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Abstract

Since the advent of pairing based cryptography, many researchers have developed
several techniques and variants of pairings to optimise the speed of pairing com-
putations. The selection of the elliptic curve for a given pairing based protocol is
crucial for operations in the first and second pairing groups of points of the elliptic
curve and for many cryptographic schemes. A new variant of superoptimal pairing
was proposed in 2023, namely x-superoptimal pairing on curves with odd prime
embedding degrees BW13-310 and BW19-286. This paper extends the definition
of the x-superoptimal pairing on elliptic curves with even embedding degrees
BW10-511 and BW14-351 at 128 bits security level. We provide a suitable for-
mula of the x-superoptimal pairing on BW10-511 and BW14-351 where the Miller
loop is about 13.5% and 21.6% faster than the optimal ate pairing on BW10-
511 and BW14-351 respectively. The correctness of the x-superoptimal pairing
on BW10-511 and BW14-351 and bilinearity has been verified by a Magma code.
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1 Introduction

A pairing is a non-degenerate bilinear map, e : G1×G2 −→ G3, where G1 and G2 are
subgroups of an elliptic curve and G3 is a multiplicative sub-group of a finite field. In
1948, pairings were introduced in mathematics by Weil [1] and to cryptography in 1993
by Menezes et al. [2] as an instrument to attack instances of the Discrete Logarithm
Problem (DLP) on elliptic curves. Pairing later became prominent as a strong tool
to design many cryptographic protocols with novel properties such as faster public
key compression for isogeny-based cryptosystems (key exchange) [3], verifable delay
functions from supersingular isogenies [4], enhanced Privacy ID (EPID) scheme [5],
identity-based encryption [6] and the tripartite Diffie-Hellman key exchange [7]. Many
authors have worked on efficient implementation of pairings on elliptic curves with
even embedding degrees such as Guillevic et al. [8], Aranha et al. [9], Ghammam et
al. [10] and many others [11–17] whereas, few implementations of superoptimal pairing
have been done. In [18], Yanfeng et al. defined a superoptimal pairing with Miller loop

length less than log2(r)
ϕ(k) having the advantage that its Miller loop length is half of that

of the optimal ate pairing defined by Vercauteren [19], though their pairings formulas
involve more exponentiations that may affect the efficiency.

In 2023, the authors Yu Dai et al. [20] have revisited two pairings-friendly curves
with even embedding degrees 10 and 14 over fields of size 511 and 351 respectively
ensuring a security level of 128 bits called BW10-511 and BW14-351. Where for
BW14-351 they provided high-speed software implementations of pairing computation,
hashing to G1 and G2, group exponentiations, and subgroup membership testings on
a 64-bit platform. Their results reveal that the performance of single pairing compu-
tation on BW14-351 is slightly faster than BN-446 and BW13-310, while about 18.4%
slower than BLS12-446. In terms of group exponentiation in G1 and GT , BW14-351
is about 49.2% and 15.1% faster than BLS12-446, 119.6% and 73.8% faster than BN-
446, while 34.4% and 5.5% slower than BW13-310. Moreover, compared to BW13-310,
BW14-351 benefits from a greater performance penalty for hashing to G2 and group
exponentiation in G2 that are 55.7% and 51.04% respectively, though it is still slower
than BN-446 and BLS12-446. Therefore BW14-351 is an appropriate choice for proto-
cols that aims to pursue fast group exponentiations in G1 and GT , while minimizing
the performance penalty for group exponentiations in G2. Furthermore, BW10-511
and BW14-351 curves admit a quadratic twist which enable computations to be done
in the subfields Fq5 and Fq7 respectively where El Mrabet et al. [21] have proposed a
method to improve the arithmetic cost and also led to the denominator elimination
technique. The bilinearity of the new x-superoptimal pairings has been verified by a
Magma script available at https://github.com/Azebazelaurian/Azebazelaurian.git.

Our contribution. The contributions of this paper are as follows:

• We proposed two new formulas of x-superoptimal pairings on BW10-511 and BW14-
351 respectively and provided a Magma script for the correctness of the bilinearity
of the new x-superoptimal pairings.

• We compare the efficiency of our proposed x-superoptimal pairings computations
on BW10-511 and BW14-351 with the optimal ate pairings computations done by
Yu Dai et al. [20]
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Roadmap. Section 2 gives a brief overview of the optimal ate pairing and superop-
timal pairing on elliptic curves. In section 3, we provide a variant of the superoptimal
pairing on BW10-511 and BW14-351 curves called x-superoptimal. In section 4, we
evaluate the Miller loop of the x-superoptimal pairing on BW10-511 and BW14-351
curves. Section 5 summarizes operation costs of the previous sections and we end in
section 6 with the conclusion.

2 Preliminaries.

In this section, we define a pairing-friendly elliptic curve [22], the optimal ate
pairing [19] and the superoptimal pairing [18] on elliptic curves.

