
Delegated-Query Oblivious Transfer
and its Practical Applications

Yvo Desmedt?1 and Aydin Abadi??2

1 The University of Texas at Dallas
2 Newcastle University

Abstract. Databases play a pivotal role in the contemporary World Wide Web and the world of
cloud computing. Unfortunately, numerous privacy violations have recently garnered attention in the
news. To enhance database privacy, we consider Oblivious Transfer (OT), an elegant cryptographic
technology. Our observation reveals that existing research in this domain primarily concentrates on
theoretical cryptographic applications, overlooking various practical aspects:

– OTs assume parties have direct access to databases. Our “1-out-of-2 Delegated-Query OT” enables
parties to privately query a database, without direct access.

– With the rise of cloud computing, physically separated databases may no longer remain so. Our
“1-out-of-2 Delegated-Query Multi-Receiver OT” protects privacy in such evolving scenarios.

– Research often ignores the limitations of thin clients, e.g., Internet of Things devices. To address
this, we propose a compiler that transforms any 1-out-of-n OT into a thin client version.

1 Introduction

Databases play a vital role in e-commerce, advertising, intelligence analysis, combating crime, knowledge
discovery, and conducting scientific research. Privacy breaches involving databases, impacting both organi-
zations and individuals, have become headline news. Some databases (e.g., Fortune 500 companies’ databases
about customers’ purchase history) can be valued at millions of dollars.

Privacy issues arise when users seek access to databases they do not own or create. Furthermore, many
databases are now hosted in the cloud, adding another layer of complexity to the privacy landscape. To
simultaneously protect the privacy of the user and the database itself from each other, the cryptographic-
based technology, called Oblivious Transfer (OT) has been proposed. It allows a user (called a receiver)
interested in the s-th element of a database (m0,m1) (held by a sender) to learn only ms while preserving
the privacy of (i) index s ∈ {0, 1} from the sender and (ii) the rest of the database’s elements from the
receiver. Numerous variants have been developed since OT’s introduction in 1981 [42].

OT is an important cryptographic protocol that has found applications within various domains, such
as generic secure Multi-Party Computation (MPC) [51,3,24], Private Set Intersection (PSI) [18], contract
signing [20], Federated Learning (FL) [50,43,48], and accessing sensitive field elements of remote private
databases while preserving privacy [6,1,31]. As evidenced by this work, numerous research gaps persist in
this domain. Many real-world applications have been overlooked. These oversights align with gaps in the
research on OT, as expounded upon in the next section.

? y.desmedt@cs.ucl.ac.uk
?? aydin.abadi@newcastle.ac.uk

2 Motivations and Survey

In this section, we motivate the paper through real-world scenarios, discuss gaps in the OT research, and
outline our contributions.

2.1 Motivations

Dealing with Insiders, e.g., in Financial Institutions. Insider attacks pose imminent threats to various
organizations and their clients, such as financial institutions and their customers. Insiders may collaborate
with external fraudsters, obtaining highly valuable data. There have been real-world incidents where bank
employees have leaked or misused customers’ information.

The “Swiss Leaks” [30] is a good example to illustrate the problem of insider leaks in the banking world.
In the Swiss Leaks case, an insider attempted to sell information about accounts held by HSBC in Geneva.
Later, when he failed, he leaked the information to the public. As another example, in the case of “JPMorgan
Chase Insider Thief” [15], a former JPMorgan Chase personal banker has been arrested by the FBI on charges
that he stole customers’ account information and sold it to an undercover informant. Another notable case
involved a Citibank employee who accessed sensitive customer information and used it to commit fraud [47].

Additionally, a former financial advisor at Morgan Stanley, was discovered to have illicitly accessed and
leaked sensitive information from approximately 730,000 accounts. This data breach compromised customers’
personal details such as their names, addresses, account numbers, and investment information. This employee,
who worked within Morgan Stanley’s private wealth management division, entered a guilty plea in federal
court in Manhattan [46].

In this context, an insider can exclusively target high-profile wealthy individuals and sell the victims’
information to their rivals, who might make strategic investments, often remaining stealthy from the victims’
perspective. For an insider, a data breach in private banking or private financial advising can be more alluring
than leaking hundreds of bank accounts. Indeed, the former could yield a higher payoff while concurrently
posing a lower risk of exposure. Additionally, outsiders who infiltrate the computers of an individual advisor
or the third-party database can compromise the privacy of customers’ queries.

Furthermore, in this setting, financial advisors, within a financial institution, frequently maintain paid
subscriptions to a valuable database (e.g., containing real estate market information, market trends, and
capital flows) offered by third-party providers such as CoreLogic3, Multiple Listing Service4, or Real Cap-
ital Analytics5. In contrast, clients of these advisors do not necessarily need to subscribe to the database
themselves. Instead, they interact with the advisors and direct their queries to them.

Hence, there is a pressing need to (i) protect customer query privacy from advisors and databases, (ii)
ensure the privacy of the database from both customers and advisors, and (iii) secure the privacy of customers
in the event of a data breach on the advisor’s or database’s side. As explained in Section 2.2, current OTs
fall short of providing these features simultaneously.

Multi-Receiver OT. The adoption of cloud computing has been accelerating. The “PwC’s 2023 Cloud
Business Survey” suggests that 78% of executives participating in the survey have mentioned that their
companies had adopted cloud in most or all parts of the business [41]. Moreover, multiple (sensitive) databases
belonging to different parties have been merged and hosted by a single cloud provider. Indeed, the recent
cyber-attack revealed that data belonging to British Airways, Boots, BBC, and Aer Lingus was kept by
the same cloud [33]. Another example is Salesforce data exposure, where a Salesforce software bug allowed
users from different organizations to access each other’s data within the Salesforce Marketing Cloud [38].
This incident has potentially impacted various customers, including organizations like Aldo, Dunkin Donuts,
Nestle Waters, and Sony [44]. The current OTs do not allow us to deal with this scenario, as we will elaborate
in Section 2.2.

