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Abstract. To securely transmit sensitive information into the future, Time-Lock Puzzles (TLPs) have
been developed. Their applications include scheduled payments, timed commitments, e-voting, and
sealed-bid auctions. Homomorphic TLP is a key variant of TLP that enables computation on puzzles
from different clients. This allows a solver/server to tackle only a single puzzle encoding the compu-
tation’s result. However, existing homomorphic TLPs lack support for verifying the correctness of the
computation results. We address this limitation by introducing Tempora-Fusion, a TLP that allows
a server to perform homomorphic linear combinations of puzzles from different clients while ensuring
verification of computation correctness. This scheme avoids asymmetric-key cryptography for verifica-
tion, thus paving the way for efficient implementations. We discuss our scheme’s application in various
domains, such as federated learning, scheduled payments in online banking, and e-voting.

1 Introduction

Time-Lock Puzzles (TLPs) are elegant cryptographic primitives that enable the transmission of information
to the future, without relying on a trusted third party. They allow a party to lock a message in such a way
that no one else can unlock it until a certain time has elapsed. TLPs have various applications, including
scheduled payments in cryptocurrencies [46], timed commitments [31], e-voting [20], sealed-bid auctions [42],
byzantine broadcast [50], zero-knowledge proofs [25], timed secret sharing [32], and verifiable delay functions
[13], and contract signing [16].

In a TLP, upon receipt of a message, the server persistently engages in computation until the solution is
discovered. Since its introduction by Rivest et al . [42], the TLPs have evolved, giving rise to an important
variant, homomorphic TLPs. Malavolta et al . [37] proposed the notion of fully homomorphic TLPs, enabling
the execution of arbitrary functions over puzzles prior to their resolution. Broadly, fully homomorphic TLPs
address scenarios involving n clients, each generating and transmitting a puzzle encoding its respective
solution to a server. The server then executes a homomorphic function across these puzzles, producing a
unified puzzle. The solution to this puzzle represents the output of the function evaluated across all individual
solutions. To achieve efficiency, partially homomorphic TLPs have also been proposed, including those that
facilitate homomorphic linear combinations or the multiplication of puzzles [37].

Homomorphic TLPs have found applications in various areas, such as verifiable timed signatures [46], atomic
swaps [47], and payment channels [48]. These applications surpass the original motivations for designing
homomorphic TLPs, which primarily revolved around their use in e-voting and sealed-bid auctions.

Nevertheless, state-of-the-art homomorphic TLPs lack support for verifying computation results. They oper-
ate under the assumption of the server’s honest computation, a presumption that might be overly optimistic,
especially in scenarios involving a potentially malicious server. For example, in e-voting or sealed bid auc-
tions, the server responsible for tallying votes or managing bids could exclude or tamper with certain puzzles
(representing votes or bids) or fail to execute the function honestly. Without a verification mechanism in
place, parties involved cannot detect the server’s misbehavior, leading to blind acceptance of results.
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1.1 Our Solutions

Partially Homomorphic TLP. To overcome the lack of support for verification in (partially) homomorphic
TLPs, this work introduces Tempora-Fusion1 and provides a formal definition of it. Tempora-Fusion is a TLP
protocol that enables a party to perform homomorphic linear combinations of puzzles while ensuring the
ability to verify the correctness of the computation result.

Consider the scenario where there are n independent clients, each with a coefficient qi and a secret solutionmi.
These clients are not aware of each other. In this setting, Tempora-Fusion enables each client to independently
generate its puzzles and send them to a server or publish the puzzles. Upon receiving each puzzle, the server
begins working to solve it. After publishing the puzzles, the clients can delete any local copy of the secret
solutions. The clients will not need to download and locally access the plaintext solution at any point in the
future before the server solves the puzzles.2

Crucially, at a later stage (before the server discovers any puzzle solution), the clients can convene and engage
with the server to perform a homomorphic linear combination of their puzzles, yielding a single puzzle. In
this scenario, they authorize the server to discover the solution to the computation after a designated period.

Once the server computes the result
n∑
j=1

qi ·mi, and publishes it, anyone can efficiently verify its correctness.

During this period, while the solution to each client’s puzzle remains undiscovered, the clients can request
the server to perform a homomorphic linear combination of their puzzles an unlimited number of times. They
can use different coefficients [q′1, . . . , q

′
n] or select various subsets of puzzles.

Later on, when the server discovers a client’s puzzle solution, it can also efficiently demonstrate the correctness
of the solution to any party. In Tempora-Fusion, the verification mechanisms employed (for checking the
computation’s result and verifying a client’s puzzle solution) are lightweight, avoiding the use of public-key
cryptographic-based proofs, like zero-knowledge proof systems, which typically incur high costs.

In devising Tempora-Fusion, we employ several techniques previously unexplored in TLP research, including
(i) using a polynomial representation of a message, (ii) employing an unforgeable encrypted polynomial,
(iii) switching blinding factors via oblivious linear function evaluation, and (iv) using a small-sized field for
homomorphic operations. Tempora-Fusion achieves its objectives without relying on a trusted setup.

This scheme does not require clients to know or interact with each other during the setup phase when they
prepare their initial puzzles. The clients only need to interact with each other and with the server once, later
when they decide to ask the server to perform a homomorphic linear combination of their puzzles. After this
delegation phase, the clients can go back offline. The feature of not requiring clients to know or interact with
each other when preparing their initial puzzles is significant for several reasons:

• Independence: Each client can generate their puzzle at their own convenience without having to coordi-
nate with others, leading to less complexity and more flexibility.

• Asynchronous Participation: Clients can join the scheme at different times without needing to wait for
others. This flexibility is particularly valuable in environments where clients might be distributed across
different time zones or have varying availability.

• Dynamic Client Base: The scheme can easily accommodate a changing number of clients, as new clients
can prepare their puzzles independently and join the homomorphic combination phase later.

1 This term combines “tempora”, meaning time in Latin, with “fusion”, conveying the merging aspect of the homo-
morphic linear combination support in our protocol.

2 The advantage of not needing to access the plaintext solution locally before the puzzles are discovered is multi-
faceted: (i) Enhanced Security: By allowing clients to delete the plaintext solutions immediately after publishing
the puzzles, the risk of these solutions being compromised is minimized. This reduces the likelihood of unauthorized
access or leakage of sensitive information, and (ii) Compliance with Regulations: In scenarios where data protection
regulations require minimizing the retention of sensitive data, this approach helps clients comply by ensuring that
secret solutions are not retained longer than necessary.
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• Scalability : Since the clients do not need to interact during the setup phase, the system can efficiently
support a large number of clients and puzzles. In the subsequent computation phase, only a subset of
these clients interested in the computation must interact with the server for puzzle processing. This
approach enables the system to scale effectively, handling extensive initial client participation while
managing server load during computation.

Tempora-Fusion ensures that even if a malicious server gains access to a subset of clients’ secret keys, the
privacy of non-corrupt clients and the validity of a solution and computation’s result will still be upheld.

1.2 Applications

Timed Secure Aggregation in Federated Learning. Federated Learning (FL) is a machine learning
framework where multiple parties collaboratively build machine learning models without revealing their
sensitive input to their counterparts [54,39,3]. The process involves training a global model via collaborative
learning on local data, and only the model updates are sent to the server. To allow the server to compute
sums of model updates from clients in a secure manner, Bonawitz et al . [12] developed a secure aggregation
mechanism. The scheme relies on a trusted party and a public-key-based verification mechanism to detect
the server misbehaviors.

Tempora-Fusion can serve as a substitute for this secure aggregation in scenarios where the server must learn
the aggregation result after a period. It offers two additional features. Firstly, it operates without requiring a
trusted setup leading to relying on a weaker security assumption. Secondly, it utilizes symmetric-key-based
verification mechanisms which can be more efficient compared to public-key-based verification methods.

Transparent Scheduled Payments in Online Banking. Insider attacks pose imminent threats to many
organizations and their clients, including financial institutions and their customers. Insiders may collaborate
with external fraudsters to obtain highly valuable data [35,21]. Investment strategies scheduled by individuals
or companies, through financial institutions, contain sensitive information that could be exploited by insiders
[49]. Tempora-Fusion can enable individuals and businesses to schedule multiple payments and investments
through their online banking without the need to disclose each transfer’s amounts before the scheduled
transfer time. With the support of a homomorphic linear combination, Tempora-Fusion allows the bank to
learn the average or total amount of transfers ahead of time, to ensure (i) the bank can facilitate the transfers
and (ii) the average or total amount of transfers complies with the bank’s policy and regulations [8,52,53].

Verifiable E-Voting and Sealed-Bid Auction Systems. E-voting and sealed-bid auction systems are
applications in which ensuring that the voting or bidding process remains secure and transparent is of
utmost importance. Researchers suggested that homomorphic TLPs can be utilized in such systems to enable
secure computations without compromising the privacy of individual votes or bids [37]. By implementing
Tempora-Fusion in e-voting and sealed-bid auction systems, an additional benefit in terms of verifiability
can be achieved. This allows anyone to verify the correctness of computations, ensuring that their votes or
bids are tallied correctly while maintaining their privacy.

2 Related Work

Timothy May [38] was the first to propose the idea of sending information into the future, i.e., time-lock
puzzle/encryption. A basic property of a time-lock scheme is that generating a puzzle takes less time than
solving it. Since the scheme that Timothy May proposed uses a trusted agent that releases a secret on time
for a puzzle to be solved and relying on a trusted agent can be a strong assumption, Rivest et al. [42]
proposed an RSA-based TLP. This scheme does not require a trusted agent, relies on sequential (modular)
squaring, and is secure against a receiver who may have many computation resources that run in parallel.
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Since the introduction of the RSA-based TLP, various variants of it have been proposed. For instance,
researchers such as Boneh et al . [16] and Garay et al . [27] have proposed TLPs that consider the setting
where a client can be malicious and need to prove (in zero-knowledge) to a server that the correct solution
will be recovered after a certain time. Also, Baum et al . [9] have developed a composable TLP that can be
defined and proven in the universal composability framework.

2.1 Homomorphic Time-lock Puzzles

Malavolta and Thyagarajan et al . [37] proposed the notion of homomorphic TLPs, which let an arbitrary
function run over puzzles before they are solved. The schemes use the RSA-based TLP and fully homomorphic
encryption. To achieve efficiency, partially homomorphic TLPs have also been proposed, including those that
facilitate homomorphic linear combinations or the multiplication of puzzles [37,36]. Partially homomorphic
TLPs do not rely on fully homomorphic encryption resulting in more efficient implementations than fully
homomorphic TLPs. Unlike the partially homomorphic TLP in [37], the ones in [36] allow a verifier to (1)
ensure puzzles have been generated correctly and (2) ensure the server provides a correctness solution for a
single client’s puzzle (but not a solution related to homomorphic computation). It uses a public-key-based
proof, initially proposed in [51].

Later, Srinivasan et al . [45] observed that existing homomorphic TLPs support a limited number of puzzles
when it comes to batching solving; thus, solving one puzzle results in discovering all batched solutions.
Accordingly, they proposed a scheme that allows an unlimited number of puzzles from various clients to be
homomorphically combined into a single one, whose solution will be found by a server. The construction is
based on indistinguishability obfuscation and puncturable pseudorandom function. To improve the efficiency
of this scheme, Dujmovic et al . [24] proposed a new approach, without using indistinguishability obfuscation.
Instead, the new scheme relies on pairings and learning with errors. The above two schemes assume that all
initial puzzles will be solved at the same time.

All of the aforementioned homomorphic TLPs, except the one proposed in [45], require a trusted setup.
Additionally, none of the homomorphic TLPs facilitates verification of the computation’s correctness.

2.2 Verifiable Delay Function (VDF)

A VDF enables a prover to provide publicly verifiable proof stating that it has performed a pre-determined
number of sequential computations [13,51,14,40]. VDFs have many applications, such as in decentralized
systems to extract reliable public randomness from a blockchain.

VDF was first formalized by Boneh et al. in [13]. They proposed several VDF constructions based on SNARKs
along with either incrementally verifiable computation or injective polynomials, or based on time-lock puz-
zles, where the SNARK-based approaches require a trusted setup. Later, Wesolowski [51] and Pietrzak [40]
improved the previous VDFs from different perspectives and proposed schemes based on sequential squaring.
They also support efficient verification. Most VDFs have been built upon TLPs. However, the converse is
not necessarily the case, because VDFs are not suitable for encoding an arbitrary private message and they
take a public message as input, whereas TLPs have been designed to conceal a private input message.

3 Preliminaries

3.1 Notations and Informal Threat Model

We define ∆u as the period within which client cu would like its puzzle’s solution mu to remain secret. We
define U as the universe of a solution mu. In this paper, ẗ refers to the total number of leaders. We set
t̄ = ẗ + 2. We denote by λ ∈ N the security parameter. For certain system parameters, we use polynomial
poly(λ) to state the parameter is a polynomial function of λ. We define a public set X as X = {x1, . . . , xn},
where xi 6= xj, xi 6= 0, and xi /∈ U .

4



We define a hash function G : {0, 1}∗ → {0, 1}poly(λ) that maps an arbitrary-length message to a message
of length poly(λ). We denote a null value or set by ⊥. By ||v|| we mean the bit-size of v and by ||~v|| we
mean the total bit-size of elements of ~v. We denote by p a large prime number, where log2(p) is the security
parameter, e.g., log2(p) = 128.

To ensure generality in the definition of our verification algorithms, we adopt notations from zero-knowledge
proof systems [11,26]. LetRcmd be an efficient binary relation that consists of pairs of the form (stmcmd, witcmd),
where stmcmd is a statement and witcmd is a witness. Let Lcmd be the language (in NP) associated with
Rcmd, i.e., Lcmd = {stmcmd| ∃witcmd s.t. R(stmcmd, witcmd) = 1}. A (zero-knowledge) proof for Lcmd allows
a prover to convince a verifier that stmcmd ∈ Lcmd for a common input stmcmd (without revealing witcmd).
In this paper, two main types of verification occur (1) verification of a single client’s puzzle solution, in this
case, cmd = clientPzl, and (2) verification of a linear combination, in this case, cmd = evalPzl.

We assume parties interact with each other through a secure channel. Moreover, we consider a strong ma-
licious server (or active adversary) and semi-honest clients. A malicious server is considered strong because
it can act arbitrarily and access the secret keys and parameters of a subset of clients. As previously stated,
the scheme designates (at random) a subset of clients as leaders. Let I be this subset, containing ẗ leaders.
We also allow the malicious server to gain access to the secret keys and parameters of some of these leaders.

We proceed to elaborate on this. Let set P = {s, c1, . . . , cn} contain all the parties involved in the scheme.
We allow the adversary to adaptively corrupt a subset W of P . It will fully corrupt s and act arbitrarily on
its behalf. It will also retrieve the secret keys of a subset of clients in P . Specifically, we define a threshold t
and require the number of non-corrupted leaders (i.e., the parties in I) to be at least t. For instance, when
|P | = 100, and the total number of leaders is 5 (i.e., ẗ = 5), and t = 2, then the adversary may corrupt 98
parties in P (i.e., |W| = 98), as long as at most 3 parties from I are in W, i.e., |W ∩ I| ≤ t. Section 4
presents a formal definition of security.

3.2 Pseudorandom Function

Informally, a pseudorandom function is a deterministic function that takes a key of length λ and an input;
and outputs a value. The security of PRF states that the output of PRF is indistinguishable from that of a
truly random function. In this paper, we use pseudorandom functions: PRF : {0, 1}∗ × {0, 1}poly(λ) → Fp. In
practice, a pseudorandom function can be obtained from an efficient block cipher [30]. In this work, we use
PRF to derive pseudorandom values to blind (or encrypt) secret messages.

3.3 Oblivious Linear Function Evaluation

Oblivious Linear function Evaluation (OLE) is a two-party protocol that involves a sender and receiver. In
OLE, the sender has two inputs a, b ∈ Fp and the receiver has a single input, c ∈ Fp. The protocol allows
the receiver to learn only s = a · c + b ∈ Fp, while the sender learns nothing. Ghosh et al. [28] proposed an
efficient OLE that has O(1) overhead and involves mainly symmetric-key operations.3

Later, in [29] an enhanced OLE, called OLE+, was proposed. The latter ensures that the receiver cannot learn
anything about the sender’s inputs, even if it sets its input to 0. OLE+ is also accompanied by an efficient
symmetric-key-based verification mechanism that enables a party to detect its counterpart’s misbehavior
during the protocol’s execution. In this paper, we use OLE+ to securely switch the blinding factors of se-
cret messages (encoded in the form of puzzles) held by a server. We refer readers to Appendix A, for the
construction of OLE+.

