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Abstract

We study the behavior of the multiplicative inverse function (which
plays an important role in cryptography and in the study of finite fields),
with respect to a recently introduced generalization of almost perfect
nonlinearity (APN), called kth-order sum-freedom, that extends a clas-
sical characterization of APN functions, and has also some relationship
with integral attacks. This generalization corresponds to the fact that
a vectorial function F : Fn

2 7→ Fm
2 sums to a nonzero value over every

k-dimensional affine subspace of Fn
2 , for some k ≤ n. The sum of the

values of the inverse function x ∈ F2n 7→ x2n−2 ∈ F2n over any affine
subspace A of F2n not containing 0 (i.e. being not a vector space) is easy
to address: there exists a simple expression of such sum which shows that
it never vanishes. We study in the present paper the case of a vector sub-
space (a linear subspace), which is much less simple to handle. We show
that the sum depends on a coefficient in subspace polynomials. We derive
several expressions of this coefficient. Then we study for which values of
k the multiplicative inverse function can sum to nonzero values over all
k-dimensional vector subspaces. We show that, for every k not co-prime
with n, it sums to zero over at least one k-dimensional F2-subspace of
F2n . We study the behavior of the inverse function over direct sums of
vector spaces and we deduce that the property of the inverse function to
be kth-order sum-free happens for k if and only if it happens for n − k.
We derive several results on the sums of values of the inverse function over
vector subspaces, addressing in particular the cases of dimension at most
3 (equivalently, of co-dimension at most 3). We leave other cases open
and provide computer investigation results.

Note: Some of the results in this paper have been presented without proof
in the Conference Fq15 (without proceedings), June 2023, Paris, France.
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1 Introduction

The important notion on (n,m)-functions F : Fn2 7→ Fm2 called almost perfect
nonlinearity (APNness) (see e.g. [10]) has been recently generalized in [11]:
given 2 ≤ k ≤ n and m, an (n,m)-function F is called kth-order-sum-free if, for
every k-dimensional affine subspace (i.e. k-flat) A of Fn2 , the sum of the values
taken by F over A is nonzero.

In the present paper, we study the behavior relative to this notion of the cur-
rently most important example of a vectorial function for cryptography, namely
the (multiplicative) inverse function, defined over F2n as

F (x) = x2
n−2,

that is, F (x) = 1
x , with the convention 1

0 = 0 (function F (x) will be in some
cases denoted by x−1, as it is usual). Recall that this function is used in the
S-boxes of the Advanced Encryption Standard (AES, see [16]), that is nowadays
the symmetric cryptosystem for civil use employed in all domains of every-day
life in the whole world (e.g. internet), and also in banking, etc. We shall recall
that it behaves in a particular way with respect to sum freedom, since it sums
to a nonzero value over every affine subspace of F2n over F2 that is not a vector
subspace. We study for which values of k it sums to nonzero values over all k-
dimensional vector spaces, which is a much more difficult problem, that we only
partially solve. It seems that the mathematical study of the sum of the inverse
function over all affine subspaces has never been made, while an algorithmic
approach exists in [17].

The paper is organized as follows. After preliminaries in Section 2, we give
in Section 3 some results on the so-called subspace polynomials that will be
useful in the whole paper. In Section 4, we recall an expression found in [11],
in the form of a ratio with a very simple numerator, of the sum of values taken
by the inverse function over affine spaces that are not vector spaces. This
expression shows that this sum is never zero. In the case of vector spaces,
finding a simple expression is more difficult. We give in Section 5 a rather well
structured expression, which is however not simple enough for allowing us to
determine all the pairs (n, k) for which the inverse function over F2n is kth-
order-sum-free. We address the case of F2l -subspaces of F2n where l ≥ 2 is a
divisor of n. We derive a formula valid for any direct sum of vector spaces, which
allows to prove that the inverse function is kth-order-sum-free if and only if it
is (n − k)th-order-sum-free. We deduce that, for every k not co-prime with n,
the multiplicative inverse function sums to zero over at least one k-dimensional
F2-subspace of F2n . We address a few other cases of k, and all vector spaces of
dimension at most 3 or of co-dimension at most 3 for every n, and all those of
dimension 4 or of co-dimension 4 when n is even.
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2 Preliminaries

Let n and m be two positive integers. The functions from Fn2 to Fm2 are
called (n,m)-functions and when n and m are not specified, they are called
vectorial functions. Every (n,m)-function F admits a unique algebraic nor-
mal form, that is, a representation as a multivariate polynomial in the algebra
Fm2 [x1, . . . , xn]/(x21 − x1, . . . , x2n − xn) of the form:

F (x) =
∑

I⊆{1,...,n}

aI
∏
i∈I

xi =
∑

I⊆{1,...,n}

aI x
I ; x = (x1, . . . , xn) ∈ Fn2 , aI ∈ Fm2 .

The global degree of this multivariate polynomial, that is, max{|I|; aI 6= 0}, is
called the algebraic degree of F and denoted by dalg(F ). Any vectorial function
F is affine (that is, satisfies F (x) + F (y) + F (z) + F (x + y + z) = 0 for every
x, y, z ∈ Fn2 ) if and only if it has an algebraic degree at most 1. Similarly, we call
quadratic a function having an algebraic degree at most 2. We write ”at most”
and not “equal to” to allow simplifying some statements. Note that thanks to
this definition, affine functions are particular quadratic functions. In general,
for some positive integer r, a function F has algebraic degree at most r if and
only if it sums to zero over every affine space of dimension k > r. In particular,
an (n,m)-function has (maximum) algebraic degree n if and only if it sums to
a nonzero value over Fn2 .
In the present paper, Fn2 will be endowed with the structure of the field F2n .
This is of course possible because F2n being an n-dimensional vector space over
F2, every element x ∈ F2n can be identified with the binary vector (x1, . . . , xn)
of its coordinates with respect to a fixed basis of F2n over F2. Then, (n, n)-
functions viewed from F2n to F2n can be uniquely represented by their univariate
representation:

F (x) =

2n−1∑
i=0

δix
i ∈ F2n [x]/(x2

n

+ x); δi ∈ F2n . (1)

Indeed, the function mapping such a polynomial of degree at most 2n − 1 to
the corresponding function from F2n to itself is linear injective, and its domain
and co-domain have the same dimension. The existence and uniqueness of this
representation extends to (n,m)-functions when m divides n (and in particular
to Boolean functions, for which m = 1), since F2m is then a subfield of F2n .
For m = n, we call power functions the functions of univariate representation
F (x) = xi. It can be proved (see e.g. [10]) that the algebraic degree of any
function F given by (1) equals the largest 2-weight w2(i) of those exponents i
whose coefficients δi are nonzero, where the 2-weight is the Hamming weight of
the binary expansion.
A vectorial function is called APN if it sums to nonzero values over all the
affine planes {x, y, z, x+y+z} of the vector space Fn2 over F2. This leads to the
generalization called kth-order sum-freedom, in which the dimension 2 of affine
planes is replaced by dimension k ≤ n.
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3 Preliminary results involving linearized poly-
nomials

3.1 Subspace polynomials

Let Ek be any k-dimensional F2-subspace of F2n (i.e. an element of the Grass-
mannian space of index k over F2n). Then it is well-known that the function

LEk(x) =
∏
u∈Ek

(x+ u) (2)

is F2-linear (i.e. is a linearized polynomial). It is the only normalized poly-
nomial of degree 2k whose zeros are the elements of Ek. Polynomials of this
form are often called subspace polynomials over F2n (and sometimes specified
as kernel-subspace polynomials or subspace-vanishing polynomials); they play
roles in many domains of discrete applied mathematics and coding theory (e.g.
finding an element of high multiplicative order in a finite field), affine dispersers
and extractors (i.e. Boolean functions that behave pseudorandomly when their
domain is restricted to any particular affine space of a dimension bounded from
below1), computational complexity, sub-linear proof verification, cyclic subspace
codes for random network coding, the list decoding of Reed-Solomon codes and
rank-metric codes, see [1, 2, 4, 5, 6, 7, 14, 15, 20, 22, 23, 25, 28, 29, 32, 33, 34].
They are those normalized linearized polynomials over F2n which split over F2n

and have simple zeros (equivalently, which divide x2
n

+x, and still equivalently,
whose kernel size in F2n equals the degree).

Remark. The coefficient of x in LEk(x) equals
∏
u∈Ek,u6=0 u 6= 0. Every nor-

malized linearized polynomial over F2n is a subspace polynomial over some
Galois extension of F2n if and only if its coefficient of x is nonzero, but we are
interested in the subspace polynomials over F2n precisely. �

If Ek is defined as the kernel of some linearized polynomial L(x) over F2n ,
then LEk(x) = gcd(L(x), x2

n

+ x) and if L(x) splits over F2n , then L(x) =
(LEk(x))2

r

for some r. It is also observed (for instance in [4]) that the image
spaces of all subspace polynomials of degree 2k are all the (n− k)-dimensional
vector subspaces of Fn2 (and are then also viewed in [4] as so-called image-
subspace polynomials). Moreover, if the image space of LEk equals E′n−k then
the image space of LE′n−k equals Ek (we shall recall the proof of this fact below)

and LEk ◦ LE′n−k(x) = LE′n−k ◦ LEk(x) = x2
n

+ x.

Given a basis (a1, . . . , an) of Fn2 , the sequence (LEk)2≤k≤n where Ek equals
the vector-space < a1, . . . , ak > satisfies a recurrence relation: for k ≥ 2,
assuming that LEk−1

is linear, we have LEk(x) = LEk−1
(x)LEk−1

(x + ak) =

1In the case of dispersers, these restrictions must be non-constant, and in the case of
extractors, they must lie at a Hamming distance from balanced functions which is bounded
above by some given number.
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LEk−1
(x)
(
LEk−1

(x) + LEk−1
(ak)

)
, and therefore:

LEk(x) =
(
LEk−1

(x)
)2

+ LEk−1
(ak)LEk−1

(x) (3)

is also linear. Note that Relation (3) is also valid for k = 1 if we assume
that L0(x) = x. This is how can be checked by induction that LEk is linear.
Moreover, LEk(x) equals, up to a multiplicative contant, the determinant of the
matrix: 

x x2 . . . x2
k

a1 a21 . . . a2
k

1
...

... . . .
...

ak a2k . . . a2
k

k

 .
When k divides n and Ek = F2k , we have LEk(x) = x2

k

+ x. More gener-

ally, for every l ≤ n, if L(x) = x2
l

+ x, then gcd(L(x), x2
n

+ x) = x2
k

+ x with
k = gcd(l, n). And denoting Fk = L(F2n), it is easily seen that LFk(x) = trnk (x),
where trnk (x) is the trace function from F2n to F2k .