3 https://www.corelogic.com/data-solutions/property-data-solutions/discovery-platform
4 https://www.mls.com
5 https://www.msci.com/our-solutions/real-assets/real-capital-analytics

2

https://www.corelogic.com/data-solutions/property-data-solutions/discovery-platform
https://www.mls.com
https://www.msci.com/our-solutions/real-assets/real-capital-analytics

Querying Databases with Hidden Fields. In specific applications, such as finance or healthcare, sensitive
details about customers or patients must be withheld from them (at least for a certain time period). In the
financial sector, this may include (a) a binary flag that determines whether a certain customer is deemed
suspicious [2,19], or (b) proprietary banking strategies tailored to individual clients. In the medical sector,
such information may involve a binary flag indicating whether a patient has a certain condition. In certain
cases, revealing specific details about an illness or test result might endanger the patient [14,21]. Hence, the
result that a client/receiver obtains for its request (e.g., seeking investment advice) depends on the private
flag/query s, provided by a third party to its advisor who is directly dealing with the client, while the client
itself is not aware of the value of s. We will further discuss it in Section 2.2.

2.2 Research Gaps

Support for Delegated-Query OT. Current OT technologies assume that a receiver that generates the
query always has direct subscription/access to databases and enough computation resources to generate
queries that are sent to the sender. This assumption has to be relaxed when receivers are not subscribed to
the database (e.g., they cannot afford it) or when receivers are thin clients, e.g., IoT devices with limited
computational resources or battery lifespan. We introduce Delegated-Query Oblivious Transfer to address
these limitations and deal with insider attacks (see Section 5).

Querying Merged Databases. Existing techniques do not support querying merged databases in a privacy-
preserving manner. Specifically, they are not suitable for the real-world multi-receiver setting where a sender
maintains multiple records6 each belonging to a different receiver. The existing techniques do not allow
a receiver to privately query such records without disclosing (i) the records, that the receiver accesses,
to the sender and (ii) the number of records, that other database users have, to each receiver. Receivers
with different levels of security form a natural example. The existing OTs reveal the entire database’s size
to receivers enabling them to acquire non-trivial information. The mere existence of private data can be
considered sensitive information [40]. We propose several Multi-Receiver OTs to support querying merged
databases in a privacy-preserving way (see Section 7).

Databases with Hidden Fields. The current OT concept assumes the receiver knows the full query,
which may not always be desired, as discussed in Section 2.1. We will propose OT variants supporting a
(partially) unknown query (see Sections 6.2 and 7.2).

Constant Size Response. The current techniques that allow a receiver to obtain a response with a constant
size for its query necessitate the receiver to possess a storage space proportional to the size of the database, to
locally store the database encryption. However, meeting this demanding requirement will become challenging
for a thin client (e.g., in IoT settings), if its available storage space is significantly smaller than the database
size. We will introduce a generic compiler that transforms any OT with a non-constant response size to one
with a constant response size (see Section 8).

2.3 Our Contributions

In this paper, we propose solutions to the aforementioned limitations using the following new techniques:

1. 1-out-of-2 Delegated-Query Oblivious Transfer (DQ–OT 2

1): a new notion of OT that extends the basic
features of OT by allowing the receiver to delegate two tasks: (i) computing the query and (ii) interacting
with the sender. These tasks can be assigned to a pair of potentially semi-honest parties, P1 and P2,
while ensuring that the sender and receiver privacy is also protected from P1 and P2. Section 5.2 presents
DQ–OT 2

1.

6 A database table consists of records/rows and fields/columns. Each record in a table represents a set of related
data, e.g., last name and address.

3

(a) Delegated-Query OT (DQ-OT): a protocol that realizes DQ–OT 2

1. Section 5.3 presents DQ-OT.
(b) Delegate-Unknown-Query OT (DUQ-OT): a variant of DQ-OT which allows the receiver to extract

the related message ms even if it does not (and must not) know the related index s. Section 6.2
presents DUQ-OT.

2. 1-out-of-2 Delegated-Query Multi-Receiver OT (DQMR–OT 2

1): a new notion of OT that (in addition to
offering OT’s primary features) ensures (i) a receiver learns nothing about the total number of records
and their field elements and (ii) the sender who maintains z records [(m0,0,m1,0), . . . , (m0,z−1, m1,z−1)]
does not find out which query belongs to which record. Section 7.1 presents DQMR–OT 2

1.

(a) Delegated-Query Multi-Receiver OT (DQMR–OT): an efficient protocol that realizes DQMR–OT 2

1. It
is built upon DQ-OT and inherits its features. DQMR–OT achieves its goal by allowing P1 to know
which record is related to which receiver. Section 7.1 presents DQMR–OT.

(b) Delegate-Unknown-Query Multi-Receiver OT (DUQMR–OT): a variant of DQMR–OT which considers
the case where P1 and P2 do not (and must not) know which record in the database belongs to which
receiver. Section 7.2 presents DUQMR–OT.

3. A compiler: a generic compiler that transforms any 1-out-of-n OT that requires the receiver to receive n
messages (as a response) into a 1-out-of-n OT that lets a receiver (i) receive only a constant number of
messages and (ii) have constant storage space. Section 8 presents the compiler.

3 Preliminaries

3.1 Notations

By ε we mean an empty string. When y represents a single value, |y| refers to the bit length of y. However,
when y is a tuple, |y| denotes the number of elements contained within y. We denote a sender by S and a
receiver by R. We assume parties interact with each other through a regular secure channel. We define a
parse function as parse(λ, y) → (u1, u2), which takes as input a value λ and a value y of length at least
λ-bit. It parses y into two values u1 and u2 and returns (u1, u2) where the bit length of u1 is |y| − λ and
the bit length of u2 is λ. Also, U denotes a universe of messages m1, . . . ,mt. We define σ as the maximum
size of messages in U , i.e., σ = Max(|m1|, . . . , |mt|). We use two hash functions H : {0, 1}∗ → {0, 1}σ and
G : {0, 1}∗ → {0, 1}σ+λ modelled as random oracles [10].

3.2 Security Model

In this paper, we rely on the simulation-based model of secure multi-party computation [22] to define and
prove the proposed protocols. Below, we restate the formal security definition within this model.

Two-party Computation. A two-party protocol Γ problem is captured by specifying a random process
that maps pairs of inputs to pairs of outputs, one for each party. Such process is referred to as a functionality
denoted by f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗, where f := (f1, f2). For every input pair (x, y), the output
pair is a random variable (f1(x, y), f2(x, y)), such that the party with input x wishes to obtain f1(x, y) while
the party with input y wishes to receive f2(x, y). In the setting where f is asymmetric and only one party
(say the first one) receives the result, f is defined as f := (f1(x, y), ε).

