
FSSiBNN: FSS-based Secure Binarized Neural
Network Inference with Free Bitwidth Conversion

Peng Yang1, Zoe Lin Jiang1,2(B), Jiehang Zhuang1, Junbin Fang3,
Siu-Ming Yiu4, and Xuan Wang1,2

1 Harbin Institute of Technology, Shenzhen, Shenzhen, China
{stuyangpeng,jiehangzhuang}@stu.hit.edu.cn

2 Guangdong Key Laboratory of New Security and Intelligence Technology,
Shenzhen, China; zoeljiang@hit.edu.cn, wangxuan@cs.hitsz.edu.cn

3 Jinan University, Guangzhou, China; tjunbinfang@jnu.edu.cn
4 The University of Hong Kong, HKSAR, China; smyiu@cs.hku.hk

Abstract. Neural network inference as a service enables a cloud server
to provide inference services to clients. To ensure the privacy of both
the cloud server’s model and the client’s data, secure neural network
inference is essential. Binarized neural networks (BNNs), which use bi-
nary weights and activations, are often employed to accelerate inference.
However, achieving secure BNN inference with secure multi-party com-
putation (MPC) is challenging because MPC protocols cannot directly
operate on values of different bitwidths and require bitwidth conversion.
Existing bitwidth conversion schemes expand the bitwidths of weights
and activations, leading to significant communication overhead.
To address these challenges, we propose FSSiBNN, a secure BNN in-
ference framework featuring free bitwidth conversion based on function
secret sharing (FSS). By leveraging FSS, which supports arbitrary input
and output bitwidths, we introduce a bitwidth-reduced parameter encod-
ing scheme. This scheme seamlessly integrates bitwidth conversion into
FSS-based secure binary activation and max pooling protocols, thereby
eliminating the additional communication overhead. Additionally, we en-
hance communication efficiency by combining and converting multiple
BNN layers into fewer matrix multiplication and comparison operations.
We precompute matrix multiplication tuples for matrix multiplication
and FSS keys for comparison during the offline phase, enabling constant-
round online inference.
In our experiments, we evaluated various datasets and models, compar-
ing our results with state-of-the-art frameworks. Compared with the two-
party framework XONN (USENIX Security ’19), FSSiBNN achieves ap-
proximately 7× faster inference times and reduces communication over-
head by about 577×. Compared with the three-party frameworks Se-
cureBiNN (ESORICS ’22) and FLEXBNN (TIFS ’23), FSSiBNN is ap-
proximately 2.5× faster in inference time and reduces communication
overhead by 1.3× to 16.4×.

Keywords: Secure neural network inference · Binarized neural network
· Free bitwidth conversion · Function secret sharing.

2 P. Yang et al.

1 Introduction

Neural network inference as a service is increasingly utilized in applications such
as disease diagnosis, fraud detection, and risk management. In these scenarios,
a cloud server typically hosts a well-trained neural network model and provides
inference services to clients who supply the data [20,22]. For example, a patient
may send private medical data to the cloud server, which then performs the
neural network inference and returns the diagnosis results.

However, neural network inference services in cloud environments face signif-
icant privacy challenges. Both the client’s data and the server’s model are highly
sensitive and cannot be shared openly due to privacy regulations and competi-
tive advantage. To address these privacy concerns, various approaches have been
explored, including secure multi-party computation (MPC) [29], homomorphic
encryption (HE) [17], and trusted execution environments (TEE) [10]. Compared
to HE-based approaches, MPC-based approaches have lower computational over-
head. Additionally, unlike TEE-based approaches, MPC-based approaches do not
rely on specialized hardware and offer provable security.

With the increasing size of neural network models, binarized neural networks
(BNNs) with binary weights and activations (i.e., −1 or +1) have been proposed
to address this issue, demonstrating considerable progress in recent years. Con-
sequently, MPC-based BNN inference has gained significant attention. Existing
MPC-based BNN inference frameworks require weights and activations to be
encoded as either Boolean or fixed-point values [24,30]. Boolean encoding uses
Boolean circuits to evaluate BNNs; however, BNNs involve numerous arithmetic
operations (addition and multiplication), which are not well-suited for represen-
tation by Boolean circuits, resulting in high circuit complexity and increased
communication costs. Fixed-point encoding requires a bitwidth expansion algo-
rithm to extend the bitwidths of weights, undermining the efficiency advantages
of BNNs. Additionally, BNN inference involves numerous non-linear layers, such
as binary activation and max pooling layers. Current approaches use garbled cir-
cuits (GC) [29], secret sharing (SS) [13], or homomorphic encryption (HE) [17]
to securely compute these non-linear operations [24,12,15], often incurring high
communication or computation overhead.

To address the challenges in secure BNN inference, we propose FSSiBNN,
a framework featuring free bitwidth conversion based on function secret shar-
ing (FSS) [6,7]. By leveraging FSS, which supports arbitrary input and output
bitwidths, we introduce a bitwidth-reduced parameter encoding scheme. This
scheme seamlessly integrates bitwidth conversion into FSS-based secure binary
activation and max pooling protocols, thereby eliminating the additional com-
munication overhead typically associated with bitwidth conversion. Furthermore,
we optimize the computation by combining and converting multiple BNN layer
functions into fewer matrix multiplication and comparison operations. We also
design secure BNN layer function computation protocols in the offline-online
computation paradigm [13]. In the offline phase, we precompute matrix multipli-
cation tuples for matrix multiplication operations and FSS keys for comparison

FSS-based Secure Binarized Neural Network Inference 3

operations. During the online phase, these precomputed elements are utilized,
enabling constant-round online inference with low computational complexity.

We conducted experiments on various datasets and BNN models, comparing
our results with state-of-the-art frameworks: XONN [24], SecureBiNN [30], and
FLEXBNN [15]. The experimental results demonstrate that FSSiBNN outper-
forms these frameworks in both communication efficiency and inference time.

1.1 Related Work

Secure neural network inference based on MPC [23,27,16] has been a vibrant area
of research in recent years. With the advancements in quantized neural networks,
secure quantized neural network inference has also garnered significant attention.
Our focus is specifically on secure BNN inference based on MPC.

FHE-DiNN [4] is the first to propose the secure quantized neural network in-
ference, relying on computationally expensive homomorphic encryption (HE)
techniques. XONN [24] is the first MPC-based secure quantized neural net-
work inference framework targeting BNNs (1-bit quantization). Subsequently,
FOBNN [9] further optimizes its performance. QUOTIENT [1] enables secure in-
ference of ternarized neural networks (2-bit quantization), while SecureQ8 [12] fo-
cuses on 8-bit and 16-bit quantization. ABNN2 [25] supports arbitrary-bitwidth
quantized neural network inference. However, these frameworks often suffer from
high computation overhead due to the use of HE or significant communication
costs due to the use of GC, resulting in communication costs two orders of mag-
nitude higher and run-time one order of magnitude higher than secret sharing-
based approaches.

Leia [21] presents a secure BNN inference framework based on additive se-
cret sharing (SS). Similarly, BANNERS [18] and SecureBiNN [30] tackle secure
BNN inference by leveraging replicated secret sharing (RSS). These frameworks
utilize circuit conversion between Boolean and arithmetic or sharing conversion
between SS and RSS to evaluate BNNs, leading to additional communication
rounds and high communication overhead. Leia [21] requires two non-colluding
computational servers, while BANNERS [18] and SecureBiNN [30] operate in
an honest-majority setting, which imposes a stronger security assumption than
two-party computation (2PC) frameworks that assume a dishonest-majority.

Recently, a concurrent work, FLEXBNN [15], employs non-uniform bitwidth
equipped with a seamless bitwidth conversion method and designs several specific
optimizations for the basic operations. FLEXBNN [15] operates in a three-server
setting (non-colluding and honest majority) and uses RSS-based MPC with on-
line communication rounds linear in the multiplicative depth of the circuit. In
contrast, our framework adopts a client-server setting (collusion-resistant and
dishonest majority) and leverages FSS-based MPC, ensuring constant online
communication rounds. Thus, our work and FLEXBNN [15] differ fundamen-
tally in terms of problem settings and protocol assumptions.

Table 1 provides a comparison of secure quantized neural network inference
frameworks based on MPC. Our framework can resist collusion attacks and sup-
ports non-uniform bitwidth arithmetic in a dishonest-majority setting.

