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Abstract. While passive side-channel attacks and active fault attacks have been
studied intensively in the last few decades, strong attackers combining these attacks
have only been studied relatively recently. Due to its simplicity, most countermeasures
against passive attacks are based on additive sharing. Unfortunately, extending these
countermeasures against faults often leads to quite a significant performance penalty,
either due to the use of expensive cryptographic operations or a large number of
shares due to massive duplication. Just recently, Berndt, Eisenbarth, Gourjon, Faust,
Orlt, and Seker thus proposed to use polynomial sharing against combined attackers
(CRYPTO 2023). While they construct gadgets secure against combined attackers
using only a linear number of shares, the overhead introduced might still be too large
for practical scenarios.
In this work, we show how the overhead of nearly all known constructions using
polynomial sharing can be reduced by nearly half by embedding two secrets in
the coefficients of one polynomial at the expense of increasing the degree of the
polynomial by one. We present a very general framework that allows adapting these
constructions to this new sharing scheme and prove the security of this approach
against purely passive side-channel attacks, purely active fault attacks, and combined
attacks. Furthermore, we present new gadgets allowing us to operate upon the
different secrets in a number of useful ways.
Keywords: Polynomial Masking · Parallel Computation · Leakage/Fault Resilience

1 Introduction
Implementations of cryptographic systems are among the most scrutinized pieces of software,
as a single small implementation error can lead to a complete security loss. Furthermore,
even if the implementation matches the mathematical description perfectly, physical
properties of the implementation (outside the scope of the mathematical specifications)
can have the same disastrous consequences. Typical examples include non-constant timing
behavior or leakage via physical side-channels such as electromagnetic radiation or power
consumption that are dependent on sensitive information. To protect against these physical
side-channels, the most used countermeasure is masking. Here, a sensitive value 𝑣 is split
into a vector (𝑣0, … , 𝑣𝑛−1) of 𝑛 values (called shares) such that a sufficiently high number
of shares is required to reconstruct 𝑣. Masking has proved itself to be a very resilient
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countermeasure and is now widely deployed in cryptographic hardware. While several
different masking techniques have been developed, the classical techniques of additive
and polynomial masking are still the most widely used. In additive masking, we assume
that the sensitive value belongs to a field 𝔽 equipped with an addition +. Now, for
𝑖 = 0, … , 𝑛 − 2, the values 𝑣𝑖 are drawn uniformly from 𝔽 and 𝑣𝑛−1 is chosen such that
∑𝑛−1

𝑖=0 𝑣𝑖 = 𝑣. For polynomial masking, we construct a polynomial p(𝑥) = 𝑣 + ∑𝑑
𝑖=1 𝑎𝑖𝑥𝑖

with 𝑎𝑖 drawn randomly from 𝔽. Then, 𝑣𝑖 is given by p(𝛼𝑖) for some public support point
𝛼𝑖 ≠ 0. Both of these approaches have several advantages and disadvantages. Probably
the most commonly cited advantage of additive masking is that it is relatively efficient
regarding complexity and randomness cost to protect against an attacker with access to
𝑡 ≤ 𝑑 shares. However, additive masking is quite vulnerable to active attacks that insert
a fault into the computation [GIP+14]. Without any additional precautions, adding a
value 𝜁 to a single share 𝑣𝑖 will simply result in a valid sharing of the value 𝑣 + 𝜁. This
attack does not look particularly dangerous at first glance but can lead to catastrophic
security flaws. A simple example is outputting the product of a secret key and zero.
The result does not give any information about the key, however, since the attacker can
choose the added value, an additive fault on the zero would reveal the complete key. Even
though the example is very contrived, it illustrates the catastrophic effects of such faults.
To prevent these attacks, complex verification operations are needed that are often not
suited to low hardware resources or require at least 𝑡 ⋅ 𝜎 shares to protect against 𝑡 probes
and 𝜎 faults on the shares [GIP+14, GLO+21, GSZ20, DN20, FRBSG22]. In contrast,
polynomial masking has a natural resilience against such fault attacks as adding a value
𝜁 to a single share 𝑣𝑖 will result in a polynomial of degree higher than 𝑑. This allows
to use only 𝑂(𝑑 + 𝜎) shares to achieve the same security as additive masking with 𝑑 ⋅ 𝜎
shares even against combined attackers performing both side-channel probes and adding
active faults [SFRES18, BEF+23]. Nevertheless, this linear number of shares (and thus
the required area) used by polynomial masking is often too large for practical use cases.

1.1 Our Contribution
In this work, we show that we can adapt (nearly all) known constructions using polynomial
masking to share two secrets in the coefficients of the polynomial, including constructions
based on the classical BGW approach [BGW88] and the very recent approach of Berndt
et al. [BEF+23]. They proposed a method, where each secret was masked with 𝑑 + 𝑒 + 1
shares to protect the circuits against 𝑑 probes and 𝑒 faults. Compared to other approaches,
this significantly reduces the number of shares by nearly a factor of 1/2. Now, suppose that
one wants to perform the same computation using a gadget width depth Δ and 𝑛 shares,
but on two different secrets. Blockciphers are prototypical examples of this, as a round
typically consists of the computation of many parallel identical s-boxes. When aiming to
minimize the depth of the resulting circuit, we can simply run those two computations
in parallel. Clearly, the depth of the resulting circuit is Δ, but we need to double the
number of shares to 2𝑛. On the other hand, if we aim to minimize the number of used
shares, we can run the two computations sequentially, but then have a depth of 2Δ. Our
contribution shows how to perform these computations for two secrets using 𝑛 + 2 shares
and still remain on depth Δ. Hence, instead of computing each masked s-box on its own,
we can apply our technique to compute the result of two different s-boxes by computing
only a single s-box (although on 𝑛 + 2 shares as we need to increase the degree of the
underlying polynomial). Rather than using an area of 2Δ𝑛, we now only use an area
of Δ(𝑛 + 2) = Δ𝑛 + 2Δ, which, for sufficiently large 𝑛, saves a factor of two. Since the
s-boxes are the only non-linear part of such blockciphers, they constitute the bottleneck of
masked implementations. Our techniques thus allow us to reduce this bottleneck by half
in a black-box manner, and can easily be added to existing implementations without large
overhead.
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Moreover, we construct gadgets that are also secure against combined attackers. Using
this construction, we obtain the best of both approaches: We simultaneously have a
natural resilience to active attacks and a small number of shares. As a consequence of our
advancements, the runtime (and randomness cost) associated with concurrent computations
involving two secrets, each with a runtime (randomness cost) of 𝑓(𝑛), can be significantly
reduced from 2𝑓(𝑛) to 𝑓(𝑛 + 2). To illustrate, consider the parallel execution of a circuit
with a complexity function 𝑓(𝑛) = 𝑎𝑛2. Our construction results in a reduction from 2𝑎𝑛2

to the more efficient 𝑎𝑛2 + 4𝑎𝑛 + 2𝑎.
To show the versatility of our approach, we first generalize several known protocols

similar to the classical BGW approach [BGW88] using polynomial masking into a unified
framework. Within this framework, we show how to embed both secrets simultaneously
and show that in the case of AES, our approach already outperforms the state-of-the-art
approaches using one secret per polynomial for small orders 𝑡 ≥ 4. We also show how
to use the recent new multiplication gadget LaOla of Berndt et al. [BEF+23] with two
secrets. Then, we show that our adaptions of the gadgets are (S)NI even when using
two secrets. Furthermore, we also show that our approach is resilient against active fault
attacks, similar to the setting studied in [SFRES18]. Finally, we show that our gadgets
are fault robust [BEF+23], a recent security property that allows to securely compose fault
resilient gadgets. Namely, we show that up to 𝑒 faults can be either detected or corrected
by our circuit.

Concluding our study, we leverage the analytical framework developed by Berndt et
al. [BEF+23] to demonstrate that our constructions attain robust security against combined
attacks. This is done by proving fault-invariance of our gadgets, a crucial property ensuring
that the circuit does not leak secret information, even in the presence of faults. In simpler
terms, the degree of information obtained about the secrets from side-channel leakage and
the circuit’s output remains constant, irrespective of the injected faults.

1.2 Structure of this Work
In Section 2, we establish the needed preliminaries, including our model of circuits, the
capabilities of passive and active attackers, our threat model (along with corresponding
security definitions), and give an overview about polynomial (or Shamir’s) sharing that
embeds the secret into the lowest coefficient of a polynomial. We also examine relevant
related work. In Section 3, we discuss that the case of embedding the secret in the highest
coefficient of a polynomial is also secure, while other positions might not hide the secret
sufficiently. Then, we come to the main idea of our paper, called double sharings: We show
that we can embed one secret into the lowest and another one in the highest coefficient
simultaneously and only lose one degree of freedom. In Section 4, we focus on presenting
gadgets that work on double sharings and guarantee security against passive probing attacks.
It is relatively easy to construct a gadget for addition by simply applying the addition in
a share-wise manner. Non-linear operations (such as multiplication) are, however, much
more complicated. We first consider existing gadgets for non-linear operations that follow
the classical approach due to Ben-Or, Goldwasser, and Wigderson [BGW88] (BGW): First,
the non-linear transformation is applied locally in a share-wise manner. This results in
the degree of the computed polynomial being too high, hence now, a degree reduction
is performed where each share is re-shared and then recombined locally. We show that
this approach also works in the double sharing setting in a general case. To illustrate the
flexibility of our approach, we do not only consider the multiplication operation (which
would be sufficient for completeness), but also show how to compute other useful operations
in a similar efficient manner. Finally, we also consider another type of gadget that can be
used for multiplication: The LaOla gadget of Berndt et al. [BEF+23] that does not follow
the classical approach, as it first reduces the polynomials and then computes the non-linear
transformation. Nevertheless, we show how to adapt the corresponding multiplication
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gadget to also work in the double sharing scenario. Hence, the double sharing technique
can also be applied to such non-BGW gadgets. Finally, in Section 5 we consider active
attackers and combined attackers that are also allowed to induce faults. Here, we follow
the approach used by Seker et al. [SFRES18] and by Berndt et al. [BEF+23]: We construct
the gadgets in such a way that invalid (i.e., faulted) inputs will lead to invalid outputs
with high probability. To do this, we extract the validity information (which correspond to
the higher-order coefficients of the polynomials) and integrate those into the output of the
computation. This integration will be performed by using error propagation polynomials
that we add to the output. We first adapt the non-linear gadgets from the previous
section by designing appropriate error propagation polynomials that allow to detect invalid
sharings easily. To now show security against active attacks, we make use of the notion of
fault invariance introduced in [BEF+23]. This, furthermore, allows us to use the results of
Berndt et al. [BEF+23] to show that these gadgets are secure against combined attacks.

2 Preliminaries and Notation
Throughout this work, 𝑛 ∈ ℕ≥2 will always denote the number of shares on which we operate.
Furthermore, 𝔽 denotes some finite field with at least 𝑛 + 1 elements. If (𝑣0, … , 𝑣𝑛−1) ∈ 𝔽𝑛

is a vector and 𝐼 ⊆ {0, … , 𝑛 − 1} is a subset of the indices, we define 𝑣𝐼 = (𝑣𝑖)𝑖∈𝐼. For
𝑛 ∈ ℕ, we also define [𝑛] = {0, … , 𝑛 − 1}. We write 𝛿𝑎,𝑏 to refer to the Kronecker delta
with 𝛿𝑎,𝑏 = 1 if 𝑎 = 𝑏, and 𝛿𝑎,𝑏 = 0 else. The Hamming weight weight(𝑣) of a vector 𝑣 ∈ 𝔽𝑛

denotes the number of non-zero entries of 𝑣.
If 𝑋0, … , 𝑋𝑛−1 are random variables, they are 𝑑-wise independent, if for all 𝐼 ⊆

{0, … , 𝑛 − 1} with |𝐼| ≤ 𝑑 and all values (𝑥𝑖)𝑖∈𝐼 in the domain of (𝑋𝑖)𝑖∈𝐼, we have

Pr[⋀
𝑖∈𝐼

𝑋𝑖 = 𝑥𝑖] = ∏
𝑖∈𝐼

Pr[𝑋𝑖 = 𝑥𝑖].

2.1 Attacker Models
In this work, we consider both passive and active attackers. Passive attacks are side-
channel attacks where the adversary learns some intermediate values in addition to the
input-output behavior of a (cryptographic) implementation. A purely active attacker
does not learn any intermediate values of the implementation, but can fault some internal
values to perform unexpected calculations leading to vulnerabilities. Further, we consider
adversaries running combined attacks that are allowed to fault and probe intermediate
values simultaneously.

Circuits As usual, we represent the functionality that we want to compute as an arithmetic
circuit C over a finite field 𝔽, i.e., a directed acyclic graph C = (𝑉 , 𝐸) where each node
𝑣 ∈ 𝑉 is labeled as input gate, output gate, addition gate, a multiplication gate or a random
gate. When starting the computation, the input values 𝑥1, 𝑥2, … are assigned to the input
gates. Whenever all parents of a gate have a value, we compute the value of the gate by
applying the underlying operation (i.e., addition or multiplication) to these values and
assign the outcome of this operation to the current gate. Random gates do not have parents
and produce a uniformly random element from 𝔽. We write C(𝑥1, …) for the probability
distribution of the output gates. We also assume that the circuit can output the abort
symbol ⊥ ∉ 𝔽 to indicate that the computation aborts. If the randomness 𝑅 used by the
circuit is fixed, we denote this deterministic circuit by C𝑅.

Compiler In order to prevent the attacks, which will be explained in more depth later on,
a common approach is to use a compiler. Such a compiler transforms a circuit C — possibly
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vulnerable to attacks — into a circuit C′ that resists these attacks. To do this, each
gate 𝑔 ∈ C is transformed into a small circuit G, called a gadget. If the inputs to 𝑔 are
𝑥1, 𝑥2, … , 𝑥𝑟 and the output is 𝑦, the small circuit G will be given encodings of 𝑥1, 𝑥2, … , 𝑥𝑟
and produce an encoding of 𝑦. We denote these encodings of a value 𝑣 by ⟦𝑣⟧. Depending
on the type of attack, these encodings will be chosen such that they resists the attack. For
example, to prevent passive attacks using 𝑡 probes, one could split each 𝑥𝑖 into 𝑡 + 1 parts
called shares such that they are 𝑡-wise independent. Hence, an attacker that only obtains
𝑡 values can not reconstruct the (possibly sensitive) value of any 𝑥𝑖. The main challenge
in designing such robust circuits C′ is to prevent the leakage of sensitive information
via intermediate results produced by the circuit. In order to construct a compiler, it is
sufficient to show how to produce the gadgets for addition gates and multiplication gates.
However, in this work we will also present more efficient gadgets for operations that we
believe to be useful when designing gadgets for parallel computations.

Passive attacks A passive 𝑡-probing attacker 𝐴 is given the circuit C and now chooses
a subset of at most 𝑡 wires 𝑤𝑖 of this circuit and two inputs 𝑥0 and 𝑥1 to the circuit.
Then, a random bit 𝑏 ←$ {0, 1} is chosen and the computation of C on 𝑥𝑏 is performed.
Afterwards, the value on the 𝑡 wires chosen by 𝐴 are given to 𝐴 and the attacker now
outputs a bit 𝑏′. If Pr[𝑏 = 𝑏′] = 1/2 for all attackers 𝐴 (not necessarily time-bounded),
we say that C is perfectly secure against 𝑡-probing attackers. For example, using Shamir’s
secret sharing [Sha79] and, e.g., the BGW protocol [BGW88], it is easy to see that we
can take an arbitrary arithmetic circuit C on 𝔽 and transform it into a circuit C′ that is
perfectly secure against 𝑡-probing attackers as long as |𝔽| > 2𝑡 + 1. Both Shamir’s secret
sharing and the BGW protocol will be explained in depth later.

A very useful notion to show perfect security of a circuit is non-inference (NI) [BBD+16].
Intuitively, this security notion guarantees that all information gained by probes on
intermediate values can already be gained by the same number of probes on the input.
Now, if the input is shared with a sufficiently high degree, a subset of the input shares
does not reveal anything about the secret input.

Definition 1 (NI [BBD+16]). A circuit 𝐺 is 𝑡-NI if for any set of 𝑡1 intermediate variables
and any subset 𝑂 of output indices with 𝑡1 + |𝑂| ≤ 𝑡, there exists a subset of indices 𝐼 with
|𝐼| ≤ 𝑡1 + |𝑂| such that the distribution of the 𝑡1 intermediate variables and the output
variables in 𝑂 is perfectly simulatable from 𝐼.

At first glance, this definition seems strong enough to argue about security against
probing attackers. However, it does not support composability, i.e., the concatenation of
two 𝑡-NI gadgets is not necessarily 𝑡-NI. The stronger definition of strong non-inference
(SNI) [BBD+16] supports composability. It thus suffices to prove that every gadget in
the circuit is SNI to conclude that the complete circuit is perfectly secure against up to 𝑡
probes.

Definition 2 (SNI [BBD+16]). A circuit 𝐺 is 𝑡-SNI if for any set of 𝑡1 intermediate
variables and any subset 𝑂 of output indices with 𝑡1 + |𝑂| ≤ 𝑡, there exists a subset of
indices 𝐼 with |𝐼| ≤ 𝑡1 such that the distribution of the 𝑡1 intermediate variables and the
output variables in 𝑂 is perfectly simulatable from 𝐼.

Active attacks An active 𝜎-faulting attacker 𝐴 running a fault attack 𝑇 is given the
circuit C and chooses a subset of at most 𝜎 wires 𝑤𝑖 along with corresponding values
𝑣𝑖 ∈ 𝔽. Furthermore, 𝐴 chooses an input 𝑥 to the circuit and the computation of C on 𝑥
is performed. After one of the chosen wires 𝑤𝑖 is computed, the value 𝑣𝑖 is added to it.
We denote the faulted circuit by 𝑇 [C] and |𝑇 | = 𝜎 will refer to the number of faulted
wires. Let 𝑦′ ← 𝑇 [C] be the output of the faulted circuit and 𝑦 ← C be the original
output of the unfaulted circuit C (i.e., the one where all 𝑣𝑖 are equal to 0). Then, C is
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𝜖-secure against 𝜎-faulting attackers if Pr[𝑦′ ∈ {𝑦, ⊥}] ≥ 1 − 𝜖 for all attackers 𝐴 (not
necessarily time-bounded). In [SFRES18], the authors propose to use a technique called
infective computation that intuitively guarantees that errors introduced by the faults will
spread over the complete computation. This was refined in [BEF+23] where the notion of
robustness guarantees that an error does not result in an undetected faulted value. This
notion was only introduced for polynomial sharings (which will be thoroughly discussed
in the next section). Intuitively, this notion means that every fault attack only changing
𝜎 wires will either (i) only change at most 𝜎 positions of the encoding or (ii) behave like
adding a sufficiently random polynomial to the encoding. In the former case, the bounded
number of changes will be detectable due to the error-detecting capabilities of polynomial
sharing, as the degree of the resulting polynomial is too high. In the latter case, the
result will, with high probability, also be detectable because of the degree of the resulting
polynomial being too high.

