functionality sends abort to the adversary, waits for continue and then sends
abort to all honest parties.

Fig. 4: MaSTer truncation functionality FTrunc.

set the truncation error to c′ + ∆ under the constraint that |c′ − c′′ + ∆| ≤ 1.
Since |c′− c′′| ≤ 1 with probability ≥ 1−2ℓx+2−ℓ, any additive error |c′+∆| > 2
added by a malicious P1 will be detected with the same probability ≥ 1−2ℓx+2−ℓ.
We note that an adversary can therefore add an additive error |∆| ≤ 2 without
getting detected. This adversarial influence opens up a new attack surface for
the adversary. We expand on the attacker possibilities in Sect. 5.4. Further, we
analyse the error probability of ∆ = ±2 in Appendix D.

5.3 Security of MaSTer

We prove security of the truncation protocol in the UC framework [7]. For this,
we define an ideal functionality FTrunc (see Fig. 4) and a simulator S. We give
further details about the UC security definition including static security with
abort in Appendix E. A protocol Π securely realises the ideal functionality F
if for every adversary A, there is a simulator S such that all environments Z
cannot distinguish between the ideal world and the real world. We use a pairwise
shared PRF between the three parties, formalised as Fcr in Fig. 6, and give a
protocol Πcr implementing the functionality for completeness in Appendix A. We
use the simplified UC framework [8] that takes care of authenticated channels,
message scheduling, etc. The main security theorem for the MaSTer protocol is
as follows.

Theorem 3. The protocol ΠTrunc (see Fig. 2) securely realises FTrunc (see Fig. 4)
in the Fcr-hybrid model against a static malicious adversary with abort who cor-
rupts a single party.

Proof. We setup a simulator S that internally runs A and passes along all com-
munication between A and Z. Therefore, we can assume A is a dummy adversary

14

that acts and reports back as told by Z. Thus, in the following, Z and A are
used interchangeably. The goal of the proof is to show that the simulated view
of A (that is run internally by S) of the protocol in the ideal world is indistin-
guishable for Z from the view of A in the real world. Note that in the F-hybrid
model, both in the real and in the ideal world, the protocol parties interact with
the F hybrids when needed. In the real world, these functionalities are proper
ideal functionalities. In the ideal model, the simulator also plays the role of the
hybrid functionalities towards the adversary.

In the following, we describe a simulator S that simulates the honest parties
towards the adversary A in an ideal execution with access to FTrunc. Notably, S
does not know the inputs of the honest parties it simulates. However, S knows
the inputs of the corrupted parties, i.e., in this case the input share of the value
to be truncated. This allows S to replicate and track all computation results of
A if it follows the protocol. Let i be the index of the corrupted party, i.e., A
controls Pi. The index j denotes the honest parties.

In the first step, the simulator S obtains access to the PRF Fk since it
simulates Fcr towards A, and knows A’s share (si, si+1).

If Pi = P1, S receives s′2,A from A. Since the simulator knows s1, s2 and r′ (from
Fk), it computes s′2,S := rshift(s1+s2, k)−r′, and sets ∆ := s′2,A−s′2,S . The
simulator calls FTrunc(Pi, (s1, s2), ∆) and sends (r′, s′2,A) as the output share.
If the functionality sends abort, the simulator sends abort to the adversary
and sends continue to the functionality, else it outputs what A outputs.

If Pi = P2, the simulator samples r ←$ Z2ℓ uniformly at random, and sends
r as s′2 to the adversary on behalf of P1. The simulator computes s′3 :=
2ℓ − rshift(2ℓ − s3, k). The simulator calls FTrunc(Pi, (s2, s3), ∗) and sends
(r, s′3) as the adversary’s output share. If the functionality sends abort, the
simulator sends abort to the adversary, waits for continue and then sends
continue to the functionality. Else, S obtains b′ from FTrunc and computes γ3,
s′′2 and sends γ1 := 2ℓ−γ3+s′′2 − r+ b′ to the adversary on behalf of P3. The
simulator receives γ′

2 from the adversary. Note that if the adversary computes
the γ-check, it obtains

∑
γi =

(
2ℓ − γ3 + s′′2 − r + b′

)
+ (r − s′′2) + γ3 = b′.

The simulator checks |b′ + γ′
2 − r + s′′2 | ≤ 1. If this holds, the simulator

continues and outputs what A outputs. If not, the simulator sends abort to
the adversary and then aborts.

If Pi = P3, the simulator computes s′3, s
′
1, γ1 and γ3. The simulator calls

FTrunc(Pi, (s3, s1), ∗) and sends (s′3, s
′
1) as output shares. If the functionality

sends abort, the simulator sends abort to the adversary, waits for continue
and then sends continue to the functionality. Else, S obtains b′ and sends
2ℓ − γ1 − γ3 + b′ as γ2 to the adversary on behalf of P2. The simulator
receives γ′

1 from the adversary and checks if |γ′
1 − γ1 + b′| ≤ 1. If this holds,

the simulator continues and outputs what A outputs. If not, the simulator
sends abort to the adversary and then aborts.

We now show that for each case, S creates a view for A that is indistin-
guishable to the real world execution. Note that the (reconstructed) output is

15

identical in the real and ideal world since FTrunc adds the same truncation error
on the least significant bit. Further, the adversary’s view of the input and out-
put shares fully determines the input and output shares of the honest parties
if the adversary also knows the shared value (cf. [16, Def. 2.3]). Therefore, the
truncation error and abort conditions in the ideal world must exactly match
the side-effects in the real protocol. Since the randomness in the input shares is
known by the adversary, the functionality extracts it and bases the abort condi-
tion (for a ∆ = 0) and truncation error on the extracted randomness. This way,
the abort behaviour due to the adversarially added ∆, and the sign and value of
the truncation error are identical to the real world execution.

Note that the protocol also aborts with probability 2ℓx+2−ℓ independent of
the adversarial influence. This bound stems from the correctness probability of
SecureML (cf. Sect. 3.5 and [29, Theorem 1]). As done in previous works, e.g.,
SecureML and ABY3, the ring parameters can be adapted to be large enough so
that this event becomes negligible, so we will not consider this case further on.

If Pi = P1, since A does not receive data in this step, the only possibility to
distinguish the two worlds is by sending a non-zero additive error ∆ in s′2,
by observing the reconstructed output or the abort behaviour. Since in this
case, S does not abort, output and abort behaviour with ∆ = 0 is already
handled as described above. For ∆ ̸= 0, the abort probability is the same
in both worlds since c′ − c′′ = b′ by construction and thus the checks in the
real world and in FTrunc evaluate to the same value.