3 The scheme uses an Oblivious Transfer (OT) extension as a subroutine. However, the OT extension requires only a
constant number of public-key-based OT invocations. The rest of the OT invocations are based on symmetric-key
operations. The exchanged messages in the OT extension are defined over a small-sized field, e.g., a field of size
128-bit [7].
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3.4 Polynomial Representation of a Message

In general, encoding a message m as a polynomial π(x) allows us to impose a certain structure on the
message. Polynomial representation has been used in various contexts, such as in secret sharing [44], private
set intersection [33], or error-correcting codes [41]. There are two common approaches to encode m in π(x):

1. setting m as the constant terms of π(x), e.g., m+
n∑
j=1

xj · aj mod p.

2. setting m as the root of π(x), e.g., π(x) = (x−m) · τ (x) mod p.

In this paper, we employ both approaches. The former enables us to perform a linear combination of the
constant terms of different polynomials. Meanwhile, we utilize the latter to insert a secret random root
into the polynomials encoding the messages. Consequently, the resulting polynomial representing the linear
combination encompasses this specific root, facilitating the verification of the computations’ correctness.

Point-Value Form. Polynomials can be represented in the “point-value form”. Specifically, a polynomial
π(x) of degree n can be represented as a set of l (l > n) point-value pairs {(x1, π1), . . . , (xl, πl)} such that
all xi are distinct non-zero points and πi = π(xi) for all i, 1 ≤ i ≤ m. A polynomial in this form can be
converted into coefficient form via polynomial interpolation, e.g., via Lagrange interpolation [6].

Arithmetic of Polynomials in Point-Value Form. Arithmetic of polynomials in point-value represen-
tation can be done by adding or multiplying the corresponding y-coordinates of polynomials.

Let a be a scalar and {(x1, π1), . . . , (xl, πl)} be (y, x)-coordinates of a polynomial π(x). Then, the polynomial
θ interpolated from {(x1, a ·π1), . . . , (xl, a ·πl)} is the product of a and polynomial π(x), i.e., θ(x) = a ·π(x).

3.5 Unforgeable Encrypted Polynomial with a Hidden Root

An interesting property of encrypted polynomials has been stated in [22]. Informally, it can be described
as follows. Let us consider a polynomial π(x) (where π(x) ∈ Fp[x]) that has a random secret root β. We
can represent π(x) in the point-value form and then encrypt its y-coordinates. We give all the x-coordinates
and encrypted y-coordinates to an adversary and we locally delete all the y-coordinates. The adversary may
modify any subset of the encrypted y-coordinates and send back to us the encrypted y-coordinates (some
of which might have been modified). If we decrypt all the y-coordinates sent by the adversary and then
interpolate a polynomial π′(x), the probability that π′(x) will have the root β is negligible in the security
parameter λ = log2(p). Below, we formally state it.

Theorem 1 (Unforgeable Encrypted Polynomial with a Hidden Root). Let π(x) be a polynomial
of degree n with a random root β, and {(x1, π1), . . . , (xl, πl)} be point-value representation of π(x), where

l > n, p denote a large prime number, log2(p) = λ′ is the security parameter, π(x) ∈ Fp[x], and β
$← Fp.

Let oi = wi · (πi + zi) mod p be the encryption of each y-coordinate πi of π(x), using values wi and ri
chosen uniformly at random from Fp. Given {(x1, o1), . . . , (xl, ol)}, the probability that an adversary (which

does not know (w1, r1), . . . , (wl, rl), β) can forge [o1, . . . , ol] to arbitrary ~̈o = [ö1, . . . , öl], such that: (i) ∃öi ∈
~̈o, öi 6= oi, and (ii) the polynomial π′(x) interpolated from unencrypted y-coordinates {

(
x1, (w1 · ö1)− zl

)
, . . . ,

(xl,
(
wl · öl)− zl

)
} will have root β is negligible in λ′, i.e.,

Pr[π′(β) mod p = 0] ≤ µ(λ′)

We refer readers to [22, p.160] for the proof of Theorem 1. In this paper, we use the concept of the unforgeable
encrypted polynomial with a hidden root to detect a server’s misbehaviors.
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3.6 Commitment Scheme

A commitment scheme comprises a sender and a receiver, and it encompasses two phases: commitment and
opening. During the commitment phase, the sender commits to a message, using the algorithm Com(m, r) =
com, where m is the message and r is a secret value randomly chosen from {0, 1}poly(λ). Once the commitment
phase concludes, the sender forwards the commitment com to the receiver.

In the opening phase, the sender transmits the pair m̂ := (m, r) to the receiver, who proceeds to verify
its correctness using the algorithm Ver(com, m̂). The receiver accepts the message if the output is equal
to 1. A commitment scheme must adhere to two properties. (1) Hiding: this property ensures that it is
computationally infeasible for an adversary, in this case, the receiver, to gain any knowledge about the
committed message m until the commitment com is opened. (2) Binding: this property guarantees that it is
computationally infeasible for an adversary, which in this context is the sender, to open a commitment com
to different values m̂′ := (m′, r′) than the ones originally used during the commit phase. In other words, it
should be infeasible to find an alternative pair m̂′ such that Ver(com, m̂) = Ver(com, m̂′) = 1 while m̂ 6= m̂′.

There is a well-known efficient hash-based commitment scheme. It involves computing Q(m||r) = com during

the commitment. The verification step requires confirming whether Q(m||r) ?
= com. Here Q : {0, 1}∗ →

{0, 1}poly(λ) is a collision-resistant hash function, meaning that the probability of finding two distinct values
m and m′ such that Q(m) = Q(m′) is negligible regarding the security parameter λ. In this paper, we use
this commitment scheme to detect a server’s misbehaviors.

3.7 Time-Lock Puzzle

In this section, we restate the TLP’s formal definition, taken from [5].

Definition 1. A TLP consists of three algorithms: (SetupTLP, GenPuzzleTLP ,SolveTLP) defined below. It meets
completeness and efficiency properties. TLP involves a client c and a server s.

* Algorithms:

• SetupTLP(1
λ, ∆,maxss) → (pk, sk). A probabilistic algorithm run by c. It takes as input a security pa-

rameter, 1λ, time parameter ∆ that specifies how long a message must remain hidden in seconds, and
time parameter maxss which is the maximum number of squaring that a solver (with the highest level
of computation resources) can perform per second. It outputs a pair (pk, sk) that contains public and
private keys.

• GenPuzzleTLP(m, pk, sk) → o. A probabilistic algorithm run by c. It takes as input a solution m and
(pk, sk). It outputs a puzzle o.

• SolveTLP(pk, o)→ s. A deterministic algorithm run by s. It takes as input pk and o. It outputs a solution
s.

* Completeness. For any honest c and S, it always holds that SolveTLP(pk, o) = m.

* Efficiency. The run-time of SolveTLP(pk, o) is upper-bounded by poly(∆,λ).

The security of a TLP requires that the puzzle’s solution stay confidential from all adversaries running in
parallel within the time period, ∆. It also requires that an adversary cannot extract a solution in time
δ(∆) < ∆, using ξ(∆) processors that run in parallel and after a large amount of pre-computation.

Definition 2. A TLP is secure if for all λ and ∆, all probabilistic polynomial time (PPT) adversaries
A := (A1,A2) where A1 runs in total time O(poly(∆,λ)) and A2 runs in time δ(∆) < ∆ using at most ξ(∆)
parallel processors, there is a negligible function µ(), such that:
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Pr


SetupTLP(1

λ, ∆,maxss)→ (pk, sk)
A1(1

λ, pk,∆)→ (m0,m1, state)

b
$← {0, 1}

GenPuzzleTLP(mb, pk, sk)→ o
A2(pk, o, state)→ b

 ≤ 1

2
+ µ(λ)

We refer readers to Appendix B for the description of the original RSA-based TLP, which is the core of the
majority of TLPs. By definition, TLPs are sequential functions. Their construction requires that a sequential
function, such as modular squaring, is invoked iteratively a fixed number of times. The sequential function
and iterated sequential functions notions, in the presence of an adversary possessing a polynomial number
of processors, are formally defined in [13]. We restate the definitions in Appendix C.

4 Definition of Verifiable Homomorphic Linear Combination TLP

In general, the basic functionality FPLC that any n-party Private Linear Combination (PLC) computes takes
as input a pair of coefficient qj and plaintext value mj from j-th party (for every j, 1 ≤ j ≤ n), and returns

their linear combination
n∑
j=1

qj ·mj to each party. More formally, FPLC is defined as:

FPLC
(
(q1,m1), . . . , (qn,mn)

)
→ (q1 ·m1 + . . .+ qn ·mn) (1)

Note, FPLC implies that corrupt parties that collude with each other can always deduce the linear combination
of non-colluding parties’ inputs from the output of FPLC. The aforementioned point holds for any scheme
that realizes this functionality (including the ones in [37,18] and ours) regardless of the primitives used.

Next, we present a definition of Verifiable Homomorphic Linear Combination TLP (VHLC-T LP), by initially
presenting the syntax followed by the security and correctness definitions.

4.1 Syntax

Definition 3 (Syntax). A Verifiable Homomorphic Linear Combination TLP (VHLC-T LP) scheme con-
sists of six algorithms: VHLC-T LP = (S.Setup,C.Setup,GenPuzzle,Evaluate,Solve,Verify), defined below.

• S.Setup(1λ, ẗ, t) → Ks. It is an algorithm run by the server s. It takes security parameters 1λ, ẗ, and
t. It generates a pair Ks := (sks, pks), that includes a set of secret parameters sks and a set of public
parameters pks. It returns Ks. Server s publishes pks.

• C.Setup(1λ) → Ku. It is a probabilistic algorithm run by a client cu. It takes security parameter 1λ as
input. It returns a pair Ku := (sku, pku) of secret key sku and public key pku. Client cu publishes pku.

• GenPuzzle(mu,Ku, pks, ∆u,maxss)→ (~ou, prmu). It is an algorithm run by cu. It takes as input plaintext
message mu, key pair Ku, server’s public parameters set pks, time parameter ∆u determining the period
which mu should remain private, and the maximum number maxss of sequential steps (e.g., modular
squaring) per second that the strongest solver can perform. It returns a puzzle vector ~ou (representing a
single puzzle) along with a pair prmu := (spu, ppu) of secret parameter spu and public parameter ppu of
the puzzle, which may include the index of cu. Client cu publishes (~ou, ppu).

• Evaluate(〈s(~o,∆,maxss, ~pp, ~pk, pks), c1(∆,maxss,K1, prm1, q1, pks), . . . , cn(∆,maxss,Kn, prmn, qn,
pks)〉)→ (~g, ~pp(Evl)). It is an (interactive) algorithm run by s (and each client in {c1, . . . , cn}). When no
interaction between s and the clients is required, the clients’ inputs will be null ⊥. Server s takes as input
vector ~o of n clients’ puzzles, time parameter ∆ within which the evaluation result should remain private
(where ∆ < min(∆1, . . . ,∆n)), maxss, ~pp = [pp1, . . . , ppn], ~pk = [pk1, . . . , pkn], and pks. Each cu takes
as input ∆,maxss,Ku, prmu, coefficient qu, and pks. It returns a vector of public parameters ~pp(Evl) and
a puzzle vector ~g, representing a single puzzle. Server s publishes ~g and the clients publish ~pp(Evl).
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• Solve(~ou, ppu, ~g, ~pp
(Evl), pks, cmd) → (m, ζ). It is a deterministic algorithm run by s. It takes as input a

single client cu’s puzzle vector ~ou, the puzzle’s public parameter ppu, a vector ~g representing the puzzle
that encodes evaluation of all clients’ puzzles, a vector of public parameter ~pp(Evl), pks, and a command
cmd, where cmd ∈ {clientPzl, evalPzl}. When cmd = clientPzl, it solves puzzle ~ou (which is an output of
GenPuzzle()), this yields a solution m. In this case, input ~g can be null ⊥. When cmd = evalPzl, it solves
puzzle ~g (which is an output of Evaluate()), this results in a solution m. In this case, input ~ou can be ⊥.
Depending on the value of cmd, it generates a proof ζ (asserting that m ∈ Lcmd). It outputs plaintext
solution m and proof ζ. Server s publishes (m, ζ).

• Verify(m, ζ, ~ou, ppu, ~g, ~pp
(Evl), pks, cmd) → v̈ ∈ {0, 1}. It is a deterministic algorithm run by a verifier. It

takes as input a plaintext solution m, proof ζ, puzzle ~ou of a single client cu, public parameters ppu of
~ou, a puzzle ~g for a linear combination of puzzles, public parameters ~pp(Evl) of ~g, server’s public key pks
(where pks ∈ Ks), and command cmd that determines whether the verification corresponds to c’s single
puzzle or linear combination of puzzles. It returns 1 if it accepts the proof. It returns 0 otherwise.

To be more precise, in the above, the prover is required to generate a witness/proof ζ for the language Lcmd =
{stmcmd = (pp,m)| Rcmd(stmcmd, ζ) = 1}, where if cmd = clientPzl, then pp = ppu and if cmd = evalPzl,
then pp = ~pp(Evl).

4.2 Security Model

A VHLC-T LP scheme must satisfy security (i.e., privacy and solution-validity), completeness, efficiency,
and compactness properties. Each security property of a VHLC-T LP scheme is formalized through a game
between a challenger E that plays the role of honest parties and an adversary A that controls the corrupted
parties. In this section, initially, we define a set of oracles that will strengthen the capability of A. After
that, we provide formal definitions of VHLC-T LP’s properties.

Oracles. To enable A to adaptively choose plaintext solutions and corrupt parties, we provide A with access
to two oracles: (i) puzzle generation O.GenPuzzle() and (ii) evaluation O.Evaluate(). Furthermore, to enable
A to have access to the messages exchanged between the corrupt and honest parties during the execution of
Evaluate(), we define an oracle called O.Reveal(). Below, we define these oracles.

• O.GenPuzzle(stE , GeneratePuzzle,mu, ∆u) → (~ou, ppu). It is executed by the challenger E . It receives a
query (GeneratePuzzle,mu, ∆u), where GeneratePuzzle is a string, mu is a plaintext message, and ∆u is
a time parameter. E retrieves (Ku, pks,maxss) from its state stE and then executes GenPuzzle(mu,Ku, pks,
∆u,maxss)→ (~ou, prmu), where prmu := (spu, ppu). It returns (~ou, ppu) to A.

• O.Evaluate(W, I, t, stE , evaluate) → (~g, ~pp(Evl)). It is executed interactively between the corrupt parties
specified in W and the challenger E . If |W ∩ I| > t, then E returns (⊥,⊥) to A. Otherwise, it interacts
with the corrupt parties specified in W to run Evaluate(〈ŝ(inputs), ĉ1(∆,maxss,K1, prm1, q1, pks), . . . ,
ĉn(∆,maxss, Kn, prmn, qn, pks)〉) → (~g, ~pp(Evl)), where the inputs of honest parties are retrieved by E
from stE and if ŝ ∈ W, then ŝ may provide arbitrary inputs inputs during the execution of Evaluate.
However, when ŝ /∈ W then ŝ is an honest server (i.e., ŝ = s) and inputs = (~o,∆,maxss, ~pp, ~pk, pks).
Moreover, when ĉj /∈ W then ĉj is an honest client (i.e., ĉj = cj). E returns (~g, ~pp(Evl)) to A.

