
Grafting: Complementing RNS in CKKS

Jung Hee Cheon1,2, Hyeongmin Choe1, Minsik Kang1, and Jaehyung Kim2

1 Seoul National University, Seoul, Korea
{jhcheon, sixtail528, kaiser351}@snu.ac.kr

2 CryptoLab Inc., Seoul, Korea
jaehyungkim@cryptolab.co.kr

Abstract. The RNS variant of the CKKS scheme (SAC 2018) is widely
implemented due to its computational efficiency. However, the current
optimized implementations of the RNS-CKKS scheme have a limitation
when choosing the ciphertext modulus. It requires the scale factors to be
approximately equal to a factor (or a product of factors) of the ciphertext
modulus. This restriction causes inefficiency when the scale factor is not
close to the power of the machine’s word size, wasting the machine’s
computation budget.
In this paper, we solve this implementation-side issue algorithmically
by introducing Grafting, a ciphertext modulus management system. In
Grafting, we mitigate the link between the ciphertext modulus and
the application-dependent scale factor. We efficiently enable rescaling
by an arbitrary amount of bits by suggesting a method managing the
ciphertext modulus with mostly word-sized factors. Thus, we can fully
utilize the machine architecture with word-sized factors of the ciphertext
modulus while keeping the application-dependent scale factors. This also
leads to hardware-friendly RNS-CKKS implementation as a side effect.
Furthermore, we apply our technique to Tuple-CKKS multiplication (CCS
2023), solving a restriction due to small scale factors.
Our proof-of-concept implementation shows that the overall complexity
of RNS-CKKS is almost proportional to the number of coprime factors
comprising the ciphertext modulus, of size smaller than the machine’s
word size. This results in a substantial speed-up from Grafting: 17-51%
faster homomorphic multiplications and 43% faster CoeffsToSlots in
bootstrapping, implemented based on the HEaaN library. We estimate
that the computational gain could range up to 1.71× speed-up for the
current parameters used in the RNS-CKKS libraries.

1 Introduction

The Cheon–Kim–Kim–Song (CKKS) scheme [10] is a Homomorphic Encryption
(HE) scheme that allows approximate computation over real-valued, encrypted
data. In CKKS, to ensure the precision of real messages, the messages are
multiplied by a scale factor ∆ during the message encoding procedure. Due
to this scale factor, the CKKS homomorphic multiplication requires a Rescale
procedure, which scales down the ciphertext during homomorphic multiplication
from ∆2 to ∆.

When CKKS was first introduced, the original implementation [24] used power-
of-two moduli and scale factors. Thus, the Rescale operation was performed very
efficiently by shifting the bits. However, for efficiency reasons, almost all existing
CKKS libraries are implementing a variant based on the Residual Number
System (RNS), namely the RNS-CKKS scheme [9]. In the current RNS-CKKS
implementations, moduli and scale factors are not power-of-two. The modulus
of a ciphertext is usually composed of different prime moduli, which we call
RNS Moduli. Thanks to the Chinese Reminder Theorem (CRT), computations
in a polynomial ring modulo the ciphertext modulus (i.e. ZQ[x]/(x

N + 1)
for some integer N > 0 and ciphertext modulus Q) can be separated into
parallel computations over the polynomial ring modulo each RNS modulus (i.e.
Zqi [x]/(x

N + 1) for each RNS modulus qi, satisfying Q =
∏

qi). The Number
Theoretic Transform (NTT) further enables efficient multiplication (over each
polynomial ring modulo RNS modulus) if the RNS moduli are NTT primes smaller
than a machine word size. Likewise, RNS accelerates the overall homomorphic
computations; however, the composite modulus restricts the scale factor to be
approximately equal to one of the RNS moduli, that is, ∆ ≈ qi (or a product of
some qi’s). It makes the Rescale process erroneous and inefficient.

As the ciphertexts are represented, computed, and stored in the RNS with
respect to each RNS modulus, the efficiency of homomorphic operations is
proportional to the number of RNS moduli constituting the ciphertext modulus
unless the moduli are much smaller than the machine word size. Thus, reducing
the number of RNS moduli when designing HE parameters highly impacts the
latency of homomorphic computations. In this regard, it is desirable to have
the RNS moduli as close to the machine word size as possible. However, this is
not the case in most of the RNS-CKKS implementations due to other efficiency
reasons.

RNS Moduli in RNS-CKKS Implementations. The choice of RNS
moduli depends on the specific circuit to evaluate and message precision, and
sometimes, the RNS moduli are much smaller than the machine word size. As the
ciphertext modulus is rescaled after each multiplication, the modulus decreases
as multiplication is repeated. The ciphertext modulus needs to be large enough
for a given multiplicative circuit depth, but it also cannot exceed a certain bound
for IND-CPA security, which limits the allowed multiplicative depth. Therefore,
having the smallest possible scale factor is desirable, as it would reduce each
RNS modulus and allow deeper-depth homomorphic multiplications. Indeed,
CKKS bootstrapping unlocks the limit by increasing the ciphertext modulus,
but the figure remains the same due to its heavy cost. Bootstrapping is one of
the most expensive homomorphic operations, costing hundreds of times more
than homomorphic multiplication and tens of thousands of times more than
homomorphic addition. Hence, having the smallest possible scale factor is even
more efficient for deep-depth circuits.

In this regard, the scale factors are set as small as possible but still larger
than the desired precision with an additional margin for errors. The resulting

2

RNS moduli is thus smaller than the machine word size, depending on the desired
precision. For instance, in the two state-of-the-art RNS-CKKS libraries Lattigo [1]
and HEaaN [12], the default IND-CPA-secure parameter has a scale factor ∆
ranges from ≈ 234 to ≈ 251 depending on the desired precision, which is way
smaller than the default 64-bit machine word size. For higher message precisions,
which is required for security against the IND-CPAD attacks [21], ∆ ≈ 245 · 245
is used in Lattigo. Other libraries such as OpenFHE [3] or SEAL [23] use scale
factor ranges from ≈ 248 to ≈ 255 for IND-CPA security, or ≈ 278 to ≈ 290 for
IND-CPAD security. The RNS moduli used for homomorphic multiplications must
have similar sizes to the scale factor (or square root of the scale factor) and are
mostly smaller than the machine word size. One exception is IND-CPAD-secure
OpenFHE parameters, which use primes larger than the machine word size, which
is, in general, less efficient than using a composition of smaller primes.

The discrepancy between the ideal word-size RNS moduli and the smaller
moduli commonly used in most of the RNS-CKKS implementations is due to the
linkage between the RNS moduli and the Rescaling Factor. The rescaling factor,
i.e. the amount scaled during the CKKS Rescale procedure, is set to be one of
the RNS moduli and should be similar to the scale factor ∆. However, if we can
Rescale by a factor independent of the RNS moduli, then we can set the RNS
moduli close to the machine word size and speed up the whole homomorphic
operations as desired. For example, the Lattigo library [1] default parameter for
Somewhat Homomorphic Encryption (SHE) uses 12 different RNS moduli of
sizes ≈ 234 or ≈ 245, and a total modulus of ≈ 2438. This could be modified to
use 7 (≳ 438/62) RNS moduli of size ≈ 262, resulting in a naïve speed-up of a
factor of 12/7 = 1.71 in a 64-bit machine.3

The linkage also makes it harder to optimize the RNS-CKKS implementation
in several aspects. One needs to consider complex conditions for optimized
performance for a parameter set targeting a specific message precision and a
circuit. For instance, to set the RNS moduli, one should consider not only the
desired precision and the circuits but also the rank of the gadget decomposition
and how the decomposition will be set, separating the ciphertext and the auxiliary
moduli. Another limitation is the lack of NTT primes with small sizes - the
ring dimension N is usually set from 212 to 217 and NTT primes should be
1 modulo 2N . The limited number of NTT primes makes it hard to optimize
the parameters for low-precision computations or for advanced techniques using
smaller rescaling factors such as Tuple-CKKS [8]. Such dependencies are not
so desired for hardware implementations, of which the low-level design may be
changed depending on the parameters. The non-word size RNS moduli also affect
the memory usage, making it larger than the theoretical expectation, e.g., a
ciphertext size of 2nN logw rather than 2N logQctxt, where n is the number of
RNS moduli and w is the machine word size noting that wn ≥ Qctxt.

3 Note that a margin of 1-3 bits is required for NTT, and the maximum possible size
for RNS modulus is ≈ 262.

3

1.1 Our Contribution

In this work, we focus on separating the computational modulus, a product of
RNS moduli, from the rescaling factor to fully utilize the efficiency gains from
the machine word size RNS moduli. In this context, we outline the ciphertext
modulus requirements to achieve computation and space efficiency.

– Mostly word size RNS moduli: As per the benefits of using word-size RNS
moduli, it is desirable to use the word-size moduli as much as possible and
reduce the number of RNS moduli.

– Flexible rescaling factor: To completely decouple the linkage between the
RNS moduli and the rescaling factor, a flexible and independent choice of
rescaling factors is required.

– Ciphertext and key modulus: Before key switching, one of the most frequently
used homomorphic operations, the ciphertext modulus Qctxt must divide
the modulus of a public switching key Qkey. Otherwise, additional keys are
required, often increasing communication costs by orders of magnitude.4

We solve this problem by introducing a novel modulus management system
called Grafting. Grafting manages the RNS moduli composing the ciphertext
modulus (which decreases as homomorphic multiplication proceeds) to make the
modulus satisfy the above-mentioned requirements. Furthermore, Grafting can be
utilized with various state-of-the-art techniques for RNS-CKKS implementation.

Technical Details. As a ciphertext modulus is not a multiple of rescaling
factors anymore, we utilize the modulus switching technique from BGV/BFV
between two integer moduli that are not a divisor and a multiple of each other to
introduce the rescaling factor to the ciphertext modulus. However, the modulus
switching requires many NTT conversions, which is the major source of the
heavy computational cost of homomorphic multiplication, and it can dilute the
efficiency gains from the word-size RNS moduli.

Rational Rescale. We extensively study the potential points during homomorphic
multiplication where modulus switching can be applied. Due to the substantial
cost of NTT conversion, viable options are the points where the NTT conversion is
already needed, e.g. before or after ModUp, ModDown, and Rescale operations.5
We conclude that the Rescale operation is the best among these options and
introduce Rational Rescale, a Rescale procedure fused with the modulus switching.

Rational Rescale (or Q-Rescale in short) can replace the original Rescale
operation without any significant impact on the computational cost and the
4 The switching keys should be generated by the secret key owner for each ciphertext

modulus if the set of ciphertext moduli does not form a sequence where each term is
a multiple of the preceding ones.

5 Indeed, there could be other options, e.g. directly switching the public switching key
modulus, but with a huge computation error or high memory/computation cost.

4

error when the ciphertext modulus does not have any factor approximately the
size of the desired rescaling factor. That is, Q-Rescale maps a ciphertext with
a pair of ciphertext modulus and scale factor (Q,∆2) into a ciphertext with
(Q′, ∆′) ≈ (Q/∆,∆), where ∆ ̸ | Q. To do so, we first multiply the ciphertext by
Q′ ≈ Q/∆ and get an intermediate state (Q ·Q′, ∆2 ·Q′). Then we Rescale by a
rescaling factor Q, end up with ∆′ = ∆2 ·Q′/Q ≈ ∆.

Modulus Resurrection with Universal Rescalability. Q-Rescale allows us to Rescale
a ciphertext by an arbitrary rescaling factor, satisfying the second requirement for
ciphertext modulus. However, the Q-Rescale introduces new factors that are not
divisors of the input ciphertext modulus if the rescaling factors are smaller than
the machine word size. The new factors will make the ciphertext modulus Qctxt
not to divide the public switching key modulus Qkey unless they are managed
appropriately. Moreover, they should be managed not to pile up; otherwise, it
will increase the number of non-word size RNS moduli.

We introduce the Modulus Resurrection technique to fulfill the first and third
requirements while utilizing the Q-Rescale operation. Modulus resurrection is
a method of selecting and managing the RNS moduli that forms the modulus
of public switching keys Qkey. It re-introduces the factors that were a part of
the RNS moduli of a larger ciphertext modulus and the switching key modulus,
but which have already been eliminated in the current ciphertext modulus. By
reusing the same factors, no new factors are piled up. We repeatedly eliminate
and resurrect the part through (Q-)Rescales and modulus resurrections. We refer
to this part as a Sprout, which emerges after each Q-Rescale absorbs a word-sized
RNS modulus as a nutrient. The sprout is a product of several small primes and
is of, a multiple of machine word size.

In addition, to guarantee that the modulus resurrection is always possible,
we define a corresponding property, namely the Universal Rescalability. We call
a sprout a universal sprout if the size of its divisors covers all positive integers
less than the machine word size. We prove the universal rescalability of modulus
resurrection utilizing the universal sprout and provide possible choices of universal
sprout. For instance, 215, a prime 216 + 1, and a 30-bit prime can constitute a
universal sprout in 64-bit machines, replacing a 61-bit RNS modulus if needed;
and a product of 215 and 216 + 1 can be a universal sprout in 32-bit machines. A
power-of-two integer 261 serves as another universal sprout for 64-bit machines,
potentially bridging the original CKKS [10] and RNS-CKKS [9] implementations.