If Pi = P2, A receives s′2 and γ1. Further by sending different γ2, it can influence
abort behaviour. Let α1 = rshift(s1 + s2, k), α2 = 2ℓ − rshift(2ℓ − s3, k),
β1 = rshift(s3 + s1, k) and β2 = 2ℓ − rshift(2ℓ − s2, k) be shorthand notation
for the terms, then A sees (α1 − r′, r′ − β1) with r′ := Fk(cnt) in the real
world while the ideal view is (r,−α2 + β2 − r + b′) with r ←$ Z2ℓ . In the
ideal world, we now sample r as α1 − r′ where r′ := Fk(cnt). Clearly, r and
α1 − r′ are identically distributed (under the PRF assumption). Now the
ideal world view is(

α1 − r′,− α2 + β2 − (α1 − r′) + b′
)

=
(
α1 − r′,− α2 + β2 − α1 + r′ + (α1 + α2 − β1 − β2)

)
= (α1 − r′, r′ − β1) ,

which is identical to the real world view. Note that
∑

γi = α1 + α2 − β1 −
β2 + (r′ − r′) = b′. A can influence the abort behaviour only when sending
a different γ′

2 = γ2 + ∆, ∆ ̸= 0. In the real world, the protocol aborts if
|γ1 + γ2 +∆+ γ3| > 1, more precisely if |b′ +∆| > 1. In the ideal world, the
simulator aborts if |b′ + γ′

2 − r+ s′′2 | > 1, which is |b′ + (γ2 +∆)− r+ s′′2 | =
|b′ + (r − s′′2 +∆)− r + s′′2 | = |b′ +∆|. The abort behaviour in both worlds
is therefore the identical.

If Pi = P3, A receives γ2 and sends γ′
1 = γ1 +∆. In the real world, A receives

γ2 and in the ideal world it receives 2ℓ − γ1 − γ3 + b′ = γ2 since
∑

γi = b′.
Thus both worlds yield identical distributions. In the real world, the protocol
aborts if |γ′

1 + γ2 + γ3| > 1, and in the ideal world the simulator aborts if

16

|γ′
1− γ1 + b′| > 1, clearly |γ′

1− γ1 + b′| = |b′ +∆| and thus exhibits the same
abort behaviour.

Note that a corrupted P1 can send an arbitrary value instead of s′2 to P2. In
this case the protocol would continue with the computation using the corrupted
shares. However, note that s′3 remains uniformly random in the view of P1,
hence P1 cannot infer any further information about the secret z. Moreover,
before revealing any shares, the parties would run the check to verify correctness
(cf. Fig. 3). Thus a corrupted value would be detected and honest parties abort.

5.4 Implications of ∆ Introduced by an Adversary

From the soundness results in Sect. 5.2 and FTrunc (Fig. 4), it follows that the
consistency check detects malicious behaviour up to a small error ∆ that can
be introduced by an adversary with high probability. It is therefore crucial to
demonstrate the effect of the error ∆. We perform an analysis of the error impact
by running a forward pass of a dense neural network (DNN) described in Sect. 7
without the error as a baseline and with the error introduced in each truncation.
Figure 5 depicts the absolute value of the difference between two cases. We find
that the effect of the adversary influencing the result with ∆ = ±1 and ∆ = ±2
is in the order of 10−3 for precision of 16 bits, and 10−2 for 13-bit precision,
thus has no impact for this particular network. While the impact for ∆ = ±2 is
larger, the probability of detection grows exponentially (cf. Sect. 5.2). Still, the
new adversarial capability requires more study in future work. The attack can
be viewed as an instance of an adversarial example attack, where, in addition to
the query sample, the client also sets noise to the model weights. As such, this
scenario can be studied separately outside the scope of this paper. Nevertheless,
we believe that a careful choice of fixed-point precision lowers the impact any
attacker might have.

0 0.05 0.1

0

50

100

∆ = ±1

Adv. influence on confidence

Fr
eq

ue
nc

y

0 0.1 0.2

∆ = ±2

Adv. influence on confidence

precision = 16 precision = 13

Fig. 5: Illustration of the impact on the predicted confidence levels of a 5-layer
network inference when adding truncation errors of ±1 and ±2.

17

Table 2: Performance data of the pre-processing for ABY3 truncation tuples in
the LAN and WAN setting. In our setup, the performance starts to scale linearly
from 106 tuples onwards.

Mult. 103 104 105 106 107 108

Time (s) LAN 0.03 0.07 0.24 2.07 22.92 237.73
WAN 2.36 3.77 14.42 87.73 834.77 8309.08

Data sent (MB) 2.66 11.65 106.51 1015.25 10092.70 100926.90

6 Benchmarks

We benchmark our protocol ΠTrunc (see Fig. 2) against the generic maliciously
secure truncation protocol of ABY3 [28] in replicated secret sharing. We omit
a direct comparison to optimised versions of ABY3 pre-processing due to a sig-
nificant implementation effort required as the source code of neither [11,23] is
available. We do however implement the online and offline phases separately, to
demonstrate performance of both parts individually. The optimised truncation
protocols such as the one of SWIFT [23] are based on the same online phase
as ABY3, hence our online phase is directly comparable to these. ABY3 uses
the same offline phase for truncation triple generation as the maliciously se-
cure protocol of Furukawa et al. [16], which is implemented in MP-SPDZ. Our
experimental setup is detailed in Sect. 6.1.

The pre-processing phase of the ABY3 truncation is run separately to accom-
modate the specified protocol requirements by [28]. Due to its high cost we only
benchmark the creation of fewer triples. The numbers reported for the ABY3
truncation pre-processing are then scaled accordingly. Table 2 demonstrates that
for the creation of one million pre-processed triples onwards, the execution time
and the data sent scale linearly. To be conservative, all of the data reported
in the experiments is scaled according to pre-processing for 108 multiplications.
This is to mitigate any inaccuracy caused by scaling from smaller values.