2.1 Pairing-friendly elliptic curve

Let q(x), t(x), r(x) ∈ Q[x] be non-zero polynomials. We say that a polynomial triple
(q(x), t(x), r(x)) parametrizes a family of pairing-friendly ordinary elliptic curves with
embedding degree k and CM discriminant D, if the following are satisfied :

(i) q(x) represents primes. That is, it is non-constant, irreductible, with positive lead-
ing coefficient. Additionally, q(x) ∈ Z, for some (or infinitely many) x ∈ Z and
gcd({q(x) : x, q(x) ∈ Z}) = 1.

(ii) r(x) is non-constant, irreducible, integer-valued, with positive leading coefficient.
(iii) r(x) divides both q(x)+1-t(x) and Φk(t(x) − 1), Φk(x) is the kth cyclotomic

polynomial.
(iv) there are infinitely many integer solutions (x, Y ) for the parametrized CM equation

DY 2 = 4q(x)− t(x)2.

The ρ-value of a polynomial family (q(x), t(x), r(x)) is defined as ρ(q, t, r) = degq
degr .

Let f(x) = 4q(x)− t(x)2 ∈ Q[x] be the CM polynomial of the form f(x) = g(x)y(x)2

with y(x), g(x) ∈ Q[x] and deg g ≤ 2. If deg g = 0, the family (q(x), t(x), r(x)) is
complete and thus f(x) = Dy(x)2, for some square-free D > 0. If deg g = 1, the
family is complete with variable discriminant and finally, if deg g = 2, with g(x) not
a perfect square and lc(g) > 0, the family is sparse.

2.2 Optimal ate Pairing

Let E be an elliptic curve defined over Fp, where p is a large prime number and let r be
the largest prime number such that r divides #E(Fp). Let k be the smallest positive
integer such that r divides pk − 1. The integer k is called the embedding degree of E
(with respect to r). We set

G1 = E(Fpk)[r] ∩ ker(πp − [1]) and G2 = E(Fpk)[r] ∩ ker(πp − [p]),

Where πp denotes the p-power Frobenius endomorphism on E. Note that
G1 = E(Fp)[r] and G2 ⊂ E(Fpk)[r].
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Consider the ϕ(k)−dimensional lattice (spanned by the rows)

L =


r 0 0 ... 0
−p 1 0 ... 0
−p2 0 1 ... 0
... ... ... ... ...

−pϕ(k)−1 0 0 ... 1

 .
Where ϕ(k) is the Euler Totient function. The volume of L is easily seen to be r,

so by Minkowski’s theorem [23], there exists a short vector V = (c0, ..., cϕ(k)−1) with

|ci| ≤ r1/ϕ(k). The LLL algorithm applied to the rows of L gives such ci’s.

The optimal ate pairing [19] is defined as the non-degenerated bilinear map âk :
G2 ×G1 −→ µr ⊂ F∗pk given by

âk(Q,P ) =

ϕ(k)−1∏
i=0

fp
i

ci,Q
(P ) ·

ϕ(k)−2∏
i=0

h[si+1]Q,[cipi]Q(P )


pk−1

r

(1)

Where h[si+1]Q,[cipi]Q(P ) =
l[si+1]Q,[cip

i]Q(P )

v[si]Q(P ) , with l[si+1]Q,[cipi]Q which represents

the line passing through the two points [si+1]Q and [cip
i]Q, and v[si]Q the vertical line

passing through the point [si]Q. The values si are obtained by the relation:

si =

ϕ(k)−1∑
j=i

cjp
j

For two points R,S on the curve E, hR,S is the rational function with divisor
(R) + (S)− (S +R)− (P∞).

We compute fs,Q(P ) with the Miller Algorithm [19] presented in Algorithm 1:

Algorithm 1 MILLERLOOP(s, P,Q)- Compute m = fs,Q(P )

1: m← 1; S ← Q
2: for b from the second most significant bit of s to the least do
3: m← m2 · lS,S(P )/v[2]S(P ); S ← [2]S . DOUBLING STEP
4: if b = 1 then
5: m← m · lS,Q(P )/vS+Q(P ); S ← S +Q . ADDITION STEP
6: end if
7: end for

return m
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2.3 Superoptimal pairing on E/Fp : y2 = x3 + b

Let E be an elliptic curve defined over Fp with the form E : y2 = x3 + b where p ≡ 1
mod 3. Then there exists an automorphism of E defined by φ : (x, y) 7→ (ξx, y) where
ξ is the primitive cube root of unity in F?p. Yanfeng et al. [18] used φ to construct
variants of the ate pairing, twisted ate pairing and Weil pairing on pairing-friendly
elliptic curves with general embedding degree k.

