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Abstract. Laconic cryptography enables secure two-party computation (2PC) on unbalanced inputs
with asymptotically-optimal communication in just two rounds of communication. In particular, the
receiver (who sends the first-round message) holds a long input and the sender (who sends the second-
round message) holds a short input, and the size of their communication to securely compute a function
on their joint inputs only grows with the size of the sender’s input and is independent of the receiver’s
input size. The work on laconic oblivious transfer (OT) [Cho et al. CRYPTO 2017] and laconic private
set intersection (PSI) [Alamati et al. TCC 2021] shows how to achieve secure laconic computation for
OT and PSI from the Diffie-Hellman assumption.
In this work, we push the limits further and achieve laconic branching programs from the Diffie-Hellman
assumption. In particular, the receiver holds a large branching program P and the sender holds a short
input x. We present a two-round 2PC protocol that allows the receiver to learn x iff P (x) = 1, and
nothing else. The communication only grows with the size of x and the depth of P , and does not further
depend on the size of P .
Keywords: Laconic cryptography, unbalanced secure computation, branching programs

1 Introduction

Suppose a server holds a large set of elements Y (which could be exponentially large) that can be represented
as a polynomial-sized branching program P , that is, y ∈ Y iff P (y) = 1. The server would like to publish a
succinct digest of Y such that any client who holds a small set X can send a short message to the server to
allow her to learn the set intersection X ∩ Y but nothing beyond that.

This is a special case of the secure two-party computation (2PC) [Yao86] problem, where two mutually
distrustful parties, each holding a private input x and y respectively, would like to jointly compute a function f
over their private inputs without revealing anything beyond the output of the computation. Garbled circuits
[Yao86] together with oblivious transfer (OT) [Rab81, Rab05] enables 2PC for any function f with two
rounds of communication: one message from the receiver to the sender and another message from the sender
back to the receiver. This approach achieves the optimal round complexity; nevertheless, it requires the
communication complexity to grow with the size of f . In particular, if we represent f as a Boolean circuit,
then the communication grows with the number of gates in the circuit, which grows at least with the size
of the inputs x and y. For unbalanced input lengths (i.e., |x| ≫ |y| or |x| ≪ |y|), is it possible to make the
communication only grow with the shorter input and independent of the longer input?

Long Sender Input. When the sender has a long input, i.e. |x| ≫ |y|, we can use fully homomorphic encryption
(FHE) [Gen09] to achieve communication that only grows with the receiver’s input length |y| plus the output
length. This technique works for any function but can only be based on variants of the learning with errors
(LWE) assumption [GSW13]. For simpler functions that can be represented by a branching program, in
particular, if the sender holds a private large branching program P and the receiver holds a private short input
y, the work of Ishai and Paskin [IP07] illustrates how to construct 2PC for P (y) where the communication
⋆ © IACR 2024. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on

01/21/2024. The version published by Springer-Verlag is available at (DOI not yet available).



2 Sanjam Garg1, Mohammad Hajiabadi2, Peihan Miao3, and Alice Murphy4

only grows with |y| and the depth of P , and does not further depend on the size of P . Their construction
is generic from a primitive called rate-1 OT, which can be built based on a variety of assumptions such
as DCR, DDH, QR, and LWE assumptions with varying efficiency parameters [IP07, DGI+19, GHO20,
CGH+21]. In this setting, there are works in secure BP evaluation for applications in machine learning and
medicine [BPSW07, BFK+09, KNL+19, CDPP22]. Our results concern the dual setting, in which the receiver
has the longer input and is the party that learns the output. Moreover, this should be achieved in only two
rounds of communication.

Long Receiver Input. When the receiver has a long input, i.e. |x| ≪ |y|, a recent line of work on laconic
cryptography [CDG+17, QWW18, DGGM19, ABD+21, ALOS22] focuses on realizing secure 2PC with
asymptotically-optimal communication in two rounds. In particular, the receiver has a large input and
the size of her protocol message only depends on the security parameter and not her input size. The second
message (sent by the sender) as well as the sender’s computation may grow with the size of the sender’s
input, but should be independent of the receiver’s input size.

In this dual setting, the work of Quach, Wee, and Wichs [QWW18] shows how to realize laconic 2PC
for general functionalities using LWE. Regarding laconic 2PC for simpler functions from assumptions other
than LWE, much less is known compared to the setting of long sender inputs.

The work of Cho et al. [CDG+17] introduced the notion of laconic oblivious transfer (laconic OT), where
the receiver holds a large input D ∈ {0, 1}n, the sender holds an input (i ∈ [n],m0,m1), and the two-round
protocol allows the receiver to learn (i,mD[i]) and nothing more. The communication complexity as well
as the sender’s computation only grow with the security parameter and is independent of the size of D.
Besides LWE [QWW18], laconic OT can be built from DDH, CDH, and QR [CDG+17, DG17].5 Recent
work [ABD+21, ALOS22] extends the functionality to laconic private set intersection (laconic PSI), where
the sender and receiver each holds a private set of elements X and Y respectively (|X| ≪ |Y |), and the two-
round protocol allows the receiver to learn the set intersection X ∩Y and nothing more. The communication
complexity and the sender’s computational complexity are both independent of |Y |. Laconic PSI can be built
from CDH/LWE [ABD+21] or pairings [ALOS22].

Both laconic OT and laconic PSI can be viewed as special cases of a branching program. Recall that in
the setting of long sender input, where a sender has a large branching program, we have generic constructions
from rate-1 OT, which can be built from various assumptions. However, in the dual setting of long receiver
input, we no longer have such a generic construction. Laconic OT seems to be a counterpart building block
in the dual setting, but it does not give us laconic branching programs. Given the gap between the two
settings, we ask the following question:

Can we achieve laconic branching programs from assumptions other than LWE?

This diversifies the set of assumptions from which laconic MPC can be realized. It also increases our
understanding of how far each assumption allows us to expand the functionality, which helps in gaining
insights into the theoretical limits of the assumptions themselves.

1.1 Our Results

We answer the above question in the affirmative. In particular, as a natural counterpart to the aforementioned
setting of long sender input, when the receiver holds a private large branching program BP and the sender
holds a private short input x, we construct a two-round 2PC protocol allowing the receiver to learn x iff
BP(x) = 1, and nothing else. The communication only grows with |x| and the depth of BP, and does not
further depend on the size of BP. Furthermore, the sender’s computation also only grows with |x| and the
depth of BP. The receiver’s computation grows with the number of BP nodes and the number of root-to-leaf
paths. Our construction is based on anonymous hash encryption schemes [BLSV18], which can in turn be
based on CDH/LWE [DG17, BLSV18].

5 Importantly, in laconic OT, the receiver’s second-phase computation time should have at most a polylog dependence
on |D|. This can be achieved in the laconic OT setting because the index i is known to the receiver. In other settings,
such as laconic PSI, this cannot be realized (without pre-processing) because not probing a particular database
entry leaks information about the sender’s input.
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Sender Security. We achieve what we call weak sender security which says if BP(x) = 0, then no information
about x is leaked; else, there are no privacy guarantees for x. A stronger security requirement would be
that in the latter case, the receiver only learns BP(x), and no other information about x. Unfortunately,
realizing strong sender security is too difficult in light of known barriers: it generically implies a notion
called private laconic OT [CDG+17, DGI+19]. Private laconic OT is laconic OT in which the index i chosen
by the sender is also kept hidden from the receiver. The only existing construction of private laconic OT
with polylogarithmic communication uses techniques from laconic secure function evaluation and is based
on LWE [QWW18]. In particular, it is not known if private laconic OT can be realized using Diffie-Hellman
assumptions.

Strong sender security allows one to achieve laconic PSI cardinality, a generalization of laconic PSI. In
the PSI cardinality problem, the receiver learns only the size of the intersection and nothing about the
intersection set itself. Strong sender security for a receiver with a large set S and a sender with a single
element x would allow the receiver to only learn whether or not x ∈ S. This immediately implies laconic
PSI cardinality by having the sender send a second-round protocol message for each element in its set.
Laconic PSI cardinality generically implies private laconic OT, establishing a barrier. The same barriers
prevented [DKL+23] from building laconic PSI cardinality. We can get laconic PSI as an application of
our results (and other applications discussed below), but our results do not allow us to realize laconic PSI
cardinality. More specifically, after receiving the second-round message from the sender, the receiver in our
protocol works by checking which path in their BP tree (if any) decrypts to “accept”. If there is an accepting
path, then BP(x) = 1, where x is the sender’s input. But this reveals the value of x since the receiver knows
which path resulted in acceptance.

Applications. Our laconic branching program construction directly implies laconic OT and laconic PSI, as
their functionalities can be represented as branching programs. Moreover, we can capture other functionalities
not considered by previous work, such as private-set unions (PSU). A branching program for PSU can be
obtained by making local changes to a branching program for PSI. (See Section 5.) This demonstrates
the versatility of our approach, giving a unifying construction for all these functionalities. In contrast, the
accumulator-based PSI constructions in [ABD+21, ALOS22, DKL+23] are crucially tied to the PSI setting,
and do not seem to extend to the PSU setting. This is because the sender’s message to the receiver only
provides enough information to indicate which element (if any) in the receiver’s set is also held by the
sender. In essence, only the index of this element within the receiver’s set needs to be conveyed in the
sender’s message. In the PSU setting, on the other hand, there could be elements in the union that do not
exist in the receiver’s set. So, the sender’s message needs to contain more information than an index. If the
sender’s element is not in the receiver’s set, the receiver needs to be able to recover the sender’s element
from the message.

Our techniques can be used in unbalanced PSI where the receiver holds a large set (possibly of exponential
size) that can be represented as a branching program. For instance, a recent work by Garimella et al. [GRS22]
introduced the notion of structure-aware PSI where one party’s (potentially large) set Y is publicly known to
have a certain structure. As long as the publicly known structure can be represented as a branching program,
our techniques can be used to achieve a two-round fuzzy-matching PSI protocol where the communication
only grows with the size of the smaller set |X| and the depth of the branching program, and does not further
depend on |Y |, which could potentially be exponentially large.

2 Technical Overview

Our constructions are based on hash encryption (HE) schemes [DG17, BLSV18]. An HE scheme, parame-
terized by n = n(λ) (where λ is the security parameter), consists of a hash function Hash(pp, ·) : {0, 1}n →
{0, 1}λ and associated HEnc and HDec functions. One can encrypt n pairs of plaintexts m := (mi,b) (for
i ∈ [n] and b ∈ {0, 1}) with respect to h := Hash(pp, z) to get cth ← HEnc(h,m).6 The ciphertext cth is
such that given z, one may recover (m1,z[1], . . . ,mn,z[n]) from cth, while maintaining semantic security for
(mi,1−zi) even in the presence of z. HE can be realized using CDH/LWE [DG17, BLSV18].

Consider a simple example where the receiver R has a depth-one BP on bits (see Def. 3 for branching
programs) where the root node encodes index i∗ ∈ [n] and its left child encodes accept (b0 := accept) and
6 HEnc also takes the public parameter pp as input, but we omit it here for brevity.
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its right child encodes reject (b1 := reject). This BP evaluates an input x by checking the bit value at index
i∗. If x[i∗] = 0, then the value of the left child is output: b0 = accept. If x[i∗] = 1, then the value of the right
child is output: b1 = reject. As a starting point, suppose R only wants to learn if BP(x) = 1, where x is the
sender’s input. The receiver hashes h := Hash(pp, (i∗, b0, b1)), padding the input if necessary, and sends h to
the sender, S. S has the following circuit F[x] with their input x hardwired: on input (j, q0, q1), F[x] outputs
qx[j]. S garbles F[x] to get a garbled circuit F̃ and corresponding labels (lbi,b). S uses the hash value, h, from
R to compute cth ← HEnc(h, (lbi,b)). Finally, S sends (F̃, cth) to R. The receiver, given her hash pre-image
value z := (i∗, accept, reject) can only recover (lbi,z[i]), allowing her in turn to learn F[x](z) from the garbled
circuit, outputting either accept (BP(x) = 1) or reject (BP(x) = 0).

