
Attribute-Based Threshold Issuance Anonymous
Counting Tokens and Its Application to
Sybil-Resistant Self-Sovereign Identity

Reyhaneh Rabaninejad1, Behzad Abdolmaleki2, Sebastian Ramacher3, Daniel
Slamanig4, and Antonis Michalas1,5

1 Tampere University, Finland
{reyhaneh.rabbaninejad,antonios.michalas}@tuni.fi

2 University of Sheffield, UK
behzad.abdolmaleki@sheffield.ac.uk

3 AIT Austrian Institute of Technology, Austria
sebastian.ramacher@ait.ac.at

4 Research Institute CODE, Universität der Bundeswehr München, Germany
daniel.slamanig@unibw.de

5 Research Institute of Sweden (RISE), Sweden

Abstract. Self-sovereign identity (SSI) systems empower users to (anony-
mously) establish and verify their identity when accessing both digital
and real-world resources, emerging as a promising privacy-preserving so-
lution for user-centric identity management. Recent work by Maram et
al. proposes the privacy-preserving Sybil-resistant decentralized SSI sys-
tem CanDID (IEEE S&P 2021). While this is an important step, notable
shortcomings undermine its efficacy. The two most significant among
them being the following: First, unlinkability breaks in the presence of
a single malicious issuer. Second, it introduces interactiveness, as the
users are required to communicate each time with issuers to collect cre-
dentials intended for use in interactions with applications. This contra-
dicts the goal of SSI, whose aim is to give users full control over their
identities. This paper first introduces the concept of publicly verifiable
attribute-based threshold anonymous counting tokens (tACT). Unlike
recent approaches confined to centralized settings (Benhamouda et al.,
ASIACRYPT 2023), tACT operates in a distributed-trust environment.
Accompanied by a formal security model and a provably secure instan-
tiation, tACT introduces a novel dimension to token issuance, which,
we believe, holds independent interest. Next, the paper leverages the
proposed tACT scheme to construct an efficient Sybil-resistant SSI sys-
tem. This system supports various functionalities, including threshold
issuance, unlinkable multi-show selective disclosure, and non-interactive,
non-transferable credentials that offer constant-size credentials. The pro-
posed construction is backed by rigorous security definitions and proofs.
Finally, our benchmark results show an efficiency improvement in our
construction when compared to CanDID all while accommodating a
greater number of issuers and additionally reducing to a one-round pro-
tocol that can be run in parallel with all issuers.

Keywords: Anonymous counting tokens; threshold issuance; self-sovereign
identity; Sybil-resistance; unlinkability

1 Introduction

Digital identity encompasses online information associated with individuals,
businesses, or entities, enabling them to establish and verify their identity in
both digital and real-world resources. Currently, digital identities are primarily
managed through centralized and federated identity management systems. In
centralized identity management, organizations store and control all digital iden-
tities within a central server. This typically involves using identifiers like email
or username. Federated identity systems rely on single sign-on (SSO) and allow
users to utilize a single set of login credentials (from some centralized provider),
such as those provided by Facebook or Google, to access multiple applications.
This server-controlled identity approach has led to a plethora of catastrophic
breaches such as Yahoo’s enormous user account leakage in 2013 [yah17], Face-
book’s data breach in 2018 [fac18] and the Microsoft breach in 2023 [ms23] to
just name a few.

As a result, there has been an increasing push towards self-sovereign identity
(SSI) or decentralized identity systems, leading to a paradigm shift in digital
identity management. In this approach, users are liberated from the constraints
of a single centralized provider and maintain complete sovereignty over how
their identity information is utilized when interacting with online applications
and services, thus ensuring they have the ultimate say on how their personal
data is shared and used.

Self-Sovereign Identity. In this setting which is also referred to as decentral-
ized identity (DID), users maintain a collection of credentials or decentralized
identifiers and decide on their own which information should be revealed to each
party. This paradigm shift has sparked numerous initiatives in recent years,
with the aim of developing standards that can materialize the vision of self-
sovereign identity. Prominent examples include the Decentralized Identity Foun-
dation [dif20], the Decentralized Identifiers working group of W3C [W3C18], and
the Sovrin project [Sov18]. While these initiatives have made significant strides,
they have yet to address a critical requirement for many real-world systems:
Sybil-resistance, or one-person-one-vote, as a fundamental aspect of fairness. In
certain scenarios, such as Decentralized Finance (DeFi), the decision-making pro-
cess heavily relies on collecting votes from system users or stakeholders who have
made deposits within the system. Particularly in the context of Decentralized
Autonomous Organizations (DAOs) [SKP+23], governance is executed through
a series of proposals that members vote on via the blockchain. However, in such
systems, individuals with a larger possession of governance tokens often wield
more voting influence, resulting in a “one-dollar-one-vote” approach. Yet, a more
equitable approach is to adopt a “one-person-one-vote” principle, which ensures
equal power in decision-making for all users. To realize this aspiration, the es-
tablishment of a Sybil-resistant DID system becomes imperative. Such a system

2

would guarantee a single account for each individual, thereby mitigating the risks
associated with identity fraud and enabling fairer participation in decentralized
systems. Proof-of-personhood (PoP) [BKKJ+17] achieves Sybil-resistance by in-
troducing pseudonym parties as periodic in-person meetings. Pseudonym parties,
organized by various entities such as governments and non-profit organizations,
serve as a foundation for thwarting adversaries attempting Sybil attacks by veri-
fying the authenticity of individuals and establishing a connection between phys-
ical and virtual identities. Nevertheless, the idea’s practicality is challenged by
the requirement of periodic physical presence.

CanDID. Recently, Maram et al. [MMZ+21] proposed CanDID, which is a DID
system achieving Sybil-resistance in a privacy-preserving way without requir-
ing explicit provider-support. To do so, CanDID leverages oracles [ZMM+20]
to securely relay the rich attested user data present in existing authoritative
web servers. Technically, CanDID uses secure multi-party computation (MPC)
among a committee of nodes (the so-called CanDID committee) to compute a
unique value on a secret-shared deduplication attribute to achieve Sybil-resistance.
This value is stored in a table and deduplicated whenever a user requests a
new identity to avoid Sybil attacks. The basic design idea behind CanDID is
that users can port data from legacy web accounts to create credentials and
in particular a master credential (where deduplication happens). Based on this
credential, users can be issued context-based credentials for specific purposes.
Latter credentials inherit the Sybil-resistance property of the master credential,
i.e. only one credential per context is issued.

Notwithstanding its achievements, CanDID does have certain limitations:
(I) It achieves Sybil-resistance in an expensive way. More precisely, it utilzes
MPC among committee nodes on secret shared values of the deduplication at-
tribute which are shared with all committee nodes via an interactive protocol.
(II) After the deduplication and master credential issuance phases are com-
pleted, CanDID requires users to communicate with committee nodes each time
to collect context-based credentials. These credentials are intended for use in
interactions with applications. This approach also contradicts the goal of self-
sovereign identity, whose aim is to give users full control over their identities.
(III) This type of structure requires frequent (complex) interactions and makes
CanDID vulnerable to linking different transactions of a user by a malicious com-
mittee node, and thus reduces the provided privacy. (IV) Since the credentials
are not linked to any private key, if the original master credential is stolen or
sold on underground online markets, a malicious party can obtain context-based
credentials (called application-specific credentials in our work) by presenting the
stolen master credential. Consequently, the non-transferability of credentials is
at risk.

Before presenting our contributions it is important to note that CanDID
considers an identity system as well as a key recovery system. Our focus in this
paper is solely on the former as the latter approach could be directly taken from
CanDID or other recovery mechanisms adopted in Web3 [CCK+23]. Moreover,
in the identity system, CanDID considers the property of accountability, i.e. the

3

CanDID committee can screen users to identify the credentials of suspect users
(e.g. those presented on sanction lists). This is realized as a privacy-preserving
fuzzy matching via MPC, can also be adopted from CanDID, and is out of the
scope of this paper.

Concurrent and independent work. In a recent concurrent and indepen-
dent work, Crites et al. [CKS24] present an approach that avoids interaction to
introduce users to new contexts and requires no state for the issuers. The core
idea is achieved via the composition of two verifiable random functions (VRF),
cleverly leveraging them to ensure unlinkability while simultaneously linking by
pseudonym for all signatures issued within the same context. However, Crites et
al. [CKS24] only discuss the proposed Sybil-resistant “SyRA” signature for single
unique attribute representing user’s real-world identity. For attribute-based iden-
tification, they discuss in high-level that the context-based statement requested
by the verifier can be combined with anonymous attribute-based credentials to
demonstrate user attributes in a privacy-preserving way while maintaining re-
silience against Sybil attacks. Users will obtain keys for both SyRA signature
and anonymous attribute-based credentials. This allows subsequently to engage
in attribute-based identification with each transcript signed for the context re-
quested by the verifier. Notably, the lower bound for each SyRA signature gen-
eration is 12 pairing operations per attribute, necessitating repetition for each
context or, alternatively, interaction with issuers for each context, akin to Can-
DID’s methodology, where users submit a set of claims required by the context to
receive the per-user per-context key. They leave investigating a concrete efficient
design for attribute-based signatures for future work. Our approach in contrast
only needs a single per-user call to the tACT algorithm, the most resource-
intensive operation, for all attributes required across different contexts in our
DID framework (See Section 5 for the implementation results). We thus empha-
size a more practice-oriented approach for multiple private attribute credentials,
built on our new tACT component, which serves as a threshold token issuance
mechanism.

1.1 Contributions

Our contribution in this paper is twofold:

Threshold Anonymous Counting Tokens. We introduce the notion of pub-
licly verifiable attribute-based threshold issuance Anonymous Counting Token
(tACT). Anonymous Counting Tokens (ATCs), as introduced by Benhamouda
et al. in [BRS23], serve as a primitive enabling users to acquire tokens for their
chosen private messages, while allowing token issuers or verifiers to impose rate
limits on the number of tokens users can obtain or redeem per message. Notably,
the approaches proposed in [BRS23] operate within a centralized setting, where
a single entity, the issuer, handles token issuance. In contrast, we facilitate the
issuance of ACT tokens in a distributed-trust environment by introducing tACT
in a threshold setting. The proposed concept is accompanied by a rigorous for-

4

mal security model as well as an instantiation that is provably secure in this
model. We believe that the concept of tACT might be of independent interest.

DID System Design. We showcase the application of the tACT primitive,
by using it as a fundamental building block within our Sybil-resistant Self-
Sovereign Identity (S3ID) system, addressing important shortcomings identified
in CanDID. These enhancements include:

– Efficient Deduplication: Our deduplication process avoids the need for resource-
intensive MPC utilized by CanDID [MMZ+21]. Instead, it leverages the pro-
posed efficient tACT executed between a user and a group of authorized is-
suers, each potentially representing distinct entities.

– Non-interactive application-specific credential generation: Our solution elim-
inates the necessity to communicate with the issuers to collect application-
specific credentials. Here, the user locally builds application-specific creden-
tials and directly presents them to the verifier. The proposed tACT acts as
an anchor empowering users to create user-issued unique application-specific
anonymous tags to ensure the Sybil-resistance property in direct user-application
interactions.

– Unlinkability: In contrast to CanDID, where unlinkability breaks in the pres-
ence of a single malicious issuer, our architecture maintains unlinkability re-
gardless of corruption of the system entities. We also present a formal defini-
tion of strong unlinkability and prove our system security under this stronger
definition.

– Non-Transferability: The credentials issued within S3ID can only be released
by the true owner.

Figure 1 outlines a system flow of our S3ID system and lists important features
it achieves. S3ID can operate independently as a standalone service or seamlessly
integrate with other self-sovereign identity solutions.

Evaluation. Both constructions are accompanied with implementations in Rust
which is the basis for the efficency evaluation. In comparison to CanDID, we can
show that our system is more efficient while at the same time supporting more
issuers and higher security levels.

1.2 Technical Overview

Similar to CanDID, we consider a unique user attribute, like the Social Security
Number (SSN). This is used as input to a deterministic high-entropy function
and is denoted as “a”.

Master credential issuance (tACT token). The user initiates the process
by generating a Pedersen commitment cm = gr ·ua on attribute a which serves as
a blinded request to the set of N issuers, who upon reception generate partial sig-
natures. The user then gathers partial signatures generated by authorized issuers
until a threshold t out of N is reached. Then, the user generates a full unblinded

5

Privacy-preserving

Unlinkable

Non-interactive

Self-sovereign &
Non-trasnferable

Sybil-resistant
ACT verification

User generates
application credentails

Micro-credentials

Applications

Issuers

Fig. 1: S3ID system flow (right) and feature list (left).

signature by combining the collected partial signatures. This unblinded full sig-
nature effectively functions as the deterministic high-entropy representation of a
(referred to as tACT), enabling issuers to perform user deduplication. However,
a significant challenge arises when attempting to achieve public verifiability of
tACT while maintaining the desired properties of unlinkability and anonymity
of the attribute. One unsuccessful approach in achieving public verifiability in-
volves revealing a function of randomness r used in the commitment, allowing
the verifier to authenticate tACT based on the provided commitment. However,
this method introduces a vulnerability where the verifier can conduct guessing
attacks to identify the encapsulated attribute a, thus compromising anonymity.