6.1 Experimental Setup

We implement our and the ABY3 truncation protocols in the MP-SPDZ [22]
framework and benchmark on three servers with a 4-core 2.40GHz Intel Xeon
CPU and 16GB of RAM. We simulate a LAN setting with 0.1ms latency and
10Gbps bandwidth, and a WAN setting with 40ms round trip time and 100Mbps
bandwidth. We modify the implementation of the MPC protocol for three-party
malicious security in the ring Z2ℓ in MP-SPDZ by inserting both our protocol
and the ABY3 truncation in the online phase. The protocol implemented in
MP-SDPZ is based on the pre-processing of Cramer et al. [12] and re-sharing
of Araki et al. [1]. The pre-processing of the ABY3 truncation triples is run
separately in an MPC protocol for Boolean three-party RSS based on Furukawa

18

et al. [16] as specified in [28], however with Beaver multiplication [4] instead of
their post-sacrifice method.

Similarly to previous works in PPML [29,35,28], we run experiments in three
commonly benchmarked networks. For training on the MNIST dataset (one
epoch of training: forward and backward pass with batch size 128), we run
a three-layer dense neural network introduced by SecureML [29] with ReLU
and Softmax activation functions, and also run the widely known 7-layer CNN
LeNet-5 [25]. Further, we run the same training setup with a smaller batch size
of 16 due to RAM constraints with the CIFAR-10 dataset on an 11-layer CNN
AlexNet [24]. We omit benchmarks of training in the WAN setting due to sig-
nificant time required for their completion. For inference results in the WAN
setting we refer the reader to Sect. 7. We run the ABY3 benchmark in a 64-bit
ring, with k = 7, ℓx = 17. In order to satisfy parameter analysis outlined in
Sect. 4.3, we benchmark MaSTer in a 96-bit ring. We set σ = 40 and we note
that the number of truncations for all experiments is n < 236. Therefore, it is
satisfied that 236 · 217+2−96 ≤ 2−40. We further note the choice of k is subjected
to the MP-SPDZ framework implementation of probabilistic truncations, which
requires k + 9 ≤ ℓx and ℓx + k ≤ ℓ − σ. We stress that the choice of k is for
benchmarking only, and while it has no effect on the performance, as mentioned
in Sect. 5.4 the choice of k possibly determines an impact of a malicious attacker.

6.2 Results

We showcase the performance results in Table 3. We report the results of the of-
fline and online phases separately. The pre-processing of ABY3 truncation triples
is run separately using the protocol of Furukawa et al. [16] and the performance
numbers are then added to the offline phase of ABY3 benchmark. The data sent
represents the total data sent among all the parties.

For network training using our truncation, the online phase takes marginally
more time, but we improve significantly in the offline phase. The increased run-
time in the online phase occurs mainly due to computation in a larger ring,
which is also reflected in the sent data. In the offline phase, by removing the
need to compute expensive subtraction circuits, we improve the offline run-time
by up to an order of magnitude and we lower the communication overhead by
two orders of magnitude. We note that our implementation is for demonstration
purposes only and has not been optimised for the best performance.

7 Application: Privacy-Preserving ECG Diagnostic

Consider a scenario concerning diagnostic prediction using sensitive medical
data. In this case, MPC would be a desirable tool to perform ML inference to pre-
serve the privacy of both the data and the model owners. We therefore consider
inference of small batch sizes, as this resembles queries of individual users in a
real-world system. Further, we note that a lighter pre-processing phase increases

19

Table 3: Training of MNIST and CIFAR-10 datasets with different networks.
We run a forward and a backward pass in each network, with 1 batch and full
dataset (60000 samples), respectively.

Network Protocol Offline Online
Time(s) Comm.(MB) Time(s) Comm.(MB)

1 batch

MNIST
(SecureML)

ABY3 3.29 · 102 1.13 · 105 2.50 · 101 2.25 · 103
MaSTer(96) 7.62 · 101 5.95 · 103 3.19 · 101 3.37 · 103

MNIST
(LeNet-5)

ABY3 6.17 · 103 2.32 · 106 2.54 · 102 2.85 · 104
MaSTer(96) 9.75 · 102 8.95 · 104 3.52 · 102 4.28 · 104

CIFAR-10
(AlexNet)

ABY3 5.17 · 104 1.84 · 107 2.91 · 103 2.32 · 105
MaSTer(96) 9.97 · 103 7.58 · 105 3.53 · 103 3.44 · 105

Full MNIST
(SecureML)

ABY3 1.48 · 105 5.37 · 107 9.19 · 103 8.43 · 105
MaSTer(96) 3.07 · 104 2.71 · 106 1.19 · 104 1.26 · 106

the overall throughput for small batch sizes, which is desirable for applications
with real-time response requirement.

Most frameworks designed for privacy-preserving ML consider the offline-
online paradigm [4] where a substantial part of the computational load can be
moved to the input-independent pre-processing phase. For this approach to be
efficient, the clients are assumed to request computations occasionally (e.g., an
organisation running inference at the end of every day). This then creates the
time for the MPC servers to perform pre-processing when they don’t engage
in input-dependent computations. This results in major improvements of the
online phase. However, in the scenario described above, the servers are constantly
active, responding to queries of both individual users and large organisations.
This reduces the time of low load and pre-processing, thus increases the latency
of a prediction. Consequently, it is important to maximise the overall throughput.
Given the example of medical data, we run classification of ECG heartbeat data
over a dense neural network. We run experiments on the same setup as described
in Sect. 6, evaluating the DNN model trained on the MIT-BIH Arrhythmia
dataset [30] together with PTB Diagnostic ECG database [6], both available
at [17]. The trained model comprises five dense layers with a ReLU activation
function on the first four and the Softmax function on the last layer.

We demonstrate the overall performance in the LAN setting in Table 4 and
WAN setting in Table 5. As before, we run ABY3 in the 64-bit ring with k = 8,
ℓx = 16. Given the lower number of total truncations in the forward pass of the
network, we run MaSTer in both the 64 and 96-bit rings for comparison. We
note that the abort condition has not been triggered due to the large error in
any of our experiments.

We report the execution time of the online and offline phase separately. The
data sent denotes the data sent by all parties collectively. Finally, we showcase
the total throughput of classifications per minute. We compare the performance

20

when running inference with a different number of samples per inference query,
ranging from a single sample, through a batch size of 128 samples to the whole
dataset. We observe an improvement between a factor of two and three for
both LAN and WAN settings, depending on the query size. When running the
inference on a trained model, we achieve a classification accuracy of 95.9%, same
as ABY3 and plaintext.

Table 4: Performance of high-throughput use-case inference with different num-
ber of samples per query in the LAN setting. Throughput (TP) is denoted in
samples per minute.