Beyond depth 1. Next, consider the BP of depth 2 in Fig. 1 held by the receiver, R. Each internal node encodes
an index, root, left, right ∈ [n]. The four leaves have values with variables (b00, b01, b10, b11). For i, j ∈ {0, 1},
bij ∈ {accept, reject}. Suppose x[root] = 0, where x is the sender’s input, so the root-leaf path induced by
BP(x) first goes left. If the sender, S, ‘by some miracle’ knows the hash value h0 := Hash(pp, (left, b00, b01)), he
can, as above, send a garbled circuit for F[x] and an HE ciphertext wrt h0 of the underlying labels, allowing R

root

left

b00 b01

right

b10 b11

0

0 1

1

0 1

Fig. 1: Depth 2 BP example

to evaluate F[x](left, b00, b01). But S does not know the value of h0, nor does he know whether the first move
is left or right, because the BP is hidden from S. Moreover, R cannot send both h0 := Hash(pp, (left, b00, b01))
and h1 := Hash(pp, (right, b10, b11)) because (a) there will be a size blowup (the communication will grow
with the size, and not the depth, of the BP), and (b) R will learn more information than necessary because
S does not know a priori whether the induced computation travels left or right, so he has to encrypt the
labels under both h0 and h1. But encrypting the labels (lbi,b) under both h0 and h1 will allow the receiver
to recover two labels for an index on which (left, b00, b01) and (right, b10, b11) differ, destroying garbled-circuit
security.

Fixing size blow-up via deferred encryption. We fix the above issue via deferred encryption techniques [DG17,
BLSV18, GHMR18, ABD+21], allowing the sender to defer the HE encryptions of (lbi,b) labels to the receiver
herself at decryption time! To enable this technique, the receiver further hashes (h0, h1) such that during
decryption, the receiver, through the evaluation of a garbled circuit, will obtain an HE encryption of (lbi,b)
labels with respect to hx[root], where (lbi,b) and (h0, h1) are as above. To do this, we have to explain how
the receiver further hashes down h0 and h1, and how she can later perform deferred encryption. First, the
receiver R computes the hash value hr := Hash(pp, (h0, h1, root)), and sends hr to S. Next the sender S(x)

garbles F[x] to get (F̃, lbi,b) as above. Then, he forms a circuit G[x, (lbi,b)] with x and (lbi,b) hardwired, which
on an input (h′0, h

′
1, u) outputs HEnc(h′x[u], (lbi,b)). The sender garbles G[x, (lbi,b)] to get (G̃, (lb′i,b)). Before

proceeding, let us consider R’s perspective. If R is given G̃ and the labels (lb′i,z′[i]), where z′ := (h0, h1, root),
she can evaluate G̃ on these labels, which will in turn release an HE encryption of labels (lbi,b) under hx[root],
as desired. To ensure R only gets the (lb′i,z′[i]) labels, S encrypts the {lb′i,b} labels under hr, and sends the
resulting HE ciphertext cth′, as well as F̃ and G̃ to R. From cth′ and z′ := (h0, h1, root), R can only recover
the labels (lb′i,z′[i]), as desired.

How can the receiver decrypt? The receiver will evaluate G̃ on the decrypted (lb′i,z′[i]) labels, releasing an
HE encryption cth of (lbi,b) labels under hx[root]. The receiver does not know whether cth is encrypted under



Laconic Branching Programs from the Diffie-Hellman Assumption 5

h0 or h1, so she tries to decrypt with respect to the pre-images of both hash values and checks which one
(if any) is valid. However, this results in the following security issue: an HE scheme is not guaranteed to
hide the underlying hash value with respect to which an HE ciphertext was made. For example, imagine
an HE scheme where HEnc(h, (mi,b)) appends h to the ciphertext. Employing such an HE scheme (which
is semantically secure) in the above construction will signal to the receiver if cth′ was encrypted under h0

or h1, namely the bit value of x[root]. This breaks sender security if BP(x) = 0. Moreover, even if the HE
encryption scheme is anonymous in the sense of hiding h, decrypting an hb-formed HE encryption under the
pre-image of h1−b may result in ⊥, or in junk labels that do not work on F̃. We use the same technique as
in [ABD+21] of using anonymous hash encryption and garbled circuits to resolve this issue.

Signalling the correct output of F. In the above examples, F[x] outputs either accept or reject, indicating if
BP(x) equals 1 or 0, respectively. But, in the desired functionality, F[x] outputs x if BP(x) = 1. We cannot
simply modify F[x] to output x if qxj

= accept since in that case if the receiver evaluates F̃ on junk labels
she will not be able to tell the difference between the junk output and x. Similar to [ABD+21], we address
this problem by having S include a signal value in the ciphertext and in their message to R. Then we can
modify F[x] to output x and the decrypted signal value. The receiver compares this output signal value with
the true value. If they are equal, R knows that output x is not junk.

Handling unbalanced branching programs. The above discussion can be naturally extended to the
balanced BP setting, wherein we have a full binary tree of depth d. When the BP is unbalanced, like our
BPs for PSI and PSU, the above approach does not work, because the sender does not know a priori which
branches stop prematurely. We solve this issue via the following technique. We design the circuit G to work
in two modes: normal mode (as explained above) and halting mode, which is triggered when its input signals
a leaf node. In halting mode, the circuit G will release its hardwired input x, assuming the halt is an accept.
Executing the above blueprint requires striking a delicate balance to have both correctness and security.

Comparison with [ABD+21]. At a high level, the garbled-circuit-based laconic PSI construction of [ABD+21]
is an ad hoc and specific instantiation of our general methodology. In particular, for a receiver with m = 2k

elements (for k := polylog(λ)), the construction of [ABD+21] builds a full binary tree of depth k, with the
m elements appearing sorted in the leaves, Merkle hashed all the way up in a specific way. In particular,
the pre-image of each node’s hash value is comprised of its two children’s hashes as well as some additional
encoded information about its sub-tree, enabling an evaluator, with an input x, to make a deterministic
left-or-right downward choice at each intermediate node. This is a very specific BP instantiation of PSI,
where the intermediate BP nodes, instead of running index predicates (e.g., going left/right if the ith bit
is 0/1), they run full-input predicates Φ : x 7→ {0, 1}, where Φ is defined based on the left sub-tree of the
node. Our approach, on the other hand, handles branching programs for index predicates, and we subsume
the results of [ABD+21] as a special case. In particular, we show how to design simple index-predicate BPs
for PSI, PSU, and wildcard matching, the latter two problems are not considered by [ABD+21].

In summary, our construction generalizes and simplifies the approach of [ABD+21], getting much more
mileage out of the garbled-circuit based approach. For example, [ABD+21] builds a secure protocol for a
specific PSI-based BP which is in fact a decision tree: namely, the in-degree of all internal nodes is one. On
the other hand, we generalize this concept to handle all decision trees and even the broader class of branching
programs, in which the in-degree of intermediates nodes can be greater than one. Moreover, we introduce
some new techniques (e.g., for handling unbalanced BPs) that may be of independent interest.

Comparison with [DGGM19]. The work of Döttling, Garg, Goyal, and Malavolta [DGGM19] builds laconic
conditional disclosure of secrets (CDS) involving a sender holding an NP instance x and a message m, and a
receiver holding x and a potential witness w for x. If R(x,w) = 1, where R is the corresponding relation R,
the receiver learns m; else, the receiver learns no information about m. They show how to build two-round
laconic CDS protocols from CDH/LWE with polylogarithmic communication and polylogarithmic sender
computation. The CDS setting is incomparable to ours. The closest resemblance is to think of x, the BP
input, as the NP instance, and of the BP as the NP witness w. But then under CDS, the input x is not kept
hidden from the receiver. In particular, it is not even clear whether laconic CDS implies laconic PSI.
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3 Preliminaries

Throughout this work, λ denotes the security parameter. negl(λ) denotes a negligible function in λ, that is,
a function that vanishes faster than any inverse polynomial in λ.

For n ∈ N, [n] denotes the set {1, . . . , n}. If x ∈ {0, 1}n then the bits of x can be indexed as x[i] := xi for
i ∈ [n], where x = x1 . . . xn (note that indexing begins at 1, not 0). x := y is used to denote the assignment of
variable x to the value y. If A is a deterministic algorithm, y ← A(x) denotes the assignment of the output of
A(x) to variable y. If A is randomized, y $←A(x) is used. If S is a (finite) set, x $←S denotes the experiment
of sampling uniformly at random an element x from S. If D is a distribution over S, x $←D denotes the
element x sampled from S according to D. If D0, D1 are distributions, we say that D0 is statistically (resp.
computationally) indistinguishable from D1, denoted by D0 ≈s D1 (resp. D0

c≡ D1), if no unbounded (resp.
PPT) adversary can distinguish between the distributions except with probability at most negl(λ).

If Π is a two-round two-party protocol, then (m1,m2) ← trΠ(x0, x1, λ) denotes the protocol transcript,
where xi is party Pi’s input for i ∈ {0, 1}. For i ∈ {0, 1}, (xi, ri,m1,m2) ← viewΠ

i (x0, x1, λ) denotes Pi’s
“view” of the execution of Π, consisting of their input, random coins, and the protocol transcript.

Definition 1 (Computational Diffie-Hellman) Let G(λ) be an algorithm that outputs (G, p, g) where G
is a group of prime order p and g is a generator of the group. The CDH assumption holds for generator G
if for all PPT adversaries A

Pr

[
ga1a2 ← A(G, p, g, ga1 , ga2) :

(G, p, g)← G(λ)
a1, a2 ←$ Zp

]
≤ negl(λ).

Definition 2 (Learning with Errors) Let q, k ∈ N where k ∈ poly(λ), A ∈ Zk×n
q and β ∈ R. For any

n = poly(k log q), the LWE assumption holds if for every PPT algorithm A we have

|Pr [1← A(A, sA+ e)]− Pr [1← A(A,y)]| ≤ negl(λ)

for s $← {0, 1}k, e $←DZn,β and y $← {0, 1}n, where DZn,β is some error distribution.

The following definitions related to branching programs are modified from [IP07].

Definition 3 (Branching Program (BP)) A (deterministic) branching program over the input domain
{0, 1}λ and output domain {0, 1} is defined by a tuple (V,E, T,Val) where:

– G := (V,E) is a directed acyclic graph of depth d.
– Two types of nodes partition V :
• Interior nodes: Have outdegree 2.7 The root node, denoted v

(0)
1 , has indegree 0.

• Terminal/leaf nodes: Have outdegree 0. T denotes the set of terminal nodes. Leaf nodes are labeled
as T = {u1, . . . , u|T |}. Each ui ∈ T encodes a value in {0, 1}.

– For every non-root node u ∈ V \ {v(0)1 } there exists a path from v
(0)
1 to u.

– Each node in V encodes a value in [λ]. These values are stored in the array Val such that for all v ∈ V ,
Val[v] = i for some i ∈ [λ].

– The elements of the edge set E are formatted as an ordered tuple (v, v′, b) indicating a directed edge from
v ∈ V to v′ ∈ V with label b ∈ {0, 1}. If b = 0 (resp. b = 1), v′ is the left (resp. right) child of v.

BP Evaluation. The output of a branching program is defined by the function BP : {0, 1}λ → {0, 1}, which
on input x ∈ {0, 1}λ outputs a bit. Evaluation of BP (see Fig. 2, right, and relevant function definitions
below) follows the unique path in G induced by x from the root v(0)1 to a leaf node u ∈ T . The output of BP
is the value encoded in u, Val[u].