Therefore, we adopt a different verification mechanism inspired by Thya-
garajan et al. [TBM+20], by combining threshold secret-sharing with a cut-and-
choose type of argument and utilizing the homomorphic property of the under-
lying signature. This technique allows us to prove the validity of tACT without
disclosing any information regarding the enclosed attribute a. Concretely, the
user secret shares the commitment cm using a threshold secret sharing scheme,
where a total of n shares are generated, and at least t′ shares are required to
reconstruct the secret. The first t′ − 1 shares are determined as cmj := grj · uaj

for randomly sampled values (aj , rj) ∈ Fp and j ∈ [t′−1]. We also set Rj = pkrj ,
where pk is the public key of the underlying SW signature scheme [SW13] de-
scribed in Section 2.1, which is the basis of the tACT construction. The remain-
ing shares are then generated consistently using Lagrange interpolation in the
exponent, where each share with index k ∈ [t′, n] is computed based on the t′-

th Lagrange polynomial basis ℓ
[t′−1],k
t′ (.) for the points 1, . . . , t′ − 1, k and the

available t′ − 1 set of shares:

cmk =

 cm∏
j∈[t′−1] cmj

ℓ
[t′−1],k
j (0)

ℓ
[t′−1],k

t′ (0)
−1

.

6

We use ℓ
[t′−1],k
j (.) as abbreviation for the j-th Lagrange basis polynomial for

the points j ∈ {1, . . . , t′ − 1}. Thereby cmk is a valid commitment under the
corresponding randomness specified below:

Rk =

 pkr∏
j∈[t′−1] R

ℓ
[t′−1],k
j (0)

j

ℓ
[t′−1],k

t′ (0)
−1

.

The user then sends the commitment shares {cmk}k∈[1,n] to the issuers who
issue partial signatures on the blinded shares of the attribute. The user combines
partial signatures to get a full signature σk on each cmk and unblinds σk using
Rk to get deterministic signature sk on ak.

Next, the user employs Lagrange interpolation to reconstruct valid signa-
ture s on a by selecting any set of signature shares sk of size t′. To verify the
legitimacy of s, the verifier randomly chooses a set C consisting of t′ − 1 ele-
ments. In response, the user provides the signature shares {sk}k∈C along with
the corresponding random coins {Rk}k∈C contained in the commitment shares
{cmk}k∈C . The verifier confirms the authenticity of s provided that both the
following conditions are met:

1. All {sk}k∈C are valid signatures on the corresponding commitment {cmk}k∈C ,
i.e. ∀k ∈ C : Sig.Verify(pk, cmk, Rk, sk) = 1

2. All commitment shares {cmk′}k′ /∈C reconstruct to the commitment cm on

attribute a, i.e.
∏

ki∈C cmki
ℓi(0) · cmk′ℓt′ (0) = cm, with ℓj = ℓ

(k1,...,kt′−1,k
′)

j

whereas C = {k1, . . . , kt′−1} considered as ordered set.

By collectively satisfying these conditions, we establish that if at least one of
the partial signatures outside challenge set C aligns with its respective partial
commitment, we can utilize it to reconstruct s. Consequently, a dishonest prover
would be required to accurately guess the set C in advance in order to suc-
cessfully pass the aforementioned verifications without s actually being a valid
signature. By selecting suitable values for t′ and n, one can ensure that this
can only happen with negligible probability. We note that the challenge set C,
can be generated non-interactively by the user implementing the Fiat-Shamir
transformation [FS86]. A high-level overview of tACT construction is depicted
in Figure 2.

Deduplication. Once the tACT token is built through the techniques de-
scribed above, it will be used as a key ingredient in the S3ID construction.
Intuitively, in the deduplication phase of the S3ID protocol, upon successful ver-
ification of the tACT token, the issuers proceed by comparing the token against
their redeemed-token database and reject the token if this value already occurs
there. Otherwise, update the database by adding redeemed token to it. Besides,
as part of the registration process, the user also provides the issuer with a com-
mitment to a uniformly chosen unique key k (represented as cmk). Commitment

7

bR

blindRequest = tACT.TokenRequest (a)1

partial blindToken = tACT.tIssue(bR)2

p.bT

token = tACT.(Aggregate, Unblind) (p.bT)3

token, 𝝅

tACT.Verify(token,𝝅) = bit4

IssuersUser
Unique

attr

a

Fig. 2: tACT overview. 1○ User generates blindRequest = {cm, {cmk}k∈[1,n]} and sends
this request to the issuers. 2○ Issuers generate blindToken on the commitment shares.

3○ The user collects a threshold number of partial blindToken, combines them to get
a full signature, and unblinds the result to acquire the deterministic token. It then
generates cut-and-choose proof π and sends (π, token) to the verifier. 4○ The verifier
checks π to ensure the validity of received token.

cmk is stored alongside the user’s tACT. The key k, known only to the user, facili-
tates meeting two essential objectives: (I) Non-Transferability: Micro-credentials
can be released only by the true owner, (II) Sybil-resistance: The system achieves
one-person-one-ID while preserving non-interactiveness and strong unlinkabil-
ity – a property that will be formally defined in Section 4. In the following, we
provide a detailed explanation on how these objectives are achieved.

Micro-credential issuance. After completing the deduplication phase, S3ID
system enables users to acquire micro-credentials for their desired attributes
such as age, proof of address, etc., in an anonymous manner. To obtain micro-
credentials, user submits a commitment to the specific attribute. Then she pro-
ceeds to gather sufficient partial signatures from issuers and combine them to
form a complete signature which is subsequently unblinded. Micro-credentials
inherit the Sybil-resistance property of the tACT tokens, i.e. only one micro-
credential per user attribute is issued.

Application-specific credentials6. With obtained micro-credentials, the user
is empowered with a fine-grained disclosure of its attributes in the application
credentials phase. In particular, when using an application that requires spe-
cific attributes, the user locally aggregates the relevant micro-credentials into a
compact application credential and shows the aggregated result to the verify-
ing party. The verification of application credentials simultaneously verifies all
aggregated micro-credentials in a batch and thus is efficient.

The design of micro-credentials prevents malicious users from obtaining the
application credential by replacing a different combination of micro-credentials

6 We recall that CanDID calls them context-based credentials.

8

instead of the designated ones required by the application (replace attack). To
counter this threat, we define a global set of admissible attributes, where each in-
dex corresponds only to a specific attribute. Issued micro-credentials are bound
to these indices. Moreover, our construction guarantees that only the right-
ful owner can release the issued micro-credentials (non-transferability). This is
achieved by using the following technique: issued micro-credentials are tethered
to the committed unique user key k which prevents malicious users from obtain-
ing the application credential by employing a combination of micro-credentials
that do not belong to them. The presence of k in issued micro-credentials ensures
that the user must possess k to construct tags during the application credential
phase. Thus, users are compelled to build application credentials based on their
genuinely owned micro-credentials. This reinforces non-transferability.

The construction so far provides the following desirable features: (1) Thresh-
old ACT. The proposed tACT framework facilitates the issuance of ACT tokens
in a distributed-trust environment, in contrast to the approach in [BRS23]. (2)
Uniqueness and Fast Deduplication. User identities are deduplicated, which
is highly beneficial for various applications, such as e-voting. Moreover, the dedu-
plication process does not involve costly multi-party computation methods as
offered by CanDID [MMZ+21]. (3) Blindness and Attribute-Membership
Privacy. Throughout the entire S3ID processes, issuers are unable to obtain
any information regarding user attributes. Besides, issuers are unable to learn
whether there is a credential for a specific attribute value within the system. (4)
Non-Transferability. The credentials can be released only by the true owner.
(5) Batch Verification. The verification of application credentials simultane-
ously verifies all aggregated micro-credentials in a batch manner and thus is
efficient.

The challenge that we still need to address is limiting the number of submis-
sions per user per application (Sybil-resistance), while preserving strong unlink-
ability and non-interactiveness. CanDID employs an approach mitigating the
Sybil attack, where a credential for an application with a unique application
name is issued corresponding to the unique pseudonym of the user initiating
each query. However, this method presents two significant problems: Firstly, it
exhibits interactivity as it requires user engagement with a threshold number of
issuers to obtain the necessary application credentials before connecting with the
verifier. The interactive nature of this process can lead to system inefficiencies.
Secondly, and more importantly, this method compromises the principle of un-
linkability. By learning the user’s unique pseudonym, issuers can establish links
between different user transactions. This violation of unlinkability undermines
the intended level of privacy and anonymity in the system. Therefore, despite
its initial attempt to address the Sybil attack, the CanDID approach encounters
two significant problems: interactivity and the compromise of unlinkability.

Adding Sybil-resistance. Our proposed system introduces a user-empowered
solution to address the Sybil-resistance property by allowing users to generate
their own unique application-specific anonymous tags for use in direct user-
application interactions. During the redemption process, the user presents the

9

Table 1: Comparison of our construction over CanDID [MMZ+21] identity
system.

Features unf. blind. Sybil-resistance unlink. non-transfer. non-interact. ‡

CanDID [MMZ+21] ✓ ✓† ✓ ✗ ✗ ✗

S3ID ✓ ✓ ✓ ✓ ✓ ✓

† CanDID is pseudonymous rather than being fully anonymous; i.e., the issuer
learns a unique pseudonym as the identifier of a user who initiates each query
and is associated with that user’s CanDID credentials.

‡ This property is with respect to the AppCred phase. Dedup and MicroCred phases
are intrinsically interactive, akin to the CanDID system.

unique tag along with the corresponding application credential to the relying
party. The verifier then checks if the tag for the same application message l and
the same user has already been redeemed by checking its database, preventing
double-submission, and subsequently examines the application credential. How-
ever, a challenge arises during this redemption check, as it is crucial to remove
any link to the user’s identity while retaining the ability to verify that the tag
was generated by a user-registered key k. To overcome this challenge, we adopt
an approach close to the work presented by Benhamouda et al. [BRS23] by
employing a pseudorandom function (PRF) as the token issuance mechanism.
However, in our case, the main difference is that users may compute this PRF
by themselves rather than relying on an issuer. The PRF is evaluated under the
user-registered key k on the unique application message l. The authors note that
this is related to scope-exclusive pseudonyms, a concept employed in anonymous
credential systems [CDL+13]. The adopted PRF has algebraic properties that
enable it to seamlessly integrate with efficient zero-knowledge proofs based on
Sigma protocols and can be made non-interactive using the Fiat-Shamir heuris-
tic for the proof of correct evaluation. Therefore, the user efficiently demon-
strates the correct evaluation of the tag on the message with respect to the key
k encapsulated in all user micro-credentials, in a zero-knowledge manner. This
can be achieved through two different PRF constructions: PRF(k, l) = H(l)k, or

PRF(k, l) = g(k+l)−1

, the former being the Naor-Pinkas-Reingold PRF [NPR99]
and the latter being the Dodis-Yampolskiy PRF [DY05]. Since l is known by
the verifier, the former PRF can also be efficiently proven in zero-knowledge. By
employing this mechanism, users gain the ability to generate unique application-
specific tags that can be verified with an efficient proof of correct evaluation. As
a result, in addition to previously mentioned features, the system achieves the
(6) Sybil-resistance property in a (7) non-interactive and (8) unlinkable
manner. An overview of our S3ID identity system is depicted in Figure 3. We
also provide a high-level comparison of our construction over CanDID in Table 1.

10

token

tACT.Verify(token) =1

Dedup

IssuersUser

MicroCred

AppCred

attr

𝑎1
…

𝑎𝐿

blindRequest

issue

aggregate,unblind

𝜇cred

𝑠1
…

𝑠𝐿

Verifier

S3ID.Verify(cred)=1

𝑇𝑨𝒑𝒑
…

tg

atACT

token

cred, tgapp msg

𝑇𝑫𝒆𝒅𝒖𝒑

…
token

𝜇cred

𝑠1
…

𝑠𝐿

Fig. 3: S3ID overview. 1○ Dedup: User submits tACT token to the issuers, who verify
the token and compare it against their database TDedup and reject if token ∈ TDedup.
Otherwise, they update TDedup by adding token, cmk to it. 2○ MicroCred: User in-
teracts with the issuers to obtain micro-credentials {si}Li=1 on her attributes {ai}Li=1.

3○ AppCred: For an application with a unique message, the user locally aggregates
micro-credentials encapsulating a subset of attributes required by the application and,
as a result, shows the succinct application credential value to the verifying entity. In
addition, the user generates a tag under the registered key k on the unique applica-
tion message to enable limiting double submissions by the verifier. The whole AppCred
phase is executed locally on the user’s device and is devoid of any interactions involving
the issuers.