4 P. Yang et al.

Table 1. The secure quantized neural network inference frameworks based on MPC

Framework Num. Crypto. Adversary Dishonest
Majority

Collusion
Resistance*

Non-Uniform
Bitwidth**

XONN [24] 2 GC Semi-Honest ✓ ✓ ×
QUOTIENT [1] 2 GC Semi-Honest ✓ ✓ ×

ABNN2 [25] 2 GC Semi-Honest ✓ ✓ ×
Leia [21] 2 SS Semi-Honest ✓ × ×

FOBNN [9] 2 GC Semi-Honest ✓ ✓ ×
BANNERS [18] 3 SS, RSS Malicious × × ×
SecureBiNN [30] 3 SS, RSS Semi-Honest × × ✓
FLEXBNN [15] 3 SS, RSS Semi-Honest × × ✓
SecureQ8 [12] N SS, HE Malicious × × ×

FSSiBNN (Ours) 2 SS, FSS Semi-Honest ✓ ✓ ✓

* Whether it is secure against collusion attacks.
** Whether it supports secure non-uniform bitwidth arithmetic.

1.2 Our Contributions

In this work, we propose FSSiBNN, an FSS-based secure inference framework
for BNNs, enabling the server to provide inference services to the client without
compromising the privacy of either the server’s model or the client’s data.

Our contributions can be summarized as follows:

– Secure BNN Inference with Free Bitwidth Conversion. To address
the problems of existing work that cannot effectively support secure non-
uniform bitwidth computation and requires high overhead during the bitwidth
conversion process, we leverage the property of FSS that supports arbitrary
input and output bitwidths to propose a bitwidth-reduced parameter encod-
ing scheme with free bitwidth conversion. We naturally embed the bitwidth
conversion into the FSS-based secure binary activation and max pooling pro-
tocols, thereby avoiding the additional computational and communication
overhead introduced by bitwidth conversion.

– Constant-Round Online Inference based on FSS. To solve the prob-
lems of high latency in BNN inference and high communication costs in
secure BNN layer computation protocols, we combine and convert multi-
ple BNN layer functions into fewer matrix multiplication and comparison
operations. By precomputing matrix multiplication tuples for matrix mul-
tiplication and FSS keys for comparison in the offline phase, we achieve
constant-round online inference with low computational complexity.

2 Preliminaries

Notations. Let Z2n be a ring with each element identified by its n-bit binary
representation. Unless otherwise specified, we parse x ∈ {0, 1}n as xn−1|| · · · ||x0

FSS-based Secure Binarized Neural Network Inference 5

where || denotes string concatenation and xn−1 is the most significant bit (MSB).
For 0 ≤ i < j ≤ n, x[i] ∈ Z2 denotes xi and x[i,j) ∈ Z2j−i denotes the ring
element corresponding to the bit-string xj−1|| · · · ||xi. Denote scalar, vector, and
matrix by lowercase letter x, lowercase bold letter x, and uppercase bold letter
X, respectively. Let Xij denote the element at the i-th row and j-th column in
matrix X. Denote random sampling by ∈R, the security parameter by λ, and
1{b} by the indicator function that outputs 1 when b is true and 0 otherwise.

2.1 Binarized Neural Networks

Binarized neural networks (BNNs) are a subtype of neural networks with binary
weights and activations (i.e., {−1,+1}) [11]. A BNN is composed of multiple
layers, such as fully connected, convolutional, binary activation, batch normal-
ization, and pooling. The following is a brief description of the specific operations
in each layer function of a BNN, with an emphasis on bitwidth representation.

Fully Connected and Convolutional Layers. Fully connected (FC) and convo-
lutional (Conv) layers, called linear layers, perform linear combinations of the
inputs and binary weights. Given the l-th layer’s input X(l−1) and binary weight
W(l) (for simplicity, we assume a bias B is already embedded in W), FC can be
computed as matrix multiplication W(l)×X(l−1). Conv can also be implemented
as matrix multiplication using an unrolling technique. In the input layer (l = 1),
the linear layer’s input X(0) is usually a floating-point number and needs to be
converted to a fixed-point integer using fixed-point encoding (refer to Section
2.1 in [26]). In the hidden and output layers (2 ≤ l ≤ L), the linear layer’s input
X(l−1) takes the value {−1,+1}.

Batch Normalization and Binary Activation Layers. Batch normalization (BN)
layers usually follow linear layers to normalize the output. The operation is
defined as y = γ x−µ√

σ2+ϵ
+ β, where γ and β are learnable parameters, µ and σ

are parameters determined during the training process, and ϵ is a small positive
constant. During the inference process, the parameters of batch normalization
are fixed values (usually fixed-point numbers). Thus, the batch normalization
operation can be rewritten as y = γ′x+β′ where γ′ = γ√

σ2+ϵ
and β′ = β− µγ√

σ2+ϵ
.

The binary activation (BA) layer follows the BN layer, and its operation is
equivalent to the sign function, which is defined as:

Sign(x) =

{
+1 x ≥ 0

−1 x < 0
(1)

It can be seen that the output of the BA layer is constrained to {−1,+1}.

Max Pooling Layers. Pooling layers usually follow BA layers and are used to
reduce the dimensions of outputs. Max pooling and average pooling are two of
the more commonly used pooling methods. We adopt max pooling (Maxpool)
which uses the maximum value of each cluster of neurons in the feature map.

6 P. Yang et al.

2.2 Additive Secret Sharing

Additive secret sharing is a cryptographic method of dividing a secret into mul-
tiple parts, where the sum of all parts reconstructs the original secret, but indi-
vidual parts reveal no information about it. In a 2-out-of-2 secret sharing [14],
party P0 and P1, with secret shares ⟨x⟩n0 and ⟨x⟩n1 respectively, share the secret
value x ∈ Z2n , such that x = (⟨x⟩n0 + ⟨x⟩n1) mod 2n. We say that P0 and P1 hold
⟨x⟩n, meaning that P0 holds ⟨x⟩n0 and P1 holds ⟨x⟩n1 .

Sharing and Reconstruction. To realize the functionality FShare which additively
shares a secret value x ∈ Z2n , protocol ΠShare works as follows: the secret owner
samples a random value r ∈ Z2n , and sends ⟨x⟩nb = (x − r) mod 2n to Pb and
sends ⟨x⟩n1−b = r to P1−b. To realize the functionality FRecon which reconstructs
an additively shared value ⟨x⟩n, protocol ΠRecon works as follows: Pb sends ⟨x⟩nb
to P1−b, who computes (⟨x⟩n0 +⟨x⟩n1) mod 2n for b ∈ {0, 1}. In the following text,
we omit the modular operation for simplicity.

Addition and Multiplication. Functionalities FAdd and FMul add and multiply
two shared values ⟨x⟩n and ⟨y⟩n respectively. It is easy to non-interactively add
the shared values by having Pb compute ⟨z⟩nb = ⟨x⟩nb + ⟨y⟩nb . To realize FMul,
taking the advantage of Beaver’s precomputed multiplication triples technique
[3], the specific protocol ΠMul works as follows: assume that P0 and P1 hold
multiplication triples ⟨u⟩n, ⟨v⟩n, ⟨uv⟩n where u, v ∈R Z2n , Pb locally computes
⟨e⟩nb = ⟨x⟩nb − ⟨u⟩nb and ⟨f⟩nb = ⟨y⟩nb − ⟨v⟩nb and then the two parties reconstruct
⟨e⟩n, ⟨f⟩n to get e, f . Finally, Pb lets ⟨z⟩nb = b · e · f + f · ⟨u⟩nb + e · ⟨v⟩nb + ⟨uv⟩nb .

2.3 Function Secret Sharing

A two-party function secret sharing (FSS) scheme [8,5] splits a function f ∈ F
into two shares f0, f1 such that (1)each fb hides f ; (2)for each input x, f0(x) +
f1(x) = f(x). A two-party FSS scheme consists of the key generation algorithm
Gen and the function evaluation algorithm Eval. We directly follow the definition
of the algorithms (Gen,Eval) in [5].

Distribute Comparison Function (DCF). A comparison function f<
α,β(x) : Z2m →

Z2n outputs β if x < α and 0 otherwise, where x, α ∈ Z2m and β ∈ Z2n . We re-
fer to an function secret sharing scheme for comparison functions as distributed
comparison function (DCF). And the variant of DCF, called dual distributed
comparison function (DDCF), is considered and denoted by f<

α,β1,β2
(x) that out-

puts β1 for 0 ≤ x < α and β2 for x ≥ α. Obviously, f<
α,β1,β2

(x) = β2+f<
α,β1−β2

(x)
and thus DDCF can be constructed by DCF.