• O.Reveal(W, I, t, stE , reveal(Evl), ~g, ~pp(Evl)) → transcript(Evl). It is run by E which is provided with a set
W of corrupt parties, a set of parties in I, and a state stE . It receives a query (reveal(Evl), ~g, ~pp(Evl)),
where Reveal(Evl) is a string, and pair (~g, ~pp(Evl)) is an output pair (previously) returned by an instance
of Evaluate(). If |W ∩ I| > t or the pair (~g, ~pp(Evl)) was never generated, then the challenger sets
transcript(Evl) to ∅ and returns transcript(Evl) to A. Otherwise, the challenger retrieves from stE a set of
messages that honest parties sent to corrupt parties in W during the execution of the specific instance
of Evaluate(). It appends these messages to transcript(Evl) and returns transcript(Evl) to A.
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Properties. Next, we formally define the primary properties of a VHLC-T LP scheme, beginning with the
privacy property. Informally, privacy states that the solution m to a single puzzle must remain concealed
for a predetermined duration from any adversaries equipped with a polynomial number of processors. More
precisely, an adversary with a running time of δ(T ) (where δ(T ) < T ) is unable to discover a message
significantly earlier than δ(∆). This requirement also applies to the result of the evaluation. Specifically, the
plaintext message representing the linear evaluation of messages must remain undisclosed to the previously
described adversary within a predefined period.

To capture privacy, we define an experiment ExpAprv(1λ, n, ẗ, t), that involves a challenger E which plays honest
parties’ roles and a pair of adversaries A = (A1,A2). This experiment considers a strong adversary that has
access to two oracles, puzzle generation O.GenPuzzle() and evaluation O.Evaluate(). It may adaptively corrupt
a subsetW of the parties involved P , i.e.,W ⊂ P = {s, c1, . . . , cn}, and retrieve secret keys of corrupt parties
(as shown in lines 9–13). Given the set of corrupt parties, their secret keys, having access to O.GenPuzzle()
and O.Evaluate(), A1 outputs a pair of messages (m0,u,m1,u) for each client cu (line 14). Next, E for each
pair of messages provided by A1 picks a random bit bu and generates a puzzle and related public parameter
for the message with index bu (lines 15–18).

Given all the puzzles, related parameters, and access to the two oracles, A1 outputs a state (line 19). With
this state as input, A2 guesses the value of bit bu for its chosen client (line 20). The adversary wins the
game (i.e., the experiment outputs 1) if its guess is correct for a non-corrupt client (line 21). It is important
to note that during this phase, the experiment excludes corrupt clients because the adversary can always
correctly identify the bit chosen for a corrupt client, given the knowledge of the corrupt client’s secret key
(by decrypting the puzzle quickly and identifying which message was selected by E).

The experiment proceeds to the evaluation phase, imposing a constraint (line 22) on the number t of certain
parties the adversary corrupts when executing Evaluate(). This constraint is defined such that E selects a set
I of parties (lines 6–8), where |I| = ẗ. The size of I can be small. The experiment returns 0 and halts if A
corrupts more than t parties in I.

Next, the corrupt parties and E interactively execute Evaluate() (line 23). During the execution of Evaluate(),
A1 has access to the private keys of corrupt parties (as stated in lines 24 and 25). The experiment also enables
A1 to learn about the messages exchanged between honest and corrupt parties, by providing A1 with access
to an oracle called O.Reveal (); given this transcript, A1 outputs a state (line 26). Having access to this state
and the output of Evaluate(), adversary A2 guesses the value of bit bu for its chosen client (line 27). The
adversary wins the game, if its guess is correct for a non-corrupt client (line 28).

Definition 4 (Privacy). A VHLC-T LP scheme is privacy-preserving if for any security parameter λ, any
difficulty parameter T = ∆

l
·maxss (where ∆

l
∈ {∆,∆1, . . . ,∆n} is the period, polynomial in λ, within which

a message m must remain hidden and maxss is a constant in λ), any plaintext input message m1, . . . ,mn

and coefficient q1, . . . , qn (where each mu and qu belong to the plaintext universe U), any security parameters
ẗ, t (where 1 ≤ ẗ, t ≤ n and ẗ ≥ t), and any polynomial-size adversary A := (A1,A2), where A1 runs in
time O(poly(T, λ)) and A2 runs in time δ(T ) < T using at most ¯poly(T ) parallel processors, there exists a
negligible function µ() such that for any experiment ExpAprv(1λ, n, ẗ, t):
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ExpAprv(1λ, n, ẗ, t)

1: S.Setup(1λ, ẗ, t)→ Ks := (sks, pks)
2: For u = 1, . . . , n do :
3: C.Setup(1λ)→ Ku := (sku, pku)
4: state← {pks, pk1, . . . , pkn},W ← ∅, I ← ∅
5: K ← ∅, cont← True, counter ← 0,~b← 0
6: For 1, . . . , ẗ do :
7: Select a from {1, . . . , n}
8: I ← I ∪ {Ba}
9: While (cont = True) do :
10: A1(state,O.GenPuzzle(),O.Evaluate(),K, I,∆1, . . . ,∆n,∆,maxss)→ (state, cont,Bj)
11: If cont = True, then
12: W ←W ∪ {Bj}
13: K ← KBj
14: A1(state,K,O.GenPuzzle(),O.Evaluate(),W)→ ~m = [(m0,1,m1,1), . . . , (m0,n,m1,n)]
15: For u = 1, . . . , n do :

16: bu
$← {0, 1}

17: ~b[u]← bu
18: GenPuzzle(mbu,u

,Ku, pks,∆u,maxss)→ (~ou, prmu)
19: A1(state,K,W,O.GenPuzzle(),O.Evaluate(), ~o1, . . . , ~on, ~pp1, . . . , ~ppn)→ state
20: A2(~o1, . . . , ~on, ~pp1, . . . , ~ppn, state)→ (b′u, u)

21: If (b′u = ~b[u]) ∧ (Bu /∈ W), then return 1
22: If |W ∩ I| > t, then return 0

23: Evaluate(〈ŝ(~o,∆,maxss, ~pp, ~pk, pks), ĉ1(∆,maxss,K1, prm1, q1, pks), . . . , ĉn(∆,maxss,
Kn, prmn, qn, pks)〉)→ (~g, ~pp(Evl)), s.t.

24: If ŝ ∈ W, then ŝ has access to state and K, else ŝ is an honest server, i.e., ŝ = s
25: If ĉj ∈ W, then ĉj has access to state and K, else ĉj is an honest client, i.e., ĉj = cj
26: A1(state,K,O.Reveal(),W, ~g, ~pp(Evl))→ state
27: A2(~o, ~pp,~g, ~pp(Evl), state)→ (b′u, u)

28: If (b′u = ~b[u]) ∧ (Bu /∈ W), then return 1, else return 0

it holds that:

Pr
[
ExpAprv(1λ, n, ẗ, t)→ 1

]
≤ 1

2
+ µ(λ)

In simple terms, solution validity requires that it should be infeasible for a probabilistic polynomial time
(PPT) adversary to come up with an invalid solution (for a single client’s puzzle or a puzzle encoding a
linear combination of messages) and successfully pass the verification process. To capture solution validity,
we define an experiment ExpAval(1

λ, n, ẗ, t) that involves E which plays honest parties’ roles and an adversary
A. Given the three types of oracles previously defined, A may corrupt a set of parties and learn their secret
keys (lines 9–13).

Given the corrupt parties, their secret keys, and having access to O.GenPuzzle() and O.Evaluate(), A outputs
a message mu for each client cu (line 14). The experiment proceeds by requiring E to generate a puzzle for
each message that A selected (lines 15 and 16).

The experiment returns 0 and halts, if A corrupts more than t parties in I (line 17). Otherwise, it allows the
corrupt parties and E to interactively execute Evaluate() (line 18). During the execution of Evaluate(), A has
access to the private keys of corrupt parties (as stated in lines 19 and 20). Given the output of Evaluate()
which is itself a puzzle, E solves the puzzle and outputs the solution (line 21).

The experiment enables A to learn about the messages exchanged between honest and corrupt parties during
the execution of Evaluate(), by providing A with access to an oracle called O.Reveal (); given this transcript,
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the output of Evaluate(), and the plaintext solution, A outputs a solution and proof (line 22). E proceeds to
check the validity of the solution and proof provided by A. It outputs 1 (and A wins) if A persuades E to
accept an invalid evaluation result (line 23).

E solves every client’s puzzle (lines 24 and 25). Given the puzzles, solutions, and access to oracles O.GenPuzzle()
and O.Evaluate(), A provides a solution and proof for its chosen client (line 26). The experiment proceeds
by requiring E to check the validity of the solution and proof provided by A. The experiment outputs 1 (and
A wins) if A persuades E to accept an invalid message for a client’s puzzle (line 27).

Definition 5 (Solution-Validity). A VHLC-T LP scheme preserves a solution validity, if for any security
parameter λ, any difficulty parameter T = ∆

l
·maxss (where ∆

l
∈ {∆,∆1, . . . ,∆n} is the period, polynomial

in λ, within which a message m must remain hidden and maxss is a constant in λ), any plaintext input
message m1, . . . ,mn and coefficient q1, . . . , qn (where each mu and qu belong to the plaintext universe U),
any security parameters ẗ, t (where 1 ≤ ẗ, t ≤ n and ẗ ≥ t), and any polynomial-size adversary A that runs
in time O(poly(T, λ)), there exists a negligible function µ() such that for any experiment ExpAval(1

λ, n, ẗ, t):

ExpAval(1
λ, n, ẗ, t)

1: S.Setup(1λ, ẗ, t)→ Ks := (sks, pks)
2: For u = 1, . . . , n do :
3: C.Setup(1λ)→ Ku := (sku, pku)
4: state← {pks, pk1, . . . , pkn},W ← ∅, I ← ∅
5: K ← ∅, cont← True, counter ← 0
6: For 1, . . . , ẗ do :
7: Select a from {1, . . . , n}
8: I ← I ∪ {Ba}
9: While (cont = True) do :
10: A(state,O.GenPuzzle(),O.Evaluate(),K, I,∆1, . . . ,∆n,∆,maxss)→ (state, cont,Bj)
11: If cont = True, then
12: W ←W ∪ {Bj}
13: K ← KBj
14: A(state,K,W,O.GenPuzzle(),O.Evaluate(),W)→ ~m = [m1, . . . ,mn]
15: For u = 1, . . . , n do :
16: GenPuzzle(mu,Ku, pks,∆u,maxss)→ (~ou, prmu)
17: If |W ∩ I| > t, then return 0

18: Evaluate(〈ŝ(~o,∆,maxss, ~pp, ~pk, pks), ĉ1(∆,maxss,K1, prm1, q1, pks), . . . , ĉn(∆,maxss,
Kn, prmn, qn, pks)〉)→ (~g, ~pp(Evl)), s.t.

19: If ŝ ∈ W, then ŝ has access to state and K, else ŝ is an honest server, i.e., ŝ = s
20: If ĉj ∈ W, then ĉj has access to state and K, else ĉj is an honest client, i.e., ĉj = cj
21: Solve(., ., ~g, ~pp(Evl), pks, evalPzl)→ (m, ζ)
22: A(state,K,W,O.Reveal(),m, ζ, ~m,~o1, . . . , ~on, ~pp1, . . . , ~ppn, ~g, ~pp

(Evl))→ (m′, ζ′)
23: If Verify(m′, ζ′, ., ., ~g, ~pp(Evl), pks, evalPzl)→ 1, s.t. m′ /∈ LevalPzl, then return 1
24: For u = 1, . . . , n do :
25: Solve(~ou, ppu, ., ., pks, clientPzl)→ (m̄u, ζu)
26: A(state,K,W,O.GenPuzzle(),O.Evaluate(), (m̄1, ζ1), . . . , (m̄u, ζu), (m, ζ), ~m,~o1, . . . , ~on,

~pp1, . . . , ~ppn)→ (m′
u, ζ

′
u, u)

27: If Verify(m′
u, ζ

′
u, ~ou, ppu, ., ., pks, clientPzl)→ 1, s.t. m′

u /∈ LclientPzl, then return 1

it holds that:
Pr
[
ExpAval(1

λ, n, ẗ, t)→ 1
]
≤ µ(λ)

Informally, completeness considers the behavior of the algorithms in the presence of honest parties. It asserts
that a correct solution will always be retrieved by Solve() and Verify() will always return 1, given an honestly
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generated solution. Since Solve() is used to find both a solution for (i) a single puzzle generated by a client
and (ii) a puzzle that encodes linear evaluation of messages, we separately state the correctness concerning
this algorithm for each case. For the same reason, we state the correctness concerning Verify() for each case.
In the following definitions, since the experiments’ description is relatively short, we integrate the experiment

into the probability. Accordingly, we use the notation Pr

[
Exp
Cond

]
, where Exp is an experiment, and Cond is

the set of the corresponding conditions under which the property must hold.

Definition 6 (Completeness). A VHLC-T LP is complete if for any security parameter λ, any plaintext
input message m1, . . . ,mn and coefficient q1, . . . , qn (where each mu and qu belong to the plaintext universe
U), any security parameters ẗ, t (where 1 ≤ ẗ, t ≤ n and ẗ ≥ t), any difficulty parameter T = ∆

l
· maxss

(where ∆
l

is the period, polynomial in λ, within which m must remain hidden and maxss is a constant in
λ), the following conditions are met.

1. Solve(~ou, ppu, ., ., pks, cmd), that takes a puzzle ~ou encoding plaintext solution mu and its related param-
eters, always returns mu:

Pr


S.Setup(1λ, ẗ, t)→ Ks

C.Setup(1λ)→ Ku

GenPuzzle(mu,Ku, pks,∆u,maxss)→ (~ou, prmu)

Solve(~ou, ppu, ., ., pks, cmd)→ (mu, .)

 = 1

where ppu ∈ prmu and cmd = clientPzl.

2. Solve(., ., ~g, ~pp(Evl), pks, cmd), that takes (i) a puzzle ~g encoding linear combination
n∑
u=1

qu ·mu of n mes-

sages, where each mu is a plaintext message and qu is a coefficient and (ii) their related parameters,

always returns
n∑
u=1

qu ·mu:

Pr



S.Setup(1λ, ẗ, t)→ Ks

For u = 1, . . . , n do :
C.Setup(1λ)→ Ku

GenPuzzle(mu,Ku, pks,∆u,maxss)→ (~ou, prmu)

Evaluate
(
〈s(~o,∆,maxss, ~pp, ~pk, pks), c1(∆,maxss,K1, prm1,

q1, pks), . . . , cn(∆,maxss,Kn, prmn, qn, pks)〉
)
→ (~g, ~pp(Evl))

Solve(., ., ~g, ~pp(Evl), pks, cmd)→ (
n∑
u=1

qu ·mu, .)


= 1

where ~o = [~o1, . . . , ~on], ~pp = [pp1, . . . , ppn], ~pk = [ ~pk1, . . . ,
~pkn], pku ∈ Ku, pks ∈ Ks, and cmd = evalPzl.

3. Verify(mu, ζ, ~ou, ppu, ., ., pks, cmd), that takes a solution for a client’s puzzle, related proof, and public
parameters, always returns 1:

Pr


S.Setup(1λ, ẗ, t)→ Ks

C.Setup(1λ)→ Ku

GenPuzzle(mu,Ku, pks,∆u,maxss)→ (~ou, prmu)
Solve(~ou, ppu, ., ., pks, cmd)→ (mu, ζ)

Verify(mu, ζ, ~ou, ppu, ., ., pks, cmd)→ 1

 = 1

where cmd = clientPzl.

4. Verify(m, ζ, ., ., ~g, ~pp(Evl), pks, cmd), that takes a solution for a puzzle that encodes a linear combination of
n messages, related proof, and public parameters, always returns 1:
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Pr



S.Setup(1λ, ẗ, t)→ Ks

For u = 1, . . . , n do :
C.Setup(1λ)→ Ku

GenPuzzle(mu,Ku, pks,∆u,maxss)→ (~ou, prmu)

Evaluate(〈s(~o,∆,maxss, ~pp, ~pk, pks), c1(∆,maxss,K1, prm1,
q1, pks), . . . , cn(∆,maxss,Kn, prmn, qn, pks)〉)→ (~g, ~pp(Evl))
Solve(., ., ~g, ~pp(Evl), pks, cmd)→ (m, ζ)

Verify(m, ζ, ., ., ~g, ~pp(Evl), pks, cmd)→ 1


= 1

where cmd = evalPzl.

Intuitively, efficiency states that (1) Solve() returns a solution in polynomial time, i.e., polynomial in the
time parameter T , (2) GenPuzzle() generates a puzzle faster than solving it, with a running time of at most
logarithmic in T , and (3) the running time of Evaluate() is faster than solving any puzzle involved in the
evaluation, that should be at most logarithmic in T [24]. We proceed to define it formally.