– Γ : V \ T × {0, 1} → V takes as input an internal node v and a bit b and outputs v’s left child if b = 0
and v’s right child if b = 1.

– Evalint : V \T ×{0, 1}λ → V takes as input an interior node v and a string of length λ and outputs either
v’s left or right child (Γ (v, 0) or Γ (v, 1), respectively). See Figure 2, left.

– Evalleaf : T → {0, 1} takes as input a terminal node u ∈ T and outputs the value Val[u].
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Evalint(v, x):
i← Val[v]

If x[i] = 0 then return Γ (v, 0)

Else return Γ (v, 1)

BP(x):
v ← v

(0)
1

While v /∈ T do v ← Evalint(v, x)

y ← Evalleaf(v)

Return y

Fig. 2: Interior node evaluation function Evalint and BP evaluation function BP.

Definition 4 (Layered BP) A BP of depth d is layered if the node set V can be partitioned into d + 1

disjoint levels V =
⋃d

i=0 V
(i), such that V (0) = {v(0)1 }, V (d) = T , and for every edge e = (u, v) we have

u ∈ V (i), v ∈ V (i+1) for some level i ∈ {0, . . . , d}. We refer to V (i) as the i-th level of the BP, or the level
at depth i. Nodes on level i are labelled from leftmost to rightmost: V (i) = {v(i)1 , . . . , v

(i)

|V (i)|}.

We require that all branching programs in this work are layered.

4 Semi-Honest Laconic 2PC with Branching Programs

Our construction uses hash encryption schemes with garbled circuits. The following definitions are taken
directly from [ABD+21].

Definition 5 (Hash Encryption [DG17, BLSV18]) A hash encryption scheme HE = (HGen,Hash,HEnc,
HDec) and associated security notions are defined as follows.

– HGen(1λ, n): Takes as input a security parameter 1λ and an input size n and outputs a hash key pp.
– Hash(pp, z): Takes as input a hash key pp and z ∈ {0, 1}n, and deterministically outputs h ∈ {0, 1}λ.
– HEnc(pp, h, {mi,b}i∈[n],b∈{0,1}; {ri,b}): Takes as input a hash key pp, a hash output h, messages {mi,b}

and randomness {ri,b}, and outputs {cthi,b}i∈[n],b∈{0,1}, (written concisely as {cthi,b}). Each ciphertext
cthi,b is computed as cthi,b = HEnc(pp, h,mi,b, (i, b); ri,b), where we have overloaded the HEnc notation.

– HDec(z, {cthi,b}): Takes as input a hash input z and {cthi,b} and outputs n messages (m1, . . . ,mn).
Correctness is required such that for the variables above, (m1, . . . ,mn) = (m1,z[1], . . . ,mn,z[n]).

– Semantic Security: Given z ∈ {0, 1}n, no adversary can distinguish between encryptions of mes-
sages made to indices (i, z̄[i]). For any PPT A, sampling pp $←HGen(1λ, n), if (z, {mi,b}, {m′i,b})

$←A(pp)
and if mi,z[i] = m′i,z[i] for all i ∈ [n], then A cannot distinguish between HEnc(pp, h, {mi,b}) and
HEnc(pp, h, {m′i,b}), where h← Hash(pp, z).

– Anonymous Semantic Security: For a random {mi,b} with equal rows (i.e., mi,0 = mi,1), the output
of HEnc(pp, h, {mi,b}) is pseudorandom even in the presence of the hash input. Formally, for any z ∈
{0, 1}n, sampling pp $←HGen(1λ, n), h ← Hash(pp, z), and sampling {mi,b} uniformly at random with
the same rows, then v := (pp, z,HEnc(pp, h, {mi,b})) is indistinguishable from another tuple in which we
replace the hash-encryption component of v with a random string.

The following results are from [BLSV18, GGH19].

Lemma 1 Assuming CDH/LWE there exists anonymous hash encryption schemes, where n = 3λ (i.e.,
Hash(pp, ·) : {0, 1}3λ 7→ {0, 1}λ).8 Moreover, the hash function Hash satisfies robustness in the following
sense: for any input distribution on z which samples at least 2λ bits of z uniformly at random, (pp,Hash(pp, z))
and (pp, u) are statistically close, where pp $←HGen(1λ, 3λ) and u $← {0, 1}λ.

We also review garbled circuits and the anonymous property, as defined in [BLSV18].

7 We assume no nodes have outdegree 1 since such nodes can be removed from the BP w.l.o.g.
8 The CDH construction of [BLSV18] satisfies a weaker notion of anonymity, in which only some part of the ciphertext

is pseudorandom. But for ease of presentation, we keep the notion as is.
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Definition 6 (Garbled Circuits) A garbling scheme for a class of circuits C := {C : {0, 1}n 7→ {0, 1}m}
consists of (Garb,Eval,Sim) satisfying the following.

– Correctness: For all C ∈ C, m ∈ {0, 1}n, Pr[Eval(C̃, {lbi,m[i]}) = C(m)] = 1, where (C̃, {lbi,b}) $←Garb(1λ,C).
– Simulation Security: For any C ∈ C and m ∈ {0, 1}n: (C̃, {lbi,m[i]})

c≡ Sim(1λ,C,C(m)), where
(C̃, {lbi,b}) $←Garb(1λ,C).

– Anonymous Security 9 [BLSV18]: For any C ∈ C, if the output of C(x) for x ∈ {0, 1}n is uniformly
random, then the output of Sim(1λ,C, y) is pseudorandom.

Lemma 2 ([BLSV18]) Anonymous garbled circuits can be built from one-way functions.

Hash Encryption Notation. We assume Hash(pp, ·) : {0, 1}n 7→ {0, 1}λ, where n = 3λ. {lbi,b} denotes a
sequence of pairs of labels, where i ∈ [n] and b ∈ {0, 1}. For r := {ri,b}, HEnc(pp, h, {lbi,b}; r) denotes
ciphertexts {cthi,b}, where cthi,b = HEnc(pp, h, lbi,b, (i, b); ri,b). We overload notation as follows. {lbi} denotes
a sequence of 3λ elements. For r := {ri,b}, HEnc(pp, h, {lbi}; r) denotes a hash encryption where both
plaintext rows are {lbi}; namely, ciphertexts {cthi,b}, where cthi,b = HEnc(pp, h, {mi,b}; ri,b) and mi,0 =
mi,1 = lbi, for all i.

Definition 7 (BP-2PC Functionality) We define the evaluation of a branching program in the two-party
communication setting (BP-2PC) to be a two-round protocol between a receiver R and a sender S such that:

– R holds a branching program BP with evaluation function BP : {0, 1}λ → {0, 1} and S holds a string
id ∈ {0, 1}λ. In the first round of the protocol, R sends the message m1 to S. In the second round S sends
m2 to R.

– Correctness: If BP(id) = 1, then R outputs id. Otherwise, R outputs ⊥.
– Computational (resp., statistical) receiver security: BP-2PC achieves receiver security if for

all id ∈ {0, 1}λ, and all pairs of branching programs BP0,BP1 we have that viewBP-2PC
S (BP0, id, λ) ≈

viewBP-2PC
S (BP1, id, λ) . If the distributions are computationally (resp., statistically) indistinguishable then

we have computational (resp., statistical) security.
– Computational (resp., statistical) sender security: BP-2PC achieves sender security if for all

branching programs BP, and all pairs id0, id1 ∈ {0, 1}λ with BP(id0) = 0 = BP(id1), we have that
viewBP-2PC

R (BP, id0, λ) ≈ viewBP-2PC
R (BP, id1, λ) . If the distributions are computationally (resp. statisti-

cally) indistinguishable, we have computational (resp. statistical) security.

4.1 The BP-2PC Construction

In this section, we give a construction for a BP-2PC protocol, inspired by laconic OT techniques [CDG+17,
ABD+21]. Construction 1 uses hash encryption and garbling schemes. A high-level overview is as follows.

1. The receiver party R hashes their branching program in a ‘specific way’ from the leaf level up to the
root. R then sends the message m1 = (dm, hroot) to the sender, where dm is the maximum BP depth and
hroot is the hash value of the root node of the hashed BP.

2. The sender party S gets the message m1 = (dm, hroot) and garbles one circuit for every possible level
of the hash tree, (i.e., generates dm garbled circuits). S starts with the leaf level and garbles circuit
F (Fig. 3). F takes as input a leaf node value and two random strings. If the leaf node value is 1, F
outputs the hardcoded sender element id and a random, fixed, signal string r. Otherwise, F outputs two
random strings (id′, r′). Then for every level from the leaf parents to the root, S garbles the circuit V
(also in Fig. 3). Each V garbled by the sender has the labels of the previously generated garbled circuit
hardcoded. After garbling, S computes a hash encryption of the root-level garbled circuit labels using the
hash image hroot. Finally, S sends m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r) to R, where C̃w is the garbled circuit

associated with level w, {cth(0)i,b } is the encryption of the labels for C̃0, and r is the signal value.
3. For all root-to-leaf paths through the BP, R runs DecPath (Fig. 3, bottom) on m2 searching for the path

that will decrypt to a signal value equal to r from m2. On input a path pth and m2, DecPath outputs a
pair (idpth, rpth) to R. If rpth = r, then R takes idpth to be S’s element.

9 called blind garbled circuits in [BLSV18].
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Construction 1 (BP-2PC) We require the following ingredients for the two-round, two-party communica-
tion BP construction.

1. An anonymous and robust hash encryption scheme HE = (HGen,Hash,HEnc,HDec), where Hash(pp, ·) :
{0, 1}3λ 7→ {0, 1}λ.

2. An anonymous garbling scheme GS = (Garb,Eval,Sim).
3. Circuits F, V, and procedure DecPath, defined in Figure 3.

The receiver holds a—potentially unbalanced—branching program BP of depth d ≤ λ+1 as defined in Def. 3.
The sender has a single element id ∈ {0, 1}λ. BP-2PC := (GenCRS,R1,S,R2) is a triple of algorithms built
as follows.

GenCRS(1λ): Return crs $←HGen(1λ, 3λ).

R1(crs,BP): BP has terminal node set T = {u1, . . . , u|T |}. Nodes in level 0 ≤ w ≤ d are labelled from leftmost
to rightmost: V (w) = {v(w)

1 , . . . , v
(w)

|V (w)|}.

– Parse crs := pp. The receiver creates a hashed version of BP, beginning at the leaf level: For j ∈ [|T |],
sample xj , x

′
j

$← {0, 1}λ and compute h
(d)
j ← Hash(pp, (Val[uj ]

×λ, xj , x
′
j)). Val[uj ]

×λ indicates that Val[uj ]
is copied λ times to obtain either the all zeros or all ones string of length λ.
The remaining levels are hashed from level d− 1 up to 0 (the root):
1. For w from d− 1 to 0, |V (w)| nodes are added to level w. The hash value of each node is the hash of

the concatenation of its left child, right child, and the index encoded in the current node. Formally:
For j ∈ [|V (w)|], set h(w)

j ← Hash(pp, (h
(w+1)
2j−1 , h

(w+1)
2j ,Val[v

(w)
j ])), where Val[v

(w)
j ] is the value of the

bit encoded in the j-th node of level w. If needed, padding is added so that |Val[v(w)
j ]| = λ.

2. Let m1 := (dm, hroot), where dm = λ+ 1 is the maximum tree depth and hroot := h
(0)
1 is the root hash

value. For all i ∈ [|T |], w ∈ {0, . . . , d}, and j ∈ [|V (w)|], set st := ({xi}, {x′i}, {v
(w)
j }). Send m1 to S.