FSS-based Secure Two-party Computation. Recent work by Boyle et al. [8,5]
shows that FSS can be used to efficiently evaluate some function families within
the offline-online computation paradigm [13]. Specifically, Gen and Eval corre-
spond to the offline and online phases, respectively. In the offline phase, a trusted

FSS-based Secure Binarized Neural Network Inference 7

dealer randomly samples a mask rin for each input wire win and rout for each out-
put wire wout in the computation circuit. For each gate g with win and wout, the
dealer constructs the offset function g[r

in,rout](x) := g(x− rin)+ rout, and runs Gen
to generate FSS keys (k0, k1) corresponding to g[r

in,rout]. Then the dealer sends kb
to Pb and the corresponding mask r to Pb for circuit input and output wires w
owned by Pb. In the online phase, Pb calculates the masked wire value x̂ = x+rin

for each win with rin owned by Pb, and sends it to P1−b. Starting from the input
gates, P0 and P1 compute gates in topological order to obtain masked output
wire values. To process a gate g with win and wout, Pb uses Eval with FSS key
kb and the masked input wire value x̂ = x + rin to obtain the masked output
wire value g(x) + rout. For output wires, they subtract the corresponding mask
received from the dealer to obtain the plaintext output values.

3 Secure BNN Inference Framework

We present our FSSiBNN framework for secure BNN inference in Section 3.1,
which includes two submodules, described in Section 3.2 and Section 3.3.

3.1 The FSSiBNN Overview

In inference as a service, a client C provides data to a cloud server S, which
performs the inference using the pre-trained models and returns the result to
C. To ensure the privacy of both the client’s data and the server’s model, we
introduce our FSSiBNN framework for secure BNN inference. As shown in Fig. 1,
FSSiBNN works as follows: S and C first input the model and data respectively,
then perform secure BNN inference, and finally, C receives the inference results.

!"#"$%&

!"#$%&"'()*$+,-.+/ *$+,-.+/

!"#$%&"'()"'(

'() '* +,-.$$/

'(

!"#$%&'&()*)'$+,-./0,1 !2#$3&4)'56453&4)'$7)-8')$9.(:8*&*0.,

!"#$%&"'("'(

*$+,-.+/

$+,-.+/$+,-.+/

!"#$%&'$%#$% ()!*+%,&'%+)-.#/-/0)%)-,

!"#$%&"'()"'(!"#$%&"'(

!"#$%&"'(

!"#"$%& 12 3456

'() '* 12 3476

+,-.$$/ 12 3486

'(12 3476

!"#"$%&

9

+,:+;/

"$<.

!" #$%&'$ ()) *+,$'$+%$

9;0),*$= 7)'<)'$>

1!")/-.1/2)-,

3'"41!")/-.1/2)-,

-" *+.&/ 012$3-" *+.&/ 45/5

6" 7$/89$:&3/:

')/8-)

Fig. 1. The overview of FSSiBNN framework

In secure BNN inference, after receiving the data and model, FSSiBNN de-
termines the data control flow and encodes parameters such as inputs, outputs,
and model weights. Once the parameters’ bitwidths are determined, each BNN
layer’s operations are computed sequentially to generate the final inference result.
Therefore, our secure BNN inference module is divided into (1) the parameter
encoding submodule and (2) the layer-by-layer secure computation submodule.

The parameter encoding submodule encodes inputs, model parameters, and
outputs of each BNN layer to determine their bitwidths. These parameters have

8 P. Yang et al.

different ranges and precisions: the client’s inference input is usually a fixed-point
integer (comprising integer and fractional parts), the server’s model weights are
binary (i.e., {−1,+1}), batch normalization parameters are fixed-point integers,
and binary activation outputs are binary. Additionally, some layers’ inputs and
outputs are integers (without fractional parts). Therefore, it is necessary to de-
sign protocols that support secure computation with non-uniform bitwidths and
bitwidth conversion to accommodate these different ranges and precisions.

The layer-by-layer secure computation submodule computes each BNN layer
by designing secure computation protocols for each BNN operator, presented in
Section 4. Specifically, we reduce linear layers (fully connected, convolutional,
and batch normalization layers) to matrix multiplication (MatMul) and non-
linear layers (binary activation and max pooling layers) to comparison (Comp), as
illustrated in Fig. 1 (2). Additionally, we combine some BNN layers, such as batch
normalization and binary activation layers, for computation. By leveraging the
offline-online computation paradigm, matrix multiplication can be implemented
with one online communication round. However, it is challenging to design secure
comparison protocols that enable online-efficient secure inference.

3.2 Bitwidth-reduced Parameter Encoding Scheme with Free
Bitwidth Conversion

The weights and activations of BNNs are constrained to {−1,+1}, allowing
BNN operators to be computed with a small bitwidth. To take advantage of
these small bitwidths, prior work [24,18,21] uses Boolean circuits or Boolean-
arithmetic circuits to evaluate BNNs. However, BNN inference involves a large
number of arithmetic operations that are not suitable for computation with
Boolean circuits, resulting in significant communication overhead.

We propose a bitwidth-reduced parameter encoding scheme, which not only
represents these parameters with an appropriate and small bitwidth, but also
uses secure non-uniform bitwidth arithmetic to efficiently evaluate BNNs. Fig.
2 illustrates our scheme. For simplicity, we slightly abuse the terminology and
refer to the entire first layer as the input layer.

!"#$"%&'("#)%*+),-.

/)'01*2".3)%(4)'("#*5*/(#).,*60'($)'("#

7)8*9""%(#:*+),-.

!"#$"%&'("#)% +),-.

/)'01 2".3)%(4)'("# 5 /(#)., 60'($)'("#

7)8 9""%(#: +),-.

! ;#<&'*+),-. " =(>>-# +),-.

! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! !

! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! !

?&%%,*!"##-0'->*+),-.

/)'01 2".3)%(4)'("#

@&'<&'*+),-.

! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! !

!" !"#$

!# !"#$

!" !"#$ &%!"# !$!"#$ &%!"#

!$!"#$

!# !"#$

!$!"#$ &%!"#

!$!"#$

!$!"#$

'()*# +(, -*#)*# -. /+01 2+3/4 5/"61#$# 7!+#01%(-48+2"9+#"-(%2+3/4$:%)+4+8/#/4$%+4/%-8"##/,%.-4%$"8)2".3;!!

Fig. 2. Bitwidth-reduced parameter encoding scheme applied to an example BNN

FSS-based Secure Binarized Neural Network Inference 9

We use 1 bit to represent the binary weight W and an appropriate and small
bitwidth to represent other values, usually depending on the range of values and
the bitwidth required in layer function computations. Specifically, n0, n1, and
n2 represent the output bitwidths of different layers in BNN. Firstly, the input
layer receives fixed-point inference input alongside binary weights, typically ne-
cessitating a long bitwidth n0 (e.g., n0 = 32 bits) for encoding fixed-point values.
After computing the convolutional layer, the output remains fixed point, thus
requiring the representation bitwidth n0. Secondly, after processing through the
batch normalization and binary activation layers, the output becomes binary
(i.e., +1,−1). Considering that the output will serve as the input of the max
pooling layer and requires further computation, we use a small bitwidth n1 (e.g.,
n1 = 8 bits) instead of one bit to represent it. Finally, the output of the max
pooling layer, which is also binary, serves as the input for the next convolutional
layer, and its kernel size dictates the output value range, typically necessitating
a medium bitwidth n2 (e.g., n2 = 16 bits), and so forth for the remaining layers.

Furthermore, as illustrated in Fig. 2, the bitwidths are required to be fre-
quently converted. For example, bitwidth n0 is converted to bitwidth n1 in the
input layer, and bitwidth n2 is converted to bitwidth n1 in the hidden layer.
Observer that bitwidth conversion occurs during the computation of binary acti-
vation and max pooling. In FSSiBNN, secure binary activation and max pooling
protocols are reduced to secure comparison protocols and implemented using
function secret sharing (FSS). The construction of FSS supports arbitrary input
and output bitwidths [5], allowing bitwidth conversion to be embedded into the
FSS-based comparison protocol. Based on these observations, we propose a free
bitwidth conversion scheme that avoids introducing additional overhead by nat-
urally embedding bitwidth conversion into the FSS-based secure activation and
max pooling (see Section 4.2 and Section 4.3).