Definition 7 (Efficiency). A VHLC-T LP is efficient if the following two conditions are satisfied:

1. The running time of Solve(~ou, ppu, ~g, ~pp
(Evl), pks, cmd) is upper bounded by T · poly(λ), where poly() is a

fixed polynomial.

2. The running time of GenPuzzle(mu,Ku, pks, ∆u,maxss) is upper bounded by poly′(log T, λ), where poly′()
is a fixed polynomial.

3. The running time of Evaluate(〈s(~o,∆,maxss, ~pp, ~pk, pks), c1(∆,maxss,K1, prm1, q1, pks), . . . , cn(∆,maxss,

Kn, prmn, qn, pks)〉)→ (~g, ~pp(Evl)) is upper bounded by poly′′
(

log T, λ,FPLC
(
(q1,m1), . . . , (qn,mn)

))
, where

poly′′() is a fixed polynomial and FPLC() is the functionality that computes a linear combination of mes-
sages (as stated in Relation 1) .

Informally, compactness requires that the size of evaluated ciphertexts is independent of the complexity of
the evaluation function FPLC.

Definition 8 (Compactness). A VHLC-T LP is compact if for any security parameter λ, any difficulty
parameter T = ∆

l
· maxss, any plaintext input message m1, . . . ,mn and coefficient q1, . . . , qn (where each

mu and qu belong to the plaintext universe U), and any security parameters ẗ, t (where 1 ≤ ẗ, t ≤ n and
ẗ ≥ t), always Evaluate() outputs a puzzle (representation) whose bit-size is independent of FPLC’s complexity
O(FPLC):

Pr



S.Setup(1λ, ẗ, t)→ Ks

For u = 1, . . . , n do :
C.Setup(1λ)→ Ku

GenPuzzle(mu,Ku, pks,∆u,maxss)→ (~ou, prmu)

Evaluate
(
〈s(~o,∆,maxss, ~pp, ~pk, pks), c1(∆,maxss,K1, prm1,

q1, pks), . . . , cn(∆,maxss,Kn, prmn, qn, pks)〉
)
→ (~g, ~pp(Evl))

s.t.

||~g|| = poly
(
λ, ||FPLC

(
(q1,m1), . . . , (qn,mn)

)
||
)


= 1

Definition 9 (Security). A VHLC-T LP is secure if it satisfies privacy and solution validity as outlined
in Definitions 4 and 5.
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5 Tempora-Fusion

In this section, we present Tempora-Fusion, a protocol that realizes VHLC-T LP and supports a homomorphic
linear combination of puzzles. Briefly, it allows (1) each party to independently generate a puzzle and verify
the correctness of a solution and (2) a server to verifiably compute the linear combination of plaintext
solutions before the solutions are discovered. We must address several challenges to develop an efficient
scheme. These challenges and our approaches to tackling them are outlined in Section 5.1. Subsequently, we
explain Tempora-Fusion in Section 5.2.

5.1 Challenges to Overcome

Defining an Identical Group for all Puzzles. To facilitate correct computation on puzzles (or cipher-
texts), the puzzles must be defined over the same group or field. For instance, in the case of the RSA-based
time-lock puzzle, it can be over the same group ZN . There are a few approaches to deal with it. Below, we
briefly discuss them.

1. Jointly computing N : Through this approach, all clients agree on two sufficiently large prime numbers p1

and p2 and then compute N = p1 ·p2, where log2(N) is a security parameter. However, this approach will
not be secure if one of the clients reveals the secret key φ(N) = (p1 − 1) · (p2 − 1) to the server s. In this
case, s can immediately retrieve the honest party’s plaintext message without performing the required
sequential work. Another approach is to require all participants (i.e., the server and all clients) to use
secure multi-party computation (e.g., the solution proposed in [15]) to compute N , ensuring that no one
learns φ(N). However, this approach necessitates that all clients are known and interact with each other
at the outset of the scheme, which (a) is a strong assumption avoided in time-lock puzzle literature, and
(b) significantly limits the scheme’s flexibility and scalability. Furthermore, through this approach, it is
not clear how each client can efficiently generate its puzzle without the knowledge of φ(N) and without
relying on a trusted setup.

2. Using a trusted setup: Via this approach a fully trusted third party generates N = p1 · p2 and publishes
only N . As shown in [37], in the trusted setup setting, it is possible to efficiently generate puzzles without
knowing φ(N). However, fully trusting the third party and assuming that it will not collude with and not
reveal the secret to s may be considered a strong assumption, and not be desirable in scenarios where
the solutions are highly sensitive. The homomorphic TLPs proposed in [37,24] rely on a trusted setup.

3. Using the class group of an imaginary quadratic order : Through this approach, one can use the class
group of an imaginary quadratic order [19]. However, employing this approach will hamper the scheme’s
efficiency as the puzzle generation phase will no longer be efficient [37]. Hence, it will violate Requirement
2 in Definition 7, i.e., the efficiency of generating puzzles.

To address this challenge, we propose and use the following new technique, which has been simplified for the
sake of presentation. We require the server s, only once to generate and publish a sufficiently large prime
number p, e.g., log2(p) ≥ 128.

We allow each client to independently choose its p1 and p2 and compute N = p1 ·p2. Thus, different clients will
have different values of N . As in the original RSA-based TLP [42], each client generates a = 2T mod φ(N)
for its time parameter T , picks a random value r, and then generates mk = ra mod N .

However, now, each client derives two pseudorandom values from mk as:

k = PRF(1,mk), s = PRF(2,mk)

and then encrypts/masks its message using the derived values as one-time pads. For instance, the puzzle of
a client with solution m is now:

o = k · (m+ s) mod p
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As it is evident, now all clients’ puzzles are defined over the identical field, Fp. Given each puzzle o (as well as
public parameters N, p, and r), a server s can find the solution, by computing mk where mk = r2T mod N
through repeated squaring of r modulo N , deriving pseudorandom values k and s from mk, and then
decrypting o to get m.

Supporting Homomorphic Linear Combination. Establishing a field within which all puzzles are
defined, we briefly explain the new techniques we utilize to facilitate a homomorphic linear combination of
the puzzles. Recall that each client uses different random values (one-time pads) to encrypt its message.
Therefore, naively applying linear combinations to the puzzles will not yield a correct result.

To maintain the result’s correctness, we require the clients to switch their blinding factors to new ones when
they decide to let s find a linear combination on the puzzles. To this end, a small subset of the clients (as
leaders) independently generates new blinding factors. These blinding factors are generated in such a way
that after a certain time when s solves puzzles related to the linear combination, s can remove these blinding
factors. Each leader sends (the representation of some of) the blinding factors to the rest of the clients.

To switch the blinding factors securely, each client participates in an instance of OLE+ with s. In this case,
the client’s input is (some of) the new blinding factors and the inverse of the old ones while the input of s
is the client’s puzzle. OLE+ returns the output with refreshed blinding factors to s.

To ensure that s will learn only the linear combination of honest clients’ solutions, without learning a solution
for a client’s puzzle, we require the leaders to generate and send to the rest of the clients some (of the keys
used to generate) zero-sum pseudorandom values such that if all these values are summed up, they will cancel
out each other. Each client also inserts these pseudorandom values into the instance of OLE+ that it invokes
with s, such that the result returned by OLE+ to s will also be blinded by these pseudorandom values.

Efficient Verification of the Computation. It is essential for a homomorphic time-lock puzzle to enable
a verifier to check whether the result computed by s is correct. However, this is a challenging goal to achieve
for several reasons; for instance, (1) each client does not know other clients’ solutions, (2) each client has
prepared its puzzle independently of other clients, (3) server s may exclude or modify some of the clients’
puzzles before, during, or after the computation, and (4) server s may corrupt some of the (leader) clients
and learn their secrets, thereby aiding in compromising the correctness of the computation.

To achieve the above goal without using computationally expensive primitives (such as zero-knowledge
proofs), we rely on the following novel techniques. Instead of using plaintext message m as a solution, we
represent m as a polynomial π(x), and use π(x)’s point-value representation (as described in Section 3.4)
to represent m.

Now, we require each leader client to pick a random root and insert it into its outsourced puzzle (which is now
a blinded polynomial), during the invocation of OLE+ with s. It commits to this root (using a random value
that s can discover when it solves a puzzle related to the linear combination) and publishes the commitment.

Each leader client sends (a blinded representation of) the root to the rest of the clients that insert it into
their outsourced puzzle during the invocation of OLE+. Server s sums all the outputs of OLE+ instances and
publishes the result. To find the plaintext result, s needs to solve a small set of puzzles. We will shortly
explain why we are considering a set of puzzles rather than just a single puzzle.

If s follows the protocol’s instruction, all roots selected by the leader clients will appear in the resulting
polynomial that encodes the linear combination of all clients’ plaintext solutions. However, if s misbehaves
then the honest clients’ roots will not appear in the result (according to Theorem 1). Therefore, a verifier
can detect it.

For s to prove the computation’s correctness, after it solves the puzzles related to the computation, it removes
the blinding factors. Then, it extracts and publishes (i) the computation result (i.e., the linear combination
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of the plaintext solutions), (ii) the roots, and (iii) the randomness used for the commitments. Given this
information and public parameters, anyone can check the correctness of the computation’s result.

We proceed to briefly explain how the four main challenges laid out above are addressed.

• Challenge (1): each client does not know other clients’ solutions: during the invocation of OLE+ they all
agree on and insert certain roots to it, this ensures that all clients’ polynomials have the same set of
common roots. Thus, now they know what to expect from a correctly generated result.

• Challenge (2): each client has prepared its puzzle independently of other clients: during the invocation of
OLE+ they switch their old blinding factors to new ones that are consistent with other clients.

• Challenge (3): server s may exclude or modify some of the clients’ puzzles before, during, or after the
computation: the solutions to Challenges (1) and (2), the support of OLE+ for verification, and the
use of zero-sum blinding factors (that requires s sums all outputs of OLE+ instances) ensure that such
misbehavior will be detected by a verifier. Moreover, requiring s to open the commitments for the roots
chosen by the leader clients ensures that s cannot exclude all parties’ inputs, and come up with its choice
of inputs encoding arbitrary roots.

• Challenge (4): server s may corrupt some of the (leader) clients and learn their secrets, thereby aiding in
compromising the correctness of the computation: the messages each client receives from leader clients
are blinded and reveal no information about their plaintext messages including the roots. Also, each
leader client adds a layer of encryption (i.e., blinding factor) to the result. Thus, even if the secret keys
of all leaders except one are revealed to the adversary, the adversary cannot find the solution sooner than
intended. This is because s still needs to solve the puzzle of the honest party to remove the associated
blinding factor from the result.

5.2 The Protocol

We present Tempora-Fusion in three tiers of detail, high-level overview, intermediate-level description, and
detailed construction. Figure 1 outlines the workflow of Tempora-Fusion.

High-Level Overview. At this level, we provide a broad perspective on the protocol. Initially, each client
generates a puzzle encoding a secret solution (or message) and sends the puzzle to a server s. Each client may
generate and send its puzzle to s at different times. At this point, the client can locally delete its solution
and go offline. Upon receiving each puzzle, s will work on it to find the solution at a certain time. The time
that each client’s solution is found can be independent of and different from that of other clients. Along with
each solution, s generates a proof asserting the correctness of the solution. Anyone can efficiently verify the
proof.

Later, possibly long after they have sent their puzzles to s, some clients whose puzzles have not been
discovered yet, may get together and ask s to homomorphically combine their puzzles. The combined puzzles
will encode the linear combination of their solutions, a.k.a., the computation result. The computation result
will be discovered by s after a certain time, possibly before any of their puzzles will be discovered.

To enable s to impose a certain structure on its outsourced puzzle and homomorphically combine these
puzzles, each client interacts with s. Each client also sends a short message to other clients. At this point, each
client can go back offline. After a certain time, s finds the solution for the puzzle encoding the computation
result. It also generates proof asserting the correctness of the solution. Anyone can efficiently check this
proof, by ensuring that the result preserves a certain structure.

Server s eventually finds each client’s single puzzle’s solution. In this case, it publishes the solution and a
proof that allows anyone to check the validity of the solution.
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<latexit sha1_base64="goEr0jvJWAL/grsPgsepiEsMqBY=">AAACJ3icbVDLSsNAFJ34rPVVdenCwVpwVZIu1GWxG5cVrAptKJPpbTt0MgkzN0IIWfox4la/w53o0k/wD5zWLLR6YIbDOfdwuSeIpTDouu/OwuLS8spqaa28vrG5tV3Z2b02UaI5dHgkI30bMANSKOigQAm3sQYWBhJugklr6t/cgTYiUleYxuCHbKTEUHCGVupXDo5a0yj2s57hWsRY/JhKoCo/6leqbt2dgf4lXkGqpEC7X/nsDSKehKCQS2ZM13Nj9DOmUXAJebk2Z0da3AH3MykVN3m5lxiIGZ+wEXQtVSwE42ezO3Nas8qADiNtn0I6U38mMhYak4aBnQwZjs28NxX/87oJDs/8TKg4QVD8e9EwkRQjOi2NDoQGjjK1hNl+7CmUj5lmHG21ZduRN9/IX3LdqHsn9ZPLRrV5XrRVIvvkkBwTj5ySJrkgbdIhnNyTR/JEnp0H58V5dd6+RxecIrNHfsH5+AIsq6c7</latexit>

Clinetn

<latexit sha1_base64="OQ1V5xVVv2ZhMWcRIUdMCdQTHTE=">AAACdHicfVFNT9tAEF27X9T9IJRje1g1idRDFdmb4iQ3BBeOVCKAlFjRejMJK9Zra3eMFFn+k731Z3BBHFmHIFEEHWlXT+/Nh+ZNWihpMQz/ev6r12/evtt6H3z4+Onzdmvny6nNSyNgLHKVm/OUW1BSwxglKjgvDPAsVXCWXh42+tkVGCtzfYKrApKML7VcSMHRUbOWqqbrJhOzTJMq7IUu4vhnA6JhGDkwGg0ZG9Wdw2YEzqqpFUYWuPlxpYBGdacOXHT/l9SvO7NW2/UbxmyP0WbCgPXjBrDBL9an0Xp4GLbJJo5nrevpPBdlBhqF4tZOorDApOIGpVBQB90ncm7kFYikUkoLWwfT0kLBxSVfwsRBzTOwSbXet6Zdx8zpIjfuaaRr9nFFxTNrV1nqMjOOF/ap1pDPaZMSF8OkkrooEbS4H7QoFcWcNhegc2lAoFo5wJ0/bhUqLrjhAt2dAufRgxH0ZXDKelHci3+z9v7Bxq0t8pV8Jz9IRAZknxyRYzImgvwht57n+d6N/81v+937VN/b1OySf8Lv3QEbp7wM</latexit>

Clinet1

<latexit sha1_base64="q9QHpruUWdQzDiZNtleXgCsmZv8=">AAACdHicfVHPS+NAFJ5k3V3N/qrrUQ+DtbCHJUwire5N9OJRwarQhjKZvtbBySTMvAgl5J/05p+xF/HopLagon4ww+N7Pz7e99JCSYuM3Xn+p5XPX76urgXfvv/4+au1/vvc5qUR0Be5ys1lyi0oqaGPEhVcFgZ4liq4SK+PmvzFDRgrc32GswKSjE+1nEjB0VGjlqqG8yEDM02TioWs19391/3Lwi6L9uMmiLsRY7v1zlEjgaNqaIWRBS5+nCmgcb1TBw6dj4rciFGrvVSgSwW6VKBRyOZokwVORq3/w3Euygw0CsWtHUSswKTiBqVQUAedV+ncyBsQSaWUFrYOhqWFgotrPoWBCzXPwCbVfN+adhwzppPcuKeRztnnHRXPrJ1lqavMOF7Z17mGfCs3KHGyn1RSFyWCFk9Ck1JRzGlzATqWBgSqmQu488etQsUVN1ygu1PgPFoaQd8PzuMw6oW907h9cLhwa5Vskm3yh0RkjxyQY3JC+kSQW/LgeZ7v3ftbftvvPJX63qJng7yAHz4CEIa8BA==</latexit>