Remark. c := LEk−1
(ak) is the unique nonzero element of LEk−1

(Ek) (since

Ek \Ek−1 = ak +Ek−1), and we have trn

(
LEk (x)

c2

)
= 0 for every x ∈ F2n , since

LEk (x)

c2 =
(
LEk−1

(x)

c

)2
+

LEk−1
(x)

c . Hence, Im(LEk) = LEk(F2n) is included in

the hyperplane {0, 1
c2 }
⊥ = {x ∈ F2n ; trn(xy) = 0,∀y ∈ {0, 1

c2 }}. In fact, Ek and
LEk being invariant when changing the order in which we write the elements of
the chosen basis of Ek, we can obtain this way several elements in the dual of
Im(LEk). �

Remark. Let L∗Ek(x) =
∑k
i=0(bix)2

n−i
be the adjoint operator of LEk =∑k

i=0 bix
2i , satsifying L∗Ek(u)·x = u·LEk(x),∀u, x ∈ F2n (where u·x = trn(ux)).

For every u ∈ F2n and x ∈ Ek, we have then L∗Ek(u) · x = 0 and the image set

of L∗Ek is then included in E⊥k . Since these two vector spaces have the same
dimension (because LEk and L∗Ek are known to have the same rank), we have

then Im(L∗Ek) = E⊥k . �

Remark. Let E and F be two vector-spaces having a trivial intersection. Then,
denoting by E⊕F their direct sum, we have LE⊕F (x) =

∏
u∈E;v∈F L(x+u+v) =∏

v∈F LE(x+ v) =
∏
v∈F (LE(x) + LE(v)) = LLE(F )(LE(x)). �

3.1.1 Main known properties of subspace polynomials

Despite the number of papers where subspace polynomials are addressed and
used, little is known on them. Let us summarize:

- Of course, as observed in [1], we have that LαE(x) = α2kLE(α−1x) for every
α ∈ F∗2n , and that applying the Frobenius automorphism to E results in apply-
ing it to each coefficient in LE(x). It is also proved in this same paper that,
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given two vector subspaces E and E′ such that dim(E) = k ≥ dim(E′) = k′,
denoting by 2j (resp. 2j

′
) the second highest degree of the monomials in

LE(x) (resp. LE′(x)), we have dim(E ∩ E′) ≤ r = max(j, j′ + k − k′). This
is a direct consequence of the relations LE∩E′(x) = gcd(LE(x), LE′(x)) =

gcd(LE(x), (LE′(x))2
k−k′

) = gcd(LE(x), LE(x)+(LE′(x))2
k−k′

) and deg(LE(x)+

(LE′(x))2
k−k′

) ≤ 2r (the second equality above coming from the fact that LE(x)
splits and has simple zeros).
- It is observed in [4] that at least one coefficient is nonzero among any n − k
consecutive coefficients bi in LEk(x), which is straightforward by considering

gcd(x2
n

+ x, (LEk(x))2
j

) for some j, since a nonzero polynomial of degree less
than 2k cannot have 2k zeros.
- It is shown in [7, 4] that, if E is an F2-vector subspace of F2n and E′ = LE(F2n),
then E = LE′(F2n). Indeed, the monic (formal) polynomial LE′ ◦ LE(X) ∈
F2n [X] having degree 2n and vanishing on F2n equals X2n +X. Hence, we have
LE ◦LE′ ◦LE(X) = LE(LE′ ◦LE(X)) = LE(X2n +X) = LE(X2n) +LE(X) =
(LE(X))2

n

+LE(X) and the polynomial φ(X) = LE ◦LE′(X) +X2n +X com-
posed on the right by LE(X) equals then the zero polynomial in F2n [X]. This
implies that φ(X) is the zero polynomial since otherwise, denoting its degree by

d, the term inX2kd could not be cancelled in the polynomial φ◦LE(X) ∈ F2n [X].
The equality LE ◦LE′(X) = X2n+X implies that LE′(F2n) is included in E and
this completes the proof since these two vector spaces have the same dimension
by the fundamental theorem of linear algebra. Note that this then proves that
LE′ and LE commutate (which is not straightforward from their definitions). A
particular case is when r divides n and E = F2r . Then LE(x) = x2

r

+ x, E′ =
ker(trnr ), LE′(x) = trnr (x) and E ∩ E′ = {x2r + x;x ∈ F2gcd(2r,n)} is trivial if n

r
is odd and non-trivial if n

r is even.
- The linearized polynomials LEk are characterized in [15, 23] by means of com-
panion matrices.

3.2 Particular case of subspace polynomials with coeffi-
cients in F2

The linearized polynomial LEk(x) has all its coefficients in F2 if and only if Ek
is invariant under the Frobenius automorphism x 7→ x2. We know, see [20],

that such a linearized polynomial
∑k
i=0 bix

2i , bi ∈ F2, is a divisor of x2
n

+ x if

and only if the so-called associated polynomial
∑k
i=0 bix

i is a divisor of xn + 1.
If n is odd then we know, see [21], that this is equivalent to the fact that it
is the generator polynomial of a binary cyclic code of length n, and it equals
the product of minimal polynomials Mj(x) =

∏
i∈Cj (x + βi), where j ranges

over a set of representatives of cyclotomic classes Cj = {j, 2j, 22j, . . . } in Z/nZ
and β is a primitive nth root of unity in F2m , where m is the smallest positive
integer such that n divides 2m − 1. Note that the number of these cyclotomic
classes (and hence, the maximal number of the minimal polynomials which
are factors of LEk(x)) may be as small as 2 (this happens with some primes:
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n = 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, . . . ).

4 Sums of the values taken by the inverse func-
tion over affine spaces not containing 0

In [11], we obtained an explicit expression of the sum of the values of the multi-
plicative inverse function taken over affine subspaces of F2n that are not vector
subspaces, which allowed us to prove that such sum is always nonzero. We recall
this result after briefly recalling how it was obtained.
Let Ek still be any k-dimensional vector subspace of F2n . According to (3),
LEk(x) has the form:

LEk(x) =
k∑
i=0

bk,ix
2i , (4)

where bk,k = 1 and bk,i = b2k−1,i−1 + LEk−1
(ak) bk−1,i, for every i = 0, . . . , k,

with the convention bk−1,−1 = 0.
The only monomial in (4) having a nonzero derivative (here we mean the clas-
sical derivative of a polynomial function) is x. We have then that L′Ek(x)
equals the constant polynomial bk,0 =

∏
u∈Ek,u 6=0 u 6= 0. We also have, by

the application of the classical formula on the derivative of a product, that
L′Ek(x) =

∑
u∈Ek

∏
v∈Ek,v 6=u(x + v) and for x 6∈ Ek, this gives L′Ek(x) =(∑

u∈Ek
1

x+u

)
LEk(x). We deduced then:

Theorem 1 [11] For every 0 ≤ k ≤ n, let Ek be any k-dimensional F2-subspace
of F2n and let F (x) = x2

n−2 = x−1 be the multiplicative inverse function over
F2n . We have:

∀x 6∈ Ek,
∑
u∈Ek

F (x+ u) =
∑
u∈Ek

1

x+ u
=

∏
u∈Ek,u 6=0 u∏
u∈Ek(x+ u)

=
bk,0

LEk(x)
6= 0, (5)

where LEk(x) =
∏
u∈Ek(x+ u) and bk,0 is its coefficient of x.

5 Sums of the values taken by the inverse func-
tion over vector subspaces of F2n

Let us now study the value of
∑
u∈E F (x+ u) when x ∈ E (hence, without loss

of generality, when x = 0). It equals
∑
u∈Ek,u 6=0

1
u and we would like to have a

closed form as in the case x 6∈ Ek.

Remark. Theorem 1 shows that, for every F2-vector subspace E of F2n such
that

∑
u∈E,u6=0

1
u = 0 and every linear hyperplane H of E (that is, any vector

subspace of E of co-dimension 1), the inverse function does not sum to 0 over
H. Indeed, according to Theorem 1, it does not sum to 0 over the complement
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of H in E (which is a coset). Hence, if the inverse function is neither kth-order
free nor (k− 1)th-order free, the (k− 1)-dimensional vector space over which it
sums to zero cannot be a subspace of the k-dimensional vector space over which
it sums to zero.
Similarly, for every vector subspace F of F2n whose E is a hyperplane, the
inverse function does not sum to 0 over F . Indeed, it does not sum to 0 over
the complement of E in F .
In particular, for every divisor m ≥ 2 of n, every linear hyperplane H of F2m

and every (m + 1)-dimensional vector subspace F containing F2m , the inverse
function does not sum to 0 over H nor over F . �

5.1 Relation with subspace polynomials

5.1.1 Relating the sum of inverses over Ek and bk,1

Let φk(x) =
∏
u∈Ek,u 6=0(x + u) and φ0(x) = 1. According to Relation (4), we

have φk(x) =
∑k
i=0 bk,ix

2i−1. Then φk(0) =
∏
u∈Ek,u6=0 u = bk,0 and φ′k(x) =∑k

i=1 bk,ix
2i−2 and therefore φ′k(0) = bk,1, while the formula on the derivative

of a product gives φ′k(x) =
∑

u∈Ek,u 6=0

∏
v 6=0,v 6=u

(x+ v) and then

∑
u∈Ek,u6=0

1

u
=
φ′k(0)

φk(0)
=
bk,1
bk,0

. (6)

Proposition 1 Let E be any F2-subspace of F2n . The sum
∑
u∈E,u 6=0

1
u is equal

to 0 if and only if the coefficient of x2 in the linearized polynomial LE(x) =∏
u∈E(x+ u) equals 0.

According to Proposition 1, studying the kth-order-sum-freedom of the inverse
function results in studying if some linearized polynomials of degree 2k can have
their coefficient of x nonzero, their coefficient of x2 equal to 0, and 2k distinct
zeros in F2n . The results of [25, 33, 34] may be helpful from this regard but
they do not allow to really solve the general problem.

Remark. Another viewpoint on Proposition 1, which sheds a different light on
the result, is as follows. The relation

∑k
i=0 bk,ix

2i = 0 is satisfied by every ele-

ment of Ek. Dividing this relation by bk,0x
2 for x 6= 0 gives x−1 =

∑k
i=1 bk,ix

2i−2

bk,0
.