Comparison with SecureBiNN [30]. SecureBiNN analyzes the parameter range in
BNNs and uses small bitwidths to represent these parameters. In SecureBiNN, to
facilitate computing fully connected and convolutional layers, the model weights
are not represented using 1 bit like in our scheme but are encoded with a specific
bitwidth. For example, the weights in the hidden layer are encoded as 14, 15, or
17 bits (see Section 4 of [30]), incurring additional communication overhead.

Comparison with FLEXBNN [15]. A concurrent work, FLEXBNN, also pro-
poses a similar flexible bitwidth scheme and implements bitwidth conversion
through Boolean-arithmetic share conversion when computing binary activation.
FLEXBNN actually transfers the overhead of bitwidth conversion to the process
of share conversion, which requires linear communication rounds and incurs high
communication costs. Moreover, its techniques are applicable to a three-server
setting and cannot be used in the client-server setting.

3.3 Online-efficient Secure Non-linear BNN Layers via FSS

BNNs involve many non-linear layers, such as binary activation and max pool-
ing layers. In prior implementations [24,30,15], the main source of inefficiency

10 P. Yang et al.

is that secure non-linear layer computation protocols require linear communica-
tion rounds, which incurs high communication costs. To address this, we design
constant-round secure computation protocols by leveraging FSS.

We assume that a well-trained BNN model is known to the server S in ad-
vance, allowing us to precompute the correlated randomness for matrix multi-
plication and comparison operations. Specifically, the process is as follows:

– In the offline phase, C and S precompute the correlated randomness. For
matrix multiplication, C first chooses R randomly, and runs a two-party
protocol with S to gets U and S gets V where U + V = W × R. (U,V)
is called matrix multiplication tuples. For comparison, C and S engage in a
FSS key generation protocol Gen<m(·) to generate FSS keys (k0, k1).

– In the online phase, C with inference input X compute layer functions with
S. For multiplication, C lets the share of W × X be ⟨Z⟩n0 = U and sends
X −R to S who computes ⟨Z⟩n1 = W × (X −R) +V. For comparison, S
and C open x̂ = x + r where x is the input and r is the mask, and then
respectively compute Eval<m(·) locally to get the share of Sign(x).

4 Secure BNN Inference Protocol

As discussed in Section 2.1, a BNN comprises multiple layers. In this section, we
sequentially present the secure computation protocols for each layer of BNNs.

4.1 Secure Fully Connected and Convolutional Layers

The fully connected and convolutional layers can be computed using matrix
multiplication. Secure fully connected layers (FC) and secure convolutional layers
(Conv) can be reduced to secure matrix multiplication (MatMul). Given the
binary weight WB ∈ Zd1×d2

2 and the input X ∈ Zd2×d3
2n , where WB is the 0-1

encoding of W, the functionality FMatMul computes W×X ∈ Zd1×d3
2n . To realize

FMatMul and further realize FFC and FConv, we present protocol ΠMatMul, which
is divided into an offline phase and an online phase.

Offline Phase. In the offline phase, the functionality FGenmmt generates matrix
multiplication tuples (U,V) such that U+V = W×R and sends U and V to
S and C, respectively. To implement FGenmmt , we propose protocol ΠGenmmt where
C first samples a matrix R and computes W ×R with S, who holds W.

We first compute the shares of the product wij · rik in Protocol 1 where wij

is the (i, j)-th element in W and rjk is the (j, k)-th element in R, and it can
be easily extended to compute W × R. Since wij ∈ {−1,+1} is encoded to
wB

ij ∈ {0, 1} by the bijective mapping {−1 ↔ 0,+1 ↔ 1}, we need to compute
(−1)¬wB

ij · rjk, which can be computed using the 1-out-of-2 correlated oblivious
transfer (COT) [2] functionality FCOTn

. Functionality FCOTn
is defined as fol-

lows: the sender inputs an n-bit message m0 ∈ Z2n and a correlation function f ,
the receiver inputs a choice bit b ∈ {0, 1}, and the functionality outputs mb to
the receiver, where m1 = f(m0). FCOTn

can be implemented by leveraging the
VOLE-style OT generation scheme proposed in Ferret [28].

FSS-based Secure Binarized Neural Network Inference 11

Protocol 1 Matrix multiplication tuple generation via COT: ΠGenmmt(wB
ij , rjk)

Input: wB
ij be the (i, j)-th element in WB and rjk be the (j, k)-th element in R.

Output: S and C get u and v respectively, where u+ v = (−1)¬wB
ij · rjk = wij · rjk.

1: C chooses sj ∈ Z2n randomly and sets the correlation function of FCOTn to fj(x) =
−(2sj + x) mod 2n, and sets m0 = −(rjk + sj); S sets the choose bit b = wB

ij .
2: C and S run (⊥;mb)← FCOTn(m0, fj(x); b) where mb = (−1)¬wB

ij · rjk − sj .
3: S let u = (−1)¬wB

ij · rjk − sj and C let v = sj .

Online Phase. In the online phase, S and C perform matrix multiplication by
using the matrix multiplication tuples generated in the offline phase. Note that
the input X(0) = X is held by C in the input layer (l = 1), and the input X(l−1)

is shared between C and S in the hidden and output layers (l = 2, · · · , L).
Therefore, there are two different procedures for different layers:

– In the input layer, C holds X(0) and S holds W(1). Given a matrix multipli-
cation tuple (U,V) such that U+V = W(1) ×R(0), C sends X(0) −R(0) to
S and lets ⟨Z(1)⟩n0 = V and S lets ⟨Z(1)⟩n1 = W(1) × (X(0) −R(0)) +U.

– In the hidden and output layers, C and S hold the share ⟨X(l−1)⟩n. Given
matrix multiplication tuple (U,V) such that U + V = W(l) × R(l−1), C
sends ⟨X(l−1)⟩n0 − R(l−1) to S and let ⟨Z(l)⟩n0 = V, and S lets ⟨Z(l)⟩n1 =
W(l)×((⟨X(l−1)⟩n0−R(l−1))+⟨X(l−1)⟩n1)+U = W(l)×(X(l−1)−R(l−1))+U.

For a matrix multiplication, it requires 2 rounds with d1d2(λ + nd3) bits of
communication in the offline phase, and 1 round with d2d3n bits of communica-
tion in the online phase.

4.2 Secure Batch Normalization and Binary Activation Layers

In the input and hidden layers, the batch normalization layer is followed by
the binary activation layer, whereas in the output layer, batch normalization
appears alone. Therefore, we propose the secure batch normalization protocol
(ΠBN) for the output layer. For the input and hidden layers, we combine the
binary activation and batch normalization layers to propose the secure binary
activation and batch normalization protocol (ΠBNBA).

– Secure batch normalization ΠBN: Given input share ⟨x⟩n and the parameters
γ′ and β′, FBN computes γ′x + β′. It is easy to realize FBN by performing
ΠBN(⟨x⟩n) = ΠMul(⟨x⟩n, γ′)+β′ where ΠMul is secure multiplication protocol.

– Secure binary activation and batch normalization ΠBNBA: Given input share
⟨x⟩n and the parameters γ′ and β′, FBNBA computes BNBA(x) = BA(BN(x)) =

BA(γ′x+β′) where BA(x) = Sign(x). It holds that BA(γ′x+β′) = BA(x+ β′

γ′)

since γ′ is positive. To realize FBNBA, ΠBNBA is proposed as follows:
• In the input layer, x and β′

γ′ are both fixed-point numbers, and ΠBNBA(⟨x⟩n) =
ΠBA(⟨x+ β′

γ′ ⟩n).

12 P. Yang et al.

• In the hidden layers, x is an integer and β′

γ′ is a fixed-point number. In this

case, BA(x+ β′

γ′) is equivalent to BA(x− ⌈−β′

γ′ ⌉). Thus, ΠBNBA(⟨x⟩n) =
ΠBA(⟨x− ⌈−β′

γ′ ⌉⟩n).

Therefore, the protocol ΠBNBA can be reduced to the protocol ΠBA. To im-
plement ΠBA, we propose a distributed comparison function (DCF, defined in
Section 2.3) scheme for the sign function (i.e., binary activation function, see
Eq. (1)) and then design an online-efficient secure binary activation protocol.