Clinet2

<latexit sha1_base64="N1bMo9S/fkDx1GBdrvM+FVzQlkg="></latexit>

Clinet3

<latexit sha1_base64="DX5yxkBV3j77TLXsDBP9F9SrkEU="></latexit>

Clinetn�1

<latexit sha1_base64="PdwSz4r282fa9wi+679qvDyLWx8="></latexit>

tn�1

<latexit sha1_base64="ptooZCFqQ0zuO1ihpBiUOr0i/f0=">AAACu3icfVHBTttAEF27pQ2GlrScql5WJJE4VJFtaJIeqiK40BuVCCAlVrTeTMLCem3tjpEiy1/Vr+Ez+gddG1dqk4qRdvX03szbmdk4k8Kg7z867ouXW69et7a9nd03b/fa795fmTTXHMY8lam+iZkBKRSMUaCEm0wDS2IJ1/H9WaVfP4A2IlWXuMogSthSiYXgDC01a//0imntMtHLOCr8vl/Hpw1QdnFWTA3XIsPmxpUEqspu6Xm9NZcvo0H4OayLh+HRoALh8Dg8KrtnVafPWVmz55Ksxazd+dMV3QRBAzqkiYtZ+9d0nvI8AYVcMmMmgZ9hVDCNgksovd6anGrxADwqpFTclN40N5Axfs+WMLFQsQRMVNTzlrRnmTldpNoehbRm/64oWGLMKoltZsLw1qxrFfk/bZLjYhQVQmU5guJPDy1ySTGl1UfSudDAUa4sYHY/dhTKb5lmHO13e3ZHwfpGNsFV2A8G/cGPsHNy2myrRT6SA3JIAjIkJ+ScXJAx4c4H55tz7nx3v7rcvXPlU6rrNDX75J9w898KUNGg</latexit>

tn

<latexit sha1_base64="n7Z6SPkn9NoJ3l6EAADFZWMnYNU="></latexit>

t3

<latexit sha1_base64="4dCVOSI58BBzJpPzslvw2X3Lo9w="></latexit>

t2

<latexit sha1_base64="2IYl/dNu89tgGVuctXQ1j2htDHI="></latexit>

t1
<latexit sha1_base64="Lze0BnFHFPUGzUJK+x0YD0BvDCI="></latexit>

t0

<latexit sha1_base64="QiCUtqLgchvPyHPrJVyhZvxlmd4="></latexit>

t0

<latexit sha1_base64="U3f1KTAu8sk3rp1fTbLTjq3VWCc="></latexit>

t0

<latexit sha1_base64="LKQViE4MW9C8RbWXu/XV3GqRLDM="></latexit>

t0

<latexit sha1_base64="aBxC/FkEVqdn61Hz2zs0qfngALQ="></latexit>

t0

<latexit sha1_base64="ovuuIMA6JZJ13rdmHr14A+1hppw="></latexit>

�1

<latexit sha1_base64="Uez3FulubjG3ZlPOqUA6wF1BACg=">AAACwHicfVHdatswFJbd/XTeT7PucjDE0sAuRpCV2UnvStuL3Wx0sLSF2ARZURJRWfak40Jm/F57lT3G3mBymsAWuh2Q+PjOOd/5y0olLRDy0/P3Hjx89Hj/SfD02fMXB52Xh5e2qAwXY16owlxnzAoltRiDBCWuSyNYnilxld2ctf6rW2GsLPRXWJUizdlCy7nkDBw17fwI6mStMjGLLK1Jn8TR4Dh6T/oRCUe0BTQKCRk0R8m5UMCmdWK5kSVsflgpgWlz1ARBb0fqeBTTiDoFQoZ0ELeADj9QJ3XWtgv3Sum1lBP7X5CTmHa622bxtlm8bRaHrmZrXbSxi2nnVzIreJULDVwxaychKSGtmQHJlWiC3o67MPJW8LRWSnPbBEllRcn4DVuIiYOa5cKm9XreBvccM8PzwrinAa/ZPzNqllu7yjMXmTNY2l1fS97nm1QwH6W11GUFQvO7QvNKYShwe008k0ZwUCsHmNuPGwXzJTOMg7t54Ha0XQT+N7ik/TDux19o9+R0s6199Bq9Re9QiIboBH1EF2iMuPfGO/c+eZ/9U3/pF/63u1Df2+S8Qn+Z//03YjPT4A==</latexit>

�2

<latexit sha1_base64="FjPfpL1/FOZyl1k/YOh+Eibszpo="></latexit>

�3

<latexit sha1_base64="goEr0jvJWAL/grsPgsepiEsMqBY=">AAACJ3icbVDLSsNAFJ34rPVVdenCwVpwVZIu1GWxG5cVrAptKJPpbTt0MgkzN0IIWfox4la/w53o0k/wD5zWLLR6YIbDOfdwuSeIpTDouu/OwuLS8spqaa28vrG5tV3Z2b02UaI5dHgkI30bMANSKOigQAm3sQYWBhJugklr6t/cgTYiUleYxuCHbKTEUHCGVupXDo5a0yj2s57hWsRY/JhKoCo/6leqbt2dgf4lXkGqpEC7X/nsDSKehKCQS2ZM13Nj9DOmUXAJebk2Z0da3AH3MykVN3m5lxiIGZ+wEXQtVSwE42ezO3Nas8qADiNtn0I6U38mMhYak4aBnQwZjs28NxX/87oJDs/8TKg4QVD8e9EwkRQjOi2NDoQGjjK1hNl+7CmUj5lmHG21ZduRN9/IX3LdqHsn9ZPLRrV5XrRVIvvkkBwTj5ySJrkgbdIhnNyTR/JEnp0H58V5dd6+RxecIrNHfsH5+AIsq6c7</latexit>

Clinetn

<latexit sha1_base64="OQ1V5xVVv2ZhMWcRIUdMCdQTHTE="></latexit>

Clinet1

<latexit sha1_base64="q9QHpruUWdQzDiZNtleXgCsmZv8=">AAACdHicfVHPS+NAFJ5k3V3N/qrrUQ+DtbCHJUwire5N9OJRwarQhjKZvtbBySTMvAgl5J/05p+xF/HopLagon4ww+N7Pz7e99JCSYuM3Xn+p5XPX76urgXfvv/4+au1/vvc5qUR0Be5ys1lyi0oqaGPEhVcFgZ4liq4SK+PmvzFDRgrc32GswKSjE+1nEjB0VGjlqqG8yEDM02TioWs19391/3Lwi6L9uMmiLsRY7v1zlEjgaNqaIWRBS5+nCmgcb1TBw6dj4rciFGrvVSgSwW6VKBRyOZokwVORq3/w3Euygw0CsWtHUSswKTiBqVQUAedV+ncyBsQSaWUFrYOhqWFgotrPoWBCzXPwCbVfN+adhwzppPcuKeRztnnHRXPrJ1lqavMOF7Z17mGfCs3KHGyn1RSFyWCFk9Ck1JRzGlzATqWBgSqmQu488etQsUVN1ygu1PgPFoaQd8PzuMw6oW907h9cLhwa5Vskm3yh0RkjxyQY3JC+kSQW/LgeZ7v3ftbftvvPJX63qJng7yAHz4CEIa8BA==</latexit>

Clinet2

<latexit sha1_base64="N1bMo9S/fkDx1GBdrvM+FVzQlkg="></latexit>

Clinet3

<latexit sha1_base64="DX5yxkBV3j77TLXsDBP9F9SrkEU="></latexit>

Clinetn�1

.
.
.

<latexit sha1_base64="K6Y46Z1Qmv7Ddi2E1/4cZBvioNU="></latexit>

�

<latexit sha1_base64="NHqJWCnzyQE3Ksv1a0AzgAPbcvg="></latexit>

t0

<latexit sha1_base64="o0WLh4G/yGDEZRJjrhuyes45V+A="></latexit>

: a client’s single puzzle
<latexit sha1_base64="/ggCr/Bomar9umxn3/nBxUNSRtE="></latexit>

: a solution to a client’s single puzzle
<latexit sha1_base64="RN0ZyOWMONZvAuY/YnynRB7cGUw="></latexit>

: client delegating computation to the server
<latexit sha1_base64="rrlDDRc1gqyEwkijaINkX/CZ2gQ="></latexit>

: a client’s re-encoded single puzzle
<latexit sha1_base64="qjrbH4SGBJRNwgjdFvjZ5Ytfiso="></latexit>

: a puzzle encoding the linear combination of the solutions
<latexit sha1_base64="T8jZRe++hIRuEDlprJwjI5t4ds8="></latexit>

: a solution to the puzzle encoding the linear combination of the solutions

<latexit sha1_base64="pwriQIn/dg/3bjGeJ7AS+tf0YyQ="></latexit>

Figure a. Solving a single puzzle for each client

<latexit sha1_base64="hCpfkLwjQlqiRczK+gUwLI3klko="></latexit>

Figure b. Computing linear combinations and solving the resultant puzzle

<latexit sha1_base64="ln83Loztc8F0umIQRqCwijVlz2I=">AAADDXicfVLdbtMwFHbCgBH+unHJjUVbiQtUJRm0291EEeJySHSb1ESV456mVh07sp1KXZRnQNzCc3CHuOUZeAzeACcLErRoR7L16XznfD7+7CTnTBvf/+m4t/Zu37m7f8+7/+Dho8edg8NzLQtFYUIll+oyIRo4EzAxzHC4zBWQLOFwkazGNX+xBqWZFB/MJoc4I6lgC0aJsanZgbPneV7/LUsLBTgZ4LHM8sIwkeJakShMZZYw0VRrTMQca8nXNW+WgBXoghsiDM6LqysOXhk1I01VmsSlP/CbeLEDql70BmzjrIw0VSw37W42HLCoepWdaUvq5HgYvgobhVF4NKxBOHoZHlW9cT2puUHKit1UZCVmne6f0fAuCFrQRW2czTq/ormkRQbCUE60ngZ+buKSKMMoh8rrb9FSsTXQuORcUF15UaEhJ3RFUphaKEgGOi6b+1a4bzNzvJDKLutsk/27oySZ1psssZUZMUu9zdXJ/3HTwiyO45IJ+8Ag6PVBi4JjI3H9NfCcKaCGbywg1h97FUyXRBFq7AfyrEfBtiO74DwcBMPB8H3YPX3durWPnqJn6DkK0AidonfoDE0QdVbOJ+ez88X96H51v7nfr0tdp+15gv4J98dvs1LxNQ==</latexit>

�n

<latexit sha1_base64="b0F5upNMaHu32cF7HNfR2hJxa/I="></latexit>

�n�1

<latexit sha1_base64="0KvIy8SkuLIKMQ8JIpmtZqHHVN8=">AAACI3icbZC7TgJBFIZnvYs31NJmIhCtyC4FWhptLDWRSwIbMjscYMLs7GbmLAnZUPgwxlafw87YWPgQvoEDbKHgSWby5//Pycn5glgKg6776aysrq1vbG5t53Z29/YP8odHdRMlmkONRzLSzYAZkEJBDQVKaMYaWBhIaATDm2neGIE2IlIPOI7BD1lfiZ7gDK3VyZ8U8ayTtg3XIsbsx7EE6k6KnXzBLbuzosvCy0SBZHXXyX+3uxFPQlDIJTOm5bkx+inTKLiESa60EEdajID7qZSKm0munRiIGR+yPrSsVCwE46ezGye0ZJ0u7UXaPoV05v6eSFlozDgMbGfIcGAWs6n5X9ZKsHfpp0LFCYLi80W9RFKM6BQY7QoNHOXYCmb52FMoHzDNOFqsOcvIWySyLOqVslctV+8rhavrjNYWOSGn5Jx45IJckVtyR2qEk0fyTF7Iq/PkvDnvzse8dcXJZo7Jn3K+fgAdUqUR</latexit>

t00

Fig. 1: Outline of the workflow of Tempora-Fusion. In the figure, t0 refers to the time when a server receives
a puzzle instance from a client, t′0 is the time when clients delegate the homomorphic linear combination of
their puzzles’ solutions to the server, ti is the time when the solution to Cleinti’s puzzle is found, t′ is the
time when the solution to a puzzle encoding the linear combination is found, ∆i is the period after which
the solution to Clienti’s puzzle is found, and ∆ is the period after which a solution to the puzzle encoding
the linear combination is discovered.

Intermediate-Level Description. Next, we will delve deeper into the description of Tempora-Fusion,
elucidating its key mechanisms and components across various phases.

1. Setup. Initially, server s generates a set of public parameters, without requiring it to generate any secret
keys. The public parameters include a large prime number p and a set X = {x1, . . . , xt̄} of distinct and
non-zero elements. The elements in X can be considered as x-coordinates and will help each client to
represent its message as a polynomial in point-value form, consistent with other clients’ polynomials.

2. Key Generation. Each client independently generates a secret key and public key Nu. It publishes its
public key.

3. Puzzle Generation. Using its secret key and time parameter Tu that determines how long a solution
must remain concealed, each client cu generates a master key mku and a set of public parameters ppu.
Given ppu, anyone who will solve this client’s puzzle will be able to find mku in the future, after a certain
time. The client uses mku to derive pseudorandom values (zi,u, wi,u) for each element xi of X.

The client represents its secret solution mu as a polynomial in point-value form. This results in a vector
of y-coordinates: [π1,u, . . . , πt̄,u]. It encrypts each y-coordinate using the related pseudorandom values:
oi,u = wi,u · (πi,u + zi,u) mod p. These encrypted y-coordinates ~ou = [o1,u, . . . , ot̄,u] represent its puzzle.

The reason that the client represents its solution mu as a polynomial, is to facilitate future homomorphic
computation and efficient verification of the computation (as explained in Section 5.1).
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To enable anyone to verify the correctness of the solution that s will find, the client commits comu =
Com(mu,mku) to the solution mu using mku as the randomness used in the commitment. The client
publishes (or sends to s) comu and the puzzle ~ou. If s solves the client’s puzzle, it can find both mu and
mku, and prove they match the commitment.

4. Linear Combination. Prior to this phase, each client cu has already created and transmitted a puzzle
for its solution mu to s. Within this phase, the clients produce specific messages that will enable s to
find, after time ∆, a linear combination of the clients’ plaintext solutions:

∑
∀cu∈C

qu ·mu, where each qu is

a coefficient picked by each client cu.

The clients initially collaborate to designate a small subset I of themselves as leaders. These leaders are
picked at random. Each leader client cu, using its secret key and time parameter Y (which determines
how long the result of the computation must remain private), generates a temporary master key tku
along with some public parameters pp(Evl)

u . Anyone who solves a puzzle for the computation will be able
to find tku, after time ∆. Each leader client uses tku to derive new pseudorandom values (z′i,u, w

′
i,u) for

each element xi of X. It also uses its secret key to regenerate the pseudorandom values (zi,u, wi,u) used
to encrypt each y-coordinate related to its solution mu.

The leader client picks a random root: rootu. It commits to this root, using tku as the randomness:
com′u = Com(rootu, tku). This approach will ensure that s (i) cannot come up with its own root, and (ii)
will find the commitment’s opening itself if it solves the leader’s puzzle.

Each leader client also represents rootu as a polynomial in point-value form. This yields a vector of y-
coordinates: [γ1,u, . . . , γt̄,u]. It encrypts each y-coordinate using the related new pseudorandom values as:
γ′i,u = γi,u ·w′i,u mod p and sends the encrypted y-coordinates to the rest of the clients. This (encrypted)
random root of each leader will be inserted by every client into its outsourced puzzle to give a certain
structure to the computation result, facilitating future verification.

For every client, for instance cl, the leader client selects a fresh key fl and sends it to that client. This
key is used by each cl and the leader client to generate zero-sum pseudorandom values. These values are
generated such that if those generated by each cl and the leader client are summed, they will cancel out
each other. They are used to ensure that s can only learn the linear combination of the clients’ messages.

Each leader client participates in an instance of OLE+ with s, for each y-coordinate. Broadly speaking,
each leader client’s input includes the y-coordinate of the random root, the new pseudorandom values
(z′i,u, w

′
i,u), the inverse of the old pseudorandom values (so ultimately the old ones can be replaced with

the new ones), its coefficient qu, and the pseudorandom values derived from fl, and
∏

∀c
l
∈I\cu

γ′i,l mod p.

The input of s is the client’s puzzle. Each instance of OLE+ returns to s an encrypted y-coordinate. Each
leader client publishes its public parameters pp(Evl)

u .