Definition 3 (𝜎-f-robust [BEF+23, Def. 9]). A gadget G with one output sharing
and two input sharings and polynomial sharing ⟦⋅⟧ is 𝜎-fault-robust with respect to
ℱ, if for any valid sharings (𝑥0, … , 𝑥𝑛−1) ∈ ⟦𝑥⟧ and (𝑥′

0, … , 𝑥′
𝑛−1) ∈ ⟦𝑥′⟧, the output

(𝑦0, … , 𝑦𝑛−1) ← G((𝑥0, … , 𝑥𝑛−1), (𝑥′
0, … , 𝑥′

𝑛−1)) is also valid. Further, it holds for any fault
vectors (𝑣0, … , 𝑣𝑛−1) ∈ ⟦𝑣⟧, (𝑣′

0, … , 𝑣′
𝑛−1) ∈ ⟦𝑣′⟧, and any 𝑇 ∈ 𝐴(ℱ) with |𝑇 | ≤ 𝜎 and

(𝑦𝑖 + 𝑤𝑖 + 𝑤′
𝑖)𝑖∈[𝑛] ← 𝑇 [G] ((𝑥𝑖 + 𝑣𝑖)𝑖∈[𝑛], (𝑥′

𝑖 + 𝑣′
𝑖)𝑖∈[𝑛]), that there are numbers 𝑡1 and 𝑡2

with 𝑡1 + 𝑡2 ≤ |𝑇 | such that

(𝑖) weight(𝑤) ∈ [0, 𝑡1] ∪ [weight(𝑣 + 𝑣′) − 𝑡1, weight(𝑣 + 𝑣′) + 𝑡1], where weight(⋅) of a
vector is the number of its non-zero elements,

(𝑖𝑖) and (𝑤′
0, … , 𝑤′

𝑛−1) is the zero vector or produced by the following random experiment:
A polynomial p𝑤′ ∈ 𝔽[𝑥] is chosen such that the coefficients of 𝑥𝑑+1, 𝑥𝑑+2, …, 𝑥𝑛−𝑡2

are drawn uniformly at random from 𝔽. Then, 𝑤′
𝑖 = p𝑤′(𝛼𝑖) for some pairwise

different points 𝛼𝑖 ∈ 𝔽 ∖ {0}.

We stress here that Definition 9 in [BEF+23] only had the condition weight(𝑤) ∈
[weight(𝑣 + 𝑣′) − 𝑡1, weight(𝑣 + 𝑣′) + 𝑡1], but the case of weight(𝑤) ∈ [0, 𝑡1] is also needed
to capture non-linear gadgets and was accidentally ommited [BO]. The analysis presented
in [BEF+23], however, also holds for this generalized definition.

As described above, we only consider additive and non-adaptive faults and will denote
the set of additive fault functions by ℱ+. As shown in [BEF+23], it is not sufficient to show
both leakage and fault resilience to prove security against combined attacks. However,
the authors also presented properties under which individual security against leakages
and faults can be lifted to security against combined attack. Intuitively, these properties
guarantee that all faults induced in a gadget can either be pushed to inputs of the gadgets
or to their outputs. Next, we formalize these properties.

Combined attacks We can also combine the attack types to get a (𝑡, 𝜎)-combined attacker
that is again given a circuit C. Now, the attacker chooses 𝑡 wires 𝑤𝑖 of the circuit and
another 𝜎 wires 𝑤′

𝑖 along with values 𝑣′
𝑖 ∈ 𝔽. Furthermore, the attacker chooses two inputs

𝑥0 and 𝑥1 for the circuit. Then, a random bit 𝑏 ←$ {0, 1} is chosen and the computation
of C on 𝑥𝑏 is performed. Whenever one of the chosen wires 𝑤′

𝑖 is computed, the value 𝑣′
𝑖 is

added to it. We denote the output of the faulted circuit by 𝑦′
𝑏 and by 𝑦𝑏 the original output

of the circuit (i.e., the one where all 𝑣′
𝑖 are equal to 0). Now, the attacker is given the values

assigned to 𝑤𝑖 and (𝛿𝑦′
𝑏,𝑦𝑏

, 𝛿𝑦′
𝑏,⊥) and needs to output a bit 𝑏′. We say that C is 𝜖-secure

against (𝑡, 𝜎)-combined attackers if both Pr[𝑏 = 𝑏′] = 1/2 and Pr[𝑦′
𝑏 ∈ {𝑦𝑏, ⊥}] ≥ 1 − 𝜖 for

all attackers 𝐴 (not necessarily time-bounded).
In the probing-only case, careful composition of (S)NI gadgets allowed to guarantee

security of the composition. Similarly, we can use adapted (S)NI properties to achieve
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composability results also in the case of an attacker performing combined attacks. The
notion of fault-resilience guarantees that the presence of faults in itself can not lead to the
leakage of sensitive information, i.e., the (S)NI properties remain true in the presence of
faults.

Definition 4 (Fault-resilient SNI [BEF+23, Def. 5]). A gadget G is 𝑡-fault-resilient
(strong-) non-interfering (𝑡-fr(S)NI) with respect to ℱ if 𝑇 [G] is 𝑡-(S)NI for any fault
attack 𝑇 ∈ 𝐴(ℱ).

In [BEF+23], the authors have shown that faults can destroy the probing-only (S)NI
security of gadgets. For this reason, they have established a property that guarantees that
faults do not affect the probing security.

Definition 5 (Fault invariance [BEF+23, Def. 8]). A circuit C is fault invariant with
respect to a fault set ℱ if for any 𝑇 ∈ 𝐴(ℱ), any intermediate value 𝑓 in C𝑅 and the
according value 𝑓 ′ in 𝑇 [C𝑅], there are 𝜁, 𝜁0, 𝜁1, … 𝜁𝑘−1 ∈ ℱ such that it holds

𝑓 ′𝑅(𝑥0, 𝑥1, … 𝑥𝑚−1) = 𝜁(𝑓𝑅(𝜁0(𝑥0), 𝜁1(𝑥1), … 𝜁𝑚−1(𝑥𝑚−1)))

for any input (𝑥0, 𝑥1, … 𝑥𝑚−1) and randomness 𝑅.

More precisely, fault invariance can lift the pure probing security up to security against
combined attacks, as it intuitively guarantees that faults applied to a gadget can be pushed
either to the input or the output of the gadget. In detail, a gadget is automatically
fault-resilient SNI if it is SNI and fault invariant.

Lemma 1 ([BEF+23, Cor. 1]). A gadget G that is SNI and fault invariant is fault-resilient
SNI.

Finally, the combination of fault resilience and fault robustness allows us to give
meaningful security guarantees against combined attackers.

Lemma 2 ([BEF+23, Thm. 5]). A gadget G that is 𝑡-fault-resilient (S)NI and 𝜎-fault-robust
is |𝔽|𝜔−𝜎−1-secure against (𝑡, 𝜔)-attackers with 𝜔 ≤ 𝜎.

In this work, we only consider additive faults ℱ+. However, in [BEF+23] it was shown
that fault-resilient (S)NI gadgets with respect to additive faults are also fault-resilient
(S)NI with respect to wire-independent faults1 if the gadget is fault invariant with respect
to additive faults and all faults are counted additionally as probes.

2.2 Polynomials
Throughout this work, we will always write polynomials in bold font. If f ∈ 𝔽[𝑥] is a
polynomial, 𝑓𝑖 denotes the 𝑖-th coefficient, i.e., f(𝑥) = ∑deg(f)

𝑖=0 𝑓𝑖𝑥𝑖. Furthermore, we will
write 𝐹𝑖 for f(𝛼𝑖) where 𝛼0, … , 𝛼𝑛−1 ∈ 𝔽 ∖ {0} will denote some pairwise distinct elements
of 𝔽 used as support points of the polynomial sharing. The input of a gadget will usually
be denoted by f (and g in the case of gadgets with two inputs) and the output by q.

For values 𝛼0, … , 𝛼𝑛−1 ∈ 𝔽, we denote the Vandermonde matrix that has 𝑛 rows and
𝑘 + 1 columns by

Vandermonde𝑘(𝛼0, … , 𝛼𝑛−1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 𝛼0 𝛼2
0 … 𝛼𝑘

0

1 𝛼1 𝛼2
1 … 𝛼𝑘

1

1 𝛼2 𝛼2
2 … 𝛼𝑘

2

⋮ ⋮ ⋮ ⋱ ⋮
1 𝛼𝑛−1 𝛼2

𝑛−1 … 𝛼𝑘
𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

1Wire-independent faults are faults where the wires can be arbitrarily but independently faulted.
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We note here that the columns of the Vandermonde are treated as the basis and not the rows.
If the matrix is square (i.e., 𝑘 = 𝑛−1), we simply write Vandermonde(𝛼0, … , 𝛼𝑛−1). Regard-
ing the invertibility of this matrix, it is well-known that det(Vandermonde(𝛼0, … , 𝛼𝑛−1)) =
∏𝑖<𝑗(𝛼𝑖 −𝛼𝑗). For pairwise distinct points, this matrix is thus invertible and we will denote
this inverse matrix by Vandermonde−1(𝛼0, … , 𝛼𝑛−1). Further, we write (𝜆0,𝑖−1, … , 𝜆𝑛−1,𝑖−1)
to refer to the 𝑖𝑡ℎ row of Vandermonde−1(𝛼0, … , 𝛼𝑛−1). The invertibility of the Vander-
monde matrix directly implies the following lemma that we will use in many places
throughout this work.

Lemma 3 (Polynomial interpolation [Kal84]). Every polynomial f of degree at most 𝑑 can
be interpolated from 𝑑 + 1 distinct point-value pairs (𝛼𝑖, f(𝛼𝑖)).

Note that the Vandermonde matrix can be used both to evaluate a degree-𝑘 polyno-
mial p(𝑥) with coefficients 𝑝0, … , 𝑝𝑘 at the 𝑛 points 𝛼0, … , 𝛼𝑛−1 by

Vandermonde𝑘(𝛼0, … , 𝛼𝑛−1) ⋅ ⎛⎜
⎝

𝑝0
⋮

𝑝𝑘

⎞⎟
⎠

= ⎛⎜
⎝

p(𝛼0)
⋮

p(𝛼𝑛−1)
⎞⎟
⎠

and to recover all 𝑘 coefficients from 𝑘 + 1 distinct point-value pairs

Vandermonde−1(𝛼0, … , 𝛼𝑘) ⋅ ⎛⎜
⎝

p(𝛼0)
⋮

p(𝛼𝑘)
⎞⎟
⎠

= ⎛⎜
⎝

𝑝0
⋮

𝑝𝑘

⎞⎟
⎠

,

so a specific coefficient can be computed as

𝑝𝑗 =
𝑘

∑
𝑖=0

𝜆𝑖,𝑗p(𝛼𝑖). (1)

2.3 Shamir’s Secret Sharing
In order to share a value 𝑠 ∈ 𝔽 via polynomial sharing using a polynomial of degree 𝑑 at
coefficient 𝜒 ∈ [𝑑+1], we choose random elements (𝑎𝑖)𝑖∈[𝑑+1]∖{𝜒} with 𝑎𝑖 ←$ 𝔽 and construct
the polynomial p𝜒→𝑠 ∈ 𝔽[𝑥] with p𝜒→𝑠(𝑥) = 𝑥𝜒𝑠 + ∑𝑖∈[𝑑+1]∖{𝜒} 𝑎𝑖𝑥𝑖. Then, we compute
the vector (𝑣0, … , 𝑣𝑛−1) with 𝑣𝑖 = p𝜒→𝑠(𝛼𝑖). To simplify notation, this complete procedure
will be denoted as (𝑣0, … , 𝑣𝑛−1) ←$ Share𝑑(𝜒 → 𝑠). We stress here that Share𝑑(𝜒 → 𝑠)
thus constructs a random polynomial p𝜒→𝑠, where the randomness is given by the random
choices of 𝑎𝑖 (but 𝑎𝜒 = 𝑠 is fixed). We note that the random variable 𝒫𝜒→𝑠 describing this
random polynomial is a random variable on the randomness space 𝔽𝑑.

Furthermore, the affine subspace of 𝔽𝑛 induced by the outputs of Share𝑑(𝜒 → 𝑠) is
denoted by ⟦𝜒 → 𝑠⟧𝑑, i.e.,

⟦𝜒 → 𝑠⟧𝑑 = supp (Share𝑑(𝜒 → 𝑠)) ,

where supp denotes the support of a probability distribution. To reconstruct 𝑠 from
(𝑣0, … , 𝑣𝑛−1) ∈ ⟦𝜒 → 𝑠⟧𝑑, we can first reconstruct p by taking any 𝑑 + 1 distinct elements
(𝑣𝑖)𝑖∈𝐼 and multiplying them with Vandermonde−1(𝛼𝐼). This recovers all coefficients of
p and thus 𝑎𝜒 = 𝑠. To simplify notation, this complete procedure will be denoted as
𝑠 = Open𝜒(𝑣𝐼).

For the sake of completeness, the following lemma shows the well known fact that this
sharing is secure for 𝜒 = 0, in which it is typically known as Shamir’s secret sharing.

Lemma 4 (Shamir’s secret sharing [Sha79]). Let 𝑠 ∈ 𝔽 be a secret, pairwise distinct
𝛼0, … , 𝛼𝑛−1 ∈ 𝔽 ∖ {0} and 𝑑 < 𝑛. Then it holds:
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(i) For any subset 𝐼 ⊆ {0, … , 𝑛 − 1} with |𝐼| ≤ 𝑑, the set of random variables
{𝒫0→𝑠(𝛼𝑖)}𝑖∈𝐼 is a set of uniformly independent random variables independent of 𝑠.

(ii) For any subset 𝐼 ⊆ {0, … , 𝑛 − 1} with |𝐼| > 𝑑, we can reconstruct 𝑠 via Open0(𝑣𝐼)
for all (𝑣0, … , 𝑣𝑛−1) ∈ ⟦0 → 𝑠⟧𝑑.

Proof. Remember that 𝒫0→𝑠 is the random variable on 𝔽𝑑 describing the polynomial used
in the computation of Share𝑑(0 → 𝑠) by the random choice of the coefficients 𝑎1, … , 𝑎𝑑. Let
(𝒜1, … , 𝒜𝑑) be the random variable on 𝔽𝑑 describing these coefficients 𝑎1, … , 𝑎𝑑. Clearly,
{𝒜𝑖}𝑖∈{1,…,𝑑} is a set of uniform independent random variables independent from 𝑠.

We will first show (i) and thus need to prove that {𝒫0→𝑠(𝛼𝑖)}𝑖∈𝐼 is a set of uniform
independent random variables independent from 𝑠 for any subset 𝐼 ⊆ {0, … , 𝑛 − 1} with
|𝐼| ≤ 𝑑. Without loss of generality, we only show this for |𝐼| = 𝑑, as this clearly also
implies the lemma for |𝐼| < 𝑑. To prove (i), we show that there is a bijection between the
outcomes of {𝒫0→𝑠(𝛼𝑖)}𝑖∈𝐼 and {𝒜𝑖}𝑖∈{1,…,𝑑}, which directly implies the result due to the
randomness of {𝒜𝑖}𝑖∈{1,…,𝑑}.

Let 𝑉 = Vandermonde(0, 𝛼𝐼) be the quadratic (|𝐼| + 1) × (|𝐼| + 1)-Vandermonde
matrix on 0 and the support points indexed by 𝐼. Clearly, we have 𝑉 ⋅ (𝑠, (𝒜𝑖)𝑖∈{1,…,𝑑}) =
(𝑠, (𝒫0→𝑠(𝛼𝑖))𝑖∈𝐼), as the first row of the matrix 𝑉 is of the form (1, 0, 0, … , 0). Furthermore,
𝑉 is invertible as the 𝛼𝑖 are pairwise distinct and not zero. Hence, the described linear
transformation is a bijection on 𝔽𝑑+1. In other words, for any outcome (𝑠, (p0→𝑠(𝛼𝑖))𝑖∈𝐼)
exists exactly one outcome (𝑠, (𝑎1, … , 𝑎𝑑)) such that

(𝑠, (p0→𝑠(𝛼𝑖))𝑖∈𝐼) = 𝑉 ⋅ (𝑠, (𝑎1, … , 𝑎𝑑)) .

Since 𝑉 is the identity function in the first coordinate, it follows that for each 𝑠′, there is
also a bijection 𝑉𝑠′ on 𝔽𝑑 with

(p0→𝑠(𝛼𝑖))𝑖∈𝐼 = 𝑉𝑠′ ⋅ (𝑎1, … , 𝑎𝑑) .

As {𝒜𝑖}𝑖∈{1,…,𝑑} is a set of uniform independent random variables independent from 𝑠, so
is {𝒫0→𝑠(𝛼𝑖)}𝑖∈𝐼.

The correctness of (ii) follows from Lemma 3. Interpolating the polynomial immediately
gives the first coefficient 𝑎0 = 𝑠.

2.4 Computing on Shares
Our above discussion shows how to embed a secret into a polynomial. Here, we will discuss
how to perform operations on such a shared representation.

As polynomial masking is linear, we have

⟦𝜒 → 𝑠⟧𝑑 + ⟦𝜒 → 𝑠′⟧𝑑 = ⟦𝜒 → (𝑠 + 𝑠′)⟧𝑑.

Hence, if we have (𝑣0, … , 𝑣𝑛−1) ∈ ⟦𝜒 → 𝑠⟧𝑑 and (𝑣′
0, … , 𝑣′

𝑛−1) ∈ ⟦𝜒 → 𝑠′⟧𝑑, then (𝑣0 +
𝑣′

0, … , 𝑣𝑛−1 + 𝑣′
𝑛−1) ∈ ⟦𝜒 → (𝑠 + 𝑠′)⟧𝑑. Consequently, addition gates can be computed in

a share-wise manner, such that shares with different indices are not mixed. The main
complication thus comes from the non-linear multiplication gates. A classical approach to
multiply (𝑣0, … , 𝑣𝑛−1) ∈ ⟦0 → 𝑠⟧𝑑 and (𝑣′

0, … , 𝑣′
𝑛−1) ∈ ⟦0 → 𝑠′⟧𝑑, which we will refer to as

the BGW2 protocol, is the following.
First, compute (𝑤0, … , 𝑤𝑛−1) = (𝑣0 ⋅ 𝑣′

0, … , 𝑣𝑛−1 ⋅ 𝑣′
𝑛−1). While the underlying polyno-

mial now has the correct lowest coefficient 𝑠 ⋅ 𝑠′, the degree is 2𝑑, i.e., (𝑤0, … , 𝑤𝑛−1) ∈
⟦0 → 𝑠 ⋅ 𝑠′⟧2𝑑. To reduce the degree, the shares are re-shared: First, one computes
(𝑤(𝑖)

0 , … , 𝑤(𝑖)
𝑛−1) ←$ Share𝑑(0 → 𝑤𝑖) for 𝑖 = 0, … , 𝑛 − 1. Then, it is easy to see that

(∑𝑛−1
𝑖=0 𝜆𝑖,0𝑤(𝑖)

0 , … , ∑𝑛−1
𝑖=0 𝜆𝑖,0𝑤(𝑖)

𝑛−1) ∈ ⟦0 → 𝑠 ⋅ 𝑠′⟧𝑑, i.e., it is a valid sharing using a polyno-
mial of degree 𝑑. Here, (𝜆0,0, … , 𝜆𝑛−1,0) is the first row of Vandermonde−1(𝛼0, … , 𝛼𝑛−1).