Let λ and µ be eigenvalues of φ corresponding to G1 and G2 respectively. Let
ψ = πp ◦ φ, then eigenvalues of ψ are λ and ω = pµ corresponding to G1 and G2

respectively. Assume that gcd(3, k) = 1, then ω is a primitive 3k-th root of unity in
Fr and r/(ω3k − 1).
Theorem 1. [18] Let cr =

∑n
i=0 aiω

i = h(ω), an+1 = 0 and r2 - (ω3k−1), then there
exists a bilinear pairing

asup : G2 ×G1 → µr

(Q,P ) 7→

 n∏
j=0

2∏
i=0

[
fω

j

aj ,Q(φ2i(P )) ·
l[h(j)]Q,[aj+1ωj+1]Q(φ2i(P ))

v[h(j)+aj+1ωj+1]Q(φ2i(P ))

]λi
pk−1

r

.(2)

Where h(j) =
∑j

i=0 aiω
i. Let h′(ω) =

∑n
j=1 jajω

j−1. Moreover, a[a0,··· ,an](., .) is non-

degenerate if and only if r - [3kh(ω)− (ω3k − 1)ωh′(ω)].
Since r divides (ω3k−1), then the 3k-th cyclotomic polynomial in ω yields Φ3k(ω) =

0 mod r and therefore there exists a′is such that a0r =
∑Φ(3k)−1

i=1 aiω
i. The a′is is

obtained by finding short vectors in the following ϕ(3k)-dimensionnal lattice

M =


r 0 0 ... 0
−ω 1 0 ... 0
−ω2 0 1 ... 0
... ... ... ... ...

−ωϕ(3k)−1 0 0 ... 1

 .

By the theorem of Minkowski [23] |ai| ≤ r
1

ϕ(3k) . The superoptimal pairings can be
computed by log2(r)/ϕ(3k) Miller iterations. Since log2(r)/ϕ(3k) = log2(r)/(2ϕ(k))
this Miller loop length is the half of that of optimal pairings.

Some authors have worked on the superoptimal pairing on elliptic curves such as
Yanfeng et al. [18] and Fouotsa et al. [24]. In the next section, we define a superoptimal
pairing formula on BW10-511 and BW14-351 curves using theorem 1.

3 Superoptimal pairing formula on BW10-511 and
BW14-351 curves

In this section, we present the parameters (t(x), q(x), r(x)) obtained by Freeman et
al. [22] of BW10 and BW14, techniques to optimise the superoptimal pairing on
BW10 and BW14 and define the x-superoptimal pairing on BW10 and BW14.
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The parameters of the pairing-friendly elliptic curve BW10 are:

t(x) = x3 + 1

r(x) = x8 + x7 − x5 − x4 − x3 + x+ 1

p(x) = 1/3(x3 − 1)2(x10 − x5 + 1) + x3

For x = 27 + 213 + 226− 232, Yu Dai et al. [20] found p(x) and r(x) primes of sizes
511 bits and 256 bits respectively corresponding to 128-bit security level with p ≡ 1
mod 3 and they proposed an optimal ate pairing on BW10-511 curve.

similarly, the parameters of the pairing-friendly elliptic curve BW14 are:

t(x) = x8 − x+ 1

r(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x+ 1

p(x) = 1/3(x− 1)2(x14 − x7 + 1) + x15

For x = 26− 212− 214− 222, Yu Dai et al. [20] found p(x) and r(x) primes of sizes
351 bits and 265 bits respectively corresponding to 128-bit security level with p ≡ 1
mod 3 and they proposed an optimal ate pairing on BW14-351 curve.

From Theorem 1, we defined the superoptimal pairing on BW10-511 and BW14-351
by :

 n∏
j=0

2∏
i=0

[
fω

j

aj ,Q(φ2i(P )) ·
l[h(j)]Q,[aj+1ωj+1]Q(φ2i(P ))

v[h(j)+aj+1ωj+1]Q(φ2i(P ))

]λi
pk−1

r

. (3)

In the case of BW10-511, the eigenvalues are λ = x10 (see [20] page 6) and µ =
λ2 = x20. By using the function LLL in SageMath 8.4 calculator, we obtain a short
vector of lattice M as,

V = (a0, a1, a2, a3, ..., a7) = (x, 0, 1, 0, 0, 0, 0, 0)

So h(ω) = x+ ω2 since a0 = x, a2 = 1 and ai = 0 otherwise, and
For the curve BW10− 511, since, f1,Q ≡ 1,

n∏
j=0

2∏
i=0

[
fω

j

aj ,Q(φ2i(P ))
]λi

=

2∏
i=0

[
fω

0

x,Q(φ2i(P )) · fω
8

1,Q(φ2i(P ))
]λi

=

2∏
i=0

[
fx,Q(φ2i(P ))

]λi

.
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For every i and j = 0

l[h(j)]Q,[aj+1ωj+1]Q(φ2i(P ))

v[h(j)+aj+1ωj+1]Q(φ2i(P ))
=
l[x]Q,[0]Q(φ2i(P ))

v[x]Q(φ2i(P ))
=
v[x]Q(φ2i(P ))

v[x]Q(φ2i(P ))
= 1.