Gadget Resurrection and Grafting. The modulus resurrection with universal
rescalability already meets the above-mentioned requirements. However, it may be
less efficient in certain but limited cases when employing the gadget decomposition
technique for key switching and the ciphertext modulus is small. When there are
two gadget blocks6 that are partially consumed, the two blocks may participate
6 For gadget decomposition, the RNS moduli are grouped into several sets, say gadget

blocks. Once the RNS moduli within a gadget block are completely consumed, the
block is no longer participating in the key-switching operation. The running time of

5

in the key-switching procedure instead of one. To prevent such inefficiency, we
maintain the number of partially consumed gadget blocks to be less or equal to
one, by resurrecting a gadget block that contains the sprout instead of consuming
another gadget block by part. We call this procedure the Gadget Resurrection.
As a result, the gadget block containing the sprout is the only partially consumed
block, which complements the Grafting: ciphertext modulus management system
consisting of moduli and gadget resurrections with universal rescalability.

When Grafting is applied, the ‘level’ of a ciphertext is unnecessary. Instead,
we only consider its ciphertext modulus, and its scale factor. Having this, the
RNS moduli of a ciphertext is determined. Additions and multiplications between
two ciphertexts with different moduli can be made accordingly via adapting the
so-called level adjustment technique [18].

Experimental Results and Estimations. We experimentally verified
the theoretical efficiency gains of Grafting with several proof-of-concept
implementations based on HEaaN [12] library and compared the result with the
prior implementation.

Faster Homomorphic Linear Transforms. We may have a simplified version of
Grafting in linear transformations that does not require ciphertext-ciphertext
multiplication. That is, we may switch the modulus of a ciphertext to a modulus
that is a composition of mostly the word size RNS moduli. We perform the
linear transformations without the Rescale operation, then switch back to the
ciphertext modulus that should have been obtained through the original linear
transformation, by utilizing the Q-Rescale operation. This should give a factor
that is close to the word size ratio, introducing negligible overheads.

A crucial application of this simplified Grafting is the CKKS bootstrapping,
where the significant cost arises from the homomorphic linear transformations.
We checked the impact with experiments detailed in Section 4.1, showing a factor
1.43× improvement over the FTa parameter of HEaaN library [12], despite a
larger gadget rank (See Table 1 for the RNS moduli we used for the comparison).

Concrete Parameters and Implementations. We revisit the parameters used
in HE libraries supporting the CKKS scheme. Since the RNS moduli in their
parameters vary from 20 to 60 bits, the amount that Grafting can accelerate
the homomorphic computations also varies. For each parameter, we construct a
corresponding concrete parameter that fully utilizes the 64-bit machine word size
and compare the estimated costs of homomorphic operations. Assuming that NTT
is the dominant cost of homomorphic operations, we could have at most a factor
two in terms of computation cost. Depending on parameters, we expect 1.04-1.72×
improvements compared to the usual RNS-CKKS homomorphic operations.

the key-switching operation is highly affected by the number of participating gadget
blocks; thus, having two partially-consumed gadget blocks may be less efficient than
having one.

6

log qi log piBase StC Mult EvalMod CtS
HEaaN.FTa 38 32 + 28× 2 28× 5 38× 8 41× 3 42× 2

Proposed 59× 10 61 + 62 62

Table 1. Size of RNS moduli for comparison, borrowed from Table 3. Columns
corresponding to log qi and log pi refer to the sizes (in logarithm two) times the number
of RNS moduli in the ciphertext and auxiliary modulus, respectively. Columns with
labels Base, StC, EvalMod, and CtS show the moduli reserved for corresponding steps
of bootstrapping, where Mult for homomorphic multiplications.

In addition, we provide a proof-of-concept implementation in Section 4.2 for
Grafting that contains the main ingredients such as rational rescaling, modulus
resurrection, and gadget resurrection. Depending on levels, we observe 1.17-1.51×
improvements compared to the usual CKKS multiplications.

Applications to Tuple-CKKS. In [8], they proposed a novel CKKS
multiplication, namely Multt, that asymptotically maintains throughput while
greatly improving latency and memory footprint. However, these asymptotics
rely on the fact that the cost of k-bits arithmetic is proportional to k, which is
not the case in reality, as illustrated in the previous sections, and due to the lack
of small NTT primes. Grafting fully utilizes the machine word size, leading to
the expected performance as mentioned in [8]. Depending on the precision and
number of slots, the improvement can reach a factor 2 to 3.

1.2 Related Works

After the first RNS-CKKS scheme was introduced [9], most of the currently
available homomorphic encryption libraries implementing CKKS scheme only
focus on the RNS version of it due to its efficiency [1, 3, 12, 15, 23]. The
ciphertexts and the switching keys are decomposed into a small integer modulo
each RNS moduli, and the computation is done in the decomposed format, which
is homomorphic thanks to the Chinese Remainder Theorem (CRT). From its
RNS-friendly nature, Han and Ki [17] introduced a key-switching technique to
RNS-CKKS, adopted from [13, 5], to trade-off between the usable ciphertext
modulus and running time of the key switching algorithm (including the size of
the switching keys), so-called RNS gadget decomposition of the switching key.
By decomposing the key and a ciphertext into several pieces, one can perform
KeySwitch by separately multiplying and combining them.

As the decomposed blocks for each RNS moduli are the units constituting the
homomorphic computations in RNS-CKKS, in some libraries such as Lattigo [1],
OpenFHE [3], and HEaaN [12] or in the recent works accelerating and improving
the RNS-CKKS implementations [20, 18, 7] tried to elaborately design the
ciphertext modulus and the switching key modulus, at least for some possible
parameters set. However, as mentioned earlier, in the existence of the Rescale

7

algorithm in the CKKS scheme, the RNS moduli should be the rescaling moduli
of which the size is determined depending on the circuits to be evaluated. Thus,
it is hard to fully utilize the budgets from the machine word size.

Approaches Filling the Machine Word Sizes. The idea to use word-size
primes mostly and a few small primes in the RNS moduli was first proposed
by Gentry, Halevi, and Smart [14] without details. In BGV [16], they introduce
a method of choosing word size primes and some smaller primes, enabling the
ciphertext modulus to be fairly close to any desired target value. For key-switching,
they switch the modulus by putting more word-size primes and dropping non-word-
size primes, which maintains the message the same. In doing so, the ciphertext
modulus Q is set to be the product of word-size primes, inducing little loss in the
ciphertext capacity, i.e., the quantity Q/ϵ, where ϵ is the error bound. However,
this approach is not applicable to CKKS since the message is not well preserved
as in BGV, inducing an absolutely larger error during modulus-switching, unless
the input/output ciphertext moduli are extremely close. We note that for BFV,
the ciphertext modulus during key-switching is fixed and independent of the
given circuits. Hence, the RNS moduli are usually chosen as large as the size of
the machine words.

When focusing on CKKS, recently Mono et al. [22] adopted the nature of using
mostly word size primes in [16] from RNS-BGV to RNS-CKKS. They constitute
the RNS moduli with mostly word-size primes, and a few small primes of the
same size, whose product is close to the multiple of the word-size primes, e.g., two
word-size 54-bit primes can be replaced by three smaller primes of 36-bit. Then,
they continuously rescale by 36-bit, performing modulus switching from two
word-size 54-bit primes into three smaller 36-bit primes if necessary. This can be
seen as a type of modulus resurrection; however, in their method, scaling is only
possible with either word size or fixed small-size primes. Thus, the composition
of the RNS moduli needs to be adjusted according to the given circuit and is not
compatible with the practically chosen parameters in the libraries implementing
RNS-CKKS.

A recent study on the double-gadget-based key switching technique [19] partly
solves this problem but focuses on the KeySwitch operation. The key-switching
operations can fully utilize the machine word size budgets by embedding the
R-module computations into RB computations where B is composed of the word-
size RNS moduli. However, their technique is advantageous only for sufficiently
large gadget ranks and is applicable only to the KeySwitch operation, while ours
can accelerate the whole homomorphic computations with no restrictions on
gadget ranks. A following work by Belorgey et al. [6] extended this double-gadget
technique to digit-based gadget decompositions and proposed to implement CKKS
using binary arithmetic computations and Discrete Fourier Transform (DFT).
We remark that the approach toward using binary modulus CKKS is similarly
allowing rescaling by arbitrary bits, which is one of our results, decoupling the
computations moduli and the rescaling moduli; however, they are in the opposite
direction, using even smaller power-of-two moduli.

8

Machine-dependent Approaches. An implementation depending on the
machine word size is also studied by Agrawal et al. [2] to design a 32-bit hardware
implementation with the RNS-CKKS parameters. The rescaling factors range
from 48-58 bits, and two 24-29 bits of NTT primes are required for each Rescale
operation. It is worth noting that the lower moduli are hard to use since there
are fewer NTT primes having smaller sizes, such as 24 to 29 bits, which was also
the case in Tuple-CKKS [8].

Paper Organization. In Section 2, we introduce the RNS-CKKS scheme with
useful notations used throughout this paper. In Section 3, we introduce our
main algorithm Grafting, which consists of rational rescale, modulus resurrection,
and gadget resurrection. The universal rescalability theorem and the correctness
theorems with the error bound of each suggested operation are given as well.
In Section 4, several experimental results will be presented regarding RNS-
CKKS implementation using Grafting. Furthermore, we will analyze the current
parameters of existing CKKS libraries and present the expected acceleration
with the Grafting technique. Section 5 will focus on an application of Grafting to
tuple-CKKS [8], and we conclude in Section 6.

2 Preliminary

2.1 Notations

Polynomials are denoted in bold font and lower case letters. We let ⌊y⌉ be a
rounding of y ∈ R to the nearest integer. We naturally extend the rounding
notation to vectors and polynomials by applying it component-wise. For an
integer n, we denote a set of non-negative integers equal to or smaller than n as
[n], i.e., [n] = {0, 1, · · · , n}.

We let R = Z[x]/(xN + 1) be a polynomial ring where N is a power-of-
two integer. For any positive integer Q, let the quotient ring RQ = R/QR =
ZQ[x]/(x

N +1). We let ct = (b, a) ∈ R2
Q be a ciphertext with ciphertext modulus

Q with respect to a secret key s ∈ R if it satisfies ⟨ct, (1, s)⟩ ≈ m mod Q for
some message m ∈ R with respect to a target message precision.

2.2 Number Theoretic Transform

For a polynomial a = a0 + a1x + · · · + aN−1x
N−1 ∈ Rq, we let NTT (a) =

(a(ζ0),a(ζ1), · · · ,a(ζN−1)) ∈ ZN
q be a number theoretic transform (NTT) of a

in modulus q, where ζ ∈ Zq be a primitive N -th root of unity in Zq, which only
exist when 2N |(q − 1). We call primes q satisfying the condition 2N |(q − 1) the
NTT primes (with respect to ring dimension N and modulo q). For a vector
b = (b0, · · · , bN−1) ∈ ZN

q , we let iNTT (b) =
∑N−1

i=0 b̃ix
i be an inverse NTT

transfrom (iNTT), where b̃i = n−1 ·
∑N−1

j=0 bj · ζ−ij ∈ Zq. Note that NTT and
iNTT commutes, i.e.,

NTT (iNTT (b)) = b, and iNTT (NTT (a)) = a,

9

and that NTT and iNTT are homomorphic. We let the coefficient vector
(a0, a1, . . . , aN−1) ∈ ZN

q be an NTT-coefficient format of a, and NTT (a) ∈ ZN
q

be an NTT-evaluated format of a.

2.3 Computation in RNS-CKKS

RNS-CKKS scheme is an RNS variant of the CKKS scheme, which was first
introduced in [9]. The ciphertext and the switching key modulus are composed of
NTT primes, which also constitute the RNS moduli. Specifically, Qmax = q0 · · · qL
be the maximum ciphertext modulus, where qi are relatively prime NTT primes.
The ciphertext modulus is Q = q0 · · · qℓ for some ℓ ∈ [L]. The switching key
modulus is PQmax, where P = p0 · · · pK−1, where pj ’s are relatively prime NTT
primes. In addition, qi’s and pj ’s are relatively prime. The polynomials in RQ

are stored and computed in RNS, i.e., for a ∈ RQ, we indeed have [a]qi ∈ Rqi for
every RNS modulus qi|Q. We note that the CRT decomposition is homomorphic.

We now recall some main features of the RNS-CKKS scheme.

Fast Basis Conversion in [9]. Let B = {p0, . . . , pk−1} and C = {q0, . . . , ql−1}
be the bases for moduli P =

∏k−1
i=0 pi and Q =

∏l−1
j=0 qj , respectively, where the

base moduli are pairwise relatively prime. A RNS representation of an element
a ∈ ZQ is denoted by

[a]C = (a(0), . . . ,a(l−1)) ∈ Zq0 × · · · × Zql−1
.

One can convert such a into its RNS representation with respect to ZP by
the equation

ConvC→B([a]C) =

ℓ−1∑
j=0

[a(j) · q̂−1
j]qj · q̂j (mod pi)

0≤j<k

,

where q̂j = Q/qj . Note that ã :=
∑ℓ−1

j=0[a
(j) · q̂−1

j]qj · q̂j = a+Qe for some small
e ∈ Z satisfying |ã| ≤ (ℓ/2) ·Q.