Security in the Presence of Passive Adversaries. In the passive adversarial model, the party corrupted
by such an adversary correctly follows the protocol specification. Nonetheless, the adversary obtains the
internal state of the corrupted party, including the transcript of all the messages received, and tries to use
this to learn information that should remain private. Loosely speaking, a protocol is secure if whatever can
be computed by a party in the protocol can be computed using its input and output only. In the simulation-
based model, it is required that a party’s view in a protocol’s execution can be simulated given only its input
and output. This implies that the parties learn nothing from the protocol’s execution. More formally, party i’s

4

view (during the execution of Γ) on input pair (x, y) is denoted by ViewΓi (x, y) and equals (w, ri,m
i
1, . . . ,m

i
t),

where w ∈ {x, y} is the input of ith party, ri is the outcome of this party’s internal random coin tosses, and
mi
j represents the jth message this party receives. The output of the ith party during the execution of Γ on

(x, y) is denoted by OutputΓi (x, y) and can be generated from its own view of the execution.

Definition 1. Let f be the deterministic functionality defined above. Protocol Γ securely computes f in the
presence of a passive adversary if there exist polynomial-time algorithms (Sim1,Sim2) such that:

{Sim1(x, f1(x, y))}x,y
c≡ {ViewΓ1 (x, y)}x,y

{Sim2(y, f2(x, y))}x,y
c≡ {ViewΓ2 (x, y)}x,y

3.3 Random Permutation

A random permutation π(e0, . . . , en)→ (e′0, . . . , e
′
n) is a probabilistic function that takes a setA = {e0, . . . , en}

and returns the same set of elements in a permuted order B = {e′0, . . . , e′n}. The security of π(.) requires
that given set B the probability that one can find the original index of an element e′i ∈ B is 1

n . In practice,
the Fisher-Yates shuffle algorithm [29] can permute a set of n elements in time O(n). We will use π(.) in the
protocols presented in Figures 2 and 3.

3.4 Diffie-Hellman Assumption

Let G be a group-generator scheme, which on input 1λ outputs (G, p, g) where G is the description of a
group, p is the order of the group which is always a prime number, log2(p) = λ is a security parameter and
g is a generator of the group. In this paper, g and p can be selected by sender S (in the context of OT).

Computational Diffie-Hellman (CDH) Assumption. We say that G is hard under CDH assumption,
if for any probabilistic polynomial time (PPT) adversary A, given (ga1 , ga2) it has only negligible probability
to correctly compute ga1·a2 . More formally, it holds that Pr[A(G, p, g, ga1 , ga2) → ga1·a2] ≤ µ(λ), where

(G, p, g)
$← G(1λ), a1, a2

$← Zp, and µ is a negligible function [17].

3.5 Secret Sharing

A (threshold) secret sharing SS(t,n) scheme is a cryptographic protocol that enables a dealer to distribute a
string s, known as the secret, among n parties in a way that the secret s can be recovered when at least a
predefined number of shares, say t, are combined. If the number of shares in any subset is less than t, the
secret remains unrecoverable and the shares divulge no information about s. This type of scheme is referred
to as (n, t)-secret sharing or SS(t,n) for brevity.

In the case where t = n, there exists a highly efficient XOR-based secret sharing [4]. In this case, to share
the secret s, the dealer first picks n−1 random bit strings r1, . . . , rn−1 of the same length as the secret. Then,
it computes rn = r1 ⊕ . . .⊕ rn ⊕ s. It considers each ri ∈ {r1, . . . , rn} as a share of the secret. To reconstruct
the secret, one can easily compute r1⊕ . . .⊕rn. Any subset of less than n shares reveals no information about
the secret. We will use this scheme in this paper. A secret sharing scheme involves two main algorithms;
namely, SS(1λ, s, n, t)→ (r1, . . . , rn): to share a secret and RE(r1, . . . , rt, n, t)→ s to reconstruct the secret.

3.6 Additive Homomorphic Encryption

Additive homomorphic encryption involves three algorithms: (1) key generation: KGen(1λ)→ (sk, pk), which
takes a security parameter as input and outputs a secret and public keys pair, (2) encryption: Enc(pk,m)→ c,
that takes public key pk and a plaintext message m as input and returns a ciphertext c, and (3) decryption:
Dec(sk, c)→ m, which takes secret key sk and ciphertext c as input and returns plaintext message m. It has
the following properties:

5

• Given two ciphertexts Enc(pk,m1) and Enc(pk,m2), one can compute the encryption of the sum of related

plaintexts: Dec(sk, Enc(pk,m1)
H

+ Enc(pk,m2)) = m1 +m2, where
H

+ denotes homomorphic addition.

• Given a ciphertext Enc(pk,m) and a plaintext message c, one can compute the encryption of the product

of related plaintexts: Dec(sk, Enc(pk,m)
H

× c) = m · c, where
H

× denotes homomorphic multiplication.

We require that the encryption scheme satisfies indistinguishability against chosen-plaintext attacks (IND-
CPA). We refer readers to [28] for a formal definition. One such scheme that meets the above features is the
Paillier public key cryptosystem, proposed in [39].

4 Related Work

Oblivious Transfer (OT) is one of the vital building blocks of cryptographic protocols and has been used in
various mechanisms, such as PSI, generic MPC, and zero-knowledge proofs. The traditional 1-out-of-2 OT
(OT 2

1) is a protocol that involves two parties, a sender S and a receiver R. S has a pair of input messages
(m0,m1) and R has an index s. The aim of OT 2

1 is to allow R to obtain ms, without revealing anything
about s to S, and without allowing R to learn anything about m1−s. The traditional OT 2

1 functionality is
defined as FOT 2

1
: ((m0,m1), s)→ (ε,ms).

The notion of 1-out-of-2 OT was initially proposed by Rabin [42] which consequently was generalized by
Even et al. [20]. Since then, numerous variants of OT have been proposed. For instance, (i) 1-out-of-n OT,
e.g., in [34,45,32]: which allows R to pick one entry out of n entries held by S, (ii) k-out-of-n OT, e.g., in
[12,27,11]: which allows R to pick k entries out of n entries held by S, (iii) OT extension, e.g., in [26,25,37,3]:
that supports efficient executions of OT (which mainly relies on symmetric-key operations), in the case OT
needs to be invoked many times, and (iv) distributed OT, e.g., in [35,13,54]: that allows the database to be
distributed among m servers/senders.