For every i and j = 1, since h(ω) = 0 mod r then [x+ω2]Q = O and [ω2]Q = −[x]Q,

l[h(j)]Q,[aj+1ωj+1]Q(φ2i(P ))

v[h(j)+aj+1ωj+1]Q(φ2i(P ))
=
l[x]Q,[ω2]Q(φ2i(P ))

v[x+ω2]Q(φ2i(P ))
=
l[x]Q,−[x]Q(φ2i(P ))

v[x+ω2]Q(φ2i(P ))
≡ v[x]Q(φ2i(P )),

this is because v[x+ω2]Q(φ2i(P )) will be sent to 1 during the final exponentiation.
For every i and 2 ≤ j ≤ 6,

l[h(j)]Q,[aj+1ωj+1]Q(φ2i(P ))

v[h(j)+aj+1ωj+1]Q(φ2i(P ))
=
l[x+ω2]Q,[0]Q(φ2i(P ))

v[x+ω2]Q(φ2i(P ))
=
v[x+ω2]Q(φ2i(P ))

v[x+ω2]Q(φ2i(P ))
= 1

Thus,

asup(Q,P ) =

 n∏
j=0

2∏
i=0

[
fω

j

aj ,Q(φ2i(P )) ·
l[h(j)]Q,[aj+1ωj+1]Q(φ2i(P ))

v[h(j)+aj+1ωj+1]Q(φ2i(P ))

]λi
pk−1

r

(4)

=

(
2∏
i=0

[
fx,Q(φ2i(P )) · v[x]Q(φ2i(P ))

]λi

) pk−1
r

(5)

Since x < 0, x = −|x| and fx,Q = f−1|x|,Q · f−1,[|x|]Q = f−1|x|,Q · v
−1
[x]Q. Therefore Equation

5 yields :

asup(Q,P ) =

(
2∏
i=0

[
f−1|x|,Q(φ2i(P ))

]λi
) pk−1

r

.

Also, since λ2 = µ and φ4(P ) = φ(P ) then,

asup(Q,P ) =
(
f|x|,Q(P ) · fλ|x|,Q(φ2(P )) · fµ|x|,Q(φ(P ))

)− pk−1
r

. (6)

For the curve BW14-351, the eigenvalues are λ = −x7 (see [20] page 6) and µ =
λ2 = x7− 1. By using the function LLL in SageMath 8.4 calculator, we obtain a short
vector of lattice M as,

V = (a0, a1, a2, a3, ..., a11) = (x, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

So h(ω) = x + ω8 since a0 = x, a8 = 1 and ai = 0. In the similar manner as on the
curve BW10-511, we have the Eq. 6
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The following Lemma 1 and Lemma 2 help to lower the cost of the inner exponents
of the superoptimal pairing defined in Eq. 6 for the curves BW10-511 and BW14-351.

Lemma 1. For any f ∈ F∗pk , from the eigenvalues λ = x5 − 1 mod r and µ = −x5
mod r of the BW10-511 curve, we have

i) f−xµ
pk−1

r = f (p
2) pk−1

r .

ii) fxλ
pk−1

r = f (p
2−x) pk−1

r .

Proof. The order of the elliptic curve BW10− 511 is given by |E(Fp)| = p+ 1− t =
p + 1 − (x3 + 1) = p − x3 = 0 mod r i.e p = x3 mod r, this implies that p2 = x6

mod r so we have, p2 = −xµ mod r because µ = −x5 mod r and since r/|E(Fp)|
then, there exists α such that p2+xµ = αr and for f ∈ F∗pk , f

p2+xµ = fαr when raising

it to the power pk−1
r we then have that f (p

2+xµ) pk−1
r = 1. So, f (−xµ)

pk−1
r = f (p

2) pk−1
r .

Similarly we have, |E(Fp)| = p + 1 − t = p + 1 − (x3 + 1) = p − x3 = 0 mod r
i.e p = x3 mod r, this implies that p2 − x = x6 − x mod r so we have, p2 − x = xλ
mod r because λ = x5 − 1 mod r and since r/|E(Fp)| then, there exists β such that

p2 − x− xλ = βr and for f ∈ F∗pk , fp
2−x−xλ = fβr when raising it to the power pk−1

r

we then have that f (p
2−x−xλ) pk−1

r = 1. So, f (xλ)
pk−1

r = f (p
2−x) pk−1

r .

Lemma 2. For any f ∈ F∗pk , from the eigenvalues λ = −x7 mod r and µ = x7 − 1
mod r of the BW14-351 curve, we have

i) fxµ
pk−1

r = f (p)
pk−1

r .

ii) f−xλ
pk−1

r = f (p+x)
pk−1

r .

Proof. The order of the elliptic curve BW14− 351 is given by |E(Fp)| = p+ 1− t =
p+ 1− (x8 − x+ 1) = p− x(x7 − 1) = p− xµ and since r/|E(Fp)| then, there exists
α such that p − xµ = αr and for f ∈ F∗pk , f

p−xµ = fαr when raising it to the power

pk−1
r we then have that f (p−xµ)

pk−1
r = 1. So, f (xµ)

pk−1
r = f (p)

pk−1
r .

