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Abstract. Oblivious Transfer (OT) is a fundamental cryptographic pro-
tocol with applications in secure Multi-Party Computation, Federated
Learning, and Private Set Intersection. With the advent of quantum
computing, it is crucial to develop unconditionally secure core primi-
tives like OT to ensure their continued security in the post-quantum era.
Despite over four decades since OT’s introduction, the literature has pre-
dominantly relied on computational assumptions, except in cases using
unconventional methods like noisy channels or a fully trusted party.

Introducing “Supersonic OT”, a highly efficient and unconditionally se-
cure OT scheme that avoids public-key-based primitives, we offer an
alternative to traditional approaches. Supersonic OT enables a receiver
to obtain a response of size O(1). Its simple (yet non-trivial) design facil-
itates easy security analysis and implementation. The protocol employs
a basic secret-sharing scheme, controlled swaps, the one-time pad, and
a third-party helper who may be corrupted by a semi-honest adversary.
Our implementation and runtime analysis indicate that a single instance
of Supersonic OT completes in 0.35 milliseconds, making it up to 2000
times faster than the state-of-the-art base OT.

1 Introduction

Oblivious Transfer (OT) is a vital cryptographic protocol that enables a user
(called a receiver) interested in the s-th element of a database (m0,m1) (held by
a sender) to learn only ms while preserving the privacy of (i) index s ∈ {0, 1}
from the sender and (ii) the rest of the database’s elements from the receiver.

OT has found applications within numerous domains, such as generic secure
Multi-Party Computation [46,3,24], Private Set Intersection [16], contract sign-
ing [18], Federated Learning [45,39,43], Zero-Knowledge proof systems [23], and
accessing sensitive field elements of remote private databases while preserving
privacy [9,2,31].

As quantum computing emerges, it is crucial to prioritize the development
of fundemental security primitives, like OT, with unconditional security. This
ensures their sustained resilience in the post-quantum era. However, despite
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over four decades having passed since Rabin introduced OT in 1981 [38], the
security of OTs has predominantly leaned on computational assumptions that
might not withstand the power of quantum computers. Efforts have been made to
develop unconditionally secure OTs, ensuring security even against adversaries
armed with quantum computers. Examples include the schemes proposed in
[34,8,13,14,15,27,40].

However, the state-of-the-art unconditionally secure OTs either (i) depend
on the multi-sender setting, where each sender possesses a database replica, (ii)
utilize a specific communication channel (i.e., noisy channel), or (iii) require
the presence of a fully trusted initializer. Nevertheless, distributing the same
database across multiple servers, establishing a highly specific communication
channel, or involving a fully trusted party would increase the overall deployment
cost of these schemes.

In this work, we propose Supersonic OT, a novel unconditionally secure
highly efficient 1-out-of-2 OT that does not need to rely on (i) multiple senders,
(ii) noisy channel, or (iii) the involvement of a trusted initializer. Supersonic OT
does not involve any public-key cryptography and allows the receiver to obtain
a response of size O(1). The scheme relies on four main components: a basic
secret-sharing scheme [5], a controlled swap [19], the one-time pad [29], and a
third-party helper. This helper could potentially be corrupted by a semi-honest
adversary aiming to obtain the private information of the sender or receiver.

The design of Supersonic OT is simple (but elegant), facilitating straight-
forward security analysis and implementation. Indeed, we have implemented it,
made its source code publicly available in [1], and evaluated its overhead. A sin-
gle execution of Supersonic OT completes in approximately 0.35 milliseconds,
making it about 1000 times faster than the base OT in [3] and up to 2000 times
faster than the base OT in [35].

2 Preliminaries

2.1 Notations

By ε we mean an empty string. We denote a sender by S and a receiver by R.
We assume parties interact with each other through a regular secure channel. U
denotes a universe of messages m1, . . . ,mt. We define σ as the maximum size of
messages in U , i.e., σ = Max(|m1|, . . . , |mt|).

2.2 Security Model

In this paper, we rely on the simulation-based model of secure multi-party com-
putation [21] to define and prove the proposed protocols. Below, we restate the
formal security definition within this model.