In the remainder of this section, we discuss several variants of OT that have extended and enhanced the
original OT in [42].

4.1 Distributed OT

Naor and Pinkas [35] proposed several protocols for distributed OT where the role of sender S (in the original
OT) is divided between several servers. In these schemes, a receiver must contact a threshold of the servers
to run the OT.

The proposed protocols are in the semi-honest model. They use symmetric-key primitives and do not
involve any modular exponentiation that can lead to efficient implementations. These protocols are based
on various variants of polynomials (e.g., sparse and bivariate), polynomial evaluation, and pseudorandom
function. In these distributed OTs, the security against the servers holds as long as less than a predefined
number of these servers collude. Later, various distributed OTs have been proposed7. For instance, Corniaux
and Ghodosi [13] proposed a verifiable 1-out-of-n distributed OT that considers the case where a threshold of
the servers are potentially active adversaries. The scheme is based on a sparse n-variate polynomial, verifiable
secret sharing, and error-correcting codes.

Moreover, Zhao et al. [54] proposed a distributed version of OT extension that aims to preserve the
efficiency of OT extension while delegating the role of S to multiple servers a threshold of which can be
potentially semi-honest. The scheme is based on a hash function and an oblivious pseudorandom function.
However, there exists no OT that supports the delegation of the query computation to third-party servers
in a privacy-preserving manner.

7 Distributed OT has also been called proxy OT in [52].

6

4.2 Multi-Receiver OT

Camenisch et al. [6] proposed a protocol for “OT with access control”. It involves a set of receivers and
a sender which maintains records of the receivers. It offers a set of interesting features; namely, (i) only
authorized receivers can access certain records; (ii) the sender does not learn which record a receiver accesses,
and (iii) the sender does not learn which roles (or security clearance) the receiver has when it accesses the
records. In this scheme, during the setup, the sender encrypts all records (along with their field elements) and
publishes the encrypted database for the receivers to download. Subsequently, researchers proposed various
variants of OT with access control, as seen in [8,5,7]. Nevertheless, in all the aforementioned schemes, the
size of the entire database is revealed to the receivers.

4.3 OT with Constant Response Size

Researchers have proposed several OTs, e.g., those proposed in [9,23,53], that enable a receiver to obtain
a constant-size response to its query. To achieve this level of communication efficiency, these protocols
require the receiver to locally store the encryption of the entire database, in the initialization phase. During
the transfer phase, the sender assists the receiver with locally decrypting the message that the receiver is
interested in. The main limitation of these protocols is that a thin client with limited available storage space
cannot use them, as it cannot locally store the encryption of the entire database. We refer readers to [49] for
a recent survey of OT.

5 Delegated-Query OT

In this section, we present the notion of Delegated-Query 1-out-of-2 OT (DQ–OT 2

1) and a protocol that
realizes it. DQ–OT 2

1 involves four parties; namely, sender S, receiver R, and two helper servers P1 and P2

that assist R in computing the query. DQ–OT 2

1 enables R to delegate (i) the computation of the query and
(ii) the interaction with S to P1 and P2, who jointly compute R’s query and send it to S. DQ–OT 2

1 (in
addition to offering the basic security of OT) ensures that R’s privacy is preserved from P1 and P2, in the
sense that P1 and P2 do not learn anything about the actual index (i.e., s ∈ {0, 1}) that R is interested in,
if they do not collude with each other.

5.1 Functionality Definition

Informally, the functionality that DQ–OT 2

1 computes takes as input (i) a pair of messages (m0,m1) from S,
(ii) empty string ε from P1, (iii) empty string ε from P2, and (iv) the index s (where s ∈ {0, 1}) from R. It
outputs an empty string ε to S, P1, and P2, and outputs the message with index s, i.e., ms, to R. Formally,
we define the functionality as: FDQ–OT 2

1
:
(
(m0,m1), ε, ε, s

)
→ (ε, ε, ε,ms).

5.2 Security Definition

Next, we present a formal definition of DQ–OT 2

1.

Definition 2 (DQ–OT 2

1). Let FDQ–OT 2
1

be the delegated-query OT functionality defined above. We say pro-
tocol Γ realizes FDQ–OT 2

1
in the presence of passive adversary S, R, P1, or P2 if for every non-uniform PPT

adversary A in the real model, there exists a non-uniform PPT adversary (or simulator) Sim in the ideal
model, such that: {

SimS
(
(m0,m1), ε

)}
m0,m1,s

c≡
{
ViewΓS

(
(m0,m1), ε, ε, s

)}
m0,m1,s

(1)

{
SimPi(ε, ε)

}
m0,m1,s

c≡
{
ViewΓPi

(
(m0,m1), ε, ε, s

)}
m0,m1,s

(2)

7

{
SimR

(
s,FDQ–OT 2

1

(
(m0,m1), ε, ε, s

))}
m0,m1,s

c≡
{
ViewΓR

(
(m0,m1), ε, ε, s

)}
m0,m1,s

(3)

for all i, i ∈ {1, 2}.

Intuitively, Relation 1 states that the view of a corrupt S during the execution of protocol Γ (in the real
model) can be simulated by a simulator SimS (in the ideal model) given only S’s input and output, i.e.,
(m0,m1) and ε respectively.

Relation 2 states that the view of each corrupt server Pi during the execution of Γ can be simulated by
a simulator SimPi given only Pi’s input and output, i.e., ε and ε respectively.

Relation 3 states that the view of a corrupt R during the execution of Γ can be simulated by a simulator
SimR given only R’s input and output, i.e., s and ms respectively.

A DQ–OT 2

1 scheme must meet two (new) properties, efficiency and sender-push communication (SPC).
Efficiency states that the query generation of the receiver is faster compared to traditional (non-delegated)
OT. SPC, on the other hand, stipulates that the sender transmits responses to the receiver without requiring
the receiver to directly initiate a query to the sender. Below, we formally state these properties.

Definition 3 (Efficiency). A DQ–OT 2

1 scheme is considered efficient if the running time of the receiver-
side request (or query) generation algorithm, denoted as Request(1λ, s, pk), satisfies two conditions:

• The running time is upper-bounded by poly(|m|), where poly is a fixed polynomial, m is a tuple of messages
that the sender holds, and |m| represents the number of elements/messages in tuple m.