Similarly we have, |E(Fp)| = p+ 1− t = p+ 1− (x8 − x+ 1) = p+ x+ x(−x7) =
p + x + xλ and since r/|E(Fp)| then, there exists β such that p + x + xλ = βr and

for f ∈ F∗pk , fp+x+xλ = fβr when raising it to the power pk−1
r we then have that

f (p+x+xλ)
pk−1

r = 1. So, f (−xλ)
pk−1

r = f (p+x)
pk−1

r .

We then define a x-superoptimal pairing on BW10-511 and BW14-351, since a
fixed non-degenerate power of a pairing is still a pairing.
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Theorem 2. Since gcd(x, r) = 1, we derive two new pairings called x-superoptimal
pairing defined as

axsup1(Q,P ) =

((
f|x|,Q(P ) · f−1|x|,Q(φ2(P ))

)−x
·
(
f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P ))

)p2) pk−1
r

(7)
For P ∈ G1 and Q ∈ G2. It is a non-degenerate bilinear pairing on BW10− 511.

and

axsup2(Q,P ) =

((
f|x|,Q(P ) · f−1|x|,Q(φ2(P ))

)−x
·
(
f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P ))

)−p) pk−1
r

(8)
For P ∈ G1 and Q ∈ G2. It is a non-degenerate bilinear pairing on BW14− 351

Proof. Let f1 = f|x|,Q(P ), f2 = f|x|,Q(φ2(P )) and f3 = f|x|,Q(φ(P )) then,

asup1(Q,P ) =
(
f1 · fλ2 · f

µ
3

)− pk−1
r . By raising to the power x and using Lemma 1, we

have :

axsup1(Q,P ) =
(
fx1 · fxλ2 · f

xµ
3

)− pk−1
r

=
(
f−x1 · fx−p

2

2 · fp
2

3

) pk−1
r

=
(

(f1 · f−12 )−x · (f−12 · f3)p
2
) pk−1

r

.

Similarly, we have asup2(Q,P ) =
(
f1 · fλ2 · f

µ
3

)− pk−1
r . By raising to the power x

and using Lemma 2, we have :

axsup2(Q,P ) =
(
fx1 · fxλ2 · f

xµ
3

)− pk−1
r

=
(
f−x1 · fp+x2 · f−p3

) pk−1
r

=
(
(f1 · f−12 )−x · (f−12 · f3)−p

) pk−1
r .

Remark 1. The superoptimal pairing formula obtained in Eq 6 for BW10 and BW14
curves is exactly the same as the one obtained for BW13 and BW19 curves in [24].
Moreover the only difference between the x-superoptimal formulas found in this work
and the previous work done by Fouotsa et al. [24] is on the power of f−1|x|,Q(φ2(P )) ·
f|x|,Q(φ(P )).
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In the following section, we present some algorithms and evaluate the cost of the
Miller loop of the x-superoptimal pairing defined in Theorem 2 for the curves BW10-
511 and BW14-351.

4 Faster Evaluation of the Miller loop for the
x-superoptimal pairings

This section evaluates the cost of the miller loop of the x-superoptimal pairing on
BW10-511 and BW14-351 defined in Thereom 2 by using the algorithms presented by
Guillevic et al. [8] and by Fouotsa et al. [24].

4.1 Miller loop algorithm and his sub-algorithms on
BW10-511 and BW14-351 curves

Under this subsection, we use the quadratic twist on BW10 − 511 and BW14 − 351
curves, which enable computations to be done in the subfields Fp5 and Fp7 and some
algorithms [24] in order to improve x-superoptimal pairing cost.

For this fact, we consider the equation of the BW10-511 curve given by E : y2 =
x3 − 2 and his quadratic twist with equation defined by E

′
: y2 = x3 − 2τ−3 over

Fp5 where τ ∈ Fp5 with the isomorphism ϕ1 : (x, y) 7−→ (xτ, yτv), where the tower

extension of Fp10 is given by Fp
τ5+4−−−→ Fq5

v2−τ−−−→ Fq10 (see Yu Dai et al. [20] for more
evidence).

Similarly, we consider the equation of the BW14-351 curve given by E : y2 = x3+3
and his quadratic twist with equation defined by E

′
: y2 = x3 + 3τ−3 over Fp7 where

τ ∈ Fp7 with the isomorphism ϕ2 : (x, y) 7−→ (xτ, yτv), where the tower extension of

Fp14 is given by Fp
τ7−2−−−→ Fq7

v2−τ−−−→ Fq14 .
Moreover, for P = (x, y) ∈ E, we have φ(P ) = (ξx, y) and φ2(P ) = (ξ2x, y) since φ

is an automorphism on E and ξ is the primitive cube root of unity, then the functions
f|x|,Q(P ), f|x|,Q(φ(P )) and f|x|,Q(φ2(P )) have different x−coordinate of P. From the
algorithms ( [8], Algorithms 3,4,5 from page 15) of Guillevic et al., we observe that λd
and µd are identical for all Miller’s functions f|x|,Q(P ), f|x|,Q(φ(P )) and f|x|,Q(φ2(P ))

since they do not depend on the point P but only on the point Q. In addition, (
µd
λd

)′s

are factors of each Miller’s functions, thus (
µd
λd

)′s cancel themselves in the products

f|x|,Q(P ) · f−1|x|,Q(φ2(P )) and f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P )).