Since 0−1 = 0 and
∑k
i=1 bk,ix

2i−2

bk,0
equals

bk,1
bk,0

for x = 0, we have then, for every

x ∈ Ek: x−1 =
bk,1δ0(x)+

∑k
i=1 bk,ix

2i−2

bk,0
, where δ0(x) = x2

n−1 + 1 is the Dirac

(or Kronecker) symbol, and this latter function on Ek, viewed as a k-variable
Boolean function, has algebraic degree k (and hence sums to a nonzero value
over Ek) if and only if bk,1 6= 0. �
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5.1.2 Generalization

Proposition 2 Let c1, . . . , cn−1 be elements of F2n . If a k-dimensional vector
space Ek is included in a vector space E′ of equation:

x =

n−1∑
j=1

cjx
2j , (7)

then we have: ∑
u∈Ek

u−1 = c1 +

n−1∑
j=k+1

cj

( ∑
u∈Ek

u2
j−2
)
. (8)

Proof. Relation (7) implies, for every x ∈ Ek \{0} and after division by x2, that

x−1 =
∑n−1
j=1 cjx

2j−2. We deduce
∑
u∈Ek u

−1 =
∑n−1
j=1 cj

(∑
u∈Ek\{0} u

2j−2
)

.

For j = 1,
∑
u∈Ek\{0} u

2j−2 equals the sum modulo 2 of 2k − 1 elements equal

to 1, and therefore equals 1. For j ≥ 2, the exponent 2j − 2 ≥ 2 has 2-weight
j − 1 and x2

j−2 has then algebraic degree j − 1. We know that a vectorial
function of algebraic degree less than k sums to zero over Ek. We have then∑
u∈Ek\{0} u

2j−2 =
∑
u∈Ek u

2j−2 = 0 if 2 ≤ j ≤ k. The proof is complete. 2

Note that the hypothesis of Proposition 2 is always satisfied with E′ = Ek,
for which, since bk,0 6= 0, we have cj =

bk,j
bk,0

for j = 1, . . . , k and ck+1 = · · · =

cn−1 = 0. Then we recover the result of Proposition 1.
The result of Proposition 2 is of course much more general than that of

Proposition 1, but finding cases of application leading to new results seems
challenging.

Indeed, in some cases, the result of Proposition 2 does not give anything
new:
(i) When Ek is a subspace of Ek+1 and we apply firstly Proposition 2 with

cj =
bk+1,j

bk+1,0
for j = 1, . . . , k + 1 and ck+2 = · · · = cn−1 = 0, and secondly

Relation (6) with k + 1 in the place of k, we get:∑
u∈Ek

u−1 =
bk+1,1

bk+1,0
+

1

bk+1,0

( ∑
u∈Ek

u2
k+1−2

)
=

∑
u∈Ek+1

u−1+
1

bk+1,0

( ∑
u∈Ek

u2
k+1−2

)
,

and this only provides an alternative expression for
∑
u∈Ek+1\Ek u

−1, which we
know is non-zero.
(ii) When c1 = · · · = cl−1 = cl+1 = · · · = cn−1 = 0 and cl = 1, then Ek
being a subspace of the vector space of equation x = x2

l

, that is of the field

F2gcd(l,n) , we have that k ≤ gcd(l, n) and
∑
u∈Ek u

−1 =
∑
u∈Ek u

2l−2 equals∑
u∈Ek u

2gcd(l,n)−2 (since we have u2
l

= u = u2
gcd(l,n)

in F2gcd(l,n)) and this only

tells us that addressing
∑
u∈Ek u

−1 can be made within the subfield F2gcd(l,n) ,
which is obvious. Changing cl = 1 into cl 6= 0 does not change much the
situation (then F2gcd(l,n) is simply replaced by λF2gcd(l,n) for some λ).
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There are examples where we get some new information but saying whether
the inverse functions sums to zero over Ek is still difficult after having these
results:
(i’) When Ek is a subspace of Ek+2 and cj =

bk+2,j

bk+2,0
for j = 1, . . . , k + 2 and

ck+3 = · · · = cn−1 = 0. We obtain that∑
u∈Ek

u−1 =
bk+2,1

bk+2,0
+
bk+2,k+1

bk+2,0

( ∑
u∈Ek

u2
k+1−2

)
+

1

bk+2,0

( ∑
u∈Ek

u2
k+2−2

)
=

∑
u∈Ek+2

u−1 +
bk+2,k+1

bk+2,0

( ∑
u∈Ek

u2
k+1−2

)
+

1

bk+2,0

( ∑
u∈Ek

u2
k+2−2

)
.

(ii’) When ck+1 = · · · = cl−1 = cl+1 = · · · = cn−1 = 0 and cl 6= 0, that is, when

E′ has equation x = clx
2l +

∑k
j=1 cjx

2j , for some c1, . . . , ck, cl ∈ F2n , then (8)

writes
∑
u∈Ek u

−1 = c1 + cl
∑
u∈Ek u

2l−2, while Ek is no more a subspace of a
subfield of F2l (in fact, l needs no more to be a divisor of n), and to show that the
inverse function sums to zero over Ek, it is sufficient to find c1, . . . , ck, cl ∈ F2n

such that Ek ⊆ E′ and c1 = cl
∑
u∈Ek u

2l−2. A particular case to be looked at

is when c1 =
∑
u∈Ek u

2l−2 = 0. Note that
∑
u∈Ek u

2l−2 =
∑
x∈F2n

1Ek(x)x2
l−2

equals the coefficient of x2
n+1−2l in the univariate form of 1Ek(x).

5.2 On the expression of the sum by means of a basis of
the vector subspace

The previous subsection only produces a link between the sum of inverses on a
vector space and the coefficients of its subspace polynomial. Unlike the case of
affine spaces, this connection does not provide a solution so far, and it may only
shift the problem. To go further in this direction, we would need a concrete
expression for bk,1. This is what we are working on in the present subsection.
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5.2.1 An expression as a sum of k terms

Relation (3) gives:

φk(x) = x (φk−1(x))
2

+ LEk−1
(ak)φk−1(x)

= x (φk−1(x))
2

+
φk(0)

φk−1(0)
φk−1(x),

φk(0) = LEk−1
(ak)φk−1(0) = akφk−1(ak)φk−1(0),

φ′k(0) = (φk−1(0))
2

+
φk(0)

φk−1(0)
φ′k−1(0),

φ′k(0)

φk(0)
=

(φk−1(0))
2

φk(0)
+
φ′k−1(0)

φk−1(0)
=

φk−1(0)

akφk−1(ak)
+
φ′k−1(0)

φk−1(0)
= . . .

=

k∑
i=1

φi−1(0)

aiφi−1(ai)
,

this latter expression being obtained by iteration and using that φ0(x) = 1.
Relation (6) gives then:

Proposition 3 Let a1, . . . , ak be linearly independent elements of F2n and Ek =
〈a1, . . . , ak〉 the vector space over F2 spanned by a1, . . . , ak. We have:

∑
u∈Ek,u6=0

1

u
=

k∑
i=1

∏
u∈Ei−1,u 6=0 u∏
u∈Ei−1

(ai + u)

=
1

a1
+

a1
a2(a2 + a1)

+
a1a2(a1 + a2)

a3(a3 + a1)(a3 + a2)(a3 + a1 + a2)
+ · · ·+∏

u∈Ek−1,u 6=0 u∏
u∈Ek−1

(ak + u)
.

This provides an expression of
∑
u∈Ek,u6=0

1
u as a sum of k terms (that are all

nonzero), which is more compact than the sum of 2k − 1 terms provided by
its definition, but does not seem useful for deducing any indication on when∑
u∈Ek,u6=0

1
u vanishes (except that if the sum of inverses is zero on Ek then

it is nonzero on Ek−1 and on Ek+1). Moreover, it is not well structured (in
particular, the fact that

∑
u∈Ek,u 6=0

1
u is a symmetric function in a1, . . . , ak is

hidden by the formula).

5.2.2 An expression involving more terms but better structured

We observe that, since φk+1(0) = φk(0)LEk(ak+1) = φk(0) ak+1 φk(ak+1), and
since ak+1 can vary in this expression2 and can then play the role of a variable

2It varies outside Ek, but this makes enough points for an interpolation since the degree
2k of φk+1(0) viewed as a polynomial in ak+1 is less than the size of the complement of Ek;
this restriction on the domain of ak+1 therefore does not induce any limitation.
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x, the expression of φk(x) can be obtained by replacing k by k + 1 in any
expression we have for φk(0) and ak+1 by x in φk+1(0) and dividing by xφk(0).
The coefficient of x in φk(x) (that is, the value of φ′k(0)) will then be directly
deduced.
For this, we need an expression of φk(0), in a form as closed as possible. Note
that we have φ2(0) = a1a2(a1 + a2) = a21a2 + a1a

2
2 = Da1Da2P2(x), where

Pk(x) = x2
k−1, and φ3(0) = a1a2a3(a1 + a2)(a1 + a3)(a2 + a3)(a1 + a2 + a3) =

a1a
2
2a

4
3+a1a

4
2a

2
3+a21a2a

4
3+a21a

4
2a3+a41a2a

2
3+a41a

2
2a3 = Da1Da2Da3P3(x). In the

next theorem, we prove that φk(0) = Da1 . . . DakPk(x) for every k. This result
has its own interest since it relates the product bk,0 of the nonzero elements of
Ek to a derivative (while a derivative is naturally related to a sum of values).
We deduce an expression of bk,1.

Theorem 2 Let 2 ≤ k ≤ n. Let Gk be the set of bijective functions from
{1, . . . , k} to {0, . . . , k− 1} and G′k the set of bijective functions from {1, . . . , k}
to {0, 2, . . . , k}. Let Ek be any k-dimensional F2-subspace of Fn2 and (a1, . . . , ak)

a basis of Ek. Let Pk(x) = x2
k−1. Then, denoting φk(x) =

∏
u∈Ek,u 6=0(x+u) =∑k

i=0 bk,ix
2i−1 and Lk(a1, . . . , ak) =

∑
σ∈Gk

∏k
i=1 a

2σ(i)

i and L̃k(a1, . . . , ak) =∑
σ∈G′k

∏k
i=1 a

2σ(i)

i , we have, for every x ∈ F2n :

φk(0) =
∏

l∈Fk2 ,l 6=0

(
k∑
i=1

liai

)
= Da1 . . . DakPk(x) = Lk(a1, . . . , ak), (9)

φk(x) =

∑
σ∈Gk+1

(∏k
i=1 a

2σ(i)

i

)
x2

σ(k+1)−1

φk(0)
, (10)

and

∑
u∈Ek,u 6=0

1

u
=
φ′k(0)

φk(0)
=

∑
σ∈G′k

∏k
i=1 a

2σ(i)

i

(φk(0))
2 =

L̃k(a1, . . . , ak)

(Lk(a1, . . . , ak))
2 . (11)

Proof. Relation (9) has been already proved in [11]. Let us show it in a
slightly more direct way. We first observe that the polynomial Da1 . . . DakPk(x)
is constant since Pk(x) has algebraic degree k. We shall then fix x = 0.