1.3 Application Domains

In general, DID systems are a key-enabling technology for today’s and tomor-
row’s distributed world. Our lives increasingly depend on digital services, where
centralized identity mechanisms are becoming an increasingly serious threat to
our free society. A cryptographically secure and efficient DID mechanism that
is Sybil-resistant and unlinkable and can cope with actual threats of identity
theft and privacy breach, as developed within S3ID, helps to protect individual
privacy and secure personal data. Here, we exemplify applications of interest
that our S3ID construction could be beneficial to.

Proof of Unique Personhood. S3ID can serve as evidence of a person’s distinct
human identity and distinguish them from bots or other automated entities.

Passwordless Authentication. A blockchain wallet integrated with S3ID enables
users to effortlessly access any portal using a single set of login credentials,
representing an evolved form of single-sign-on (SSO).

Simple Know Your Customer (KYC). The DID for each user can be reused on
different platforms for user onboarding purposes on various DeFi Decentralized
Applications (DApps) without incurring the expenses associated with performing
KYC for each individual platform.

11

Reputation and Credit Scoring Systems. In contrast to Web 2.0, using DID, Web
3.0 users have the ability to transfer and aggregate their reputation data across
multiple DApps, without the need to make a fresh start each time.

Real-world Asset Tokenization: S3ID can be instrumental in the process of to-
kenizing real-world assets, ensuring a one-to-one correspondence between the
physical asset itself and the token issued on-chain.

1.4 Related Work

Subsequently, we discuss approaches that are related to our new primitive.

Anonymous Credentials (AC) [PS16, San20, HS21, CLPK22] are a valu-
able tool for strong authentication with built-in access control and play a vital
role in privacy safeguarding. In an AC system, credentials are issued by trusted
issuer(s) and certify some set of user attributes. Credential holders can show
that they possess a credential whose hidden attributes satisfy some predicate
in a zero-knowledge manner. It is crucial to maintain the unlinkability between
multiple showings of the same credential, even in situations where issuers and
verifiers collude. AC technologies have been applied in diverse domains, including
PrivacyPass by Cloudflare [DGS+18], Google’s enhanced variant integrated into
the Trust Tokens API [KLOR20], and the DIT proposal by Facebook [HIJ+21].
The Hyperledger system [C+16] facilitates the integration of anonymous creden-
tials with blockchains by supporting CL credentials [CL04] through a trusted
third-party issuer. However, such a system becomes vulnerable in situations
where the issuer’s behavior turns malicious. There are various proposals for
threshold-issuance AC schemes [SABB+18, MSM23, DKL+23]. Said systems
leverage threshold cryptography and enable multiple authorities to jointly issue
credentials, hence proving well-suited for distributed ledger systems. Another line
of research in AC systems is focused on attaining the multi-authority feature.
This feature facilitates a compact and efficient showing of multiple credentials
issued by various issuers [HP23, MBG+23]. However, it is important to highlight
that a notable limitation of many current AC systems is their failure to address
the critical requirement of Sybil-resistant credential issuance, a property that
holds significant importance in numerous applications.

Anonymous Counting Tokens (ACT) is a new primitive introduced recently
in a work by Benhamouda et al. [BRS23]. This novel primitive empowers users to
acquire tokens on private messages of their preference, while enabling issuers or
verifiers to enforce rate limits on the number of tokens that users can obtain or
redeem for each message. An intriguing challenge that arises in the design phase
of an ACT system is the apparent conflict between the desire for anonymity,
which prevents mapping tokens to user identities, and the need to set limits on
individual user contributions. Additionally, it is important to ensure that diverse
users can acquire anonymous tokens for the same message, while keeping this
information concealed from the issuer to preserve the property of unlinkability.
Existing tools in the field of secure computation including Multi-Party Compu-
tation (MPC) [Gol09] and secure aggregation constructions [BIK+17, BBG+20],

12

address the problem of computing aggregates, while preserving privacy for indi-
vidual contributions. However, these solutions fall short in providing rate limiting
for user inputs, particularly in scenarios where user contributions must be gen-
erated while maintaining user anonymity. The work in [BRS23] proposes two
approaches for the construction of ACTs. The first approach employs PRF eval-
uation as the token issuance mechanism, incorporating keyed verification that
is only advantageous in scenarios where the issuer and verifier are the same en-
tity. The second approach harnesses the concept of Equivalence Class Signatures
(EQS) [FG18, FHS19] to establish an ACT scheme. However, it is worth noting
that both approaches operate within a centralized setting, where a single party,
known as the issuer, is responsible for issuing tokens to users.

2 Preliminaries

We recall some notions that are required for our constructions. Our notation,
Pedersen commitments, zero-knowledge proofs of knowledge (ZKPoK), and or-
acle systems are discussed in Appendix A.

2.1 (Threshold) SW

Here, we briefly recall a variant of BLS signatures [BLS01] as introduced by
Shacham and Waters in [SW13] that enables combining signatures on scalar
messages.7 We note that for simplicity we present it by hashing the message m
into the group, but one can easily use any other set (e.g., an index set) if there is
a one-to-one correspondence between the message space and the index set. For
consistency with the original scheme [SW13] and the TS-UF-1 security result
that we rely on below [BL22], we describe our scheme in the symmetric pairing
setting and note that any such protocol can be (automatically) translated to the
asymmetric setting [AGOT14, AGH15, AHO16]. In the following, we describe a
threshold version of this signature scheme denoted as tSW.

– pp ← tSW.Setup(1λ): Let e : G1 × G1 → G2 be a bilinear group of prime
order p, where p is a λ bit prime, and g and u are generators of G1. Let
H : {0, 1}∗ → G1 be the BLS hash. The algorithm outputs system public
parameters pp = (e, p,G1,G2, g, u,H).

– (pk, {skj}j∈[1,N]) ← tSW.KeyGen(1λ, t, N): The parties execute a distributed
key generation protocol [KHG12] to generate BLS secret signing key sk where
party j ∈ [1, N] receives the share skj of sk such that t shares of the secret

reconstruct sk. The public key is set to pk = gsk.
– σj ← tSW.Sign(skj ,m): On input secret key skj and message m, outputs a
partial signature σj = (H(m) · um)skj .

– σ ← tSW.Comb({σc}c∈C): On input t partial signatures {σc}c∈C where C =
{c1, . . . , ct} ⊂ [N] considered as ordered set, outputs a full signature σ =∏

cj∈C σ
ℓj(0)
cj with ℓj being the jth Lagrange polynomial for points c1, . . . , ct.

7 Note that this is not possible with plain BLS.

13

– {0, 1} ← tSW.Verify(pk,m, σ): On input a public key pk, message m, and
signature σ checks whether e(σ, g) = e(H(m) · um, pk) and outputs a bit b ∈
{0, 1}.

Remark. Let us use an index set I instead of the message space for hash-
ing now and i corresponds to m. We note that the tSW.Sign algorithm in-
stead of signing commitment um can equivalently take a Pedersen commitment
cm = Ped.Commit(m; r) = grum as input8, and output σj = (H(i) · cm)skj as
partial signature. In such case, we call it tSWPed.Sign. Also, given a signature
σ under tSWPed.Sign for commitment cm = grum on message m with index i,
tSWPed.Verify(pk, cm, i, σ) checks whether e(σ, g) = e(H(i)·cm, pk). Furthermore,
note that one can publicly convert between signatures of the two schemes. In
particular, given a signature σ under tSWPed for grum one can obtain signature
σ′ under tSW by setting σ′ = σ · pk−r.

As shown in [SW13], such signatures can be easily aggregated across differ-
ent messages and this simplifies the verifier’s task by facilitating batch verifica-
tion, wherein all aggregated signatures can be simultaneously verified in a single
round.

Security. As shown by Bach and Loss in [BL22], the threshold BLS signature
scheme can be shown adaptively TS-UF-1 secure [BCK+22], i.e., under a strong
notion where the adversary is also allowed to query partial signatures for the
forged message with up to N

2 corruptions, under the k-OMDL assumption in the
ROM and AGM. As we discuss later in Section 3, for our purpose static security
suffices. But every scheme with adaptive corruptions is clearly also secure under
static ones. We claim the following:

Theorem 1. The tSW scheme given above is statically TS-UF-1 secure under
the same assumptions as in [BL22] (Theorem 4.1).

Proof (Proof sketch). We can turn any adversary against tSW into one against
threshold BLS (tBLS). Note that the reduction can set up u = gv and pk as well
as {pki}[i∈N] are available to the reduction. For every partial signing query for
message m of the tSW adversary, we can forward m to the partial signing query
of the tBLS challenger. For result σi we compute σi ·pkvmi and give it to the tSW
adversary. It can be seen that this is a valid partial signature for tSW. For the
forgery attempt σ∗, the reduction outputs σ∗(pkvm

∗
)−1 to the tBLS challenger.

It can easily be checked that the simulation is perfect and any valid forgery for
tSW is one for tBLS under the same winning conditions.

8 It can also take a generalized Pedersen commitment [Ped91].

14

3 Attribute-Based Threshold Issuance Anonymous
Counting Tokens

3.1 Definitions and Security Properties

Now, we introduce the formal definitions for attribute-based threshold anony-
mous counting tokens (tACTs) and present the security requirements they must
meet.

Definition 1 (tACT). An attribute-based threshold anonymous counting token
(tACT) scheme comprises a set of algorithms that are defined as follows (public
parameters pp are assumed to be an implicit input to all algorithms):

– (pp, {prvj}j∈[1,N]) ← Setup(1λ, t, N): On input security parameter 1λ, and
parameters t,N representing the threshold and overall number of issuers it
outputs system public parameters pp and private parameters9 prvj for the token
issuer Ij , j ∈ [1, N].

– (stRg, cm) ← Register(a): On input the public parameters pp for the tACT
scheme and unique user attribute a, the user outputs a commitment cm =
Commit(a; r) and a registration state stRg including a, r.

– (blindRequest, randa) ← TokenRequest(stRg, cm): This algorithm is run by the
user, on input commitment cm and registration state stRg outputs a blinded
token request denoted as blindRequest (including cm) and accompanying state
information randa (including stRg).

– blindTokenj ← tIssue(blindRequest, prvj): Is run by issuer Ij holding private
prvj, by which the user obtains a blinded partial token embedding the private
attribute a.

– blindToken← Aggregate({blindTokenj}j∈[t]): Is run by the user to combine any
subset of t partial tokens into a blinded token blindToken.

– token← Unblind(blindToken, randa): The user, given the blind token blindToken
and the corresponding state information randa generated during the TokenRequest
phase for attribute a, runs this algorithm to generate the unblinded token token
specific to the private attribute a.

– π ← Prove(token, aux, randa): Is run by user and inputs the token token embed-
ding the private attribute a, auxiliary information aux, and its corresponding
state information randa, and outputs a proof π.

– {0, 1} ← Verify(token, π, blindRequest): On input the token token, proof π, and
blinded token request blindRequest, outputs a bit b = 1 if the verifier accepts
token as a valid token with respect to the blindRequest, and b = 0 otherwise.
We note that during the verification process, the verifier remains completely
unaware of any information regarding attribute a.

Properties. A tACT system is called secure if it is correct, unforgeable, and
unlinkable as formally defined below:

9 This is usually run via a distributed key generation protocol.

15

Definition 2 (Correctness). A tACT scheme is called correct if any token
that is produced by honestly following the tACT algorithms can be successfully
verified, i.e. for any sets of system and issuers’ parameters (pp, {prvj}j∈[1,N])←
Setup(1λ), all attributes a and all state information stRg, randa, (stRg, cm) ←
Register(a) (blindRequest, randa)← TokenRequest(stRg, cm), blindTokenj ← tIssue(
blindRequest, prvj), blindToken← Aggregate({blindTokenj}tj=1), token← Unblind(
blindToken, randa), π ← Prove(token, aux, randa), the verification algorithm Verify(
token, π, blindRequest) outputs 1 with overwhelming probability.

Adversary classes. The unforgeability definition encompasses a category of
adversaries denoted by A who can corrupt up to t − 1 out of N issuers. We
note that while for conventional threshold signatures it might be desirable to
support adaptive security for very large N [CKM23], in our applications N can
be assumed to be reasonably small, i.e., having a few issuers, and thus we can
obtain adaptive security for free via a simple guessing argument which incurs a(
N
t

)
loss. Additionally, A holds the ability to corrupt any number of users within

the system. For unlinkability, A can corrupt any number of issuers and verifiers.

Unforgeability. This property ensures that an adversary controlling issuing
entities in corrupted set CS cannot generate tokens for more attributes than the
ones for which it has requested tokens. Furthermore, it cannot generate more
than one token for a specific attribute per user.