S(crs, id,m1):

– Parse m1 := (dm, hroot) and crs := pp. Sample r, id′, r′ $← {0, 1}λ and padding pad $← {0, 1}2(n−1). Let
Cdm := F[id, id′, r, r′] (Fig. 3). Garble (C̃dm , {lb

(dm)
i,b })

$←Garb(Cdm). For w from dm − 1 to 0 do:

1. Sample random rw and let Cw := V[pp, id, {lb(w+1)
i,b }, rw, r, id′, r′, pad].

2. Garble (C̃w, {lb(w)
i,b })

$←Garb(Cw).

– Let {cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i,b }).

– Send m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r) to R2.

R2(crs, st,m2): Parse st := ({xi}, {x′i}, {v
(w)
j }) and m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r). ∀ leaves u ∈ T , let

pthu := ((Val[u]×λ, x, x′), . . . , hroot) be the root to leaf u path in BP. Let ℓ be the length of pthu and let

(idu, ru)← DecPath(pthu, C̃dm , . . . , C̃0, {cth(0)i,b }).

If ru = r, then output idu and halt. If for all u ∈ T , ru ̸= r, then output ⊥.

R2 must run DecPath on every root-to-leaf path. R2 is written above as if there is a unique path from the
root to each leaf. But since we allow nodes to have in-degree > 1, a leaf may be reachable from more than
one path. In such a case, the path iteration in R2 should be modified so that all paths are explored.

Communication costs. The first message m1 is output by R1 and sent to S. m1 consists of the maximum depth
dm and the hash digest hroot, which are O(log λ) and λ bits, respectively. So the receiver’s communication
cost is poly(dm, λ), and since we assume dm = λ+ 1, this is poly(dm, λ). Next, m2 is output by S and sent to
R2. m2 consists of the following:

– C̃0 : the garbling of circuit F. F has 4λ bits hardcoded (including id).
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Circuit F[id, id′, r, r′](v, x, x′):
Hardwired: Target identity id, signal
value r, and random strings id′, r′.
Operation: Return {id, r} if v = 1λ

{id′, r′} otherwise

Circuit V[pp, id, {lbi,b}, r, r, id′, r′, pad](a, b, c):
Hardwired: Hash public parameter pp, target identity id, labels
{lbi,b}, HEnc randomness r, signal value r, random strings id′, r′,
and padding pad.
Operation:
If a = 1λ then return {id, r, pad}
If a = 0λ then return {id′, r′, pad}
Else set h1 ← a, h2 ← b, i← c and return

{cthi,b} ←

HEnc(pp, h1, {lbi,b}; r) if id[i] = 0

HEnc(pp, h2, {lbi,b}; r) otherwise

Procedure DecPath(pth,m2):
Input: A leaf-root path pth of length ℓ ≤ d and tuple m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r).
Operation: 1. Parse

pth := ((Val[v(ℓ)]×λ, x, x′︸ ︷︷ ︸
zℓ

), (h(ℓ), h′(ℓ),Val[v(ℓ−1)]︸ ︷︷ ︸
zℓ−1

), . . . , (h(1), h′(1),Val[v(0)]︸ ︷︷ ︸
z0

), hroot) .

2. For w from 0 to ℓ− 1 do:
(a) Let {lb(w)

i } ← HDec(zw, {cth(w)
i,b }). (b) Set {cth(w+1)

i,b } ← Eval(C̃w, {lb(w)
i }).

3. Let {lb(ℓ)i } ← HDec(zℓ, {cth(ℓ)i,b}).
4. Let {idpth, rpth, pad} ← Eval(C̃ℓ, {lb(ℓ)i }) and return (idpth, rpth).

Fig. 3: Circuits F,V and procedure DecPath for construction 1. See Fig. 9 for an illustration of DecPath.
Circuits based on those in Table 1 of [ABD+21].

– C̃i for i ∈ [dm] : each C̃i is a garbling of circuit V. Hardcoded in each V is the public parameter, 2n = 6λ
garbled circuit labels, hash encryption randomness, and an additional poly(λ) bits (including id).

– {cth(0)i,b }i∈[n],b∈{0,1} : 6λ hash encryption ciphertexts. Each cth is the hash encryption of one garbled
circuit label.

– r : the λ-bit signal string.

So the sender’s communication cost grows with poly(λ, dm, |id|), which is poly(λ).

Computation costs.

R1: performs |V | Hash evaluations and samples 2|T | random strings of length λ.
S: samples poly(λ, dm) random bits, garbles an F circuit, garbles dm V circuits, and performs a hash encryp-

tion of 6λ garbled labels. The sender’s computation cost does not depend on the total size of the BP,
just dm.

R2: runs DecPath for every root-leaf path. Each iteration of DecPath requires at most dm + 1 HDec and
garbled circuit Eval evaluations (all, but possibly one, Eval will be w.r.t. a V circuit).

In total, R’s computation cost is O(λ, dm, |V |, |PTH|), where |PTH| is the total number of root-to-leaf paths
in the BP. So we require that dm = λ+ 1 and |V | and |PTH| are poly(λ). The sender’s computation cost is
poly(λ, dm).

Lemma 3 Construction 1 is correct in the sense that (1) if BP(id) = 1, then with overwhelming probability
R2 outputs id and (2) if BP(id) = 0, then with overwhelming probability R2 outputs ⊥.
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Theorem 1. If HE is an anonymous and robust hash encryption (defined in Lemma 1), and GS is an
anonymous garbling scheme, then the BP-2PC protocol of Construction 1 provides statistical security for the
receiver and semi-honest security for the sender.

The proofs of Lemma 3 and Theorem 1 are in Sections 6 and 7, respectively.

5 Applications

Construction 1 can be used to realize multiple functionalities by reducing the desired functionality to an
instance of BP-2PC. One step of the reductions involves constructing a branching program based on a set of
bit strings.

At a high level, SetBP (Fig. 4) creates a branching program for a set of elements S := {x1, . . . , xm} in
three main steps. For concreteness, suppose the goal is to use this BP for a private set intersection.

First, for every prefix a ∈ {ϵ} ∪ {0, 1} ∪ {0, 1}2 ∪ · · · ∪ {0, 1}λ of the elements in S, a node va is added
to the set of nodes V . If a ∈ S, then the value encoded in va is set to 1; this is an ‘accept’ leaf. If |a| < λ,
then the encoded value is set to |a|+1. When the BP is being evaluated on some input, |a|+1 will indicate
the bit following prefix a. Next, edges are created between the BP levels. For |a| < λ, if for b ∈ {0, 1}, node
va∥b exists in V , then a b-labelled edge is added from va to va∥b. For b ∈ {0, 1}, if va∥b /∈ V , then node va∥b
is added to V with an encoded bit 0. This is a ‘reject’ leaf. Then a b-labelled edge is added from va to va∥b.
Finally, the BP is pruned. If two sibling leaves are both encoded with the same value, they are deleted and
their parent becomes a leaf encoding that same value.

The definition below generalizes this concept by allowing us to capture both PSI and PSI via an indicator
bit bpth. In the description above, bpth is set to 1 for the PSI setting. For PSU we set bpth = 0.

Construction 2 (Set to branching program) Figure 4 defines a procedure to create a branching pro-
gram from an input set S. SetBP(S, bpth) takes as input a set S := {x1, . . . , xm} of m strings, all of length λ
and a bit bpth and outputs a tuple (V,E, T,Val) defining a branching program. The output BP is such that if
x ∈ S, then BP(x) = bpth, and if x /∈ S, then BP(x) = 1− bpth.

Procedure SetBP runs in time O(λ|S|). In particular, when |S| = poly(λ), SetBP generates the BP in
time O(poly(λ)). The output BP has depth d ≤ λ + 1 and the number of nodes is 2d + 1 ≤ |V | ≤ 2d+1 − 1.
Evaluation of BP(x) for arbitrary x ∈ {0, 1}λ takes time O(poly(λ)).

BP evaluation runtime: Recall the BP evaluation algorithm in Fig. 2. Each loop iteration of the evaluation
makes progress by moving down the tree one level. The number of iterations is at most the tree depth, which
is at most λ+ 1 for the BP created in Fig. 4. Each iteration takes constant time, so evaluation of BP(x) for
arbitrary x ∈ {0, 1}λ takes time O(poly(λ)).

5.1 Private Set Intersection (PSI)

Assume a sender party has a set SS = {id} where id ∈ {0, 1}λ and a receiver has a polynomial-sized set
SR ⊂ {0, 1}λ. In this setting, we define PSI as follows.

Definition 8 (Private set Intersection (PSI) functionality with |SS| = 1) Let Π be a two-party com-
munication protocol. Let R be the receiver holding set SR ⊂ {0, 1}λ and let S be the sender holding singleton
set SS = {id}, with id ∈ {0, 1}λ. Π is a PSI protocol if the following hold after it is executed.

– Correctness: R learns SR ∩ {id} if and only if id ∈ SR.
– Receiver security: Π achieves receiver security if ∀id ∈ {0, 1}λ, and all pairs SR0, SR1 ⊂ {0, 1}λ we have

that viewΠ
S (SR0, id, λ) ≈ viewΠ

S (SR1, id, λ) . If the distributions are computationally (resp., statistically)
indistinguishable then we have computational (resp., statistical) security.

– Sender security: Π achieves sender security if ∀λ ∈ N, SR ⊂ {0, 1}λ, and all pairs id0, id1 ∈ {0, 1}λ \
SR we have that viewΠ

R (SR, id0, λ) ≈ viewΠ
R (SR, id1, λ) . If the distributions are computationally (resp.,

statistically) indistinguishable then we have computational (resp., statistical) security.

The PSI functionality can be achieved by casting it as an instance of BP-2PC:
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Procedure SetBP(S, bpth):
{x1, . . . , xm} ← S ; λ← |x1| ; V,E, T ← ∅
V ← V ∪ {vϵ} ; Val[vϵ]← 1 ▷ set root node
For 1 ≤ i ≤ λ do ▷ add a node for every prefix of length i in S

For 1 ≤ j ≤ m do
a← xj [1..i] ; V ← V ∪ {va}
If |a| = λ then Val[va]← bpth ; T ← T ∪ {va} ▷ accept leaves
Else Val[va]← |a|+ 1

For all va ∈ V s.t. |va| < λ do ▷ adding edges from va to children
For b ∈ {0, 1} do

If ∃ va∥b ∈ V then E ← E ∪ {(va, va∥b, b)}
Else

V ← V ∪ {va∥b} ; Val[va∥b]← 1− bpth ▷ reject leaves
E ← E ∪ {(va, va∥b, b)} ; T ← T ∪ {va∥b}

▷ Pruning: if a node has 2 leaf children with value bpth, delete
the children and change parent value to bpth.

While ∃ va ∈ V s.t. va∥b ∈ T ∧ Val[va∥b] = bpth for b ∈ {0, 1} do
Val[va]← bpth ; T ← T ∪ {va}
V ← V \ {va∥0, va∥1} ; E ← E \ {(va, va∥b, b) | b ∈ {0, 1}}

Return (V,E, T,Val)

Fig. 4: Procedure for constructing a BP from a set of m λ-bit strings. See Construction 2. Based on a
description in [CGH+21].

1. R runs SetBP(SR, 1) (Fig. 4) to generate a branching program BPpsi such that BPpsi(x) = 1 if x ∈ SR

and BPpsi(x) = 0 otherwise.
2. R and S run BP-2PC with inputs BPpsi and id, respectively. By construction of BP-2PC:{

R learns id if BPpsi(id) = 1 =⇒ id ∈ SR

R does not learn id if BPpsi(id) = 0 =⇒ id /∈ SR

,

which satisfies the PSI correctness condition and security follows from the security of Construction 1 for
BP-2PC.