• The running time is asymptotically constant with respect to the security parameter λ, i.e., it is O(1).

Definition 4 (Sender-push communication). Let (a) ActionR(t) represent the set of actions available
to R at time t (these actions may include sending requests, receiving messages, or any other interactions
R can perform within the scheme’s execution), (b) ActionS(t) be the set of actions available to S at time
t, (c) SendRequest(R,S) be the action of R sending a request to S, and (d) SendMessage(S,R) repre-
sents the action of S sending a message to R. Then, we say that a DQ–OT 2

1 scheme supports sender-push
communication, if it meets the following conditions:

• Receiver-side restricted interaction: For all t in the communication timeline (i.e., within the execution of
the scheme), the set of actions ActionR(t) available to the receiver R is restricted such that it does not
include direct requests to the sender S. Formally,

∀t : ActionR(t) ∩ {SendRequest(R,S)} = ∅

• Sender-side non-restricted interaction: For all t in the communication timeline, the sender S has the
capability to push messages to the receiver R without receiving explicit request directly from R. Formally,

∀t : ActionS(t) ⊆ {SendMessage(S,R)}

Looking ahead, the above two properties are also valid for the variants of DQ–OT 2

1; namely, DUQ–OT 2

1,
DQMR–OT 2

1, and DUQMR–OT 2

1, with a minor difference being that the receiver-side request generation
algorithm in these three variants is denoted as R.Request().

5.3 Protocol

Now, we present an efficient 1-out-of-2 OT protocol, called DQ-OT, that realizes DQ–OT 2

1. We build DQ-OT
upon the OT 2

1 proposed by Naor and Pinkas [36, pp. 450, 451]. Our motivation for this choice is primarily
didactic. Appendix A restates this OT.

The high-level idea behind the design of DQ-OT is that R splits its index into two shares and sends each
share to each Pi. Each Pi computes a (partial) query and sends the result to S which generates the response

8

for R in the same manner as the original OT in [36]. Below, we explain how DQ-OT operates, followed by
an explanation of how it achieves correctness.

First, R splits the index that it is interested in into two binary shares, (s1, s2). Then, it picks two random
values, (r1, r2), and then sends each pair (si, ri) to each Pi.

Second, to compute a partial query, P2 treats s2 as the main index that R is interested in and computes
a partial query, δs2 = gr2 . Also, P2 generates another query, δ1−s2 = C

gr2 , where C is a random public

parameter (as defined in [36]). P2 sorts the two queries in ascending order based on the value of s2 and sends
the resulting (δ0, δ1) to P1.

Third, to compute its queries, P1 treats δ0 as the main index (that R is interested) and computes
βs1 = δ0 · gr1 . Additionally, it generates another query β1−s1 = δ1

gr1 . Subsequently, P1 sorts the two queries in

ascending order based on the value of s1 and sends the resulting (β0, β1) to R.
Fourth, given the queries, S computes the response in the same manner it does in the original OT in

[36] and sends the result to R who extracts from it, the message that it asked for, with the help of si and ri
values. The detailed DQ-OT is presented in Figure 1.

Theorem 1. Let FDQ–OT 2
1

be the functionality defined in Section 5.2. If Discrete Logarithm (DL), Com-
putational Diffie-Hellman (CDH), and Random Oracle (RO) assumptions hold, then DQ-OT (presented in
Figure 1) securely computes FDQ–OT 2

1
in the presence of semi-honest adversaries, w.r.t. Definition 2.

5.4 DQ-OT’s Security Proof

Below, we prove DQ-OT’s security, i.e., Theorem 1.

Proof. We consider the case where each party is corrupt, at a time.

Corrupt Receiver R. In the real execution, R’s view is: ViewDQ-OT

R

(
m0,m1, ε, ε, s

)
= {rR, g, C, p, e0, e1,ms},

where g is a random generator, C = ga is a random public parameter, a is a random value, p is a large random
prime number, and rR is the outcome of the internal random coin of R and is used to generate (r1, r2). Below,
we construct an idea-model simulator SimR which receives (s,ms) from R.

1. initiates an empty view and appends uniformly random coin r′R to it, where r′R will be used to generate
R-side randomness. It chooses a large random prime number p and a random generator g.

2. sets (e′0, e
′
1) as follows:

– splits s into two shares: SS(1λ, s, 2, 2)→ (s′1, s
′
2).

– picks uniformly random values: C ′, r′1, r
′
2, y
′
0, y
′
1

$← Zp.
– sets β′s = gx, where x is set as follows:
∗ x = r′2 + r′1, if (s = s1 = s2 = 0) or (s = s1 = 1 ∧ s2 = 0).
∗ x = r′2 − r′1, if (s = 0 ∧ s1 = s2 = 1) or (s = s2 = 1 ∧ s1 = 0).

– picks a uniformly random value u
$← Zp and then sets e′s = (gy

′
s , H(β′y

′
s

s)⊕ms) and e′1−s = (gy
′
1−s , u).

3. appends (g, C ′, p, r′1, r
′
2, e
′
0, e
′
1,ms) to the view and outputs the view.

Now we discuss why the two views in the ideal and real models are indistinguishable. Since we are in the
semi-honest model, the adversary picks its randomness according to the protocol description; thus, rR and
r′R model have identical distributions, so do values (r1, r2) in the real model and (r′1, r

′
2) in the ideal model.

Also, C and C ′ have been picked uniformly at random and have identical distributions. The same applies to
values g and p in the real and ideal models.

Next, we argue that e1−s in the real model and e′1−s in the ideal model are indistinguishable. In the real

model, it holds that e1−s = (gy1−s , H(β
y1−s
1−s)⊕m1−s), where β

y1−s
1−s = C

gx = ga−x. Since y1−s in the real model and

y′1−s in the ideal model have been picked uniformly at random and unknown to the adversary/distinguisher,

gy1−s and gy
′
1−s have identical distributions.

Furthermore, in the real model, given C = ga, due to the DL problem, a cannot be computed by a PPT
adversary. Also, due to CDH assumption, R cannot compute β

y1−s
1−s (i.e., the input of H(.)), given gy1−s and

9

1. S-side Initialization: Init(1λ)→ pk
(a) chooses a sufficiently large prime number p.

(b) selects random element C
$← Zp and generator g.