Number
of samples

Number of
truncations Protocol Offline Online Total Data Sent TP

Time (s) (MB)

1 2.36 · 104
ABY3 0.21 0.08 0.29 33.79 206.90
MaSTer(64) 0.06 0.08 0.14 6.99 428.57
MaSTer(96) 0.07 0.07 0.14 9.55 428.57

128 3.02 · 106
ABY3 9.73 0.86 10.60 3621.68 724.53
MaSTer(64) 3.18 0.95 4.13 576.75 1859.56
MaSTer(96) 4.36 1.10 5.46 780.22 1406.59

21892 5.16 · 108
ABY3 1811 142 1953 716386 672.46
MaSTer(64) 514 152 666 98316 1972.25
MaSTer(96) 729 167 896 132892 1465.98

Table 5: Performance of high-throughput use-case inference with different num-
ber of samples per query in the WAN setting. Throughput (TP) is denoted in
samples per minute.

Number
of samples

Number of
truncations Protocol Offline Online Total Data Sent TP

Time (s) (MB)

1 2.36 · 104
ABY3 10.21 3.55 13.76 33.79 4.36
MaSTer(64) 3.70 5.28 8.98 6.99 6.68
MaSTer(96) 7.98 6.30 14.28 9.55 4.21

128 3.02 · 106
ABY3 326.17 58.11 384.28 3621.68 19.99
MaSTer(64) 55.75 82.32 138.07 576.75 55.62
MaSTer(96) 103.67 80.19 183.86 780.22 41.78

21892 5.16 · 108
ABY3 53267 9889 63157 716386 20.80
MaSTer(64) 9250 14015 23265 98316 56.46
MaSTer(96) 17091 13567 30658 132892 42.84

21

8 Conclusion

We presented a maliciously secure truncation protocol combining the two-party
semi-honest truncation protocol of SecureML with a consistency check. Unlike
previous works for malicious security, we do not require pre-processing. We prove
our protocol is secure with abort against one malicious corrupted party in the
UC framework. In the end, we demonstrate the improvement of our truncation
experimentally by comparing training on the commonly used benchmarking net-
works, namely SecureML, LeNet-5, and AlexNet. We improve the performance
of the offline phase by an order of magnitude, achieving higher total through-
put. We also show a potential application where overall throughput needs to
be maximised, and hence advocate for an efficient protocol without a heavy
pre-processing phase.

Acknowledgments. This work was supported by the Flemish Government through
FWO SBO project MOZAIK S003321N and by CyberSecurity Research Flanders with
reference number VR20192203.

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, Vi-
enna, Austria, October 24-28, 2016. pp. 805–817. ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2976749.2978331

2. Attrapadung, N., Hamada, K., Ikarashi, D., Kikuchi, R., Matsuda, T., Mishina,
I., Morita, H., Schuldt, J.C.N.: Adam in private: Secure and fast training of deep
neural networks with adaptive moment estimation. Proc. Priv. Enhancing Technol.
2022(4), 746–767 (2022). https://doi.org/10.56553/popets-2022-0131

3. Baccarini, A.N., Blanton, M., Yuan, C.: Multi-party replicated secret shar-
ing over a ring with applications to privacy-preserving machine learning. Proc.
Priv. Enhancing Technol. 2023(1), 608–626 (2023). https://doi.org/10.56553/
popets-2023-0035

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, August 11-15, 1991, Proceedings. Lecture Notes in Com-
puter Science, vol. 576, pp. 420–432. Springer (1991). https://doi.org/10.1007/
3-540-46766-1_34

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (jul 1970). https://doi.org/10.1145/362686.362692

6. Bousseljot, R., Kreiseler, D., Schnabel, A.: Nutzung der EKG-Signaldatenbank
CARDIODAT der PTB über das Internet. Biomedical Engineering / Biomedi-
zinische Technik 40(s1), 317–318 (1995)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001. pp. 136–145. IEEE Computer Society (2001).
https://doi.org/10.1109/SFCS.2001.959888

22

https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.56553/popets-2022-0131
https://doi.org/10.56553/popets-2022-0131
https://doi.org/10.56553/popets-2023-0035
https://doi.org/10.56553/popets-2023-0035
https://doi.org/10.56553/popets-2023-0035
https://doi.org/10.56553/popets-2023-0035
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888

8. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 9216, pp. 3–22. Springer (2015). https://doi.org/10.
1007/978-3-662-48000-7_1

9. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., Prisco, R.D. (eds.) Security and Cryptography for Net-
works, 7th International Conference, SCN 2010, September 13-15, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6280, pp. 182–199. Springer (2010).
https://doi.org/10.1007/978-3-642-15317-4_13

10. Chaudhari, H., Choudhury, A., Patra, A., Suresh, A.: Astra: High throughput 3pc
over rings with application to secure prediction. In: Sion, R., Papamanthou, C.
(eds.) Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Se-
curity Workshop, CCSW@CCS 2019, November 11, 2019. pp. 81–92. ACM (2019).
https://doi.org/10.1145/3338466.3358922

11. Chaudhari, H., Rachuri, R., Suresh, A.: Trident: Efficient 4pc framework for privacy
preserving machine learning. In: 27th Annual Network and Distributed System Se-
curity Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.
The Internet Society (2020), https://www.ndss-symposium.org/ndss-paper/
trident-efficient-4pc-framework-for-privacy-preserving-machine-learning/

12. Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: Spdz2k: Efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 10992, pp. 769–798. Springer (2018). https://doi.org/
10.1007/978-3-319-96881-0_26

13. Dalskov, A.P.K., Escudero, D., Keller, M.: Secure evaluation of quantized neural
networks. Proc. Priv. Enhancing Technol. 2020(4), 355–375 (2020). https://doi.
org/10.2478/popets-2020-0077

14. Dalskov, A.P.K., Escudero, D., Keller, M.: Fantastic four: Honest-majority four-
party secure computation with malicious security. In: Bailey, M., Greenstadt, R.
(eds.) 30th USENIX Security Symposium, USENIX Security 2021, August 11-
13, 2021. pp. 2183–2200. USENIX Association (2021), https://www.usenix.org/
conference/usenixsecurity21/presentation/dalskov

15. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives
for MPC over mixed arithmetic-binary circuits. In: Micciancio, D., Ristenpart,
T. (eds.) Advances in Cryptology - CRYPTO 2020 - 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21,
2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12171, pp.
823–852. Springer (2020). https://doi.org/10.1007/978-3-030-56880-1_29

16. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J., Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 10211, pp. 225–255 (2017). https:
//doi.org/10.1007/978-3-319-56614-6_8

17. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark,
R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, phys-

23

https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1145/3338466.3358922
https://doi.org/10.1145/3338466.3358922
https://www.ndss-symposium.org/ndss-paper/trident-efficient-4pc-framework-for-privacy-preserving-machine-learning/
https://www.ndss-symposium.org/ndss-paper/trident-efficient-4pc-framework-for-privacy-preserving-machine-learning/
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.2478/popets-2020-0077
https://doi.org/10.2478/popets-2020-0077
https://doi.org/10.2478/popets-2020-0077
https://doi.org/10.2478/popets-2020-0077
https://www.usenix.org/conference/usenixsecurity21/presentation/dalskov
https://www.usenix.org/conference/usenixsecurity21/presentation/dalskov
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-56614-6_8

iotoolkit, and physionet: Components of a new research resource for complex phys-
iologic signals. Circulation 101(23), E215–20 (Jun 2000)

18. Gupta, K., Jawalkar, N., Mukherjee, A., Chandran, N., Gupta, D., Panwar, A.,
Sharma, R.: SIGMA: secure GPT inference with function secret sharing. IACR
Cryptol. ePrint Arch. p. 1269 (2023), https://eprint.iacr.org/2023/1269

19. Gupta, K., Kumaraswamy, D., Chandran, N., Gupta, D.: Llama: A low latency
math library for secure inference. Proc. Priv. Enhancing Technol. 2022(4), 274–
294 (2022). https://doi.org/10.56553/popets-2022-0109

20. Huang, Z., Lu, W., Hong, C., Ding, J.: Cheetah: Lean and fast secure two-party
deep neural network inference. In: Butler, K.R.B., Thomas, K. (eds.) 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-
12, 2022. pp. 809–826. USENIX Association (2022), https://www.usenix.org/
conference/usenixsecurity22/presentation/huang-zhicong

21. Kachuee, M., Fazeli, S., Sarrafzadeh, M.: Ecg heartbeat classification: A deep trans-
ferable representation. CoRR abs/1805.00794 (2018), http://arxiv.org/abs/
1805.00794

22. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. In: Lig-
atti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS ’20: 2020 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, USA, November 9-13,
2020. pp. 1575–1590. ACM (2020). https://doi.org/10.1145/3372297.3417872

23. Koti, N., Pancholi, M., Patra, A., Suresh, A.: Swift: Super-fast and robust
privacy-preserving machine learning. In: Bailey, M., Greenstadt, R. (eds.) 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021. pp.
2651–2668. USENIX Association (2021), https://www.usenix.org/conference/
usenixsecurity21/presentation/koti

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges,
C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Informa-
tion Processing Systems 25: 26th Annual Conference on Neural Informa-
tion Processing Systems 2012. Proceedings of a meeting held December 3-
6, 2012. pp. 1106–1114 (2012), https://proceedings.neurips.cc/paper/2012/
hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

25. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

26. Li, Y., Duan, Y., Huang, Z., Hong, C., Zhang, C., Song, Y.: Efficient 3pc for
binary circuits with application to maliciously-secure dnn inference. In: Calandrino,
J.A., Troncoso, C. (eds.) 32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023. USENIX Association (2023), https:
//www.usenix.org/conference/usenixsecurity23/presentation/li-yun

27. Mitzenmacher, M.: Compressed bloom filters. In: Proceedings of the Twentieth
Annual ACM Symposium on Principles of Distributed Computing. p. 144–150.
PODC ’01, Association for Computing Machinery, New York, NY, USA (2001).
https://doi.org/10.1145/383962.384004

28. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018. pp. 35–52. ACM (2018). https://doi.
org/10.1145/3243734.3243760

29. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving ma-
chine learning. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San

24

https://eprint.iacr.org/2023/1269
https://doi.org/10.56553/popets-2022-0109
https://doi.org/10.56553/popets-2022-0109
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
http://arxiv.org/abs/1805.00794
http://arxiv.org/abs/1805.00794
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://www.usenix.org/conference/usenixsecurity21/presentation/koti
https://www.usenix.org/conference/usenixsecurity21/presentation/koti
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://www.usenix.org/conference/usenixsecurity23/presentation/li-yun
https://www.usenix.org/conference/usenixsecurity23/presentation/li-yun
https://doi.org/10.1145/383962.384004
https://doi.org/10.1145/383962.384004
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760

Jose, CA, USA, May 22-26, 2017. pp. 19–38. IEEE Computer Society (2017).
https://doi.org/10.1109/SP.2017.12

30. Moody, G.B., Mark, R.G.: The impact of the mit-bih arrhythmia database. IEEE
engineering in medicine and biology magazine 20(3), 45–50 (2001)

31. Patra, A., Suresh, A.: Blaze: Blazing fast privacy-preserving machine learn-
ing. In: 27th Annual Network and Distributed System Security Sympo-
sium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.
The Internet Society (2020), https://www.ndss-symposium.org/ndss-paper/
blaze-blazing-fast-privacy-preserving-machine-learning/

32. Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi, A., Sharma,
R.: Cryptflow2: Practical 2-party secure inference. In: Ligatti, J., Ou, X., Katz,
J., Vigna, G. (eds.) CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, November 9-13, 2020. pp. 325–342. ACM (2020). https:
//doi.org/10.1145/3372297.3417274

33. Rotaru, D., Wood, T.: Marbled circuits: Mixing arithmetic and boolean circuits
with active security. In: Hao, F., Ruj, S., Gupta, S.S. (eds.) Progress in Cryp-
tology - INDOCRYPT 2019 - 20th International Conference on Cryptology in
India, Hyderabad, India, December 15-18, 2019, Proceedings. Lecture Notes in
Computer Science, vol. 11898, pp. 227–249. Springer (2019). https://doi.org/
10.1007/978-3-030-35423-7_12

34. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom
filters for distributed systems. IEEE Communications Surveys & Tutorials 14(1),
131–155 (2012). https://doi.org/10.1109/SURV.2011.031611.00024

35. Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: Fal-
con: Honest-majority maliciously secure framework for private deep learning. Proc.
Priv. Enhancing Technol. 2021(1), 188–208 (2021). https://doi.org/10.2478/
popets-2021-0011