Algorithm 2 [24] takes as input the Jacobian coordinates S = (X,Y, Z, Z2), Q =
(xQ, yQ) ∈ G2 = E

′
(Fpk/2)[r] ∩ ker(πP − [P ]), computes the point addition S +Q as

S = (X,Y,Z,Z2) and evaluate the line (SQ) at P , φ(P ), φ2(P ) ∈ G1 = E(Fpk)[r] ∩
ker(πp − [1]) as (λn, λn1, λn2) where λn and λn2 represents the numerator and the
denominator respectively for the function f = f|x|,Q(P ) · f−1|x|,Q(φ2(P )), also λn1 and

λn2 represents the numerator and the denominator respectively for the function g =
f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P )).
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Algorithm 2 ADDING LINE Given S,Q ∈ G2, compute S + Q and the evaluation
of the lines (SQ) at P, φ(P ) and φ2(P ) in G1

(X,Y, Z, Z2)← S; (xQ, yQ)← Q; (xP , yP )← P ; t1 ← xQ ·Z2−X; t2 ← yQ ·Z ·Z2−Y ;
t3 ← t21; t4 ← t1 ·t3; t5 ← X ·t3; X← t22−(t4+2t5); Y← t2 ·(t5−X)−Y ·t4; Z← Z ·t1;
λd ← Z; t6 ← λd · (yP − yQ); λn ← t6 − t2 · (xP − xQ); λn1 ← t6 − t2 · (xφ(P ) − xQ);
λn2 ← t6 − t2 · (xφ2(P ) − xQ)
return S = (X,Y, Z, Z2), λn, λn1, λn2

Algorithm 3 [24] takes as input S = (X,Y, Z, Z2) ∈ G2 = E
′
(Fpk/2)[r] ∩ ker(πP −

[P ]) , computes the point doubling [2]S as S = (X,Y,Z,Z2) and evaluate the tangent
at S mapped at P , φ(P ), φ2(P ) ∈ G1 = E(Fpk)[r] ∩ ker(πp − [1]) as (λn, λn1, λn2)
where λn and λn2 represents the numerator and the denominator respectively for the
function f = f|x|,Q(P ) · f−1|x|,Q(φ2(P )), also λn1 and λn2 represents the numerator and

the denominator respectively for the function g = f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P )).

Algorithm 3 DOUBLING LINE Given S ∈ G2, compute [2]S and the evaluation of
the tangent S mapped at P, φ(P ) and φ2(P ) in G1

1: (X,Y, Z, Z2)← S
2: (xP , yP )← P ;
3: t1 ← Y 2

4: t2 ← 4X · t1
5: if a = −3u2for a small u ∈ Fp then
6: t3 ← 3(X − uZ2) · (X + uZ2)
7: else
8: t3 ← 3X2 + a · Z2

2

9: X← t23 − 2t2
10: Y← t3 · (t2 −X)− 8t21
11: Z← Z · 2Y
12: λd ← Z.Z2

13: t4 ← λd · yP − 2t2
14: λn ← t4 − t3 · (Z2 · xP −X)
15: λn1 ← t4 − t3 · (Z2 · xφ(P ) −X)
16: λn2 ← t4 − t3 · (Z2 · xφ2(P ) −X)
17: end if

return S = (X,Y, Z, Z2), λn, λn1, λn2

Algorithm 4 [24] provides the vertical line passing through S at P , φ(P ) and
φ2(P ) as (µn, µn1, µn2) where µn and µn2 represents the numerator and the denom-
inator respectively for the function f = f|x|,Q(P ) · f−1|x|,Q(φ2(P )) defined by VS(P ) =

11



Z2 · xP −X
Z2 · xφ2(P ) −X

in projective coordinates, also µn1 and µn2 represents the numera-

tor and the denominator respectively for the function g = f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P ))

defined by VS(P ) =
Z2 · xφ(P ) −X
Z2 · xφ2(P ) −X

in projective coordinates.

Algorithm 4 VERTICAL LINE Compute the line through S and −S evaluated at
P, φ(P ) and φ2(P ) in G1

(X,Y, Z, Z2) ← S; (xP , yP ) ← P ; µn = Z2 · xP − X; µn1 = Z2 · xφ(P ) − X; µn2 =
Z2 · xφ2(P ) −X
return µn, µn1, µn2

Algorithm 5 [24] uses the three helper functions that are detailed in Algorithms
2, 3 and 4 and compute the function f and g as

nf

df
and

ng

dg
respectively. Note that the

Algorithms 2, 3, 4 and 5 are running in polynomial time.