2To be precise, the protocol described here is an improvement of the one by [BGW88] due to [GRR98].
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2.5 Related Work

Packed secret sharing A closely related approach to our technique is known as packed
secret sharing [FY92] and was used by Grosso et al. [GSF14] to speed up masked imple-
mentations. The main differences between our technique and packed secret sharing is
where the additional, second secret is hidden. In our approach, we will hide two secrets 𝑠0
and 𝑠1 by constructing a polynomial p(𝑥) = 𝑠0 + ∑𝑑−1

𝑖=1 𝑎𝑖𝑥𝑖 + 𝑠1𝑥𝑑 for randomly chosen
values 𝑎𝑖, i.e., we hide both secrets in the coefficients of a polynomial. In contrast, packed
secret sharing hides both secrets at the value of the polynomial at specific support points of
the polynomial, i.e., they construct a sufficiently random polynomial p such that p(0) = 𝑠0
and p(𝛼∗) = 𝑠1 for some special element 𝛼∗ (which is then excluded from the set of public
support points).

While the differences between these approaches look rather small, they have a large
consequence with regard to practicability. First, to share a secret with our technique, we
can still simply sample random elements and evaluate the corresponding polynomial. In
contrast, in packed secret sharing, to share a secret, a polynomial needs to be interpo-
lated. From a theoretical point of view, both evaluation and interpolation have the same
complexity by using appropriate FFT algorithms, but from a practical point of view, this
change in approach requires a large number of modifications and will give worse concrete
running time. Second, the degree reduction that needs be performed after the share-wise
multiplication becomes much more complicated. In the original non-packed version, one
could simply erase all of the monomials larger than 𝑑 (by sharing the resulting shares and
performing a corresponding interpolation). As discussed by Grosso et al. [GSF14], this
task becomes much more difficult in the packed setting. In order to avoid these drawbacks,
Grosso et al. adapt a proposal by Damgård et al. [DIK10] that first blinds the secrets
contained in the polynomial, then opens these blinded values, re-shares them, and removes
the blinding later on. Unfortunately, opening the blinded values makes this approach
vulnerable to active attacks, as these blinded values can now be faulted by an active
attacker. Hence, the natural resilience of polynomial sharing to active attacks is lost this
way. Furthermore, some optimization such as the fast computation of squarings due to
Roche and Prouff [PR11] do not seem to applicable to packed secret sharing.

Code-based masking Embedding multiple secrets into a single sharing has also been
used in the context of code-based masking [WMCS20]. Here, the authors use the term
amortization for this idea. In general, the authors use linear error correcting codes to
encode the sensitive values. They show that, under certain circumstances, the generic
encoder corresponding to such codes provides security against passive attacks and present
a multiplication gadget working on such encodings. By choosing a high-rate code, they
are able to encode multiple secrets into a single codeword, which allows them to apply
their multiplication gadget to multiple secrets simultaneously.

The authors also argue that the redundancy in the encodings allows to guarantee
security against fault attacks, but only against faulted inputs or outputs of gadgets. The
inner workings of the gadgets are assumed to be tamper-resistant (see [WMCS20, Appendix
C] for a more thorough discussion) in their security analysis. We stress here that this
assumption is absolutely necessary for their security analysis: In order to obtain efficient
gadgets, their multiplication gadget first converts the codewords into an additive sharing,
then computes an multiplication on this additive sharing, and finally encodes the resulting
additive sharing back into a codeword. As additive sharings are highly vulnerable against
fault attacks (as described in the introduction), an attacker could easily modify the shared
values and thus obtain valid encodings of incorrect values.
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3 Security of Two-Secret Sharing
In this section, we show that we can also embed two secrets simultaneously in a polynomial
sharing, one in the coefficient 𝑎0 and another one in 𝑎𝑑. For a better understanding, we
first discuss the known result that we can also embed a secret 𝑠 of a polynomial into the
highest coefficient 𝑎𝑑 instead of the lowest coefficient 𝑎0. Further, we give an example why
this, in general, only works securely for the highest and the lowest coefficient. Finally, we
contribute our security proof for two simultaneously embedded secrets.

3.1 Hiding the Secret in Another Coefficient
We now discuss which of the coefficients are suitable for embedding a secret.

Using the highest coefficient We first consider to hide 𝑠 in the highest coefficient 𝑎𝑑,
which leads to a secure sharing.

Lemma 5 (E.g., [LD04]). Let 𝑠 ∈ 𝔽 be a secret, pairwise distinct 𝛼0, … , 𝛼𝑛−1 ∈ 𝔽 ∖ {0}
and 𝑑 < 𝑛. Then it holds

(i) For any subset 𝐼 ⊆ {0, … , 𝑛 − 1} with |𝐼| ≤ 𝑑, the set of random variables
{𝒫𝑑→𝑠(𝛼𝑖)}𝑖∈𝐼 is a set of uniformly independent random variables independent of 𝑠.

(ii) For any subset 𝐼 ⊆ {0, … , 𝑛 − 1} with |𝐼| > 𝑑, we can reconstruct 𝑠 via Open𝑑(𝑣𝐼)
for all (𝑣0, … , 𝑣𝑛−1) ∈ ⟦𝑑 → 𝑠⟧𝑑.

We stress here that this is a known result, though we also provide our own proof in
Appendix A that some readers might find helpful for understanding the very similar proof
for embedding two secrets.

Using arbitrary coefficients While the first and the last coefficient can be used to hide a
secret in a secret sharing scheme, this, in general, does not hold true for the remaining
coefficients: If they can be used depends on whether the considered set of support points
are in a specific relation to each other [LD04]. The main obstacle here is the fact that the
resulting submatrix (which consists of some columns of Vandermonde(𝛼0, … , 𝛼𝑛−1)) might
not be invertible.

To show the severity of using “bad” support points, we consider an example taken
from [ph13]. Consider the finite field GF(5) on five elements and 𝑛 = 3 shares with
support points 𝛼0 = 1, 𝛼1 = 4, and 𝛼2 = 3. Now, if the attacker obtains (𝑣0, 𝑣1) of
(𝑣0, 𝑣1, 𝑣2) ∈ ⟦1 → 𝑠⟧2 such that 𝑣0 = 1 and 𝑣1 = 0, they can immediately conclude that
𝑠 = 3, as all polynomials p(𝑥) = 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 over GF(5) with p(1) = 1 and p(4) = 0
are the following:

0𝑥2 + 3𝑥 + 3, 1𝑥2 + 3𝑥 + 2, 2𝑥2 + 3𝑥 + 1, 3𝑥2 + 3𝑥 + 0, 4𝑥2 + 3𝑥 + 4.

Hence, knowledge about the two shares 𝑣0 and 𝑣1 might completely give information about
the secret 𝑠 embedded in 𝑎1 in certain situations.

3.2 Two for One: Two Secrets in One Polynomial
Previously, we have seen that it is possible to embed the secret 𝑠 in the coefficient of the
lowest monomial 𝜒 = 0 (as 𝑠𝑥0) or the highest monomial 𝜒 = 𝑑 (as 𝑠𝑥𝑑). In the following,
we will embed two secrets 𝑠0 and 𝑠1 simultaneously into the coefficients of the polynomial
where we will embed 𝑠0 in position 𝜒 = 0 and 𝑠1 in position 𝜒 = 𝑑. We thus generalize our
notation in a straightforward way by writing (𝑣0, … , 𝑣𝑛−1) ← Share𝑑((0, 𝑑) → (𝑠0, 𝑠1)) for
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the embedding, (𝑠0, 𝑠1) = Open0,𝑑(𝑣𝐼) for the reconstruction, and ⟦(0, 𝑑) → (𝑠0, 𝑠1)⟧𝑑 for
the affine subspace induced by this sharings. Note that the existence of Open0,𝑑 directly
follows from Lemma 3, as interpolation reconstructs the complete polynomial.

Lemma 6. Let 𝑠0, 𝑠1 ∈ 𝔽 be two secrets, pairwise distinct 𝛼0, … , 𝛼𝑛−1 ∈ 𝔽 ∖{0} and 𝑑 < 𝑛.
Then it holds

(i) For any subset 𝐼 ⊆ {0, … , 𝑛 − 1} with |𝐼| ≤ 𝑑 − 1, the set of random variables
{𝒫)(𝛼𝑖)}𝑖∈𝐼 is a set of uniformly independent random variables independent of 𝑠0, 𝑠1.

(ii) For any subset 𝐼 ⊆ {0, … , 𝑛 − 1} with |𝐼| > 𝑑, we can reconstruct 𝑠0 and 𝑠1 via
Open0,𝑑(𝑣𝐼) for all (𝑣0, … , 𝑣𝑛−1) ∈ ⟦(0, 𝑑) → (𝑠0, 𝑠1)⟧𝑑.

(iii) For any subset 𝐼 ⊆ {0, … , 𝑛 − 1} with |𝐼| = 𝑑, we can reconstruct 𝑠1−𝑏 if 𝑠𝑏 and 𝑣𝐼
is known for all (𝑣0, … , 𝑣𝑛−1) ∈ ⟦(0, 𝑑) → (𝑠0, 𝑠1)⟧𝑑.

Proof. Let 𝒫(0,𝑑)→(𝑠0,𝑠1) be the random variable on 𝔽𝑑−1 describing the polynomial used
in the computation of Share𝑑((0, 𝑑) → (𝑠0, 𝑠1)) by the random choice of the coefficients
𝑎1, … , 𝑎𝑑−1. Let (𝒜1, … , 𝒜𝑑−1) be the random variable on 𝔽𝑑−1 describing these coefficients
𝑎1, … , 𝑎𝑑−1. Clearly, {𝒜𝑖}𝑖∈{1,…,𝑑−1} is a set of uniform independent random variables
independent from 𝑠0 and 𝑠1.

We will first show (i) and thus need to prove that {𝒫(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑖)}𝑖∈𝐼 is a set of uniform
independent random variables independent from 𝑠0 and 𝑠1 for any subset 𝐼 ⊆ {0, … , 𝑛 − 1}
with |𝐼| ≤ 𝑑 − 1. Without loss of generality, we only show this for |𝐼| = 𝑑 − 1, as
this clearly also implies the lemma for |𝐼| < 𝑑 − 1. To prove (i), we show that there
is a bijection between the outcomes of {𝒫(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑖)}𝑖∈𝐼 and {𝒜𝑖}𝑖∈{1,…,𝑑−1}, which
directly implies the result. Let 𝑉 ′ = Vandermonde𝑑(0, 𝛼𝐼) be the 𝑑 × (𝑑 + 1)-Vandermonde
matrix and 𝑉 be the (𝑑 + 1) × (𝑑 + 1)-matrix where we add a first row of (0, 0, … , 0, 1)
to 𝑉 ′. To show that 𝑉 is invertible, we use the Laplace expansion and expand along the
first row. The resulting determinant is (−1)𝑑+2 ⋅ det(Vandermonde(0, 𝛼𝐼)) and thus not
zero, as all 𝛼𝑖 are distinct and non-zero. Clearly, we have 𝑉 ⋅ (𝑠0, (𝒜𝑖)𝑖∈{1,…,𝑑−1}, 𝑠1) =
((𝒫(0,𝑑)→(𝑠0,𝑠1)(𝑠0, 𝛼𝑖), 𝑠1)𝑖∈𝐼), as the first row of the matrix 𝑉 is of the form (0, 0, … , 0, 1).
Hence, the described linear transformation is a bijection on 𝔽𝑑+1. In other words, for any
outcome ((p(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑖))𝑖∈𝐼, 𝑠), there exists exactly one outcome ((𝑎1, … , 𝑎𝑑−1), 𝑠) such
that

((p(0,𝑑)→(𝑠0,𝑠1)(𝑠0, 𝛼𝑖))𝑖∈𝐼, 𝑠1) = 𝑉 ⋅ (𝑠0, (𝑎1, … , 𝑎𝑑−1), 𝑠1) .
Since 𝑉 is the identity function in both the first and the last coordinate, it follows that for
each (𝑠′

0, 𝑠′
1) ∈ 𝔽2, there is also a bijection 𝑉𝑠′

0,𝑠′
1

on 𝔽𝑑−1 with

(p(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑖))𝑖∈𝐼 = 𝑉𝑠′
0,𝑠′

1
⋅ (𝑎1, … , 𝑎𝑑−1) .

As {𝒜𝑖}𝑖∈{1,…,𝑑−1} is a set of uniform independent random variables independent from
𝑠0, 𝑠1, so is {𝒫(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑖)}𝑖∈𝐼.

Similar to the proof above, Lemma 3 implies that (ii) holds true as any set of at least
𝑑 + 1 points allows interpolating the underlying polynomial, which in turn gives both the
first and the last coefficient.

For (iii), we consider the linear relation between the coefficients 𝑠0, 𝑎1, … , 𝑎𝑑−1, 𝑠1
and the point-values (p(0,𝑑)→(𝑠0,𝑠1)(𝛼0), p(0,𝑑)→(𝑠0,𝑠1)(𝛼1), … , p(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑛−1)). If 𝐼 =
{𝑖0, … , 𝑖𝑑−1}, we have

Vandermonde(𝛼𝑖0
, … , 𝛼𝑖𝑑−1

) ⋅
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑠0
𝑎1
⋮

𝑎𝑑−1
𝑠𝑑

⎞⎟⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

p(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑖0
)

⋮
p(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑖𝑑−1

)
⎞⎟
⎠

.
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Hence, we can write the relation as the system

𝑠0 + 𝛼𝑖0
𝑎1 + 𝛼2

𝑖0
𝑎2 + … + 𝛼𝑑

𝑖0
𝑠1 = p(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑖0

)
𝑠0 + 𝛼𝑖1

𝑎1 + 𝛼2
𝑖1

𝑎2 + … + 𝛼𝑑
𝑖1

𝑠1 = p(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑖1
)

⋮ ⋮
𝑠0 + 𝛼𝑖𝑑−1

𝑎1 + 𝛼2
𝑖𝑑−1

𝑎2 + … + 𝛼𝑑
𝑖𝑑−1

𝑠1 = p(0,𝑑)→(𝑠0,𝑠1)(𝛼𝑖𝑑−1
).

Note that the coefficients in this system are the publicly known support points 𝛼𝑖𝑗
and the

𝑎𝑖 (resp. 𝑠0 or 𝑠1) are the unknowns. This system thus has 𝑑 +1 unknowns and 𝑑 equations.
As the system is thus under-determined, the secrets (𝑠0, 𝑠1) cannot be identified uniquely.
However, once either of these secrets is known, the system has only 𝑑 unknowns and can
thus be solved uniquely since the equations are linearly independent.

We stress here the differences between Item (i) in Lemma 6 and in Lemma 4 and
Lemma 5. In the case of embedding a single secret, random variables in a set of size 𝑡 ≤ 𝑑
are independent. However, due to the possible dependency between the two secrets, we
can only guarantee this independence for sets of size 𝑡 ≤ 𝑑 − 1 when embedding two secrets.
Hence, to guarantee security against an attacker allowed to make 𝑡 probes, we need use
a polynomial of degree 𝑡 + 1 (instead of 𝑡 when considering a single secret). To embed a
second secret for a fixed security order 𝑡, we thus need to increase the number of shares by
one. However, as discussed in the introduction, this is a much smaller overhead compared
to the alternatives of parallel or sequential computation of two identical gadgets.

More than two secrets Finally, it might also be possible to embed more than two
secrets using a similar approach. This would require the aforementioned complicated
relations between the support points, as discussed in [LD04]. Furthermore, a very useful
property of the lowest and the highest coefficient of a polynomial is the fact that the lowest
(resp. highest) coefficient of a product p ⋅ p′ of two polynomials is exactly the product of
the lowest (resp. highest) coefficients of p and p′. This is not true for the other coefficients
due to the convolution of the indices used in polynomial multiplication. Hence, embedding
multiple secrets seems to require a much more complicated multiplication.

4 Computing on Two-Secret Sharings Against Passive At-
tackers

In this section, we will generalize several known algorithms secure against passive attacks
into a unified algorithm and show that our double-sharing approach can be used easily
while still giving security against passive attacks in this context. To do so, we show that
the unified algorithms are also (S)NI. For the analyzed circuits, we would only need
to consider addition and multiplication; however, we will show that our approach can
also easily support other operations that we believe to be useful when designing parallel
gadgets.

In the following, we always consider double sharings. For the sake of readability, we
will thus write ⟦𝑠0, 𝑠1⟧𝑑 instead of ⟦(0, 𝑑) → (𝑠0, 𝑠1)⟧𝑑 and, similarly, Share𝑑(𝑠0, 𝑠1) and
Open(𝑣𝐼). As discussed in Section 3.2, to guarantee security against a 𝑡-probing attacker,
we need to use at least a polynomial of degree 𝑑 ≥ 𝑡 + 1 here.

In general, given two sharings (𝐹0, … , 𝐹𝑛−1) ∈ ⟦𝑠0, 𝑠1⟧𝑑 and (𝐺0, … , 𝐺𝑛−1) ∈ ⟦𝑠′
0, 𝑠′

1⟧𝑑,
the goal is to compute a sharing (𝑄0, … , 𝑄𝑛−1) ∈ ⟦𝜑0(𝑠0, 𝑠1, 𝑠′

0, 𝑠′
1), 𝜑1(𝑠0, 𝑠1, 𝑠′

0, 𝑠′
1)⟧𝑑 for

some functions 𝜑0 and 𝜑1.
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4.1 Share-Wise Gadgets
We first analyze the security of any share-wise gadget, i.e., those corresponding to lin-
ear functions 𝜑0 and 𝜑1. For the sake of simplicity, we consider the addition gadget
𝜑𝑖(𝑠0, 𝑠1, 𝑠′

0, 𝑠′
1) = 𝑠𝑖 + 𝑠′

𝑖 as a running example. As

⟦𝑠0, 𝑠1⟧𝑑 + ⟦𝑠′
0, 𝑠′

1⟧𝑑 = ⟦𝑠0 + 𝑠′
0, 𝑠1 + 𝑠′

1⟧𝑑,

we can easily perform the addition by adding the shares of the sharing as shown in
Algorithm 1 where (𝐹𝑖)𝑖∈[𝑛] ∈ ⟦𝑠0, 𝑠1⟧𝑑, (𝐺𝑖)𝑖∈[𝑛] ∈ ⟦𝑠′

0, 𝑠′
1⟧𝑑. Hence, it only remains to

prove leakage resilience.