Modulus Switching. For a polynomial a ∈ R2
Q, we define the ModUp procedure

so that the resulting polynomial is in RPQ, but with the same value in modulus
Q and not too large. ModDown reduces the modulus from PQ to Q. It reduces
the size of the polynomial and the modulus with the same factor, i.e., by a factor
of Q/PQ ∼ P−1. RS is the same as ModDown but is rescaled by fewer moduli
factors than ModDown. It reduces the size of the polynomial and the modulus
by qℓ. Let us borrow the notations from the previous Section and let D = B ∪ C.

10

Precisely,

ModUpC→D(·) :
ℓ−1∏
j=0

Rqj →
k−1∏
i=0

Rpi
×

ℓ−1∏
j=0

Rqj

[a]C → (ConvC→B([a]C), [a]C) ,

ModDownD→C(·) :
k−1∏
i=0

Rpi ×
ℓ−1∏
j=0

Rqj →
ℓ−1∏
j=0

Rqj

([a]B, [b]C)→ [P−1]C · ([b]C − ConvB→C([a]B)) ,

and RSqℓ−1
(·) = ModDownC→C′(·), where C′ = C \ {qℓ−1}.

We note that the ModUp operation maps a ∈ RQ to a+Qe ∈ RPQ, where
|e| ≤ ℓ/2 from the fast basis conversion. The ModDown operation maps a ∈ RPQ

to a′ = P−1 · (a− ã) ∈ RQ, where ã ≡ a (mod P) and |ã| ≤ (k/2) · P , resulting
|a′ − P−1 · a| = P−1 · |ã| ≤ k/2. RS introduces an error of size ≤ 1/2. When
applied to ciphertext, the error becomes multiplied by the secret key s and thus
has an infinity norm of ≤ k/2 · (∥s∥1 + 1) and ≤ 1/2 · (∥s∥1 + 1), respectively, for
ModDown and RS.

We additionally define the Inv-RS operation, which is sometimes called zero-
padding. It multiplies a factor to both the ciphertext and its modulus and is
used during key switching with gadget decomposition.

Inverse Rescale. For given a polynomial a ∈ RQ, we define inverse rescaling
by an integer factor R as

Inv-RSR(a) = R · a ∈ RQR,

or in the RNS representation, one can write as:

Inv-RSR(a) ≡

{
[R]qi · [a]qi (mod qi)

0 (mod rj)
,

for i ∈ [ℓ], j ∈ [k], where Q =
∏ℓ

i=0 qi and R =
∏k

j=0 rj with co-prime NTT
primes qi’s and rj ’s. We note that can be naturally extended to a vector of
polynomials or ciphertexts.

Gadget Decomposition and Key Switching. When the ring dimension
N , the hamming weight of the secret key, and the target security are chosen,
the maximum possible modulus PQ can be decided based on the estimated
attack costs of the known attacks via Lattice estimator [4]. The switching key
is generated in modulus PQ, possibly using gadget decomposition. The RNS
gadgets Qi are composed of the RNS moduli and Qmax = Q0 · · ·Qdnum−1 =
(q0 · · · qα−1) · (qα · · · q2α−1) · · · (qα(dnum−1) · · · qαdnum−1), where L+ 1 = α · dnum
and dnum ∈ N. Since P ≥ Qi should hold for all i, the maximum possible modulus

11

PQ should be split into P and Q with roughly P ≈ Q1/dnum. Let P = p0 · · · pK−1.
The switching keys are {swki}i∈[dnum−1] = {(βi,αi)}i∈[dnum−1] ∈ R2×dnum

PQ , where

βi = −αi · s+ P · Q̂is
′ + ei ∈ RPQ,

where Q̂i = Qmax/Qi, and ei ← χ be errors. We note that a larger dnum results
in a larger usable ciphertext modulus Qmax and a slower key switching operation
due to a larger switching key size.

Key switching. Key switching consists of the following procedures for gadget rank
d:

1. Inv-RS the ciphertext from modulus Q = q0 · · · qℓ to Q0 · · ·Qd−1, where
α(d− 1) ≤ ℓ < αd for some integer α, and perform RNS decompose.

2. ModUp the ciphertext in each modulus Qi to PQ0 · · ·Qd−1 for i ∈ [d − 1],
resulting in d ciphertexts in modulus PQ0 · · ·Qd−1.

3. External product a part of each ciphertext7 with swki for i ∈ [d− 1], and add
the remaining parts of the ciphertext.8

4. ModDown from modulus PQ0 · · ·Qd−1 to Q.

Note, from [17], the key switching procedure requires 2(ℓ+1)+(d+2) · (K+α ·d)
(i)NTTs. We remark that the Inv-RS procedure is indeed unnecessary since the
padded zeros are multiplied by the switching keys and later added, which makes
no difference in the key switching, technically.

Homomorphic Multiplication. Homomorphic multiplication consists of the
tensor product of two ciphertexts in the same modulus Q = q0 · · · qℓ, then key
switch s2 to s, then RS by qℓ. Note, the tensor of ciphertexts ct1 and ct2 satisfies
⟨ct1 ⊗ ct2, (1, s, s

2)⟩ ≡ ⟨ct1, (1, s)⟩ · ⟨ct2, (1, s)⟩ mod Q, where sk = (1, s). The
overall cost is similar to the key switching, requiring 3(ℓ+1)+ (d+1) · (K +α · d)
number of (i)NTTs.

Level Adjustment. In the RNS setting, we use a ciphertext modulus Q =
q0 · · · qℓ to ease the RS operation, i.e., each rescaling is done by qℓ, and thus we let
ℓ be the ciphertext level. However, the rescaling factor qℓ and the scaling factor
∆ have a gap, which yields an additional error after a series of rescaling. In [9],
it is suggested that choosing each modulus qi as close as possible to ∆ minimizes
this error, and later in [18] the authors suggest using level-specific scale factors.
Specifically, the scaling factor ∆ℓ for each level ℓ is defined as ∆ℓ−1 := ∆2

ℓ/qℓ,
iteratively from ℓ = L to 1. With different scaling factors in different levels, one

7 Specifically, ‘a’ part of each d ciphertexts (b,a) is multiplied.
8 Note, only the part that will be multiplied by the switching keys can be ModUp and

the remaining parts can be added after ModDown; however, the overall (i)NTT cost
is the same and the total cost is similar.

12

may need to manipulate input ciphertexts to have the same level and the same
scaling factor before the homomorphic operations.

Let ct and ct′ be the ciphertexts with level ℓ and ℓ′ (ℓ > ℓ′) and scaling factors
∆ℓ and ∆ℓ′ , respectively. Before performing homomorphic operations over ct and
ct′, we adjust ct to level ℓ′ with the scaling factor ∆ℓ′ , by Adjust operation: For
inputs ct in level ℓ > ℓ′, and the target level ℓ′,

1. Let ct = [ct]q0···qℓ′+1
∈ R2

q0···qℓ′+1
by dropping the RNS moduli {qℓ′+1, . . . , qℓ},

2. Multiply a constant
⌈
∆ℓ′ ·qℓ′+1

∆ℓ

⌋
in Rq0···qℓ′+1

.
3. RS by qℓ′+1.

The resulting ciphertext is in R2
qℓ′

and has a scale factor ∆ℓ′ with an additional
error, which is approximately a rounding error.

3 Grafting: Filling-up Machine Words in RNS

All the computations in RNS-CKKS are done in the RNS format, i.e., every
ciphertext or key is decomposed with respect to RNS moduli, and each RNS
block is computed with the machine’s word size, e.g., ≲ 32 bits on GPU or ≲ 64
bits on CPU. Therefore, if we can reduce the number of RNS blocks representing
the ciphertext, the whole FHE computations will benefit from a straightforward
speed-up of the reduced ratio, for e.g., the number of NTT/iNTT conversions,
fast basis conversions, tensor products, and external products. An appealing
approach is to use the word size primes for the RNS moduli. However, one cannot
use the moduli to be the word size since the moduli are set approximately the
same as the scaling factor ∆, which varies (from 30 to 120 in general) on the
target message precision.

In this section, we introduce Grafting, a method of using word-size primes for
RNS moduli. Grafting reduces the wasted spaces that existed in all of the previous
approaches, as far as we are aware. We first introduce a tool for switching the
ciphertext modulus, namely, Rational Rescaling, which is a counterpart of the
modulus switching in BGV/FV to RNS-CKKS, in the sense that the modulus is
changed into a modulus that is not a divisor or a multiple of the previous modulus
while preserving the message. We then introduce how to maintain the modulus
of ciphertexts, which is filled with word-size NTT primes, as much as possible,
namely, resurrections of modulus and gadget in Sections 3.2 and 3.3, respectively.
Finally, we introduce how to adjust the different moduli of the ciphertexts when
a modulus is not divisible by the other modulus in Section 3.4 and how to use
power-of-two moduli in RNS in Section 3.5, both in the Grafting scenario.

3.1 Rational Rescaling: Rescaling by a non-divisor rescale factor

Modulus switching allows us to change the modulus from a modulus composed
of word-size NTT primes to a modulus divisible by (approximately) a rescaling

13

factor. However, this was not used in any of the RNS-CKKS constructions,
implementations, and applications. It is possible that the reason behind selecting
the ciphertext modulus in RNS-CKKS from the moduli chain and rescaling it
from the top modulus to the bottom modulus is not only to ensure efficient
rescaling but also to make ModUp operation cheaper.

More precisely, if a ciphertext modulus is not a divisor of a switching key
modulus, it is costly to switch the modulus of the ciphertext to be a divisor. As
modulus switching can only be applied to the NTT-coefficient, we first need to
apply iNTT (inverse-NTT) transforms on the tensored ciphertext, then switch
the ciphertext modulus, followed by ModUp operation. One may think that
the ModUp operation also requires the iNTT, so the number of required iNTT
remains the same. This is true, but the number of iNTT and NTT increases due
to an interesting fact: ModUp operation requires the same number of (i)NTT for
NTT-coefficient inputs and for NTT-evaluated inputs since some NTT-coefficient
inputs could be reused9. Reversing the order, i.e., first ModUp, then modulus
switching, also requires the same amount of additional iNTT costs.

To avoid costly modulus switching before or after the ModUp operation, one
may use switching keys specific to (possibly) all the ciphertext moduli, which
introduces a huge amount of switching key sizes.

As a result, it is indeed efficient to keep the ciphertext modulus to be a
divisor of the switching key modulus, before key switching procedure. To this end,
we moved the moment of modulus switching to the rescaling procedure. Before
ModDown (or RS), the ciphertext exists in NTT-coefficient format; thus, no
additional (i)NTT cost is introduced from the modulus switching. We, therefore,
suggest modulus switching and then rescaling as a new rescaling tool, which can
(even) be done from a word size modulus that has no rescale factor as a divisor.
This can also be seen as rescaling not by an integer but by a rational number.
That is, one wants to rescale the ciphertext from a modulus Q to a modulus
Q′ ≈ Q/∆, and the message from ∆2 to ∆, where ∆ is the scale factor. The
Rational Rescaling rescales the modulus Q by a rational number Q/Q′ ∈ Q to
Q/(Q/Q′) = Q′ ≈ Q/∆, which can be seen as a type of modulus switching.

This can be done easily and directly when the ciphertext is embedded in
R ⊂ RQ, with roundings. But in RQ, the multiplication by a rational number
can not be directly defined, as RQ is not an Q-module; even worse when it is
decomposed into RNS. In that case, we detour the rational rescaling by first
multiplying Q′, then dividing by Q. During the multiplication, the ciphertext
modulus is temporarily moved to QQ′ and returns back after the division. Indeed,
this is a much closer way of computing ⌊Q′/Q · ct⌉ = ⌊Q′ · ct/Q⌉ more accurately
in machines.

9 From NTT-evaluated ct ∈ RQ, we first iNTT for Q, apply fast basis conversion, then
NTT for P to make ModUp(ct) ∈ RPQ by reusing the Q parts, on the other hand,
from NTT-coefficient ct ∈ RQ, we first apply fast basis conversion, then NTT for
PQ.

14

Definition 1 (Rational Rescale). For given a polynomial a ∈ RQ and Q′ ∤ Q,
we define rational rescaling as the rescaling by a rational factor Q/Q′, which can
be computed as

RSQ/Q′(a) = RSS(Inv-RSR(a) ∈ Rlcm(Q,Q′)) ∈ RQ′ ,

where R = lcm(Q,Q′)/Q ∈ Z and S = lcm(Q,Q′)/Q′ ∈ Z.

We abuse the RS notation to also denote the rational rescale by denoting the
rational rescale factor in the subscript. If needed, we will call the original rescale
procedure using integer rescale factors as integral rescale. The rational rescaling
can be naturally extended to a vector of polynomials or ciphertexts.

We note that inverse rescale during rational rescale has a totally different role
compared to the one during key switching.

In the previous RNS-CKKS schemes and implementations, ModUp and
ModDown are used to switch the modulus between multiples and divisors. The
fast basis conversion was used as a subroutine to switch the modulus between
non-divisor moduli. However, the role of the fast basis conversion was to make a
new ciphertext that has the same ciphertext in a different modulus. This was
done by approximating each RNS block, but introducing an additional error, a
small multiple of the original modulus. Since the error has a large size compared
to the message included in the ciphertext, the fast basis conversion can only be
used in restricted cases, such as in ModUp, ModDown, and RS. Rational rescaling
also uses the fast basis conversion as a subroutine when rescaling from lcm(Q,Q′)
to Q′.