Sign Function Gate. To construct the DCF for the sign function, we present the
sign function gate Gsign. Gsign is the family of functions gsign,m,n : S2m → S2n ,
given by gsign,m,n(x) := 1 − 2 · 1{x < 0}, where S2m and S2n are the signed
m-bit and n-bit integer sets and x ∈ S2m . We denote the corresponding offset
gate class by Ĝsign, and its component offset functions by ĝ

[rin,rout]
sign,m,n : U2m → U2n ,

where U2m and U2n are the unsigned m-bit and n-bit integer sets and rin ∈ U2m ,
rout ∈ U2n . Given an unsigned integer x ∈ U2m and a signed integer x′ ∈ S2m such
that (x− rin) mod 2m = x′ mod 2m, it holds that (ĝ

[rin,rout]
sign,m,n(x)− rout) mod 2n =

gsign,m,n(x
′) mod 2n = 1− 2 · (x[m−1] ⊕ r[m−1] ⊕ c), where r = (2m − rin) mod 2m

and c = 1{2m−1 − x[0,m−1) − 1 < r[0,m−1)}. The proof is in Appendix A.

To compute (ĝ
[rin,rout]
sign,m,n(x)− rout) mod 2n = 1−2 ·(x[m−1]⊕r[m−1]⊕c), we first

compute c = 1{2m−1 − x[0,m−1) − 1 < r[0,m−1)} by using the DDCF scheme in
Protocol 2 (from BCG+21 [5]), where a distributed comparison function (DCF)
scheme (Gen<m(1λ, α, β0 − β1,U2n),Eval

<
m(b, k

(m)
b , x)) is used to computed (β0 −

β1) · 1{x < α}. We directly use the DCF scheme proposed in BCG+21 [5] but
let Gin = U2m and Gout = U2n to support non-uniform bitwidth computation.

Protocol 2 DDCF from [5]: (GenDDCF
m ,EvalDDCF

m)

•GenDDCF
m (1λ, α, β0, β1,U2n)

1: Compute (k
(m)
0 , k

(m)
1)← Gen<m(1λ, α, β0 − β1,U2n).

2: Sample r0, r1 ∈R U2n such that r0 + r1 = β1.
3: Let kb = k

(m)
b ||rb for b ∈ {0, 1}.

4: return (k0, k1).
•EvalDDCF

m (b, kb, x)

1: Parse kb = k
(m)
b ||rb.

2: Compute y
(m−1)
b ← Eval<m(b, k

(m)
b , x).

3: return y
(m−1)
b + rb.

Based on the DDCF scheme in Protocol 2, we propose the sign function gate
in Protocol 3. Our sign function gate scheme is similar to the signed integer
comparison gate scheme in BCG+21 [5] (see Fig. 8 in BCG+21 [5]), but the
scheme in BCG+21 [5] only supports uniform bitwidth signed integer compar-
ison. Our sign function gate Sign supports non-uniform bitwidth computation.
The sign function gate Sign requires 1 call to DDCF, and the total key sizes are
(m− 1)(λ+ n+ 2) + λ+ n bits per party.

FSS-based Secure Binarized Neural Network Inference 13

Protocol 3 Sign function gate Sign:(GenSignm,n,Eval
Sign
m,n)

•GenSignm,n(1
λ, rin, rout)

1: Let r = (2m − rin) mod 2m, and α(m−1) = r[0,m−1).
2: (k

(m−1)
0 , k

(m−1)
1) ← GenDDCF

m−1 (1
λ, α(m−1), β0, β1,U2n), where β0 = 1 ⊕ r[m−1] ∈

U2n , β1 = r[m−1] ∈ U2n .
3: Sample randoms r0, r1 ∈ U2n such that r0 + r1 = rout.
4: Let kb = k

(m−1)
b ||rb for b ∈ {0, 1}.

5: return (k0, k1).
•EvalSignm,n(b, kb, x)

1: Parse kb = k
(m−1)
b ||rb.

2: z
(n−1)
b ← EvalDDCF

m−1 (b, k
(m−1)
b , x(m−1)), where x(m−1) = 2m−1 − x[0,m−1) − 1.

3: Let vb = b− 2 · (b · x[m−1] + z
(n−1)
b − 2 · x[m−1] · z(n−1)

b) + rb ∈ U2n .
4: return vb.

Secure Binary Activation. Based on the sign function gate Sign in Protocol 3, we
propose protocol ΠBA to implement the secure binary activation functionality
FBA, which computes Eq. (1). The protocol ΠBA is detailed in Protocol 4, which
calls 1 Sign instance (the key sizes is (m−1)(λ+n+2)+λ+n bits) in the offline
phase, and requires 1 round with m bits of communication in the online phase.

Protocol 4 Secure Binary Activation: ΠBA(⟨x⟩m)

Input: S and C hold ⟨x⟩m ∈ U2m .
Output: S and C hold ⟨z⟩nb ∈ U2n such that ⟨z⟩n0 + ⟨z⟩n1 = Sign(x).
•Offline Phase
1: Compute (k0, k1)← GenSignm,n(1

λ, rin, rout).
2: Send k0, ⟨rin⟩m0 , ⟨rout⟩n0 to C, and send k1, ⟨rin⟩m1 , ⟨rout⟩n1 to S.
•Online Phase
1: S and C run ΠRecon(⟨x⟩m, ⟨rin1 ⟩m) to get x+ rin.
2: S and C compute locally ⟨z⟩nb ← EvalSignm,n(b, kb, x+ rin)− ⟨rout⟩nb respectively.

4.3 Secure Max Pooling Layers

The max pooling (Maxpool) layer always follows the batch normalization and
binary activation (BNBA) layer, so the input of the MaxPool layer is the output
of the BNBA layer. To simplify the computation of the secure max pooling
(Maxpool), we modify the output of the BNBA layer to let each element be 0 or
1 instead of −1 or +1 (this step does not require communication). Then Maxpool
can be calculated via secure addition and secure comparison [30].

Consider the case of a single channel: FMaxpool computes output numbers by
sliding a window of size k×k over the input Xd1×d2 with stride s (typically s = k),
and the output is Zd′

1×d′
2 where d′1 = ⌊(d1−k)/s+1⌋ and d′2 = ⌊(d2−k)/s+1⌋.

To implement FMaxpool, ΠMaxpool invokes the secure addition protocol ΠAdd in
parallel and then invokes the secure comparison protocol ΠBA d′1d

′
2 times in

parallel. Protocol ΠAdd does not require any communication, and protocol ΠBA

calls one sign function gate in the offline phase and requires one round with one

14 P. Yang et al.

ring element of communication in the online phase, ΠMaxpool invokes d′1d
′
2 sign

function gate Sign instances in the offline phase and requires one round with
d′1d

′
2 ring elements of communication in the online phase.

5 Theoretical Analysis and Experiment

5.1 Theoretical Analysis

We compare the online and offline communication complexities of FSSiBNN
(ours) with the state-of-the-art frameworks XONN [24], SecureBiNN [30], and
FLEXBNN [15]. XONN and FSSiBNN are two-party computation (2PC) frame-
works, while SecureBiNN and FLEXBNN are three-party computation (3PC)
frameworks. A detailed analysis of the online and offline computation complex-
ities is provided in Appendix B.

Online Communication Complexity. In Table 2, we present the online commu-
nication complexity of the BNN operators, including MatMul, BN, BNBA, and
Maxpool. For round complexity, all BNN operators are calculated with con-
stant online communication rounds in FSSiBNN, while linear functions (i.e.,
MatMul and BN) evaluation requires constant rounds and non-linear functions
(i.e., BNBA and Maxpool) evaluation requires O(log n) rounds in XONN, Secure-
BiNN, and FLEXBNN. For online communication cost, FSSiBNN achieves lower
online communication cost in almost all BNN operators due to our bitwidth-
reduced parameter encoding scheme and online-efficient secure computation pro-
tocol. SecureBiNN or FLEXBNN can take advantage of the 3PC framework to
obtain “free” MatMul or BN, thus removing the communication overhead of com-
puting fully connected and convolutional layers or batch normalization layers,
but increasing the communication cost of computing other layer functions.

Table 2. Online communication complexity. MatMuld1×d2,d2×d3,n0 is for the input
layer, and MatMuld1×d2,d2×d3,n2 is for the hidden and output layers, where d1, d2, and
d3 are the matrices’ dimensions. ni and no are the input and output bitwidths, and
d′2 = ⌈log2(d2(2n0 − 1))⌉. k is the kernel size, and s is the stride of the maxpool layer.