Algorithm 1: Addition-Gadget
Input: Degree-𝑑 shares of 𝑠0, 𝑠1 as (𝐹𝑖)𝑖∈[𝑛] and shares of 𝑠′

0, 𝑠′
1 as (𝐺𝑖)𝑖∈[𝑛].

Result: Degree-𝑑 shares of 𝑞0 = 𝑠0 + 𝑠′
0, 𝑞1 = 𝑠1 + 𝑠′

1 as (𝑄𝑖)𝑖∈[𝑛].
1 initialize 𝑄𝑖
2 forall 𝑖 ← 0 to 𝑛 − 1 do
3 𝑄𝑖 ← 𝐹𝑖 + 𝐺𝑖 // share-wise transformation
4 return (𝑄0, … , 𝑄𝑛−1)

Lemma 7. Algorithm 1 is 𝑡-NI for 𝑛 > 𝑑 when using polynomials of degree 𝑑 ≥ 𝑡 + 1.

Proof. It is easy to see that the NI property follows from the fact that the gadget is
share-wise, and the new double sharing does not affect the NI property. Each probe 𝑄𝑖,
𝐹𝑖, and 𝐺𝑖 can be simulated with 𝐹𝑖 and 𝐺𝑖. This observation immediately results in the
NI property because each probe can be perfectly simulated with at most one share of each
input sharing.

Note that this proof is not limited to a specific share-wise transformation in Algorithm 1,
and also holds for any other share-wise transformation 𝜙 with 𝑄𝑖 ← 𝜙(𝐹𝑖, 𝐺𝑖). Hence, the
claim holds for any share-wise gadget, as mentioned at the beginning of this section.

The Frobenius Optimization A very useful optimization for the computation of certain
exponentiations was first presented by Roche and Prouff [PR11]. Let 𝑝 be the characteristic
of the field 𝔽 underlying the arithmetic circuit that we aim to protect. The method of
Roche and Prouff then allows computing the operation 𝑥 ↦ 𝑥𝑝 in a very efficient manner.
In contrast to the packed secret sharing of Grosso et al. [GSF14], our approach can also
use this improvement. Such operations are, for example, very useful when considering
the AES s-box, where an efficient squaring operation is very helpful when computing the
GF(2)-affine transformation. It requires the support points 𝛼𝑖 to fulfill a condition called
stability over Frobenius automorphism, which says that for every support point 𝛼𝑖, there is
some support point 𝛼𝑗(𝑖) such that 𝛼𝑗(𝑖) = 𝛼𝑝

𝑖 .
Consider the polynomial p ∈ 𝔽[𝑥] of degree 𝑑 that embeds two secrets 𝑠0 and 𝑠1, i.e.,

p(𝑥) = 𝑠0 + (
𝑑−1

∑
𝑘=1

𝑎𝑘𝑥𝑘) + 𝑠1𝑥𝑑

and the following polynomial embedding the exponentiation of power 𝑝 on both secrets 𝑠0
and 𝑠1:

p′(𝑥) = 𝑠𝑝
0 + (

𝑑−1

∑
𝑘=1

𝑎𝑝
𝑘𝑥𝑘) + 𝑠𝑝

1𝑥𝑑.
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Note that if the coefficients 𝑎1, … , 𝑎𝑑−1 of p are distributed uniformly at random, the
coefficients 𝑎𝑝

1, … , 𝑎𝑝
𝑑−1 of p′ are also distributed uniformly at random, as the mapping

𝑥 ↦ 𝑥𝑝 is the Frobenius automorphism in fields of characteristic 𝑝. Hence, we only need
to consider how to obtain a sharing (𝑉 ′

0 , … , 𝑉 ′
𝑛−1) with 𝑉 ′

𝑖 = p′(𝛼𝑖) from the sharing
(𝑉0, … , 𝑉𝑛−1) with 𝑉𝑖 = p(𝛼𝑖). Fortunately, this can be done simply by setting 𝑉 ′

𝑗(𝑖) = 𝑉 𝑝
𝑖 ,

which is a completely share-wise operation.
To see that these shares indeed describe the desired polynomial, i.e., 𝑉 ′

𝑗(𝑖) = p′(𝛼𝑗(𝑖)),
one can easily verify that

𝑉 ′
𝑗(𝑖) = 𝑉 𝑝

𝑖 = (𝑠0 + (
𝑑−1

∑
𝑘=1

𝑎𝑘𝛼𝑘
𝑖 ) + 𝑠1𝛼𝑑

𝑖 )
𝑝

= 𝑠𝑝
0 + (

𝑑−1

∑
𝑘=1

𝑎𝑝
𝑘𝛼𝑘𝑝

𝑖 ) + 𝑠𝑝
1𝛼𝑑𝑝

𝑖 .

Here, the last equality is due to the identity (𝑎 + 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝 in fields of characteristic 𝑝,
which is sometimes called freshman’s dream. Now, due to the stability condition 𝛼𝑗(𝑖) = 𝛼𝑝

𝑖 ,
we have

𝑠𝑝
0 + (

𝑑−1

∑
𝑘=1

𝑎𝑝
𝑘𝛼𝑘𝑝

𝑖 ) + 𝑠𝑝
1𝛼𝑑𝑝

𝑖 = 𝑠𝑝
0 + (

𝑑−1

∑
𝑘=1

𝑎𝑝
𝑘𝛼𝑘

𝑗(𝑖)) + 𝑠𝑝
1𝛼𝑑

𝑗(𝑖) = p′(𝛼𝑗(𝑖)).

Hence, from a sharing (𝑉0, … , 𝑉𝑛−1) of the secrets 𝑠0 and 𝑠1, we can compute a sharing
(𝑉 ′

0 , … , 𝑉 ′
𝑛−1) of the secrets 𝑠𝑝

0 and 𝑠𝑝
1 in a share-wise manner, using at most 2𝑛 ⋅ log(𝑝)

field multiplications.

4.2 Non-Linear Operations
Non-linear operations, however, are more complicated. For example, while two sharings
⟦𝑠0, 𝑠1⟧𝑑, ⟦𝑠′

0, 𝑠′
1⟧𝑑 of two degree-𝑑 sharings can still be multiplied share-wise, the product

polynomial is of degree 2𝑑, i.e.,

⟦𝑠0, 𝑠1⟧𝑑 ⋅ ⟦𝑠′
0, 𝑠′

1⟧𝑑 = ⟦𝑠0 ⋅ 𝑠′
0, 𝑠1 ⋅ 𝑠′

1⟧2𝑑.

Hence, a subsequent step is required that reduces the degree back to (at most) 𝑑. As
the degree of is increased to 2𝑑, we need to require 𝑛 > 2𝑑 to guarantee correctness of
the computation, just like in the classical BGW scheme [BGW88]. Nearly every solution
on how to handle non-linear operations when using polynomial sharing follows this basic
principle: First perform a share-wise computation to obtain a high-degree encoding of the
correct value and then perform a degree reduction. We call such gadgets BGW-like. The
remaining solutions (such as Grosso et al. [GSF14] or Wang et al. [WMCS20]) improve the
performance by changing temporarily to an alternate encoding. However, these alternate
encodings typically do not have the same resilience against active fault attackers compared
to the polynomial sharing and are thus vulnerable to active attacks. To the best of our
knowledge, the only non-BGW-like approach that changes to a fault-resilient encoding is
due to Berndt et al. [BEF+23]. As our goal is to protect against passive and active attacks,
we thus focus on BGW-like gadgets and on the LaOla-gadget of Berndt et al.

Before focusing on concrete gadgets, we introduce the auxiliary gadgets ZEnc𝑑
𝑛 and

sZEnc𝑑
𝑛 based on the two algorithms in [BEF+23] that will be useful when describing the

gadgets for non-linear operations. The first algorithm shown in Algorithm 2 generates a
random zero sharing, i.e. a random polynomial 𝑔 such that both 𝑔0 = 0 and 𝑔𝑑 = 0. This
is, however, not SNI, due to a lack of sufficient independence between the output shares.
However, one can extend this to achieve independence by multiple executions as shown in
Algorithm 3. Note that Algorithm 2 has a slightly different structure than the identically
named gadget in [BEF+23], but as all intermediate values are the same with only their
order changing, this has no impact on the security.
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Algorithm 2: ZEnc𝑑
𝑛

Result: A randomized sharing of zero ⟦𝑔⟧𝑑.
1 initialize 𝐺𝑗
2 (𝑟1, … , 𝑟𝑑−1) ←$ 𝔽
3 forall 𝑗 ← 0 to 𝑛 − 1 do
4 forall 𝑘 ← 1 to 𝑑 − 1 do
5 𝐺𝑗 ← 𝐺𝑗 + 𝑟𝑘 ⋅ 𝛼𝑘

𝑗
6 return ⟦𝑔⟧𝑑

Algorithm 3: sZEnc𝑑
𝑛

Result: A randomized sharing of zero ⟦𝑦⟧𝑑.
1 initialize ⟦𝑦⟧𝑑
2 forall 𝑗 ← 0 to 𝑑 do
3 ⟦𝑔⟧𝑑 ← ZEnc𝑑

𝑛
4 ⟦𝑦⟧𝑑 ← ⟦𝑦⟧𝑑 + ⟦𝑔⟧𝑑
5 return ⟦𝑦⟧𝑑

4.2.1 BGW-Like Gadgets

While there is a variety of different non-linear gadgets, we first concentrate on a subset
of them, all having a similar structure that goes back to the original work of Ben-Or,
Goldwasser, and Wigderson [BGW88].

In general, the computation performed by these gadgets can be grouped into two
different phases: In the first phase, the non-linear function is computed locally on each
share. While this produces a correct result, it also increases the degree of the underlying
polynomial. Hence, in the second phase, a degree reduction needs to be performed. We
generalize this construction such that we allow the following representation for a sharing
(𝑄0, … , 𝑄𝑛−1):

(𝑄0, … , 𝑄𝑛−1) = (
𝑛−1

∑
𝑖=0

ℓ(𝜑0,𝜑1)
𝑖,0 (𝐹𝑖, 𝐺𝑖), … .

𝑛−1

∑
𝑖=0

ℓ(𝜑0,𝜑1)
𝑖,𝑛−1 (𝐹𝑖, 𝐺𝑖))

Here, the share-wise operations ℓ(𝜑0,𝜑1)
𝑖,𝑗 are a compact description of both phases of

the computation. Hence, each output share 𝑄𝑗 depends on a linear combination of
the share-wise operations ℓ(𝜑0,𝜑1)

0,𝑗 (𝐹0, 𝐺0), ℓ(𝜑0,𝜑1)
1,𝑗 (𝐹1, 𝐺1), … , ℓ(𝜑0,𝜑1)

𝑛−1,𝑗 (𝐹𝑛−1, 𝐺𝑛−1), namely
∑𝑛−1

𝑖=0 ℓ(𝜑0,𝜑1)
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖).

This approach is sufficient to model many different functions 𝜑0 and 𝜑1. Examples for
interesting functions 𝜑0, 𝜑1 that we believe to be useful with

(𝑄0, … , 𝑄𝑛−1) ∈ ⟦𝜑0(𝑠0, 𝑠1, 𝑠′
0, 𝑠′

1), 𝜑1(𝑠0, 𝑠1, 𝑠′
0, 𝑠′

1)⟧𝑑

are given in Table 1. Some of these functions allow multiplication, i.e., the computation of
(𝜑0(𝑠0, 𝑠1, 𝑠′

0, 𝑠′
1), 𝜑1(𝑠0, 𝑠1, 𝑠′

0, 𝑠′
1)) = (𝑠0 ⋅ 𝑠′

0, 𝑠1 ⋅ 𝑠′
1) while others allow re-combinations of

the secrets, i.e., (𝜑0(𝑠0, 𝑠1, 𝑠′
0, 𝑠′

1), 𝜑1(𝑠0, 𝑠1, 𝑠′
0, 𝑠′

1)) = (𝑠0, 𝑠′
0).

A formal description of this algorithm is given in Algorithm 4. Note that because of
the very general modeling, share-wise operations can also be represented this way, though
this has some overhead in comparison to the straightforward computation discussed in
Section 4.1.

Lemma 8. Algorithm 4 is 𝑡-SNI when using 𝑛 > 2𝑑 shares and polynomials of degree
𝑑 ≥ 𝑡 + 1.
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Algorithm 4: (𝜑0, 𝜑1)-Gadget
Input: Degree-𝑑 shares of 𝑠0, 𝑠1 as (𝐹𝑖)𝑖∈[𝑛] and shares of 𝑠′

0, 𝑠′
1 as (𝐺𝑖)𝑖∈[𝑛].

Result: Degree-𝑑 shares of 𝑞0 = 𝜑0(𝑠0, 𝑠1, 𝑠′
0, 𝑠′

1), 𝑞1 = 𝜑1(𝑠0, 𝑠1, 𝑠′
0, 𝑠′

1) as
(𝑄𝑖)𝑖∈[𝑛].

1 initialize 𝑄𝑗
2 forall i←0 to n-1 do
3 (�̃�𝑖,0, … , �̃�𝑖,𝑛−1) ← ZEnc𝑑

𝑛
4 forall j←0 to n-1 do
5 �̃�𝑖,𝑗 ← �̃�𝑖,𝑗 + ℓ(𝜑0,𝜑1)

𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) // share-wise transformation and
reduction

6 𝑄𝑗 ← 𝑄𝑗 + �̃�𝑖,𝑗 // referred to as 𝑄𝑗,𝑖
7 return (𝑄0, … , 𝑄𝑛−1)

Proof. Let 𝑡1 be the number of internal probes and 𝑡2 the number of output probes with
𝑡1 + 𝑡2 < 𝑡. We first have to find input sets 𝐼 and 𝐽 of size at most 𝑡1 and afterwards
construct a perfect simulator that can simulate all 𝑡 probed intermediate and output
variables only using elements of 𝐼 and 𝐽. Depending on the intermediate variables that are
probed, the two sets 𝐼 and 𝐽 are constructed as follows:

• If 𝐹𝑖 or 𝐺𝑖 is probed, add 𝑖 to 𝐼 or 𝐽, respectively.

• If any value is probed during the computation of ℓ(𝜑0,𝜑1)
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖), add 𝑖 to 𝐼 and 𝐽.

• If 𝑟𝑗 in loop 𝑖 (denoted in the following as 𝑟𝑖,𝑗), some intermediate value of ZEnc𝑑
𝑛

(denoted in the following as �̃�𝑘
𝑖,𝑗 where 𝑘 ∈ {1, … , 𝑑 − 1}), or the sum with the

share-wise transformation (denoted in the following as �̃�𝑑
𝑖,𝑗) is probed, add 𝑖 to 𝐼

and 𝐽.

According to our selection, we add at most one index to 𝐼 and 𝐽 for each internal probe
and, therefore, |𝐼| ≤ 𝑡1 and |𝐽 | ≤ 𝑡1.

We now construct the simulator. Note that whenever a coefficient 𝑟𝑖,𝑗 is required for
the simulation of other variables, it will be sampled by the simulator. This will fix the
value of 𝑟𝑖,𝑗.

1. The simulation of probed variables 𝐹𝑖, 𝐺𝑖, and the internal probes in ℓ(𝜑0,𝜑1)
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖)

are straightforward. Since 𝑖 ∈ 𝐼, the share 𝐹𝑖 is a known value and we can perfectly
simulate 𝐹𝑖. The same holds true for 𝐺𝑖, since 𝑖 ∈ 𝐽. Similarly, we can simulate all
internal values of ℓ(𝜑0,𝜑1)

𝑖,𝑗 (𝐹𝑖, 𝐺𝑖), as 𝑖 ∈ 𝐼 ∩ 𝐽 and ℓ(𝜑0,𝜑1)
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) only depends on

public values and 𝐹𝑖, 𝐺𝑖.

2. If �̃�𝑘
𝑖,𝑗 with 𝑘 ∈ {1, … , 𝑑 − 1} is probed, the simulator has to simulate the value

�̃�𝑘
𝑖,𝑗 = ∑𝑘

𝑙=1 𝑟𝑖,𝑙 ⋅ 𝛼𝑙
𝑗. All unknown 𝑟𝑖,𝑙 with 1 ≤ 𝑙 ≤ 𝑘 can be sampled uniformly at

random, allowing a perfect simulation.

3. The simulation of �̃�𝑑
𝑖,𝑗 is solely depending on �̃�𝑑−1

𝑖,𝑗 and ℓ(𝜑0,𝜑1)
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) as �̃�𝑑

𝑖,𝑗 =
ℓ(𝜑0,𝜑1)

𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) + ∑𝑑−1
𝑙=1 𝑟𝑖,𝑙 ⋅ 𝛼𝑙

𝑗. Like before, if any of the 𝑟𝑖,𝑙 with 1 ≤ 𝑙 ≤ 𝑑 − 1 is
unknown, it can be sampled uniformly at random. Further, since 𝑖 ∈ 𝐼 ∩ 𝐽, the value
ℓ(𝜑0,𝜑1)

𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) is known. This allows a perfect simulation of �̃�𝑑
𝑖,𝑗.
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Table 1: Instantiations of the different functions ℓ of Algorithm 4 to protect the gadgets
against passive probes. The input sharings are (𝐹𝑖)𝑖∈[𝑛] and (𝐺𝑖)𝑖∈[𝑛] and embed the secrets
𝑠0, 𝑠1 and 𝑠′

0, 𝑠′
1, respectively. The output sharing is (𝑄𝑖)𝑖∈[𝑛]. If ℓ(𝜑0,𝜑1)

𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) does not
use (𝐺𝑖)𝑖∈[𝑛], we consider the gadget as gadget with only one input sharing.