The following theorem shows that the rational rescaling error is the same
type as ModDown and RS errors, which is linear on the number of eliminated
RNS blocks, say, lcm(Q,Q′)/Q′, P , and qℓ, respectively. However, it is worth
minimizing the RNS moduli factors of lcm(Q,Q′)/Q′ to reduce the error. The
proof of the theorem can be found in Appendix A.1.

Theorem 1 (Rational Rescale Correctness). For given a ciphertext ct ∈ R2
Q

and Q′ ∤ Q, it holds that
[
⟨RSQ/Q′(ct), sk⟩

]
Q′ = Q′/Q · [⟨ct, sk⟩]Q + eres for some

rescale error eres satisfying ∥eres∥∞ ≤ ℓ/2 · (∥s∥1 + 1), where ℓ is the number of
RNS blocks in lcm(Q,Q′)/Q′, and s be a secret key.

Rational rescale maps a ciphertext including a message with a scale factor ∆2

(after tensor) to a ciphertext whose message has a scale factor ∆2 ·Q′/Q ≈ ∆,
instead of ∆2/qℓ ≈ ∆. We also note that the rational scale factor can be tracked
as in [18], which will be treated in Section 3.4.

3.2 Modulus Resurrection: Rescaling in the word-size moduli chain

Rational rescaling allows us to rescale with a non-divisor of the current ciphertext
modulus during homomorphic multiplications. However, to continue homomorphic
computations on the resulting ciphertext, one should make the ciphertext modulus

15

a divisor of the switching key modulus again. To enable this, we reuse some
factors of the switching key modulus and the ciphertext modulus. As a primary
condition for the RNS moduli is being relatively prime, we resurrect some factors
of the top ciphertext modulus, which was scaled out earlier. By doing so, the
RNS moduli remain relatively prime, while the ciphertext modulus is a divisor
of the switching key modulus. We call this procedure as Modulus Resurrection
specified below. We focus only on differences between RNS-CKKS [17] and ours.
The other parts that are not mentioned below are the same as [17] but using our
modifications consequently.

Setup∗(N,h, η, dnum = 1, 1λ): For given ring dimension N , the secret key
hamming weight h, and the security parameter λ, the maximum possible
modulus size is set. Each ciphertext modulus is a composition of distinct word-
size NTT primes, which we call unit moduli, and a small and flexible modulus,
which we call sprout10. Specifically, the maximum ciphertext modulus is
Qmax = q0 · · · qL−1 · rtop and each ciphertext modulus is Q = q0 · · · qℓ−1 · r,
where qi’s be unit moduli in 2w · [1− 2−η, 1 + 2−η], r be a sprout modulus,
and rtop be a common multiple of all the possible sprouts, which indeed
can be the maximum possible sprout. The switching key modulus is set to
PQmax, where P is chosen to satisfy P = p0 · · · pK−1, where pi are relatively
prime unit moduli, P and Qmax are relatively prime, P ≥ Qmax, and PQmax
is smaller than the maximum possible modulus size.

SwkGen∗(s1, s2, dnum = 1): For given secret keys s1 and s2, and dnum = 1, it
generates and outputs a switching key

swk = (b = a · s2 + Ps1 + e, a) ∈ RPQmax .

RS∗(ct, δ): For given a ciphertext ct overRQ, where Q = q0 · · · qℓ−1 ·r, if there is a
divisor q of Q which is ≈ 2δ, it outputs RSq(ct). Else, it outputs RSqℓ′ ···qℓ−1r/r′ ,
where ℓ′ = ⌊(wℓ+ ⌊log2 r⌉ − δ)/w⌋, and r′ is a sprout δ−w(ℓ−ℓ′) bits smaller
than r.

Please find how close the divisor q of Q in RS∗ should be to 2δ in Theorem 5.
This can be seen as a resurrection of the topmost ciphertext modulus, which

was supposed to have been eliminated. We note that only a few unit moduli are
eliminated during RS; the error has approximately the same magnitude as the
previous RS error.

Here are some toy examples of modulus resurrection. In the following examples,
we abuse the definition of n bit integers (or primes) and identify them to be
integers (or primes) close to 2n (roughly, ratio within 1± 2−16), which may be
greater than 2n.

Example 2 Let qi’s be the 60-bit NTT primes and rtop = r0 ·r1, where r0 and r1
are 30-bit NTT primes. Each sprout r can be represented as r ∈ {1, r0, r1, r0r1}.
10 The sprouts can be chosen universally, or specific to the circuits to be evaluated,

which will be discussed later in this section.

16

From a modulus Q = q0 · · · qℓ · r, we can continually scale by 30 bits for e.g.,
rescale by r0 or r1 when r0|r or r1|r, respectively, and rational rescale by qℓ/r1 ≈
30 bits when r = 1.

Example 3 Let qi’s be the 61-bit NTT primes and rtop = 261.11 Each sprouts r
is a power of two integers dividing rtop = 261. From a modulus Q = q0 · · · qℓ · 235,
we can easily rescale by 1 to 35 bits. If we want to rescale by 36 bits (or more),
we can rational rescale by

(
qℓ/2

25
)
≈ 236, resulting in a ciphertext modulus

Q′ = q0 · · · qℓ−1 · 260.

Example 4 Let qi’s be 61-bit NTT primes and rtop = 215 · r1 · r2, where r1
is a 16-bit NTT prime, and r2 is a 30-bit NTT prime12. Each sprout r can
be represented as r = 2α · rβ1

1 · r
β2

2 , where 0 ≤ α ≤ 15, βi ∈ {0, 1}. From a
modulus Q = q0 · · · qℓ · r, where r = 213 · r2 is 13 + 30 = 43 bits, we want to
rescale by 29 bits. As r has no factor of 29 bits but is larger than that, we can
rational rescale by (r2/2), resulting in a ciphertext modulus Q′ = q0 · · · qℓ · r′,
where r′ =

(
213 · r2

)
/ (r2/2) = 214. If we want to rescale by 34 bits in addition,

we can rational rescale by
(
23 · qℓ/r2

)
, resulting in a ciphertext modulus Q′′ =

q0 · · · qℓ−1 · r′′, where r′′ =
(
qℓ · 214

)
/
(
23 · qℓ/r2

)
= 211 · r2 is a 14+61− 34 = 41

bit long sprout.

Note that a larger amount of rescaling, e.g., 90 bits or more, can be done
similarly.

The typical choice of sprout could vary depending on the rescaling factors we
will use. For instance, let the machine word size w bits. As in Example 2, the
sprout could be r = r1 · r2 for (w/2)-bit (NTT) primes r1 and r2, which will allow
us to rescale every (w/2) bits. Another option is to have three (w/3)-bit (NTT)
primes or to have three different sizes so that their additions well represent the
possible scale factors, e.g., 10, 20, 30-bit (NTT) primes can represent all the 10’s
multiples and thus can be used for such purpose.

In the extreme case, as in Example 2, we can use w number of 1-bit moduli
as r = 2w, which can be seen as a hybrid of (locally) binary and (globally) RNS
CKKS. Any bit length can be rescaled in this setting and thus is able to be used
universally, independent of the parameters.

The following theorem states the rescalability conditions on the sprout.
Informally, if the sprouts (i.e., the divisors of rtop) can approximately represent
all the bit lengths from 1 to w, then the rational rescaling can be done by any
arbitrary bit. For instance, the sprout rtop = 215 · r1 · r2 in Example 4 can
represent any bit length from 1 to 60 as

{21, · · · , 215, r1, r1 · 21, · · · , r1 · 213, r2, r2 · 21, · · · , r2 · r1 · 215}.

11 To handle modulo 261, one needs to embed it into larger NTT or just use DFT. See
Section 3.5 for more details.

12 Typically, we can choose r1 = 216 + 1 and r2 = 230 + 217 + 1, the NTT primes for
ring dimension N ≤ 215.

17

If the current sprout is, for e.g., r1 · 213 ≈ 229 and we want to rescale by ≈ 241,
we can simply choose the next sprout to be r2 · r1 ·23, which is ≈ 229+61−41 = 249.
We then rational rescale by r2/2

10. The proof of the theorem can be found in
Appendix A.2.

Theorem 5 (Universal Rescalability). Let the ciphertext modulus qi ∈
[2w(1 − η), 2w(1 + η)] for some η > 0 for i ∈ [L − 1]. Let the maximum
sprout modulus rtop = r0 · · · rs. Assume for any positive integer γ ≤ w, there
exist r|rtop such that r ∈ 2γ · [1 − ϵ, 1 + ϵ] for some ϵ > 0. Then, for any
ciphertext in any possible ciphertext modulus Q, one can (rational) rescale by
2δ ·

(
1± (nη + 2ϵ) +O

(
η2 + ϵ2

))
for any positive integer δ < log2(Q), where

n = ⌈δ/w⌉.

Note that the choice of sprout in Examples 3 and 4 satisfies the assumption
of Theorem 5 with ϵ < 2−13, and there are plenty of 61 bit primes with η < 2−20.
Thus, the sprouts can be used universally, i.e., rescalable with 2δ · (1± 2−12) for
any δ ∈ N smaller than the current ciphertext modulus. We call these sprouts,
universal sprouts. More generally, universal sprouts can be used independent of
the operations or the choice of parameters such as message precision or ring
dimension.

We note that the key switching with dnum = 1 can be done the same as
the previous RNS-CKKS scheme since each ciphertext modulus is a divisor of
the switching key modulus. The only non-trivial part is how to deal with the
non-square-free modulus, e.g., the power of two moduli in sprouts, which will be
discussed in Section 3.5.

We also note that the key switching with full dnum, i.e., k = 1 and P ≈ qj ,
is also possible by filling up the sprout r to rtop, where the gadget blocks are
q0, . . . , qL−1, rtop. This can be done by inverse rescaling, Inv-RS(rtop/r), from the
modulus Q = q0 · · · qℓ · r to Q′ = q0 · · · qℓ · rtop, and modifying the ModDown
procedure to rescale from the modulus PQ′ = P · (rtop/r) ·Q to Q.

3.3 Gadget Resurrection: Enabling efficient key switching with
gadget decomposition

Modulus resurrection allows us to use word size moduli chain and thus gain
efficiency from the reduced number of RNS blocks. However, it is unclear whether
one can use key switching with gadget decomposition, i.e., using dnum, during
modulus resurrection.

For the dnum = 1 or the full dnum cases, the switching key using gadget
decomposition is clearly possible since the current ciphertext modulus can be
mapped to the gadget blocks. Otherwise, the resurrected sprout makes the
key-switching more costly. For a case when dnum > 1, we have gadget blocks

Qi = qαiqαi+1 · · · qα(i+1)−1 for i ∈ [dnum− 2],

Qtop = qα(dnum−1) · · · qL−1rtop,

18

so that the maximum ciphertext modulus is

Qmax = q0q1 · · · qL−1rtop = Q0 · · ·Qdnum−2Qtop,

where L+ 1 = dnum · α.
If the ciphertext modulus is Q = q0 · · · qℓ, we can use d = ⌈ℓ/α⌉ switching

keys, corresponding to the modulus blocks Q0, Q1, · · · , Q⌈ℓ/α⌉−1. This is just the
amount used in the previous approaches, ignoring the fact that the moduli are of
word size. Note that the modulus Q0 · · ·Q⌈ℓ/α⌉−1 is the smallest multiple of Q
among Πi∈IQi, where I ⊆ [dnum−1]. Else if the ciphertext modulus is a multiple
of word size moduli and a sprout, e.g., Q = q0 · · · qℓ−1r, where ℓ < L and r > 1,
then we need ⌈(ℓ− 1)/α⌉+ 1 switching keys, corresponding to the gadget blocks
Q0, Q1, · · · , Q⌈(ℓ−1)/α⌉, and Qtop. This implies that depending on the current
ciphertext modulus, one more switching key should be input to each key-switching
procedure, assuming that dnum is fixed. This will also slow down the key switching
procedure by roughly a factor of (⌈(ℓ− 1)/α⌉+1)/ ⌈(ℓ− 1)/α⌉ = 2/1, 3/2, 4/3, . . .
times, depending on ℓ and α13.

To avoid such inefficiency, the ciphertext modulus should be well decomposed
into moduli, that are mapped to corresponding gadget moduli Qis and Qtop.
We introduce our solution managing the ciphertext modulus for efficient key
switchings, namely, Gadget Resurrection. We focus only on differences between
RNS-CKKS [17] and ours. The other parts that are not mentioned below are the
same as [17] but using our modifications, consequently.