Each non-leader client also participates in an instance of OLE+ with s, for each y-coordinate. Each
non-leader client’s input is similar to a leader client’s input, with the main difference being that (i) it
does not include z′i,u and (ii) instead of inserting the y-coordinate of a random root and w′i,u, it inserts∏
∀c
l
∈I
γ′i,l mod p, where each γ′i,l = γi,u ·w′i,u mod p has been sent to it by a leader client. In this case, each

instance of OLE+ also returns to s an encrypted y-coordinate.

Server s sums the outputs of OLE+ component-wise, which yields a vector of encrypted y-coordinates,
~g = [g1, . . . , gt̄]. It publishes ~g. Note that each gi has |I| layers of blinding factors, each of which is
inserted by a leader client. This multi-layer encryption ensures that even if some of the leader clients’
secret keys are disclosed to server s, the server cannot find the computation result significantly earlier
than the predefined time, ∆.
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5. Solving a Puzzle. Server s operates as follows when it wants to find the result of the computation.
Given public parameters pp(Evl)

u of each leader client, it solves each leader client’s puzzle to find temporary
key tku which allows it to remove a layer of encryption from each gi.

By removing all the layers of encryption, s will obtain a set of y-coordinates. It uses these y-coordinates
and the x-coordinates in X to interpolate a polynomial θ. It retrieves the roots of θ. It publishes each
root and tku that match a published commitment com′u. It also retrieves the computation result (i.e.,
the linear combination of the clients’ solutions) from θ and publishes it.

Server s takes the following steps when it wants to find a solution for a single client’s puzzle (note
that solving a single client’s puzzle is independent of computing homomorphic linear computation of all
clients’ puzzles). Given public parameters ppu and puzzle vector [o1,u, . . . , ot̄,u] (generated in Phase 3) for
a client cu, server s after time ∆u finds the master key mku. Using mku, s removes the blinding factors
from each oi,u, that yields a vector of y-coordinates. It uses them and x-coordinates in X to interpolate
a polynomial πu and retrieves message mu from πu. It publishes mu and mku that match the published
commitment comu, generated in Phase 3.

6. Verification. When verifying a solution related to the linear combination, a verifier (i) checks whether
every opening (root and tku) matches the published commitment com′u, and (ii) unblinds the elements
of ~g using every tku, interpolates a polynomial θ(x), and checks if θ(x) possesses all the roots. When
verifying a solution related to a single client’s puzzle, a verifier checks if the opening (mu,mku) matches
the commitment comu.

Detailed Construction. We proceed to provide a detailed description of the Tempora-Fusion protocol.

1. Setup. S.Setup(1λ, ẗ, t)→ (., pks)

The server s (or any party) only once takes the following steps:

(a) Setting a field’s parameter : generates a sufficiently large prime number p, where log2(p) is security
parameter, e.g., log2(p) ≥ 128.

(b) Generating public x-coordinates: let ẗ be the total number of leader clients. It sets t̄ = ẗ + 2 and
X = {x1, . . . , xt̄}, where xi 6= xj, xi 6= 0, and xi /∈ U .

(c) Publishing public parameters: publishes pks = (p,X, t).

2. Key Generation. C.Setup(1λ)→ Ku

Each party cu in C = {c1, . . . , cn} takes the following steps:

(a) Generating RSA public and private keys: computes Nu = p1 ·p2, where pi is a large randomly chosen
prime number, where log2(pi) is a security parameter, e.g., log2(pi) ≥ 2048. Next, it computes Euler’s
totient function of Nu, as: φ(Nu) = (p1 − 1) · (p2 − 1).

(b) Publishing public parameters: locally keeps secret key sk
u

= φ(Nu) and publishes public key pku =
Nu.

3. Puzzle Generation. GenPuzzle(mu,Ku, pks, ∆u,maxss)→ (~ou, prmu)

Each cu independently takes the following steps to generate a puzzle for a message mu.

(a) Checking public parameters: checks the bit-size of p and elements of X in pks, to ensure log2(p) ≥ 128,
xi 6= xj, xi 6= 0, and xi /∈ U . If it does not accept the parameters, it returns (⊥,⊥) and does not take
further action.

(b) Generating secret keys: generates a master key mk
u

and two secret keys ku and su as follows:
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i. sets exponent au:
au = 2Tu mod φ(Nu)

where Tu = ∆u ·maxss and φ(Nu) ∈ Ku.

ii. selects a base uniformly at random: ru
$← ZNu and then sets a master key mku as follows:

mku = rauu mod Nu

iii. derive two keys from mku:

ku = PRF(1,mku), su = PRF(2,mku)

(c) Generating blinding factors: generates 2 · t̄ pseudorandom blinding factors using ku and su:

∀i, 1 ≤ i ≤ t̄ : zi,u = PRF(i, ku), wi,u = PRF(i, su)

(d) Encoding plaintext message:

i. represents plaintext message mu as a polynomial, such that the polynomial’s constant term is
the message. Specifically, it computes polynomial πu(x) as:

πu(x) = x+mu mod p

ii. computes t̄ y-coordinates of πu(x):

∀i, 1 ≤ i ≤ t̄ : πi,u = πu(xi) mod p

where xi ∈ X and p ∈ pks.

(e) Encrypting the message: encrypts the y-coordinates using the blinding factors as follows:

∀i, 1 ≤ i ≤ t̄ : oi,u = wi,u · (πi,u + zi,u) mod p

(f) Committing to the message: commits to the plaintext message:

comu = Com(mu,mku)

(g) Managing messages: publishes ~ou = [o1,u, . . . , ot̄,u] and ppu = (comu, Tu, ru, Nu). It locally keeps
secret parameters spu = (ku, su) and deletes everything else, including mu,πu(x), π1,u, . . . , πt̄,u. It
sets prmu = (spu, ppu).

4. Linear Combination. Evaluate(〈s(~o,∆, maxss, ~pp, ~pk, pks), c1(∆,maxss,K1, prm1, q1, pks), . . . , cn(∆,
maxss, Kn, prmn, qn, pks)〉)→ (~g, ~pp(Evl))

In this phase, the parties produce certain messages that allow s to find a linear combination of the clients’
plaintext message after time ∆.

(a) Randomly selecting leaders: all parties in C agree on a random key r̂, e.g., by participating in a coin

tossing protocol [10]. Each cu deterministically finds index of ẗ leader clients: ∀j, 1 ≤ j ≤ ẗ : idxj =
G(j||r̂). Let I be a vector contain these ẗ clients.

(b) Granting the computation by each leader client : each leader client cu in I takes the following steps.
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i. Generating temporary secret keys: generates a temporary master key tku and two secret keys k′u
and s′u for itself. Also, it generates a secret key fl for each client. To do that, it takes the following
steps. It computes the exponent:

bu = 2Y mod φ(Nu)

where Y = ∆·maxss. It selects a base uniformly at random: hu
$← ZNu and then sets a temporary

master key tku:
tku = hbuu mod Nu

It derives two keys from tku:

k′u = PRF(1, tku), s′u = PRF(2, tku)

It picks a random key fl for each client cl excluding itself, i.e., fl
$← {0, 1}poly(λ), where cl ∈ C \cu.

It sends fl to each cl.

ii. Generating temporary blinding factors: derives t̄ pseudorandom values from s′u:

∀i, 1 ≤ i ≤ t̄ : w′i,u = PRF(i, s′u)

iii. Generating an encrypted random root : picks a random root: rootu
$← Fp. It represents rootu as a

polynomial, such that the polynomial’s root is rootu. Specifically, it computes polynomial γu(x)
as:

γu(x) = x− rootu mod p

Then, it computes t̄ y-coordinates of γu(x):

∀i, 1 ≤ i ≤ t̄ : γi,u = γu(xi) mod p

It encrypts each y-coordinate γi,u using blinding factor w′i,u:

∀i, 1 ≤ i ≤ t̄ : γ′i,u = γi,u · w′i,u mod p

It sends #»γ ′u = [γ′1,u, . . . , γ
′̄
t,u] to the rest of the clients.

iv. Generating blinding factors: receives (f̄l,
#»γ ′l) from every other client which are in I.

It regenerates its original blinding factors:

∀i, 1 ≤ i ≤ t̄ : zi,u = PRF(i, ku), wi,u = PRF(i, su)

where ku and su are in ~prmu and were generated in step 3(b)iii. It also generates new ones:

∀i, 1 ≤ i ≤ t̄ : z′i,u = PRF(i, k′u)

It sets values vi,u and yi,u as follows. ∀i, 1 ≤ i ≤ t̄ :

vi,u = γ′i,u ·
∏

∀c
l
∈I\cu

γ′i,l mod p

yi,u = −
∑

∀c
l
∈C\cu

PRF(i, fl) +
∑

∀c
l
∈I\cu

PRF(i, f̄l) mod p

where cu ∈ I.
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v. Re-encoding outsourced puzzle: obliviously, without having to access a plaintext solution, prepares
the puzzle (held by s) for the computation. To do that, it participates in an instance of OLE+

with s, for every i, where 1 ≤ i ≤ t̄. The inputs of cu to i-th instance of OLE+ are:

ei = qu · vi,u · (wi,u)−1 mod p

e′i = −(qu · vi,u · zi,u) + z′i,u + yi,u mod p

The input of s to i-th instance of OLE+ is cu’s encrypted y-coordinate: e′′i = oi,u (where oi,u ∈ ~o).
Accordingly, i-th instance of OLE+ returns to s:

di,u = ei · e′′i + e′i
= qu · vi,u · πi,u + z′i,u + yi,u mod p

= qu · γi,u · w′i,u · (
∏

∀c
l
∈I\cu

γi,l · w′i,l) · πi,u + z′i,u + yi,u mod p

where qu is the party’s coefficient. If cu detects misbehavior during the execution of OLE+, it sends
a special symbol ⊥ to all parties and halts.

vi. Committing to the root : computes com′u = Com(rootu, tku).

vii. Publishing public parameters: publishes pp(Evl)
u = (hu, com

′
u, Nu, Y ). Note that all cu ∈ I use

identical Y . Let ~pp(Evl) contain all the triples pp(Evl)
u published by cu, where cu ∈ I.

(c) Granting the computation by each non-leader client : each non-leader client cu takes the following
steps.

i. Generating blinding factors: receives (f̄l,
#»γ ′l) from every other client which is in I.

It regenerates its original blinding factors:

∀i, 1 ≤ i ≤ t̄ : zi,u = PRF(i, ku), wi,u = PRF(i, su)

It set values vi,u and yi,u as follows. ∀i, 1 ≤ i ≤ t̄ :

vi,u =
∏
∀c
l
∈I

γ′i,l mod p

yi,u =
∑
∀c
l
∈I

PRF(i, f̄l) mod p

ii. Re-encoding outsourced puzzle: participates in an instance of OLE+ with the server s, for every i,
where 1 ≤ i ≤ t̄. The inputs of cu to i-th instance of OLE+ are:

ei = qu · vi,u · (wi,u)−1 mod p

e′i = −(qu · vi,u · zi,u) + yi,u mod p

The input of s to i-th instance of OLE+ is cu’s encrypted y-coordinate: e′′i = oi,u. Accordingly,
i-th instance of OLE+ returns to s:

di,u = ei · e′′i + e′i
= qu · vi,u · πi,u + yi,u mod p

= qu · (
∏

∀c
l
∈I\cu

γi,l · w′i,l) · πi,u + yi,u mod p

where qu is the party’s coefficient. If cu detects misbehavior during the execution of OLE+, it sends
a special symbol ⊥ to all parties and halts.
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(d) Computing encrypted linear combination: server s sums all of the outputs of OLE+ instances that it
has invoked, ∀i, 1 ≤ i ≤ t̄ :

gi =
∑
∀cu∈C

di,u mod p

= (
∏
∀cu∈I

γi,u · w′i,u︸ ︷︷ ︸
vi,u

·
∑
∀cu∈C

qu · πi,u) +
∑
∀cu∈I

z′i,u mod p

(e) Disseminating encrypted result : server s publishes ~g = [g1, . . . , gt̄].

5. Solving a Puzzle. Solve(~ou, ppu, ~g, ~pp
(Evl), pks, cmd)→ (m, ζ)

Server s takes the following steps.

Case 1. when solving a puzzle related to the linear combination, i.e., when cmd = evalPzl:

(a) Finding secret keys: for each cu ∈ I:

i. finds tku (where tku = h2Y

u mod Nu) through repeated squaring of hu modulo Nu, such
that (hu, Y,Nu) ∈ ~pp(Evl).

ii. derives two keys from tku:

k′u = PRF(1, tku), s′u = PRF(2, tku)

(b) Removing blinding factors: removes the blinding factors from [g1, . . . , gt̄] ∈ ~g.

∀i, 1 ≤ i ≤ t̄ :

θi =
( ∏
∀cu∈I

PRF(i, s′u)︸ ︷︷ ︸
w′i,u

)−1 ·
(
gi −

∑
∀cu∈I

z′i,u︷ ︸︸ ︷
PRF(i, k′u)

)
mod p

= (
∏
∀cu∈I

γi,u) ·
∑
∀cu∈C

qu · πi,u mod p

(c) Extracting a polynomial : interpolates a polynomial θ, given pairs (x1, θ1), . . . , (xt̄, θt̄). Note
that θ will have the following form:

θ(x) =
∏
∀cu∈I

(x− rootu) ·
∑
∀cu∈C

qu · (x+mu) mod p

We can rewrite θ(x) as follows:

θ(x) = ψ(x) +
∏
∀cu∈I

(−rootu) ·
∑
∀cu∈C

qu ·mu mod p

where ψ(x) is a polynomial of degree ẗ+ 1 whose constant term is 0.

(d) Extracting the linear combination: retrieves the final result (which is the linear combination
of the messages m1, . . . ,mn) from polynomial θ(x)’s constant term: cons =

∏
∀cu∈I

(−rootu) ·∑
∀cu∈C

qu ·mu as follows:

res = cons · (
∏
∀cu∈I

(−rootu))−1 mod p

=
∑
∀cu∈C

qu ·mu
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(e) Extracting valid roots: extracts the roots of θ. Let set R contain the extracted roots. It
identifies the valid roots, by finding every rootu in R, such that Ver(com′u, (rootu, tku)) = 1.
Note that s performs the check for every cu in I.

(f) Publishing the result : publishes the solution m = res and the proof ζ =
{

(rootu, tku)
}
∀cu∈I

.

Case 2. when solving a puzzle of single client cu, i.e., when cmd = clientPzl:

(a) Finding secret keys: finds mku where mku = r2
Tu

u mod Nu through repeated squaring of ru
modulo Nu, where (Tu, ru) ∈ ppu. Then, it derives two keys from mku:

ku = PRF(1,mku), su = PRF(2,mku)

(b) Removing blinding factors: re-generates 2 · t̄ pseudorandom values using ku and su:

∀i, 1 ≤ i ≤ t̄ : zi,u = PRF(i, ku), wi,u = PRF(i, su)

Then, it uses the blinding factors to unblind [o1,u, . . . , ot̄,u]:

∀i, 1 ≤ i ≤ t̄ : πi,u =
(
(wi,u)−1 · oi,u

)
− zi,u mod p

(c) Extracting a polynomial : interpolates a polynomial πu, given pairs (x1, π1,u), . . . , (xt̄, πt̄,u).

(d) Publishing the solution: considers the constant term of πu as the plaintext solution, mu. It
publishes the solution m = mu and the proof ζ = mku.

6. Verification. Verify(m, ζ, ., ppu, ~g, ~pp
(Evl), pks, cmd)→ v̈ ∈ {0, 1}

A verifier (that can be anyone, not just cu ∈ C) takes the following steps.

Case 1. when verifying a solution related to the linear combination, i.e., when cmd = evalPzl:

(a) Checking the commitments’ openings: verifies the validity of every (rootu, tku) ∈ ζ, pro-
vided by s in Case 1, step 5f:

∀cu ∈ I : Ver
(
com′u, (rootu, tku)

) ?
= 1

where com′u ∈ ~pp(Evl). If all of the verifications pass, it proceeds to the next step. Otherwise,
it returns v̈ = 0 and takes no further action.