We have φk(0) = bk,0 =
∏
u∈Ek,u 6=0 u =

∏
l∈Fk2 ,l 6=0

(∑k
i=1 liai

)
. The value

Da1 . . . DakPk(0) equals 0 when a1 . . . , ak are F2-linearly dependent (this is

true for any polynomial). Hence, each of the factors of
∏
l∈Fk2 ,l 6=0

(∑k
i=1 liai

)
(which are pairwise co-prime multivariate polynomials in a1, . . . , ak) divides
Da1 . . . DakPk(0). The set of multivariate polynomials over F2n in a1, . . . , ak be-

ing an integral domain and a unique factorization domain,
∏
l∈Fk2 ,l 6=0

(∑k
i=1 liai

)
divides then Da1 . . . DakPk(0).

The two multivariate polynomials
∏
l∈Fk2 ,l 6=0

(∑k
i=1 liai

)
and Da1 . . . DakPk(0)
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are monic. To show they are equal, we only need then to show that they

have the same degree. The degree of
∏
l∈Fk2 ,l 6=0

(∑k
i=1 liai

)
equals 2k − 1.

We have Pk(x) =
∏k
i=1 Li(x), where Li(x) = x2

i−1

is linear, which implies

Da1 . . . DakPk(x) =
∑
σ∈Sk

∏k
i=1 Lσ(i)(ai), where Sk is the symmetric group

over {1, . . . , k}. We have then Da1 . . . DakPk(x) = Lk(a1, . . . , ak). This proves
that Da1 . . . DakPk(0) has also degree 2k − 1 as a polynomial in a1, . . . , ak and
it completes the proof of Relation (9).
Relation (10) is deduced by replacing k by k + 1 and ak+1 by x (see the obser-
vations made before the theorem; note that even when x ∈ Ek, it is valid since
it writes 0 = 0 if x 6= 0 and is correct too if x = 0).
Relation (11) is obtained by calculating the derivative of both sides in (10):

φ′k(0) =

∑
σ∈Gk+1;σ(k+1)=1

(∏k
i=1 a

2σ(i)

i

)
φk(0)

. 2

5.2.3 More on L and L̃

The univariate polynomial Lk+1(a1, . . . , ak, x) is divisible by LEk(x), where
Ek is the vector space generated by a1, . . . , ak. Indeed (see above), the con-
stant function Da1 . . . Dak+1

Pk+1(x) vanishes when a1, . . . , ak+1 are linearly
dependent and therefore, Lk+1(a1, . . . , ak, x) vanishes when x is linearly de-
pendent of a1, . . . , ak, which implies that all the elements of Ek are zeros of
Lk+1(a1, . . . , ak, x). Hence, since Lk+1(a1, . . . , ak, x) and LEk(x) have the same
degree 2k, the normalized version of Lk+1(a1, . . . , ak, x) is equal to LEk(x) and,

since according to the expression of L, the coefficient of x2
k

in Lk+1(a1, . . . , ak, x)
equals Lk(a1, . . . , ak), we have:

Lk+1(a1, . . . , ak, x)

Lk(a1, . . . , ak)
= LEk(x).

Assuming now that L̃k(a1, . . . , ak) = 0, let us fix a1, . . . , ak−1 and consider the

univariate polynomial function x ∈ F2n 7→ L̃k(a1, . . . , ak−1, x). This linearized
polynomial has for zeros the elements of the F2-vector space Ek generated by
a1, . . . , ak (indeed3, all these 2k elements are zeros and L̃k(a1, . . . , ak−1, x) has

degree 2k). Hence, LEk(x) =
∏
l∈Fk2

(
x+

∑k
i=1 liai

)
divides L̃k(a1, . . . , ak−1, x),

and since these two polynomials have the same degree, the normalized ver-

sion of L̃k(a1, . . . , ak−1, x) equals LEk(x). Note that the coefficient of x2
k

in

L̃k(a1, . . . , ak−1, x) equals L̃k−1(a1, . . . , ak−1), by the definition of this polyno-
mial. We have then:

L̃k(a1, . . . , ak−1, x)

L̃k−1(a1, . . . , ak−1)
= LEk(x).

We deduce:

3Note that this implies that L̃k(a1, . . . , ak−1, x) is nonzero at any input x lying outside
Ek.
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Corollary 1 For every positive integers 2 ≤ k ≤ n and every F2-linearly inde-
pendent elements a1, . . . , ak of F2n , the following statements are equivalent:

1.
∑
u∈Ek,u 6=0

1
u = 0, where Ek is the vector space spanned by a1, . . . , ak,

2. L̃k(a1, . . . , ak) = 0,

3. The polynomials L̃k(a1, . . . , ak−1, x) and
(
L̃k−1(a1, . . . , ak−1)

)
LEk(x) are

equal,

Corollary 1 provides the values of the coefficients bk,i of the linearized polyno-
mial LEk(x) in the case that

∑
u∈Ek,u6=0

1
u = 0. Moreover, in this same case, the

function (a1, . . . , ak, x) 7→ bk,0 LEk(x) = Lk(a1, . . . , ak)LEk(x) equals as we saw

already
∏
l∈Fk2

(
x+

∑k
i=1 liai

)∏
l∈Fk2

(∑k
i=1 liai

)
, that is, Lk+1(a1, . . . , ak, x).

5.2.4 Some more observations

We now make a series of remarks, which are not essential to the rest of the
paper, but which may help subsequent research addressing values of (k, n) not
treated in the present work.

Remark. Another way of proving Relation (11) is as follows:
∑
σ∈G′k

∏k
i=1 a

2σ(i)

i

can be derived from Lk(a1, . . . , ak) =
∑
σ∈Gk

∏k
i=1 a

2σ(i)

i =
∏
ε∈Fk2 ,ε 6=0(

∑k
i=1 εiai)

as
∑k
i=1 ai

(
∂Lk(a1,...,ak)

∂ai

)2
=
∑k
i=1 ai

∑
ε∈Fk2 ,ε 6=0 εi

(∏
η∈Fk2 ,η 6=0,ε(

∑k
i=1 εiai)

)2
=∑

ε∈Fk2 ,ε 6=0(
∑k
i=1 aiεi)

(∏
η∈Fk2 ,η 6=0,ε(

∑k
i=1 εiai)

)2
=

(Lk(a1, . . . , ak))2
∑

ε∈Fk2 ,ε 6=0

1∑k
i=1 εiai

= (Lk(a1, . . . , ak))2
∑

u∈Ek,u 6=0

1

u
,

where in the two last expressions, we assume that a1, . . . , ak are linearly inde-
pendent. �

Remark. Let LEk(x) = x2
k

+
∑k−1
l=0 bk,l x

2l , then each ai, for i = 1, . . . , k,

satisfies a2
k

i =
∑k−1
l=0 bk,l a

2l

i , and the expression
∑
σ∈G′k

∏k
i=1 a

2σ(i)

i equals:

k∑
i=1

∑
σ∈G′k;σ(i)=k

 ∏
j∈{1,...,k}\{i}

a2
σ(j)

j

(k−1∑
l=0

bk,l a
2l

i

)
.

If bk,1 = 0, it vanishes since, after the expansion of this latter expression, each
monomial in a1, . . . , ak appears twice with the same coefficient. This is coherent
with (11).
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Remark. We can divide L̃k(a1, . . . , ak) =
∑
σ∈G′k

∏k
i=1 a

2σ(i)

i by Lk(a1, . . . , ak) =∑
σ∈Gk

∏k
i=1 a

2σ(i)

i . Indeed, the latter divides the former, since L̃k(a1, . . . , ak)
is divisible by each ai, it is multi-linear, and it equals 0 when two variables ai
and aj are equal; it is then invariant under any transformation of the form
ai 7→ ai +

∑
j 6=i εjaj , j 6= i, εj ∈ F2 and it is therefore divisible by any

nonzero linear combination of the variables. But it seems difficult to determine
Q(a1, . . . , ak) = L̃k(a1,...,ak)

Lk(a1,...,ak) for the generic value of k. Moreover, we calculated

Q(a1, . . . , ak) for k = 2, 3, 4, and it has a more complex expression (although of

lower degree) than L̃k(a1, . . . , ak):

For k = 2, we have L̃2(a1, a2) = a41a2 + a1a
4
2 and Q(a1, a2) = a21 + a1a2 + a22 =

(a1 + wa2)(a1 + w2a2), where w is a primitive element of F4 (if n is odd, then
we consider this latter product as over F22n). We find again that it can vanish
if and only if n is even.
For k = 3, we have L̃3(a1, a2, a3) =

∑
s∈S3

a8s(1)a
4
s(2)as(3) and Q(a1, a2, a3) =

(
∑
s∈S3

a4s(1)a
2
s(2))+a1a2a3(

∑3
i=1 a

3
i )+(a21a

2
2a

2
3) where S3 is the symmetric group

over {1, 2, 3}.
For k = 4, we have L̃4(a1, a2, a3, a4) =

∑
s∈S4

a16s(1)a
8
s(2)a

4
s(3)as(4) and

Q(a1, a2, a3, a4) =

( ∑
s∈S4

a8s(1)a
4
s(2)a

2
s(3)

)
+
(
a1a2a3a4

4∑
i 6=j=1

a7i a
3
j

)
+

(
a21a

2
2a

2
3a

2
4

4∑
i=1

a6i

)
+
(
a21a

2
2a

2
3a

2
4

4∑
i=1

∏
j 6=i

a2j

)
,

where S4 is the symmetric group over {1, 2, 3, 4}.
For showing that the multiplicative inverse (n, n)-function is not kth-order sum-

free for some value of k, we can either try to prove that L̃k(a1, . . . , ak) vanishes
for at least one k-tuple (a1, . . . , ak) of linearly independent elements of F2n or
that Q(a1, . . . , ak) vanishes for at least one k-tuple (a1, . . . , ak) of linearly inde-
pendent elements of F2n . Even for k = 3, it is rather complex to do so; actually
we found a proof for k = 3 but we do not give it because there is a simpler one
that we shall see later. �

5.3 Viewing vector spaces as the supports of their indica-
tors

Let f(x) be any Boolean function and let supp(f) = {x ∈ F2n ; f(x) = 1} be its

support. Let f(x) =
∑2n−1
i=0 δix

i ∈ F2n [x]/(x2
n

+ x); δi ∈ F2n be the univariate
representation4 of f .

4Since f is Boolean, the univariate representation of f can be written (not in a unique

way) in the form δ0 + trn(
∑2n−1

i=0 cix
i); ci ∈ F2n , but we shall not use this.
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We have that
∑
u∈supp(f)\{0}

1
u =

∑
x∈F2n

x2
n−2f(x) = δ0

∑
x∈F2n

x2
n−2 +

δ1
∑
x∈F2n

x2
n−1+

∑2n−1
i=2 δi

∑
x∈F2n

xi−1. Among x2
n−2, x2

n−1, x, x2, . . . , x2
n−2

the only monomial of algebraic degree n is x2
n−1. This implies:∑

u∈E\{0}

1

u
= δ1

∑
x∈F2n

x2
n−1 = δ1, (12)

that is:

Proposition 4 Let f be any Boolean function over F2n , then
∑
u∈supp(f)\{0}

1
u

equals the coefficient of x in the univariate representation of f(x).