Setup∗∗(N,h, η, dnum, 1λ): For given ring dimension N , the secret key hamming
weight h, and the security parameter λ, the maximum possible modulus
size is set. Each ciphertext modulus is a composition of distinct word-size
NTT primes, which we call unit moduli, and a small and flexible modulus,
which we call sprout14. Specifically, the maximum ciphertext modulus is
Qmax = q0 · · · qL−1 · rtop, where qis be unit moduli in 2w · [1− 2−η, 1 + 2−η],
and rtop be a maximum possible sprout, which is a common multiple of all
the possible sprouts. The switching key modulus is set to PQmax, where P is
chosen to satisfy P = p0 · · · pK−1, where pi are relatively prime unit moduli,
P and Qmax are relatively prime, P ≥ Q

1/dnum
max , and PQmax is smaller than

the maximum possible modulus size. Depending on the gadget rank dnum, we
decompose Qmax into gadget blocks Q0, · · · , Qd−2, Qtop having approximately
the same size, and P ≥ maxi∈I Qi, where I = [dnum− 2]∪{top}. We assume
each gadget block contains α RNS moduli, thus L + 1 = dnum · α. Each
ciphertext modulus consists of Q0, · · · , Qβ−2 and a divisor of Qtop as,

Q = Q0 · · ·Qβ−2 · (qα(dnum−1) · · · qα(dnum−1)+l · r), or Q = Q0 · · ·Qβ−2 · (r),
13 Note, this factor should be multiplied by the speed-up factor comes from the reduction

in the number of RNS moduli, thus the actual slow down may less than the given
factors, or even, there may be no slow down. However, this factor destroys the naïve
speed-up that comes from the reduced number of RNS moduli.

14 The sprouts can be chosen universally, or specific to the circuits to be evaluated,
which will be discussed later in this section.

19

where 0 ≤ l < α− 1.
SwkGen∗∗(s1, s2, dnum): For given secret keys s1 and s2, it generates and outputs

dnum switching keys

swki = (ai,bi = ais2 + PQ̂is1 + ei) ∈ RPQmax

for i ∈ [dnum− 2] ∪ {top}, where Q̂i = Qmax/Qi.
RS∗∗(ct, δ): For given a ciphertext ct over RQ, if there is a divisor q of Q which

is ≈ 2δ, it outputs RSq(ct). Else, it computes ℓ′ = ⌊(⌊log2 Q⌉ − δ)/w⌋, and if
ℓ′ ≤ α(β − 2) or α|ℓ′, it outputs RS∗(ct, δ) (modulus resurrection). Else, let
ℓ′ = α · (β′−2)+ l′ for some 1 ≤ l′ < α−1, Q̃top = Q/(Q0 · · ·Qβ−2r), and let
Q̃β′−2 = qℓ′ · · · qα(β−1)−1. It outputs RS(Q̃top·r′)/(Q̃β′−2Qβ′−1···Qβ−2·r), where
r′ be a sprout (δ− ⌊log2 Q⌉+wℓ′) bits smaller than r (gadget resurrection).

KeySwitch∗∗(ct, {swki}): Identical to the original KeySwitch, except that the
switching keys are generated from SwkGen∗∗, and the gadget blocks that
are used for key switching are changed to Q0, · · · , Qβ−1, Qtop, instead of
Q0, · · · , Qβ−1.

Mult∗∗(ct1, ct2, {evki}): Identical to the original Mult, except that the relineariza-
tion is performed using KeySwitch∗∗, and the RSqℓ is replaced by RS∗∗ with
respect to δ bits approximately the scale factor of ct1 and ct2, where the
ciphertext moduli are the same15.

We note that the modified RS∗∗ (rational) rescale as in RS∗ if the rescaling
does not change the gadget block Qβ−2 in the cases when δ < w. Otherwise, i.e.,
if the rescaling will change the gadget block Qβ−2, it is replaced by Qtop during
the rational rescaling. That is, if Q = Q0 · · ·Qβ−2 · r and the ciphertext will be
rational rescaled by r′/(qα(β−1)−1r) to a modulus

Q′ = Q0 · · ·Qβ−3 · (qα(β−2) · · · qα(β−1)−2) · (r′),

we instead, rational rescale by (r′ · qα(d−1) · · · qL−1)/(Qβ−2 · r), resulting in a
ciphertext modulus of

Q′′ = Q0 · · ·Qβ−3 · (qα(d−1) · · · qL−1r
′).

As in the modulus resurrection, the topmost gadget is resurrected when it
was supposed to have been eliminated.

We remark that if the rescaling amount is determined beforehand, and the
modulus resurrection needs to be done after the key switching operation, one can
modify the ModDown operation to eliminate only the factor P , and we integral
rescale by Qβ−2 · (qα(d−1)+l+1 · · · qL · r′), where rtop/r

′ is the target sprout.
We revisit the toy examples from Examples 2, 3, and 4 in the below.

15 The scale factor needs to be tracked as in [18], and the scale factors need to be
adjusted when the input ciphertexts have different moduli (See Section 3.4 for detail).

20

Ex. Ciphertext modulus Rescaling factor Gadget blocks

6

(q0q1)(q2r0r1) Q0, Qtop

↓ r1
(q0q1)(q2r0) Q0, Qtop

↓ r0
(q0q1)(q2) Q0, Qtop

↓ q2/r0 (moduli rez.)
(q0q1)(r0) Q0, Qtop

↓ r0
(q0q1) Q0

↓ q0q1/q2r0 (gadget rez.)
(q2r0) Qtop

...
...

...

7

(q0q1)(q2q3)(q4 · 261) Q0, Q1, Qtop

↓ 226

(q0q1)(q2q3)(q4 · 235) Q0, Q1, Qtop

↓ 225/q4 ≈ 236 (moduli rez.)
(q0q1)(q2q3)(2

60) Q0, Q1, Qtop

↓ q2q3 · 211/q4 ≈ 272

(q0q1)(q4 · 249) (gadget rez.) Q0, Qtop

↓ q4/2
10 ≈ 251 (moduli rez.)

(q0q1)(2
59) Q0, Qtop

...
...

...

8

(q0q1)(q2q3)(q4 · 215 · r1 · r2) Q0, Q1, Qtop

↓ 22 · r1 ≈ 218

(q0q1)(q2q3)(q4 · 213 · r2) Q0, Q1, Qtop

↓ r2/2
1 ≈ 229 (moduli rez.)

(q0q1)(q2q3)(q4 · 214) Q0, Q1, Qtop

↓ q4 · 23/r2 ≈ 234 (moduli rez.)
(q0q1)(q2q3)(2

11 · r2) Q0, Q1, Qtop

↓ q2q3 · 26/(q4 · r1) ≈ 251

(q0q1)(q4 · 25 · r1) (gadget rez.) Q0, Qtop
...

...
...

Table 2. Modulus descending scenario in Examples 6, 7, and 8. ‘↓’ implies (integral)
RS if the rescaling factor is an integer, else rational RS. Resurrections are abbreviated
as rez.

Example 6 We borrow the notations from Example 2, and let the 60-bit NTT
primes as q0, q1, q2, and 30-bit NTT primes as r0, r1. Then, we can design the
ciphertext modulus and the switching key modulus as

– Qmax = (q0q1) · (q2r0r1), where the parenthesis represents the gadget blocks
Q0 = q0q1 and Qtop = q2r0r1,

– P = p0p1, where p0 and p1 are 60-bit NTT primes, so dnum = 2.

From a modulus Qmax, we can continually rescale by ≈ 30 bits as in Table 2.

21

Example 7 We borrow the notations from Example 3. Then, we can design the
ciphertext modulus and the switching key modulus as

– Qmax = (q0q1) · (q2q3) · (q4 · 261), where the parenthesis represents the gadget
blocks Q0 = q0q1, Q1 = q2q3, and Qtop = q4 · 261,

– P = p0p1, where p0 and p1 are 61-bit NTT primes, so dnum = 3.

From a modulus Qmax, we can rescale by any bit lengths as in Table 2.

Example 8 We borrow the notations from Example 4. Then, we can design the
ciphertext modulus and the switching key modulus as

– Qmax = (q0q1) · (q2q3) · (q4 · 215 · r1 · r2), where the parenthesis represents the
gadget blocks Q0 = q0q1, Q1 = q2q3, and Qtop = q4 · 215 · r1 · r2,

– P = p0p1, where p0 and p1 are 61-bit NTT primes, so dnum = 3.

From a modulus Qmax, we can rescale by any bit lengths as in Table 2.

Fig. 1. Gadget Resurrection. Each gadget resurrection is done when a gadget block is
changed during modulus resurrection.

In Theorem 9, we prove the correctness of the key switching procedure in the
gadget resurrection scenario, which invokes the proof in [17]. The proof of the
theorem can be found in Appendix A.3.

Theorem 9 (KeySwitch Correctness). Let ctks = KeySwitch(ct, {swki}i∈I) for
a ciphertext ct = (b,a) ∈ R2

Q and swki ∈ R2
PQmax

for i ∈ I, where β is the
smallest integer satisfying Q|Q0 · · ·Qβ−2Qtop and I = [β − 2] ∪ {top}. Then it
holds that [⟨ctks, (1, s2)⟩]Q = [⟨ct, (1, s1)⟩]Q + eks, where eks be a key switching
error bounded from above by ∥s∥1 +N · β ·maxi∈I(∥ei∥∞), where ei is an error
included in swki.

22

Note that the error introduced from KeySwitch∗∗ is of the same size compared
to KeySwitch. The correctness of homomorphic multiplication follows from
Theorem 1 and 9. If the modulus resurrection is performed, an additional error
amount of RS error is added, and if the gadget resurrection is performed, an
additional error amount of ModDown error is added. Note the gadget resurrection
is rarely performed in general scenarios using not too huge dnum, for e.g., less
than 5, and is small compared to the ModDown error, which is added once a level
decreases.

3.4 Level Adjustment

Suppose we have a ciphertext ct = (b, a) ∈ R2
Q satisfying the following relation:

b+ a · s = ∆ ·m+ e (mod Q),

with scaling factor ∆, where the modulus Q can be written as Q = q0 . . . qtr for
machine word-size primes qi’s and a sprout r′. We aim to adjust two ciphertexts
in modulus Q and Q′ = q0 . . . qt′r

′(< Q), where the scaling factors are ∆ and
∆′, respectively. We denote g and g′ the positive integers satisfying lcm(r, r′) =
r · g = r′ · g′.

To address the level adjustment in our scenario, we classify the possible cases
into three: 1) t = t′, 2) t− t′ ≥ 2, and 3) t− t′ = 1.

Case 1) The first case implies that the sprout r is strictly larger than r′ with
roughly a rescale factor ∆, i.e., r ≳ r′∆. In this case, we adopt and modify
the level adjusting method in [18] to our scenario, by incorporating a suitable
amount of integer constant multiplication after Inv-RSg, then RSg′ . Note that
the constant should be large enough so that the factor multiplied in the integer
constant can precisely be scaled out when RS. More precisely, we multiply a
constant

⌈
g′∆′

g∆

⌋
= g′∆′

g∆ + δ ≈ ∆, where δ ∈
(
− 1

2 ,
1
2

]
.

After the adjustment, the output ciphertext ctadj = (aadj, badj) ∈ R2
Q′ satisfies

badj + aadj · s =
1

g′

(
g′∆′

g∆
+ δ

)
· g(∆ ·m+ e) + ers

= ∆′ ·m+ eadj (mod Q′),

where the ers is an error added in RS, and the new error eadj is defined as

eadj =
∆′

∆
· e+ δr′∆ ·m

r
+

δr′e

r
+ ers.

We note that the condition r ≳ r′∆ allows us to manage the error eadj to be
sufficiently small.

We omit the level adjustment techniques for cases 2 and 3 since they are
similar in a high-level view, which can be found in Appendix B.

23

3.5 Exploiting Power-of-Two Modulus in RNS-CKKS

As demonstrated in Example 3, the most intuitive way to set the sprout modulus
rtop is to choose it as a power-of-two of the machine word-size. In this case, we
can seamlessly leverage the advantages of the previous binary CKKS scheme [10]
in the RNS manner by efficiently performing rescaling operations for scaling
factors of arbitrary bit sizes.

However, we note that in our case, we need to additionally consider the Fast
Basis Conversion between the bases containing power-of-two elements, whereas
the Fast Basis Conversion in the original RNS-CKKS scheme was performed
between the bases composed of distinct NTT primes. In this section, we extend
the existing Fast Basis Conversion to ensure that operations such as rational
rescale, and modulus resurrection can be implemented in the RNS manner, even
for modulus with power-of-two as a sprout rtop.

Definition 2 (Rescale by Power-of-Two in RNS). Let C and C′ be the bases
{q0, . . . , qℓ−1, qℓ} and {q0, . . . , qℓ−1, q

′
ℓ}, respectively, where qℓ = 2δ and q′ℓ = 2δ+e

for some integer e > 0 with Q = q0 . . . qℓ−12
δ and Q′ = q0 . . . qℓ−12

δ+e = 2eQ.
For a given RNS representation [a]C =

(
a(0), . . . , a(ℓ)

)
of an integer a ∈ ZQ, its

Inv-RS by a factor 2e is defined by

Inv-RS2e([a]C) = [a′ = 2e · a]C′ ,

where its RNS representation is given as

a′ ≡

{
[2e]qi · a(i) (mod qi)

2e · a(ℓ) (mod 2δ+e).

For a given RNS representation [b′]C′ =
(
b′(0), . . . , b′(ℓ)

)
of an integer b ∈ ZQ′ ,

on the other hand, its RS by a factor 2e is defined by

RS2e([b
′]C′) =

[
b =

b′ − [b′]2e

2e

]
C
,

where its RNS representation is given as

b ≡

[(2e)−1]qi ·
(
b′(i) − [b′(ℓ)]2e

)
(mod qi)

b′(ℓ) − [b′(ℓ)]2e

2e
(mod 2δ).