(b) Checking the resulting polynomial’s valid roots: checks if the resulting polynomial contains
all the roots in ζ, by taking the following steps.

i. derives two keys from tku:

k′u = PRF(1, tku), s′u = PRF(2, tku)

ii. removes the blinding factors from [g1, . . . , gt̄] ∈ ~g that were provided by s in step 4e.

∀i, 1 ≤ i ≤ t̄ :

θi =
( ∏
∀cu∈I

PRF(i, s′u)
)−1 ·

(
gi −

∑
∀cu∈I

PRF(i, k′u)
)

mod p

=
∏
∀cu∈I

γi,u ·
∑
∀cu∈C

qu · πi,u mod p
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iii. interpolates a polynomial θ, given pairs (x1, θ1), . . . , (xt̄, θt̄), similar to step 5c. This
yields a polynomial θ having the form:

θ(x) =
∏
∀cu∈I

(x− rootu) ·
∑
∀cu∈C

qu · (x+mu) mod p

= ψ(x) +
∏
∀cu∈I

(−rootu) ·
∑
∀cu∈C

qu ·mu mod p

where ψ(x) is a polynomial of degree ẗ+ 1 whose constant term is 0.

iv. if the following checks pass, it will proceed to the next step. It checks if every rootu is

a root of θ, by evaluating θ at rootu and checking if the result is 0, i.e., θ(rootu)
?
= 0.

Otherwise, it returns v̈ = 0 and takes no further action.

(c) Checking the final result : retrieves the final result (i.e., the linear combination of the mes-
sages m1, . . . ,mn) from polynomial θ(x)’s constant term: cons =

∏
∀cu∈I

(−rootu)·
∑
∀cu∈C

qu ·mu

as follows:

res′ = cons · (
∏
∀cu∈I

(−rootu))−1 mod p

=
∑
∀cu∈C

qu ·mu

It checks res′
?
= m, where m = res is the result that s sent to it.

(d) Accepting or rejecting the result : If all the checks pass, it accepts m and returns v̈ = 1.
Otherwise, it returns v̈ = 0.

Case 2. when verifying a solution of single puzzle belonging to cu, i.e., when cmd = clientPzl:

(a) Checking the commitment’ opening : checks whether opening pair m = mu and ζ = mku
matches the commitment:

Ver
(
comu, (mu,mku)

) ?
= 1

where comu ∈ ppu.

(b) Accepting or rejecting the solution: accepts the solution m and returns v̈ = 1 if the above
check passes. It rejects the solution and returns v̈ = 0, otherwise.

Theorem 2. If the sequential modular squaring assumption holds, factoring N is a hard problem, PRF, OLE+,
and the commitment schemes are secure, then the protocol presented above is a secure VHLC-T LP, w.r.t.
Definition 9.

Shortly, in Section 5.3, we present the proof of Theorem 2.

Remark 1. OLE+ ensures that the homomorphic operation can be securely operated sequentially multiple
times, regardless of the distribution of the input messages to OLE+. Specifically, one may try to use the
following naive approach. Each client, for each i-th y-coordinate oi,u, directly sends the following values to
the server: ei = qu · vi,u · (wi,u)−1 mod p, e′i = −(qu · vi,u · zi,u) + yi,u mod p. Each client asks the server to
compute ei · oi,u + e′i. This will yield qu · γi,u · w′i,u · (

∏
∀c
l
∈I\cu

γi,l · w′i,l) · πi,u + z′i,u + yi,u mod p, for a client

which is in I. However, this approach is not secure if the homomorphic linear combination must be computed
multiple times. Because within this approach the security of each message ei relies on the randomness of
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(wi,u)−1.4 In scenarios where the homomorphic linear combination has to be computed multiple times, the
same (wi,u)−1 will be included in ei, meaning that a one-time pad is used multiple times, yielding leakage.

Remark 2. In the above protocol, the number of elements in X is t̄ for the following reason. Each client’s
outsourced polynomial (that represents its puzzle) is of degree 1. During Phase 4 (Linear Combination),
this polynomial is multiplied by ẗ polynomials each representing a random root and is of degree 1. Thus,
the resulting polynomial will have degree ẗ + 1. Hence, t̄ = ẗ + 2 (y, x)-coordinate pairs are sufficient to
interpolate the polynomial.

Remark 3. One interesting aspect of Tempora-Fusion is its flexible approach to time-locking messages. Each
encrypted message ~ou from a client cu, which is either published or transmitted to server s, need not be
necessarily disclosed after a specified period. Despite this, it retains the capability to support verifiable
homomorphic linear combinations. In essence, Tempora-Fusion offers clients the option to apply time-lock
mechanisms to their solutions. Some clients may employ time locks on their encrypted messages, while others
may opt for straightforward encryption of their solutions. Nevertheless, the clients can still allow s to learn
the result of homomorphic linear combinations on their encrypted messages after a certain period. To encrypt
a message without a time-lock, the client can employ the same encryption method utilized during the Puzzle
Generation phase (Phase 3) with the sole distinction being the omission of the base ru publication in step
3g of Phase 3.

5.3 Proof of Theorem 2

In this section, we prove the security of Tempora-Fusion, i.e., Theorem 2.

Proof. In the proof of Theorem 2, we consider a strong adversary that always corrupts s and some clients.
Thus, the proof considers the case where corrupt s learns the secret inputs, secret parameters, and the
messages that corrupt clients receive from honest clients. The messages that an adversary A receives are as
follows.

• by the end of the puzzle generation phase, it learns:

Set1 =
{
maxss, {Nu, ∆u, Tu, ru, comu, ~ou}∀u,1≤u≤n, {Kj}∀Bj∈W

}
where W is a set of corrupt parties, including server s.

• by the end of the linear combination phase (before any puzzle is fully solved), it also learns:

Set2 =
{
transOLE

+
u

s , Y, {g1, . . . , gt̄}, {com′u, hu, d1,u, . . . , dt̄,u}∀u,1≤u≤n, {f̄l, #»γ ′l}∀cl∈{W∩I}
}

where transOLE
+
u

s is a set of messages sent to s during the execution of OLE+.

We initially prove that Tempora-Fusion is privacy-preserving, w.r.t. Definition 4.

Lemma 1. If the sequential modular squaring assumption holds, factoring N is a hard problem, PRF is
secure, OLE+ is secure (i.e., privacy-preserving), and the commitment scheme satisfies the hiding property,
then Tempora-Fusion is privacy-preserving, w.r.t. Definition 4.

4 Note that, in this case, we cannot rely on the random value w′
i,u or w′

i,cl
to guarantee the privacy of each message,

as the message of every client contains the same w′
i,u and w′

i,cl
.

27



Proof. We will argue that the probability that adversary A2 ∈ A = (A1,A2) outputs correct value of
bu (in the experiment ExpAprv(1λ, n, ẗ, t) defined in Definition 4) is at most 1

2 + µ(λ). Since parameters
(maxss, Nu, ∆u, Tu, Y, ru, hu) have been picked independently of the plaintext messages/solutions, they re-
veal nothing about the messages. Each y-coordinate πi,u in ~oi,u has been masked (or encrypted) with a
fresh output of PRF (where oi,u ∈ ~ou). Due to the security of PRF, outputs of PRF are computationally in-
distinguishable from the outputs of a random function. As a result, a message blinded by an output PRF

does not reveal anything about the message, except for the probability µ(λ). Also, each client cu picks its
secret keys and accordingly blinding factors independent of other clients. Therefore, knowing corrupt clients’
secret keys {Kj}∀Bj∈W does not significantly increase the adversary’s probability of winning the game in the
experiment, given honest parties’ puzzles and corresponding parameters. Because of the hiding property of
the commitment scheme, commitments comu and com′u reveal no information about the committed value.

Due to the security of OLE+, a set transOLE
+
u

s of messages that A (acting on behalf of corrupt parties) receives
during the execution of OLE+ are (computationally) indistinguishable from an ideal model where the parties
send their messages to a trusted party and receive the result. This means that the exchanged messages during
the execution of OLE+ reveal nothing about the parties’ inputs, that include the encoded plaintext solution
(i.e., y-coordinate πi,u) and PRF’s output used to encrypt πi,u.

Each di,u is an output of OLE+. Due to the security of OLE+, it reveals to A nothing about the input of each
honest client cu to OLE+, even if s inserts 0. Moreover, each di,u has been encrypted with yi,u which is a sum
of fresh outputs of PRF. Recall that each yi,u has one of the following the forms:

• yi,u = −
∑

∀c
l
∈C\cu

PRF(i, fl) +
∑

∀c
l
∈I\cu

PRF(i, f̄l) mod p, when client cu is one of the leaders, i.e., cu ∈ I.

• yi,u =
∑
∀c
l
∈I

PRF(i, f̄l) mod p, when client cu is not one of the leaders, i.e., cu /∈ I.

Due to the security of PRF, given secret keys {f̄l}∀cl∈{C∩I}, it will be infeasible for A to learn anything about
secret blinding factor used by each honest party, as long as the number of corrupt leaders is smaller than
the threshold t, i.e., |W ∩I| < t. Therefore, given {f̄l}∀cl∈{C∩I}, A learns nothing about each honest client cu
y-coordinate πi,u (as well as z′i,u when cu ∈ I) in di,u, except with the negligible probability in λ, meaning
that d1,u, . . . , dt̄,u are computationally indistinguishable from random values, for u, 1 ≤ u ≤ n.

Each puzzle gi that encodes a y-coordinate for the linear combination, uses the sum of z′i,u (and w′i,u)
to encrypt the y-coordinate, where each honest client’s z′i,u is a fresh output of PRF and unknown to A.
Given corrupt clients’ secret keys {Kj}∀Bj∈W , A can remove the blinding factors z′i,u for the corrupt parties.
However, due to the security of PRF and accordingly due to the indistinguishability of each di,u from random
values, it cannot remove z′i,u of honest parties from gi (before attempting to solve the puzzle) expect with
the negligible probability in λ.

Due to the security of PRF, given the encrypted y-coordinates of the roots { #»γ ′l}∀cl∈{W∩I} received by corrupt
clients and the corrupt parties’ secret keys {Kj}∀Bj∈W , A cannot learn the y-coordinates of the random root
chosen by each honest client (accordingly it cannot learn the random root), except for a negligible probability
in λ.

Thus, given Set1 and Set2, if the sequential modular squaring assumption holds and factoring problem is
hard, A2 that runs in time δ(Tu) < Tu using at most ¯poly(Tu) parallel processors, cannot find a solution
mu (from ~ou) significantly earlier than δ(∆u), except with negligible probability µ(λ). This means that it
cannot output the correct value of bu (in line 20 of experiment ExpAprv(1λ, n, ẗ, t) defined in Definition 4) with
a probability significantly greater than 1

2 .

Recall that each di,u is blinded with a blinding factor yi,u. These blinding factors will be cancelled out, if
all di,u (of different clients) are summed up. Given the above discussion, knowing the elements of Set1 and
Set2, if the sequential modular squaring assumption holds and the factoring problem is hard, A2 that runs
in time δ(Y ) < Y using at most ¯poly(Y ) parallel processors, cannot output the correct value of bu (in the
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line 27 of experiment ExpAprv(1λ, n, ẗ, t) defined in Definition 4) with a probability significantly greater than
1
2 .

This means, A cannot find a solution
∑
∀cu∈C

qu ·mu (from g1, . . . , gt̄) significantly earlier than δ(∆), except

with negligible probability µ(λ). Accordingly, A can only learn the linear combination of all honest clients’
messages, after solving puzzles g1, . . . , gt̂. �

We proceed to prove that Tempora-Fusion preserves a solution validity, w.r.t. Definition 5.

Lemma 2. If the sequential modular squaring assumption holds, factoring N is a hard problem, PRF is
secure, OLE+ is secure (i.e., offers result validity and is privacy-preserving), and the commitment scheme
meets the binding and hiding properties, then Tempora-Fusion preserves a solution validity, w.r.t. Definition
5.

Proof. We will demonstrate the probability that a PPT adversary A outputs an invalid solution but passes
the verification (in the experiment ExpAval(1

λ, n, ẗ, t) defined in Definition 5) is negligible in the security
parameter, i.e., µ(λ).

In addition to (Set1, Set2), the messages that an adversary A receives are as follows:

• by the end of the puzzle-solving phase for a puzzle related to the linear combination, it learns:

Set3 =
{
{rootu, tku}∀cu∈I,m = res

}
• by the end of the puzzle-solving phase for a puzzle of a single honest client cu, it also learns:

Set4 =
{
mku,m = mu

}
where A learns Set4 for any client (long) after it learns Set3.

Due to the binding property of the commitment scheme, the probability that A can open every commitment
related to a valid root in {rootu}∀cu∈I to an invalid root (e.g., root′, where root′ 6= rootu) and pass all
the verifications, is (µ(λ))|I|. Thus, this is detected in step 6a of the protocol with a high probability, i.e.,
1− (µ(λ))|I|.

As discussed in the proof of Lemma 1, before the puzzles of honest parties are solved, A learns nothing about
the blinding factors of honest parties or their random roots (due to the hiding property of the commitment
scheme, the privacy property of OLE+, security of PRF, and under the assumptions that sequential modular
squaring holds and factoring N is a hard problem).

Due to Theorem 1 (unforgeable encrypted polynomial with a hidden root), any modification by A to the
inputs {o1,u, . . . , ot̄,u}∀cu /∈W and outputs {d1,u, . . . , dt̄,u}∀cu /∈W of OLE+, makes the resulting polynomial θ not
contain every root in {rootu}∀cu /∈W . The same applies to the generation of ~g = [g1, . . . , gt̄]. Specifically, if
each gi is not the sum of all honest parties di,u, then their blinding factors will not be cancelled out, making
the resulting polynomial θ not have every root in {rootu}∀cu /∈W , according to Theorem 1. Thus, this can be
detected with a high probability (i.e., at least 1− (µ(λ))t) at step 6(b)iv of the protocol.

A will eventually learn the elements of Set3 for honest parties. However, this knowledge will not help it cheat
without being detected, as A has already published the output of the evaluation, e.g., ~g = [g1, . . . , gt̄].

Due to the security of OLE+ (specifically result validity), any misbehavior of A (corrupting s) during the
execution of OLE+ will not be detected only with a negligible probability µ(λ), in steps 4(b)v and 4(c)ii of
the protocol.
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Hence, A cannot persuade E to return 1 on an invalid output of Evaluate() (in line 23 of the experiment
ExpAval(1

λ n, ẗ, t) defined in Definition 5) with a probability significantly greater than µ(λ).

By solving a single client’s puzzle (after all invocations of Evaluate()), A will also learn Set4 for each (honest)
client cu. Due to the binding property of the commitment scheme, the probability that A can open every
commitment corresponding to the single message mu of each client cu in {c1, . . . , cn} to an invalid message
(e.g., m′, where m′ 6= mu) and pass the verification in steps 6a and 6b of the protocol is negligible, µ(λ). Note
that the elements of set {rootu, tku}∀cu∈I ∈ Set3 have been selected uniformly at random and independent of
each solution mu. Thus, knowing elements {rootu, tku}∀cu∈I will not increase the probability of the adversary
to persuade a verifier to accept an invalid message m′, in steps 6a and 6b of the protocol.

Thus, A cannot win and persuade E to return 1 on an invalid solution (in line 27 of the experiment
ExpAval(1

λ, n, ẗ, t)) with a probability significantly greater than µ(λ). �

We have demonstrated that Tempora-Fusion is privacy-preserving (w.r.t. Definition 4) and preserves solution
validity (w.r.t. Definition 5). Hence, Tempora-Fusion is secure, according to Definition 9.

This concludes the proof of Theorem 2. �

6 Cost Analysis

In this section, we begin by examining the asymptotic costs of our scheme before analyzing its concrete costs.
In addition to the standard time-lock puzzle execution, the primary concrete costs in our scheme arise from
invoking PRF, polynomial factorization, and OLE+ execution. We will demonstrate that the computational
overheads associated with PRF and polynomial factorization of varying degrees are minimal in our scheme.
We will also assert that OLE+ running time is low and has been used (and implemented) in various schemes.
Figure 2 and Tables 2 and 3 provide detailed information on the actual running times for polynomials
factorization and PRF invocations. In contrast, Table 1 summarizes the asymptotic costs of our scheme.
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Fig. 2: Performance of polynomial factorizations and PRF. Figure 2a, depicts the performance of polynomial
factorizations across polynomial degrees ranging from 2 to 10 over fields of 128 and 256 bits, i.e., log2(p) = 128
and log2(p) = 256. Figure 2b, showcases the performance of PRF across 2 to 1024 invocations, with output
sizes of 128 and 256 bits.