Two-party Computation. A two-party protocol Γ problem is captured by
specifying a random process that maps pairs of inputs to pairs of outputs, one
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for each party. Such process is referred to as a functionality denoted by f :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f := (f1, f2). For every input pair
(x, y), the output pair is a random variable (f1(x, y), f2(x, y)), such that the
party with input x wishes to obtain f1(x, y) while the party with input y wishes
to receive f2(x, y). In the setting where f is asymmetric and only one party (say
the first one) receives the result, f is defined as f := (f1(x, y), ε).

Security in the Presence of Passive Adversaries. In the passive adversarial
model, the party corrupted by such an adversary correctly follows the protocol
specification. Nonetheless, the adversary obtains the internal state of the cor-
rupted party, including the transcript of all the messages received, and tries to
use this to learn information that should remain private. Loosely speaking, a
protocol is secure if whatever can be computed by a party in the protocol can
be computed using its input and output only. In the simulation-based model, it
is required that a party’s view in a protocol’s execution can be simulated given
only its input and output.

This implies that the parties learn nothing from the protocol’s execution.
More formally, party i’s view (during the execution of Γ ) on input pair (x, y) is
denoted by ViewΓi (x, y) and equals (w, ri,m

i
1, . . . ,m

i
t), where w ∈ {x, y} is the

input of ith party, ri is the outcome of this party’s internal random coin tosses,
and mi

j represents the jth message this party receives. The output of the ith

party during the execution of Γ on (x, y) is denoted by OutputΓi (x, y) and can
be generated from its own view of the execution.

Definition 1. Let f be the deterministic functionality defined above. Proto-
col Γ securely computes f in the presence of a passive adversary if there exist
polynomial-time algorithms (Sim1,Sim2) such that:

{Sim1(x, f1(x, y))}x,y
c≡ {ViewΓ1 (x, y)}x,y

{Sim2(y, f2(x, y))}x,y
c≡ {ViewΓ2 (x, y)}x,y

2.3 Controlled Swap

The idea of the controlled swap was introduced by Fredkin and Toffoli [19]. It can
be defined as function π̄(.) which takes two inputs: a binary value s and a pair
(c0, c1). When s = 0, it returns the input pair (c0, c1), i.e., it does not swap the
elements. When s = 1, it returns (c1, c0), effectively swapping the elements. It is
evident that if s is uniformly chosen at random, then π̄(.) represents a random
permutation, implying that the probability of swapping or not swapping is 1

2 .
We will use π̄(.) in the protocol presented in Figure 1.

2.4 Secret Sharing

A (threshold) secret sharing SS(t,n) scheme is a cryptographic protocol that en-
ables a dealer to distribute a string s, known as the secret, among n parties in
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a way that the secret s can be recovered when at least a predefined number of
shares, say t, are combined. If the number of shares in any subset is less than t,
the secret remains unrecoverable and the shares divulge no information about s.
This type of scheme is referred to as (n, t)-secret sharing or SS(t,n) for brevity.

In the case where t = n, there exists a highly efficient XOR-based secret
sharing [5]. In this case, to share the secret s, the dealer first picks n−1 random
bit strings r1, . . . , rn−1 of the same length as the secret. Then, it computes rn =
r1 ⊕ . . .⊕ rn ⊕ s. It considers each ri ∈ {r1, . . . , rn} as a share of the secret. To
reconstruct the secret, one can easily compute r1 ⊕ . . .⊕ rn. Any subset of less
than n shares reveals no information about the secret. We will use this scheme
in this paper. A secret sharing scheme involves two main algorithms; namely,
SS(1λ, s, n, t) → (r1, . . . , rn): to share a secret and RE(r1, . . . , rt, n, t) → s to
reconstruct the secret.

3 Related Work

Oblivious Transfer (OT) is one of the important building blocks of cryptographic
protocols and has been used in various mechanisms. The traditional 1-out-of-2
OT (OT 2

1) is a protocol that involves two parties, a sender S and a receiver R. S
has a pair of input messages (m0,m1) and R has an index s. The aim of OT 2

1 is
to enable R to obtain ms, without revealing anything about s to S, and without
allowing R to learn anything about m1−s. The traditional OT 2

1 functionality is
defined as FOT 2

1
: ((m0,m1), s)→ (ε,ms).