Definition 3 (Unforgeability). A tACT scheme is unforgeable if for any
PPT adversary A and any T ≥ 0, R ≥ 0

AdvUF
tACT,A(λ) := Pr[UFtACT,A(λ)→ 1] ≤ negl(λ),

where the experiment UFtACT,A(λ) is defined in Figure 4.

Unlinkability. This property ensures that the adversary A who has the ability
to corrupt all issuers cannot link user token requests or unblinded tokens with the
private user attribute. Figure 5 formally defines the game UNLINKtACT,A(λ).
The intuition behind this definition is as follows. The adversary A that has cor-
rupted all issuers, can instruct users in the system to generate blind requests bR
for attributes of its choice through the OTokenRequest oracle. The adversary should
distinguish blind requests bR (oracle ChlIssue) for one of two adversary chosen
attributes; or it needs to distinguish unblinded tokens generated by the OUnblind

oracle. The definition requires that tACT.Unblind and tACT.Verify succeed on
both the blind tokens provided by the adversary.

Definition 4 (Unlinkability). A tACT scheme is unlinkable if for PPT ad-
versary A the advantage defined as

AdvUNLINK
tACT,A (λ) := |2Pr[UNLINKtACT,A(λ)→ 1]− 1|,

where the experiment UNLINKtACT,A(λ) is defined in Figure 5, is negligible,
i.e.,

AdvUNLINK
tACT,A (λ) ≤ negl(λ).

16

Game UFtACT,A(λ)

(pp, {prvj}j∈[1,N])← Setup(1λ)

flag = 0, T = 0, R = 0,CS = ∅
HS := [1, N] \ CS
CS, {ai, ri, tokeni, πi, bRi}i∈[S+1]

← AORegister,OtIssue,OCorrupt(pp)

S :=

⌊
T

(t− |CS|)

⌋
return
|CS| < t ∧(
//Type-1 forgery:

∀i, j ∈ [S + 1], ai ̸= aj ∧
Verify(tokeni, πi, bRi) = 1
or
//Type-2 forgery:
∃i, j ∈ [S + 1] : S ≥ R ∧
ai = aj ∧
tokeni ̸= tokenj ∧
cmi = Commit(ai, ri) ∧ {cmi ∈ bRi}
cmj = Commit(aj , rj) ∧ {cmj ∈ bRj}
Verify(tokeni, πi, bRi) = 1 ∧

Verify(tokenj, πj, bRj) = 1

)

ORegister(cm)

state = state ∪ cm
R = R+ 1

OtIssue(j,bR)

Assert (j ∈ HS)
T = T + 1
blindTokenj ←
tIssue(bR, prvj)

flag = 1
return blindTokenj

OCorrupt(k)

if flag = 1 or k ∈ CS

then abort
else CS = CS ∪ {k}∧

HS = HS \ {k}
return prvk

Fig. 4: Unforgeability experiment for a tACT scheme.

Game UNLINKtACT,A(λ)

(pp, {prvj}j∈[1,N])←

Setup(1λ, t, N)
Q = ∅
b

$← {0, 1}
b′ ← AOTokenRequest,ChltIssue,OUnblind

(pp, {prvj}j∈[1,N])

return (b′ == b)

GetPrm()

(stRg, cm)← Register(pp, a)
return cm

OTokenRequest(cm,stRg)

if cm not from GetPrm or
(∗, cm, ∗) ∈ Q then abort
(bR, r)← TokenRequest(cm, stRg)
Q = Q∪ (a, bR, r)
return bR

ChltIssue(cm0,stRg0,cm1,stRg1)

if cm0 not from GetPrm or
if cm1 not from GetPrm or
a0 = a1 then abort
(bR, r)←
TokenRequest(cmb, stRgb)
return bR

OUnblind(bR0,bR1,bT0,bT1)

if (∗, bR0, ∗) /∈ Q or
(∗, bR1, ∗) /∈ Q abort
tkn0 ← Unblind(pp, bT0, r0)
tkn1 ← Unblind(pp, bT1, r1)
if Verify(tkn0, π0, bR0) = 0
or Verify(tkn1, π1, bR1) = 0
then abort
else return tknb

Fig. 5: Unlinkability experiment for a tACT scheme.

17

3.2 tACT Construction

Now we present our tACT construction. Consider a unique user attribute denoted
as a, e.g., the Social Security Number (SSN). In order to obtain the token, we
will need to obliviously evaluate a deterministic high-entropy function F of a
in a distributed manner, where the issuers share the secret key sk, while the
user has the message (a, ra) as input. Upon completion of the protocol, the
user is provided with the output F(a, ra), while the issuers gain no information.
We further require F(a, ra) to be anonymously verifiable; i.e., a public verifier
can verify the token without learning anything about a. The key ingredients
for constructing tACT are Pedersen commitments Ped = (Setup,Commit), and
threshold SW signature tSWPed = (KeyGen,Sign,Comb,Verify). We also let n be
a statistical security parameter and set t′ = n

2 +1, with (t′, n) used as parameters
for the cut-and-choose. Our tACT scheme is presented in Algorithm 1. In the
present scenario, tACT construction integrates the throttling property during
the redemption process, which prevents a user from redeeming a token multiple
times.

It begins with the issuers executing a distributed key generation proto-
col [KHG12] to generate shares of SW secret signing key for each issuer j ∈ [1, N]
and publish public key pk. Next, in tACT.Register, a user generates a commit-
ment cm to a unique attribute a. The user then secret shares the commitment
using a (t′, n) threshold secret sharing scheme in the tACT.TokenRequest algo-
rithm. These partial commitments serve as blindRequest, upon which the issuers
generate partial blindTokens in the tACT.tIssue algorithm. The user then gathers
threshold many partial signatures generated by authorized issuers. These par-
tial signatures are then combined to form a complete signature, which is then
unblinded (tACT.(Aggregate,Unblind)). The resulting unblinded full signature is
deterministic high-entropy function of a, referred to as token.

To prove the validity of token in the Prove algorithm while preserving at-
tribute anonymity, the user non-interactively determines a set C containing t′−1
elements. The user then provides the unblinded shares {sk}k∈C along with the
corresponding random coins contained in the commitment shares {cmk}k∈C .
The verifier confirms the authenticity of token provided that the conditions in
the Verify algorithm are collectively satisfied.

For the security analysis of tACT, we refer to Appendix B.1.

Algorithm 1 tACT Construction

1: tACT.Setup(1λ, t, N)

2: Run pp′ ← tSW.Setup(1λ) and let H′ : {0, 1}∗ → {C ⊂ [1, n] | |C| = t′ − 1}, where
(t′, n) are parameters of cut-and-choose. All hashes are treated as random oracle.
Let I = {I1, . . . , IN} denote the set of authorized issuers.

3: The issuers run (pk, {skj}j∈[1,N]) ← tSW.KeyGen(1λ, t, N), where Ij ∈ I receives

the share skj of tSW secret signing key sk and public key is set to pk = gsk.
4: Output: pp← (pp′,H′, pk), prvj ← skj

18

5: tACT.Register(a)
6: Generate a commitment on a unique attribute a defined by the system at index

i∗ = 0 of all admissible attributes. Set cm = Ped.Commit(a; r), where r←$ Fp.
7: Output: stRg = {a, r}, cm
8: tACT.TokenRequest(stRg, cm)

9: For all k ∈ [t′−1] uniformly sample (ak, rk) ∈ Fp then set cmk = Ped.Commit(ak; rk)
and Rk = pkrk .

10: For all k ∈ [t′, n], compute cmk =

(
cm
∏

j∈[t′−1] cmj
−ℓ

[t′−1],k
j (0)

)ℓ
[t′−1],k

t′ (0)
−1

,

Rk =

(
pkr

∏
j∈[t′−1] R

−ℓ
[t′−1],k
j (0)

j

)ℓ
[t′−1],k

t′ (0)
−1

where ℓ
[t′−1],k
j is the j-th Lagrange

basis polynomial for the points 1, . . . , t′ − 1, k.
11: User samples a key k←$ Fp and outputs cmk = Ped.Commit(k; rk), where rk←$ Fp

12: Output: blindRequest← {cm, {cmk}k∈[1,n], cmk}, randa ← {stRg, {Rk}k∈[1,n], k, rk}
13: tACT.tIssue(blindRequest, prvj)

14: Each Ij ∈ I:
a: Parse blindRequest = {cm, {cmk}k∈[1,n], cmk}
b: Check if cm =

∏
k∈[n] cmk

ℓ
[n]
k

(0) where ℓ
[n]
j is the j-th Lagrange basis polynomial

for points [n]
c: Compute σjk as σjk = tSWPed.Sign(skj , cmk, i

∗) and set blindTokenjk ← σjk

15: Output: {blindTokenjk}k∈[1,n]

16: tACT.(Aggregate,Unblind)({blindTokenjk}j∈[t],k∈[1,n], randa)

17: Collect a threshold t number of partial blindTokenjk on each ak
18: Combine partial signatures: σk = tSW.Comb({σjk}j∈[t])
19: Unblind σk by computing sk = σk ·R−1

k

20: Compute s =
∏

k∈[t′] s
ℓ
[t′]
k

(0)

k where ℓ
[t′]
j denotes the j-th Lagrange basis polynomial

for the points [t′].
21: Output: token← s, {sk}k∈[1,n]

22: tACT.Prove(token, {sk}k∈[1,n], randa)

23: Compute C ← H′(token)
24: Set {s′k = skk}k∈[1,n], {R′

k = Rk
k}k∈C , and pk′ = pkk

25: Generate π = ZKPoK{(a, k, r, rk) : cm = Ped.Commit(a; r) ∧ cmk =
Ped.Commit(k; rk) ∧ pk′ = pkk}

26: Output: token, πtoken ← {{s′k}k∈[1,n], C, {R′
k}k∈C , pk

′, π}
27: tACT.Verify(token, πtoken, blindRequest)

28: Parse πtoken = {{s′k}k∈[1,n], C, {R′
k}k∈C , pk

′, π}
29: If any of the following conditions is met, set bit← 0. Otherwise, set bit← 1.

a: e(token, pk′) ̸= e(
∏

k∈[t′] s
′ℓ

[t′]
k

(0)

k , pk) where ℓ
[t′]
j is the j-th Lagrange basis poly-

nomial for points [t′] {to ensure the token’s well-formedness.}
b: ZKVerify((cm, cmk, pk

′), π) = 0
c: C ̸= H′(token) {cut-and-choose verification.}

d: ∃ k′ /∈ C :
∏

cj∈C cmcj
ℓ
C,k′
j (0) · cmk′

ℓ
C,k′
t′ (0) ̸= cm where ℓC,k′

j denotes the j-th

Lagrange basis polynomial for the points c1, . . . , ct′−1, k
′ where C = {c1, . . . , ct′−1}.

e: ∃ k ∈ C : tSWPed.Verify(pk
′, cmk, i

∗, R′
k · s′k) = 0

30: Output: bit

19

4 Building a DID System

4.1 Definitions and Properties

Subsequently, we formalize a Sybil-Resistance Self-Sovereign Identity (S3ID) sys-
tem and provide a precise definition of its essential security properties.

Definition 5 (S3ID). A Sybil-resistant self-sovereign identity scheme com-
prises a set of algorithms that are defined as follows (public parameters pp are
assumed to be an implicit input to all algorithms):

– (pp, {prvj}j∈[1,N]) ← Setup(1λ, t, N): On input security parameter 1λ, and
t,N representing the threshold and overall number of issuers it outputs system
public parameters pp and private parameters10 prvj for issuer Ij , j ∈ [1, N].

– (ppU, prvU,TDedup) ← Dedup(a, {prvj}j∈[1,N],TDedup): Is an interactive proto-
col between a user and the issuers. User input is private unique attribute a.
Issuers inputs are private parameters {prvj}j∈[1,N]. This algorithm generates
user public and private parameters respectively denoted as ppU and prvU. In
addition, the system updates the deduplication table TDedup, which serves as a
database of redeemed tokens. This table helps to ensure that each token can
only be redeemed once.

– ({si}Li=1,TDedup)← MicroCred({ai}Li=1, ppU, prvU, {prvj
}j∈[1,N],TDedup): Is an interactive protocol between a user and the issuers.
User inputs are private attributes {ai}Li=1, and private parameters prvU. Issuers
inputs are private parameters {prvj}j∈[1,N] and user public parameters ppU.

The user obtains a set of micro-credentials {si}Li=1 each embedding one of the
private attributes {ai}Li=1.

– (cred, tg) ← AppCred({ai}Li=1, {si}Li=1, prvU, l, ϕ): This algorithm is run by the
user who inputs private attributes {ai}Li=1, micro-credentials {si}Li=1, private
parameters prvU, unique application message l, and application-specific state-
ment ϕ. It outputs a concise credential cred certifying the satisfaction of ϕ by
a subset of private attributes {ai}Li=1. Additionally, the user creates a tag tg
which is unique per user per application and serves the purpose of enforcing
the Sybil-resistance property.