Operator XONN [24] SecureBiNN [30] FLEXBNN [15] FSSiBNN (Ours)

Rounds Comm. Rounds Comm. Rounds Comm. Rounds Comm.

MatMuld1×d2,d2×d3,n0 2 2d1d
′
2d3λ 0 0 1 d1d3n0 1 d1d2n0

MatMuld1×d2,d2×d3,n2 1 2d1d2d3 0 0 1 d1d3⌈log2(2d2 + 1)⌉ 1 d1d2n2

BNd1×d2,ni − − − − ≈ 0 ≈ 0 1 d1d2ni

BNBAd1×d2,ni,no 2 (λ+ 1)d1d2ni 3 + log2 ni
d1d2(4ni

+3no + 1)
4 + log2 ni d1d2(3ni + no) 1 d1d2ni

Maxpoolk,s,ni
log2(k

2) 2(k2 − 1) log2 ni ≈ 3ni log2(ks) ks− 1 1 ni

Offline Communication Complexity. In the offline phase, the two-party frame-
works, XONN [24] and FSSiBNN (Ours), need to generate correlated random-
ness (e.g., multiplication triples or DCF keys) to evaluate BNN. In contrast, Se-
cureBiNN [30] and FLEXBNN [15] require smaller correlated randomness (e.g.,

FSS-based Secure Binarized Neural Network Inference 15

3-out-of-3 or 2-out-of-3 randomness). This discrepancy arises because the two-
party frameworks are designed for a dishonest-majority setting, while the three-
party frameworks operate under an honest-majority setting, which imposes a
stronger security assumption. As a result, the two-party computing frameworks
must rely on expensive public key cryptography to generate correlated random-
ness [19], whereas the three-party computing frameworks do not.

5.2 Experimental Results and Analysis

In this section, we present the implementation of FSSiBNN and provide de-
tailed experimental results and analysis. The experiments were conducted on
Aliyun ESC using ecs.hfr7.xlarge machines with 16 cores and 128 GB of CPU
RAM in LAN settings. Our setup closely follows that of SecureBiNN [30]. We
assess the secure inference of XONN [24], SecureBiNN [30], and FLEXBNN [15].
XONN is the state-of-the-art two-party framework, outperforming ABNN2 [25]
and Leia [21], while SecureBiNN and FLEXBNN are the state-of-the-art three-
party frameworks, outperforming BANNERS [18].

We present the results of secure inference on the datasets MNIST, CIFAR-10,
and Tiny ImageNet. We evaluate six networks: a 3-layer fully connected neural
network (Network-A), a 3-layer convolutional neural network (Network-B), a 4-
layer convolutional neural network (Network-C), LeNet, AlexNet, and VGG16.
The architectures of Network-A, Network-B, and Network-C are the same as
BM1, BM2, and BM3 in XONN [24]. We briefly discuss inference accuracy, and
detailed experimental results are shown in Appendix C.

Evaluation on Small Neural Networks. In Table 3, we assess secure inference on
MNIST using small neural network models (Network-A, Network-B, Network-C,
and LeNet). Compared with the two-party framework XONN, FSSiBNN reduces
the communication cost by 577× and is 7× faster. This is because XONN utilizes
the Garbled Circuits (GC) protocol [29] to evaluate BNN, which involves lots
of arithmetic operations. The computational and communication costs of using
GC for these arithmetic operations are significantly high.

Table 3. Experimental results of various inference frameworks for small models on the
MNIST dataset, with communication in MB and run time in seconds.

Framework Num. Network-A Network-B Network-C LeNet

Comm. Time Comm. Time Comm. Time Comm. Time

XONN [24] 2PC 4.290 0.130 38.280 0.160 32.130 0.150 − −
SecureBiNN [30] 3PC 0.005 0.011 0.032 0.021 0.357 0.061 0.522 0.072
FLEXBNN [15] 3PC 0.008 0.010 0.043 0.010 0.430 0.031 0.610 0.074
FSSiBNN(Ours) 2PC 0.011 0.010 0.037 0.038 0.133 0.046 0.206 0.062

Compared with the three-party frameworks SecureBiNN and FLEXBNN,
FSSiBNN performs slightly worse in terms of communication and run-time for
Network-A and Network-B. However, it reduces communication costs by roughly

16 P. Yang et al.

3× and has similar run-time for Network-C and LeNet. This discrepancy arises
because Network-A and Network-B mainly consist of fully connected, convo-
lutional, and batch normalization layers (i.e., MatMul and BN operators), and
SecureBiNN and FLEXBNN have lower communication complexity for these op-
erators (refer to Table 2). In contrast, Network-C and LeNet contain more binary
activation layers and max pooling layers (i.e., BNBA and Maxpool operators).
The efficient FSS-based nonlinear function calculation protocol in FSSiBNN al-
lows for reduced communication costs under these conditions.

Evaluation on Large Neural Networks. In Table 4, we assess secure inference on
the CIFAR-10 and Tiny ImageNet datasets using large neural network models
(AlexNet and VGG16). Compared with FLEXBNN (XONN and SecureBiNN
do not support these networks), FSSiBNN reduces the communication costs by
1.3 ∼ 16.4× and improves the run-time by up to 2.5×. The main reason is
that these large networks involve more frequent bitwidth conversions and con-
tain more activation layers and pooling layers. Due to our bitwidth-reduced
parameter encoding scheme and the FSS-based online-efficient secure computa-
tion protocols proposed in this work, FSSiBNN can achieve BNN inference with
low communication overhead.
Table 4. Experimental results of FLEXBNN and FSSiBNN for large models on CIFAR-
10 and Tiny ImageNet dataset, with communication in MB and run time in seconds.

Framework Num.

CIFAR-10 dataset Tiny ImageNet dataset

AlexNet VGG16 AlexNet VGG16

Comm. Time Comm. Time Comm. Time Comm. Time

FLEXBNN [15] 3PC − − 7.920 1.520 13.660 1.240 − −
FSSiBNN(Ours) 2PC 0.455 0.144 6.003 2.158 0.832 0.503 25.323 8.782

Discussion. Based on the above analysis, our framework achieves significant
performance advantages in inference on some large neural network models (e.g.,
LeNet, AlexNet, and VGG16), particularly when there are many binary activa-
tion and max pooling layers. Thus, our framework is well-suited for practical sce-
narios involving large models for inference. Additionally, for resource-constrained
mobile devices, our approach significantly decrease communication costs and in-
ference times, making it ideal for these environments.

6 Practical Demonstration of FSSiBNN

We give a practical demonstration of FSSiBNN in the online medical diagnosis
scenario, and provide an evaluation of its limitations.

6.1 Online Medical Diagnosis using FSSiBNN

We consider a medical diagnosis scenario where a cloud server with a well-trained
medical model provides an online diagnosis service to a patient with medical

FSS-based Secure Binarized Neural Network Inference 17

records. These records are highly sensitive and cannot be shared with the server,
while the medical model, trained with significant computing power and large
datasets, is also private. To protect both the patient’s records and the server’s
model from being leaked, they can utilize the online diagnosis system shown in
Fig. 3. to perform privacy-preserving inference.

In this setting, the patient inputs medical records and the server inputs the
medical model, engaging in FSSiBNN for privacy-preserving BNN inference. Fi-
nally, the patient obtains the diagnosis results, and the server obtains nothing.

!"#$"%&'%($)*#&+$*,"-.$.&

/.$",&011$233

4*5$%"5 1%67%6

8%($)*#&8-(%#8%($)*# 6%)-6(.

($*,"-.$.&6%./#5.

Fig. 3. The online medical diagnosis sysytem using FSSiBNN

We assume that a well-trained BNN model is known by the server in advance.
The online medical diagnosis using FSSiBNN can be divided into two phases:

– Setup Phase: The patient and the server engage in a setup protocol to
generate correlated randomness, such as matrix multiplication tuples and
DCF keys. This phase corresponds to the offline phase of the FSSiBNN
protocol.

– Inference Phase: The patient and the server engage in an inference protocol
to perform online medical diagnosis. They use the correlated randomness
generated in the setup phase to compute the BNN layer functions layer
by layer, and finally, the patient obtains the diagnosis results. This phase
corresponds to the online phase of the FSSiBNN protocol.