The notion of 1-out-of-2 OT was initially proposed by Rabin [38] which con-
sequently was generalized by Even et al. [18]. Since then, numerous variants of
OT have been proposed. For instance,

• 1-out-of-n OT, e.g., in [33,42,32]: which allows R to pick one entry out of n
entries held by S,

• k-out-of-n OT, e.g., in [12,28,11]: which allows R to select k entries out of n
entries held by S,

• OT extension, e.g., in [26,25,36,3]: that supports efficient executions of OT
(that mainly relies on symmetric-key operations), in the case OT needs to
be invoked many times

• distributed OT, e.g., in [34,13,48]: that allows the database to be distributed
among m servers/senders.

In the remainder of this section, we discuss those variants of OT that are
closer to our work. We refer readers to [44] for a recent survey of OT.

3.1 Unconditionally and Post-Quantum Secure OTs

There have been efforts to design (both-sided) unconditionally secure OTs. Some
schemes, such as those proposed in [34,8,13], rely on multiple servers/senders that
maintain an identical copy of the database. Other ones, like the one introduced
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in [14,15,27], are based on a specific network structure, i.e., a noisy channel, to
achieve unconditionally secure OT. There is also a scheme in [40] that achieves
unconditionally secure OT using a fully trusted initializer.

Moreover, there exist OT schemes developed to maintain security in the pres-
ence of adversaries equipped with quantum computers. Examples include those
proposed in [7,6,37,30,17,4]. However, these schemes are not unconditionally se-
cure. Instead, they rely on various assumptions and problems (such as short
integer solution, learning with errors, multivariate quadratic, decoding random
linear codes, or computing isogenies between supersingular elliptic curves) as well
as primitives (such as AES, pseudorandom generator, lattice-based Chameleon
hash function, multivariate quadratic cryptography, McEliece cryptosystem, or
supersingular isogeny Diffie-Hellman key exchange) that are deemed valid and
secure in the era of quantum computing based on current knowledge and assess-
ment. Their security could be compromised if any of the underlying assumptions
or problems are proven to be solvable efficiently by future advancements in quan-
tum algorithms or other unforeseen developments.

Hence, there exists no (efficient) unconditionally secure OT that does not
use noisy channels, multi-server, and fully trusted initializer.

3.2 OT with Constant Response Size

Researchers have proposed several OTs, e.g., those proposed in [10,22,47], that
enable a receiver to obtain a constant-size response to its query. To achieve this
level of communication efficiency, these protocols require the receiver to locally
store the encryption of the entire database, in the initialization phase. During
the transfer phase, the sender assists the receiver with locally decrypting the
message that the receiver is interested in.

The main limitation of these protocols is that a thin client with limited
available storage space cannot use them, as it cannot locally store the encryption
of the entire database.

4 Supersonic OT

In this section, we introduce a 1-out-of-2 OT, called “Supersonic OT”, which
(i) operates at high speed by eliminating the need for public-key-based cryptog-
raphy, (ii) delivers a response of size O(1) to the recipient, R, and (iii) ensures
information-theoretic security, making it post-quantum secure.

4.1 Security Definition

Supersonic OT involves three types of entities, a sender S, a receiver R, and a
helper P . We assume each party can be corrupted by a passive non-colluding
adversary. The functionality FOT 2

1
that Supersonic OT will compute is similar

to that of conventional OT with the difference that now an additional party
P is introduced, having no input and receiving no output. Thus, we define the
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functionality as FOT 2
1

:
(
(m0,m1), ε, s

)
→ (ε, ε,ms). Next, we present a formal

definition of OT 2

1.