– ({0, 1},TApp)← VerifyCred(cred, ϕ, tg,TApp): This algorithm is run by any en-
tity who wishes to verify if a credential embedding private attributes satisfies
the application-specific statement ϕ and that the user showing it is the rightful
owner. On input a credential cred and tag tg, it outputs bit b = 1 if it accepts
the credential as valid and b = 0 otherwise. Also, it records tg in its database
of redeemed tags TApp.

Properties.An S3ID scheme requires to provide unforgeability, Sybil-resistance,
and strong unlinkability. Similar to the tACT security definitions, unforgeability
and Sybil-resistance are proven in the presence of an adversary A who can cor-
rupt up to t− 1 out of N issuers. Additionally, this adversary holds the ability

10 This is usually run via a distributed key generation protocol.

20

to corrupt any number of users and applications within the system. For strong
unlinkability, A presents the strongest category of adversaries who can corrupt
any number of issuers and verifiers.

Unforgeability. This property captures the infeasibility of an adversarial user
to generate credentials to prove a statement ϕ, where ϕ cannot be satisfied by any
subset of attributes for which the adversary has obtained sufficiently many valid
partial micro-credentials (including corrupted issuers). In interactive algorithms
such as Dedup andMicroCred, we use subscript U and I to distinguish interactions
on the user side and the issuer side, respectively.

Definition 6 (Unforgeability). A S3ID scheme is unforgeable if for any PPT
adversary A and any T ≥ 0

AdvUF
S3ID,A(λ) := Pr[UFS3ID,A(λ)→ 1] ≤ negl(λ),

where UFS3ID,A(λ) is defined in Figure 6.

Game UFS3ID,A(λ)

(pp, {prvj}j∈[1,N])← Setup(1λ)

flag = 0, R = 0, T = 0,TDedup = ∅
Q = ∅,CS = ∅,HS := [1, N] \ CS
(CS, cred, ϕ)←
AODedup,OMicroCred,OCorrupt(pp)
∀k ∈ R : Ak := {ai | (k, i, ∗, ai)
∈ Q ∧ Tik + |CS| ≥ t}
return
|CS| < t ∧ ∀k ∈ R, ∀A′ ⊂ Ak : ϕ(A′)
= 0 ∧ VerifyCred(cred, ϕ, ∗, ∗) = 1

ODedup(pp)

(ppU, prvU)←
R = R+ 1(
DedupU(a),DedupI(prvj ,TDedup)

)
if ppU =⊥ then abort
else TDedup = TDedup ∪ ppU
return

⊥

OMicroCred(pp)

Assert (j ∈ HS)

σij ←
(
MicroCredU(ai, prvU[k])

,MicroCredI(prvj ,TDedup)
)

{partial credential on ai}
Tik = Tik + 1
Q = Q∪ (k, i, prvU[k], ai)
flag = 1
return

⊥

OCorrupt(k)

if flag = 1 or k ∈ CS

then abort
else CS = CS ∪ {k}∧

HS = HS \ {k}
return prvk

Fig. 6: Unforgeability experiment for S3ID.

Sybil-Resistance. This definition addresses the impossibility of an adversary
to obtain more tokens than the number of users it controls during the deduplica-
tion mechanism, and therefore breaking the uniqueness of issued user identities.
We refer to Figure 7 for the detailed game setup, where the adversary begins
with initializing R users, each possessing a unique deduplication attribute. Sub-
sequently, the adversary has the ability to request tokens for the users it controls.
The adversary succeeds by outputting a database TDedup including more than R
valid tokens.

21

Definition 7 (Sybil-resistance). A S3ID system is Sybil-resistant if for any
PPT adversary A and any R ≥ 0

AdvSR
S3ID,A,R(λ) := Pr[SRS3ID,A,R(λ)→ 1] ≤ negl(λ),

where SRS3ID,A,R(λ) is defined in Figure 7.

Game SRS3ID,A,R(λ)

(pp, {prvj}j∈[1,N])← Setup(1λ)

R = 0,CS = ∅
TDedup = ∅, |TDedup| = S
CS,TDedup, {πi, bRi}i∈[S]

← AODedup,OCorrupt(pp)
return
|CS| < t ∧
S > R ∧(
∀ i ∈ [S] ∧ tokeni ∈ TDedup,

tACT.Verify(tokeni, πi, bRi) = 1
)

ODedup(pp)

R = R+ 1

(ppU, prvU)←
(
DedupU(a),

DedupI(prvj ,TDedup)
)

if ppU =⊥ then abort
else TDedup = TDedup ∪ ppU
return TDedup

OCorrupt(k)

if k ∈ CS then abort
else CS = CS ∪ {k}∧

HS = HS \ {k}
return prvk

Fig. 7: Sybil resistance experiment for S3ID.

Strong Unlinkability. It should be infeasible for an adversarial verifier po-
tentially colluding with any number of issuers and verifiers to link the ex-
ecution of AppCred with either another execution of AppCred (unlinkability
across applications), or with the executions of MicroCred and Dedup algorithms
for a specific set of attributes. The SUNLINKS3ID,A(λ) game is defined in
Figure 8. The adversary A can instruct users in the system with a specific
set of attributes to generate tokens and micro-credentials {si}Li=1 respectively
through the ODedup and OMicroCred oracles. Then A chooses two distinct sets
(tokenb, {si,b}Li=1), b ∈ {0, 1}, among which one of them is randomly picked to
generate cred, through the OAppCred oracle. The adversary should distinguish cred
for two different client/attribute pairs; or it needs to distinguish cred for the same
client but two different AppCred sessions. The definition requires that VerifyCred
succeeds on both the credentials generated based on requests provided by the
adversary.

Definition 8 (Strong Unlinkability). A S3ID system achieves Strong Un-
linkability if for PPT adversary A the advantage defined as

AdvSUNLINK
S3ID,A (λ) := |2Pr[SUNLINKS3ID,A(λ)→ 1]− 1|,

where SUNLINKS3ID,A(λ) is defined in Figure 8, is negligible, i.e.,

AdvSUNLINK
S3ID,A (λ) ≤ negl(λ).

22

Game SUNLINKS3ID,A(λ)

(pp, {prvj}j∈[1,N])← S3ID.Setup(1λ)

b
$← {0, 1}

b′ ← AODedup,OMicroCred,OAppCred(pp, {prvj}j∈[1,N])

return (b′ == b)

ODedup(pp)

(ppU, prvU)←
(
DedupU(a),DedupI(prvj ,TDedup)

)
if ppU =⊥ then abort
else TDedup = TDedup ∪ ppU
return

⊥

OMicroCred(pp)

si ←
(
MicroCredU(ai, prvU),MicroCredI({prvj}j∈[1,N],TDedup)

)
if si =⊥ then abort
else Q = Q∪ (i, si)
return

⊥

OAppCred(pp,ppU0 ,ppU1 ,l0,l1,ϕ0,ϕ1)

if ϕ0,1({ai,0}Li=1) = 0 or ϕ0,1({ai,1}Li=1) = 0 then abort

(cred0, tag0)← AppCred({ai,b}Li=1, {si,b}Li=1, prvUb , l0, ϕ0)

(cred1, tag1)← AppCred({ai,0}Li=1, {si,0}Li=1, prvU0 , lb, ϕb)
if VerifyCred(cred0, ϕ0, tag0) = 0 or
VerifyCred(cred1, ϕb, tag1) = 0 then abort
return (credb, tagb)

Fig. 8: Strong unlinkability experiment for S3ID.

Besides the formal security properties, we also want the following properties to
hold:

Non-Transferability. To prevent the transfer of credentials among users, it
needs to be ensured that issued credentials can only be released by the legitimate
owner and cannot be transferred to any other individual.

Non-Interactivness. After establishing consensus on system parameters in the
key distribution and setup phase, the issuers can function independently without
the need to further synchronize or coordinate. Additionally, the system enables
users to generate unique application-specific credentials without the necessity of
interacting with the issuers for each transaction.

4.2 S3ID Design

Now we present an application of our tACT system by employing it as a funda-
mental building block for our S3ID scheme. This is detailed in Algorithm 2. In the
S3ID.Dedup algorithm, a token token generated in the underlying tACT algorithm
serves as a distinctive high-entropy function derived from the unique attribute
a, enabling user deduplication. Upon successful verification of token, the issuers

23

proceed by comparing token against their database of redeemed tokens and re-
ject if the value already occurs there. Otherwise, they update the database by
adding the redeemed token to TDedup. In TDedup, alongside the redeemed token,
issuers also keep a commitment cmk to the unique key k registered by user, and
a binary vector IDX of length L initially set to all zero, where IDX[i] = 1 shows
the user is issued a micro-credential for her attribute ai (see S3ID.MicroCred for
more details).

In the S3ID.MicroCred algorithm, the user, to acquire anonymous micro-
credentials for its desired attribute ai, generates a commitment cmi on (k, ai),
and a proof of knowledge πi to prove the consistency of cmi with the commit-
ment cmk on the registered key. Then she submits {token, cmi, πi} to the issuers.
Issuer Ij checks the latest version of deduplication table TDedup. If token ∈ TDedup

and IDX[i] = 0 and the proof πi passes the verification, it generates a partial
tSWPed signature on commitment cmi to ai bound to user-unique key k. The user
then proceeds to gather sufficient partial signatures, combines them to form a
full signature, and converts the result to a tSW signature subsequently. The
resulting si is a micro-credential on attribute ai which is bound to key k.

In the S3ID.AppCred algorithm, the user is empowered to generate application-
specific credentials. We assume a unique message l for each application that
specifies the application name (e.g., “participate in auction X”). Also consider
Al = {ai}i∈Q,Q ⊂ [1, L] as the subset of attributes corresponding to the appli-
cation (Al ⊂ A) and ϕ as the application-specific statement (or predicate). To
get an application-specific credential for an application with message l, the user
locally aggregates the relevant micro-credentials encapsulating attributes in Al

with respect to the message l, and generates one small application credential ζ,
which are the aggregated signatures masked by pkr for uniformly random r. The
user also generates τ as a Pedersen commitment to the designated attributes
together with the registered key k using randomness r. The presence of k in τ
enforces users to build application credentials based on their genuinely owned
micro-credentials, reinforcing non-transferability.

Algorithm 2 S3ID Construction

1: S3ID.Setup(1λ, t, N)
2: Let A = {a, a1, . . . , aL} denote the set of admissible attributes and I = {I1, . . . , IN}

denote the set of authorized issuers.{unique attribute a is defined at index

0.}
3: Run (pp′, {prvj}Nj=1) ← tACT.Setup(1λ, t, N) and (pp′′ = {g, u0, u1, . . . , uL}) ←

Ped.Setup(1λ, L + 1). Let H′′ : {0, 1}∗ → Fp and h : G1 → Fp be secure hash
functions.

4: Issuers initialize a shared table TDedup := ∅
5: Output: System public parameters pp = (pp′, pp′′,H′′, h,TDedup), issuers’ private

parameter {prvj}j∈[1,N]

24

6: S3ID.Dedup(a, {prvj}j∈[1,N],TDedup)

7: The user on input private unique attribute a and issuers on input {prvj}j∈[1,N]

interact in the following way:
a: User runs (stRg, cm) ← tACT.Register(a), (bR, randa) ←
tACT.TokenRequest(stRg, cm)
b: Ij runs {bTjk}k∈[1,n] ← tACT.tIssue(bR, prvj)
c: User runs token, {sk}k∈[1,n] ← tACT.(Aggregate,Unblind)({bTjk}j∈[t], randa)
d: User runs π ← tACT.Prove(token, {sk}k∈[1,n], randa)
e: User samples a key k←$ Fp and outputs cmk = Ped.Commit(k; rk), where rk←$ Fp

f: Issuers run bit← tACT.Verify(token, π, bR)
g: If (bit = 0 ∨ (bit = 1 ∧ token ∈ TDedup)), abort.
h: Initialize binary vector IDX of length L with all zeros.
i: Set TDedup ← TDedup ∪ {token, cmk, IDX}.