For instance, for f(x) = trn(x), we have δ1 = 1 and then
∑
u∈supp(f)\{0}

1
u = 1.

Proposition 4 leads to the question of characterizing the univariate represen-
tation of the indicators of F2-vector subspaces of F2n . We shall unfortunately
leave this question open in general, but let us see, by several approaches, how
the univariate representation of the indicator can be calculated.

5.3.1 A first way to obtain the univariate representation of the in-
dicator of a vector space

Every k-dimensional F2-vector subspace of F2n is the intersection of (n− k) F2-

linearly independent linear hyperplanes. This gives f(x) =
∏n−k
j=1 (1 + trn(ujx))

(mod x2
n

+x), where the uj ∈ F2n are F2-linearly independent (more precisely,
where (u1, . . . , un−k) is a basis of the orthogonal of E). The coefficient of x in
this polynomial equals

∑
t∈T ′;

∑n−k
j=1 2t(j);≡1 (mod 2n−1)

n−k∏
j=1

u2
t(j)

j ,

where T ′ = {−∞, 0, . . . , n−1}n−k is the set of all functions from {1, . . . , n− k}
to {−∞, 0, . . . , n − 1}, with the convention 2−∞ = 0. This method is efficient
only when k is close to n.
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5.3.2 A second way

We start from the subspace polynomial LE(x) =
∑n−1
i=0 bix

2i (where, if E has
dimension k, then bk+1 = · · · = bn−1 = 0). We have:

f(x) = 1 +
(
LE(x)

)2n−1
(mod x2

n

+ x)

= 1 +
( n−1∑
i=0

bix
2i
)∑n−1

j=0 2j

(mod x2
n

+ x)

= 1 +

n−1∏
j=0

( n−1∑
i=0

b2
j

i x
2i+j (mod n)

)
(mod x2

n

+ x)

= 1 +
∑
t∈T

( n−1∏
j=0

b2
j

t(j)

)
x
∑n−1
j=0 2t(j)+j (mod n)

(mod x2
n

+ x),

where T = {0, . . . , n− 1}{0,...,n−1} is the set of all functions from {0, . . . , n− 1}
(more precisely, Z/nZ) to itself (if we know k, we can take T = {0, . . . , k}{0,...,k}).
The coefficient of x in this expression equals:

∑
t∈T ;

∑n−1
j=0 2t(j)+j≡1 (mod 2n−1)

( n−1∏
j=0

b2
j

t(j)

)
,

and we know from Relation (6) and Proposition 4 that this expression equals in
fact b1b

2n−2
0 (which may be difficult to prove directly). This method is efficient

only when k is small.

Remark. It seems difficult to conversely derive the polynomial LE(x) from the
indicator of E. �

5.3.3 A third way

We express by means of the univariate form of the indicator the fact that a
non-empty subset of F2n is a F2-vector space if and only if it is preserved by
addition. This writes “f(x) = 1 and f(y) = 1 imply f(x+y) = 1”, and we have
then:

Proposition 5 Let f be any Boolean function over F2n , then f is the indicator
of an F2-vector subspace of F2n if and only if the bivariate Boolean function
(x, y) ∈ F2

2n 7→ f(x)f(y)(1 + f(x + y)) is identically zero, that is, the two
Boolean functions f(x)f(y) and f(x)f(y)f(x+ y) coincide.

Let then f(x) =
∑2n−1
i=0 aix

i be the univariate representation of f(x). We
assume that a0 = 1 (since if f is the indicator of a vector space, then f(0) = 1).
We also assume that a2n−1 = 0, since we know that the only vector space whose
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indicator has algebraic degree n is {0} (we know then that f(x) = x2
n−1 + 1;

this case which corresponds to k = 0 is not interesting for our purpose). The
necessary and sufficient condition in Proposition 5 writes then:(

2n−2∑
i=0

aix
i

)2n−2∑
j=0

ajy
j

 ≡
(

2n−2∑
u=0

aux
u

)(
2n−2∑
v=0

avy
v

)(
2n−2∑
w=0

aw(x+ y)w

)
(mod x2

n

+ x, y2
n

+ y).

For every i, j ∈ {0, . . . , 2n − 2}, the coefficient of xiyj in f(x)f(y) equals ai aj ,
and in f(x)f(y)f(x+ y) (mod x2

n

+ x, y2
n

+ y), it equals the sum of the coeffi-
cients of xiyj , xi+2n−1yj , xiyj+2n−1 and xi+2n−1yj+2n−1 in f(x)f(y)f(x + y).
The coefficient of xiyj in f(x)f(y)f(x + y) equals the sum of the products
auavaw

(
w
k

)
where u + k = i and v + w − k = j, that is, the sum of the prod-

ucts auavaw
(
w
i−u
)

where u + v + w = i + j that is, the sum of the products

auavaw
(
w
j−v
)

where u+ v+w = i+ j. We have then (still assuming a0 = 1 and

a2n−1 = 0) that f is the indicator of a vector space if and only if:

∀i, j ∈ {1, . . . 2n − 2}, ai aj =

∑
u,v,w∈{1,...,2n−2};u+v+w=i+j;0≤u≤i,0≤v≤j

au av aw

(
w

i− u

)
+

∑
u,v,w∈{1,...,2n−2};u+v+w=i+2n−1+j;0≤u≤i

au av aw

(
w

i+ 2n − 1− u

)
+

∑
u,v,w∈{1,...,2n−2};u+v+w=i+j+2n−1;0≤v≤j

au av aw

(
w

i− u

)
+

∑
u,v,w∈{1,...,2n−2};u+v+w=i+j+2n+1−2

au av aw

(
w

i+ 2n − 1− u

)
. (13)

Note indeed that, since a0 = 1, the cases “i = j = 0”, “i = 0 and j > 0” and
“i > 0 and j = 0” write respectively 1 = 1, aj = aj and ai = ai.
This approach may be adapted for trying to build vector spaces over which the
inverse function sums to 0, since we can add then the condition a1 = 0 and try
to build f satisfying Condition (13).

6 The kth-order-sum-freedom of multiplicative
inverse function

We have seen that for n ≥ 3 odd, the inverse function is second-order-sum-free
and for n ≥ 2 even, it is not. The inverse (n, n)-function being a permutation
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it is not nth-order-sum-free and since its restriction to any subfield F2k is the
multiplicative inverse (k, k)-function, for every divisor k of n, the inverse (n, n)-
function is not kth-order-sum-free (this generalizes the fact that if n is even,
then the inverse function is not APN). The inverse function is (n− 1)th-order-
sum-free, thanks to Theorem 1 and the fact that it is not nth-order-sum-free
(i.e. it sums to 0 over F2n). Hence there are values of k for which the inverse
function is kth-order-sum-free and values for which it is not.

Trying to address general values of k, let a1, . . . , ak be F2-linearly indepen-
dent elements of Fn2 . Denoting again by Ek the k-dimensional vector space they
span; given x, let us see whether

∑
u∈E(x+ u)−1 equals 0 or not.

6.1 Case of an affine space x+E, where E is a linear space
and x 6∈ E

Theorem 1 shows that the sum
∑
u∈E

1
x+u is nonzero. Hence, determining

whether the multiplicative inverse function is kth-order-sum-free reduces to ad-
dressing the case x ∈ E, that is, to determining whether the inverse function
sums to nonzero values over all k-dimensional vector subspaces of F2n .

6.2 Case of a linear space (x ∈ E), first observations and
first results

We begin with an observation in the next lemma, which potentially gives a tool
for studying the kth-order-sum-freedom of the multiplicative inverse function,
but for which it seems to us difficult to deduce concrete consequences. We give
it for the case some further work could provide interesting corollaries. Recall
that the notation w2(·) has been introduced in Section 2.

Lemma 1 Given 2 ≤ k ≤ n, if there exists d ∈ {2, . . . , 2n − 2} such that
w2(d) > n − k, and there exists a k-dimensional F2-subspace E of F2n such
that the set E′ = {ud, u ∈ E} is also a k-dimensional F2-subspace, then the
multiplicative inverse function is not kth-order-sum-free.

Proof. We have
∑
x∈E′ x

2n−2 =
∑
x∈E x

(2n−2) d =
∑
x∈E x

2n−1−d. Since
w2(2n − 1 − d) = n − w2(d) < k, the algebraic degree of the power function
x2

n−1−d is strictly less than k, and it sums then to 0 over E. 2

Lemma 1 applies for d = 2n − 2 and k a divisor of n (we take then E =
E′ = F2k), and this does not tell us anything new. It is the only values of k
which can work with d = 2n − 2 since we know from [18] that (as we already
recalled) the multiplicative inverse function maps no affine space A to an affine
space except when A is the multiplicative coset of a subfield of F2n .
Another example of application, also for a divisor k of n, is when k ≥ 2 and
d = 2n−2k + 1 (which has 2-weight n−k+ 1). We can then take E = E′ = F2k
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(equality coming from the fact that gcd(d, 2k−1) = gcd(gcd(d, 2n−1), 2k−1) =
gcd(2k − 2, 2k − 1) = 1, and here is where k ≥ 2 is necessary). But here again
this application of the lemma does not tell us anything new in terms of the
kth-order-sum-freedom of the multiplicative inverse function.
It seems difficult to find power functions and vector spaces mapped by them
onto vector spaces of the same dimension.