(c) publishes pk = (C, p, g).
2. R-side Delegation: Request(1λ, s, pk)→req = (req1, req2)

(a) splits the private index s into two shares (s1, s2) by calling SS(1λ, s, 2, 2)→ (s1, s2).

(b) picks two uniformly random values: r1, r2
$← Zp.

(c) sends req1 = (s1, r1) to P1 and req2 = (s2, r2) to P2.

3. P2-side Query Generation: P2.GenQuery(req2, , pk)→ q2

(a) computes a pair of partial queries:

δs2 = gr2 , δ1−s2 =
C

gr2

(b) sends q2 = (δ0, δ1) to P1.

4. P1-side Query Generation: P1.GenQuery(req1, q2, pk)→ q1

(a) computes a pair of final queries as:

βs1 = δ0 · gr1 , β1−s1 =
δ1
gr1

(b) sends q1 = (β0, β1) to S.

5. S-side Response Generation: GenRes(m0,m1, pk, q1)→ res
(a) aborts if C 6= β0 · β1.

(b) picks two uniformly random values: y0, y1

$← Zp.
(c) computes a response pair (e0, e1) as follows:

e0 := (e0,0, e0,1) = (gy0 , H(βy00)⊕m0)

e1 := (e1,0, e1,1) = (gy1 , H(βy11)⊕m1)

(d) sends res = (e0, e1) to R.
6. R-side Message Extraction: Retreive(res, req, pk)→ms

(a) sets x = r2 + r1 · (−1)s2

(b) retrieves the related message: ms = H((es,0)
x)⊕ es,1

Fig. 1: DQ-OT: Our 1-out-of-2 OT that supports query delegation. The input of R is a private binary index
s and the input of S is a pair of messages (m0,m1). Note, SS(.) is the share-generation algorithm, H(.) is a
hash function, and $ denotes picking a value uniformly at random.

10

ga−x. We also know that H(.) is modeled as a random oracle and its output is indistinguishable from a random
value. Thus, H(β

y1−s
1−s) ⊕m1−s in the real model and u in the ideal model are indistinguishable. This means

that e1−s and e′1−s are indistinguishable too, due to DL, CDH, and RO assumptions. Also, in the real and
idea models, es and e′s have been defined over Zp and their decryption always result in the same value ms.
Thus, es and e′s have identical distributions too. Also, ms has identical distribution in both models.

We conclude that the two views are computationally indistinguishable, i.e., Relation 3 (in Section 5.2)
holds.

Corrupt Sender S. In the real model, S’s view is: ViewDQ-OT

S

(
(m0,m1), ε, ε, s

)
= {rS, C, β0, β1}, where rS

is the outcome of the internal random coin of S. Next, we construct an idea-model simulator SimS which
receives (m0,m1) from S.

1. initiates an empty view and appends uniformly random coin r′S to it, where r′S will be used to generate
random values for S.

2. picks random values C ′, r′
$← Zp.

3. sets β′0 = gr
′

and β′1 = C′

gr
′ .

4. appends β′0 and β′1 to the view and outputs the view.

Next, we explain why the two views in the ideal and real models are indistinguishable. Recall, in the real
model, (βs, β1−s) have the following form: βs = gx and β1−s = ga−x, where a = DL(C) and C = ga. In this
model, because a and x have been picked uniformly at random and unknown to the adversary, due to DL
assumption, βs and β1−s have identical distributions and are indistinguishable. In the ideal model, r′ has
been picked uniformly at random and we know that a′ in C ′ = ga

′
is a uniformly random value, unknown to

the adversary; therefore, due to DL assumption, β′0 and β′1 have identical distributions too. Moreover, values
βs, β1−s, β

′
0, and β′1 have been defined over the same field, Zp. Thus, they have identical distributions and are

indistinguishable.
Therefore, the two views are computationally indistinguishable, i.e., Relation 1 (in Section 5.2) holds.

Corrupt Server P2. In the real execution, P2’s view is: ViewDQ-OT

P2

(
(m0,m1), ε, ε, s

)
= {g, C, p, s2, r2}.

Below, we show how an ideal-model simulator SimP2
works.

1. initiates an empty view. It selects a random generator g and a large random prime number p.

2. picks two uniformly random values s′2
$← U and C ′, r′2

$← Zp, where U is the output range of SS(.).
3. appends s′2, C

′ and r′2 to the view and outputs the view.

Next, we explain why the views in the ideal and real models are indistinguishable. Since values g and p
have been picked uniformly at random in both models, they have identical distributions in the real and ideal
models. Since r2 and r′2 have been picked uniformly at random from Zp, they have identical distributions.
Also, due to the security of SS(.) each share s2 is indistinguishable from a random value s′2, where s′2 ∈ U. Also,
both C and C ′ have been picked uniformly at random from Zp; therefore, they have identical distribution.
Thus, the two views are computationally indistinguishable, i.e., Relation 2 w.r.t. P2 (in Section 5.2) holds.

Corrupt Server P1. In the real execution, P1’s view is: ViewDQ-OT
P1

(
(m0,m1), ε, ε, s

)
= {g, C, p, s1, r1, δ0, δ1}.

Ideal-model SimP1
works as follows.

1. initiates an empty view. It chooses a random generator g and a large random prime number p.

2. picks two random values δ′0, δ
′
1

$← Zp.
3. picks two uniformly random values s′1

$← U and

C ′, r′1
$← Zp, where U is the output range of SS(.).

4. appends s′1, C
′, r′1, δ

′
0, δ
′
1 to the view and outputs the view.

11

Now, we explain why the views in the ideal and real models are indistinguishable. Values g and p have
been picked uniformly at random in both models. Hence, g and p in the real and ideal models have identical
distributions (pair-wise).

Recall, in the real model, P1 receives δs2 = gr2 and δ1−s2 = ga−r2 from P2. Since a and r2 have been
picked uniformly at random and unknown to the adversary due to DL assumption, δs2 and δ1−s2 (or δ0 and
δ1) have identical distributions and are indistinguishable from random values (of the same field).

In the ideal model, δ′0 and δ′1 have been picked uniformly at random; therefore, they have identical
distributions too. Moreover, δs, δ1−s, δ

′
0, and δ′1 have been defined over the same field, Zp. So, they have

identical distributions and are indistinguishable. Due to the security of SS(.) each share s1 is indistinguishable
from a random value s′1, where s′1 ∈ U. Also, (r1, C) and (r′1, C

′) have identical distributions, as they are
picked uniformly at random from Zp.