With this online medical diagnosis system, patients can use the server’s med-
ical diagnosis service to obtain results remotely, eliminating the need to visit a
hospital. More importantly, the privacy of patients’ medical records is preserved.

6.2 Evaluation of Limitations

Although the online medical diagnosis system using FSSiBNN shown in Fig. 3
can perform fast online diagnosis without leaking the privacy of the patient’s
medical records and the server’s model, its main limitation is that the patient
needs to perform certain calculations. Specifically, in the setup phase, the pa-
tient must interact with the server to generate and store correlated randomness,
including matrix multiplication tuples and DCF keys, which are essential for the
secure computation process. The patient must have a device capable of executing
these tasks efficiently. While modern devices generally meet these requirements,
the increasing complexity and size of models like Transformers pose challenges.
Given current terminal device specifications, such as memory (4GB or larger),
processors (capable of handling complex computing tasks), and storage (64GB

18 P. Yang et al.

or larger), this system can support the models tested in this paper. However,
for larger models, such as Transformer models, additional work is needed to
optimize the system’s performance and resource requirements.

7 Conclusion

In this work, we propose a secure BNN framework, FSSiBNN, with free bitwidth
conversion based on function secret sharing. FSSiBNN enables secure BNN infer-
ence service with low online latency and communication overhead. Experimental
results show FSSiBNN outperforms the state-of-the-art solutions in both com-
munication and time. Further attempts might be made to enable secure inference
by accelerating the computation of FSS-based 2PC protocols with GPUs.

Acknowledgments. We sincerely thank the anonymous reviewers of ESORICS 2024
for their valuable comments. The work is supported by Shenzhen Science and Technol-
ogy Major Project (KJZD20230923114908017), National Natural Science Foundation
of China (62272131), and Guangdong Provincial Key Laboratory of Novel Security
Intelligence Technologies (2022B1212010005).

A Proof of Sign Function Gate in Section 4.2

Proof. Given an unsigned integer x ∈ U2m and a signed integer x′ ∈ S2m such
that (x− rin) mod 2m = x′ mod 2m, the following relation holds:

(ĝ
[rin,rout]
sign,m,n(x)− rout) mod 2n = gsign,m,n(x

′) mod 2n

= 1− 2 · 1{x′ < 0} = 1− 2 ·MSB{(x− rin) mod 2m}
= 1− 2 ·MSB{(x+ 2m − rin) mod 2m}
= 1− 2 ·MSB{(x+ r) mod 2m} where r = (2m − rin) mod 2m

Let x = x[m−1] · 2m−1 + x[0,m−1) where x[0,m−1) = x[m−2]|| · · · ||x[0], r =
r[m−1] · 2m−1 + r[0,m−1) and r[0,m−1) = r[m−2]|| · · · ||r[0], it holds that:

(x+ r) mod 2m

=((x[m−1] · 2m−1 + x[0,m−1)) + (r[m−1] · 2m−1 + r[0,m−1))) mod 2m

=((x[m−1] + r[m−1]) · 2m−1 + (x[0,m−1) + r[0,m−1))) mod 2m

=((x[m−1] + r[m−1] + c) · 2m−1 + (x[0,m−1) + r[0,m−1) − c · 2m−1)) mod 2m

where c = 1{2m−1−1 < x[0,m−1)+r[0,m−1)} = 1{2m−1−x[0,m−1)−1 < r[0,m−1)}.
Thus, it holds that MSB{(x+r) mod 2m} = ((x[m−1]+r[m−1]+c)·2m−1) mod

2m = x[m−1] ⊕ r[m−1] ⊕ c.

FSS-based Secure Binarized Neural Network Inference 19

B Analysis of Computation Complexity

Online Computation Complexity. In the online phase, XONN [24], SecureBiNN [30],
FLEXBNN [15], and FSSiBNN all have the same order of magnitude of on-
line computation complexity since they all adopt the offline-online computa-
tion paradigm. However, XONN, SecureBiNN, and FLEXBNN only rely on
lightweight computation (e.g., addition and multiplication), whereas FSSiBNN
requires one calculation of EvalSignm,n per party in the online phase for comparison
(e.g., binary activation and max pooling), and EvalSignm,n includes m − 1 pseudo-
random number generator (PRG) calls where m is the input size of EvalSignm,n.
Thus, FSSiBNN needs to additionally evaluate m − 1 PRG. In practice, a typ-
ical three-layer BNN inference on the MNIST dataset requires roughly 12,900
EvalSignm,n calls. For the input m = 8 or 16, FSSiBNN requires local computa-
tion of 90,300 or 193,500 PRG calls per party. For the PRG implemented using
AES, using an estimate of 360 million AES calls per second on a single-core
3.6 GHz machine [5], local computation would take roughly 0.25ms and 0.54ms,
respectively, so there is no noticeable impact on inference time.

Offline Computation Complexity. In the offline phase, XONN [24] and FSSiBNN
(Ours) need to generate correlated randomness (e.g., multiplication triples and
DCF keys) to evaluate BNN, while SecureBiNN [30] and FLEXBNN [15] re-
quire smaller correlated randomness, which can be generated more efficiently
using 2PC-based or 3PC-based offline phases. Therefore, XONN and FSSiBNN
require more computation in the offline phase. Specifically, in FSSiBNN, the
offline protocol needs to generate the multiplication tuples for the multiplica-
tion operations and generate the DCF keys for the comparison operations. The
multiplication tuples are generated by directly using the VOLE-style OT gen-
eration scheme proposed in Ferret [28]. Considering the multiplication W ×R
where W ∈ Zd1×d2

2 ,R ∈ Zd2×d3
2n , we need d1d2 instances of OT, which require

d1d2(λ + nd3) bits of communication where λ is the security parameter. For
the DCF keys, we leverage the distributed generation scheme proposed in [5] to
generate these DCF keys. The communication and computation requirements of
the corresponding protocol will be dominated by the (n+ 1) secure evaluations
of the pseudo-random generators (PRG). Setting λ = 127 and instantiating the
PRG via two AES evaluations, as suggested previously, results in a necessary
2(n + 1) secure evaluations of AES. Depending on the hardware, network, and
on whether one targets semi-honest or malicious security, the throughput for
state-of-the-art 2PC of AES is roughly 100 ∼ 1000 instances per second, with
communication of roughly 200KB per instance [5].

C Evaluation and Analysis of Inference Accuracy

In this section, the inference accuracy of Network-A, Network-B, Network-C,
and LeNet on dataset MNIST is presented in Table 5, with plaintext inference

20 P. Yang et al.

accuracy reported for comparison. The difference in accuracy between plain-
text inference and private inference is 0.02% ∼ 0.07%, which is not significant,
indicating that our method hardly affects inference accuracy. This is because
we design the bitwidth encoding scheme in FSSiBNN to address multiplication
overflow and truncation issues, and implement an accurate secure comparison
protocol, ensuring that secure inference closely matches the computational ac-
curacy of plaintext inference.

Table 5. The comparison of private accuracy and plaintext accuracy

Dataset Model Plaintext Accuracy Private Accuracy (Ours)

MNIST Network-A 96.17% 96.15% (↓ 0.02%)
MNIST Network-B 97.02% 96.95% (↓ 0.07%)
MNIST Network-C 98.30% 98.25% (↓ 0.05%)
MNIST LeNet 98.27% 98.22% (↓ 0.05%)

References

1. Agrawal, N., Shahin Shamsabadi, A., Kusner, M.J., Gascón, A.: QUOTIENT: Two-
Party Secure Neural Network Training and Prediction. In: 2019 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1231–1247. ACM,
London UK (2019). https://doi.org/10.1145/3319535.3339819

2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More Efficient Oblivious Trans-
fer and Extensions for Faster Secure Computation. In: 2013 ACM SIGSAC con-
ference on Computer and Communications Security. pp. 535–548. ACM, Berlin
Germany (2013). https://doi.org/10.1145/2508859.2516738

3. Beaver, D.: Efficient Multiparty Protocols using Circuit Randomization. In: Ad-
vances in Cryptology — CRYPTO 1991. pp. 420–432. Springer, Berlin, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_34

4. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast Homomorphic Evaluation of
Deep Discretized Neural Networks. In: Advances in Cryptology — CRYPTO 2018.
pp. 483–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_
17

5. Boyle, E., Chandran, N., Gilboa, N., Gupta, D., Ishai, Y., Kumar, N., Rathee, M.:
Function Secret Sharing for Mixed-Mode and Fixed-Point Secure Computation.
In: Advances in Cryptology – EUROCRYPT 2021. pp. 871–900. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-77886-6_30