Definition 2 (OT 2

1). Let FOT 2
1

be the OT functionality defined above. We assert
that protocol Γ realizes FOT 2

1
in the presence of a passive adversary, if for every

non-uniform PPT adversary A in the real model, there is a non-uniform PPT
simulator Sim in the ideal model, where:

{
SimS

(
(m0,m1), ε

)}
m0,m1,s

c≡
{
ViewΓS

(
(m0,m1), ε, s

)}
m0,m1,s

(1)

{
SimP (ε, ε)

}
m0,m1,s

c≡
{
ViewΓP

(
(m0,m1), ε, s

)}
m0,m1,s

(2)

{
SimR

(
s,FOT 2

1

(
(m0,m1), ε, s

))}
m0,m1,s

c≡
{
ViewΓR

(
(m0,m1), ε, s

)}
m0,m1,s

(3)

4.2 The Protocol

At a high level, the protocol operates as follows. Initially, R and S agree on a
pair of keys. In the query generation phase, R splits its private index into two
binary shares. It sends one share to S and the other to P . Given the share/query,
S encrypts every message mi (using a one-time pad) under one of the keys it
agreed with R.

Accordingly, S permutes the encrypted messages using π̄ and its share. It
sends the resulting pair to P which permutes the received pair using π̄ and its
share. P sends only the first element of the resulting pair (which is a ciphertext)
to R and discards the second element of the pair. Consequently, R decrypts
the ciphertext and learns the message it was interested in. Figure 1 presents
Supersonic OT in detail.

As it is evident, P plays a minimal role, involving permuting and obliviously
filtering out the message it receives from S. The size of the single message that
R receives can be short (e.g., 64 or 128 bits) depending on the maximum bit size
of the messages that S holds and the security parameter.

Theorem 1. Let FOT 2
1

be the functionality defined in Section 4.1. Then, Su-
personic OT (presented in Figure 1) securely computes FOT 2

1
in the presence of

semi-honest adversaries, w.r.t. Definition 2.

In the following subsections, we will prove the above theorem and then prove
the correctness of Supersonic OT.
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1. R-side Setup: Setup(1λ)→ (k0, k1)

• picks two random keys (k0, k1)
$← {0, 1}σ and sends them to S.

2. R-side Query Generation: GenQuery(1λ, s)→ q = (q1, q2)

(a) splits the private index s into two shares (s1, s2) by calling:

SS(1λ, s, 2, 2)→ (s1, s2)

(b) sends q1 = s1 to S and q2 = s2 to P .

3. S-side Response Generation: GenRes(m0,m1, k1, k2, q1)→ res

(a) encrypts each message as follows.

∀i, 0 ≤ i ≤ 1 : m′
i = mi ⊕ ki

Let e = (m′
0,m

′
1) contain the encrypted messages.

(b) permutes the elements of e:

π̄(s1, e)→ e′

(c) sends res = e′ to P .

4. P -side Oblivious Filtering: OblFilter(res, q2)→ res′

(a) permutes the elements of e′:

π̄(s2, e
′)→ e′′

(b) sends (always) the first element in e′′, say res′ = e′′0 , to R and
discards the second element in e′′.

5. R-side Message Extraction: Retreive(res′, ks)→ ms

• retrieves the final related message ms by decrypting e′′0 :

ms = e′′0 ⊕ ks

Fig. 1: Supersonic OT.

4.3 Proof of Security

In this section, we prove the security of Supersonic OT, i.e., Theorem 1.

Proof. We consider the case where each party is corrupt at a time.

Corrupt Receiver R. In the real execution, R’s view is defined as:

ViewSupersonic-OTR

(
(m0,m1), ε, s

)
= {rR, e′′0 ,ms}
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where rR is the outcome of the internal random coin of R and is used to
generate (s1, s2, k0, k1). Below, we construct an idea-model simulator SimR which
receives (s,ms) from R.

1. initiates an empty view and appends a uniformly random coin r′R to the
view.

2. picks a random key k
$← {0, 1}σ, using r′R.

3. encrypts message ms as follows e = ms ⊕ k.
4. appends e to the view and outputs the view.