8: Output: ppU ← {token, cmk, IDX}, prvU ← {a, k}, TDedup

9: S3ID.MicroCred({ai}Li=1, ppU, prvU, {prvj}j∈[1,N],TDedup)

10: The user on input prvU and private attribute ai for which she seeks to obtain a
micro-credential, and issuers on input {prvj}j∈[1,N] interact in the following way:
a: User picks random ri←$ Fp and computes cmi = Ped.Commit(k, ai; ri) = gri ·
uk
0 · uai

i .
b: Generates πi = ZKPoK{(ai, k, ri, rk) : cmi = Ped.Commit(k, ai; ri) ∧ cmk =
Ped.Commit(k; rk) ∧ ϕ(ai) = 1}
c: Outputs requesti ← {token, cmi, πi}
d: Ij parses requesti = {token, cmi, πi}
e: If (token ∈ TDedup ∧ IDX[i] = 0), go to next step. Else, abort.
f: If ZKVerify((cmi, cmk, ϕ), πi) = 0, abort.
g: Signs σij = tSWPed.Sign(prvj , cmi, i) and sets IDX[i]← 1
h: User computes full signature σi = tSW.Comb({σij}j∈[t])
i: Unblinds σi by computing si = σi · pk−ri

11: Output: si,TDedup

12: S3ID.AppCred({ai}Li=1, {si}Li=1, prvU, l, ϕ,Al)
13: The application relying party initializes a table TApp := ∅
14: The user, on input unique application message l, application-specific statement

ϕ, and Al = {ai}i∈Q,Q ⊂ [1, L] as the subset of attributes corresponding to the
application, follows these steps:
a: Picks r←$ Fp and calculates τ = gr · u|Q|k

0 ·
∏

i∈Q uai
i

b: Generates ζ = pkr ·
∏

i∈Q si
c: Sets tg = PRF(k, l)

d: Generates π = ZKPoK{(Al, k, ζ, r) : τ = gr · u|Q|k
0 ·

∏
i∈Q uai

i ∧ tg =
PRF(k, l) ∧ ϕ(Al) = 1 ∧ e(ζ, g)=e(

∏
i∈Q H(i) · τ, pk)}

15: Output: cred← {τ, π}, tg
16: S3ID.VerifyCred(cred, l, ϕ, tg,TApp)
17: The verifying party does the following:
18: Parses cred = {τ, π}
19: If all of the following conditions are met, set bit← 1. Otherwise, set bit← 0.

a: Tag tg /∈ TApp {TApp = database of redeemed tags.}
b: ZKVerify((τ, tg, l, ϕ), π) = 1

20: Output: bit,TApp ← TApp ∪ tg

25

Furthermore, micro-credentials are bound to unique attribute indices used by the
verifier in the verification equation. This safeguards against replace attacks and
prevents users from acquiring application credentials by substituting a different
combination of micro-credentials with encoded attributes that do not belong to
Al. To prevent double submissions and achieve Sybil-resistance, the user gen-
erates a tag tg as a PRF evaluated under the registered key k on the unique
application message l. Therefore, tg is unique per user and per application. The
PRF should have algebraic properties such that they can be easily be proven us-
ing efficient ZKPoK, i.e., Schnorr proofs in our case. Two possible instantiations
of such PRFs are the Naor-Pinkas-Reingold PRF [NPR99] PRF(k, l) = H(l)k or

Dodis-Yampolskiy PRF [DY05] PRF(k, l) = g(k+l)−1

, where for our instantiation
we choose the former. The user then computes a ZKPoK proof π to demon-
strate the correct evaluation of tg on the message l with respect to the key k
encapsulated in all of the user’s micro-credentials. Additionally, this proof serves
to confirm that the user claiming these attributes is indeed the rightful owner.
Moreover, the user proves the validity of the masked tSW signatures ζ without
revealing it, which amounts to the pairing equation e(ζ, g)=e(

∏
i∈Q H(i) · τ, pk)

and can be efficiently proven using a Groth-Sahai ZKPoK proof [GS12] (see Sec-
tion 5 for a more detailed discussion about the proven statement). Finally, the
user sets cred = (τ, π, tg) as its self-sovereign application-specific credential and
sends it to the relying party.

In S3ID.VerifyCred algorithm, any party who knows public parameters pp can
verify a user’s credential cred. The verifier first checks if the tag tg does not occur
in the unique per application database TApp of submitted tags, and subsequently
verifies the proof π. If the verification succeeds, the verifier is simultaneously con-
vinced that all the micro-credentials contained within the application credential
have been appropriately signed by a threshold of issuers.

Remark. We note that establishing a one-to-one correspondence between the
user and the claimed attributes can be achieved through the utilization of privacy-
preserving oracles [ZCC+16, ZMM+20]. In this context, our systems can seam-
lessly integrate with a legacy-compatible oracle system. This integration enables
users to provide an additional oracle proof, denoted as πO, thus substantiating
ownership of the attribute a concealed within the commitment cm, ultimately
demonstrating unique personhood while maintaining privacy.

For the security analysis of S3ID, we refer to Appendix B.2.

5 Evaluation and Experimental Results

We implemented tACT from Section 3 and S3ID11 from Section 4.2 in Rust using
the ark-bls12-38112 and groth-sahai-rs13 crate for implementations of the

11 See https://anonymous.4open.science/r/s3id-4DC0/ for the code.
12 https://crates.io/crates/ark bls12 381, version 0.3.0.
13 https://github.com/jdwhite48/groth-sahai-rs

26

https://anonymous.4open.science/r/s3id-4DC0/
https://crates.io/crates/ark_bls12_381
https://github.com/jdwhite48/groth-sahai-rs

Table 2: tACT runtime in milliseconds with t′ = n
2 + 1.

N = 4, t = N
2
+ 1 n = 30 n = 40 n = 128

Register 1.32 1.52 1.58
TokenRequest 387.0 583.4 5750
tIssue 37.8 50.12 167.0
(Aggregate,Unblind) 23.3 31.10 103.0
Prove 42.2 54.57 173.4
Verify 251.6 412.8 3552

N = 64, t = N
2
+ 1 n = 30 n = 40 n = 128

Register 1.57 1.56 1.57
TokenRequest 393.9 578.9 5686
tIssue 38.5 51.5 164.3
(Aggregate,Unblind) 153.5 203.1 622.7
Prove 42.8 56.4 159.7
Verify 253.9 407.8 3495

pairing-friendly BLS12-381 curve and the Groth-Sahai proof system. As this
curve provides a Type-3 pairing, we applied a generic compiler [AGH15, AHO16]
at the cost of duplicating operations and values in the second source group. With
the implementation, we evaluated the runtime costs of the individual algorithms.
As discussed in Section 3.2, the parameters were set to t = N

2 +1 and t′ = n
2 +1.

For the number of issuers, N , we considered values of 4 (as in the evaluation of
CanDID) and 64 and for n we compared choices of 30, 40, and 128.

The benchmarks were performed with an Intel Core i7-1265U and 16 GB of
RAM. The runtime results of tACT are depicted in Table 2. We observe that the
biggest impact on the performance is the choice of t′ and n. This observation
matches the intuition based on the construction where the TokenRequest, tIssue,
(Aggegate,Unblind), Prove and Verify linearly depend on t′ or n. Notably, only
(Aggegate,Unblind) also depend linearly on t whereas tIssue is executed in parallel
at the N issuers.

For S3ID, the benchmark results are presented in Table 3. We observe that
for algorithms Dedup and MicroCred the runtime reflects the fact that both
depend on the number of issuers and the security parameter. Notably, for a larger
security parameter and more issuers, the runtime of Dedup is ≈ 10 seconds at
the same magnitude as CanDID [MMZ+21] while the latter uses a significantly
smaller security parameter and only 4 issuers. Also note that both AppCred and
VerifyCred are independent of the choices of the parameters and the variations
are due to noise on the benchmarking system. The implementation currently
does not include the evaluation of ϕ as the policies depend on the application
domain. Concrete policies and the representation of ϕ will have an non-negligible
impact on the performance. Hence, the runtimes AppCred and VerifyCred are
lower bounds.

27

Table 3: S3ID runtime in milliseconds with t′ = n
2 + 1.

N = 4, t = N
2
+ 1 n = 30 n = 40 n = 128

Dedup 782.6 1186 9763
MicroCred 165.2 166.3 166.3
AppCred 34.1 33.6 34.1
VerifyCred 53.6 32.4 43.5

N = 64, t = N
2
+ 1 n = 30 n = 40 n = 128

Dedup 1554 2217 13179
MicroCred 2008 2002 2001
AppCred 34.3 34.2 35.3
VerifyCred 43.9 43.0 42.8

In the implementation of AppCred and VerifyCred we also split the NIZK
proof into a Groth-Sahai proof of the pairing equation e(ζ, g) = e(

∏
i∈Q H(i) ·

τ, pk) and a Schnorr proof of the other statements – the well-formedness of

τ = gru
|Q|k
0

∏
i∈Q uai

i and the evaluation of the PRF tg = PRF(k, l) = H(l)k. To
bind the two proofs together and to ensure the non-malleability of the Groth-
Sahai proof, the Groth-Sahai proof is included in the hash of the Fiat-Shamir
transform of the Schnorr proof.

Furthermore, while we observe an increase in the runtimes of Dedup and
MicroCred as the number of issuers grows, the protocol can be scaled to ac-
commodate more issuers without significantly impacting overall runtime. This is
because these algorithms are parallelizable, single-round, and require only one-
time execution per user. The increase in the benchmarks is caused by running
all issuers on a system with a higher number of issuers than number of cores.

6 Conclusion

This paper first introduces tACT, marking a shift in anonymous counting tokens
by operating in a distributed environment. Utilizing tACT as a core element,
we present a system called S3ID that achieves distributed threshold issuance,
unlinkable multi-show selective disclosure, non-interactive, and non-transferable
credentials. We provide an implementation of our system along with benchmarks
which show that our work addresses the shortcomings of current self-sovereign
identity systems.

Acknowledgments. This work received funding from the EU research project
SWARMCHESTRATE (project no. 101135012) and the European Union’s Hori-
zon Europe project SUNRISE (project no. 101073821), and by PREPARED, a
project funded by the Austrian security research programme KIRAS of the Fed-
eral Ministry of Finance (BMF).

28

References

AGH15. Joseph A. Akinyele, Christina Garman, and Susan Hohenberger. Automat-
ing fast and secure translations from type-i to type-iii pairing schemes. In
Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages 1370–1381. ACM,
2015.

AGOT14. Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango. Convert-
ing cryptographic schemes from symmetric to asymmetric bilinear groups.
In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 241–260. Springer, 2014.

AHO16. Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo. Design in type-
i, run in type-iii: Fast and scalable bilinear-type conversion using integer
programming. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part III, volume 9816 of Lecture Notes in Computer Science, pages 387–
415. Springer, 2016.

BBG+20. James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint,
and Mariana Raykova. Secure single-server aggregation with (poly) loga-
rithmic overhead. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 1253–1269, 2020.

BCC+21. Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry,
Steve Ellis, Ari Juels, Farinaz Koushanfar, Andrew Miller, Brendan Mag-
auran, Daniel Moroz, et al. Chainlink 2.0: Next steps in the evolution of
decentralized oracle networks. Chainlink Labs, 1:1–136, 2021.

BCK+22. Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Ste-
fano Tessaro, and Chenzhi Zhu. Better than advertised security for non-
interactive threshold signatures. In Yevgeniy Dodis and Thomas Shrimp-
ton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual In-
ternational Cryptology Conference, CRYPTO 2022, Santa Barbara, CA,
USA, August 15-18, 2022, Proceedings, Part IV, volume 13510 of Lecture
Notes in Computer Science, pages 517–550. Springer, 2022.

BIK+17. Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1175–1191, 2017.

BKKJ+17. Maria Borge, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser,
Nicolas Gailly, and Bryan Ford. Proof-of-personhood: Redemocratizing
permissionless cryptocurrencies. In 2017 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), pages 23–26. IEEE, 2017.

BL22. Renas Bacho and Julian Loss. On the adaptive security of the threshold
BLS signature scheme. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2022, Los Angeles, CA,
USA, November 7-11, 2022, pages 193–207. ACM, 2022.

29

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In Advances in Cryptology– ASIACRYPT 2001, volume 2248,
pages 514–532. Springer, 2001.

BRS23. Fabrice Benhamouda, Mariana Raykova, and Karn Seth. Anonymous
counting tokens. In ASIACRYPT, 2023.

C+16. Christian Cachin et al. Architecture of the hyperledger blockchain fabric.
In Workshop on distributed cryptocurrencies and consensus ledgers, volume
310, pages 1–4. Chicago, IL, 2016.

CCK+23. Panagiotis Chatzigiannis, Konstantinos Chalkias, Aniket Kate,
Easwar Vivek Mangipudi, Mohsen Minaei, and Mainack Mondal.
Sok: Web3 recovery mechanisms. Cryptology ePrint Archive, 2023.

CDL+13. Jan Camenisch, Maria Dubovitskaya, Anja Lehmann, Gregory Neven,
Christian Paquin, and Franz-Stefan Preiss. Concepts and languages for
privacy-preserving attribute-based authentication. In Policies and Re-
search in Identity Management: Third IFIP WG 11.6 Working Conference,
IDMAN 2013, London, UK, April 8-9, 2013. Proceedings 3, pages 34–52.
Springer, 2013.

CDS94. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Annual
International Cryptology Conference, pages 174–187. Springer, 1994.

CKM23. Elizabeth C. Crites, Chelsea Komlo, and Mary Maller. Fully adaptive
schnorr threshold signatures. In Helena Handschuh and Anna Lysyan-
skaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd Annual
International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA,
USA, August 20-24, 2023, Proceedings, Part I, volume 14081 of Lecture
Notes in Computer Science, pages 678–709. Springer, 2023.