36. Watson, J., Wagh, S., Popa, R.A.: Piranha: A gpu platform for secure com-
putation. In: Butler, K.R.B., Thomas, K. (eds.) 31st USENIX Security Sym-
posium, USENIX Security 2022, August 10-12, 2022. pp. 827–844. USENIX
Association (2022), https://www.usenix.org/conference/usenixsecurity22/
presentation/watson

37. Zhou, L., Song, Q., Zhang, S., Wang, Z., Wang, X., Li, Y.: Bicoptor 2.0: Ad-
dressing challenges in probabilistic truncation for enhanced privacy-preserving
machine learning. CoRR abs/2309.04909 (2023). https://doi.org/10.48550/
ARXIV.2309.04909

38. Zou, H., Xiao, Y., Zhang, R.: Semi-honest 2-party faithful truncation from two-bit
extraction. IACR Cryptol. ePrint Arch. p. 1159 (2023), https://eprint.iacr.
org/2023/1159

A Protocol Πcr

In Fig. 7, we give a possible protocol to securely realise Fcr (Fig. 6) in the
presence of a static malicious adversary. We use the protocol for generating
correlated randomness from [16, Protocol 2.5] to generate a uniform random
shared value among all three parties for the setup and then open this share to
P1 and P3. The opened value is used as key k to the PRF. Subsequent calls to
sample simply evaluate the PRF keyed with k on a unique counter. The protocol
Πcr is a specialised variant where only two parties learn the opened value.

25

https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://www.ndss-symposium.org/ndss-paper/blaze-blazing-fast-privacy-preserving-machine-learning/
https://www.ndss-symposium.org/ndss-paper/blaze-blazing-fast-privacy-preserving-machine-learning/
https://doi.org/10.1145/3372297.3417274
https://doi.org/10.1145/3372297.3417274
https://doi.org/10.1145/3372297.3417274
https://doi.org/10.1145/3372297.3417274
https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.2478/popets-2021-0011
https://doi.org/10.2478/popets-2021-0011
https://doi.org/10.2478/popets-2021-0011
https://doi.org/10.2478/popets-2021-0011
https://www.usenix.org/conference/usenixsecurity22/presentation/watson
https://www.usenix.org/conference/usenixsecurity22/presentation/watson
https://doi.org/10.48550/ARXIV.2309.04909
https://doi.org/10.48550/ARXIV.2309.04909
https://doi.org/10.48550/ARXIV.2309.04909
https://doi.org/10.48550/ARXIV.2309.04909
https://eprint.iacr.org/2023/1159
https://eprint.iacr.org/2023/1159

In the random oracle model, the setup of a random key k between party P1

and P3 can also be implemented by having each party draw a random value r,
commit to it via the random oracle and send the commitment. Then each party
decommits and uses the xor of the two random values as k.

In Fig. 8 we provide a protocol for correlated randomness of 0 among all
three parties.

Functionality Fcr

Let F : {0, 1}κ × {0, 1}κ 7→ Z2ℓ be a keyed pseudo-random function. The
functionality generates correlated randomness between a pair (Pi, Pj)

Setup The adversary sends a key kA and the functionality samples k ←$ {0, 1}κ
uniformly at random and sends FkA(0)⊕ k to Pi and Pj .

Sample On input cnt of Pi and Pj , the functionality computes r := Fk(cnt) and
sends r to Pi and Pj .

Fig. 6: Functionality Fcr.

B Proof of Theorem 1

Proof. We consider two cases. First, let 0 ≤ z < 2ℓx , i.e., x ≥ 0 and z = x. Then,
z+R = (x1+R1)2

k+x2+R2. Since x2+R2 may be larger or equal 2k, we have
z +R = (x1 +R1 + c1)2

k + x2 +R2 − c12
k. Further, x1 +R1 may overflow over

2ℓ−k, hence we get z +R = c22
ℓ + (x1 +R1 + c1 − c22

ℓ−k)2k + x2 +R2 − c12
k.

Consequently, rshift(z+R)+2ℓ−rshift(R) = 2ℓ+x1+R1+c1−c22ℓ−k+2ℓ−R1 =
⌊x⌋+ c1 − c22

ℓ−k where c1 = 1 if z2 +R2 ≥ 2k and c1 = 0 otherwise. Similarly,
c2 = 1 if x1 +R1 ≥ 2ℓ−k and c2 = 0 otherwise. Note that x1 = ⌊x⌋ by definition
and 2ℓ = 0 in the ring.

Second, let 2ℓ − 2ℓx ≤ z < 2ℓ, i.e., x < 0 and z = 2ℓ − |x|. So z + R =
2ℓ− (R1−|x1|)2k +R2−|x2|. Since R2−|x2| may be negative, we have z+R =
(R1−z1− c1)2

k+R2−z2+ c12
k where c1 = 1 if R2 < |x2| and c1 = 0 otherwise.

Similarly, R1−|x1| might underflow, hence we have z+R = −c22ℓ+(R1−|x1|−
c1 + c22

ℓ−k)2k +R2 − z2 + c12
k where c2 = 1 if |x1| > R1 and c2 = 0 otherwise.

Thus rshift(z + R) + 2ℓ − rshift(R) = −c22ℓ + R1 − |x1| − c1 + c22
ℓ−k − R1 =

⌊x⌋ − c1 + c22
ℓ−k.

C Proof of Theorem 2

We start by introducing Lemma 1.

26

Protocol Πcr

Let F : {0, 1}κ × {0, 1}κ 7→ Z2ℓ be a keyed pseudo-random function. The
protocol generates correlated randomness between a pair (Pi, Pj).

Setup Each party Pt samples a key kt ←$ {0, 1}n uniformly at random.
– Pt sends kt to Pt−1 and thus obtains kt+1.
– Pt computes rt := Fkt(0), rt+1 := Fkt+1(0). This creates a RSS share of

a random value.
– The parties send Pi’s missing share to Pi and Pj ’s missing share to Pj .
– Now Pi and Pj hold (ri, ri+1) and (rj , rj+1), respectively, and received

ri−1 and rj−1, respectively, from two independent parties. Pi/Pj abort if
the received values don’t agree. Note that the other party only knows
two of the three shares.

– Pi and Pj set k :=
3⊕

t=1

rt.

Sample Pi and Pj locally compute Fk(cnt) and use the result of the PRF as
random element in Z2ℓ .

Fig. 7: The protocol Πcr.