Since we are in the passive adversarial model, the adversary picks its random
coin rR (in the real models) according to the protocol. Therefore, rR and r′R have
identical distributions. Moreover, e′′0 in the real model and e in the ideal model
have identical distributions as both are the result of XORing message ms with
a fresh uniformly random value. Also, ms is the same in both models so it has
identical distribution in the real and ideal models. We conclude that Relation 3
(in Section 4.1) holds.

Corrupt Sender S. In the real execution, S’s view can be defined as:

ViewSupersonic-OTS

(
(m0,m1), ε, s

)
= {rS, s1, k0, k1}

where rS is the outcome of the internal random coin of S and is used to
generate its random values. Next, we construct an idea-model simulator SimS
which receives (m0,m1) from S.

1. initiates an empty view and appends a uniformly random coin r′S to the
view.

2. picks a binary random value s′
$← {0, 1}.

3. picks two uniformly random keys (k′0, k
′
1)

$← {0, 1}σ.
4. appends s′, k′0, k

′
1 to the view and outputs the view.

Next, we explain why the two views are indistinguishable. The random coins
rS and r′S in the real and ideal models have identical distributions as they have
been picked according to the protocol’s description (as we consider the passive
adversarial model). Moreover, s1 in the real model and s′ in the ideal model
are indistinguishable, as due to the security of the secret sharing scheme, binary
share s1 is indistinguishable from a random binary value s′. Also, the elements of
pair (k0, k1) in the real model and the elements of pair (k′0, k

′
1) in the ideal model

have identical distributions as they have been picked uniformly at random from
the same domain. Hence, Relation 1 (in Section 4.1) holds.

Corrupt Helper P . In the real execution, P ’s view is defined as:

ViewSupersonic-OTP

(
(m0,m1), ε, s

)
= {rP , s2, e′}

where rP is the outcome of the internal random coin of P and is used to
generate its random values and e′ is a pair (e′0, e

′
1) and is an output of π̄. Next,

we construct an idea-model simulator SimP .
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1. initiates an empty view and appends a uniformly random coin r′P to the
view.

2. picks a binary random value s′
$← {0, 1}.

3. constructs a pair v of two uniformly random values (v0, v1)
$← {0, 1}σ.

4. appends s′, v to the view and outputs the view.

Since we consider the passive adversarial model, the adversary picks its ran-
dom coins rP and r′P (in the real and ideal models respectively) according to the
protocol. So, they have identical distributions. Moreover, s2 in the real model
and s′ in the ideal model are indistinguishable, as due to the security of the se-
cret sharing scheme, binary share s2 is indistinguishable from a random binary
value s′. In the real model, the elements of e′ which are e′0 and e′1 have been
encrypted/padded with two fresh uniformly random values. In the ideal model,
the elements of v which are v0 and v1 have been picked uniformly at random.
Due to the security of a one-time pad, e′i (∀i, 0 ≤ i ≤ 1) is indistinguishable from
a uniformly random value, including v0 and v1.

Also, in the real model, the pair e′ that is given to P is always permuted based
on the value of S’s share (i.e., s1 ∈ {0, 1}) which is not known to P ; whereas, in
the ideal model, the pair v is not permuted. However, given the permuted pair
e′ and not permuted pair v, a distinguisher cannot tell where each pair has been
permuted with a probability greater than 1

2 . Therefore, Relation 2 (in Section
4.1) holds. �

4.4 Proof of Correctness

In this section, we demonstrate that R always receives the message ms corre-
sponding to its query s. To accomplish this, we will show that (in step 4b) the
first element of pair e′′ always equals the encryption of ms. This outcome is
guaranteed by the following two facts: (a) s = s1 ⊕ s2 and (b) S and T permute
their pairs based on the value of their share, i.e., s1 and s2 respectively.

s s1 s2
1 1

0
0 0
1 0

1
0 1

Table 1: Relation between query s and behaviour of permutation π̄ from the
perspective of S and P . When si = 1, π̄ swaps the elements of its input pairs
and when si = 0, π̄ does not swap the elements of the input pairs.