Remark. There is an obvious case where the inverse function sums to zero
over a vector subspace E: when E is stable under the inversion of its nonzero
elements. This corresponds to d = 2n−2 and E′ = E in Lemma 1. But this case
does not bring anything new, since the corresponding φE function (see Subsec-
tion 5.1.1) satisfies then φE(x) =

∏
u∈E,u 6=0(x + u) =

∏
u∈E,u6=0(x + 1

u ) =

x2k−1∏
u∈E,u 6=0 u

∏
u∈E,u6=0( 1

x + u) = 1∏
u∈E,u 6=0 u

φ̃E(x), where φ̃E(x) is the recip-

rocal polynomial of φE(x). Then writing φE(x) =
∑k
i=0 bk,ix

2i−1, we have

φE(x) = 1∏
u∈E,u 6=0 u

∑k
i=0 bk,ix

2k−2i and then, if bk,i 6= 0 then 2k − 2i must

equal 2j − 1 (mod 2n − 1) for some j and then it is easily seen that E must be
a subfield of F2n . �

Remark. We can also consider the case of subspaces E stable under squaring
(that is, equal to a union of cyclotomic classes in F2n). Inversion and squar-

ing commuting, we have that
∑
u∈E;u6=0

1
u =

(∑
u∈E;u 6=0

1
u

)2
∈ F2. We do

not see what other condition on E could imply that the value 1 is impossible
for
∑
u∈E;u 6=0

1
u , but since

∑
u∈E;u6=0

1
u lives then in F2 instead of in F2n , this

increases the probability of finding such E satisfying
∑
u∈E;u6=0

1
u = 0 (for in-

stance in future computer investigations). Note that E is stable under squaring
if and only if LE(x2) = (LE(x))2, that is, the polynomial LE(x) belongs to
F2[x]. We shall see in the remark after Proposition 8 that, unfortunately, this
restriction does not allow to address all situations. �

Let us make a second observation for which it seems also difficult to deduce
concrete consequences and that we propose for future attempts. Recall from
[21] that, for every power q of a prime and every m, the polynomial xq

m − x
equals the product of all monic irreducible polynomials over Fq whose degrees
divide m. Then (as already observed in [1]) if qr − 1 divides m and xq

r−1 +
xq−1 + 1 is irreducible, then xq

r

+ xq + x is a subspace polynomial over Fqm (of
course, this can be extended to any irreducible polynomial of the form xq

r−1 +∑r−1
i=1 aix

qi−1 + a0). Note that, if q ≥ 3, then xq
r

+ xq + x has zero coefficient
of x2. This can then be applied with q = 2l where l ≥ 2, taking n = ml and
k = rl:

Lemma 2 Let n = ml and k = rl for some positive integers m, k, l, where
l ≥ 2. If 2k− 1 divides m and and xq

r−1 +xq−1 + 1 is irreducible over F2l , then

x2
k

+x2
l

+x is a subspace polynomial with no term in x2 and the multiplicative
inverse function is then not kth-order-sum-free.
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Note that we have gcd(k, n) ≥ l ≥ 2 in Lemma 2.

6.2.1 When k is not co-prime with n

We move now to a general result showing that if k is not-coprime with n,
then the multiplicative inverse function cannot be kth-order-sum-free. We can
indeed generalize the observation that the inverse function sums to zero over
F2-subspaces being subfields of F2n :

Proposition 6 If gcd(k, n) = l 6= 1 and E is any k
l -dimensional F2l-subspace

of F2n , then
∑
u∈E;u 6=0

1
u = 0; the multiplicative inverse function is then not

kth-order-sum-free.

Proof. E \ {0} is the disjoint union of the elements of the (kl − 1)-dimensional
projective space P equal to the set of equivalence classes in E \ {0} under the
equivalence relation “a ∼ b if a

b ∈ F2l”. Each element in P having the form

aF∗2l , we have then
∑
u∈E\{0}

1
u =

∑
a∈P

1
a

(∑
u∈F∗

2l

1
u

)
= 0. 2

Proposition 6 settles the case of a rather large number of values of k when n
is composite (of course, it is useless when n is a prime). Thanks to it, we need
now only to address the case where k and n are co-prime.

6.2.2 Generalization of Proposition 6

Proposition 7 Let k be the dimension of any F2-vector subspace Ek of F2n

stable under multiplication by some λ ∈ F2n \ F2, then the multiplicative in-
verse function is not kth-order-sum-free. This happens for instance if k equals
the (additive) rank of any non-trivial multiplicative subgroup G of F2n , that is,
if it equals the dimension of any vector subspace of F2n over F2 of the form{∑

i∈I λ
i; I ⊆ {0, . . . , 2n − 2}

}
where λ 6= 0, 1.

Proof. If Ek is stable under multiplication by λ 6= 0, 1, then we have
∑
u∈Ek;u 6=0

1
u =∑

u∈Ek;u 6=0
1
λu = 1

λ

∑
u∈Ek;u 6=0

1
u with 1

λ 6= 1 and therefore
∑
u∈Ek;u 6=0

1
u = 0.

If k equals the (additive) rank of a non-trivial multiplicative subgroup G of
F2n , then let λ be a generator of G and let Ek =< G > be the k-dimensional
F2-vector subspace generated by G, we have that Ek is invariant under multi-

plication by λ and 〈G〉 =
{∑

i∈I λ
i; I ⊆ {0, . . . , 2n − 2}

}
. 2

Remark. Proposition 7, even if it covers Proposition 6 as a particular case, does
not allow to address more values of k. Indeed, we need to have

∏
u∈Ek;u6=0 u =∏

u∈Ek;u 6=0(λu) = λ2
k−1∏

u∈Ek;u6=0 u and since
∏
u∈Ek;u6=0 u 6= 0, this implies

that λ2
k−1 = 1, which (because λ 6= 1) requires that gcd(2k − 1, 2n − 1) 6= 1,

that is, gcd(k, n) 6= 1. �
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6.3 Case of a linear space (x ∈ E), general observations

6.3.1 A first characterization

According to Theorem 2, we have:

Corollary 2 Let 2 ≤ k ≤ n. The multiplicative inverse function over F2n is
kth-order-sum-free if and only if the function:

L̃k(a1, . . . , ak) =
∑
σ∈G′k

k∏
i=1

a2
σ(i)

i , (14)

where G′k is the set of bijective functions from {1, . . . , k} to {0, 2, . . . , k}, van-
ishes only at the 2kn − (2n − 1)(2n − 2) . . . (2n − 2k−1) k-tuples (a1, . . . , ak) ∈
(F2n)k whose terms are F2-linearly dependent elements of F2n .

Indeed, if a1, . . . , ak are F2-linearly dependent, we can express one of them as
a linear combination over F2 of the others, and after expanding the resulting
expression, all terms cancel each others; and if they are independent, then The-
orem 2 completes the proof.

6.3.2 Sum freedom overs subfields and superfields

If the inverse function over F2n is not kth-order-sum-free, then for every r, the
inverse function over F2rn is not kth-order-sum-free either, since the restriction
to F2n of the inverse function over F2rn equals the inverse function over F2n .
Moreover:

Proposition 8 For every k ≥ 2, and every n ≥ k, there exists a positive integer
r such that the multiplicative inverse function over F2rn is not kth-order-sum-
free.

This result is straightforward, since we know that, lcm(k, n) being a multiple
of k, the multiplicative inverse function over F2lcm(k,n) is not kth-order-sum-

free. We can even take r smaller than lcm(k,n)
n when k is composite, thanks to

Proposition 6, by taking for r any divisor of k larger than 1.
But let us give an alternative proof which will provide additional insight on the
question. According to Proposition 1, the multiplicative inverse function over
F2rn is kth-order-sum-free if and only if, for every k-dimensional F2-subspace
E of F2rn , the coefficient of x2 in the polynomial L(x) =

∏
u∈E(x + u) is

nonzero. The set of such polynomials, for r ranging over N∗, equals the set of
linearized polynomials L(x) of degree 2k over the algebraic closure of F2n which
have simple zeros. Note that such linearized polynomial has simple zeros in
the algebraic closure if and only if its coefficient of x is nonzero (indeed, the
polynomial derivative of a linearized polynomial equals the constant polynomial
equal to this coefficient). Among such polynomials, some have their coefficient
of x2 equal to zero.
The open question is: for which values of k and n, the value of r can be taken
equal to 1?
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6.4 A result on direct sums of F2-subspaces of F2n and its
consequences

Theorem 1 implies the following corollary.

Corollary 3 Let 1 ≤ l ≤ k ≤ n and let E, F be F2-subspaces of F2n with a
trivial intersection, and of respective dimensions l and k − l, then

∑
u∈E⊕F ;u 6=0

1

u
=

∑
u∈E;u6=0

1

u
+

 ∏
u∈E,u 6=0

u

 ∑
v∈LE(F );v 6=0

1

v
, (15)

where LE(x) =
∏
u∈E(x + u) and LE(F ) (equal to LE(E ⊕ F )) is the (k − l)-

dimensional vector space equal to the image of F by LE.
Given an F2-subspace E of F2n , the vector space LE(F ) can be any (k − l)-
dimensional F2-subspace of the (n− l)-dimensional space LE(F2n)

Proof. By hypothesis, LE is injective over F , because F has trivial intersection
with the kernel E of LE . According to Theorem 1, we have:∑

u∈E⊕F ;u 6=0

1

u
=

∑
u∈E;u6=0

1

u
+

∑
w∈F ;w 6=0

∑
u∈E

1

w + u

=
∑

u∈E;u6=0

1

u
+

∑
w∈F ;w 6=0

∏
u∈E,u 6=0 u

LE(w)

=
∑

u∈E;u6=0

1

u
+

 ∏
u∈E,u6=0

u

 ∑
w∈F ;w 6=0

1

LE(w)

=
∑

u∈E;u6=0

1

u
+

 ∏
u∈E,u6=0

u

 ∑
v∈LE(F );v 6=0

1

v
.

And given an F2-subspace E of F2n and any (k− l)-dimensional F2-subspace E′

of LE(F2n), there exists a (k− l)-dimensional F2-subspace F of F2n with trivial
intersection with E such that LE(F ) = E′, since LE is linear bijective from F
to LE(F ). 2

A first consequence dealing with complementary dimensions Corol-
lary 3 implies that the property for the inverse function of being kth-order-sum-
free is invariant under the transformation k 7→ n− k:

Corollary 4 Let 2 ≤ k ≤ n − 2 be such that the inverse function is not
kth-order-sum-free. Let Ek be a k-dimensional F2-subspace of F2n such that∑
u∈Ek;u 6=0

1
u = 0 and let En−k = LEk(F2n). Then we have

∑
v∈En−k;v 6=0

1
v = 0

and the inverse function is not (n− k)th-order-sum-free.
Thus, kth-order-sum-freedom and (n − k)th-order-sum-freedom are equivalent
for the multiplicative inverse function.
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Indeed, let Fn−k be a vector space whose image by LEk equals En−k and having
dimension n − k (i.e. having a trivial intersection with the kernel Ek of LEk).
According to Corollary 3, we have:

∑
u∈Ek;u 6=0

1

u
+

 ∏
u∈Ek,u6=0

u

 ∑
v∈En−k;v 6=0

1

v
=

∑
u∈Ek+Fn−k;u6=0

1

u
=
∑
u∈F∗

2n

1

u
= 0,

and therefore, since
∑
u∈Ek;u 6=0

1
u = 0 and

∏
u∈Ek,u6=0 u 6= 0, we have:∑

v∈En−k;v 6=0
1
v = 0.