The computation and communication costs of the receiver and sender do not depend on |SR|. If the receiver
holds a polynomial-sized BP describing a set SR of exponential size, then this PSI protocol can run in
polynomial time.10

5.2 Private Set Union (PSU)

As before, assume the sender has a singleton set SS = {id} where id ∈ {0, 1}λ and the receiver has a set SR.
In this setting, we define PSU as follows.

Definition 9 (Private set union (PSU) functionality with |SS| = 1) Let Π be a two-party communi-
cation protocol. Let R be the receiver holding set SR ⊂ {0, 1}λ and let S be the sender holding singleton set
SS = {id}, with id ∈ {0, 1}λ. Π is a PSU protocol if the following hold after execution of the protocol.

10 This assumes R already has the polynomial-sized BP and does not have to build it from their exponential-sized
set SR.
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– Correctness: R learns SR ∪ {id}.
– Receiver security: Π achieves receiver security if ∀id ∈ {0, 1}λ, and all pairs SR0, SR1 ⊂ {0, 1}λ we have

that viewΠ
S (SR0, id, λ) ≈ viewΠ

S (SR1, id, λ) . If the distributions are computationally (resp., statistically)
indistinguishable then we have computational (resp., statistical) security.

– Sender security: Π achieves sender security if ∀SR ⊂ {0, 1}λ, and all pairs id0, id1 ∈ SR we have
that viewΠ

R (SR, id0, λ) ≈ viewΠ
R (SR, id1, λ) . If the distributions are computationally (resp., statistically)

indistinguishable then we have computational (resp., statistical) security.

The PSU functionality can be achieved by casting it as an instance of BP-2PC:

1. R runs SetBP(SR, 0) (Fig. 4) to generate a branching program BPpsu such that BPpsu(x) = 1 if x /∈ SR

and BPpsu(x) = 0 otherwise.
2. R and S run BP-2PC with inputs BPpsu and id, respectively. By construction of BP-2PC:{

R learns id if BPpsu(id) = 1 =⇒ id /∈ SR

R does not learn id if BPpsu(id) = 0 =⇒ id ∈ SR

,

which satisfies the PSU correctness condition and security follows from the security of Construction 1
for BP-2PC.

The computation and communication costs of the receiver and sender do not depend on |SR|. If the receiver
holds a polynomial-sized BP describing a set SR of exponential size, then this PSU protocol can run in
polynomial time.11

5.3 Wildcards

Definition 10 (Wildcard) In a bit string a wildcard, denoted by an asterisk ∗, is used in place of a bit
to indicate that its position may hold either bit value. In particular, the wildcard character replaces only a
single bit, not a string. (E.g. 00∗ = {000, 001} and ∗ ∗ 0 = {000, 010, 100, 110}.)

SetBP in Fig. 4 creates a branching program based on a set that does not contain strings with wildcards.
Fig. 5 presents a modified version called SetBP∗ which creates a BP based on a singleton set containing a
string with wildcard elements. Using SetBP∗ instead of SetBP in the constructions for PSI and PSU above
allows the receiver’s set to contain wildcards.

SetBP∗ runs in O(λ) time. The resulting BP has depth k, or λ − k, where k is the number of wildcard
indices, and will contain 2k + 1 nodes, where k ≤ λ is the number of non-wildcard indices. Since the depth
leaks the number of wildcards in x, the receiver’s message m1 to the sender in Construction 1 contains the
maximum depth dm, instead of the true depth.
Overview of SetBP∗. SetBP∗ (Fig. 5, annotated version in Fig. 10 Appx. A) starts by forming an ordered
ascending list of all indices of x without wildcards. Then it loops over each of these indices. A node is added
to the BP for every prefix of x ending with an explicit (as opposed to *) bit value. Each node value is set
to the index of the next non-wildcard bit in x. The node representing the final non-wildcard index is given
value bpth. For example, if x = 0 ∗ 1 ∗ 0, then we add prefix nodes vϵ, v0, v0∗1, v0∗1∗0, (where vϵ is the root),
and set their values to 1, 3, 5, bpth, respectively.

Each iteration adds an edge from the previous prefix node to the one just created. This edge is labelled
with the bit value at the current non-wildcard index. Continuing with the example, in the iteration that
node v0∗1 is created, an edge from v0 to v0∗1 is added with label 1. Since SR only contains one element, we
also create a 1 − bpth leaf representing the prefix of the current interior node with the final bit flipped. An
edge labelled with this flipped bit is also added from the previous node. In the example, v0∗0 is created with
value 1 − bpth and edge (v0∗, v0∗0, 0) is added. Once all non-wildcard indices of x have been considered, the
BP is returned. If |SR| > 1, SetBP∗ can be run multiple times to add more leaf nodes to the BP. After the
first SetBP∗ run, the zero-set initialization of V,E, T should be omitted.
11 This assumes R already has the polynomial-sized BP and does not have to build it from their exponential-sized

set SR.
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Procedure SetBP∗(S, bpth):
x← S ; λ← |x| ; V,E, T ← ∅ ; WC← {i | x[i] ̸= ∗} ; k ← |WC|
If x[1] ̸= ∗ then V ← V ∪ {vϵ} ; Val[vϵ]← 1

If x[1] = ∗ then V ← V ∪ {vϵ} ; Val[vϵ]← WC[1]

For 1 ≤ i ≤ k do
j ← WC[i] ; a← x[1..j] ; V ← V ∪ {va}
If i = k then Val[va]← bpth ; T ← T ∪ {va}
Else Val[va]← WC[i+ 1]

aprev ← x[1..WC[i− 1]] ; E ← E ∪ {(vaprev , va, x[j])}
a′ ← x[1..(j− 1)] ∥ (1−x[j]) ; V ← V ∪{va′} ; T ← T ∪{va′}
Val[va′ ]← 1− bpth ; E ← E ∪ {(vaprev , va′ , 1− x[j])}

Return (V,E, T,Val)

Fig. 5: Procedure for constructing a BP from a singleton set with a λ-bit string with wildcards. See Construc. 2
and §5.3. Annotated version in Fig. 10 Appx. A.

5.4 Fuzzy Matching

A fuzzy match [GRS22] in our PSI setting refers to the inclusion of an element x ∈ SR in the intersection
SR ∩SS if SS contains an element that is δ-close to x. The receiver sets a distance threshold δ, which defines
an ℓ∞ ball of radius δ around all points in SR. If an element in SS falls within any of these balls, it counts as
a match and the point in SR at the center of this ball will be included in the intersection set. Construction 1
can be used for PSI with fuzzy matches defined with the ℓ∞-norm as the distance metric (as considered in
the structure-aware PSI [GRS22]). This may be accomplished if the receiver’s BP can be modified with the
addition of wildcards to allow any BP input within an ℓ∞ ball centred at a point of SR to be accepted as a
fuzzy match.

6 Proof of Lemma 3

Proof. (Condition (1): BP(id) = 1⇒ R2 outputs id w.o.p.)
Claim 1: When DecPath is evaluated on the correct path, it will output (id, r).
Proof of claim 1: Consider the root-to-leaf path of length ℓ induced by the evaluation of BP(id). By hypothesis
BP(id) = 1, so the path leaf node encodes the value 1. For concreteness, suppose the induced path has the
leftmost leaf of the BP, u1 ∈ T , as the leaf endpoint. With this in mind, denote the path as,

pth[u1] := ((1λ, x1, x
′
1︸ ︷︷ ︸

zℓ

), (h
(ℓ)
1 , h

(ℓ)
2 ,Val[v

(ℓ−1)
1 ]︸ ︷︷ ︸

zℓ−1

), . . . , (h
(1)
1 , h

(1)
2 ,Val[v

(0)
1 ]︸ ︷︷ ︸

z0

), hroot) . (1)

For the remainder of the proof, node labels v will be identified with their encoded values Val[v] to save
space. Let (idu1

, ru1
) ← DecPath(pth[u1], C̃dm , . . . , C̃0, {cth(0)i,b }), where C̃dm , . . . , C̃0, {cth(0)i,b } are defined as in

the construction. Then it suffices to show that ru1
= r. Consider an arbitrary iteration w ∈ {0, . . . , ℓ− 2} of

the loop in step 2 of DecPath:

2. (a) {lb(w)
i } ← HDec(zw, {cth(w)

i,b })

← HDec((h
(w+1)
1 , h

(w+1)
2 , v

(w)
1 ),HEnc(pp, h

(w)
1 , {lb(w)

i,b }; rw))

← HDec((h
(w+1)
1 , h

(w+1)
2 , v

(w)
1 )︸ ︷︷ ︸,HEnc(pp,Hash(pp, (h(w+1)

1 , h
(w+1)
2 , v

(w)
1 )︸ ︷︷ ︸), {lb(w)

i,b }; rw))
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Since the two terms indicated are equal, the labels {lb(w)
i } output by HDec are the subset of {lb(w)

i,b } corre-

sponding to the bits of zw := (h
(w+1)
1 , h

(w+1)
2 , v

(w)
1 ). More precisely, lb(w)

i,0 := lb
(w)
i,zw[i] and lb

(w)
i,1 := lb

(w)
i,zw[i] for

all i ∈ [n].

2. (b) {cth(w+1)
i,b } ← Eval(C̃w, {lb(w)

i }).

{cth(w+1)
i,b } ← V[pp, id, {lb(w+1)

i,b }, rw, r, id′, r′, pad](h(w+1)
1 , h

(w+1)
2 , v

(w)
1 )

{cth(w+1)
i,b } ← HEnc(pp, h

(w+1)
1︸ ︷︷ ︸

=Hash(pp,(h
(w+2)
1 ,h

(w+2)
2 ,v

(w+1)
1 ))

, {lb(w+1)
i,b }; rw) (2)

The first input h
(w+1)
1 is used in the input to HEnc because pth[u1] was defined to have the leftmost leaf as

an endpoint. In other words, travelling from the root, pth[u1] always progresses to the left child.
In the final iteration of the loop, when w = ℓ− 1, the steps expanded above remain the same except for

Equation 2. When w = ℓ− 1, Eq. 2 is instead

{cth(ℓ)i,b} ← HEnc(pp, h
(ℓ)
1︸︷︷︸

=Hash(pp,(1λ,x1,x
′
1))

, {lb(ℓ)i,b}; rℓ−1) .

With this in mind, the final two steps of DecPath are as follows.

3. {lb(ℓ)i } ← HDec(zℓ, {cth(ℓ)i,b})

{lb(ℓ)i } ← HDec((1λ, x1, x
′
1)︸ ︷︷ ︸,HEnc(pp,Hash(pp, (1λ, x1, x

′
1)︸ ︷︷ ︸), {lb(ℓ)i,b}))

Since the two terms indicated above are equal, the labels {lb(ℓ)i } output by HDec are the subset of labels
{lb(ℓ)i,b} used in the input to HEnc, where the subset corresponds to the bits of zℓ = (1λ, x1, x

′
1).

4. {idu1
, ru1

, pad} ← Eval(C̃ℓ, {lb(ℓ)i })

{idu1
, ru1

, pad} ← V[pp, id, {lb(ℓ+1)
i,b }, rℓ, r, id′, r′, pad](1λ, x1, x

′
1)

{idu1
, ru1

, pad} ← {idu1
← id, ru1

← r, and pad $← {0, 1}2(n−1)}

Then return (idu1
, ru1

) to the receiver. The first input to V is 1λ, so the tuple (idu1
, ru1

) is equal to (id, r).
The receiver compares ru1 from DecPath with r in m2. Since these strings are equal, the receiver takes

idu1 output from DecPath as the sender’s element. Hence, the receiver learns id when BP(id) = 1, completing
the proof of claim 1.

In the above, we made use of the correctness properties of garbled circuit evaluation and HE decryption.
These guarantees give us that Pr[idu1

= id ∧ ru1
= r | (idu1

, ru1
) ← DecPath(pth[u1],m2)] = 1 when pth[u1]

is the correct path through the BP. In order for the correctness condition (1) to be met, it must also
be true that there does not exist any other path pth[u′] ̸= pth[u1] such that ru′ = r where (idu′ , ru′) ←
DecPath(pth[u′],m2). In other words, there must not exist an incorrect path that decrypts the correct signal
value r.