(𝜑0, 𝜑1) ℓ(𝜑0,𝜑1)
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) Output

(𝑠0, 𝑠′
0) 𝜆𝑖,0𝐹𝑖 + 𝜆𝑖,0𝛼𝑑

𝑗 𝐺𝑖 𝑞0 = 𝑓0 𝑞𝑑 = 𝑔0

(𝑠0, 𝑠′
1) 𝜆𝑖,0𝐹𝑖 + 𝜆𝑖,𝑑𝛼𝑑

𝑗 𝐺𝑖 𝑞0 = 𝑓0 𝑞𝑑 = 𝑔𝑑

(𝑠1, 𝑠′
0) 𝜆𝑖,𝑑𝐹𝑖 + 𝜆𝑖,0𝛼𝑑

𝑗 𝐺𝑖 𝑞0 = 𝑓𝑑 𝑞𝑑 = 𝑔0

(𝑠1, 𝑠′
1) 𝜆𝑖,𝑑𝐹𝑖 + 𝜆𝑖,𝑑𝛼𝑑

𝑗 𝐺𝑖 𝑞0 = 𝑓𝑑 𝑞𝑑 = 𝑔𝑑

(𝑠0, 𝑠1) (𝜆𝑖,0 + 𝜆𝑖,𝑑𝛼𝑑
𝑗 )𝐹𝑖 𝑞0 = 𝑓0 𝑞𝑑 = 𝑓𝑑

(𝑠0 ⋅ 𝑠′
0, 0) 𝜆𝑖,0𝐹𝑖𝐺𝑖 𝑞0 = 𝑓0 ⋅ 𝑔0 𝑞𝑑 = 0

(0, 𝑠1 ⋅ 𝑠′
1) (𝜆𝑖,2𝑑𝛼𝑑

𝑗 )𝐹𝑖𝐺𝑖 𝑞0 = 0 𝑞𝑑 = 𝑓𝑑 ⋅ 𝑔𝑑

(𝑠0 ⋅ 𝑠′
0, 𝑠1 ⋅ 𝑠′

1) (𝜆𝑖,0 + 𝜆𝑖,2𝑑𝛼𝑑
𝑗 )𝐹𝑖𝐺𝑖 𝑞0 = 𝑓0 ⋅ 𝑔0 𝑞𝑑 = 𝑓𝑑 ⋅ 𝑔𝑑

4. Let’s consider the case that 𝑄𝑗,𝑖 is probed. The value is computed as 𝑄𝑗,𝑖 = ∑𝑖
𝑘=0 �̃�𝑑

𝑘,𝑗

or can be rewritten as 𝑄𝑗,𝑖 = 𝑄𝑗,ℓ + ∑𝑖
𝑘=ℓ+1 �̃�𝑑

𝑘,𝑗 if 𝑄𝑗,ℓ with ℓ < 𝑖 has already been
probed. In the latter case, only the simulations of �̃�𝑑

𝑘,𝑗 where ℓ < 𝑘 ≤ 𝑖 have to be
considered, otherwise all of them are needed.

• If for all necessary 𝑘 (either ℓ < 𝑘 ≤ 𝑖 or 0 ≤ 𝑘 ≤ 𝑖), ℓ(𝜑0,𝜑1)
𝑘,𝑗 (𝐹𝑘, 𝐺𝑘) is a known

value, all �̃�𝑑
𝑘,𝑗 can be perfectly simulated as shown in step 3, which in turn

allows the perfect simulation of 𝑄𝑗,𝑖.

• Else, there is at least one unknown ℓ(𝜑0,𝜑1)
𝑘,𝑗 (𝐹𝑘, 𝐺𝑘). Note that this implies that,

for any 𝑙, no 𝑟𝑘,𝑙 was probed or sampled in a previous step of the simulation.
Hence, (�̃�𝑑

𝑘,𝑗)𝑗∈[𝑛] with �̃�𝑑
𝑘,𝑗 = ℓ(𝜑0,𝜑1)

𝑘,𝑗 (𝐹𝑘, 𝐺𝑘) + ∑𝑑−1
𝑙=1 𝑟𝑘,𝑙 ⋅ 𝛼𝑙

𝑗 has 𝑑 unknowns:
ℓ(𝜑0,𝜑1)

𝑘,𝑗 (𝐹𝑘, 𝐺𝑘) and all 𝑟𝑘,𝑙. Since 𝑟𝑘,𝑙 are uniform random, the tuple (�̃�𝑑
𝑘,𝑗)𝑗∈[𝑛]

represents a 𝑑 − 1-wise independent set of random variables. Recall that the
number of allowed probes 𝑡 is by definition smaller than 𝑑 and each probe consists
of at most one of the random values. Consequently, 𝑄𝑗,𝑖 can be simulated by a
value chosen uniformly at random since it is randomized by the sum of �̃�𝑑

𝑘,𝑗.

As could be seen in step 4 above, 𝑄𝑗,𝑖 can be simulated without any index being added to
𝐼 or 𝐽. The simulation is hence independent of the selected inputs, and the probed output
shares 𝑄𝑗 = 𝑄𝑗,𝑛−1 can be perfectly simulated.

To show the generality of this approach, Table 1 does not only consider the BGW-like
multiplication (corresponding to the last row of the table with gadget (𝑠0 ⋅ 𝑠′

0, 𝑠1 ⋅ 𝑠′
1)),

but also various permutations of secrets to merge and permute multiple secrets in one
polynomial that we believe to be useful when designing parallel gadgets: The gadgets
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(𝑠0 ⋅ 𝑠′
0, 0) and (0, 𝑠1 ⋅ 𝑠′

1) multiply the lower or upper secrets, respectively, while the (𝑠𝑎, 𝑠′
𝑏)

gadget allows, depending on the choice of 𝑎, 𝑏 ∈ {0, 1}, to generate a output sharing
containing any secret of the first input in one and any of the second input in the other
position. Additionally, the sole gadget (𝑠0, 𝑠1) with only one input refreshes this input
sharing without changing the secrets.

Lemma 9. Algorithm 4 is correct for all instantiations of ℓ(𝜑0,𝜑1)
𝑖,𝑗 (⋅, ⋅) shown in Table 1

when using 𝑛 > 2𝑑 shares and polynomials of degree 𝑑.

Proof. In the following, we will prove that the output 𝑄𝑗 of Algorithm 4 describes the
polynomial value of 𝛼𝑗 as given in Table 1, so 𝑄𝑗 = ∑𝑛−1

𝑖=0 𝑞𝑖𝛼𝑖
𝑗 with 𝑞0 and 𝑞𝑑 as is stated

in the table for the respective gadget. For a specific 𝑗, after each loop iteration over 𝑖 in
the first loop of Algorithm 4 we get

�̃�𝑑
𝑖,𝑗 = ℓ(𝜑0,𝜑1)

𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) +
𝑑−1

∑
𝑘=1

𝑟𝑖,𝑘 ⋅ 𝛼𝑘
𝑗

and this finally results in the output 𝑄𝑗 = ∑𝑛−1
𝑖=0 �̃�𝑑

𝑖,𝑗. Hence, we get

𝑄𝑗 =
𝑛−1

∑
𝑖=0

(ℓ(𝜑0,𝜑1)
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) +

𝑑−1

∑
𝑘=1

𝑟𝑖,𝑘 ⋅ 𝛼𝑘
𝑗 ) =

𝑛−1

∑
𝑖=0

ℓ(𝜑0,𝜑1)
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
=̂𝑞0+𝑞𝑑𝛼𝑑

𝑗

+
𝑑−1

∑
𝑘=1

(
𝑛−1

∑
𝑖=0

𝑟𝑖,𝑘) ⋅ 𝛼𝑘
𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟
=̂∑𝑑−1

𝑘=1 𝑞𝑘⋅𝛼𝑘
𝑗

.

For correctness, we are interested in 𝑞0 and 𝑞𝑑, and only consider the term ∑𝑛−1
𝑖=0 ℓ(𝜑0,𝜑1)

𝑖,𝑗 (𝐹𝑖, 𝐺𝑖)
in the following.

• We first analyze the computation of (𝑠0 ⋅ 𝑠′
0, 0), (0, 𝑠1 ⋅ 𝑠′

1), and (𝑠0 ⋅ 𝑠′
0, 𝑠1 ⋅ 𝑠′

1). Using
the latter as an example, the gadget computing the secret-wise multiplication of the
double sharing is initialized by ℓ(𝑠0⋅𝑠′

0,𝑠1⋅𝑠′
1)

𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) = (𝜆𝑖,0 + 𝜆𝑖,2𝑑𝛼𝑑
𝑗 )𝐹𝑖𝐺𝑖, and this

results in
𝑛−1

∑
𝑖=0

ℓ(𝑠0⋅𝑠′
0,𝑠1⋅𝑠′

1)
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) =

𝑛−1

∑
𝑖=0

(𝜆𝑖,0 + 𝜆𝑖,2𝑑𝛼𝑑
𝑗 )𝐹𝑖𝐺𝑖

= (
𝑛−1

∑
𝑖=0

𝜆𝑖,0𝐹𝑖𝐺𝑖
⏟⏟⏟⏟⏟

=̂𝑞0

)𝛼0
𝑗 + (

𝑛−1

∑
𝑖=0

𝜆𝑖,2𝑑𝐹𝑖𝐺𝑖
⏟⏟⏟⏟⏟⏟⏟

=̂𝑞𝑑

)𝛼𝑑
𝑗 .

Since the (unfaulted) polynomials (𝐹𝑖)𝑖∈[𝑛] and (𝐺𝑖)𝑖∈[𝑛] have degree 𝑑 with ∑𝑑
𝑖=0 𝑓𝑖𝑥𝑖

and ∑𝑑
𝑖=0 𝑔𝑖𝑥𝑖, respectively, it follows that the share-wise multiplication (𝐹𝑖 ⋅ 𝐺𝑖)

results in a polynomial of degree 2𝑑 such that the highest monomial is (𝑓𝑑𝑔𝑑)𝑥2𝑑

and the lowest one is (𝑓0𝑔0)𝑥0. With Equation (1) it immediately follows that
𝑞0 = ∑𝑛−1

𝑖=0 𝜆𝑖,0𝐹𝑖𝐺𝑖 = 𝑓0𝑔0 and 𝑞𝑑 = ∑𝑛−1
𝑖=0 𝜆𝑖,2𝑑𝐹𝑖𝐺𝑖 = 𝑓𝑑𝑔𝑑. This proves the

correctness for (𝑠0 ⋅ 𝑠′
0, 𝑠1 ⋅ 𝑠′

1), the correctness of (𝑠0 ⋅ 𝑠′
0, 0) and (0, 𝑠1 ⋅ 𝑠′

1) follows
with the same argument.

• When considering (𝑠0, 𝑠1), the proof is similar to the previous one except for the
fact that there is no share-wise multiplication and the secrets are still described by
the monomials of degree 𝑑 and 0. Hence, the instantiation ℓ(𝑠0,𝑠1)

𝑖,𝑗 (𝐹𝑖) multiplies 𝐹𝑖

with (𝜆𝑖,0 + 𝜆𝑖,𝑑𝛼𝑑
𝑗 ) instead of (𝜆𝑖,0 + 𝜆𝑖,2𝑑𝛼𝑑

𝑗 ), and we get 𝑞0 = ∑𝑛−1
𝑖=0 𝜆𝑖,0𝐹𝑖 = 𝑓0

and 𝑞𝑑 = ∑𝑛−1
𝑖=0 𝜆𝑖,𝑑𝐹𝑖 = 𝑓𝑑.
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• For the (𝑠𝑎, 𝑠′
𝑏) gadget with 𝑎, 𝑏 ∈ {0, 1}, we initialize ℓ(𝑠𝑎,𝑠′

𝑏)
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) = 𝜆𝑖,𝑎⋅𝑑𝐹𝑖 +

𝜆𝑖,𝑏⋅𝑑𝛼𝑑
𝑗 𝐺𝑖, and this results in

𝑛−1

∑
𝑖=0

ℓ(𝑠𝑎,𝑠′
𝑏)

𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) =
𝑛−1

∑
𝑖=0

𝜆𝑖,𝑎⋅𝑑𝐹𝑖 + 𝜆𝑖,𝑏⋅𝑑𝛼𝑑
𝑗 𝐺𝑖 = (

𝑛−1

∑
𝑖=0

𝜆𝑖,𝑎⋅𝑑𝐹𝑖
⏟⏟⏟⏟⏟

=̂𝑞0

)𝛼0
𝑗 + (

𝑛−1

∑
𝑖=0

𝜆𝑖,𝑏⋅𝑑𝐺𝑖
⏟⏟⏟⏟⏟

=̂𝑞𝑑

)𝛼𝑑
𝑗 .

With Equation (1), it immediately follows that 𝑞0 = ∑𝑛−1
𝑖=0 𝜆𝑖,𝑎⋅𝑑𝐹𝑖 = 𝑓𝑎⋅𝑑 and

𝑞𝑑 = ∑𝑛−1
𝑖=0 𝜆𝑖,𝑏⋅𝑑𝐺𝑖 = 𝑔𝑏⋅𝑑. This proves the correctness of all (𝑠𝑎, 𝑠′

𝑏) gadgets with
𝑎, 𝑏 ∈ {0, 1}.

This concludes the proof.

4.3 Protecting AES
In the following, we will show how our approach can decrease the cost of masking when
considering the block cipher AES-128 compared to using the classical BGW-gadgets. This
cipher consists of ten repetitions of a round transformation on an internal state of length
128, which is interpreted as 16 elements of GF(28). Each round begins with a key addition
AddRoundKey that adds the current round key (also of length 128) to the internal state.
Then, the non-linear SubBytes operation is applied to every byte of the internal state.
The SubByte operation first applies the function 𝑦 ↦ 𝑦254 to every byte, followed by an
GF(2)8-affine transformation 𝜏𝐴, which can be expressed as

𝜏𝐴(𝑦) = 0x63 + (0x05 ⋅ 𝑦) + (0x09 ⋅ 𝑦2) + (0xf9 ⋅ 𝑦4) + (0x25 ⋅ 𝑦8)+
(0xf4 ⋅ 𝑦16) + (0x01 ⋅ 𝑦32) + (0xb5 ⋅ 𝑦64) + (0x8f ⋅ 𝑦128).

A derivation of this is described, e.g., by Roche and Prouff [PR11]. Finally, two linear
transformations, called ShiftRows and MixColumns are then applied to the internal state.
More concretely, for these linear transformations, the elements of GF(28) are put into a
4 × 4-matrix

𝐴 =
⎛⎜⎜⎜⎜
⎝

𝑎0 𝑎4 𝑎8 𝑎12
𝑎1 𝑎5 𝑎9 𝑎13
𝑎2 𝑎6 𝑎10 𝑎14
𝑎3 𝑎7 𝑎11 𝑎15

⎞⎟⎟⎟⎟
⎠

.

Then, ShiftRows transforms this matrix into the matrix

𝐴′ =
⎛⎜⎜⎜⎜
⎝

𝑎0 𝑎4 𝑎8 𝑎12
𝑎5 𝑎9 𝑎13 𝑎1
𝑎10 𝑎14 𝑎2 𝑎6
𝑎15 𝑎3 𝑎7 𝑎11

⎞⎟⎟⎟⎟
⎠

.

Finally, MixColumns multiplies each column of 𝐴′ with a fixed MDS matrix 𝑀 to obtain
the matrix 𝐴″.

Following the approach of Roche and Prouff [PR11], which is also used by Seker et
al. [SFRES18], we can now compute the number of additions, affine operations, squarings,
and multiplications which are needed for each operation within a single round. A summary
of this is shown in Table 2 which depends on the number of used sharings. To represent
the 16 elements of GF(28), we require 𝐵 = 8 sharings when using our double sharing
approach and 𝐵 = 16 otherwise. The running times for the individual operations when
using polynomials of degree 𝑑 and the minimal number of shares 𝑛 = 2𝑑 + 1 are shown in
Table 3.
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Table 2: The number of calls to different gadgets to mask the different operations of AES
when operating on 𝐵 ∈ {8, 16} polynomials.

AddRoundKey 𝑦 ↦ 𝑦254 𝜂𝐴 MixColumns ShiftRows
Add(𝑑) 𝐵 7𝐵 (3/4)𝐵

Affine(𝑑) 8𝐵 𝐵
Square(𝑑) 7𝐵 7𝐵
Mult(𝑑) 6𝐵

Table 3: The number of field operations of the different gadgets when using 𝑛 = 2𝑑 + 1
shares. For the squaring operation, we use the Frobenius approach of [PR11].

Add(𝑑) Affine(𝑑) Square(𝑑) Mult(𝑑)

Complexity 2𝑑 + 1 2𝑑 + 1 2𝑑 + 1 8𝑑3 + 16𝑑2 + 10𝑑 + 2

Combining all of these information means that a masked version using polynomials of
degree 𝑑 that does not use our double sharing approach needs about

𝑇nds(𝑑) = 140Add(𝑑) + 144Affine(𝑑) + 224Square(𝑑) + 96Mult(𝑑)
= 768𝑑3 + 1536𝑑2 + 1976𝑑 + 192

field operations when using polynomials of degree 𝑑 and the minimal number of shares
𝑛 = 2𝑑 + 1.

When applying our double sharing approach, both AddRoundKey and SubBytes are
easily handled, as the computations of each element of GF(28) are independent of each
other. For MixColumns, we need to be more careful, as the computation now mixes
different elements. However, all elements that are mixed come from the same column, the
computations for each column are independent of each other and all elements from one
row of the resulting matrix are computed using the same row of the MDS matrix. We
thus group the secrets such that each of the eight double-sharing polynomials contains two
secrets from the same row: The element from the first column will be encoded together
with the one from second column and the element from the third column together with
the one from the fourth column. More formally, if a polynomial encodes two values 𝑎𝑖 and
𝑎𝑗, then (𝑖, 𝑗) ∈ {(0, 4), (5, 9), (10, 14), (15, 3), (8, 12), (13, 1), (2, 6), (7, 11)}.

The only complication when keeping this structure of the polynomials comes from the
ShiftRows operations. However, it is easy to see that both the first and the third row keep
this structure, as the elements are not shifted at all or shifted by two (where a simple
swap of the polynomials is sufficient). To handle the second and the fourth row, we use
the (𝑠1, 𝑠′

0) and (𝑠′
1, 𝑠0) gadget of Algorithm 4 to combine the two sharings such that the

secrets are shifted. For the second row, containing the sharings ⟦𝑎1, 𝑎5⟧𝑑 shared in f and
⟦𝑎9, 𝑎13⟧𝑑 shared in g, the (𝑠1, 𝑠′

0)-gadget instantiation on inputs f, g gives a new sharing
containing ⟦𝑎5, 𝑎9⟧𝑑 and the (𝑠′

1, 𝑠0)-gadget instantiation on inputs g, f gives a sharing of
⟦𝑎13, 𝑎1⟧𝑑. The fourth row can be computed accordingly. Hence, we now have the proper
presentation of the double-sharing polynomials where MixColumns can be computed. Each
call to Algorithm 4 takes time

Phi0Phi1(𝑑) = 8𝑑3 + 32𝑑2 + 26𝑑 + 6.

Hence, the total number of field operations when using our double-sharing approach
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Table 4: Comparison of 𝑇nds(𝑡) and 𝑇ds(𝑡 + 1) for 𝑡 = 1, … , 6.