Remark. We have also that if Ek is such that
∑
u∈Ek,u 6=0

1
u = 0 and if El is a

subspace of Ek, then
∑
u∈El,u6=0

1
u = 0 if and only if

∑
u∈Ek−l,u6=0

1
u = 0, where

Ek−l = LEl(Ek). �

Remark. Corollary 4 and the fact that, if the inverse function is not kth-
order-sum-free over a given field, then the same happens on any of its Galois
extensions, shows that if n divides an integer m and the multiplicative inverse
function is not kth-order sum-free over F2n then it is neither kth-order-sum-free
nor (n− k)th-order-sum-free nor (m− k)th-order-sum-free, nor (m− n+ k)th-
order-sum-free over F2m . �

A second consequence on the sums of divisors of n Corollary 3 implies
that if k is the sum of two divisors of n (and is then possibly co-prime with n),
then the inverse function is not kth-order sum-free:

Corollary 5 Let n ≥ 6 be divisible by two integers l ≥ 2 and r ≥ 2 such that
lr < n. The inverse function is not (l + r)th-order-sum-free.

Proof. Corollary 3 with E = F2l writes: for F2l ∩ F = {0}, we have∑
u∈F

2l
⊕F ;u6=0

1

u
=

∑
w∈F ;w 6=0

1

w2l + w
=

∑
v∈LE(F );v 6=0

1

v
, (16)

where LE(x) = x2
l

+x. The vector space E′ = LE(F ) can be any F2-subspace of

LE(F2n) = {w2l +w; w ∈ F2n}, that is, of the kernel of the relative trace func-

tion trnl (x) = x+x2
l

+x2
2l

+x2
3l

+· · ·+x2n−l from F2n to F2l . Let (e1, . . . , er) be a
basis of F2r over F2. The vector space {a ∈ F2n ; trnl (e1a) = · · · = trnl (era) = 0}
is the intersection of r vector subspaces of dimension n − l over F2, and since
n > lr, it has then dimension at least 1, i.e. contains at least one nonzero ele-
ment a. The r elements e1a, . . . , era of ker(trnl ) are F2-linearly independent and
generate the F2-vector subspace E′ = aF2r satisfying

∑
v∈E′,v 6=0

1
v = 0. This

completes the proof. 2

Let us now provide a new result which is the most effective one in this paper
on the sum-freedom of the inverse function.
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Corollary 6 Let n be any positive integer divisible by the product lr of two num-
bers larger than or equal to 2. Then LF

2l
(F2n) contains an (nr − l)-dimensional

F2r -vector subspace of F2n and for every k divisible by l or by r or of the form
l + jr where j ∈ {1, . . . , nr − l} or of the form r + jl where j ∈ {1, . . . , nl − r},
the multiplicative inverse function is not kth-order-sum-free.
In particular, for n even and divisible by an odd integer l ≥ 3, for every
k ∈ {2, 4, . . . , l − 1} ∪ Jl, n − lK ∪ {n − l + 1, n − l + 3, . . . , n − 2}, the mul-
tiplicative inverse function is not kth-order-sum-free. For instance, if n is di-
visible by 6, then the multiplicative inverse function is not kth-order-sum-free
for k ∈ J2, n− 2K.

Proof. We have seen that LF
2l

(F2n) equals the kernel of the relative trace

function trnl (x) = x + x2
l

+ x2
2l

+ x2
3l

+ · · · + x2
n−l

from F2n to F2l . This
kernel includes as an F2-vector subspace the kernel of the relative trace function

trnrl(x) = x+x2
rl

+x2
2rl

+ · · ·+x2
n−rl

from F2n to F2rl , because trnl = trrll ◦ trnrl.
Since trnrl is F2rl-linear, this latter kernel is an F2rl-vector subspace of dimension
n
rl − 1 of F2n and therefore an F2r -vector subspace of F2n , of dimension (nr − l).
Let us then apply Corollary 3 to E = F2l and to any F2-subspace F of F2nhaving
a trivial intersection with E and whose image by LF

2l
is an F2r -vector subspace

of the kernel of trnrl. Thanks to Proposition 6 and Corollary 3, we have then∑
u∈F

2l
⊕F

1
u = 0 and F2l ⊕ F can have for dimension over F2 any number of

the form l + jr where j = 1, . . . , nr − l. This completes the first part (the case
“ k divisible by l or by r” being covered by Proposition 6). The second part is
a direct consequence by taking r = 2 (since all the odd numbers between l and
n− l write l+ jr = l+ 2j where j = 1, . . . , nr − l = n

2 − l). The last sentence is
by taking l = 3. 2

6.5 Case of a linear space (x ∈ E), characterizations

Recall that, thanks to Proposition 6, we need “only” to address the case where
k and n are co-prime (and the case where n is a prime number seems more diffi-
cult, since when n is composite, Corollaries 4-6 give also information). We shall
not be able to address all cases of (k, n). We know that for k = n−1, the inverse
function is kth-order-sum-free. Theorem 2 gives a rather well structured expres-
sion of

∑
u∈E\{0}

1
u but it seems difficult to exploit it for completely clarifying

the situation. Note that we have
∑
u∈E\{0}

1
u = (Da1 · · ·DakHk)(0), where

Hk(x) = x1+4+8+···+2k = x2
k+1−3. Summarizing what we have and observing

that x2
k+1−3 has algebraic degree k, as an (n, n)-function, we have:

Proposition 9 For every 2 ≤ k ≤ n, the following statements are equivalent:

1. The multiplicative inverse function over F2n is kth-order-sum-free.

2.
∑
u∈E,u 6=0

1
u is nonzero for every k-dimensional F2-subspace E of F2n .

3. The restriction of function x2
n−2 to every k-dimensional subspace of F2n ,

viewed as a (k, n)-function, has algebraic degree k.
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4. No kth-order derivative Da1 . . . DakF of the multiplicative inverse function
F with a1, . . . , ak F2-linearly independent vanishes.

5. No kth-order derivative Da1 . . . DakF of the multiplicative inverse function
F with a1, . . . , ak F2-linearly independent vanishes at 0.

6.
∑
u∈E u

2k+1−3 is nonzero for every k-dimensional F2-subspace E of F2n .

7. The restriction of function Hk(x) = x2
k+1−3 to every k-dimensional F2-

subspace of F2n , viewed as a (k, n)-function, has algebraic degree k.

8. No kth-order derivative Da1 . . . DakHk of the function Hk(x) = x2
k+1−3

with a1, . . . , ak F2-linearly independent vanishes (such derivative is con-
stant).

9. The function Hk(x) = x2
k+1−3 is kth-order-sum-free.

10. The symmetric multi-linear function

L̃k : (a1, . . . , ak) ∈ Fk2n 7→
∑
σ∈G′k

k∏
i=1

a2
σ(i)

i ,

where G′k is the set of bijective functions from {1, . . . , k} to {0, 2, . . . , k},
vanishes if and only if a1, . . . , ak are F2-linearly dependent.

Remark.
Proposition 9 (item 10) shows again that the multiplicative inverse function over
F2n is second-order-sum-free if and only if n is odd, since we have a41a2 +a1a

4
2 =

a52(b4 + b), where b = a1
a2
∈ F2n \F2; the equation b4 + b = 0 is the characteristic

equation of F4, and F4 \ F2 is empty if and only if n is odd.

For k = 3, the symmetric multi-linear function L̃k becomes (a1, a2, a3) ∈ Fk2n 7→
a81a

4
2a3 +a81a2a

4
3 +a41a

8
2a3 +a41a2a

8
3 +a1a

4
2a

8
3 +a1a

8
2a

4
3, and we deduce again that

if n is divisible by 3, then the multiplicative inverse function is not third-order-
sum-free (take a1, a2, a3 in F23 and use that a8i = ai). We can then restrict
ourselves to gcd(3, n) = 1, and then, after dividing by a1a2a3 and observing
that the function x7 is a permutation of F2n , we have that the multiplicative
inverse function is third-order-sum-free if and only if, for every F2-linearly inde-

pendent a1, a2, a3 in F2n , we have
a31+a

3
3

a71+a
7
3
6= a32+a

3
3

a72+a
7
3
. Note that, replacing a1 and

a2 by a1a3 and a2a3, respectively, this is equivalent to: for every a1, a2 such that

a1, a2 and 1 are F2-linearly independent in F2n , we have
a31+1

a71+1
6= a32+1

a72+1
. In other

words, we can have x3+1
x7+1 = y3+1

y7+1 (with x, y 6= 1) only if y = x or y = x + 1.

In both these latter cases, we do have x3+1
x7+1 = y3+1

y7+1 , since for y = x + 1, it

writes x3+1
x7+1 = x3+x2+x

x7+x6+x5+x4+x3+x2+x (with x 6= 0, 1) which is always satisfied.

Hence, the condition is equivalent to saying that the function x3+1
x7+1 is injective

over some (any) linear hyperplane H not containing 1. It would be possible to
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address this condition but this would lead to technical calculations, while we
shall see in Subsection 6.7 another approach which is simpler and will solve the

case k = 3 (see Corollary 8) and will then clarify whether x3+1
x7+1 is injective over

H without having to make these claculations. �

6.6 Case of a linear space (x ∈ E), a special class of vector
spaces

Let E be a k-dimensional F2-vector subspace of F2n included in (and possibly
equal to) a vector subspace of equation:

x2
k+1

= αx+ βx2 +
∑
j∈J

x2
j

,

where J is some fixed subset of {2, . . . , k} and α, β ∈ F2n . Then raising to

the fourth power the relation Lk(a1, . . . , ak) =
∑
σ∈Gk

∏k
i=1 a

2σ(i)

i (where Gk is
the set of bijective functions from {1, . . . , k} to {0, . . . , k− 1}), replacing in the

resulting expression a2
k+1

i by αai + βa2i +
∑
j∈J a

2j

i for each i, and using that

L̃k(a1, . . . , ak) =
∑
σ∈G′k

∏k
i=1 a

2σ(i)

i (where G′k is the set of bijective functions

from {1, . . . , k} to {0, 2, . . . , k}), we obtain the relation

(Lk(a1, . . . , ak))4 = αL̃k(a1, . . . , ak) + β(Lk(a1, . . . , ak))2,

plus an expression which vanishes since, after its expansion, each monomial in
a1, . . . , ak appears twice in it with the same coefficient. Assuming a1, . . . , ak
linearly independent (that is, Lk(a1, . . . , ak) 6= 0) and α 6= 0, we have then

L̃k(a1, . . . , ak) = 0 if and only if Lk(a1, . . . , ak) = β2n−1

, with β 6= 0. This may
allow to address some cases that are difficult to handle in another way.