Claim 2: With at most negligible probability, there exists an incorrect path that when input to DecPath,
decrypts to the correct signal value r.
Proof of claim 2: To show that occurs with negligible probability, consider running DecPath on an incorrect
path pth[u′] ̸= pth[u1]. Let pth[u1] and pth[u′] have lengths ℓ and ℓ′, respectively where 1 ≤ ℓ, ℓ′ ≤ d. Suppose
these paths are equal at level α − 1 and differ at level α onward, for some α ∈ {0, . . . ,min{ℓ, ℓ′}}. Suppose
u1 ∈ T is the leftmost leaf, as above, and u′ ∈ T \ {u1} is the leaf endpoint of pth[u′]. Let these paths be
given by the following.

pth[u1] := ((u
(ℓ)×λ
1 , x1, x

′
1︸ ︷︷ ︸

zℓ

), (h
(ℓ)
1 , h

(ℓ)
2 , v

(ℓ−1)
1︸ ︷︷ ︸

zℓ−1

), . . . , (h
(α+1)
1 , h

(α+1)
2 , v

(α)
1︸ ︷︷ ︸

zα

), (h
(α)
1 , h

(α)
2 , v

(α−1)
1︸ ︷︷ ︸

zα−1

), . . . , (h
(1)
1 , h

(1)
2 , v

(0)
1︸ ︷︷ ︸

z0

), hroot)

(3)
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pth[u′] := ((u′(ℓ′)×λ, x, x′︸ ︷︷ ︸
z′
ℓ′

), (h(ℓ′), h′(ℓ′), v(ℓ
′−1)︸ ︷︷ ︸

z′
ℓ′−1

), . . . , (h
(α+1)
3 , h

(α+1)
4 , v

(α)
2︸ ︷︷ ︸

z′α

), (h
(α)
1 , h

(α)
2 , v

(α−1)
1︸ ︷︷ ︸

z′α−1

), . . . , (h
(1)
1 , h

(1)
2 , v

(0)
1︸ ︷︷ ︸

z′0

), hroot) .

(4)

Since pth[u′] differs from the correct path at level α, the steps of DecPath(pth[u′],m2) and DecPath(pth[u1],
m2) will be identical until loop iteration w = α. Consider iteration w = α− 1 of DecPath(pth[u′],m2):

2. (a) {lb(α−1)i } ← HDec(z′α−1, {cth
(α−1)
i,b })

← HDec((h
(α)
1 , h

(α)
2 , v

(α−1)
1 ),HEnc(pp, h

(α−1)
1 , {lb(α−1)i,b }))

← HDec((h
(α)
1 , h

(α)
2 , v

(α−1)
1︸ ︷︷ ︸),HEnc(pp,Hash(pp, (h(α)

1 , h
(α)
2 , v

(α−1)
1︸ ︷︷ ︸)), {lb(α−1)i,b })) .

Since the indicated terms are equal, the {lb(α−1)i } labels output are the labels of circuit C̃α−1 corresponding
to the bits of z′α−1.

2. (b) {cth(α)i,b } ← Eval(C̃α−1, {lb(α−1)i })

← V[pp, id, {lb(α)i,b }, rα−1, r, id
′, r′, pad](h

(α)
1 , h

(α)
2 , v

(α−1)
1 )

← HEnc(pp, h
(α)
1 , {lb(α)i,b }; rα−1) .

In the last line, h(α)
1 is used in the hash encryption due to the assumption that the correct path has the

leftmost leaf as an endpoint, meaning id[v
(α+1)
1 ] = 0.12 Next, the w = α iteration of the loop proceeds as

follows.

2. (a) {lb′(α)i } ← HDec(z′α, {cth
(α)
i,b })

← HDec((h
(α+1)
3 , h

(α+1)
4 , v

(α)
2 ),HEnc(pp, h

(α)
1 , {lb(α)i,b }; rα−1))

← HDec((h
(α+1)
3 , h

(α+1)
4 , v

(α)
2︸ ︷︷ ︸),HEnc(pp, (h(α+1)

1 , h
(α+1)
2 , v

(α)
1︸ ︷︷ ︸), {lb(α)i,b }; rα−1)) .

The two indicated terms are not equal. Decrypting an HE ciphertext with an incorrect hash preimage produces
an output containing no PPT-accessible information about the encrypted plaintext. For this reason, a prime
was added above to the LHS labels to differentiate them from the labels encrypted on the RHS. Thus {lb′(α)i }
provides no information about {lb(α)i,b }.

2. (b) {cth(α+1)
i,b } ← Eval(C̃α, {lb′(α)i }).

Note that {lb′(α)i } are not labels of C̃α, and certainly not a subset of those labels corresponding to a meaningful
input. So the output {cth(α+1)

i,b } is a meaningless set of strings, not a ciphertext.

For w from α to ℓ′, every HDec operation will output {lb′(w)
i } which are not circuit labels for C̃w and

every evaluation Eval(C̃w, {lb′(w)
i }) will output strings with no relation to C̃w. In step 4, {idu′ , ru′ , pad} ←

Eval(C̃ℓ′ , {lb′(ℓ
′)

i }) is computed. Since {lb′(ℓ
′)

i } are not labels, the evaluation output is meaningless. In particu-
lar, the tuple (idu′ , ru′) output to R2 contains no PPT-accessible information about (id, r). Hence Pr[ru′ = r] ≤
2−λ + negl(λ). By assumption on the size of BP, there are a polynomial number of root-to-leaf paths, thus
by the union bound the probability that any incorrect root-to-path causes DecPath to output r is,

Pr[∃ u ∈ T \ {u1} s.t. ru = r | (idu, ru)← DecPath(pth[u],m2)] ≤
poly(λ)

2λ
+ negl(λ) .

12 It is straightforward to change the proof to apply to cases of different correct paths.
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The probability that R2 outputs id when BP(id) = 1 is the probability that none of the incorrect paths
output a signal value equal to r:

Pr[R2 outputs id | BP(id) = 1] ≥ 1− poly(λ)

2λ
− negl(λ) .

Thus proving claim 2 and correctness condition (1).

(Condition (2): BP(id) = 0 ⇒ R2 outputs ⊥ w.o.p.) In the proof of Theorem 1 we will show that when
BP(id) = 0,

(C̃dm , . . . , C̃0, {cth(0)i,b }, r)
c≡ (C̃′dm , . . . , C̃

′
0, {cth

′(0)
i,b }, r

′) , (5)

where all primed values are sampled uniformly random. On the LHS, the circuits C̃dm , . . . , C̃0 all have the
signal value r hardcoded, while the RHS is independent of r. So, for all fixed u ∈ T ,

Pr
[
ru = r | (idu, ru)← DecPath(pth[u], (C̃′dm , . . . , C̃

′
0, {cth

′(0)
i,b }, r

′))
]
≤ 1

2λ
,

where pth[u] denotes the path from the root to leaf u. By assumption on the size of BP, there are a polynomial
number of root-to-leaf paths, thus by the union bound the probability that any root-to-leaf paths decrypt
to output r is,

Pr
[
∃u ∈ T s.t. ru = r | (idu, ru)← DecPath(pth[u], (C̃′dm , . . . , C̃

′
0, {cth

′(0)
i,b }, r

′))
]
≤ poly(λ)

2λ
.

By Equation 5, we must also have that the analogous probability for inputs (C̃dm , . . . , C̃0, {cth(0)i,b }, r) is
computationally indistinguishable. Thus,

Pr
[
∃u ∈ T s.t. ru = r | (idu, ru)← DecPath(pth[u], (C̃dm , . . . , C̃0, {cth(0)i,b }, r))

]
≤ poly(λ)

2λ
+ negl(λ) .

If R2 receives ru from DecPath such that ru = r, then R2 outputs idu, not ⊥. It directly follows that,

Pr[R2 does not output ⊥ | BP(id) = 0] ≤ poly(λ)

2λ
+ negl(λ)

Pr[R2 outputs ⊥ | BP(id) = 0] ≥ 1− poly(λ)

2λ
− negl(λ) ,

which completes the proof of Lemma 3. ⊓⊔

7 Proof of Theorem 1

Proof (Theorem 1 receiver security proof.). Note that node labels will be identified with their encoded
values to save space. Following Definition 7, for any pair (BP0,BP1) consider the distribution below for
i ∈ {0, 1}.

viewBP-2PC
S (BPi, id, λ) = (id, rS,m1,m2)

= (id, rS, (dm, hrooti), (C̃dm , . . . , C̃0,HEnc(pp, hrooti, {lb
(0)
i,b }), r)) ,

where rS are the sender’s random coins, hrooti is the root hash, and dm is the maximum depth of branching
program BPi. Since both BPs have security parameter λ, both will have dm = λ+ 1. Let di be the depth of
BPi.

Robustness of HE implies that for all pp $←HGen(1λ, 3λ) and u ∈ T , the distribution (pp,Hash(pp, (uλ, x,
x′))), where x, x′ $← {0, 1}λ, is statistically close to (pp, h$) where h$

$← {0, 1}λ. Hence Hash(pp, (uλ, x, x′))
statistically hides u. At level di, BPi will have at least two leaf nodes with the same parent. Let u1, u2 be
two such leaves and let v(di−1) be the parent. Node v(di−1) will then have hash value,

h(di−1) ← Hash(pp, (h
(di)
1 , h

(di)
2 , v(di−1)))
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← Hash(pp, (Hash(pp, (uλ
1 , x1, x

′
1)),Hash(pp, (u

λ
2 , x2, x

′
2)), v

(di−1))) .

Since h
(di)
1 and h

(di)
2 are both statistically close to uniform, we have that h(di−1) is also statistically close to

uniform. Continuing up the tree in this way, we see that the root hash hrooti is also indistinguishable from
random. Thus hroot0 ≈s hroot1, which gives us viewBP-2PC

S (BP0, id, λ) ≈s view
BP-2PC
S (BP1, id, λ). ⊓⊔

Proof (Theorem 1 sender security proof).
Sender security will be proved through a sequence of indistinguishable hybrids in two main steps. First, all
garbled circuits in the sender’s message m2 are replaced one at a time with simulated circuits. Then m2 is
switched to random.

Sender security only applies when BP(id) = 0, so this will be assumed for the proof. For concreteness,
suppose the path induced on the BP by evaluating id has the leftmost leaf as an endpoint. In particular, let

pth := ((Val[v
(ℓ)
1 ]×λ, x1, x

′
1︸ ︷︷ ︸

zℓ

), (h
(ℓ)
1 , h

(ℓ)
2 ,Val[v

(ℓ−1)
1 ]︸ ︷︷ ︸

zℓ−1

), . . . , (h
(1)
1 , h

(1)
2 ,Val[v

(0)
1 ]︸ ︷︷ ︸

z0

), hroot) (6)

be the leaf-root path induced on the hashed BP by evaluation of id, where ℓ is the path length and d is the BP
depth.13 Since BP(id) = 0, the terminal node encodes value 0, i.e, Val[v(ℓ)1 ] = 0. We let hroot ← Hash(pp, z0)

and h
(i)
1 ← Hash(pp, zi) for all 1 ≤ i ≤ ℓ, where the zi values are defined as in Eq. 6. To save space, often

node labels v will be identified with their encoded index values Val[v] and the padding superscript will be
omitted from leaf node values.

Hyb0: [Fig. 6 left] The sender’s message m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r) is formed as described in the con-
struction.