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6
𝑇nds(𝑡) 4472 16432 40680 81824 144472 233232

𝑇ds(𝑡 + 1) 9470 22946 45702 80234 129038 194610

for polynomials of degree 𝑑 and the minimal number of shares 𝑛 = 2𝑑 + 1 is

𝑇ds(𝑑) = 70Add(𝑑) + 72Affine(𝑑) + 112Square(𝑑) + 48Mult(𝑑) + 4Phi0Phi1(𝑑)
= 416𝑑3 + 896𝑑2 + 1092𝑑 + 374.

Note, however, that due to the need to increase the degree of the underlying polynomial by
one when using the double-sharing approach, we need to compare 𝑇nds(𝑡) with 𝑇ds(𝑡 + 1)
when considering security against a 𝑡-probing attacker. As can be seen in Table 4, a
simple calculation then shows that the double-sharing approach already outperforms the
single-sharing approach for 𝑡 = 4. By contrast, the packed secret sharing approach of
Grosso et al. [GSF14] only started to outperform the single-sharing approach for 𝑡 ≥ 10.

4.4 LaOla Gadget
In [BEF+23], the authors give a new multiplication gadget, called LaOla. This gadget
does not fall in the class of BGW-gadgets, as it aims to avoid the doubling of the
degree of the intermediate polynomials. To do this, LaOla first splits a polynomial f
with degree 𝑑 that embeds a secret 𝑠 into two polynomials f′ and f″ of high degree, i.e.,
deg(f′) = deg(f″) = 𝑑. However, the sum of these polynomials has lower degree, but also
embeds 𝑠, i.e., deg(f′ + f″) = 𝑑/2, and f′(0)+ f″(0) = 𝑠. This operation is called SplitRed.
After this was performed on f and g to obtain f′, f″, g′, and g″, one only needs to compute
the polynomial

f′ ⋅ g′ + f′ ⋅ g″ + f″ ⋅ g′ + f″ ⋅ g″

of degree 𝑑 that embeds the secret f(0) ⋅ g(0) in a share-wise manner. In this section, we
show how to (slightly) modify the multiplication gadget of [BEF+23] to also allow to use
double sharings for this more efficient gadget.

Algorithm 5: LaOlaMult
Input: Degree-𝑑 shares of 𝑠0, 𝑠1 as (𝐹𝑖)𝑖∈[𝑛] and shares of 𝑠′

0, 𝑠′
1 as (𝐺𝑖)𝑖∈[𝑛].

Result: Degree-𝑑 shares of 𝑞0 = 𝑠0 ⋅ 𝑠′
0, 𝑞1 = 𝑠1 ⋅ 𝑠′

1 as (𝑄𝑖)𝑖∈[𝑛].

1 ((𝐹 ′
𝑖 )𝑖∈[𝑛] , (𝐹 ″

𝑖 )𝑖∈[𝑛]) ← SplitRed((𝐹𝑖)𝑖∈[𝑛])

2 ((𝐺′
𝑖)𝑖∈[𝑛] , (𝐺″

𝑖 )𝑖∈[𝑛]) ← SplitRed((𝐺𝑖)𝑖∈[𝑛])
3 (𝑄𝑖)𝑖∈[𝑛] ← sZEnc𝑑

𝑛
4 forall 𝑗 ← 0 to 𝑛 − 1 do
5 𝐻0

𝑗 ← 𝐹 ′
𝑗 𝐺′

𝑗; 𝐻1
𝑗 ← 𝐹 ′

𝑗 𝐺″
𝑗 ; 𝐻2

𝑗 ← 𝐹 ″
𝑗 𝐺′

𝑗; 𝐻3
𝑗 ← 𝐹 ″

𝑗 𝐺″
𝑗 ;

6 𝑄𝑗 ← (((𝑄𝑗 + 𝐻0
𝑗 ) + 𝐻1

𝑗 ) + 𝐻2
𝑗 ) + 𝐻3

𝑗
7 return (𝑄0, … , 𝑄𝑛−1)

The gadget SplitRed is also further modified to accommodate for the fact that we only
consider passive attacks here; the resulting gadget is shown in Algorithm 5. In total, we
modify ℓ(∼)

𝑖,𝑗 (𝐹𝑖) used within SplitRed in Algorithm 6 to equal (𝜆𝑖,0 + 𝜆𝑖,𝑑𝛼𝑑/2
𝑗 )𝐹𝑖 instead
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of (𝜆𝑖,0 + ∑𝑘>𝑑 𝜆𝑖,𝑘𝛼𝑘
𝑖 )𝐹𝑖. Later on, when we also consider active attacks, we will also

consider the remaining entries. For the sake of completeness, the complete description of
SplitRed can be found in Appendix B.

The following lemma shows that SplitRed can then compute two multiplications in
parallel:

Lemma 10. Algorithm 5 is correct if SplitRed is initialized with ℓ(∼)
𝑖,𝑗 (𝐹𝑖) = (𝜆𝑖,0 +

𝜆𝑖,𝑑𝛼𝑑/2
𝑗 )𝐹𝑖 and uses 𝑛 ≥ 𝑑 + 1 shares and polynomials of degree 𝑑.

Proof. The gadget SplitRed outputs (𝐹 ′
𝑖 )𝑖∈[𝑛] , (𝐹 ″

𝑖 )𝑖∈[𝑛] , (𝐺′
𝑖)𝑖∈[𝑛] , (𝐺″

𝑖 )𝑖∈[𝑛] describing
the four polynomials ∑ 𝑓 ′

𝑖 𝑥𝑖, ∑ 𝑓″
𝑖 𝑥𝑖, ∑ 𝑔′

𝑖𝑥
𝑖, ∑ 𝑔″

𝑖 𝑥𝑖 with 𝑓 ′
0 + 𝑓″

0 = 𝑠0, 𝑓 ′
𝑑/2 + 𝑓″

𝑑/2 = 𝑠1,
and 𝑔′

0 + 𝑔″
0 = 𝑠′

0, 𝑔′
𝑑/2 + 𝑔″

𝑑/2 = 𝑠′
1 such that both addition polynomials embedded within

(𝐹 ′
𝑖 + 𝐹 ″

𝑖 )𝑖∈[𝑛] and (𝐺′
𝑖 + 𝐺″

𝑖 )𝑖∈[𝑛] have degree 𝑑/2. Hence, the share-wise multiplication
((𝐹 ′

𝑖 + 𝐹 ″
𝑖 ) ⋅ (𝐺′

𝑖 + 𝐺″
𝑖 ))𝑖∈[𝑛] results in a polynomial ∑ 𝑞𝑖𝑥𝑖 with degree 𝑑 and 𝑞0 = 𝑠0 ⋅ 𝑠′

0,
𝑞𝑑 = 𝑠1 ⋅ 𝑠′

1. Taking into account that it holds

((𝐹 ′
𝑖 + 𝐹 ″

𝑖 ) ⋅ (𝐺′
𝑖 + 𝐺″

𝑖 ))𝑖∈[𝑛] = (𝐻0
𝑖 )𝑖∈[𝑛] + (𝐻1

𝑖 )𝑖∈[𝑛] + (𝐻2
𝑖 )𝑖∈[𝑛] + (𝐻3

𝑖 )𝑖∈[𝑛] ,

this results in the claim of the lemma. Note that the polynomial ̂q(𝑥) described by (𝑄𝑖)𝑖∈[𝑛]
generated in line 3 of LaOlaMult does not change 𝑞0 = 𝑠0 ⋅ 𝑠′

0, 𝑞𝑑 = 𝑠1 ⋅ 𝑠′
1 because it is a

polynomial with degree 𝑑 − 1 and q̂(0) = 0.

Next we argue, why the parallelization of LaOlaMult does not affect the security of
the gadget. For this reason, we analyze the security of SplitRed first.
Lemma 11. Algorithm 6 is 𝑡-NI when using 𝑛 ≥ 𝑑 + 1 shares and polynomials of degree
𝑑 > 𝑡 + 1.
Proof. The only differences to [BEF+23] are the modified (public) constants ℓ𝑖

𝑗 ∶= (𝜆𝑖,0 +
𝜆𝑖,𝑑𝛼𝑑/2

𝑗 ). Hence, the proof is the same as in [BEF+23].

The gadget SplitRed is the only modified part of our multiplication gadgets. Since
𝐿𝑒𝑚𝑚𝑎 11 proves that the modification does not affect its security, we get the following
result.
Lemma 12. Algorithm 5 is 𝑡-SNI when using 𝑛 ≥ 𝑑 + 1 shares and polynomials of degree
𝑑 > 𝑡 + 1.
Proof. The only difference between our gadget the one in [BEF+23] is the modification of
the public values in SplitRed. Hence, it only remains to prove that our modified SplitRed
has the same security properties as the original one in [BEF+23]. In particular, [BEF+23]
shows that LaOlaMult is 𝑡-SNI if SplitRed is 𝑡-NI. In Lemma 11, we argue why our
modified SplitRed is 𝑡-NI as well.

5 Computing on Two-Secret Sharings Against Active At-
tackers

In this section, we consider active adversaries that can probe as well as induce faults. As
before, 𝑡 will denote the number of allowed probes and 𝜎 the number of allowed faults.
Recall that the multiplication of two shares raises the degree of the embedded polynomial.
We continue considering polynomials of degree 𝑑; so as to not lose any information before
the degree reduction of the product polynomial, we require 𝑛 > 2𝑑 in the case of BGW-like
gadgets or 𝑛 > 𝑑 in the case of LaOla. Additionally, to be able to detect 𝜎 faults occurring
during the same run, our analysis requires 𝑛 > 2𝑑 + 𝜎 for BGW-like gadgets and 𝑛 > 𝑑 + 𝜎
for LaOla as well as 𝑑 > 𝜎.
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5.1 Error Propagation
When considering active attacks, i.e., the introduction of faults, there are roughly two
possible approaches that make use of redundancy within the sharing. In the first approach,
one tries to correct the errors introduced by the faults. In the second approach, one tries
to detect the presence of errors. A common technique to detect the presence of errors is
called error propagation. Intuitively, this technique aims to guarantee that once an error
is introduced, it spreads fast and wide. This way, an active attacker can not hide the
presence of this error by, e.g., faulting the error-detection routine.

In this work, we also focus on error detection using error propagation. We will show
that simple modifications (the addition of an error propagation polynomial) of the gadgets
described in Table 1 allows to embed two secrets in a secure manner in the presence of
faults. One can think of the error term added by the induced faults as an additional
error polynomial 𝜻(𝑥) that is added to the original unfaulted polynomial f(𝑥) resulting
in the faulty polynomial f ′(𝑥) = f(𝑥) + 𝜻(𝑥). In the following, f(𝑥) (resp. g(𝑥)) will thus
always denote the polynomial resulting from a non-faulted run of the computation and
f ′(𝑥) (resp. g′(𝑥)) will denote the (possibly faulted) new polynomials. Due to the highly
symmetric nature of the polynomial sharing, it is easy to see that all shares 𝐹 ′

𝑖 behave
the same. Since there are no ordering requirements regarding the public support points
(𝛼𝑖)𝑖∈𝐼, all effects that an attacker might gain from faulting some arbitrary positions
𝐼 ⊆ {0, … , 𝑛 − 1} with |𝐼| ≤ 𝜎 can also be obtained by rearranging the values of (𝛼𝑖)𝑖∈𝐼
such that the faulted positions are now {0, … , |𝐼| − 1}. We thus assume throughout this
section that the faults 𝜻 are induced in the first 𝜎 shares, which gives the following equation

𝑉 −1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐹 ′
0
⋮

𝐹 ′
𝜎−1
𝐹 ′

𝜎
⋮

𝐹 ′
𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝑉 −1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐹0
⋮

𝐹𝜎−1
𝐹𝜎
⋮

𝐹𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑍0
⋮

𝑍𝜎−1
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
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⎝

𝑓0
⋮

𝑓𝑑
0
⋮
0
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⎠

+
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⎝

𝜁0
⋮

𝜁𝑑
𝜁𝑑+1

⋮
𝜁𝑛−1
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=
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⎝
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𝑑

𝑓 ′
𝑑+1
⋮

𝑓 ′
𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

If any 𝜁𝑖 for 𝑖 ∈ {𝑑 + 1, … , 𝑛 − 1} is non-zero, the degree of the error polynomial increases
and in turn the degree of the faulty polynomial f ′(𝑥) does so as well.

Lemma 13. Let f ′ = f + 𝜻 be the sum of a degree-𝑑 sharing (𝐹𝑖)𝑖∈[𝑛] and a polynomial
𝜻 ≠ 𝟎 generated by 𝜔 ≤ 𝜎 faults. Then f ′ has degree at least 𝑛 − 𝜔.

Proof. The faulty polynomial f ′(𝑥) is the sum of the original polynomial f(𝑥) and the
error polynomial 𝜻(𝑥). The latter is generated by 𝑛 points, 𝜔 of which are the induced
faults, while the others are zeros. By the fundamental theorem of algebra, a polynomial
having at least 𝑛 − 𝜔 zeros either has a degree of at least 𝑛 − 𝜔 or is equal to zero. The
latter is only possible if the induced faults 𝑍𝑖 = 0 for all 0 ≤ 𝑖 < 𝜎, which would imply
that f ′(𝑥) = f(𝑥), i.e., 𝜻 = 𝟎.

By requiring 𝑛 > 2𝑑 + 𝜎 or 𝑛 > 𝑑 + 𝜎, the degree of such a faulty polynomial is
consequently higher than the degree of any unfaulted one when the attacker can only
introduce 𝜎 faults. Hence, by adding a completely random polynomial of degree 𝑑 to the
current polynomial and interpolating the coefficients 𝑑 + 1, … , 𝑛 − 1, as described by Seker
et al. [SFRES18], the presence of the introduced faults is easily detectable.

We want the gadgets to also preserve the at most 𝜎 faults induced by the active
adversary. Our goal is to achieve error propagation such that if a fault is induced at some
point in the computation, with high probability, it will either be preserved throughout
making the output shares invalid or disappear, leading to the original unfaulted output.

As shown in [SFRES18], for the gadgets regarding the linear operations addition or the
exponentation to the power of 𝑝 over a finite field of characteristic 𝑝, or affine transform, if
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the inputs of the gadgets are faulty, this error is propagated to the output of the gadget
with a high probability. The argumentation is easily transferable from Shamir’s secret
sharings to our double sharings.

However, non-linear operations again require more complexity as they include a reduc-
tion step that necessarily loses information (e.g., in the form of the coefficients 𝑑 + 1, … , 2𝑑
for the BGW-like gadgets). It is thus vital that we preserve the important informa-
tion about the occurrence of a fault. To assure this, we follow the gadget design of
[SFRES18, BEF+23], and embed this information in the output of a gadget by adding
some error propagation term to the shares. Intuitively, one can think of the added error
propagation term as adding some polynomial 𝝆(𝑥) to the polynomial defined by the output
of the gadget without error propagation q(𝑥). We require the following properties of the
error propagation polynomial 𝝆(𝑥):

1. If no fault was introduced into the computation, 𝝆 should be zero.

2. If some faults were introduced into the computation, 𝝆 should have a degree higher
than 𝑑 with high probability.

Using these properties, we thus know that the sum q′(𝑥) of the original (possibly faulted)
polynomial q(𝑥) and the error propagation polynomial 𝝆(𝑥) has degree at most 𝑑 iff no
faults were introduced into the computation (with high probability following property 2).
In order to avoid confusion between the adversarially chosen fault polynomial and the error
propagation polynomial, we always denote the former by 𝜻 and the latter by 𝝆. Hence, we
have

q′(𝑥) = q(𝑥) + 𝝆(𝑥)
= f ′(𝑥) ∘ g′(𝑥) + 𝝆(𝑥)
= f(𝑥) ∘ g(𝑥) + 𝜻f∘g(𝑥) + 𝝆(𝑥)
= f(𝑥) ∘ g(𝑥) + f(𝑥) ∘ 𝜻g(𝑥) + g(𝑥) ∘ 𝜻f(𝑥) + 𝜻f(𝑥) ∘ 𝜻g(𝑥) + 𝝆(𝑥) .

Here, ∘ denotes the operation performed on the polynomials by the gadget.
As usual, linear or affine operations are easy to handle, as the respective fault polyno-

mials simply add up. Hence, there is no need to propagate the errors explicitly. In the
following, we thus concentrate on how to construct the error propagation polynomial for
non-linear operations.

5.2 Two-Input Non-Linear Gadgets
We first start with considering the two-input operations presented in Table 1 and choose
the error propagation polynomial such that its shares consist of the highest coefficients
of the product of the two input polynomials. If no fault was induced, the coefficients
should be zero and, hence, not change the computation result. If, however, a non-zero
fault did occur, we will show that with high probability, at least one of these coefficients is
non-zero. Hence, adding the error propagation term will most likely change at least one
share, invalidating the whole sharing.

More formally, given the (possibly faulted) input shares (𝐹 ′
𝑖 )𝑖∈[𝑛] , (𝐺′

𝑖)𝑖∈[𝑛], the error
propagation term we add during the computation is 𝐸𝑖,𝑗 ⋅ 𝐹 ′

𝑖 ⋅ 𝐺′
𝑖 with

𝐸𝑖,𝑗 = {
𝜆𝑖,𝑛−𝑗−1 if 0 ≤ 𝑗 < 𝜎,
0 if 𝜎 ≤ 𝑗 ≤ 𝑛 − 1.

We call this method multiplicative error propagation as it adds the error of the share-wise
multiplication. We stress here that this error propagation is independent of the secrets
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contained in f ′ and g′ and independent of the specific operation of the gadget. The
reason for this is that the only goal of the multiplicative error propagation is to forward
the higher-order coefficients of f ′ and g′ (which can only be non-zero due to a fault)
to the output of the non-linear computation. Hence, it can be used for all two-input
gadgets of Table 1 regardless of whether the gadget itself computes a multiplication,
though they have different success probabilities. The new gadgets employing the error
polynomial are denoted by a subscript +. For example, (𝑠0 ⋅ 𝑠′

0, 0)+ is the implementation
of the multiplication gadget where the error propagation term is added to the specific
instantiation as ℓ(𝑠0⋅𝑠′

0,0)+
𝑖,𝑗 (𝐹 ′

𝑖 , 𝐺′
𝑖) = ℓ(𝑠0⋅𝑠′

0,0)
𝑖,𝑗 (𝐹 ′

𝑖 , 𝐺′
𝑖) + 𝐸𝑖,𝑗 ⋅ 𝐹 ′

𝑖 ⋅ 𝐺′
𝑖. The complete error-

preserving operations can then be computed with the gadget instantiations of Algorithm 4.

Correctness We first observe that the addition of the error polynomial does not change
the correctness of the gadgets on unfaulted inputs.