We note that these two definitions are well-defined, accompanying the modulus
change at power-of-two. Exploiting RS and Inv-RS by a power-of-two factor, one
can effectively implement modulus resurrection with power-of-two rtop in the
RNS manner, and so is gadget resurrection. We give some toy examples for
modulus resurrection as follows:

Example 10 We borrow the notations and parameters setting from Example 7.
Suppose we aim to rescale by ∆ = 241 at modulus Q = (q0q1) · (q2q3) · 220.

Then, we perform RS(q3/220) with modulus resurrection as follows:

24

1. Inv-RS220 from moduli {q0, q1, q2, q3, 220} to {q0, q1, q2, q3, 240}
2. RSq3 from moduli {q0, q1, q2, q3, 240} to {q0, q1, q2, 240}.

Here, we utilize Inv-RS220 from the definition 2 so the above procedure can be
launched efficiently in the RNS.

We note that NTT operations can not be utilized in a polynomial ring of power-
of-two modulus. Instead, one can address this issue by using DFT instead [6]
or embedding the ring into a sufficiently large ring RB, where B is a product
of NTT primes so that NTT operation is applicable in RB as partly exploited
in [19]. We detail this in Section 4.2. We also remark that power-of-three or other
extension may used instead of power-of-two moduli; however, the efficiency gain
will not be much.

4 Experiments and Improvements

In this section, we provide some proof-of-concept implementations for our method
as well as some concrete parameters showing improvements over major open-
source libraries. Our implementations are developed upon the C++ HEaaN
library [12]. The experiments are conducted on an Intel Xeon Gold 6242 at
2.8GHz with 503GiB of RAM running Linux, single-threaded.

When describing CKKS parameters, N denotes the ring dimension, log(QP)
denotes the bit size of the maximum switching key modulus, h denotes the
hamming weight of secret keys, dnum denotes the gadget decomposition number,
log(q) denotes the bit sizes of the moduli in the ciphertext modulus, and log(p)
denotes the bit sizes of the moduli in the temporary modulus for key switching.
When modulus is written as X × Y then it means that it consists of Y many
moduli of size X bits each.

4.1 Homomoprphic Linear Transformation

In homomorphic linear transformations where we don’t have ciphertext-ciphertext
multiplications, we may use Grafting without sprout. Since linear transform is
expensive and we can postpone rescaling until the end of linear transformation,
we can afford a bit more expensive rational rescaling, which allows us to choose
a more efficient moduli chain.

Let Qin and Qout be input and output moduli of linear transformation where
we have evaluation keys at Qin. Given a ciphertext ct ∈ R2

Qin
, the algorithm can

be describes as follows:

1. We evaluate the homomorphic linear transform f and get Evalf (ct
′) ∈ R2

Qin
.

2. We perform rational rescaling from Qin to Qout and get ctout ∈ R2
Qout

.

25

We may use Qin to be a product of word-size primes without sprouts for better
performance. 16

The described algorithm does not involve special moduli chain adaptations
like moduli/gadget resurrections described in Section 3. Instead, it increases the
rational rescaling cost a little, which should still be as cheap as the cost of base
conversion. In general, most homomorphic linear transformations contain a lot
of key switching operations, and the rational rescaling cost can be considered
almost negligible.

Recall that homomorphic linear transformations are often a bottleneck of
CKKS. In particular, Slots-to-Coeffs and Coeffs-to-Slots steps, which evaluate
homomorphic (inverse) discrete Fourier transformations, often take more than
half of CKKS bootstrapping. In this regard, the use of Grafting for homomorphic
linear transformations should be especially effective in terms of efficiency. We
can literally fill-up machine words in RNS, with negligible overhead.

We provide implementation on this technique, particularly on the Coeffs-to-
Slots (abbreviated as CtS) step of CKKS bootstrapping, which can be described
as a sequence of homomorphic linear transformations. We applied grafting to
FTa parameter of the HEaaN library and used as large primes as possible to
accelerate the CtS step. Table 3 illustrates the parameters for the initial and
suggested parameters, especially focusing on the moduli chains. Instead of using
primes with different sizes, we used primes of size ≈ 260 so that we can fully use
the 64-bit word size.

N h log(QP) dnum CtS (sec)
HEaaN.FTa

15 192
777 10 2.44

Proposed 775 12 1.71
log(q)

log(p)Base StC Mult EvalMod CtS
HEaaN.FTa 38 32 + 28× 2 28× 5 38× 8 41× 3 42× 2

Proposed 59× 10 61 + 62 62

Table 3. Parameter for accelerating CtS.

We measured the CtS times of both parameters for comparison. The FTa and
the proposed parameters took 2.44 and 1.71 seconds, respectively. The latter
accelerated the former by a factor ≈ 1.43. In terms of the number of unit moduli,
the initial and proposed parameters have 22 and 13 moduli, respectively. The
difference in the size of dnum compensated this gain: 22

13 ×
10
12 ≈ 1.41 is close to

the actual factor 1.43.
For simplicity, we implemented only the CtS part of CKKS bootstrapping.

As mentioned above, we may rational rescale to a proper modulus and continue
16 In case where linear transformation is put in the middle of the homomorphic

computations, we may modulus switch to the linear transform modulus, using an
analogue of rational rescaling.

26

Grafting in the other parts of bootstrapping, and ration rescaling should be
negligible compared to the CtS cost.

4.2 Proof-of-Concept Implementation for Grafting

We check the techniques proposed throughout the paper in a proof-of-concept
manner. We use two different moduli chains, one for usual CKKS and the other for
Grafting. The details of the parameters are illustrated in Table 4. Set I contains
eight 30-bit primes for rescaling 30 bits per multiplication, while Set II contains
three 60-bit primes and two 30-bit primes for Grafting. Two 30-bit primes in the
moduli can be stored in one 64-bit word as long as we use both primes. All the
modulus operations, including NTT, can be performed on this so-called composite
number NTT only requires a primitive 2N -th root of unity [11].

N log(QP) h dnum log(q) log(p)

Set I
14 300 256 4

30× 8 60
Set II 60× 3 + (30 + 30) 60

Table 4. Two moduli chains for comparison.

How to climb down the moduli chain. Let the primes in Set II be q0, q1, q2, r1, r2
where q0, q1, q2 ∼ 260 and r1, r2 ∼ 230. We elaborate the descending strategy as
follows:

(q0, q1 | q2, r1r2)
RSr2−−−→ (q0, q1 | q2, r1)

RSr1−−−→ (q0, q1 | q2)
RSq2/r1−−−−−→ (q0, q1 | r1)

RSr1−−−→ (q0, q1)
RSq0q1/q2r1r2−−−−−−−−−→ (q2, r1r2)

RSr2−−−→ (q2, r1)
RSr1−−−→ (q2)

RSq2/r1−−−−−→ (r1).

Here the divider ‘|’ is used to illustrate different gadget blocks. 30 bit rescaling
without 30 bit prime is performed using inverse rescaling by 30 bits and
rescaling by 60 bits. The connection between (q0, q1) and (q2, r1r2) is the gadget
resurrection, where we revive the top gadget block. The remaining rational
rescalings correspond to modulus resurrection. Despite of its simplicity, the 30
and 60 bits example reflects the general power-of-two modulus case, in the sense
that it covers rational rescaling, modulus resurrection, and gadget resurrection.
Here we could have used 30+30 moduli for all the 60 bit blocks, but we used
only a single set in order to capture the problems in the power-of-two case.

Additional Operations in Grafting. Now we analyze the additional operations that
the Grafting introduces over the conventional CKKS multiplication. First, rational
rescaling is more expensive than integer rescaling because it is implemented by
inverse rescaling and rescaling. Second, rescaling the composite unit modulus r1r2
requires a different rescaling strategy. We implemented this by performing inverse

27

CRT plus usual rescaling. Third, embedding r1 into r1r2 could be implemented
with identity. Although modulo r2 part is completely ruined throughout the
computation, it vanishes as soon as we take moudlo r1 after key switching. These
characteristics explain why the timings of Set II don’t linearly increase by levels.
For instance, the difference in rescaling time between levels 4 and 5 stems from
the fact that rescaling at level 5 is RSq2/r1 , which is a rational rescaling that is
more expensive than the others.

Performance Comparison. We implemented each component of homomorphic
multiplication for each level of Set II. The timings for homomorphic multipli-
cations, as well as the gadget resurrection, are given in Table 5. The speedup
for overall multiplication varies from factor 1.17 to 1.51. Although Grafting
introduces a new operation gadget resurrection, this can be performed only once
during the whole computation and is negligible compared to the rest.

Level 1 2 3 Resurrect 4 5 6 7

Set I
Tensor 221 335 416

-
496 572 677 767

Relin 2469 4165 4326 6062 6918 9542 10979
Rescale 477 731 955 1149 1411 1655 1907

Set II
Tensor 122 318 269

1934
389 433 297 515

Relin 1466 3234 3030 5192 5556 7188 7110
Rescale 881 449 983 692 1611 1030 1436

Speedup 1.28x 1.31x 1.33x - 1.23x 1.17x 1.39x 1.51x
Table 5. Performance comparison between Set I and Set II in terms of homomorphic
multiplication at different levels. The numbers in the columns refer to the starting level
of the operation and the times are microseconds. The Resurrect columns denote the
gadget resurrection placed between level 3 and level 4 multiplications.

Level Adjustment. We explain level adjustment with an example that decreases the
level from 6 to 3. Recall that level 6 corresponds to a moduli chain (q0, q1 | q2, r1)
and level 3 corresponds to a moduli chain (q2, r1r2). To do this, we first raise
the modulus to q0q1q2r1 with inverse-rescale, multiply an appropriate constant
to adjust scaling factors, and rescale by q0q1. We implemented this level-down
operation and checked that it has 18 bits of precision 17 which is almost the same
as that of the level-down operation in Set I.

Implementing General Grafting. In this section, we only implemented a simple
case of Grafting consisting of 30 and 60-bit primes. Although this simple example
captures most of the ingredients of Grafting, there are a few differences when
implementing more general Grafting. The most important difference is that it
may include a modulus that does not support NTT, as in the power-of-two case
17 Here, the precision is defined as the infinite norm of the error.

28

mentioned in Section 3.5. To handle such modulus, one approach is to regard
polynomial multiplication in Rq as multiplication in R and use a larger modulus
(≫ q2) NTT to enable such multiplication. Such an approach can be regarded as
a small modulus case for hybrid multi-precision implementation in [10]. In case
where we use only small power-of-two modulus, we may also use DFT instead of
NTT as in [6]. That is, we can choose the DFT precision to be sufficiently greater
than the power-of-two modulus size and embed polynomial multiplication. The
computation cost for moduli not supporting NTT will be greater than the 64-bit
unit modulus computation cost that supports NTT, but it should be insignificant
compared to the overall cost because we only have a few moduli requiring special
treatment.

4.3 Estimation of Performance Improvements in the Existing
Parameters

In this subsection, we investigate the CKKS scheme parameters available in HE
libraries and estimate the acceleration our Grafting technique could achieve when
applied to them. We examine the default CKKS scheme parameters currently
launched in HEaaN [12], SEAL [23], Lattigo [1], and OpenFHE [3], categorizing
them into two groups: SHE parameters and FHE parameters. For SHE parameters,
we search for parameters with base rings of dimensions N = 214 to 15, while for
FHE parameters, we search for ring dimensions of N = 215 to 16. The details of
the original parameters are provided in Table 6, 7.

logN logPQ log∆ #mod. log qi log pi

HEaaN [12] 14 436 42 10 50 + 42× 7 46× 2
15 652 51 12 61 + 51× 8 61× 3

Lattigo [1] 14 438 34 12 45 + 34× 9 43× 2
15 880 40 21 50 + 40× 17 50× 3

OpenFHE [3]
14 371 50 7 60 + 50× 5 60
15 675 90 7 105 + 90× 5 119
16 794 90 8 105 + 90× 5 119× 2

SEAL [23] 14 438 48 9 48× 3 + 49× 6
15 881 55 16 55× 15 + 56

Table 6. SHE parameters for CKKS scheme in the literature. All the sizes are given in
logarithms base two and #mod. denotes the number of RNS moduli (or NTT primes)
comprising the switching key modulus PQ. The moduli log qi and log pi are given
with each moduli size × the number of each size (×1 is omitted). Note, the first two
parameter sets are SS7 and ST8 from the HEaaN library.

We note that the size of RNS primes comprising modulus PQ is closely related
to the size of scaling factor ∆: primes qi’s for multiplication has a bit-size of log∆,
and the base modulus prime q0 and the special modulus primes pj ’s are often set
to be roughly 10-20 bits larger than them. The larger the dimension of the base

29

lo
g
N

lo
g
P
Q

lo
g
∆

#
m

od
. log qi

log piBase StC Mult Sine CtS

HEaaN [12] 15 777 28 22 32 28× 2 28× 5 38× 8 41× 3 42× 2
16 1555 42 30 58 42× 3 42× 9 58× 9 58× 3 59× 3, 60× 2

Lattigo [1]

15 768 25 16 50 60 50 + 25 50× 8 49× 2 50× 2
16 1546 40 30 60 39× 3 40× 9 60× 8 56× 4 61× 5
16 1547 45 28 60 42× 3 45× 5 60× 11 58× 4 61× 4
16 1553 30 27 55 60× 1.5 60× 7.5 55× 8 53× 4 61× 5

OpenFHE [3] 16 1579 58 27 60 58× 2 58× 4 58× 13 58× 2 60× 5
17 2910 78 34 89 78× 3 78× 8 78× 13 78× 3 119× 6

Table 7. FHE parameters for CKKS scheme in the literature. All the numbers are
given as in Table 6, except that log qi shows each set of RNS moduli reserved for
corresponding steps of CKKS bootstrapping, or homomorphic multiplications. Note,
the first two parameter sets are FTa and FGb from the HEaaN library.

ring, the more modulus budget is available, so a larger scaling factor ∆ is utilized
to ensure high precision. In particular, OpenFHE offers parameter customization,
where the default scaling factor size is 59-bits, and the base modulus prime is 60
bits, which implies our Grafting technique may not be effective since all prime
moduli are already set to be 64-bit word size. OpenFHE also supports 128-bit
CKKS for high precision, where the default scaling factor size is 78-bits, and the
base modulus prime is from 89 to 105-bits. In this case, our technique reduces the
inefficiency of using either two 64-bit word-size moduli or a single large 128-bit
modulus to perform 78-bit numeric arithmetic operations.