Hence, the two views are computationally indistinguishable, i.e., Relation 2 w.r.t. P1 (in Section 5.2)
holds. �

5.5 Proof of Correctness

In this section, we discuss why the correctness of DQ-OT always holds. Recall, in the original OT of Naor
and Pinkas [36], the random value a (i.e., the discrete logarithm of random value C) is inserted by receiver
R into the query β1−s whose index (i.e., 1− s) is not interesting to R while the other query βs is free from
value a. As we will explain below, in our DQ-OT, the same applies to the final queries that are sent to S.
Briefly, in DQ-OT, when:

• s = s1 ⊕ s2 = 1 (i.e., when s1 6= s2), then a will always appear in β1−s = β0; however, a will not appear
in β1.
• s = s1 ⊕ s2 = 0 (i.e., when s1 = s2), then a will always appear in β1−s = β1; but a will not appear in β0.

This is evident in Table 1 which shows what δi and βj are for the different values of s1 and s2. Therefore,
the query pair (β0, β1) has the same structure as it has in [36].

s2 = 0 s2 = 1

δ0 = gr2 , δ1 = ga−r2 δ0 = ga−r2 , δ1 = gr2
s1 = 0

β0 = gr2+r1 , β1 = ga−r2−r1 β0 = ga−r2+r1 , β1 = gr2−r1

δ0 = gr2 , δ1 = ga−r2 δ0 = ga−r2 , δ1 = gr2
s1 = 1

β0 = ga−r2−r1 , β1 = gr2+r1 β0 = gr2−r1 , β1 = ga−r2+r1

Table 1: δi and βj are for the different values of s1 and s2. We express each value as a power of g.

Next, we show why, in DQ-OT, R can extract the correct message, i.e., ms. Given S’s reply pair (e0, e1)
and its original index s, R knows which element to pick from the response pair, i.e., it picks es. Moreover,
given gys ∈ es, R can recompute H(gys)x, as it knows the value of s, s1, and s2. Specifically, as Table 1
indicates, when:

•
Case 1︷ ︸︸ ︷

(s = s1 = s2 = 0) or

Case 2︷ ︸︸ ︷
(s = s1 = 1 ∧ s2 = 0), then R can set x = r2 + r1.

• In Case 1, it holds H((gy0)x) = H((gy0)r2+r1) = q. Also, e0 = H(βy00)⊕m0 = H((gr2+r1)y0)⊕m0. Thus,
q ⊕ e0 = m0.

• In Case 2, it holds H((gy1)x) = H((gy1)r2+r1) = q. Moreover, e1 = H(βy11) ⊕m1 = H((gr2+r1)y1) ⊕m1.
Hence, q ⊕ e1 = m1.

12

•
Case 3︷ ︸︸ ︷

(s = 0 ∧ s1 = s2 = 1) or

Case 4︷ ︸︸ ︷
(s = s2 = 1 ∧ s1 = 0), then R can set x = r2 − r1.

• In Case 3, it holds H((gy0)x) = H((gy0)r2−r1) = q. On the other hand, e0 = H(βy00)⊕m0 = H((gr2−r1)y0)⊕
m0. Therefore, q ⊕ e0 = m0.

• In Case 4, it holds H((gy1)x) = H((gy1)r2−r1) = q. Also, e1 = H(βy11)⊕m1 = H((gr2−r1)y1)⊕m1. Hence,
q ⊕ e1 = m1.

We conclude that DQ-OT always allows honest R to recover the message of its interest, i.e., ms.

6 Delegated-Unknown-Query OT

In certain cases, the receiver itself may not know the value of query s. Instead, the query is issued by a third-
party query issuer (T). In this section, we present a new variant of DQ–OT 2

1, called Delegated-Unknown-
Query 1-out-of-2 OT (DUQ–OT 2

1). It enables T to issue the query while (a) preserving the security of
DQ–OT 2

1 and (b) preserving the privacy of query s from R.

6.1 Security Definition

The functionality that DUQ–OT 2

1 computes takes as input (a) a pair of messages (m0,m1) from S, (b) empty
strings ε from P1, (c) ε from P2, (d) ε from R, and (e) the index s (where s ∈ {0, 1}) from T . It outputs an
empty string ε to S, T , P1, and P2, and outputs the message with index s, i.e., ms, to R. More formally,
we define the functionality as: FDUQ–OT 2

1
:
(
(m0,m1), ε, ε, ε, s

)
→ (ε, ε, ε,ms, ε). Next, we present a formal

definition of DUQ–OT 2

1.

Definition 5 (DUQ–OT 2

1). Let FDUQ–OT 2
1

be the functionality defined above. We assert that protocol Γ
realizes FDUQ–OT 2

1
in the presence of passive adversary S, R, P1, or P2, if for every PPT adversary A in the

real model, there exists a non-uniform PPT simulator Sim in the ideal model, such that:{
SimS

(
(m0,m1), ε

)}
m0,m1,s

c≡
{
ViewΓS

(
(m0,m1), ε, ε, ε, s

)}
m0,m1,s

(4){
SimPi(ε, ε)

}
m0,m1,s

c≡
{
ViewΓPi

(
(m0,m1), ε, ε, ε, s

)}
m0,m1,s

(5){
SimT (s, ε)

}
m0,m1,s

c≡
{
ViewΓT

(
(m0,m1), ε, ε, ε, s

)}
m0,m1,s

(6){
SimR

(
ε,FDUQ–OT 2

1

(
(m0,m1), ε, ε, ε, s

))}
m0,m1,s

c≡
{
ViewΓR

(
(m0,m1), ε, ε, ε, s

)}
m0,m1,s

(7)

for all i, i ∈ {1, 2}. Since DUQ–OT 2

1 is a variant of DQ–OT 2

1, it also supports efficiency and SPC, as
discussed in Section 5.2.

6.2 Protocol

In this section, we present DUQ-OT that realizes DUQ–OT 2

1.