Lemma 14. Given one of the two-input (𝜑0, 𝜑1)-gadgets introduced in Table 1, let the
result of the operation on some polynomials f ′ and g′ without error preservation be denoted
by (𝑄0, … , 𝑄𝑛−1) and the ones of the operation with error preservation using the (𝜑0, 𝜑1)+-
gadget from Table 5 as (𝑄′

0, … , 𝑄′
𝑛−1). If 𝑛 ≥ 𝑑 + 𝜎 + 1 and using polynomials of degree 𝑑,

then for any 𝑄′
𝑖, we have

𝑄′
𝑖 = {

𝑄𝑖 + ℎ′
𝑛−𝑖−1 if 0 ≤ 𝑖 < 𝜎,

𝑄𝑖 if 𝜎 ≤ 𝑖 ≤ 𝑛 − 1,

where ℎ′
𝑘 denotes the 𝑘-th coefficient of the polynomial h′ = f ′ ⋅ g′.

Proof. Following the algorithm where 𝑄′
𝑘,𝑖denotes the loop iteration results using ℓ(𝜑0,𝜑1)+

𝑘,𝑖 ,
we get

𝑄′
𝑖 =

𝑛−1

∑
𝑘=0

�̃�′
𝑘,𝑖 =

𝑛−1

∑
𝑘=0

(ℓ(𝜑0,𝜑1)+
𝑘,𝑖 (𝐹 ′

𝑘, 𝐺′
𝑘) +

𝑑−1

∑
𝑙=1

𝑟𝑘,𝑙 ⋅ 𝛼𝑙
𝑖)

=
𝑛−1

∑
𝑘=0

(ℓ(𝜑0,𝜑1)
𝑘,𝑖 (𝐹 ′

𝑘, 𝐺′
𝑘) +

𝑑−1

∑
𝑙=1

𝑟𝑘,𝑙 ⋅ 𝛼𝑙
𝑖 + 𝐸𝑘,𝑖 ⋅ 𝐹 ′

𝑘 ⋅ 𝐺′
𝑘)

=
𝑛−1

∑
𝑘=0

(�̃�𝑘,𝑖 + 𝐸𝑘,𝑖 ⋅ 𝐹 ′
𝑘 ⋅ 𝐺′

𝑘) = 𝑄𝑖 +
𝑛−1

∑
𝑘=0

𝐸𝑘,𝑖 ⋅ 𝐹 ′
𝑘 ⋅ 𝐺′

𝑘.

For all 𝑖 ≥ 𝜎, the statement follows immediately since, for all 𝑘, we have 𝐸𝑘,𝑖 = 0.
For 𝑖 with 0 ≤ 𝑖 < 𝜎, with Equation (1) we have

𝑄′
𝑖 = 𝑄𝑖 +

𝑛−1

∑
𝑘=0

𝐸𝑘,𝑖 ⋅ 𝐹 ′
𝑘 ⋅ 𝐺′

𝑘 = 𝑄𝑖 +
𝑛−1

∑
𝑘=0

𝜆𝑘,𝑛−𝑖−1 ⋅ 𝐹 ′
𝑘 ⋅ 𝐺′

𝑘 = 𝑄𝑖 + ℎ′
𝑛−𝑖−1.

The shares of the error propagation polynomial 𝝆(𝑥) are thus (ℎ′
𝑛−1, … , ℎ′

𝑛−𝜎, 0, … , 0).
It is easy to see that this lemma implies the correctness of our construction.

Lemma 15. Algorithm 4 with ℓ(𝜑0,𝜑1)+
𝑖,𝑗 (⋅, ⋅) is correct for all two-input instantiations of

Table 5 for 𝑛 > 2𝑑 + 𝜎 when using polynomials of degree 𝑑.

Proof. Recall that ℓ(𝜑0,𝜑1)+
𝑖,𝑗 (𝐹 ′

𝑖 , 𝐺′
𝑖) = ℓ(𝜑0,𝜑1)

𝑖,𝑗 (𝐹 ′
𝑖 , 𝐺′

𝑖)+𝐸𝑖,𝑗 ⋅𝐹 ′
𝑖 ⋅𝐺′

𝑖 is the version including
the error propagating term. For the (𝜑0, 𝜑1)+-gadget, we rely on the correctness proof
for the (𝜑0, 𝜑1)-gadget in Lemma 9, therefore, it remains to prove that the added error
propagation terms 𝐸𝑖,𝑗 ⋅ 𝐹 ′

𝑖 ⋅ 𝐺′
𝑖 do not change the outcome as long as the inputs that share
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the two polynomials f ′ and g′ are unfaulted. As can be seen in Lemma 14, the value added
to a share is generated by the sum over the error propagation terms and results in either
ℎ′

𝑛−𝑗−1 or zero depending on the index 𝑗 of the share. Since f ′ and g′ are not faulted, they
are both of degree 𝑑 and h′ is thus of degree at most 2𝑑. Due to the construction of the
error propagation terms, only the coefficients between ℎ′

𝑛−1 and ℎ′
𝑛−𝜎 are added. Due to

𝑛 > 2𝑑 + 𝜎, we know 𝑛 − 𝜎 > 2𝑑. Hence, all added coefficients are zero and the output is
thus correct.

In the next segment, we give a security analysis for the case that the attacker introduced
faults into the computation. To do so, we follow the approach described in [BEF+23].
First, we prove that, given a faulty pair of input polynomials, if no fault is induced in the
gadget, the output polynomial will with high probability also be faulty. Then, faults in
the gadget are considered and we will show that all of those faults can be modeled with
faults in the input or the output shares. Combining these aspects shows that our gadgets
are fault robust and, due to the analysis of the previous section, this allows us to conclude
the security against combined attackers.

Faulted inputs without faults in the gadget In the following lemma, we consider the
scenario where at least one of the input polynomials f ′ or g′ is faulted, i.e., at least one of
f ′ ≠ f or g′ ≠ g does hold. We also assume that no faults are introduced by the attacker
during the computation.

Lemma 16. Let (𝐹 ′
𝑖 )𝑖∈[𝑛] , (𝐺′

𝑖)𝑖∈[𝑛] denote the input sharings of the two-input error
propagation (𝜑0, 𝜑1)+-gadget of Table 5 and let (𝑄′

𝑖)𝑖∈[𝑛] be the output sharing. If 𝑛 ≥
𝑑 + 𝜎 + 1, 𝑛 > 2𝑑 and the polynomials have a degree 𝑑, then at least one of the input
polynomials is invalid due to the insertion of at most 𝜎 faults affecting 𝜔 ≤ 𝜎 many share
indices, and no faults are introduced during the computation of the gadget, either the faults
are ineffective meaning q′ = q or the coefficients 𝑞′

𝑛−𝜔+1, 𝑞′
𝑛−𝜔+2, …, 𝑞′

𝑛 are uniformly and
independent randomly distributed elements of 𝔽. In the case of a multiplication gadget,
one of these elements is guaranteed to be non-zero.

Proof. For the output polynomial to be faulty, the error propagation polynomial 𝝆(𝑥)
should have a degree higher than 𝑑. Using Lemma 13, it is sufficient to show at least one
of the added coefficients ℎ′

𝑗 is non-zero. At the same time, if all of these coefficients are
zero, the error propagation polynomial itself would be zero. Note that the faulty product
polynomial h′ is the sum of the original product polynomial and its own error polynomial
𝜻𝐡, i.e., h′(𝑥) = f ′(𝑥) ⋅ g′(𝑥) = h(𝑥) + 𝜻𝐡(𝑥). The coefficients of h′(𝑥) are thus computed
by

𝑉 −1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐻′
0

⋮
𝐻′

𝜎−1
𝐻′

𝜎
⋮

𝐻′
𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝑉 −1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐻0
⋮

𝐻𝜎−1
𝐻𝜎
⋮

𝐻𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑍𝐻
0
⋮

𝑍𝐻
𝜎−1
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ0
⋮

ℎ2𝑑
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜁ℎ
0
⋮

𝜁ℎ
2𝑑

𝜁ℎ
2𝑑+1

⋮
𝜁ℎ

𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ′
0
⋮

ℎ′
2𝑑

ℎ′
2𝑑+1
⋮

ℎ′
𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

For 𝑛 − 𝜎 ≤ 𝑗 < 𝑛, this gives ℎ′
𝑗 = 𝜁ℎ

𝑗 . We thus have the following equation system for the
last 𝜎 coefficients

𝜆0,𝑛−𝜎𝑍𝐻
0 + 𝜆1,𝑛−𝜎𝑍𝐻

1 + … + 𝜆𝜎−1,𝑛−𝜎𝑍𝐻
𝜎−1 = 𝜁ℎ

𝑛−𝜎

⋮ ⋮
𝜆0,𝑛−1𝑍𝐻

0 + 𝜆1,𝑛−1𝑍𝐻
1 + … + 𝜆𝜎−1,𝑛−1𝑍𝐻

𝜎−1 = 𝜁ℎ
𝑛−1.



28 Polynomial sharings on two secrets: Buy one, get one free

Since the support points 𝛼𝑖 are pairwise independent, the columns of the submatrix

̂𝑉 −1 = ⎛⎜
⎝

𝜆0,𝑛−𝜎 𝜆1,𝑛−𝜎 … 𝜆𝜎−1,𝑛−𝜎
⋮ ⋮ ⋱ ⋮

𝜆0,𝑛−1 𝜆1,𝑛−1 … 𝜆𝜎−1,𝑛−1

⎞⎟
⎠

of the inverse 𝑉 −1 are by construction [MS58] linearly independent. Hence, ̂𝑉 −1 has full
rank.

Multiplication: For a multiplication gadget, this property has the following very useful
implication: The error propagation term mirrors the computation done by the gadget
exactly. Hence, 𝝆(𝑥) and 𝜻𝐡(𝑥) directly depend on the same values 𝑍𝐻

𝑖 . Thus, if
𝑍𝐻

𝑖 = 0 for all 0 ≤ 𝑖 < 𝜎, we know that the product polynomial q′ equals the
unfaulted one q, as

q′(𝑥) = q(𝑥) + 𝝆(𝑥) = q(𝑥) = h′(𝑥) = h(𝑥) + 𝜻𝐡(𝑥) = h(𝑥).

Consequently, this gives us perfect security for the multiplication gadgets as injected
faults either can be identified due to an increased degree of the output sharing or
the faults become ineffective, i.e., they lead to the same output as their faulted
equivalent.

Other gadgets: For other non-linear gadgets that do not compute a multiplication op-
eration, the connection between the error propagation polynomial 𝝆(𝑥) and error
polynomial 𝜻𝐡(𝑥) is not as strong unfortunately. Furthermore, such general (𝜑0, 𝜑1)-
gadgets might not even have any ineffective faults and thus allowing the adversary
to influence the error propagation terms in such a way that the output might be a
valid sharing of the wrong value.
To show that this can only happen very rarely, we will now analyze the probability
that an adversary can set all necessary 𝑍𝐻

𝑖 to zero. In our multiplicative error
propagation, 𝑍𝐻

𝑖 can be concretely computed by

𝐻′
𝑖 = 𝐹 ′

𝑖 ⋅ 𝐺′
𝑖 = (𝐹𝑖 + 𝑍𝐹

𝑖 ) ⋅ (𝐺𝑖 + 𝑍𝐺
𝑖 ) = 𝐹𝑖 ⋅ 𝐺𝑖 + 𝐹𝑖 ⋅ 𝑍𝐺

𝑖 + 𝑍𝐹
𝑖 ⋅ 𝐺𝑖 + 𝑍𝐹

𝑖 ⋅ 𝑍𝐺
𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=̂𝑍𝐻
𝑖

,

where 𝑍𝐹
𝑖 and 𝑍𝐺

𝑖 are zero for all 𝑖 ≥ 𝜎.
To zero out 𝑍𝐻

𝑖 , the attacker needs to choose 𝑍𝐹
𝑖 and 𝑍𝐺

𝑖 such that

0 != 𝐹𝑖 ⋅ 𝑍𝐺
𝑖 + 𝑍𝐹

𝑖 ⋅ 𝐺𝑖 + 𝑍𝐹
𝑖 ⋅ 𝑍𝐺

𝑖 . (2)

As the adversary is non-adaptive, they have to choose the respective faults 𝑍𝐹
𝑖 and

𝑍𝐺
𝑖 before the run of the computation. Hence, due to the uniform distribution of 𝐹𝑖

and 𝐺𝑖, if at least one of 𝑍𝐹
𝑖 or 𝑍𝐺

𝑖 is non-zero, the probability that 𝑍𝐻
𝑖 = 0 for a

given 𝑖 is |𝔽|−1, as there are no non-trivial zero divisors in fields:

𝑍𝐹
𝑖 𝑍𝐺

𝑖 reduced eq. (2) probability
= 0 = 0 0 = 0 1
= 0 ≠ 0 0 = 𝐹𝑖 |𝔽|−1

≠ 0 = 0 0 = 𝐺𝑖 |𝔽|−1

≠ 0 ≠ 0 𝐺𝑖 = − 𝐹𝑖⋅𝑍𝐺
𝑖

𝑍𝐹
𝑖

− 𝑍𝐺
𝑖 |𝔽|−1

Because the number of indices 𝑖 where 𝑍𝐹
𝑖 or 𝑍𝐺

𝑖 is non-zero is 𝜔, the probability
that 𝑍𝐻

𝑖 = 0 holds for all 𝑖 is at most |𝔽|−𝜔. This concludes the proof of the lemma,
as it implies that the coefficients 𝑞′

𝑛−𝜔+1, … , 𝑞′
𝑛 are uniformly distributed.
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Non-faulted inputs with faults in the gadget In the following lemma, we consider the
scenario where none of the input polynomials f ′ or g′ is faulted, i.e., we have f ′ = f and
g′ = g, but a fault is introduced by the attacker during the computation. To analyze
this situation, we make use of the notion of fault invariance introduced in Definition 5,
which guarantees that all faults introduced during the computation by the attacker can be
pushed either into the inputs or the outputs of the gadget.

Lemma 17. All gadgets introduced in Table 1 are fault invariant with respect to ℱ+.

Proof. As all faults in ℱ+ are additive faults, linear and affine operations are trivially
fault invariant. A close inspection of the (𝜑0, 𝜑1)-gadget presented in Algorithm 4 reveals
that the only non-affine operations can appear in the calculation of ℓ(𝜑0,𝜑1)

𝑖,𝑗 (𝐹𝑖, 𝐺𝑗). But,
all concrete instantiations in Table 1 share the property that they are the only non linear
operation in the gadget. Hence, all faults before the operation of ℓ(𝜑0,𝜑1)

𝑖,𝑗 can be moved to
the input of the gadget and all faults after the operation of ℓ(𝜑0,𝜑1)

𝑖,𝑗 can be moved to the
output of the gadget as in [BEF+23]. Formally, moving the linear transformation of an
additive fault 𝑒 on an intermediate value (e.g. (𝑎 + 𝑏) with input values 𝑎 and 𝑏) such that
the fault ((𝑎 + 𝑏) + 𝑒) can be described as a fault on the input ((𝑎 + 𝑒) + 𝑏). Hence, the
intermediate fault can be moved to the input 𝑎. The same holds for outputs.

Faulted inputs with faults in the gadget Finally, we need to consider the most general
scenario where the input polynomials f ′ and g′ might be faulted and faults might be
introduced during the computation. The main idea to analyze this situation is to combine
Lemma 16 and the fault resilience of the encoding to show that an adversary cannot make
the faulty output sharing valid again by faulting the shares (with high probability).

Lemma 18. The two-input (𝜑0, 𝜑1)+-gadgets of Table 5 are 𝜎-f-robust.

Proof. Let (𝑄′
𝑖)𝑖∈[𝑛] be the invalid output sharing of a two-input (𝜑0, 𝜑1)+-gadget of

Table 5 where 𝜎1 faults were injected on previous computations and inputs, and 𝜎2 faults
are injected in the internal computation.

Lemma 16 proves that the standalone 𝜎1 input faults are either ineffective or cause
an error polynomial such that 𝑞′

𝑛−𝑠+1, 𝑞′
𝑛−𝑠+2, …, 𝑞′

𝑛 are uniformly and independent
randomly distributed elements of 𝔽. If the faults are ineffective, the first property of
𝜎-f-robust (Def. 3 (i)) is fulfilled. Else, using the notation of Definition 3, we have
(𝑦𝑖 + 𝑤′

𝑖)𝑖∈[𝑛] ← 𝑇 [G] ((𝑥𝑖 + 𝑣𝑖)𝑖∈[𝑛], (𝑥′
𝑖 + 𝑣′

𝑖)𝑖∈[𝑛]) such that (𝑤′
0, … , 𝑤′

𝑛−1) is produced
by the following random experiment: A polynomial 𝑝𝑤′ ∈ 𝔽[𝑥] is chosen such that
the coefficients of 𝑥𝑑+1, 𝑥𝑑+2, …, 𝑥𝑛−𝑡2 are drawn uniformly at random from 𝔽. Then,
𝑤′

𝑖 = 𝑝𝑤′(𝛼𝑖) for some pairwise different points 𝛼𝑖 ∈ 𝔽 ∖ {0}. Hence, the second property
of 𝜎-f-robust (Def. 3 (ii)) is fulfilled in this case.

It remains to prove that the 𝜎2 intermediate faults do not lead to any problems. We
will show that they fulfill the second property of (Def. 3 (i)) such that

(𝑦𝑖 + 𝑤𝑖 + 𝑤′
𝑖)𝑖∈[𝑛] ← 𝑇 [G] ((𝑥𝑖 + 𝑣𝑖)𝑖∈[𝑛], (𝑥′

𝑖 + 𝑣′
𝑖)𝑖∈[𝑛])

with weight(𝑤) ≤ 𝜎2. The essential observation is that each fault (except the input faults)
can only affect one single output share, e.g. 𝑄𝑖 = 𝑦𝑖 + 𝑤𝑖 + 𝑤′

𝑖. Consequently there are at
most 𝜎2 output shares in (𝑄′

𝑖)𝑖∈[𝑛] that differ from (𝑦𝑖 + 𝑤′
𝑖)𝑖∈[𝑛]. In other words, the final

output of the internally faulted gadget can be described with (𝑦𝑖 + 𝑤𝑖 + 𝑤′
𝑖)𝑖∈[𝑛] such that

weight(𝑤) ≤ 𝜎2, This concludes the proof as 𝑤′ is either zero or randomized by the input
faults, and the weight of 𝑤 is restricted by 𝜎2.
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Table 5: Instantiations of Algorithm 4 to protect the gadgets against active faults. The
input sharings are (𝐹𝑖)𝑖∈[𝑛] and (𝐺𝑖)𝑖∈[𝑛] and embed the secrets 𝑠0, 𝑠1 and 𝑠′

0, 𝑠′
1, respectively.