Reduction in the Number of NTT Blocks. We redesign the suggested
parameters for the CKKS scheme with word-size NTT primes to utilize our
Grafting technique while preserving the overall modulus log(PQ) and examine
the reduction in the number of NTT primes comprising the ciphertext modulus.
For example, the overall 777-bit modulus of 22 NTT primes in ring dimension
N = 215 can be expressed as the product of 13 NTT primes or a 1555-bit modulus
of 30 NTT primes as the product of 26 NTT primes, each ranging from 59 to
62 bits in size, as described in Table 8. We note that the major cost in the
KeySwitch operation is dnum times NTT operations in modulus PQ, and our
Grafting technique does not require additional NTT operations while performing
KeySwitch. Therefore, we can expect 22

13 ≒ 1.69× and 30
26 ≒ 1.15× acceleration

can be achieved during KeySwitch. We note that some parameters from [3] set
the scaling factor size to be 59-bit size so that our grafting technique does
not significantly reduce the number of NTT blocks. However, these parameters
significantly limit the number of available Mult levels due to the large scaling
factors, whereas our approach is not subject to this constraint.

For scaling factor ∆ = 278 in parameter sets of OpenFHE, 8 and 34 NTT
blocks of 128-bit word size are transformed into 12 and 48 NTT blocks of 64-

30

logN logPQ log∆ #mod. log qi log pi Speed-up

HEaaN
[12]

SHE
14 436 42 10 → 7 4× 62 + 63 62 + 63 ×1.43
15 652 51 12 → 11 60 + 7× 59 59 + 2× 60 ×1.09

FHE
15 777 28 22 → 13 4× 59 + 7× 60 60 + 61 ×1.69
16 1555 42 30 → 26 10× 59 + 11× 60 5× 61 ×1.15

Lattigo
[1]

SHE
14 438 34 12 → 7 3× 62 + 3× 63 63 ×1.71
15 880 40 21 → 15 5× 58 + 7× 59 3× 59 ×1.40

FHE

15 768 25 16 → 13 11× 59 59 + 60 ×1.23
16 1546 40 30 → 26 19× 59 + 2× 60 5× 61 ×1.15
16 1547 45 28 → 26 17× 59 + 5× 60 4× 61 ×1.08
16 1553 30 27 → 26 12× 59 + 9× 60 5× 61 ×1.04

OpenFHE
[3]

SHE
14 371 50 7 → 6 4× 62 + 61 62 ×1.17
15 675 90 7 → 6 111× 4 + 112 119 × 1.16∗

16 794 90 8 → 7 111× 4 + 112 2× 119 × 1.14∗

FHE
16 1579 58 27 → 26 15× 61 + 6× 62 5× 62 ×1.04
17 2910 78 34 → 25 8× 115 + 11× 116 6× 119 × 1.35∗

SEAL
[23] SHE

14 438 48 9 → 6 61 + 5× 62 ×1.50
15 881 55 16 → 15 4× 58 + 11× 59 ×1.07

Table 8. Suggested RNS moduli with Grafting for existing SHE and FHE parameters
in the literature. The security strength is exactly the same with the corresponding
parameters, and the 64-bit machine is assumed. The numbers are given as in Table 6.
The number of RNS moduli shows the changes, the numbers from the original parameters
to that of the suggested parameters. In addition, the expected speed-up ratio is given
in the last column. An asterisk (∗) indicates that it assumes the machine of 128-bit
word size for a fair comparison with the original choices of RNS moduli.

31

bit word size, respectively. Since one can estimate 128-bit numeric arithmetic
operations cost at least 2× slower than those of 64-bit, we expect at least
2× 7

11 ≒ 1.27× and 2× 34
48 ≒ 1.42× acceleration during KeySwitch. We note that

the magnitude of the acceleration is estimated based on the KeySwitch at the top
level. In addition, our Grafting technique may modify the dnum during moduli
transformation in practice, potentially altering the magnitude of acceleration
based on the parameter conditions, as shown in the previous section.

5 Revisiting Tuple-CKKS

In [8], they introduced a novel multiplication algorithm for CKKS, reducing
the amount of modulus consumption for each homomorphic multiplication.
Asymptotically, their algorithm should have similar throughput and possibly
better latency when switched to a smaller ring. However, in many cases, the
reduced modulus consumption is not converted directly to efficiency gain because
any computation modulo q has roughly the same performance as long as q fits in
the machine word size. Our method bridges the gap between expectation and
reality: the tuple multiplication no longer has significant throughput degradation
compared to the original(single) multiplication. In this section, we denote Q(ℓ)

the modulus for the ciphertext of level ℓ.

5.1 Compatibility

We check the compatibility of our method with the multiplication of [8]. For
simplicity, we stick to the pair multiplication - the general tuple multiplication
should be checked almost the same. In addition, we stick to the key-switching
ladder that contains sprout modulus at the very top, and restores it every time
we enter the new gadget block. Let’s recall the definitions of the components of
the pair multiplication in [8, Definition 4.1, 4.3, 4.5]. In the definitions, ⊗ denotes
the CKKS tensor operation, Relin denotes the CKKS relinearization, RSq denotes
the rescaling by q, and DCP denotes the decomposition of CKKS ciphertext into
quotient and remainder as defined in [8, Definition 3.3].

Definition 3 (Pair Tensor). Let CT1 = (ĉt1, čt1),CT2 = (ĉt2, čt2) ∈ R2
Q(ℓ) ×

R2
Q(ℓ) be ciphertext pairs. The tensor of CT1 and CT2 is defined as

CT1 ⊗2 CT2 :=
(
ĉt1 ⊗ ĉt2, ĉt1 ⊗ čt2 + čt1 ⊗ ĉt2

)
∈ R3

Q(ℓ) ×R3
Q(ℓ) .

Definition 4 (Pair Relinearize). Let CT = (ĉt, čt) ∈ R3
Q(ℓ) × R3

Q(ℓ) be an
output of ⊗2. The relinearization of CT is defined as

Relin2(CT) = DCPqdiv(Relin(qdiv · ĉt)) + (0,Relin(čt)).

Definition 5 (Pair Rescale). Let CT = (ĉt, čt) ∈ R2
Q(ℓ) ×R2

Q(ℓ) be a ciphertext
pair. Let qℓ = Qℓ/Qℓ−1. The rescale of CT is defined as

RS2Q(ℓ)(CT) =
(
RSQ(ℓ)(ĉt), RSQ(ℓ)(qdiv · ĉt+ čt)− qdiv · RSQ(ℓ)(ĉt)

)
.

32

It belongs to R2
Q(ℓ−1) ×R2

Q(ℓ−1) .

When applying the concept of grafting to the double multiplication framework,
we may perform all the operations except Relin(qdiv ·ĉt) and (0,Relin(čt)), which we
may outsource the computation to bigger modulus. The outsourced relinearization
can be used in a black box manner, regarding them as a relinearization with
slightly different error distributions. Although the relinearization error upper
bound ERelin is different, the new pair relinearization should give exactly the
same inequality as the one in [8, Lemma 4.4].

Hence, the only difficulty is to define pair rescale when Q(ℓ)/Qℓ−1 ̸∈ Z, which
can happen in our new framework. We define a generalized (rational) version of
pair rescale as follows:

Definition 6 (Pair Rescale, Rational). Let CT = (ĉt, čt) ∈ R2
Q(ℓ) ×R2

Q(ℓ) be
a ciphertext pair. Let αℓ/βℓ = Q(ℓ)/Q(ℓ−1) where αℓ, βℓ ∈ Z>0 are coprime. The
rescale of CT is defined as

RS2αℓ/βℓ
:=

(
RSαℓ

(βℓ · ĉt),RSαℓ
(qdivβℓ · ĉt+ βℓ · čt)− qdiv · RSαℓ

(βℓ · ĉt)
)
.

It belongs to R2
Q(ℓ−1) ×R2

Q(ℓ−1) .

We also need a generalized version of [8, Lemma 4.6], to check the correctness
of the pair multiplication after changing the rescale definition.

Lemma 1. Let CT ∈ R2
Q(ℓ)×R2

Q(ℓ) be a ciphertext pair. Let αℓ/βℓ = Q(ℓ)/Q(ℓ−1)

where αℓ, βℓ ∈ Z>0 are coprime. Let sk = (1, s) ∈ R2 be a secret key with s of
Hamming weight h. Then the quantity[(

RCBqdiv(RS
2
αℓ/βℓ

(CT))
)
· sk

]
Q(ℓ−1)

− βℓ

αℓ
[(RCBqdiv(CT)) · sk]Q(ℓ)

has infinity norm ≤ (h+ 1)/2.

The proof can be found in Appendix A.4. The Lemma gives an analogue of
[8, Theorem 4.8], guaranteeing the correctness of pair multiplication. We define
Mult2 as a composition of tensor, relinearize, and rescale.

Theorem 11. Let CT = (ĉt1, čt1),CT2 = (ĉt2, čt2) ∈ R2
Q(ℓ) ×R2

Q(ℓ) be ciphertext
pairs. Let αℓ/βℓ = Q(ℓ)/Q(ℓ−1) where (αℓ, βℓ) = 1 and sk = (1, s) ∈ R2 be a
secret key with s of Hamming weight h. Assume that ∥Dec(ĉti)∥∞ ≤ M̂ and
∥Dec(čti)∥∞ ≤ M̌ for all i ∈ {1, 2} and for some M̂, M̌ satisfying N(M̂qdiv +
M̌)2 + ERelin + h < Q(ℓ)/2. Then

[(
RCBqdiv(Mult2(CT1,CT2))

)
· sk

]
Q(ℓ−1)−

βℓ

αℓ
[(RCBqdiv(CT1) · sk) · (RCBqdiv(CT2) · sk)]Q(ℓ)

has infinity norm ≤ (NM̌2/qdiv + ERelin + h)βℓ/αℓ + (h+ 1)/2.

33

5.2 Efficiency

Next, we focus on efficiency gain when applying grafting to double-CKKS. Let
a = ⌊log2(qdiv)⌉, b = ⌊log2(Q(ℓ))⌉ be sizes of the division prime and the rescaling
primes, respectively. Here b can be chosen so that b is slightly larger than a.
When comparing Mult and Mult2, one a + b bit RLWE multiplication in Mult
is compared with two b bit multiplications in Mult2. Assuming that a + b bit
computation is (a + b)/b times more expensive than b bit computation, the
throughput of Mult2 should be asymptotically the same as that of Mult. However,
actual implementations are affected by the machine word size, which discretizes
the computation performance. This could greatly degrade the performance of
Mult, especially when we deal with moduli that are smaller than the word size. In
the worst case where a+ b bits computation and b bits computation are handled
almost the same in the machine, Mult2 could be at most two times slower than
Mult in terms of throughput.

In [8, Table 2], they provided a parameter that increases the homomorphic
capacity compared to the conventional CKKS parameter using 57-bit primes.
The chain they used is

61 + 38× 18 + 23× 3 + 61

which has an average moduli size of ≈ 38. Using grafting, we may increase the
average moduli size to as high as ≈ 61, which would include 15 unit moduli in
the moduli chain. This allows us to use dnum of 14 instead of 22. In terms of the
number of unit NTTs, the new parameter should win by 22

14×
23
15 ≈ 2.41. Note that

many moderate precision CKKS parameters use scaling factors varying from 40
to 60 bits. The use of grafting should improve the performance of double-CKKS,
achieving similar precision.

In addition, the efficiency gain could be even more significant for low precision
or fewer slots scenarios. Recall that the CKKS errors, such as rescaling errors,
are often proportional to

√
N where N is the ring dimension. Hence, the size of

rescaling moduli should be chosen considering precision and number of slots. We
suggest some parameters where grafting could be especially powerful in terms of
performance. For moderate precision ≈ 20 bits, we may consider using double-
CKKS with log2(qdiv) = 15 and log2(Q

(ℓ)) = 30. Here, we already gain at most
a factor of two when replacing them to ≈ 60-bit primes via grafting. When we
use only a few slots, we may even use log2(qdiv) ≤ 10 and log2(qdiv) ≤ 20, leading
to factor ≥ 3 improvements compared to naive double-CKKS implementation.
Note that when it comes to extremely small scaling factors, one may consider
the hybrid multiprecision-RNS implementation as in the original CKKS paper
[10], although it is much smaller than purely RNS implementation as mentioned
in [9].