Protocol Πcr0

Let F : {0, 1}κ × {0, 1}κ 7→ Z2ℓ be a keyed pseudo-random function.

Setup Each party Pi samples a key ki ←$ {0, 1}n uniformly at random. Then,
Pi sends ki to Pi+1 and thus obtains ki−1.

Sample Upon input cnt, Pi locally computes Fki(cnt)− Fki−1(cnt) and outputs
the result of the PRF as random element in Z2ℓ .

Fig. 8: The protocol Πcr0.

27

Lemma 1. Let m ≤ ℓ. Let R be a uniformly random variable defined on [0, 2m)

and let X be a random variable defined on [0, 2m). Then, Pr[X+R ≥ 2m] = E[X]
2m .

Proof.

Pr[X +R ≥ 2m] = Pr[R ≥ 2m −X] =

2m−1∑
x=1

Pr[X = x]

2m−1∑
r=2m−x

Pr[R = r]

=

2m−1∑
x=1

Pr[X = x]

2m−1∑
r=2m−x

1

2m
=

2m−1∑
x=1

Pr[X = x]
x

2m

=
1

2m

2m−1∑
x=1

xPr[X = x] =
1

2m

2m−1∑
x=0

xPr[X = x] =
E[X]

2m
.

We now proceed to the proof of Theorem 2.

Proof. Let z ∈ Z2ℓ be the encoding of −2ℓx < x < 2ℓx . Let s1, s2, s3 be the
components of the RSS sharing of z. We set s1 = z + R′ + R′′, s2 = 2ℓ − R′,
s3 = 2ℓ−R′′ where R′ and R′′ are random elements in Z2ℓ . Whenever required,
we decompose a ring element x into x1, x2 s.t. x = x12

k + x2 where 0 ≤ x1 <
2ℓ−k and 0 ≤ x2 < 2k. Note that since x ≤ 2ℓx , x1 ≤ 2ℓx−k. Consequently,
rshift(x12

k + x2) = x1. Firstly note that
∑3

i=1 γi =
∑3

i=1 s
′
i −
∑2

i=1 s
′′
i . Then,

3∑
i=1

s′i = r′ + rshift(s1 + s2, k)− r′ + 2ℓ − rshift(2ℓ − s3, k)

= rshift(z +R′′, k) + 2ℓ − rshift(R′′, k) .

We apply Theorem 1 and obtain
∑3

i=1 s
′
i = ⌊x⌋ + c′1 + c′22

ℓ−k where c′1 = 1
if x2 + R′′

2 ≥ 2k, c′1 = −1 if |x2| ≥ R′′
2 , or c′1 = 0 otherwise. Similarly, c′2 = 1 if

|x1| > R′′
1 , c′2 = −1 if x1 +R′′

1 ≥ 2ℓ−k and c′2 = 0 otherwise.
For

∑
i s

′′
i , we obtain

2∑
i=1

s′′i = rshift(s1 + s3, k) + 2ℓ − rshift(2ℓ − s2, k)

= rshift(z +R′, k) + 2ℓ − rshift(R′, k) .

Again, we apply Theorem 1 and get
∑2

i=1 s
′′
i = ⌊x⌋ + c′′1 + c′′22

ℓ−k where
c′′1 = 1 if x2 + R′

2 ≥ 2k, c′′1 = −1 if |x2| ≥ R′
2, or c′′1 = 0 otherwise. Similarly,

c′′2 = 1 if |x1| > R′
1, c′′2 = −1 if x1 +R′

1 ≥ 2ℓ−k and c′′2 = 0 otherwise.
Now, we have that

∑3
i=1 γi = ⌊x⌋ + c′1 + c′22

ℓ−k − ⌊x⌋ − c′′1 − c′′22
ℓ−k =

(c′1 − c′′1) + (c′2 − c′′2)2
ℓ−k. We want to show that

∑3
i=1 γi ∈ {0,±1}. Thus, we

need to show |c′1− c′′1 | ≤ 1 and c′2− c′′2 = 0. Let us first derive the probability for
c′2 − c′′2 = 0.

Note that c′2, c′′2 = ±1 ⇐⇒ R′′, R′ ∈ [0, 2ℓx)∪ [2ℓ− 2ℓx , 2ℓ). Since R′, R′′ are
uniformly random by definition, we have that Pr[|x1| > R′′

1 | R′′ ∈ [0, 2ℓx)] =

28

Pr[|x1| > R′
1 | R′ ∈ [0, 2ℓx)] = E[x1]

2ℓx−k . This follows from Lemma 1, observing that
|x1|, R′

1, R
′′
1 ∈ [0, 2ℓx−k). Similarly, Pr[x1 + R′′

1 ≥ 2ℓ−k | R′′ ∈ [2ℓ − 2ℓx , 2ℓ)] =

Pr[x1+R′
1 ≥ 2ℓ−k | R′ ∈ [2ℓ−2ℓx , 2ℓ)] = E[x1]

2ℓx−k . This follows again from Lemma 1,
noting that x ∈ [0, 2ℓx−k) and R′

1, R
′′
1 ∈ [2ℓ−k − 2ℓx−k, 2ℓ−k).

Let condition A(Γ) = Γ ∈ [0, 2ℓx)∪ [2ℓ−2ℓx , 2ℓ) for Γ ∈ {R′, R′′}. Therefore,
we have

Pr[c′2 − c′′2 = 0] ≥ Pr[c′2 = 0 ∧ c′′2 = 0]

= 1− Pr[A(R′′)] · Pr[|x1| > R′′
1 ∨ x1 +R′′

1 ≥ 2ℓ−k | A(R′′)]·
1− Pr[A(R′)] · Pr[(|x1| > R′

1 ∨ x1 +R′
1 ≥ 2ℓ−k) | A(R′)]

=

(
1− 2ℓx+1−ℓ · E[x1]

2ℓx−k

)2

≥ 1− 2k+2−ℓ · E[x1] .

For x1 uniformly random, this would become Pr[c′2 − c′′2 = 0] ≥ 1− 2ℓx+1−ℓ.
It remains to show that |c′1 − c′′1 | ≤ 1. This is violated only if c′1 = 1 and

c′′1 = −1, or if c′1 = −1 and c′′1 = 1. In both cases, the condition s.t. c′1 has the
fixed value contradicts the precondition of x for c′′1 , e.g., x ≥ 0∧x < 0. Thus, the
probability that R′ and R′′ are within [2ℓx , 2ℓ−2ℓx) and no overflow or underflow

occurs is
(
1− 2ℓx+1−ℓ · E[x1]

2ℓx−k

)2
≥ 1− 2k+2−ℓ · E[x1].