Hyb1: [Fig. 6 right] All circuits are simulated. The circuits are simulated so that if R runs DecPath on pth
with simulated circuits, then every step occurs, from the view of R, as it would in Hyb0. This requires
knowledge of pth and the correct sequence of hash preimages zℓ, . . . , z0, where zℓ = (0λ, x1, x

′
1) and zj =

(h
(j+1)
1 , h

(j+1)
2 , v

(j)
1 ) for j ∈ {0, . . . , ℓ − 1}. By assumption of pth, every evaluation Eval(C̃j , {lb(j)i }), where

{lb(j)i } ← HDec(zj , {cth(j)i,b }), done in DecPath for j ∈ {0, . . . , ℓ− 1} will output ciphertexts HEnc(pp, h
(j+1)
1 ,

{lb(j+1)
i,b }; rj)14. Moreover, evaluation of Eval(C̃ℓ, {lb(ℓ)i }) outputs {id′, r′, pad} for random id′, r′ $← {0, 1}λ and

pad $← {0, 1}2(n−1). Simulating circuits C̃ℓ, . . . , C̃0 is straightforward.
To simulate circuits C̃dm , . . . , C̃ℓ+1 note that none of these circuits can be used by R in DecPath to

obtain a meaningful output. Only this behaviour needs to be mimicked. To this end, we define “ghost” values
zdm , . . . , zℓ+1 with their associated hash values. The deepest is defined to be uniformly random: zdm

$← {0, 1}3λ.
Then for j ∈ {dm − 1, . . . , ℓ+ 1} define,

h′(j) := Hash(pp, (

zj︷ ︸︸ ︷
h′(j+1)︸ ︷︷ ︸

Hash(pp,zj+1)

, h′(j+1), v′(j) ))

where v′j
$← {0, 1}λ. In this way, two-thirds of the zj preimage is uniformly random which allows us to invoke

the HE robustness property. Moreover, the zj values create a chain of preimages similar to the zj values for
0 ≤ j ≤ ℓ− 1.

Lemma 4 Hybrids Hyb0 and Hyb1 are computationally indistinguishable.

Hyb2: Sample m2 at random.

Lemma 5 Hybrids Hyb1 and Hyb2 are computationally indistinguishable.

If m2 is pseudorandom to the receiver, then m2 created with some id0 is computationally indistinguishable
from m2 created with some other id1. Therefore we have viewBP-2PC

R (BP, id0, λ)
c≡ viewBP-2PC

R (BP, id1, λ), hence
the above two lemmas establish computational sender security.
13 We assume ℓ ≥ 1. If the receiver’s BP has depth 0, then two dummy leaves can be introduced as root children.
14 The use of h(j+1)

1 in HEnc is from the assumption that pth has the leftmost leaf as an endpoint and hence the first
hash input is always used in the V encryption. In the general case, this hash value would be changed accordingly.
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Hyb0 :

r, r′, id′ $← {0, 1}λ ; pad $← {0, 1}2(n−1)

Cdm := F[id, id′, r, r′]

(C̃dm , {lb
(dm)
i,b })

$←Garb(Cdm)

For w from dm − 1 to 0 do
Sample random rw

Cw := V[pp, id, {lb(w+1)
i,b }, rw, r, id′, r′, pad]

(C̃w, {lb(w)
i,b })

$←Garb(Cw)

{cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i,b })

m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r)
Return m2

Hyb1:
r, r′, id′ $← {0, 1}λ ; pad $← {0, 1}2(n−1)

zdm
$← {0, 1}3λ ; (C̃dm , {lb

(dm)
i }) $←Sim(F, {id′, r′})

For 0 ≤ w ≤ dm − 1 sample random rw

For i from dm − 1 down to ℓ+ 1 do
v′(i) $← {0, 1}λ ;h′(i+1) ← Hash(pp, zi+1)

zi := (h′(i+1), h′(i+1), v′(i))

For w from dm − 1 down to ℓ+ 1 do
{cth(w+1)

i,b } ← HEnc(pp, h′(w+1), {lb(w+1)
i,b }; rw)

(C̃w, {lb(w)
i })

$←Sim(V, {cth(w+1)
i,b })

(C̃ℓ, {lb(ℓ)i })
$←Sim(V, {id′, r′, pad})

For w from ℓ− 1 down to 0 do
{cth(w+1)

i,b } ← HEnc(pp, h
(w+1)
1 , {lb(w+1)

i }; rw)
(C̃w, {lb(w)

i })
$←Sim(V, {cth(w+1)

i,b })
{cth(0)i,b }

$←HEnc(pp, hroot, {lb(0)i })
Return m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r)

Fig. 6: Hyb0 and Hyb1 for the proof of Theorem 1.

7.1 Proof of Lemma 4

To prove that Hyb0

c≡ Hyb1, we define a chain of dm +1 hybrids between Hyb0 and Hyb1. Then we prove
each game hop is indistinguishable.

Hyb1.p for 0 ≤ p ≤ dm (Fig. 8): Let pth be as in Eq. 6 and recall we assume that Val[v
(ℓ)
1 ] = 0. In Hyb1.p

circuits C̃0, . . . , C̃p−1 are simulated and circuits C̃p, . . . , C̃dm are honestly generated (as in Hyb0). In Hyb1.0,
all circuits are generated honestly15 and in Hyb1.dm all circuits are simulated except for C̃dm . The way a
particular circuit C̃i for i ≤ p − 1 is simulated depends on if i < ℓ, i = ℓ, or i > ℓ, where ℓ is the length of
path induced by id. These differences are shown in Fig. 7. As in Hyb1, simulating circuits C̃ℓ+1, . . . , C̃dm−1
is done using ciphertexts created with “ghost” z values.

Lemma 6 Hyb0

c≡ Hyb1.0 and Hyb1

c≡ Hyb1.dm .

Proof. First we will prove Hyb0

c≡ Hyb1.0 (Fig. 6 and Fig. 8). In both hybrids all circuits are honestly
generated, but they differ in two ways. The first is in how the labels {lb(dm)} are formed. Both hybrids
generate the tuple (C̃dm , {lb

(dm)
i,b })

$←Garb(F[id, id′, r, r′]) but Hyb1.0 additionally does {lb(dm)i } := {lb(dm)i,zdm [i]}.
If ℓ < dm, then zdm is random. In that case, Eval(C̃dm , {lb

(dm)
i,zdm [i]}) will return {id′, r′} w.o.p. If ℓ = dm then

zdm := (0λ, x1, x
′
1) and so Eval(C̃dm , {lb

(dm)
i,zdm [i]}) will return {id′, r′} with probability 1. Hence the difference

between the sets of labels is indistinguishable by the BP(id) = 0 assumption.
The second difference between Hyb0 and Hyb1.0 is in how {cth(0)i,b } is formed. In Hyb0 we define

{cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i,b }). While Hyb1.0 does {cth(0)i,b }

$←HEnc(pp, hroot, {lb(0)i }), where {lb(0)i } := {lb
(0)
i,z0[i]

}.
Since hroot ← Hash(pp, z0), by semantic security of hash encryption we have that HEnc(pp, hroot, {lb(0)i })

c≡
HEnc(pp, hroot, {lb(0)i,b }), completing the proof of Hyb0

c≡ Hyb1.0.

15 When p = 0, Hyb1.p is defined so that circuits C̃0, . . . , C̃−1 are simulated, which we define to mean that no circuits
are simulated.
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For p− 1 < ℓ :

C̃dm︸︷︷︸
Garb(F)

, C̃dm−1, . . . . . . . . . . . . . . . . . . . . . . . . , C̃ℓ+1, C̃ℓ, C̃ℓ−1, . . . , C̃p︸ ︷︷ ︸
Garb(V[pp,id,{lb(w+1)

i,b },rw,r,id′,r′,pad])

, C̃p−1, . . . , C̃0︸ ︷︷ ︸
Sim(V,HEnc(h

(w+1)
1 ,{lb(w+1)

i };rw))

For p− 1 = ℓ :

C̃dm︸︷︷︸
Garb(F)

, C̃dm−1, . . . . . . . . . . . . . . . . . . . . . . . . , C̃p=ℓ+1︸ ︷︷ ︸
Garb(V[′′])

, C̃p−1=ℓ︸ ︷︷ ︸
Sim(V,{id′,r′,pad})

, C̃ℓ−1, . . . . . . . . . . . . , C̃0︸ ︷︷ ︸
Sim(V,HEnc(′′))

For p− 1 > ℓ :

C̃dm︸︷︷︸
Garb(F)

, C̃dm−1, . . . , C̃p︸ ︷︷ ︸
Garb(V[′′])

, C̃p−1, . . . . . . . . . , C̃ℓ+1︸ ︷︷ ︸
Sim(V,HEnc(h′(w+1),{lb(w+1)

i }))

, C̃ℓ︸︷︷︸
Sim(V,{′′})

, C̃ℓ−1, . . . . . . . . . . . . , C̃0︸ ︷︷ ︸
Sim(V,HEnc(′′))

Fig. 7: Method of generating circuits in Hyb1.p depending on the value of p − 1 relative to the value of ℓ. Use of
h
(w+1)
1 in HEnc on the LHS is from the assumption that pth has the leftmost leaf as an endpoint. ′′ is the ditto symbol.

Next we will prove Hyb1

c≡ Hyb1.dm . In Hyb1 (Fig. 6), all circuits are simulated. In Hyb1.dm (Fig. 8),
all circuits are simulated except for C̃dm . The two hybrids are the same after constructing circuit C̃dm and its
labels. So, either hybrid can be simulated by knowing r, the induced path pth, and the pair (C̃dm , {lb

(dm)
i }).

For ease of notation let (C̃, {lbi}) and (C̃′, {lb′i}) denote the distribution of the tuple (C̃dm , {lb
(dm)
i }) in Hyb1

and Hyb1.0, respectively. We have (C̃, {lbi}) $←Sim(F, {id′, r′}) for random id′, r′ $← {0, 1}λ. In Hyb1.0, letting
Cdm := F[id, id′, r, r′] for random r, we have

(C̃′, {lbi,b}) $←Garb(Cdm)

{lb′i} := {lbi,zdm [i]},

where zdm
$← {0, 1}3λ if ℓ < dm and zdm := (Val[v

(dm)
1 ]×λ, x1, x

′
1) otherwise, where Val[v

(dm)
1 ]×λ = 0λ. By

simulation security of garbled circuits

(C̃′, {lb′i})
c≡ Sim(F,Cdm(zdm))

c≡ Sim(F, {id′, r′}).

If ℓ < dm and zdm is random, then Cdm(zdm) = {id, r} with probability 2−λ. If ℓ = dm and zdm := (0λ, x1, x
′
1)

then Cdm(zdm) = {id′, r′} with probability 1. Thus, (r, pth, C̃, {lbi})
c≡ (r, pth, C̃′, {lb′i}), proving Hyb1

c≡
Hyb1.0 and completing the proof of Lemma 6. ⊓⊔

Lemma 7 For all p ∈ {0, . . . , dm − 1}, Hyb1.p

c≡ Hyb1.p+1.