As Table 1 indicates, when s = 0, then (i) either both S and P permute
their pairs or (ii) neither does. In the former case, since both swap the elements
of their pair, then the final permuted pair e′′ will have the same order as the
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original pair e (before it was permuted). In the latter case, again e′′ will have
the same order as the original pair e because neither party has permuted it.
Thus, in both of the above cases (when s = 0), the first element of e′′ will be
the encryption of m0. Moreover, as Table 1 indicates, when s = 1, then only one
of the parties S and P will permute their input pair. This means that the first
element of the final permuted pair e′′ will always equal the encryption of m1.

5 Performance Evaluation

We have implemented Supersonic OT in C++ and evaluated its concrete run-
time. The source code for the implementation is publicly available in [1]. For
the experiment, we utilized a MacBook Pro laptop equipped with a quad-core
Intel Core i5, 2 GHz CPU, and 16 GB RAM. Given the low number and small
size of exchanged messages in our protocol, implementing it in a network setting
will yield negligible network overhead. We did not leverage parallelization or any
other optimization. The experiment was run an average of 50 times. We utilized
the GMP library [20] for big-integer arithmetic.

We analyzed the runtime of various phases of Supersonic OT across different
invocation frequencies (1, 10, 103, 105, and 107 times). Table 2 shows the high-
speed performance of Supersonic OT, requiring only 0.35 milliseconds (ms) for
a single invocation. Notably, Phase 1 incurs the highest computation cost when
the number of invocations is 1, 10, and 103, while Phase 3 imposes the highest
computation cost when the number of invocations is 105 and 107. Overall, Phase
2 has the lowest computation cost.

Table 2: The table presents the runtime of Supersonic OT, categorized by various
phases and measured in ms. The security parameter and message size are set at
128 bits.

Protocol Phases
Number of OT Invocations

1 10 103 105 107

S
u

p
er

so
n

ic
O

T

Phase 1 0.34 0.37 0.61 21.17 1990

Phase 2 0.00069 0.00092 0.0071 0.7 63.86

Phase 3 0.0011 0.0038 0.29 29.48 3058.09

Phase 4 0.00065 0.0011 0.061 6.3 827.59

Phase 5 0.00064 0.0012 0.063 6.016 675.06

Total 0.35 0.38 1.05 63.7 6610
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5.1 Runtime

Supersonic Versus Base OTs. Initially, we compare the runtime of Super-
sonic OT with that of base OTs proposed in [3,35]. These base OTs, known for
their generality, efficiency, and widespread usage in literature, serve as efficient
foundations in OT extensions. Table 3 and Figure 2a summarize this compari-
son. The runtime data for OTs in [3,35] is derived from the figures reported in
[3], specifically from Table 3, where the GMP library was employed. 3 Table 3
highlights that Supersonic OT demonstrates a speed advantage, being approxi-
mately 103 times faster than the OT in [3] and up to around 2×103 times faster
than the OT in [35].

Table 3: The table compares the runtime of Supersonic OT with the following
base OTs: standard OT (STD–OT) in [3], STD–OT in [35], and the random
oracle OT (RO–OT) in [35]. The bit size of the security parameter is 128. The
runtime has been measured in ms and is based on 128 invocations of each scheme.
The enhancement ratio refers to the performance improvement that Supersonic
OT offers in comparison to each specific scheme.

Scheme Runtime Enhancement Ratio

STD–OT in [3] 1,217 1,622

STD–OT in [35] 1,681 2,241

RO–OT in [35] 288 384

Supersonic OT 0.75 1

Note that Supersonic OT maintains a consistent runtime across different
security parameters, whether lower (e.g., 80-bit) or higher (e.g., 256-bit) than
128-bit. In contrast, the runtime of the schemes in [3,35] would vary, fluctuating
by at least a factor of 2.5 with changes in the security parameter.