6 Conclusion

We propose Grafting, a ciphertext modulus management system, which allows us
to fill the RNS-CKKS ciphertext modulus with machine word-size RNS moduli.

34

This results in substantial improvements in the efficiency of RNS-CKKS across
various HE parameters. Our technique is effective in both low- and high-precision
scenarios, as the size of the rescaling factor is often far from the multiples of
the word size. In addition, Grafting decouples the RNS moduli comprising the
modulus from the rescaling amount, allowing the choice of ciphertext modulus
to be independent of specific applications. Such characteristics are hardware and
compiler-friendly, as the computations are not tied to the choice of homomorphic
operations for different circuits. Selecting HE parameters has traditionally been
an obstacle in implementing HE due to its application-dependent nature. We
expect that our research will also lower the hurdle of HE parameter selection,
leading to more fruitful research in HE applications.

References

1. Lattigo v5. Online: https://github.com/tuneinsight/lattigo (Nov 2023), ePFL-LDS,
Tune Insight SA

2. Agrawal, R., Ahn, J.H., Bergamaschi, F., Cammarota, R., Cheon, J.H., D. M. de
Souza, F., Gong, H., Kang, M., Kim, D., Kim, J., de Lassus, H., Park, J.H.,
Steiner, M., Wang, W.: High-precision RNS-CKKS on fixed but smaller word-size
architectures: theory and application. In: Proceedings of the 11th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography. p. 23–34. WAHC
’23, Association for Computing Machinery, New York, NY, USA (2023)

3. Al Badawi, A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., Zucca, V.: OpenFHE: Open-source fully homomorphic encryption library.
In: Proceedings of the 10th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography. pp. 53–63. WAHC’22, Association for Computing
Machinery, New York, NY, USA (2022)

4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

5. Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H.M. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Heidelberg (Aug 2016)

6. Belorgey, M.G., Carpov, S., Gama, N., Guasch, S., Jetchev, D.: Revisiting key
decomposition techniques for FHE: Simpler, faster and more generic. Cryptology
ePrint Archive, Paper 2023/771 (2023), https://eprint.iacr.org/2023/771

7. Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Efficient
bootstrapping for approximate homomorphic encryption with non-sparse keys.
In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol.
12696, pp. 587–617. Springer, Heidelberg (Oct 2021)

8. Cheon, J.H., Cho, W., Kim, J., Stehlé, D.: Homomorphic multiple precision
multiplication for CKKS and reduced modulus consumption. In: Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security.
p. 696–710. CCS ’23, Association for Computing Machinery, New York, NY, USA
(2023)

9. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approximate
homomorphic encryption. In: Cid, C., Jacobson Jr:, M.J. (eds.) SAC 2018. LNCS,
vol. 11349, pp. 347–368. Springer, Heidelberg (Aug 2019)

35

https://github.com/tuneinsight/lattigo
https://eprint.iacr.org/2023/771

10. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I.
LNCS, vol. 10624, pp. 409–437. Springer, Heidelberg (Dec 2017)

11. Chung, C.M.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C.J., Yang, B.Y.:
NTT multiplication for NTT-unfriendly rings: New speed records for saber and
NTRU on Cortex-M4 and AVX2. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2021(2), 159–188 (Feb 2021), https://tches.iacr.org/index.
php/TCHES/article/view/8791

12. CryptoLab: HEaaN library (2022), Is available at https://heaan.it/
13. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:

Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (Aug 2012)

14. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In:
Annual Cryptology Conference. pp. 850–867. Springer (2012)

15. Halevi, S., Hunt, H., Shoup, V., Masters, O., Bergamaschi, F., Crawford, J., Boemer,
F., et al.: HElib (version 2.2.1) (October 2021), available at https://github.com/
homenc/HElib

16. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic
encryption library. Cryptology ePrint Archive, Paper 2020/1481 (2020), https:
//eprint.iacr.org/2020/1481, https://eprint.iacr.org/2020/1481

17. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In:
Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 364–390. Springer, Heidelberg
(Feb 2020)

18. Kim, A., Papadimitriou, A., Polyakov, Y.: Approximate homomorphic encryption
with reduced approximation error. In: Galbraith, S.D. (ed.) CT-RSA 2022. LNCS,
vol. 13161, pp. 120–144. Springer, Heidelberg (Mar 2022)

19. Kim, M., Lee, D., Seo, J., Song, Y.: Accelerating HE operations from key
decomposition technique. CRYPTO 2023. (Aug 2023)

20. Kim, S., Park, M., Kim, J., Kim, T., Min, C.: EvalRound algorithm in CKKS
bootstrapping. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 161–187. Springer (2022)

21. Li, B., Micciancio, D.: On the security of homomorphic encryption on approximate
numbers. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I.
LNCS, vol. 12696, pp. 648–677. Springer, Heidelberg (Oct 2021)

22. Mono, J., Güneysu, T.: A new perspective on key switching for bgv-like schemes.
Cryptology ePrint Archive (2023)

23. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL (Jan 2023),
microsoft Research, Redmond, WA.

24. SNUCrypto: HEAAN library v1.1 (2018), Is available at https://github.com/
snucrypto/HEAAN

A Proofs of Theorems and Lemmas

A.1 Proof of Theorem 1

Proof. Let us follow the notations in Definition 1 Let [⟨ct, sk⟩]Q = ∆ ·m+ e, or
⟨ct, sk⟩ = ∆ ·m + e + QI for some I ∈ R. Then ⟨Inv-RSR(ct), sk⟩ = R∆ ·m +
Re + QRI. The final rescaling RSS introduces an additional error eres, where

36

https://tches.iacr.org/index.php/TCHES/article/view/8791
https://tches.iacr.org/index.php/TCHES/article/view/8791
https://heaan.it/
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://github.com/Microsoft/SEAL
https://github.com/snucrypto/HEAAN
https://github.com/snucrypto/HEAAN

∥eres∥ ≤ ℓ/2 · (∥s∥1 + 1) for ℓ the number of RNS blocks in S = lcm(Q,Q′)/Q′.
Precisely, we have

⟨RSQ/Q′(ct), sk⟩ = (Q′/Q) · (∆ ·m+ e) +Q′I + eres,

which concludes the proof.

A.2 Proof of Theorem 5

Proof. Let ct be a ciphertext with modulus Q = q0 · · · qℓ · r, where r is a sprout
satisfying r|rtop, and r ∈ 2γ · [1 − ϵ, 1 + ϵ], where 0 ≤ γ < w. Let wℓ + γ −
δ = wℓ′ + γ′, where 0 ≤ γ′ < w. Since δ = w(ℓ − ℓ′) + γ − γ′, it holds that
n = ⌈δ/w⌉ = ⌈ℓ− ℓ′ + (γ − γ′)/w⌉ ≥ ℓ− ℓ′. Moreover, there exists r′|rtop such
that r′ ∈ 2γ

′ · [1 − ϵ, 1 + ϵ] from the assumption. Therefore, for a modulus
Q′ = q0 · · · qℓ′ · r′, we have

1− ϵ

1 + ϵ
· (1− η)ℓ−ℓ′ ≤ Q/Q′

2δ
=

qℓ′+1

2w
· · · qℓ

2w
· r

2γ
· 2

γ′

r′
≤ 1 + ϵ

1− ϵ
· (1 + η)ℓ−ℓ′ ,

which concludes the proof.

A.3 Proof of Theorem 9

Proof. Step 1 outputs β number of a(i) in RQ0···Qβ−2Qtop , each corresponds
to gadget blocks Qi, i ∈ [d − 2] ∪ {top}, satisfying a(i) ≡ a · Q̂−1

i mod Qi.
Step 2 outputs ã(i) ∈ RPQ0···Qβ−2Qtop satisfying ã(i) ≡ a · Q̂−1

i mod Qi and
∥ã(i)∥∞ ≤ (α+ 1)Qi. Step 3 outputs (b′,a′) ∈ RPQ0···Qβ−2Qtop such that

b′ + a′s = P
∑
i

ã(i) · Q̂i · s′ +
∑
i

ã(i) · ei = P · a · s′ + e′,

where ∥e′∥∞ ≤ Nβ ·max(∥ei∥∞) ·max(Qi). This error term is scaled by P in
step 4, and the rounding error is newly introduced, which is bounded from above
by ∥s∥1. This concludes the proof.

A.4 Proof of Lemma 1

Proof. Let the quantity be S where αℓS ∈ Z. We have, modulo Q(ℓ−1),(
RCBqdiv(RS

2
αℓ/βℓ

(CT))
)
· (1, s) = (RSαℓ

(RCBqdiv(CT) · βℓ)) · (1, s).

Now, to complete the proof, note that

αℓ · [(RSαℓ
(RCBqdiv(CT) · βℓ)) · (1, s)]Q(ℓ−1) − βℓ [(RCBqdiv(CT)) · (1, s)]Q(ℓ)

has infinity norm ≤ αℓ · (h+ 1)/2.

37

B Level Adjustment

Suppose we have a ciphertext ct = (b, a) ∈ R2
Q satisfying the following relation:

b+ a · s = ∆ ·m+ e (mod Q),

with scaling factor ∆, where the modulus Q can be written as Q = q0 . . . qtr for
machine word-size primes qi’s and a sprout r′. We aim to adjust two ciphertexts
in modulus Q and Q′ = q0 . . . qt′r

′(< Q), where the scaling factors are ∆ and
∆′, respectively. We denote g and g′ the positive integers satisfying lcm(r, r′) =
r · g = r′ · g′.

To address the level adjustment in our scenario, we classify the possible cases
into three: 1) t = t′, 2) t− t′ ≥ 2, and 3) t− t′ = 1.
Case 1) The first case implies that the sprout r is strictly larger than r′ with
roughly a rescale factor ∆, i.e., r ≳ r′∆. In this case, we adopt and modify
the level adjusting method in [18] to our scenario, by incorporating a suitable
amount of integer constant multiplication after Inv-RSg, then RSg′ . Note that
the constant should be large enough so that the factor multiplied in the integer
constant can precisely be scaled out when RS. More precisely, we multiply a
constant

⌈
g′∆′

g∆

⌋
= g′∆′

g∆ + δ ≈ ∆, where δ ∈
(
− 1

2 ,
1
2

]
.

After the adjustment, the output ciphertext ctadj = (aadj, badj) ∈ R2
Q′ satisfies

badj + aadj · s =
1

g′

(
g′∆′

g∆
+ δ

)
· g(∆ ·m+ e) + ers

= ∆′ ·m+ eadj (mod Q′),

where the ers is an error added in RS, and the new error eadj is defined as

eadj =
∆′

∆
· e+ δr′∆ ·m

r
+

δr′e

r
+ ers.

We note that the condition r ≳ r′∆ allows us to manage the error eadj to be
sufficiently small.
Case 2) In the case when t − t′ ≥ 2, we extend the method in case 1. Note
the relations between ∆ and ∆′ is now unclear, we reduce the ciphertext ct
modulo q0 · · · qt′+2r. We then Inv-RS by lcm(r, r′)/r, then multiply a constant
that is sufficiently large to change the scale factor. We than RS by a factor of
qt′+1qt′+2 · g′, which result in a modulus q0 · · · qt′r from q0 · · · qt′+2r

′g′. Precisely,
the constant is

⌈
g′∆′·qt′+1qt′+2

g∆

⌋
=

g′∆′·qt′+1qt′+2

g∆ + δ, where δ ∈
(
− 1

2 ,
1
2

]
. This

factor is in the worst case ≳ qt′+1. The induced error eadj is given as follows:

eadj =
∆′

∆
· e+ δr′∆ ·m

r · qt′+1qt′+2
+

δr′e

r · qt′+1qt′+2
+ ers.

We note that the ratio r′

r·qt′+1qt′+2
is at most inverse of word-size prime,

ensuring that the error eadj remains sufficiently small.

38

Case 3) Now, let’s delve into the case when t − t′ = 1. This case usually
arises when the ciphertexts are in the consecutive integer levels, i.e., modulus
resurrection is performed via a rescaling factor of r′/r · qt. We recall that the
scaling factor ∆′ satisfies ∆′ = (r′ ·∆2)/(r · qt). Utilizing this relation, one can
adjust ciphertext similar to the above cases. Precisely, we Inv-RS by g, then
multiply

⌈
g′∆′·qt′+1

g∆

⌋
=

g′∆′·qt′+1

g∆ + δ ≈ ∆, where δ ∈
(
− 1

2 ,
1
2

]
. We then RS

by qt′+1g
′, chaging the ciphertext modulus from q0 · · · qt′+1g

′r′ to q0 · · · qt′r′ as
desired. In this case, the error eadj can be written as

eadj =
∆′

∆
· e+ δr′∆ ·m

r · qt′+1
+

δr′e

r · qt′+1
+ ers =

∆′

∆
· e+ δ∆′ ·m

∆
+

δr′e

r · qt′+1
+ ers,

whose size can be properly bounded if we manage the scaling factor size to be
∆ ≈ ∆′. When handling the general case where the ciphertexts may not be in
the consecutive levels, one can adjust as follows: (1) we first adjust ct to the
lower level where the Case 3 is applicable, (2) apply the adjusting algorithm, and
possibly apply the Case 1.

39

	Grafting: Complementing RNS in CKKS