The output sharing is (𝑄𝑖)𝑖∈[𝑛], and 𝑎, 𝑏 ∈ {0, 1}. If ℓ(𝜑0,𝜑1)+
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) does not use (𝐺𝑖)𝑖∈[𝑛],

we consider the gadget as a gadget with only one input sharing.

(𝜑0, 𝜑1)+ ℓ(𝜑0,𝜑1)+
𝑖,𝑗 (𝐹𝑖, 𝐺𝑖) Output

(𝑠𝑎, 𝑠′
𝑏)+ 𝜆𝑖,𝑎⋅𝑑𝐹𝑖 + 𝜆𝑖,𝑏⋅𝑑𝛼𝑑

𝑗 𝐺𝑖 + 𝐸𝑖,𝑗𝐹𝑖𝐺𝑖 𝑞0 = 𝑓𝑎⋅𝑑 𝑞𝑑 = 𝑔𝑏⋅𝑑

(𝑠0, 𝑠1)+ (𝜆𝑖,0 + 𝜆𝑖,𝑑𝛼𝑑
𝑗 + 𝐸𝑖,𝑗)𝐹𝑖 𝑞0 = 𝑓0 𝑞𝑑 = 𝑓𝑑

(𝑠0 ⋅ 𝑠′
0, 0)+ (𝜆𝑖,0 + 𝐸𝑖,𝑗)𝐹𝑖𝐺𝑖 𝑞0 = 𝑓0 ⋅ 𝑔0 𝑞𝑑 = 0

(0, 𝑠1 ⋅ 𝑠′
1)+ (𝜆𝑖,2𝑑𝛼𝑑

𝑗 + 𝐸𝑖,𝑗)𝐹𝑖𝐺𝑖 𝑞0 = 0 𝑞𝑑 = 𝑓𝑑 ⋅ 𝑔𝑑

(𝑠0 ⋅ 𝑠′
0, 𝑠1 ⋅ 𝑠′

1)+ (𝜆𝑖,0 + 𝜆𝑖,2𝑑𝛼𝑑
𝑗 + 𝐸𝑖,𝑗)𝐹𝑖𝐺𝑖 𝑞0 = 𝑓0 ⋅ 𝑔0 𝑞𝑑 = 𝑓𝑑 ⋅ 𝑔𝑑

5.3 One-Input Non-Linear Gadgets

We have to also show that the only introduced one-input gadget (𝑠0, 𝑠1) has an error
propagating equivalent (𝑠0, 𝑠1)+.

Lemma 19. The one-input (𝜑0, 𝜑1)+-gadgets of Table 5 are 𝜎-f-robust.

The proof is similar to the one for two-input gadgets as they are similar to a multi-
plication gadget with constant second input 𝐺𝑖 = 1. We briefly sketch the proof in the
following.

Proof sketch. Note that the proof of Lemma 18 also works for one-input non-linear gadgets
if we set the fault vector 𝑣′ to zero and all 𝐺𝑖 of the second input to one. The reason
is that the proof of Lemma 18 does not use the properties of the public factors ℓ(𝜑0,𝜑1)+

𝑖,𝑗
(Table 5), and the structure of the multiplication is consequently the same with 𝐺𝑖 = 1. It
only remains to prove Lemma 16 for one-input gadgets. If at most 𝜎 faults were induced
into the input polynomial f(𝑥) of the gadget, the respective error polynomial 𝜻(𝑥) is either
a zero polynomial or has a degree of at least 𝑛 − 𝜎. The case of it being equal to zero can
be ignored in the further analysis, as this gives f ′(𝑥) = f(𝑥) and the correctness of the
gadget thus implies the robustness. Otherwise, we consider the error propagation term
𝐸𝑖,𝑗 ⋅ 𝐹 ′

𝑖 with 𝐸𝑖,𝑗 as defined above. The uniform distribution of the higher coefficients
𝑞′

𝑛−𝜔+1, 𝑞′
𝑛−𝜔+2, …, 𝑞′

𝑛 follows from the uniform distribution of 𝐹𝑖. Note that the input
polynomials also include the freshly drawn coefficients from the zero encoding and are thus
randomized. The correctness follows with the same argument as before. Because of its
degree, it again suffices to only consider the highest 𝜎 coefficients and setting h′(𝑥) = f ′(𝑥)
allows to adapt the previously stated lemmas to also hold for this gadget. Note that
because here 𝑍𝐻

𝑖 = 𝑍𝐹
𝑖 and f ′(𝑥) is invalid, at least one of the highest 𝜎 coefficients of

h′(𝑥) in Lemma 16 must be non-zero.

It follows that all gadgets introduced in Table 5 can be easily changed to propagate at
most 𝜎 errors with high probability.
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5.4 LaOla Gadget

It remains to analyze the LaOla multiplication where its instantiation ℓ(∼)
𝑖,𝑗 (𝐹𝑖) is called for

the two input sharings (𝐹𝑖)𝑖∈[𝑛] , (𝐺𝑖)𝑖∈[𝑛] separately. Again, the approach as well as the
necessary proofs is very similar to the ones in Section 5.2 and Section 5.3. We thus only
provide a sketch:

Proof sketch. As in Section 5.3, we will define ℓ(∼)+
𝑖,𝑗 (𝐹𝑖) to have the error propagation term

𝐸𝑖,𝑗 ⋅ 𝐹𝑖. Hence, we have ℓ(∼)+
𝑖,𝑗 (𝐹𝑖) = (𝜆𝑖,0 + 𝜆𝑖,𝑑𝛼𝑑/2

𝑗 + 𝐸𝑖,𝑗)𝐹𝑖. In the computation of
Algorithm 5 with the adjusted instantiation, let the outputs of the SplitRed gadget be
( ̃𝐹 ′

𝑖 )
𝑖∈[𝑛]

, ( ̃𝐹 ″
𝑖 )

𝑖∈[𝑛]
, ( ̃𝐺′

𝑖)𝑖∈[𝑛]
, and ( ̃𝐺″

𝑖 )
𝑖∈[𝑛]

which describe the underlying polynomials

∑ ̃𝑓 ′
𝑖 𝑥𝑖, ∑ ̃𝑓″

𝑖 𝑥𝑖, ∑ ̃𝑔′
𝑖𝑥

𝑖, and ∑ ̃𝑔″
𝑖 𝑥𝑖. Because of the added error propagation term, we

also have
̃𝐹 ′
𝑖 + ̃𝐹 ″

𝑖 = {
𝐹 ′

𝑖 + 𝐹 ″
𝑖 + 𝑓𝑛−𝑖−1 if 0 ≤ 𝑖 < 𝜎,

𝐹 ′
𝑖 + 𝐹 ″

𝑖 if 𝜎 ≤ 𝑖 ≤ 𝑛 − 1.

The same structure also holds for ̃𝐺′
𝑖 + ̃𝐺″

𝑖 with ̃𝐹 ′
𝑖 + ̃𝐹 ″

𝑖 and ̃𝐺′
𝑖 + ̃𝐺″

𝑖 being the output
shares of the unmodified SplitRed gadget. Since the LaOla multiplication now computes
their product, it follows that

( ̃𝐹 ′
𝑖 + ̃𝐹 ″

𝑖 ) ⋅ ( ̃𝐺′
𝑖 + ̃𝐺″

𝑖 ) = {
(𝐹 ′

𝑖 + 𝐹 ″
𝑖 ) ⋅ (𝐺′

𝑖 + 𝐺″
𝑖 ) + ℎ𝑛−𝑖−1 if 0 ≤ 𝑖 < 𝜎,

(𝐹 ′
𝑖 + 𝐹 ″

𝑖 ) ⋅ (𝐺′
𝑖 + 𝐺″

𝑖 ) if 𝜎 ≤ 𝑖 ≤ 𝑛 − 1,

where ℎ𝑘 denotes the 𝑘-th coefficient of the possibly faulty polynomial h = f ⋅ g.
The correctness of using this instantiation follows with the same argument as in

Lemma 15, while the proof of its robustness is similar to Lemma 18.

5.5 Combined Attacks
The previous sections considered attacks against purely passive probing attacks (Section 4)
or purely active faulting attacks (Section 5.2, Section 5.3, and Section 5.4). Here, we
consider combined attackers that can simultaneously perform probing attacks and faulting
attacks. Using combined attacks, an adversary can try to lead the computation to a
wrong result or to break the secrecy of the protocol. In [BEF+23], it was rigorously
shown that standalone leakage and fault resilient constructions do not imply resilience
against combined attacks. We follow their approach and use their observation that those
constructions remain secure against combined attacks when they are fault invariant as
well.

Theorem 1. All gadgets constructed in this work are |𝔽|𝜔−𝜎−1-secure against (𝑡, 𝜔)-
attackers as defined in Section 2.1 with 𝜔 ≤ 𝜎.

Proof. Lemma 18, on the one hand, shows that all constructions are 𝜎-fault-robust. On
the other hand, Lemma 8 and Lemma 11 show that the presented gadgets are (S)NI.
Hence, all gadgets are secure against standalone probing and faulting attacks. Furthermore,
Lemma 17 shows that all constructions are fault invariant, and consequently, Lemma 1
implies that they are fault-resilient (S)NI as well. Finally, Lemma 2 allows us to conclude
our theorem about the security of our constructions.

In essence, we can leverage the same constructions as presented in [BEF+23] to
concurrently compute two functions, requiring only minor adjustments to the public
𝜆-parameters. This improvement only incurs the cost of one additional share, which almost
halves both the run time and the cost of randomness.
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6 Conclusion
In this paper, we introduced the concept of double sharings, i.e., embedding two different
secrets into a single polynomial sharing. After we proved that embedding a second secret
only requires to add another single share to guarantee perfect security, we studied how
to extend existing single-secret gadgets to the double-sharing setting. We first focus on
gadgets using a BGW-like approach of local computation followed by a degree reduction and
show how these gadgets can easily support computations on double sharings. Afterwards,
we showed how to extend the recent LaOla multiplication gadget to also work on double
sharings. After studying the security of these gadgets against purely passive attacks, we
showed how to extend them by introducing error propagation polynomials to also prevent
active and combined attacks.

Our construction shows how one can drastically improve the cost (computational and
randomness) of existing solutions using polynomial sharing when considering parallel
computations and still guarantee security even against very strong combined attackers.
The only overhead compared to the single-secret setting is the fact that we need to increase
the number of shares by one.

We only presented the foundational work of double sharing in this paper. A very
interesting follow-up work upon this would be to perform a practical evaluation of our
method, applied to a real-world scenario. As we also guarantee security against combined
attackers, this would also require to develop a meaningful simulation of such attackers to
obtain relevant experimental results.

In this work, we only consider 𝑡-probing attackers. However, as discussed in [BEF+23],
the LaOla gadget also guarantees security in the region probing model [DDF19]. As our
analysis basically mirrors the original analysis of LaOla, the corresponding double-sharing
gadget will also be secure in the region probing model.

Another interesting question is whether one can extend our approach beyond two
secrets. Due to the special properties of the lowest and highest coefficients of polynomials,
we were able to easily extend existing gadgets. Hence, such an extension seems to require
the development of completely new gadgets.
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A Proofs for Section 3 (Security of Two-Secret Sharing)
Proof of Lemma 5. Remember that 𝒫𝑑→𝑠 is the random variable on 𝔽𝑑 describing the
polynomial used in the computation of Share𝑑(𝑑 → 𝑠) by the random choice of the
coefficients 𝑎0, … , 𝑎𝑑−1. Let (𝒜0, … , 𝒜𝑑−1) be the random variable on 𝔽𝑑 describing these
coefficients 𝑎0, … , 𝑎𝑑−1. Clearly, {𝒜𝑖}𝑖∈{0,…,𝑑−1} is a set of uniform independent random
variables independent from 𝑠.

We will first show (i) and thus need to prove that {𝒫𝑑→𝑠(𝛼𝑖)}𝑖∈𝐼 is a set of uniform
independent random variables independent from 𝑠 for any subset 𝐼 ⊆ {0, … , 𝑛 − 1} with
|𝐼| ≤ 𝑑. Without loss of generality, we only show this for |𝐼| = 𝑑, as this clearly also
implies the lemma for |𝐼| < 𝑑. To prove (i), we show that there is a bijection between the
outcomes of {𝒫𝑑→𝑠(𝛼𝑖)}𝑖∈𝐼 and {𝒜𝑖}𝑖∈{0,…,𝑑−1}, which directly implies the result.

The proof of (i) is very similar to the one for Shamir’s secret sharing given in Lemma 4.
The only difference is that instead of considering Vandermonde(0, 𝛼𝐼), we need to consider
a slightly different matrix. Let 𝑉 ′ = Vandermonde𝑑(𝛼𝐼) be the 𝑑 × (𝑑 + 1)-Vandermonde
matrix and 𝑉 be the (𝑑 + 1) × (𝑑 + 1)-matrix where we add a first row of (0, 0, … , 0, 1)
to 𝑉 ′. Note that 𝑉 is not a Vandermonde matrix. Nevertheless, it is still invertible:
Using the Laplace expansion, we expand along the first row. The resulting determinant is
(−1)𝑑+2 ⋅ det(Vandermonde(𝛼𝐼)) and thus not zero, as all 𝛼𝑖 are distinct. Clearly, we have
𝑉 ⋅ ((𝒜𝑖)𝑖∈{0,…,𝑑−1}, 𝑠) = ((𝒫0→𝑠(𝛼𝑖), 𝑠)𝑖∈𝐼), as the first row of the matrix 𝑉 is of the form
(0, 0, … , 0, 1). Hence, the described linear transformation is a bijection on 𝔽𝑑+1. In other
words, for any outcome ((p𝑑→𝑠(𝛼𝑖))𝑖∈𝐼, 𝑠) exists exactly one outcome ((𝑎0, … , 𝑎𝑑−1), 𝑠)
such that

((p𝑑→𝑠(𝛼𝑖))𝑖∈𝐼, 𝑠) = 𝑉 ⋅ ((𝑎0, … , 𝑎𝑑−1), 𝑠) .

Since 𝑉 is the identity function in the last coordinate, it follows that for each 𝑠′, there is
also a bijection 𝑉𝑠′ on 𝔽𝑑 with

(p𝑑→𝑠(𝛼𝑖))𝑖∈𝐼 = 𝑉𝑠′ ⋅ (𝑎0, … , 𝑎𝑑−1) .

As {𝒜𝑖}𝑖∈{0,…,𝑑−1} is a set of uniform independent random variables independent from 𝑠,
so is {𝒫𝑑→𝑠(𝛼𝑖)}𝑖∈𝐼.

From Lemma 3, it follows that (ii) holds true since again the polynomial can be
reconstructed, directly giving the last coefficient 𝑎𝑑 = 𝑠.
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B The SplitRed gadget

Algorithm 6: SplitRed
Input: Shares of 𝑓0, 𝑓𝑑 as (𝐹𝑖)𝑖∈[𝑛].
Result: Shares of 𝑓 ′

0, 𝑓 ′
𝑑/2 as (𝐹 ′

𝑖 )𝑖∈[𝑛] and shares of 𝑓″
0 , 𝑓″

𝑑/2 as (𝐹 ″
𝑖 )𝑖∈[𝑛] such that

𝑓0 = 𝑓 ′
0 + 𝑓″

0 and 𝑓𝑑 = 𝑓 ′
𝑑/2 + 𝑓″

𝑑/2.
1 initialize (𝐺𝑗

𝑖)𝑖∈[𝑛]
, (Φ𝑗

𝑖)𝑖∈[𝑛]
, (𝐹 ′

𝑖 )𝑖∈[𝑛] , (𝐹 ″
𝑖 )𝑖∈[𝑛]

2 forall 𝑗 ← 0 to 𝑛
2

− 1 do
3 ( ̂𝐺𝑗

𝑖)𝑖∈[𝑛]
← ZEnc𝑑

𝑛

4 forall 𝑗 ← 0 to 𝑛
2

− 1 do

5 ( ̃𝐺𝑗
𝑖)𝑖∈[𝑛]

← ZEnc
𝑑
2
𝑛 ; (𝐺𝑗

𝑖)𝑖∈[𝑛]
← ( ̃𝐺𝑗

𝑖)𝑖∈[𝑛]
+ ( ̂𝐺𝑗

𝑖)𝑖∈[𝑛]
6 forall 𝑗 ← 0 to 𝑛

2
− 1 do

7 forall 𝑖 ← 0 to 𝑛 − 1 do
8 Φ′𝑗

𝑖 ← ℓ(∼)
𝑗,𝑖 (𝐹𝑗)

9 forall 𝑗 ← 0 to 𝑛
2

− 1 do
10 (Φ𝑗

𝑖)𝑖∈[𝑛]
← (Φ′𝑗

𝑖 )
𝑖∈[𝑛]

+ (𝐺𝑗
𝑖)𝑖∈[𝑛]

11 forall 𝑗 ← 0 to 𝑛
2

− 1 do
12 (𝐹 ′

𝑖 )𝑖∈[𝑛] ← (𝐹 ′
𝑖 )𝑖∈[𝑛] + (Φ𝑗

𝑖)𝑖∈[𝑛]
13 forall 𝑗 ← 0 to 𝑛

2
− 1 do

14 ( ̃𝐺
𝑗+ 𝑛

2
𝑖 )

𝑖∈[𝑛]
← ZEnc

𝑑
2
𝑛 ; (𝐺

𝑗+ 𝑛
2

𝑖 )
𝑖∈[𝑛]

← ( ̃𝐺𝑗
𝑖)𝑖∈[𝑛]

− ( ̂𝐺𝑗
𝑖)𝑖∈[𝑛]

15 forall 𝑗 ← 0 to 𝑛
2

− 1 do
16 forall 𝑖 ← 0 to 𝑛 − 1 do
17 Φ

′𝑗+ 𝑛
2

𝑖 ← ℓ(∼)
𝑗+ 𝑛

2 ,𝑖(𝐹𝑗+ 𝑛
2
)

18 forall 𝑗 ← 0 to 𝑛
2

− 1 do

19 (Φ
𝑗+ 𝑛

2
𝑖 )

𝑖∈[𝑛]
← (Φ

′𝑗+ 𝑛
2

𝑖 )
𝑖∈[𝑛]

+ (𝐺
𝑗+ 𝑛

2
𝑖 )

𝑖∈[𝑛]
20 forall 𝑗 ← 0 to 𝑛

2
− 1 do

21 (𝐹 ″
𝑖 )𝑖∈[𝑛] ← (𝐹 ″

𝑖 )𝑖∈[𝑛] + (Φ
𝑗+ 𝑛

2
𝑖 )

𝑖∈[𝑛]
22 return (𝐹 ′

𝑖 )𝑖∈[𝑛] , (𝐹 ″
𝑖 )𝑖∈[𝑛]
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