Algorithm 5 Miller Loop for faster x-superoptimal pairing.

Require: |x| = 2n +
∑n−1

i=0 si2
i, where si ∈ {0,−1, 1}, P ∈ E(Fp) and Q ∈ E′(Fpk/2)

Ensure: [x]Q, numerators and denominators of f = f|x|,Q(P ) · f−1|x|,Q(φ2(P )) and

g = f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P )).

1: (nf , df , ng, dg)← (1, 1, 1, 1); S ← Q
2: for i from n− 1 down to 0 do
3: (λn, λn1, λn2)← lS,S(P ), S ← [2]S . DOUBLE LINE
4: (µn, µn1, µn2)← vS(P ) . VERTICAL LINE
5: (nf , df )← (n2fλnµn2, d

2
fµnλn2)

6: (ng, dg)← (n2gµn2λn1, d
2
gλn2µn1) . UPDATE 1

7: if si = ±1 then
8: (λn, λn1, λn2)← lS,[si]Q(P ), S ← S + [si]Q . ADDITION LINE
9: (µn, µn1, µn2)← vS(P ) . VERTICAL LINE

10: (nf , df )← (nfλnµn2, dfµnλn2)
11: (ng, dg)← (ngµn2λn1, dgλn2µn1) . UPDATE 2
12: end if
13: end for

return f =
nf

df
and g =

ng

dg

The following formula gives the cost of the Algorithm 5.

C = (log2(x)− 1)
(
CDBLINE + CV erLINE

)
+ (log2(x)− 2)CUPDATE1

+ (HW2−NAF (x)− 1)
(
CADDLINE + CV erLINE + CUPDATE2

)
. (9)
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4.2 Evaluation cost of Algorithm 5

In this subsection, we evaluate the cost of Algorithm 5. Let M,S and I denote the
cost of the multiplication, squaring and inversion in Fp, whereas, Mk, Sk, Ik, f

i
k, Ex

denote the cost of the multiplication, squaring, inversion, p− th Frobenius operation
and the power of x in Fpk respectively.

Algorithm 5 is made of five steps that are DOUBLE LINE, VERTICAL LINE,
UPDATE 1, ADDITION LINE and UPDATE 2. For this fact, the DOUBLE LINE
step use the Algorithm 3 and cost 7 multiplications in Fpk/2 , 6 squaring in Fpk/2 and
4 multiplications in Fpk that is 4k multiplications in Fp . Similarly, the ADDITION
LINE step use the Algorithm 2 and cost 11 multiplications in Fpk/2 and 3 squaring
in Fpk/2 . The UPDATE 1 step cost 8 multiplications in Fpk/2 and 4 squaring in
Fpk/2 . The UPDATE 2 STEP step cost just 8 multiplications in Fpk/2 and finally the
VERTICAL LINE step use the Algorithm 4 and it is cost free since the BW10-511
and BW14-351 curves admit a quadratic twist which enable computations to be done
in the subfields Fp5 and Fp7 respectively.

The following Table 1 summarizes the cost estimation of each step of Algorithm 5.

Table 1 Cost estimation of each step of Algorithm 5.

Line (embedding degree k = 10, 14) Cost operation

Doubling line 7Mk/2 + 6Sk/2 + 4kM
Adding line 11Mk/2 + 3Sk/2

Vertical line 0
Update 1 8Mk/2 + 4Sk/2

Update 2 8Mk/2

4.3 Arithmetic in Fp5, Fp7, Fp10 and Fp14

In this section, we present the arithmetic cost in Fp5 , Fp7 , Fp10 and Fp14 .

In [21], the authors El Mrabet et al have reduced the multiplication in finite field
extensions of degree 5 and 7 through the Newton’s interpolation method where M5 =
9M + 137Ap and M7 = 13M + 271Ap and Ap is the cost of addition in Fp.

So if we neglect the addition cost in Fp , then we have the optimal cost in Fp5 and
Fp7 [21].

Table 2 Operations cost by El
Mrabet et al.

k Mk Sk Ik f i
k

5 9M 9M 65M 4M
7 13M 13M 102M 6M
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Where I5 = 3f i5 + 2M5 + I1 + 10M , I7 = 4f i7 + 3M7 + I1 + 14M , I1 = 25M and
f ik = (k − 1)M if k is prime [8].

Also according to [20], Yu Dai et al. presented the following costs of arith-
metic operations in the field Fp10 and Fp14 for the curves BW10-511 and BW14-351
respectively :

Table 3 Operation costs by Yu Dai et al.

k Mk Sk Ik f i
k

10 2M5 3M5 I5 + 2M5 + 2S5 8M
14 2M7 3M7 I7 + 2M7 + 2S7 12M

Note that in the table 3, the costs is obtained from [20] by neglecting some additions
and modular reduction in Fp5 and Fp7 , also by supposing that Mu = M and Su = S in
Fp where Mu and Su represent the multiplication without reduction and the squaring
without reduction in Fp respectively.