CKS24. Elizabeth Crites, Aggelos Kiayias, and Amirreza Sarencheh. Syra: Sybil-
resilient anonymous signatures with applications to decentralized identity.
Cryptology ePrint Archive, 2024.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Advances in Cryptology–CRYPTO 2004:
24th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 15-19, 2004. Proceedings 24, pages 56–72. Springer, 2004.

CLPK22. Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner. Im-
proved constructions of anonymous credentials from structure-preserving
signatures on equivalence classes. In Public-Key Cryptography–PKC 2022:
25th IACR International Conference on Practice and Theory of Public-Key
Cryptography, Virtual Event, March 8–11, 2022, Proceedings, Part I, pages
409–438. Springer, 2022.

Cra96. Ronald Cramer. Modular design of secure yet practical cryptographic pro-
tocols. Ph. D.-thesis, CWI and U. of Amsterdam, 2, 1996.

CS97. Jan Camenisch and Markus Stadler. Proof systems for general statements
about discrete logarithms. Technical Report/ETH Zurich, 260, 1997.

DGS+18. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Fil-
ippo Valsorda. Privacy pass: Bypassing internet challenges anonymously.
Proc. Priv. Enhancing Technol., 2018(3):164–180, 2018.

dif20. Decentralized Identity Foundation. https://identity.foundation/, 2020.
DKL+23. Jack Doerner, Yashvanth Kondi, Eysa Lee, Abhi Shelat, and LaKyah

Tyner. Threshold BBS+ signatures for distributed anonymous creden-
tial issuance. In 44th IEEE Symposium on Security and Privacy, SP 2023,
San Francisco, CA, USA, May 21-25, 2023, pages 773–789. IEEE, 2023.

30

https://identity.foundation/

DY05. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function
with short proofs and keys. In Public Key Cryptography-PKC 2005: 8th
International Workshop on Theory and Practice in Public Key Cryptog-
raphy, Les Diablerets, Switzerland, January 23-26, 2005. Proceedings 8,
pages 416–431. Springer, 2005.

fac18. Facebook data breach. https://www.nytimes.com/2018/09/28/
technology/facebook-hack-data-breach.html, 2018.

FG18. Georg Fuchsbauer and Romain Gay. Weakly secure equivalence-class signa-
tures from standard assumptions. In Public-Key Cryptography–PKC 2018:
21st IACR International Conference on Practice and Theory of Public-
Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings,
Part II 21, pages 153–183. Springer, 2018.

FHS19. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 32:498–546, 2019.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Conference on the theory and
application of cryptographic techniques, pages 186–194. Springer, 1986.

Gol09. Oded Goldreich. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, 2009.

GS12. Jens Groth and Amit Sahai. Efficient noninteractive proof systems for
bilinear groups. SIAM J. Comput., 41(5):1193–1232, 2012.

HIJ+21. Sharon Huang, Subodh Iyengar, Sundar Jeyaraman, Shiv Kushwah, Chen-
Kuei Lee, Zutian Luo, Payman Mohassel, Ananth Raghunathan, Shaahid
Shaikh, Yen-Chieh Sung, et al. Dit: De-identified authenticated telemetry
at scale, 2021.

HP23. Chloé Hébant and David Pointcheval. Traceable constant-size multi-
authority credentials. Information and Computation, page 105060, 2023.

HS21. Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends:
Constructing practical anonymous credentials. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
pages 2004–2023, 2021.

KHG12. Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key generation
in the wild. Cryptology ePrint Archive, 2012.

KLOR20. Ben Kreuter, Tancrède Lepoint, Michele Orrù, and Mariana Raykova.
Anonymous tokens with private metadata bit. In Advances in
Cryptology–CRYPTO 2020: 40th Annual International Cryptology Con-
ference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020,
Proceedings, Part I 40, pages 308–336. Springer, 2020.

MBG+23. Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel
Slamanig. Aggregate signatures with versatile randomization and issuer-
hiding multi-authority anonymous credentials. In CCS, pages 30–44. ACM,
2023.

MMZ+21. Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexan-
der Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and An-
drew Miller. Candid: Can-do decentralized identity with legacy compat-
ibility, sybil-resistance, and accountability. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1348–1366. IEEE, 2021.

ms23. Microsoft data breach. https://www.reuters.com/world/us/chinese-
hackers-stole-60000-emails-us-state-department-microsoft-hack-

senate-2023-09-27/, 2023.

31

https://www.nytimes.com/2018/09/28/ technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/ technology/facebook-hack-data-breach.html
https://www.reuters.com/world/us/chinese-hackers-stole-60000-emails-us-state-department-microsoft-hack-senate-2023-09-27/
https://www.reuters.com/world/us/chinese-hackers-stole-60000-emails-us-state-department-microsoft-hack-senate-2023-09-27/
https://www.reuters.com/world/us/chinese-hackers-stole-60000-emails-us-state-department-microsoft-hack-senate-2023-09-27/

MSM23. Omid Mir, Daniel Slamanig, and René Mayrhofer. Threshold delegatable
anonymous credentials with controlled and fine-grained delegation. IEEE
Transactions on Dependable and Secure Computing, pages 1–16, 2023.

NPR99. Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random
functions and kdcs. In Jacques Stern, editor, Advances in Cryptology -
EUROCRYPT ’99, volume 1592, pages 327–346. Springer, 1999.

Ped91. Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual international cryptology conference,
pages 129–140. Springer, 1991.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures.
In Topics in Cryptology-CT-RSA 2016: The Cryptographers’ Track at the
RSA Conference 2016, San Francisco, CA, USA, February 29-March 4,
2016, Proceedings, pages 111–126. Springer, 2016.

SABB+18. Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn,
and George Danezis. Coconut: Threshold issuance selective disclosure
credentials with applications to distributed ledgers. arXiv preprint
arXiv:1802.07344, 2018.

San20. Olivier Sanders. Efficient redactable signature and application to anony-
mous credentials. In Public-Key Cryptography–PKC 2020: 23rd IACR In-
ternational Conference on Practice and Theory of Public-Key Cryptogra-
phy, Edinburgh, UK, May 4–7, 2020, Proceedings, Part II, pages 628–656.
Springer, 2020.

SKP+23. Tanusree Sharma, Yujin Kwon, Kornrapat Pongmala, Henry Wang, An-
drew Miller, Dawn Song, and Yang Wang. Unpacking how decentral-
ized autonomous organizations (daos) work in practice. arXiv preprint
arXiv:2304.09822, 2023.

Sov18. Sovrin. Public service utility enabling self-sovereign identity on the inter-
net. https://sovrin.org/, 2018.

SW13. Hovav Shacham and Brent Waters. Compact proofs of retrievability. Jour-
nal of cryptology, 26(3):442–483, 2013.

TBM+20. Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico
Döttling, Aniket Kate, and Dominique Schröder. Verifiable timed signa-
tures made practical. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 1733–1750, 2020.

W3C18. W3C. Decentralized identifiers (DIDs). v0.11:data model and syntaxes for
decentralized identifiers. https://w3c-ccg.github.io/did-spec/, 2018.

yah17. Yahoo data breach. https://www.nytimes.com/2017/10/03/technology/
yahoo-hack-3-billion-users.html, 2017.

ZCC+16. Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town
crier: An authenticated data feed for smart contracts. In Proceedings of the
2016 aCM sIGSAC conference on computer and communications security,
pages 270–282, 2016.

ZMM+20. Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari
Juels. Deco: Liberating web data using decentralized oracles for tls. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1919–1938, 2020.

32

https://sovrin.org/
https://w3c-ccg.github.io/did-spec/
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html

A Additional Preliminaries

A.1 Notation

Let λ ∈ N represent the security parameter. For any finite set S, we use the
notation x ← S or x←$ S to indicate that x is uniformly sampled from S. For
an algorithm A, we denote the process of running A on input x and utilizing
uniformly random coins r as y ← A(x; r), where the result is assigned to y. In
this context, [i, j] represents a set comprising all integers within the range from
i to j, inclusive. We assume all algorithms are probabilistic polynomial-time
(PPT) unless explicitly stated otherwise. Public parameters are assumed as an
implicit input to all algorithms in a scheme. negl is a negligible function in the
security parameter λ, that is for any positive integer k and for any large enough
λ, negl(λ) ≤ 1/λk.

A.2 Pedersen Commitments

We adopt the Pedersen commitment as our commitment scheme with binding
and hiding properties. We utilize Pedersen commitment over a group G of large
order p in which the discrete logarithm assumption holds. The scheme is defined
as a tuple of the following algorithms:

– pp← Ped.Setup(1λ): This algorithm inputs security parameter λ and outputs
public commitment parameters pp as two generators g, u of the group G.

– cm← Ped.Commit(m; r): This algorithm generates a commitment cm of mes-
sage m using randomness r. The cm is of the form cm = gr ·um where r←$ Fp.

– {0, 1} ← Ped.Open(cm, r,m): To open a commitment cm, the sender sends
{r,m} to the receiver. The receiver verifies the opening by checking whether
cm = gr · um and outputs a bit b ∈ {0, 1}.

The binding property of the commitment scheme necessitates that the prover
lacks knowledge of the discrete log relation between generators g, u.

Generalized Pedersen Commitment. There is an important generalization
of the Pedersen commitment scheme [Ped91], with which a prover can commit
to multiple messages (m0, . . . ,mn−1) for n ∈ Z+. The generalized Pedersen
commitment over a group G of prime order p is defined as a tuple of the following
algorithms:

– pp ← Ped.Setup(1λ, n): This algorithm inputs security parameter λ and out-
puts public commitment parameters pp consisting of n + 1 elements of the
group G denoted as g, u0, u1, . . . , un−1.

– cm← Ped.Commit(m0, . . . ,mn−1; r): To commit to messages (m0, . . . ,mn−1),
wheremi ∈ Fp for i ∈ [0, n−1], the algorithm samples a random value r←$ Fp,

computes cm = gr ·
∏n−1

i=0 umi
i and outputs cm.

– {0, 1} ← Ped.Open(cm, r,m0, . . . ,mn−1): The algorithm inputs opening of
commitment cm as {r,m0, . . . ,mn−1} and verifies the opening by checking

whether cm = gr ·
∏n−1

i=0 umi
i . It outputs a bit b ∈ {0, 1}.

33

A.3 Zero-Knowledge Proofs of Knowledge

We define zero-knowledge proofs of knowledge (ZKPoK) and discuss their non-
interactive variants (NIZK). In this paper, we require protocols to prove knowl-
edge of discrete logarithm relations. This can be efficiently realized by utilizing
Sigma protocols [CDS94, Cra96], which are efficient instantiations of ZKPoK and
can be made non-interactive using the Fiat-Shamir heuristic [FS86]. Moreover,
we need to prove a pairing product equation and thus also rely on the Groth-
Sahai NIZK proof system [GS12]. Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a NP-
witness-relation with corresponding NP-language L := {x : ∃w s.t.R(x,w) = 1}.
A non-interactive zero-knowledge proof (NIZK) system for R has the following
algorithms:

– crs ← ZKSetup(1λ,R): Generates common reference string crs for the prove
relationship R.

– π ← ZKPoK(R, crs, x, w): Generates a proof π that the prover knows a witness
w such that the input statement x satisfies the relation R(x,w).

– {0, 1} ← ZKVerify(crs, x, π): Efficiently verifies the correctness of the proof for
a statement x. Outputs a bit b ∈ {0, 1}, where b = 1 shows that proof π is
accepted, and b = 0 otherwise.

The notation used to represent ZK proofs is ZKPoK{w : statement about w}, as
introduced by Camenisch et al. [CS97]. This notation indicates showing in zero-
knowledge that certain secret values w fulfill the statement listed after the colon.
A ZKPoK system must satisfy the following properties: (I) Zero-knowledge: The
verifier V gains no additional knowledge beyond the validity of statements during
the protocol execution, (II) Simulation sound: It is computationally infeasible
for any prover P to persuade the verifier V of the validity of an invalid statement
(selected by P), even after having seen a polynomial number of simulated proofs
for their chosen statements.

A.4 Oracle Systems

Privacy-Preserving Oracles [ZCC+16, ZMM+20], leverage cryptographic tech-
niques that enable a user (P) to prove to a verifier (V) arbitrary statements about
their data, which is securely retrieved from an authoritative web server (S). This
process ensures data privacy is preserved throughout. For instance, P can pro-
vide an oracle proof πO to convince V that she is over 18, based on information
sourced from her online U.S. State Department account (S) without revealing
any additional data beyond this statement. Oracles play a pivotal role in grant-
ing a wide range of applications– both in blockchain and traditional systems–
access to private and public web data. Notable examples include credential cre-
ation from legacy data in DID systems and feeding real-world data to privacy-
preserving smart contracts in Decentralized Finance (DeFi) [W3C18, BCC+21].