6.7 Case of a linear space (x ∈ E), large values of k

We shall now see that large values of k can be addressed more easily than small
ones (and since kth-order sum freedom is equivalent to (n−k)th-order sum free-
dom, studying the former is a simpler way for addressing the latter). We have,
according to Proposition 4 that

∑
u∈E\{0}

1
u equals the coefficient of x in the

univariate representation of the indicator function 1E(x). Let (u1, . . . , un−k) be
a basis of E⊥ = {y ∈ F2n ; trn(x y) = 0,∀x ∈ E}. We have seen in Subsection 5.3

that 1E(x) =
∏n−k
i=1 (1+trn(ui x)) =

∑
b∈{−∞,0,...,n−1}n−k

(∏n−k
i=1 u

2bi
i

)
x
∑n−k
i=1 2bi ,

where by convention 2−∞ = 0, and that the coefficient of x equals then:

∑
b∈{−∞,0,...,n−1}n−k;

∑n−k
i=1 2bi≡1 (mod 2n−1)

(
n−k∏
i=1

u2
bi

i

)
.
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We find again that for k = n− 1, this coefficient, equal to:∑
b∈{−∞,0,...,n−1};2b≡1 (mod 2n−1)

u2
b

1 = u1, is nonzero and the inverse function is

(n− 1)th-order-sum-free.

For k = n−2, the coefficient of x is
∑

b∈{−∞,0,...,n−1}2;2b1+2b2≡1 (mod 2n−1)

u2
b1

1 u2
b2

2 =

u2
0

1 u
2−∞

2 +u2
−∞

1 u2
0

2 +u2
n−1

1 u2
n−1

2 = u1 +u2 +
(
u1u2

) 1
2

= u2

(
1 +
(u1
u2

) 1
2

+
u1
u2

)
.

Since the polynomial 1 + x+ x2 has no zero in F2n for n odd, and has for zeros
the two primitive elements w,w2 = w+1 of F4 for n even, and since in the latter

case, u1 and u2 can be F2-linearly independent while satisfying
(
u1

u2

) 1
2

= w, we

deduce (but we knew it already thanks to Corollary 4):

Proposition 10 For n ≥ 4, the multiplicative inverse function over F2n is
(n− 2)th-order-sum-free if and only if n is odd.

For k = n− 3, the coefficient of x equals∑
b∈{−∞,0,...,n−1}3;2b1+2b2+2b3≡1 (mod 2n−1)

u2
b1

1 u2
b2

2 z2
b3

=

u1 + u2 + u3 + u2
n−1

1 u2
n−1

2 + u2
n−1

1 u2
n−1

3 + u2
n−1

2 u2
n−1

3 + u2
n−2

1 u2
n−2

2 u2
n−1

3 +

u2
n−2

1 u2
n−1

2 u2
n−2

3 + u2
n−1

1 u2
n−2

2 u2
n−2

3 .

Denoting x = u1, y = u2, z = u3, we are led to:

Proposition 11 Let n ≥ 5, then the multiplicative inverse function over F2n

is not (n− 3)th-order-sum-free if and only if the equation:

x4 + x2(y2 + z2 + yz) + x(y2z + yz2) + y4 + z4 + y2z2 = 0

admits solutions (x, y, z) such that x, y, z are F2-linearly independent.

We can assume without loss of generality that z = 1 (and then x, y, x+y 6∈ F2),
since the equation is invariant when we multiply each variable by the same
nonzero factor, and denoting t = y2 + y + 1, we have t 6= 1 and the equation
becomes:

x4 + tx2 + (t+ 1)x+ t2 = 0. (17)

Note that the fact that x 6∈ F2 ∪ (y + F2), does not eliminate any solution x
when n is odd, since then t 6∈ F2 and none of the elements 0, 1, y, y + 1 can be
a solution of the equation. When n is even, we can have t = 0 (when y equals
a primitive element of F4), but it is clear that, for every n ≥ 6, there exist
values of t 6∈ F2 such that trn(t+ 1) = 0 (so that there exists y 6∈ F2 such that
y2 + y + 1 = t) and such that Equation (17) has solutions.

Corollary 7 For every n ≥ 6, the multiplicative inverse function over F2n is
not (n− 3)th-order-sum-free.
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Corollaries 4 and 7 allow to state:

Corollary 8 For every n ≥ 6, the multiplicative inverse function over F2n is
not third-order-sum-free.

For k = n− 4, the coefficient of x equals∑
b∈{−∞,0,...,n−1}4;2b1+2b2+2b3+2b4≡1 (mod 2n−1)

u2
b1

1 u2
b2

2 u2
b3

3 u2
b4

4 =

4∑
i=1

ui+
∑

1≤i<j≤4

u2
n−1

i u2
n−1

j +
∑

1≤i<j≤4;k 6=i,j

u2
n−2

i u2
n−2

j u2
n−1

k +u2
n−2

1 u2
n−2

2 u2
n−2

3 u2
n−2

4 .

Denoting x = u1, y = u2, z = u3 and taking u4 = 1, we are led to:

Proposition 12 Let n ≥ 6, then the multiplicative inverse function over F2n

is not (n− 4)th-order-sum-free if and only if the equation:

x4+y4+z4+1+x2y2+x2z2+x2+y2z2+y2+z2+xyz2+xy2z+x2yz+xy+xy2+

x2y + xz + xz2 + x2z + yz + yz2 + y2z + xyz = 0

admits solutions (x, y, z) such that x, y, z and 1 are F2-linearly independent.

Probably the condition of Proposition 12 can be satisfied for every n ≥
8 (for n ≤ 7 we have n − 4 ≤ 3 and the situation is clear) since we have
only one equation and three variables, on which the condition of being linearly
independent together with 1 is not very restrictive. According to Corollary 4,
the inverse function would then be neither (n − 4)th-order-sum-free nor 4th-
order-sum-free, but we did not find a general proof of this.
We were able to address the case of n even. In that case, we have seen that
a plane E = {0, a1, a2, a1 + a2} is such that

∑
u∈E,u 6=0 u

−1 = 0 if and only

if a21 + a1a2 + a22 = 0, that is, a2
a1
∈ F4 \ F2. Moreover, we have LE(x) =

x(x + a1)(x + a2)(x + a1 + a2) = x4 + (a21 + a1a2 + a22)x2 + (a21a2 + a1a
2
2)x.

Assuming that a2
a1
∈ F4 \F2, we have then a2 = a1w where w2 = w+1, and then

LE(x) = x4 + a31 x. Let F = {0, a3, a4, a3 + a4} be a second plane with a trivial
intersection with E. Then, if (LE(a3))2 + LE(a3)LE(a4)) + (LE(a4))2 = 0,
that is, if LE(a3) = wLE(a4) or LE(a3) = w2LE(a4), Corollary 3 provides a
4-dimensional vector space E ⊕ F such that

∑
u∈E⊕F,u6=0 u

−1 = 0. Denoting

u = a3
a1

and v = a4
a1

, the relations LE(a3) = wLE(a4) and LE(a3) = w2LE(a4)

write u4 + u = w(v4 + v) and u4 + u = w2(v4 + v), and we deduce that if
for instance the former equation, which writes (u + wv)4 + u + wv = 0, that
is, u + wv ∈ F4, has solutions u, v ∈ F2n \ F4 such that u + v 6∈ F4, then the
multiplicative inverse function is not 4th-order sum-free. Seeing now u and v
in F2n/F4, the condition becomes u + wv = 0, u 6= 0, v 6= 0, u + v 6= 0 and it is
satisfiable as soon as n ≥ 6, since the two lines of equations u + wv = 0 and
u+ v = 0 intersect only in (0, 0) and none is reduced to {(0, 0)}. Hence:
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Table 1: Values of k for which we known that x−1 is not kth-order-sum-free

n
k

1 2 3 4 5 6 7 8 9 10 11 12

6 X ¬ ¬ ¬ X ¬ - - - - - -

7 X X ¬ ¬ X X ¬ - - - - -
8 X ¬ ¬ ¬ ¬ ¬ X ¬ - - - -

9 X X ¬ ¬ ¬ ¬ X X ¬ - - -
10 X ¬ ¬ ¬ ¬ ¬ ¬ ¬ X ¬ - -

11 X X ¬ ¬ X X ¬ -
12 X ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ X ¬

Proposition 13 Let n ≥ 6 be even. Then the multiplicative inverse function
is neither 4th-order sum-free nor (n− 4)th-order sum-free.

The cases k = 5, . . . , n − 5 could be studied similarly as in Proposition 12,
but we miss a proof of the fact that the inverse function is not kth-order sum-
free for any such value.

We display in Table 1 with “X” each value of k for which we can prove that
the multiplicative inverse function is kth-order-sum-free and with “¬” when we
can prove with the results in this paper that it is not kth-order-sum-free. We
write “-” when k is larger than n.
A computer investigation has been made with the kind help of Stjepan Picek.

For each pair (n, k) where n ∈ J6, 12K and k ∈ J3, n − 3K, a k-dimensional
vector space E has been found such that

∑
u∈E,u 6=0

1
u = 0. We are missing

mathematical results explaining these investigation results for n = 11 and k =
4, . . . , 7.

6.8 Case of a linear space (x ∈ E), a last observation

There is another possible approach: given an F2-subspace E of F2n admitting
a basis (a1, . . . , ak), all four (n, n)-functions

SE(x) =
∑
u∈E

(x+ u)−1 = Da1 · · ·DakF (x),

TE(x) =

 ∏
u∈E\{0}

u

(∏
u∈E

(x+ u)−1

)
=

 ∏
u∈E\{0}

u

(F (∏
u∈E

(x+ u)

))
,

ΣE(x) =
∑
u∈E

(x+ u)2
k−1 = Da1 · · ·DakPk(x), where Pk(x) = x2

k−1,

and

ΓE(x) =
∑
u∈E

(x+ u)2
k+1−3 = Da1 · · ·DakQk(x), where Qk(x) = x2

k+1−3,
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are constant on each coset of E.
According to Theorem 1, SE , TE and ΣE coincide on F2n \E and according to
Proposition 9 (item 10), SE and ΓE coincide on E. The constant value taken
by function TE on E is zero. We wish to determine for which k the value of SE
is nonzero on E for every E of dimension k. Let E′ be any (n− k)-dimensional
vector space whose sum with E is direct (and equals then F2n). Then since
SE has algebraic degree at most n− k − 1 (being the k-th order derivative of a
function of degree n− 1), its restriction to E′ sums to zero. We have then that
SE(0) =

∑
u∈E\{0}

1
u is nonzero if and only if the two functions SE and TE do

not coincide at 0, or equivalently, the restriction of TE to E′ does not sum to
zero, that is, has algebraic degree n− k. Since TE is constant on every coset of
E, it is equivalent to say that TE itself has algebraic degree n − k (indeed, up
to a linear transformation, we can take E′ = Fn−k2 , and TE depends then only
on its n− k first coordinates).

Proposition 14 Let k ≤ n be positive integers and let F be the multiplicative
inverse function over F2n . Let E be any k-dimensional F2-subspace of F2n .
Then we have

∑
u∈E F (u) =

∑
u∈E u

−1 =
∑
u∈E;u6=0

1
u 6= 0 if and only if the

function F
(∏

u∈E(x+ u)
)

=
∏
u∈E(x+ u)−1 = F ◦ LE(x) has algebraic degree

n− k.
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