4.4 Evaluation of x-superoptimal Pairing on BW10 − 511 and
BW14 − 351

The x-superoptimal pairing on BW10− 511 from Theorem 2 is given by

axsup1(Q,P ) =

((
f|x|,Q(P ) · f−1|x|,Q(φ2(P ))

)−x
·
(
f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P ))

)p2) pk−1
r

.

From the seed x = 27 + 213 + 226 − 232, we have log2(x) = 32, HW2−NAF (x) = 4 and
|x| = 232 − 226 − 213 − 27.

By using the formula of Eq. 9, we compute f = f|x|,Q(P ) · f−1|x|,Q(φ2(P )) and

g = f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P )) as follow :

C = 31[(7M5 + 6S5 + 4× 10M)+] + 30[8M5 + 4S5]

+ 3[(11M5 + 3S5) + 8M5]

= 8701M.

The last step consists to compute (nf · d−1f )−x · (ng · d−1g )p
2

at cost of 3 multi-

plications, 2 inversions, 1 p2-Frobenius and 1 exponentiation by −x in Fp10 . For the
cost of 3M10 + 2I10 + 1f ik + 1E−x = 3M10 + 2I10 + 1f i10 + 32M10 + 3S10 = 921M. The
total cost of the Miller loop is then 9622M.
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Similarly, the x-superoptimal pairing on BW14− 351 from Theorem 2 is given by

axsup2(Q,P ) =

((
f|x|,Q(P ) · f−1|x|,Q(φ2(P ))

)−x
·
(
f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P ))

)−p) pk−1
r

.

From the seed x = 26 − 212 − 214 − 222, we have log2(x) = 22, HW2−NAF (x) = 4 and
|x| = 222 + 214 + 212 − 26.

By using the formula of Eq. 9, we compute f = f|x|,Q(P ) · f−1|x|,Q(φ2(P )) and

g = f−1|x|,Q(φ2(P )) · f|x|,Q(φ(P )) as follow :

C = 21[(7M7 + 6S7 + 4× 14M)+] + 20[8M7 + 4S7]

+ 3[(11M7 + 3S7) + 8M7]

= 8703M.

The last step consists to compute (nf · d−1f )−x · (ng · d−1g )−p at cost of 3 multipli-
cations, 3 inversions, 1 p-Frobenius and 1 exponentiation by −x in Fp14 . For the cost
of 3M14 + 3I14 + 1f ik + 1E−x = 3M14 + 3I14 + 1f i14 + 22M14 + 3S14 = 1241M. The
total cost of the Miller loop is then 9944M.

5 Comparison

In Table 4, we compare the theoretical costs of the optimal ate pairing done by Yu
Dai et al. and the x-superoptimal pairing done in this paper for the BW10-511 and
BW14-351 curves.

Table 4 Comparison of the computation cost of the x-superoptimal pairing of our work
with the optimal ate pairing done by Yu Dai et al. on BW10-511 and BW14-351 curve at
128-bit security level.

Curve Pairing Miller loop Final exponentiation Total cost

optimal Ate [20] 11123M 16060M + I1 27183M + I1
BW10− 511 x-superoptimal(this work) 9622M 16060M + I1 25682M + I1

optimal Ate [20] 12681M 19190M + I1 31871M + I1
BW14− 351 x-superoptimal (this work) 9944M 19190M + I1 29134M + I1

Note that in the Table 4, the costs of the miller loop and final exponentiation of
the optimal ate pairings for BW10-511 and BW14-351 [20] is obtained by neglecting
some additions and modular reduction in Fp7 , also by supposing that Mu = Su = M in
Fp where Mu and Su represent the multiplication without reduction and the squaring
without reduction in Fp respectively.

From Table 4, we observe that the Miller loop of the new formula of x-superoptimal
pairing is about 13.5% and 21.6% faster than the optimal ate pairing on BW10 −
511 and BW14 − 351 curves respectively done by Yu Dai et al. [20] and the overall
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improvement (Miller loop and final exponentiation) is about 5.5% and 8.6% over their
optimal ate pairing respectively.

6 Conclusion

In this paper, We found two new formulas of x-superoptimal pairing faster than opti-
mal ate pairing on BW10-511 and BW14-351 curves. Their Miller loop is about 13.5%
and 21.6% faster than the optimal ate pairing on BW10 − 511 and BW14 − 351
respectively done by Yu Dai et al. The overall improvement (Miller loop and final
exponentiation) is about 5.5% and 8.6% respectively over the other pairing. We also
implemented the x-superoptimal pairing on BW10-511 and BW14-351 curves in the
MAGMA software to ensure correctness of our formulas.
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