34

B Proofs

B.1 Security Analysis of tACT

In this section we present the security proofs of our tACT construction.

Theorem 2. [Unforgeability] If tSW provides unforgeability, the cut-and-choose
scheme is sound, and the ZKPoK argument is knowledge sound, then, the tACT
scheme in Algorithm 1 satisfies unforgeability from Definition 3.

Proof. Assume there is an adversary A that wins the unforgeability security
game in Figure 4 with non-negligible probability. We construct three PPT ad-
versaries: BtSW which breaks the unforgeability of the tSW, BSND which breaks
the soundness of the cut-and-choose scheme, and BzkSND breaks the soundness
of the zero-knowledge argument. We show that:

AdvuftACT,A ≤ (T + L+ 1) · AdvuftSW,BtSW
(λ) + T · AdvsoundSND,BSND

(λ)

+T · AdvzksoundSND,BzkSND
(λ). (1)

Construction of the adversaries. Let us first construct BtSW. BtSW obtains pk
from the challenges for the tSW scheme and provides it as public parameters to
A. BtSW answers signing queries π∗ = {cm, {cmk}k∈[1,n], cmk} from A as follows.
If π∗ fails to verify, abort. Else, A queries the tSW challenger for signatures and
returns the result. We consider the output h := (tokeni := si, πtoki

)i∈[T+1] that
A generates. We write πtok,i = ({s′k,i}k∈[1,n], Ci, {R′

k,i}k∈Ci , pk
′, πzk). At the end,

BtSW does the following:

– If A produced a Type-1 forgery, it uniformly at random chooses i∗ ∈ [T + 1]
and return the ith token πtoki∗ = ({s′k,i∗}k∈[1,n], Ci∗ , {R′

k,i∗}k∈Ci∗ , pk
′, πzk) to

the tSW challenger as its forgery.
– If A produced a Type-2 forgery with set τ ⊂ [T]. Assume without loss of
generality that |τ | = L + 1. BtSW select uniformly at random i∗ ∈ τ and
outputs the i∗-th token πtoki∗ = ({s′k,i∗}k∈[1,n], Ci∗ , {R′

k,i∗}k∈Ci∗ , pk
′, πzk) to

the tSW challenger as its forgery.

Now, let us construct BSND. BSND runs the cut-and-choose challenger and does
the following:

– If A produced a Type-1 forgery, it outputs ⊥ to the cut-and-choose soundness
challenger.

– If A produced a Type-2 forgery with set τ ⊂ [T]. Assume without loss of gen-
erality that |τ | = L+1. BSND select uniformly at random j∗ ∈ [T] and outputs
the j∗-th query π∗ = (cmj∗ , {cmk,j∗}k∈[1,n], cmk) made by A to tACT.tIssue
to the cut-and-choose challenger (as a proof of an invalid statement).

35

Now, we construct BzkSND. BzkSND runs the ZK soundness challenger and does
the following:

– If A produced a Type-1 forgery, it outputs ⊥ to the ZK soundness challenger.
– If A produced a Type-2 forgery with set τ ⊂ [T]. Assume without loss of gen-

erality that |τ | = L+1. BzkSND select uniformly at random j∗ ∈ [T] and outputs
the j∗-th query π∗

token = {{s′k,j∗}k∈[1,n], Cj∗ , {R′
k,j∗}k∈C , πzk,j∗ , cmj∗ , cmk,j∗ , pk

′
j∗}

made by A to tACT.Verify to the ZK soundness challenger (as a proof of an
invalid statement).

Remark that BtSW, BSND, and BzkSND cannot know (in polynomial time) whether
the output to their tSW/cut-and-choose/ZK challenger is valid, i.e., if they will
win the tSWBtSW

(λ), SNDBSND
(λ), and zkSNDBzkSND

(λ) games. However, this is not
an issue to prove that the advantage of at least one of those two adversaries is
non-negligible if the advantage of A in unforgability experiment is non-negligible.
. Finally, in order to extract ri and ai (following the experiment of unforgabil-
ity of tACT section 3.1), we run the extractor Ext of the underlying ZKPoK’s
extractor to extract the committed values ri and ai.

Our proof strategy is the following. We define events E1tSW,i, E2tSW,k, E2,SND,j ,
and E2,zkSND,j for i ∈ [T + 1], k ∈ [L], j ∈ [T] so that:

– Exactly one of these events must happen if the adversary wins.
– Conditioned on any of these events, either BtSW or BSND, or BzkND wins EUF-

CMA or soundness respectively.

Note that there is no need for these events to be efficiently checked for the proof
to go through.

Definition of Events. Let us first define events E1tSW,i that are associated with
a Type-1 forgery. In that case, A generated T + 1 tokens by doing T signa-
ture queries. A queries Sign only T times and there are T + 1 valid tokens
{πtoki

}i∈[T+1], there exists i ∈ [T + 1] so that πtoki
(and Tokeni) is not in the

query’s list queried to Sign. And πtoki
is a forgery for the tSW scheme.

We define E1tSW,i the event that A produced a Type-1 forgery and πtoki
(and

Tokeni) is not in the query’s list queried to Sign, and no event E1tSW,i′ happened
for i′ < i. (This last constraint is to ensure that the events E1tSW,i are disjoint.)
Equivalently, E1tSW,i is defined as the event that A produced a Type-1 forgery
and πtoki if the πtoki′ that is not in the query’s list queried to Sign.

Let us now consider Type-2 forgeries. Let us show that at least one of the
following events must happen:

– Event E2tSW,k: A made a Type-2 forgery (and not a Type-1 forgery) for a set
τ = i1, . . . , iL with i1 < · · · < iL, so that πtokik

is not in the query’s list
queried to Sign, and so that no event E2tSW,k′ happened for k′ ≤ k.

– Event E2,SND,i:

• A made a Type-2 forgery (and not a Type-1 forgery) and,

36

• its i-th signing query is (Tokeni, πtoki
) where πtoki

is valid but proves a
wrong cut-and-choose statement on the Tokeni, and,

• neither event E2tSW,k nor E2,SND,j happened for j′ < j and any k.

The event E2,zkSND,i is similar to E2,SND,i but there πtoki
is valid but proves

a wrong ZK statement on the Tokeni, and, non of the events E2tSW,k or E2,SND,j

or E2,zkSND,j happened for j′ < j and any k.

Let us assume by contradiction that none of the events happened (assuming A
made a Type-2 forgery). Then since no E2tSW,k happened, each πtokik

is in the
query’s list queried to Sign. Since there are L+ 1 of them and there are only L
clients, at least two of them were made for the same client. These two queries
are for the same message on which the Type-2 forgery was made. But since the
cut-and-choose proofs were all proving valid statements (as no event E2,SND,i

occurred), this is a contradiction. So at least one of the events must happen.

Conclusion of the Proof. Since at least one of the events E1tSW,i, E2tSW,k, and
E2,SND,i must happen and these events are disjoint, we have that from the total
probability rule:

AdvuftACT,A = Pr[ufA(λ) = 1] =

T+1∑
i=1

Pr[ufA(λ) = 1 ∧ E1tSW,i]

+

L∑
k=1

Pr[ufA(λ) = 1 ∧ E2tSW,j] +

T∑
j=1

Pr[ufA(λ) = 1 ∧ E2tSW,j]

In addition, looking at the definition of BtSW and from the fact this reduction
perfectly simulates the oracles for A:

T+1∑
i=1

Pr[ufA(λ) = 1 ∧ E1tSW,i]

=

T+1∑
i=1

Pr[ufBtSW
(λ) = 1 ∧ Event1tSW,i|i∗ = i]

= Pr[i∗ = i]−1
T+1∑
i=1

Pr[ufBtSW
(λ) = 1 ∧ E1tSW,i ∧ i∗ = i]

≤ Pr[i∗ = i]−1
T+1∑
i=1

Pr[ufBtSW
(λ) = 1 ∧ i∗ = i]

= (T + 1) · Pr[ufBtSW
(λ) = 1].

Similarly, we have,

L∑
k=1

Pr[ufA(λ) = 1 ∧ E2tSW,k] ≤ L · Pr[ufBtSW
(λ) = 1],

37

T∑
j=1

Pr[ufA(λ) = 1 ∧ E2SND,j] ≤ T · Pr[SNDBSND
(λ) = 1].

T∑
j=1

Pr[ufA(λ) = 1 ∧ E2zkSND,j] ≤ T · Pr[zkSNDBzkSND
(λ) = 1].

Together this concludes Equation (1).

Theorem 3. [Unlinkability] If the Ped.Commit scheme provides hiding property,
the ZKPoK scheme provides zero-knowledge property, and H is modeled as a
random oracle, then the tACT scheme in Algorithm 1 satisfies unlinkability from
Definition 4.

Proof. We conduct the proof using hybrid games:

Game0: This game represents the unlinkability security game.

Game1: This game is similar to the previous one, except now all the cut-and-
choose proofs are simulated.

Game0-Game1: This hybrid is computationally indistinguishable from the
previous one due to the hiding property of the cut-and-choose argument.

Game2: This game is similar to the previous one except that in any Unblind
computation, instead of computing C ← H′(Token), it chooses C uniformly at
random.

Game1-Game2: This game is indistinguishable from the previous one assum-
ing H′ is modeled as a random oracle.

Game3: This game is similar to the previous one, except now all the ZK proofs
are simulated.

Game2-Game3: This hybrid is computationally indistinguishable from the
previous one due to the zero-knowledge property of the ZK argument.

Game4: This game is similar to the previous one except that for every token
request and associated unblind query, a is chosen uniformly at random.

Game3-Game4: This game is indistinguishable from the previous one assum-
ing Ped.Commit scheme provides the hiding property.

In the final hybrid, the outcome of any token request is unrelated to the inputs
a. The result of an unblind request solely comprises the underlying message and
remains independent to the output of the corresponding token request. In this
last game, no component from the computation of the token request is utilized
during unblinding, except for the message itself. Consequently, the adversary’s
advantage is 0, leading to the conclusion of the proof.

B.2 Security Analysis of S3ID

Now, we provide the security proofs of the S3ID scheme.

38

Theorem 4. [Unforgeability] If tSW provides unforgeability security and ZKPoK
is sound, then, the S3ID scheme in Algorithm 2 satisfies unforgeability from Def-
inition 6.

Proof. The proof of unforgeability for S3ID is similar to the proof in Theorem 2.
It relies on the soundness property of the ZKPoK and the unforgability of the
tSW scheme. Specifically, the adversary attempting to forge is faced with the
following possibilities:

– Computing an invalid signature ζ (while computing a valid τ and its corre-
sponding ZKPoK proof π).

– Computing an invalid τ along with a proof π that passes the verification (while
computing a valid signature ζ).

It is evident that the adversary cannot succeed in either case without break-
ing the unforgeability of the tSW scheme in the first scenario or violating the
soundness property of the ZKPoK in the latter case.

Theorem 5. [Sybil-resistance] If tACT provides unforgeability security and ZKPoK
is sound, then, the S3ID scheme in Algorithm 2 satisfies Sybil-resistance from
Definition 7.

Proof. This is a direct result of the unforgeability of the tACT scheme proved
in Theorem 2.

Theorem 6. [Strong Unlinkability] If the Ped.Commit scheme provides the hid-
ing property, H is modeled as a random oracle, ZKPoK provides zero-knowledge
property, and the tACT scheme is unlikable, then the S3ID scheme in Algorithm 2
satisfies strong unlinkability from Definition 8.

Proof. We proceed with the proof using hybrid games:

Game0: This game is the unlinkability game in Figure 8.

Game1: This game is similar to the previous one except now all the ZKPoK
proofs are simulated.

Game0-Game1: This hybrid is computationally indistinguishable from the
previous one due to the zero-knowledge property of the ZKPoK argument.

Game2: This game is similar to the previous one except that in any AppCred
computation, it chooses τ uniformly at random instead of computing τ = gr ·
u
|Q|k
0 ·

∏
i∈Q uai

i .

Game1-Game2: This game is indistinguishable from the previous one assum-
ing the hiding property of the commitment τ and the zero-knowledge property
of the ZKPoK.

Game3: This game is similar to the previous one except that in any AppCred
computation, instead of computing tg = PRF(k, l), it chooses tg uniformly at
random.

39

Game2-Game3: This game is indistinguishable from the previous one assum-
ing PRF scheme.

Game4: This game is similar to the previous one except that for every token
request and associated unblind query, a is chosen uniformly at random.

Game3-Game4: This game is indistinguishable from the previous one assum-
ing Ped.Commit scheme provides the hiding property.

In the last hybrid, token requests become independent of a. Unblind request
outputs solely include the underlying message and are unrelated to associated
token request outputs. Consequently, the adversary’s advantage is 0, concluding
the proof.

40

	Attribute-Based Threshold Issuance Anonymous Counting Tokens and Its Application to Sybil-Resistant Self-Sovereign Identity