Proof. First, consider the circuits created in either hybrid:

Hyb1.p :

Garb︷ ︸︸ ︷
C̃dm , . . . , C̃p+1, C̃p,

Sim︷ ︸︸ ︷
C̃p−1, . . . , C̃0

Hyb1.p+1 : C̃dm , . . . , C̃p+1︸ ︷︷ ︸
Garb

, C̃p, C̃p−1, . . . , C̃0︸ ︷︷ ︸
Sim

C̃dm , {lb
(dm)
i,b }, . . . , C̃p+1, {lb(p+1)

i,b } are the same in both hybrids. They differ only in the distribution of (C̃p, {lb(p)i });
it is generated honestly in Hyb1.p and simulated in Hyb1.p+1. There are three possible ways (C̃p, {lb(p)i })
can be simulated in Hyb1.p+1 depending on the value of p relative to ℓ (see Fig. 7, but note that the figure
illustrates Hyb1.p, not Hyb1.p+1). First, if p < ℓ, then (C̃p, {lb(p)i }) is simulated using a hash encryption of
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Hyb1.p :

r, id′, r′ $← {0, 1}λ ; pad $← {0, 1}2(n−1) ; zdm
$← {0, 1}3λ

For all 0 ≤ w ≤ dm sample random rw

For i from dm − 1 to ℓ+ 1 do ▷ Generate “ghost” hash inputs for levels below pth

v′(i) $← {0, 1}λ ; zi := (h′(i+1), h′(i+1), v′(i))

(C̃dm , {lb
(dm)
i,b })←$ Garb(F[id, id′, r, r′]) ; {lb(dm)i } := {lb(dm)i,zdm [i]}

For w from dm − 1 to p do (C̃w, {lb(w)
i,b })

$←Garb(V[pp, id, {lb(w+1)
i,b }, rw, r, id′, r′, pad])

{lb(p)i } := {lb
(p)
i,zp[i]

} ▷ Final set of honest labels
If p− 1 ≥ ℓ then ▷ If circuits at, or below, pth leaf level are simulated

If p− 1 > ℓ then for p− 1 to ℓ+ 1 do ▷ Below pth leaf level
{cth(w+1)

i,b } ← HEnc(pp, h′(w+1), {lb(w+1)
i,b }; rw) ; (C̃w, {lb(w)

i })
$←Sim(V, {cth(w+1)

i,b })
(C̃ℓ, {lb(ℓ)i })

$←Sim(V, {id′, r′, pad}) ▷ At pth leaf level
For w from ℓ− 1 to 0 do ▷ From interior pth nodes to root
{cth(w+1)

i,b } ← HEnc(pp, h
(w+1)
1 , {lb(w+1)

i }; rw) ; (C̃w, {lb(w)
i })

$←Sim(V, {cth(w+1)
i,b })

Else ▷ If all circuits at, and below, pth leaf level are honest
For w from p− 1 to 0 do
{cth(w+1)

i,b } ← HEnc(pp, h
(w+1)
1 , {lb(w+1)

i }; rw) ; (C̃w, {lb(w)
i })

$←Sim(V, {cth(w+1)
i,b })

{cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i })

Return m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r)

Fig. 8: Hyb1.p for 0 ≤ p ≤ dm. The last p + 1 circuits in Hyb1.p are generated honestly and the remainder
are simulated. See Lemma 4.

{lb(p+1)
i } with zp+1. If p = ℓ, then (C̃p, {lb(p)i }) is simulated using random output since BP(id) = 0. Finally,

if p > ℓ, then (C̃p, {lb(p)i }) is simulated using a hash encryption of {lb(p+1)
i } using “ghost” value zp+1. We will

prove that in each of these three possible cases, it holds that (C̃p, {lb(p)i })Hyb1.p

c≡ (C̃p, {lb(p)i })Hyb1.p+1
.

1. If p < ℓ:

Hyb1.p :

{
(C̃p, {lb(p)i,b })

$←Garb(V[pp, id, {lb(p+1)
i,b }, rp, r, id′, r′, pad])

{lb(p)i } := {lb
(p)
i,zp[i]

} where zp = (h
(p+1)
1 , h

(p+1)
2 , v

(p)
1 )

Hyb1.p+1 :

{
{cth(p+1)

i,b } ← HEnc(pp, h
(p+1)
1 , {lb(p+1)

i }; rp)
(C̃p, {lb(p)i })

$←Sim(V, {cth(p+1)
i,b })

(7)

By simulation security of garbled circuits,

(C̃p, {lb(p)i })Hyb1.p

c≡ Sim(V,Cp(zp))
c≡ Sim(V,HEnc(pp, h

(p+1)
1 , {lb(p+1)

i,b }; rp)). (8)

The use of h(p+1)
1 in Eq. 8 is due to the assumption that the path induced by id has the leftmost node as its

terminal node. So by definition of Cp, its hardwired labels {lb(p+1)
i,b } will be encrypted under h

(p+1)
1 . Eq. 8 is

identical to the RHS of Eq. 7, and thus when p > ℓ we have (C̃p, {lb(p)i })Hyb1.p

c≡ (C̃p, {lb(p)i })Hyb1.p+1
.

2. If p = ℓ:

Hyb1.p :

{
(C̃p, {lb(p)i,b })

$←Garb(V[pp, id, {lb(p+1)
i,b }, rp, r, id′, r′, pad])

{lb(p)i } := {lb
(p)
i,zp[i]

} where zp = (0λ, x1, x
′
1)
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Hyb1.p+1 :

{
(C̃p, {lb(p)i })

$←Sim(V, {id′, r′, pad})
where id′, r′ $← {0, 1}λ ; pad $← {0, 1}2(n−1)

(9)

By simulation security of garbled circuits,

(C̃p, {lb(p)i })Hyb1.p

c≡ Sim(V,Cp(zp))
c≡ Sim(V, {id′, r′, pad}) . (10)

When p = ℓ, zp = (0λ, x1, x
′
1) which causes Cp(zp) to output a random ID and signal string. So, Equation 10

is identical to the first line of Eq. 9. Thus if p = ℓ, we have (C̃p, {lb(p)i })Hyb1.p

c≡ (C̃p, {lb(p)i })Hyb1.p+1
.

3. If p > ℓ:

Hyb1.p :

{
(C̃p, {lb(p)i,b })

$←Garb(V[pp, id, {lb(p+1)
i,b }, rp, r, id′, r′, pad])

{lb(p)i } := {lb
(p)
i,zp[i]

} where zp = (h′(p+1), h′(p+1), v′(p))

Hyb1.p+1 :


{cth(p+1)

i,b } ← HEnc(pp, h′(p+1), {lb(p+1)
i }; rp)

(C̃p, {lb(p)i })
$←Sim(V, {cth(p+1)

i,b })
where h′(p+1) ← Hash(pp, zp+1) is pseudorandom

(11)

Consider evaluating C̃p on labels {lb(p)i,zp[i]
} as in Hyb1.p:

Eval(C̃p, {lb(p)i,zp[i]
}) = V[pp, id, {lb(p+1)

i,b }, rp, r, id′, r′, pad](h′(p+1), h′(p+1), v′(p))

=

{
HEnc(pp, h′(p+1), {lb(p+1)

i,b }; rp) if id[v′p] = 0

HEnc(pp, h′(p+1), {lb(p+1)
i,b }; rp) otherwise

= HEnc(pp, h′(p+1), {lb(p+1)
i,b }; rp) . (12)

Equation 12 is identical to the RHS of Eq. 11 (first), up to the labels {lb(p+1)
i } in Eq. 11 vs. {lb(p+1)

i,b } in

Eq. 12. By simulation security, the labels {lb(p+1)
i } in Eq. 11 are computationally indistinguishable from

labels {lb(p+1)
i,zp+1[i]

}. Thus {lb(p+1)
i,zp+1[i]

}Hyb1.p

c≡ {lb(p+1)
i }Hyb1.p+1

. By HE semantic security, HEnc(pp, h′(p+1),

{lb(p+1)
i,b }; rp)

c≡ HEnc(pp, h′(p+1), {lb(p+1)
i }; rp), and hence (C̃p, {lb(p)i })Hyb1.p

c≡ (C̃p, {lb(p)i })Hyb1.p+1
when

p > ℓ, which completes the proof of Lemma 7. ⊓⊔

7.2 Proof of Lemma 5

Lemma 5 states that Hyb1

c≡ Hyb2. So, we must show that m2 := (C̃dm , . . . , C̃0, {cth(0)i,b }, r), as sampled
in Hyb1, is computationally indistinguishable from random. We will argue that each element of m2 is
pseudorandom.

First consider the circuit C̃dm . It is formed as (C̃dm , {lb
(dm)
i }) $←Sim(F, {id′, r′}) where id′, r′ $← {0, 1}λ. Since

the inputs id′, r′ are random, by anonymous security of garbled circuits the distribution (C̃dm , {lb
(dm)
i }) is

pseudorandom.
For w from dm− 1 to ℓ+1 the circuits are formed as (C̃w, {lb(w)

i })
$←Sim(V, {cth(w+1)

i,b }) where {cth(w+1)
i,b }

$←HEnc(pp, h′(w+1), {lb(w+1)
i }). {cth(w+1)

i,b } is pseudorandom by anonymous semantic security of HE, and so

by anonymous security of GS, (C̃w, {lb(w)
i }) is also pseudorandom.

For w = ℓ we have (C̃ℓ, {lb(ℓ)i })
$←Sim(V, {id′, r′, pad}) where id′, r′ $← {0, 1}λ, pad $← {0, 1}2(n−1), so again

by anonymous security of garbled circuits, the distribution (C̃ℓ, {lb(ℓ)i }) is pseudorandom.
For w from ℓ − 1 to 0 we have {cth(w+1)

i,b } $←HEnc(pp, h
(w+1)
1 , {lb(w+1)

i }) and (C̃w, {lb(w)
i })

$←Sim(V,

{cth(w+1)
i,b }). Where, again, the use of h(w+1)

1 in HEnc is from the assumption on pth. For all w from ℓ− 1 to
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0, {cth(w+1)
i,b } is pseudorandom by anonymous semantic security of HE, and thus by anonymous security of

GS, (C̃w, {lb(w)
i }) is also pseudorandom.

Next in m2 is the ciphertext, which in Hyb1 is formed as {cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i }). {cth

(0)
i,b } is

pseudorandom by anonymous semantic security of HE. The final element of m2 is the signal string r, which
is sampled uniformly at random. Hence m2 is pseudorandom in the view of R, proving Hyb1

c≡ Hyb2 and
completing the proof. ⊓⊔

Remark 1 In the proofs above, we assumed that the path induced by evaluating BP(id) always travelled to
the left child. In the general case, the path in Eq. 6 ending in v

(ℓ)
1 just needs to be changed to the path induced

by BP(id) ending in the appropriate leaf u ∈ T . The proofs should then be updated accordingly.
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Fig. 9: Illustration of the progression of DecPath given in Figure 3, assuming the input path has endpoint
the leftmost leaf and has value 1λ.

Procedure SetBP∗(S, bpth):
x← S ; λ← |x| ; V,E, T ← ∅

WC← {i | x[i] ̸= ∗} ; k ← |WC| ▷ ascending ordered set of all non-wildcard indices
If x[1] ̸= ∗ then V ← V ∪ {vϵ} ; Val[vϵ]← 1 ▷ root node if x doesn’t start with *

If x[1] = ∗ then V ← V ∪ {vϵ} ; Val[vϵ]←WC[1] ▷ root node if x starts with *

For 1 ≤ i ≤ k do ▷ for every non-wildcard index of x

j ←WC[i] ; a← x[1..j] ; V ← V ∪ {va}

If i = k then Val[va]← bpth ; T ← T ∪ {va} ▷ accept leaf

Else Val[va]←WC[i+ 1]

aprev ← x[1..WC[i− 1]] ▷ previous interior node (If i = 1 then aprev ← ϵ)
E ← E ∪ {(vaprev , va, x[j])} ▷ edge labelled with value of current non-* bit
a′ ← x[1..(j − 1)] ∥ (1− x[j]) ▷ a′ is equal to a with the last bit flipped
V ← V ∪ {va′} ; T ← T ∪ {va′} ; Val[va′ ]← 1− bpth ▷ reject leaf
E ← E ∪ {(vaprev , va′ , 1− x[j])} ▷ edge with flipped value of current non-* bit

Return (V,E, T,Val)

Fig. 10: Annotated version of Fig. 5. Procedure for constructing a branching program from a singleton set
containing a λ-bit string with wildcards. See Construction 2 and Section 5.3.
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