6.1 Asymptotic Cost

Client’s Computation Cost. In the Puzzle Generation phase (Phase 3), in each step 3(b)i and 3(b)ii, a client
cu performs a modular exponentiation over φ(Nu) and Nu respectively. In steps 3(b)iii and 3c, in total the
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Table 1: Complexities of Tempora-Fusion. In the figure, n is the total number of clients, ẗ is the number
of leaders, t̄ = ẗ + 2, ∆ is the period between granting the computation and when a linear combination of
solutions is learned by server s, maxss is the maximum number of squarings that a solver can perform per
second, and Y = maxss ·∆.

Schemes Parties Computation Cost Communication Cost

Client O(t̄) O(t̄ · n)

Verifier O(ẗ2 + ẗ) −

T
em

po
ra

-F
us

io
n

Server O(ẗ2 + t̄ · n + ẗ · Y ) O(t̄ · n)

client invokes 2t̄+ 2 instances of PRF. In step 3(d)i, it performs a single modular addition. In step 3(d)ii, it
evaluates the polynomial at t̄ x-coordinates, which will involve t̄ modular additions, using Horner’s method
[23]. In step 3e, the client also performs t̄ additions and t̄ multiplications to encrypt the y-coordinates. In
step 3f, the client invokes the hash function once to commit to its message.

In the Linear Combination Phase (Phase 4), we will focus on the cost of a leader client, as its overall
cost is higher than a non-leader one. In step 4a, a client invokes a hash function ẗ times. In step 4(b)i, it
performs two modular exponentiations, one over φ(Nu) and the other over Nu. In the same step, it invokes
PRF twice to generate two temporary keys. In step 4(b)ii, it invokes t̄ instances of PRF. In step 4(b)iii, it
performs t̄ additions and t̄ multiplications. In step 4(b)iv, it invokes 3 · t̄ instances of PRF and performs t̄+ 1
multiplications.

In step 4(b)v, the client performs 2 · t̄ additions 4 · t̄ multiplications. In the same step, it invokes t̄ instances
of OLE+. In step 4(b)vi, it invokes the hash function once to commit to the random root. Thus, the client’s
complexity is O(t̄).

Verifier’s Computation Cost. In the Verification phase (Phase 6), the computation cost of a verifier in Case 1

is as follows. In step 6a, it invokes ẗ instances of the hash function (to check the opening of ẗ commitments).
In step 6b it invokes 2 · (t̄ · ẗ + 1) instances of PRF. In step 6(b)ii, it performs t̄ · ẗ + 1 additions and t̄ · ẗ
multiplications. In step 6(b)iii, it interpolates a polynomial of degree ẗ + 1 that involves O(ẗ) addition and
O(ẗ) multiplication operations.

In step 6(b)iv, it evaluates a polynomial of degree ẗ + 1 at ẗ points, resulting in ẗ2 + ẗ additions and
ẗ2 + ẗ multiplications. In step 6c, it performs ẗ + 1 multiplication. In the Verification phase (Phase 6), the
computation cost of a verifier in Case 2 involves only a single invocation of the hash function to check the
opening of a commitment. Thus, the verifier’s complexity is O(ẗ2 + ẗ).

Server’s Computation Cost. In step 4(b)v, server s engages t̄ instances of OLE+ with each client. In step 4d,
server s performs t̄ · n modular addition. During the Solving Puzzles phase (Phase 5), in Case 1 step 5a,
server s performs Y repeated modular squaring and invokes two instances of PRF for each client in I. In step
5b, s it performs t̄ · ẗ+ 1 additions and t̄ · ẗ multiplications.

In step 5c, it interpolates a polynomial of degree ẗ + 1 that involves O(ẗ) addition and O(ẗ) multiplication
operations. In step 5d, it performs ẗ + 1 modular multiplications. In step 5e, it factorizes a polynomial of
degree ẗ+ 1 to find its root, which will cost O(ẗ2). In the same step, it invokes the hash function ẗ times to
identify the valid roots. Thus, the complexity of s in Case 1 is O(ẗ2 + t̄ · n+ ẗ · Y ).

In Case 2, the costs of server s for each client cu involves the following operations. s performs Tu modular
squaring to find master key mku. It invokes t̄+2 instances of PRF. It performs t̄ addition and t̄ multiplication
to decrypt y-coordinates. It interpolates a polynomial of degree ẗ + 1 that involves O(ẗ) addition and O(ẗ)
multiplication operations. Therefore, the complexity of s in Case 2 is O(ẗ+ t̄+Tu). Note that in all schemes
relying on modular squaring a server performs O(Tu) squaring.
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Now we proceed to the parties’ communication costs. We first concentrate on each client’s cost.

Client’s Communication Cost. In the following analysis, we consider the communication cost of a leader
client, as it transmits more messages than non-leader clients. In the Key Generation phase (Phase 2) step
2b, the client publishes a single public key of size about 2048 bits. In the Puzzle Generation phase (Phase
3) step 3g, the client publishes t̄+ 4 values. In the Linear Combination phase (Phase 4), step 4b, the leader
client transmits to each client a key for PRF.

In step 4(b)iii, it sends t̄ encrypted y-coordinates of a random root to the rest of the clients. In step 4(b)v,
it invokes t̄ instances of OLE+ where each instance imposes O(1) communication cost. In step 4(b)vii, the
leader client publishes four elements. Thus, the leader client’s communication complexity is O(t̄ · n). Note
that the size of the majority of messages transmitted by the client in the above steps is 128 bits.

Server’s Communication Cost. In the Setup phase (Phase 1), the server publishes t̄ + 1 messages. In the
Linear Combination phase (Phase 4) step 4(b)v, it invokes t̄ instances of OLE+ with each client, where each
instance imposes O(1) communication cost. In step 4e, it publishes t̄ messages.

In the Solving a Puzzle phase (Phase 5), Case 1, step 5f, it publishes ẗ + 1 messages. In Case 2 step 5d,
the server publishes two messages. The size of each message it publishes in the last three steps is 128 bits.
Therefore, the communication complexity of the server is O(t̄ · n).

6.2 Concrete Cost

Having addressed the concrete communication costs of the scheme in the previous section, we now shift our
focus to the concrete computation costs. As previously discussed, the three primary operations that impose
costs to the participants of our scheme are polynomial factorization, invocations of PRF, and OLE+ execution.
In this section, we analyze their concrete costs.

Implementation Environment. To evaluate the performance of polynomial factorization and PRF, we
have developed prototype implementations written in C++. They can be found in [1,2]. We utilize the NTL
library5 for polynomial factorization, the GMP library6 for modular multiple precision arithmetic, and the
CryptoPP library7 for implementing PRF based on AES. All experiments were conducted on a MacBook
Pro, equipped with a 2-GHz Quad-Core Intel processor and a 16-GB RAM. With did not take advantage of
parallelization. To estimate running times, we run the experiments for at least 100 times.

Choice of Parameters. Since the performance of polynomial factorization and PRF can be influenced
by the size log2(p) of the field over which polynomials are defined and the output size (also referred to as
log2(p), respectively, we use two different field sizes: 128 and 256 bits. Furthermore, in Tempora-Fusion,
since increasing the total number ẗ of leader clients will increase the resulting polynomial’s degree and the
complexity of polynomial factorization is quadratic with the polynomial’s degree, we run the experiment on
different polynomial degrees, ranging from 2 to 10. It is worth noting that even within this range of ẗ, the
total number of clients can be very high, as discussed in Section 4.2.

Result. Increasing the polynomial’s degree from 2 to 10 results in the following changes in the running time
of factorization: (i) from 0.3 to 1.4 milliseconds (ms) when the field size is 128 bits, and (ii) from 0.6 to 2.2
ms when the field size is 256 bits. We observed that doubling the size of the field results in the polynomial
factorization’s running time increasing by a factor of approximately 1.66. Table 2 and Figure 2a elaborate
on the performance of polynomial factorizations.

5 https://libntl.org
6 https://gmplib.org
7 https://cryptopp.com
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Table 2: Concrete runtime of polynomial factorizations, measured in milliseconds.

Field size Polynomial degree
log2(p)

2 4 6 8 10

128-bit 0.3 0.5 0.8 1.2 1.4

256-bit 0.6 1 1.7 2.1 2.2

Table 3: Concrete runtime of PRF invocation, measured in milliseconds.

Output size Number of PRF invocation

log2(p)

2 4 16 64 256 1024

128-bit 0.006 0.011 0.04 0.15 0.658 2.424

256-bit 0.008 0.016 0.071 0.29 0.97 3.534

Moreover, as we increase the number of PRF invocations from 2 to 1024, the running time (a) grows from
0.006 to 2.424 ms when the output size is 128 bits and (b) increases from 0.008 to 3.534 ms when the output
size is 256 bits. Table 3 and Figure 2b elaborate on the concrete performance of PRF.

We observe that the running time of OLE+ is low. For instance, Boyle et al . CCS’18 [17], proposed an efficient
generalization of OLE called vector OLE, secure against malicious adversaries. Vector OLE allows the receiver
to learn any linear combination of two vectors held by the sender. In various applications of OLE, one can
replace a large number of instances of OLE with a smaller number of long instances of vector OLE. The authors
estimated the running time of their scheme is about 26.3 ms when the field size is about 128 bits and the
input vectors size is about 220. As another example, Schoppmann et al . CCS’19 [43] proposed a variant of
vector OLE called pseudorandom vector OLE, secure against semi-honest adversaries. This variant with the
input vectors of 214 elements can be run in less than 1 second.

Therefore, based on our experimental variations in polynomial degrees, field sizes, and PRF’s output sizes, we
project the total added concrete costs of our schemes to range between 3.007 and 3.012 seconds, factoring
in an additional 2 seconds for other operations such as modular arithmetic and hash function invocations.

7 Conclusion and Future Work

Time lock puzzles (TLPs) are elegant cryptographic protocols with applications across various domains,
including e-voting, timed secret sharing, timed commitments, and zero-knowledge proofs. In this work, we
present a novel time lock puzzle scheme that simultaneously supports (1) partially homomorphic computa-
tion (i.e., linear combination) of different clients’ puzzles and (2) efficient verification of the computation’s
correctness. This scheme employs a set of techniques not previously applied in the TLP context and is robust
against a strong malicious server that may gain access to a subset of clients’ secret keys. We demonstrate
that it is possible to define the puzzles over a finite field (of relatively short size) without relying on a trusted
third party. Furthermore, we have identified several applications for the proposed scheme in federated learn-
ing, online banking, and e-voting. Our analysis of the scheme’s asymptotic and concrete costs confirms its
efficiency. Future work could explore:

• Post-Quantum Secure, Verifiable Homomorphic TLP : There have been efforts to develop post-quantum
secure TLPs, such as the one proposed in [34]. However, existing post-quantum secure TLPs do not
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support verifiable homomorphic operations on different puzzles. Therefore, it would be compelling to
upgrade these post-quantum secure TLPs to support verifiable homomorphic operations, enhancing their
functionality and broadening their potential applications.

• Scalability Improvements: Explore methods to enhance the scalability of the proposed scheme, ensuring
it can handle a large number of users and datasets without significantly compromising performance. This
could involve distributed computing approaches or could replace OLE+ with a more efficient and scalable
primitive.

• Real-World Implementation: Conduct real-world implementation and testing of our scheme in various do-
mains like online banking and federated learning. This would involve collaboration with industry partners
to identify practical challenges and refine the scheme based on empirical data.
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A The Enhanced OLE’s Ideal Functionality and Protocol

The PSIs proposed in [29] use an enhanced version of the OLE. The enhanced OLE ensures that the receiver
cannot learn anything about the sender’s inputs, in the case where it sets its input to 0, i.e., c = 0. The
enhanced OLE’s protocol (denoted by OLE+) is presented in Figure 3.

1. Receiver (input c ∈ F): Pick a random value, r
$← F, and send

(inputS, (c−1, r)) to the first FOLE.

2. Sender (input a, b ∈ F): Pick a random value, u
$← F, and send

(inputR, u) to the first FOLE, to learn t = c−1 ·u+r. Send (inputS, (t+
a, b− u)) to the second FOLE.

3. Receiver: Send (inputR, c) to the second FOLE and obtain k = (t+a) ·
c+ (b− u) = a · c+ b+ r · c. Output s = k − r · c = a · c+ b.

Fig. 3: Enhanced Oblivious Linear function Evaluation (OLE+) [29].

B The Original RSA-Based TLP

Below, we restate the original RSA-based time-lock puzzle proposed in [42].

1. Setup: SetupTLP(1
λ, ∆,maxss).

(a) pick at random two large prime numbers, q1 and q2. Then, compute N = q1 ·q2. Next, compute Euler’s
totient function of N as follows, φ(N) = (q1 − 1) · (q2 − 1).

(b) set T = maxss · ∆ the total number of squaring needed to decrypt an encrypted message m, where
maxss is the maximum number of squaring modulo N per second that the (strongest) solver can
perform, and ∆ is the period, in seconds, for which the message must remain private.

(c) generate a key for the symmetric-key encryption, i.e., SKE.keyGen(1λ)→ k.

(d) choose a uniformly random value r, i.e., r
$← Z∗N .

(e) set a = 2T mod φ(N).

(f) set pk := (N,T, r) as the public key and sk := (q1, q2, a, k) as the secret key.

2. Generate Puzzle: GenPuzzleTLP(m, pk, sk).

(a) encrypt the message under key k using the symmetric-key encryption, as follows: o1 = SKE.Enc(k,m).

(b) encrypt the symmetric-key encryption key k, as follows: o2 = k + ra mod N .

(c) set o := (o1, o2) as puzzle and output the puzzle.

3. Solve Puzzle: SolveTLP(pk, o).

(a) find b, where b = r2T mod N , through repeated squaring of r modulo N .

(b) decrypt the key’s ciphertext, i.e., k = o2 − b mod N .

(c) decrypt the message’s ciphertext, i.e., m = SKE.Dec(k, o1). Output the solution, m.

The security of the RSA-based TLP relies on the hardness of the factoring problem, the security of the
symmetric key encryption, and the sequential squaring assumption. We restate its formal definition below
and refer readers to [4] for the proof.

36



Theorem 3. Let N be a strong RSA modulus and ∆ be the period within which the solution stays private. If
the sequential squaring holds, factoring N is a hard problem and the symmetric-key encryption is semantically
secure, then the RSA-based TLP scheme is a secure TLP.

C Sequential and Iterated Functions

Definition 10 (∆, δ(∆))-Sequential function). For a function: δ(∆), time parameter: ∆ and security
parameter: λ = O(log(|X|)), f : X → Y is a (∆, δ(∆))-sequential function if the following conditions hold:

• There is an algorithm that for all x ∈ Xevaluates f in parallel time ∆, by using poly(log(∆), λ) processors.

• For all adversaries A which execute in parallel time strictly less than δ(∆) with poly(∆,λ) processors:

Pr
[
yA = f(x)

∣∣∣yA $← A(λ, x), x
$← X

]
≤ negl(λ)

where δ(∆) = (1− ε)∆ and ε < 1.

Definition 11 (Iterated Sequential function). Let β : X → X be a (∆, δ(∆))-sequential function. A

function f : N × X → X defined as f(k, x) = β(k)(x) =

k Times︷ ︸︸ ︷
β ◦ β ◦ ... ◦ β is an iterated sequential function,

with round function β, if for all k = 2o(λ) the function h : X → X defined by h(x) = f(k, x) is (k∆, δ(∆))-
sequential.

The primary property of an iterated sequential function is that the iteration of the round function β is the
quickest way to evaluate the function. Iterated squaring in a finite group of unknown order, is widely believed
to be a suitable candidate for an iterated sequential function. Below, we restate its definition.

Assumption 1 (Iterated Squaring) Let N be a strong RSA modulus, r be a generator of ZN , ∆ be a time
parameter, and T = poly(∆,λ). For any A, defined above, there is a negligible function µ() such that:

Pr


A(N, r, y)→ b

r
$← ZN , b

$← {0, 1}
if b = 0, y

$← ZN
else y = r2T

 ≤ 1

2
+ µ(λ)
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