Supersonic Versus OT Extensions. We proceed to compare the runtime of
Supersonic OT with the runtime of efficient OT extensions presented in [3,41].
Given that OT extensions are designed for scenarios involving frequent execu-
tions, we evaluate the runtime of these three OTs when invoked 107 times. The
runtime data for OTs in [3,41] is extracted from the figures reported in [3],

3 The implementation in [3] used a smaller RAM size (4 GB) compared to our usage
of 16 GB. Their reported performance also accounts for LAN delay. It is important
to note that doubling the RAM size doesn’t necessarily equate to doubling the
runtime. Moreover, the impact of LAN delay is negligible, particularly for our OT,
which incurs a very low communication cost.
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Table 4: The table compares the runtime of Supersonic OT with the following
general OT (G–OT) extensions: G–OT in [3] and G–OT in [41]. The runtime
has been measured in milliseconds and is for 107 invocations of 1-out-of-2 OT.
The enhancement ratio refers to the performance improvement that Supersonic
OT offers in comparison to each scheme.

Scheme Sec. Param. Size Runtime Enhancement Ratio

G–OT in [3] 80-bit 14,272 2

G–OT in [41] 80-bit 20,717 3

Supersonic OT 128-bit 6,610 1

specifically from Tables 3 and 4 in [3], where the GMP library was utilized.4

Table 4 and Figure 2b present the outcome of this comparison.

Table 4 shows that invoking Supersonic OT 107 times takes approximately
6,610 ms with a 128-bit security parameter.
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(a) Supersonic OT vs. Base OTs.

Su
per

son
ic

OT

RO
–O

T
in

[35
]

ST
D–O

T
in

[35
]

0

10,000

20,000

R
u
n
ti
m
e
in

m
s

(b) Supersonic OT vs. OT Exten-
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Fig. 2: Comparison of Runtimes for Different OTs.

Supersonic OT outperforms the OT in [3] by a factor of 2 and [41] by a factor
of 3. Despite the higher 128-bit security parameter in Supersonic OT compared
to the 80-bit parameter in the other two schemes, its runtime is still lower. We
expect that increasing the security parameter in schemes in [3,41] would result
in higher runtimes, given that the base OT’s runtime increases accordingly.

4 Table 4 in [3] excludes the runtime of base OTs. Thus, the corresponding runtime of
the base OT in Table 3 in [3] must be added to each figure reported in Table 4. For
instance, for G-OT (in the LAN setting) we would have 13.92×1000+352 = 14, 272.
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5.2 Features

For the base OTs and OT extensions in [3,35,41] to achieve unconditional secu-
rity, as discussed in Section 3.1, they typically require multiple replicas of the
database, a noisy channel, or the involvement of a trusted initializer, all of which
contribute to increased deployment costs. In contrast, Supersonic OT attains
unconditional security without relying on database replications, noisy channels,
or a fully trusted party. Although Supersonic OT involves an additional party,
unlike base OTs or OT extensions that typically only involve the sender and
receiver, it maintains its security even when this party is semi-honest.

6 Conclusion and Future Work

OT is a crucial privacy-preserving technology. OTs have found extensive appli-
cations in designing secure Multi-Party Computation protocols [46,3,24], Feder-
ated Learning [45,39,43], and accessing sensitive field elements of remote private
databases while preserving privacy [9,2,31].

In this work, we presented Supersonic OT, an unconditionally secure very
efficient 1-out-of-2 OT that will maintain security in the quantum computing
era. Supersonic OT refrains from using any public-key cryptography. We have
proved its security within the standard simulation-based paradigm.

Supersonic OT enables the receiver to obtain a response of size O(1) whose
bit size can be as small as 128 if the bit size of the secret messages maintained
by the sender is at most 128. It relies on basic standard primitives. The simple
design of Supersonic OT allows easy security analysis and implementation. We
have studied the concrete performance of Supersonic OT. A single execution
of Supersonic OT completes in approximately 0.35 milliseconds, making it up
to 2000 times faster than the state-of-the-art base OT. Moreover, we studied
the performance of Supersonic OT and the state-of-the-art OT extensions in the
setting where they are invoked 107 times. Our analysis indicated that Supersonic
OT takes approximately 6,610 ms, making it up to 3 times faster than current
OT extensions.

As a future research direction, it would be interesting to see how the excep-
tional efficiency of Supersonic OT can improve the performance of those (generic
MPC or Private Set Intersection) protocols that heavily rely on OT protocols.
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