6. Boyle, E., Gilboa, N., Ishai, Y.: Function Secret Sharing. In: Advances in Cryp-
tology – EUROCRYPT 2015. pp. 337–367. Springer, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6_12

7. Boyle, E., Gilboa, N., Ishai, Y.: Function Secret Sharing: Improvements and Ex-
tensions. In: 2016 ACM SIGSAC Conference on Computer and Communications
Security. pp. 1292–1303. ACM, Vienna Austria (2016). https://doi.org/10.1145/
2976749.2978429

8. Boyle, E., Gilboa, N., Ishai, Y.: Secure Computation with Preprocessing via Func-
tion Secret Sharing. In: Theory of Cryptography Conference. pp. 341–371. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_14

9. Chen, X., Chen, Z., Dong, B., Wei, S., Chen, L., He, D.: FOBNN: Fast Oblivious
Binarized Neural Network Inference (2024), https://arxiv.org/abs/2405.03136

https://doi.org/10.1145/3319535.3339819
https://doi.org/10.1145/3319535.3339819
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.1007/978-3-030-36030-6_14
https://arxiv.org/abs/2405.03136

FSS-based Secure Binarized Neural Network Inference 21

10. Costan, V., Devadas, S.: Intel SGX Explained. Cryptology ePrint Archive, Paper
2016/086 (2016), https://eprint.iacr.org/2016/086

11. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized Neu-
ral Networks: Training Deep Neural Networks with Weights and Activations Con-
strained to +1 or -1 (2016), https://arxiv.org/abs/1602.02830

12. Dalskov, A., Escudero, D., Keller, M.: Secure Evaluation of Quantized Neural
Networks. Proceedings on Privacy Enhancing Technologies pp. 355–375 (2020).
https://doi.org/10.2478/popets-2020-0077

13. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty Computation
from Somewhat Homomorphic Encryption. In: Advances in Cryptology –
CRYPTO 2012. pp. 643–662. Springer, Cham (2012). https://doi.org/10.1007/
978-3-642-32009-5_38

14. Demmler, D., Schneider, T., Zohner, M.: ABY – A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation. In: Network and Distributed System
Security Symposium (2015), https://encrypto.de/papers/DSZ15.pdf

15. Dong, Y., Chen, X., Song, X., Li, K.: FLEXBNN: Fast Private Binary Neural
Network Inference with Flexible Bit-Width. IEEE Transactions on Information
Forensics and Security pp. 2382 – 2397 (2023). https://doi.org/10.1109/TIFS.2023.
3265342

16. Dong, Y., Xiaojun, C., Jing, W., Kaiyun, L., Wang, W.: Meteor: Improved Secure
3-Party Neural Network Inference with Reducing Online Communication Costs.
In: Proceedings of the ACM Web Conference 2023. pp. 2087–2098. ACM, Austin
TX USA (2023). https://doi.org/10.1145/3543507.3583272

17. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: 41st annual
ACM symposium on Theory of computing. pp. 169–178. ACM, Bethesda MD USA
(2009). https://doi.org/10.1145/1536414.1536440

18. Ibarrondo, A., Chabanne, H., Önen, M.: Banners: Binarized Neural Networks with
Replicated Secret Sharing. In: 2021 ACM Workshop on Information Hiding and
Multimedia Security. pp. 63–74. ACM, Virtual Event Belgium (2021). https://doi.
org/10.1145/3437880.3460394

19. Lindell, Y.: Secure Multiparty Computation. Communications of the ACM pp.
86–96 (2020). https://doi.org/10.1145/3387108

20. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious Neural Network Predictions via
MiniONN Transformations. In: 2017 ACM SIGSAC conference on computer and
communications security. pp. 619–631. ACM, Dallas Texas USA (2017). https:
//doi.org/10.1145/3133956.3134056

21. Liu, X., Wu, B., Yuan, X., Yi, X.: Leia: A Lightweight Cryptographic Neural Net-
work Inference System at the Edge. IEEE Transactions on Information Forensics
and Security pp. 237–252 (2022). https://doi.org/10.1109/TIFS.2021.3138611

22. Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi: A
cryptographic inference service for neural networks. In: 29th USENIX Security
Symposium. pp. 2505–2522. USENIX Association (2020), https://www.usenix.org/
conference/usenixsecurity20/presentation/mishra

23. Mohassel, P., Zhang, Y.: SecureML: A System for Scalable Privacy-Preserving
Machine Learning. In: 2017 IEEE Symposium on Security and Privacy. pp. 19–38.
IEEE, San Jose USA (2017). https://doi.org/10.1109/SP.2017.12

24. Riazi, M.S., Samragh, M., Chen, H., Laine, K., Lauter, K., Koushanfar, F.: XONN:
XNOR-based Oblivious Deep Neural Network Inference. In: 28th USENIX Security
Symposium. pp. 1501–1518. USENIX Association, Santa Clara, CA (2019), https:
//www.usenix.org/conference/usenixsecurity19/presentation/riazi

https://eprint.iacr.org/2016/086
https://arxiv.org/abs/1602.02830
https://doi.org/10.2478/popets-2020-0077
https://doi.org/10.2478/popets-2020-0077
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://encrypto.de/papers/DSZ15.pdf
https://doi.org/10.1109/TIFS.2023.3265342
https://doi.org/10.1109/TIFS.2023.3265342
https://doi.org/10.1109/TIFS.2023.3265342
https://doi.org/10.1109/TIFS.2023.3265342
https://doi.org/10.1145/3543507.3583272
https://doi.org/10.1145/3543507.3583272
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/3437880.3460394
https://doi.org/10.1145/3437880.3460394
https://doi.org/10.1145/3437880.3460394
https://doi.org/10.1145/3437880.3460394
https://doi.org/10.1145/3387108
https://doi.org/10.1145/3387108
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1109/TIFS.2021.3138611
https://doi.org/10.1109/TIFS.2021.3138611
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://www.usenix.org/conference/usenixsecurity19/presentation/riazi
https://www.usenix.org/conference/usenixsecurity19/presentation/riazi

22 P. Yang et al.

25. Shen, L., Dong, Y., Fang, B., Shi, J., Wang, X., Pan, S., Shi, R.: ABNN2: Secure
Two-party Arbitrary-Bitwidth Quantized Neural Network Predictions. In: 59th
ACM/IEEE Design Automation Conference. pp. 361–366. ACM, San Francisco
California USA (2022). https://doi.org/10.1145/3489517.3530680

26. Storrier, K., Vadapalli, A., Lyons, A., Henry, R.: Grotto: Screaming fast (2 + 1)-
PC for Z2n via (2, 2)-DPFs. In: 2023 ACM SIGSAC Conference on Computer and
Communications Security. pp. 2143–2157. ACM, Copenhagen Denmark (2023).
https://doi.org/10.1145/3576915.3623147

27. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-Party Secure Computation for
Neural Network Training. Proceedings on Privacy Enhancing Technologies pp. 26–
49 (2019). https://doi.org/10.2478/popets-2019-0035

28. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast Extension for
Correlated OT with Small Communication. In: 2020 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1607–1626. ACM, Virtual Event
USA (2020). https://doi.org/10.1145/3372297.3417276

29. Yao, A.C.C.: How to Generate and Exchange Secrets. In: 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986). pp. 162–167. IEEE (1986). https:
//doi.org/10.1109/SFCS.1986.25

30. Zhu, W., Wei, M., Li, X., Li, Q.: SecureBiNN: 3-Party Secure Computation
for Binarized Neural Network Inference. In: Computer Security–ESORICS 2022.
pp. 275–294. Springer, Cham (2022). https://doi.org/https://doi.org/10.1007/
978-3-031-17143-7_14

https://doi.org/10.1145/3489517.3530680
https://doi.org/10.1145/3489517.3530680
https://doi.org/10.1145/3576915.3623147
https://doi.org/10.1145/3576915.3623147
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/https://doi.org/10.1007/978-3-031-17143-7_14
https://doi.org/https://doi.org/10.1007/978-3-031-17143-7_14
https://doi.org/https://doi.org/10.1007/978-3-031-17143-7_14
https://doi.org/https://doi.org/10.1007/978-3-031-17143-7_14

	FSSiBNN: FSS-based Secure Binarized Neural Network Inference with Free Bitwidth Conversion