D Analysis of Adversarial Influence with ∆ = ±2

Definition 4. We define the sign function as

sgn(x) =

1 if x > 0

0 if x = 0

−1 if x < 0

.

We will now show Pr[|c′−c′′+∆| = 1 | sgn(x)∧∆ = ±2] ≤ E[x2]
2k
− (E[x2])

2

22k
≤ 1

4 .
Firstly, note that

Pr[|c′ − c′′ +∆| = 1 | sgn(x) ∧∆ = ±2]
= Pr[c′ = 1 ∧ c′′ = 0 | sgn(x) = 1 ∧∆ = −2] · Pr[sgn(x) = 1] · Pr[∆ = −2]+
Pr[c′ = 0 ∧ c′′ = 1 | sgn(x) = 1 ∧∆ = 2] · Pr[sgn(x) = 1] · Pr[∆ = 2]+

Pr[c′ = −1 ∧ c′′ = 0 | sgn(x) = −1 ∧∆ = 2] · Pr[sgn(x) = −1] · Pr[∆ = 2]+

Pr[c′ = 0 ∧ c′′ = −1 | sgn(x) = −1 ∧∆ = −2] · Pr[sgn(x) = −1] · Pr[∆ = −2] .

We will show Pr[c′ = 1∧ c′′ = 0 | sgn(x) = 1∧∆ = −2] ·Pr[sgn(x) = 1] ·Pr[∆ =
−2]. We note that the other cases are analogous.

Case c′ = 1 ∧ c′′ = 0. From Theorem 1 we get that c′ = 1 if x2 +R′′
2 ≥ 2k and

c′′ = 0 when x2 +R′
2 < 2k for x ≥ 0. Therefore,

Pr[c′ = 1 ∧ c′′ = 0 | sgn(x) = 1 ∧∆ = −2] · Pr[sgn(x) = 1] · Pr[∆ = −2]
= Pr[x2 +R′′

2 ≥ 2k ∧ x2 +R′
2 < 2k] · Pr[sgn(x) = 1] · Pr[∆ = −2] .

29

Since x2, R
′
2, R

′′
2 ∈ [0, 2k) with R′, R′′ uniformly random, we can now apply

Lemma 1. Thus, we get

Pr[c′ = 1 ∧ c′′ = 0 | sgn(x) = 1 ∧∆ = −2] · Pr[sgn(x) = 1] · Pr[∆ = −2]

=

(
E[x2]

2k
− (E[x2])

2

22k

)
· Pr[sgn(x) = 1] · Pr[∆ = −2] .

Now, we distinguish two types of adversarial strategies. Firstly, consider the
adversary that adds a constant error of either ∆ = 2 or ∆ = −2. Wlog., let the
adversary pick ∆ = 2. Hence, Pr[∆ = 2] = 1 and Pr[∆ = −2] = 0. Therefore,
we get

Pr[|c′ − c′′ +∆| = 1 | sgn(x) ∧∆ = ±2]

=

(
E[x2]

2k
− (E[x2])

2

22k

)
· (Pr[sgn(x) = −1] + Pr[sgn(x) = 1]) ≤ E[x2]

2k
− (E[x2])

2

22k
.

Secondly, consider the case when adversary picks ∆ = ±2 at random. Then
we get Pr[∆ = 2] = Pr[∆ = −2] = 1

2 . Thus,

Pr[|c′ − c′′ +∆| = 1 | sgn(x) ∧∆ = ±2]

= 2 ·

(
E[x2]

2k
− (E[x2])

2

22k

)
· (Pr[sgn(x) = −1] + Pr[sgn(x) = 1]) · 1

2

≤ E[x2]

2k
− (E[x2])

2

22k
.

Now, let us find a local maxima of f(x) =
(

x
2k
− x2

22k

)
, for x ∈ [0, 2k). We

have
df

dx
= 2−k − x · 2−2k = 0 ⇐⇒ x = 2k−1 ,

and
f(0) = f(2k) = 0 < f(2k−1) =

1

4
.

Therefore, we can conclude
(

E[x2]
2k
− (E[x2])

2

22k

)
≤ 1

4 , with global maximum when

E[x2] = 2k−1, e.g., when x2 is uniformly random.

E The UC Security Model

In the following, we expand on the universal composability framework (UC) as
proposed by Canetti et al. [7,8]. We say that if a protocol Π securely realises a
given functionality F in the UC framework, the leakage of the protocol through
inputs, outputs, intermediary values or abort conditions is equivalent to the
leakage that occurs when an adversary and honest parties interact with the in-
corruptible third-party F even under arbitrary composition with other protocols

30

or (more useful for PPML) as sub-protocol for larger protocols that supply input
and receive output from Π.

We target static malicious security with abort. This means, the adversary
A corrupts a subset of parties at the start of the protocol and can make them
behave arbitrarily, including aborting the protocol execution prematurely. In
this setting, we assume a rushing adversary that determines the order of arrival
for each message that is sent over the network. In particular, this means that
in each communication round, the adversary may see all messages directed at
a corrupted party before it responds. Thus, the adversary always receives the
output of the protocol first and may decide to abort, preventing the honest
parties from learning the output.

In the UC framework, there are two additional actors to Π. The adversary A
that attacks the protocol Π by corrupting a subset of parties and the environ-
ment Z that attacks the security simulation which is defined as a distinguishing
game between two executions.

– RealΠ,A,Z runs an attack on the protocol Π by A as follows. Z chooses and
sends input values for the honest parties to the honest MPC parties. Then,
A, controlling the corrupted parties, executes Π with the honest parties. At
the end of the protocol, the honest parties send their output to Z. Z can
communicate with A arbitrarily throughout the whole process.

– IdealF,S,Z runs an attack on the simulator S. Z chooses inputs for the honest
parties and sends them directly to F . Z receives the output of the honest
parties directly from F . S plays the role of the adversary from the real
execution and interacts arbitrarily with Z.

If Π securely realises F , then for each adversary A there exists a simulator
S that for each environment Z, Z cannot distinguish between the real execution
RealΠ,A,Z or the idealised one IdealF,S,Z .

31

	MaSTer: Maliciously Secure Truncation for Replicated Secret Sharing without Pre-Processing