Main Challenge to Overcome. One of the primary differences between DUQ-OT and previous OTs in
the literature (and DQ-OT) is that in DUQ-OT, R does not know the secret index s. The knowledge of
s would help R pick the suitable element from S’s response; for instance, in the DQ-OT, it picks es from
(e0, e1). Then, it can extract the message from the chosen element. In DUQ-OT, to enable R to extract the
desirable message from S’s response without the knowledge of s, we rely on the following observation and
technique. We know that (in any OT) after decrypting es−1, R would obtain a value indistinguishable from
a random value (otherwise, it would learn extra information about ms−1). Therefore, if S imposes a certain
publicly known structure to messages (m0,m1), then after decrypting S’s response, only ms would preserve
the same structure. In DUQ-OT, S imposes a publicly known structure to (m0,m1) and then computes the
response. Given the response, R tries to decrypt every message it received from S and accepts only the result
that has the structure.

13

An Overview. DUQ-OT operates as follows. First, R picks two random values and sends each to a Pi.
Also, T splits the secret index s into two shares and sends each share to a Pi. Moreover, T selects a random
value r3 and sends it to R and S. Given the messages receives from R and T , each Pi generates queries the
same way they do in DQ-OT. Given the final query pair and r3, S first appends r3 to m0 and m1 and then
computes the response the same way it does in DQ-OT, with the difference that it also randomly permutes
the elements of the response pair. Given the response pair and r3, R decrypts each element in the pair and
accepts the result that contains r3. Figure 2 presents DUQ-OT in more detail.

Theorem 2. Let FDUQ–OT 2
1

be the functionality defined in Section 6.1. If DL, CDH, and RO assump-
tions hold and random permutation π(.) is secure, then DUQ-OT (presented in Figure 2) securely computes
FDUQ–OT 2

1
in the presence of semi-honest adversaries, w.r.t. Definition 5.

6.3 DUQ-OT’s Security Proof

Below, we prove DUQ-OT’s security theorem, i.e., Theorem 2. Even though the proofs of DUQ-OT and DQ-
OT have similarities, they have significant differences too. Thus, for the sake of completeness, we present a
complete proof for DUQ-OT.

Proof. We consider the case where each party is corrupt, at a time.

Corrupt Receiver R. In the real execution, R’s view is: ViewDUQ-OT

R

(
m0,m1, ε, ε, ε, s

)
= {rR, g, C, p, r3, s2,

e′0, e
′
1,ms}, where rR is the outcome of the internal random coin of R and is used to generate (r1, r2). Below,

we construct an idea-model simulator SimR which receives ms from R.

1. initiates an empty view and appends uniformly random coin r′R to it, where r′R will be used to generate
R-side randomness, i.e., (r′1, r

′
2).

2. selects a random generator g and a large random prime number p.
3. sets response (ē′0, ē

′
1) as follows:

– picks random values: C ′, r′1, r
′
2, y
′
0, y
′
1

$← Zp, r′3
$← {0, 1}λ, s′

$← {0, 1}, and u
$← {0, 1}σ+λ.

– sets x = r′2 + r′1 · (−1)s
′

and β′0 = gx.

– sets ē0 = (gy
′
0 , G(β

′y′0
0)⊕ (ms||r′3)) and ē1 = (gy

′
1 , u).

– randomly permutes the element of pair (ē0, ē1). Let (ē′0, ē
′
1) be the result.

4. appends (g, C ′, p, r′3, s
′, ē′0, ē

′
1,ms) to the view and outputs the view.

Next, we argue that the views in the ideal and real models are indistinguishable. As we are in the semi-
honest model, the adversary picks its randomness according to the protocol description; therefore, rR and
r′R model have identical distributions, the same holds for values (r3, s2) in the real model and (r′3, s

′) in the
ideal model, component-wise. Furthermore, because values g and p have been selected uniformly at random
in both models, they have identical distributions in the real and ideal models.

For the sake of simplicity, in the ideal mode let ē′j = ē1 = (gy
′
1 , u) and in the real model let e′i = e1−s =

(gy1−s , G(β
y1−s
1−s)⊕ (m1−s||r3)), where i, j ∈ {0, 1}. We will explain that e′i in the real model and ē′j in the ideal

model are indistinguishable.
In the real model, it holds that e1−s = (gy1−s , G(β

y1−s
1−s) ⊕ (m1−s||r3)), where β

y1−s
1−s = C

gx = ga−x. Since

y1−s in the real model and y′1 in the ideal model have been picked uniformly at random and unknown to the
adversary, gy1−s and gy

′
1 have identical distributions.

Moreover, in the real model, given C = ga, because of DL problem, a cannot be computed by a PPT
adversary. Furthermore, due to CDH assumption, R cannot compute β

y1−s
1−s (i.e., the input of G(.)), given

gy1−s and ga−x. We know that G(.) is considered as a random oracle and its output is indistinguishable from a
random value. Therefore, G(β

y1−s
1−s)⊕(m1−s||r3) in the real model and u in the ideal model are indistinguishable.

This means that e1−s and ē′j are indistinguishable too, due to DL, CDH, and RO assumptions.
Moreover, since (i) ys in the real model and y′0 in the ideal model have picked uniformly at random and

(ii) the decryption of both e′1−i and ē′1−j contain ms, e
′
1−i and ē′1−j have identical distributions. ms also has

14

1. S-side Initialization: Init(1λ)→ pk
(a) chooses a sufficiently large prime number p.

(b) selects random element C
$← Zp and generator g.

(c) publishes pk = (C, p, g).
2. R-side Delegation: R.Request(pk)→req = (req1, req2)

(a) picks two uniformly random values: r1, r2
$← Zp.

(b) sends req1 = r1 to P1 and req2 = r2 to P2.
3. T -side Query Generation: T.Request(1λ, s, pk)→(req′1, req

′
2, spS)

(a) splits the private index s into two shares (s1, s2) by calling SS(1λ, s, 2, 2)→ (s1, s2).

(b) picks a uniformly random value: r3
$← {0, 1}λ.

(c) sends req′1 = s1 to P1, req
′
2 = s2 to P2. It also sends secret parameter spS = r3 to S and

spR = (req′2, spS) to R.

4. P2-side Query Generation: P2.GenQuery(req2, req
′
2, pk)→ q2

(a) computes a pair of partial queries:

δs2 = gr2 , δ1−s2 =
C

gr2

(b) sends q2 = (δ0, δ1) to P1.

5. P1-side Query Generation: P1.GenQuery(req1, req
′
1, q2, pk)→ q1

(a) computes a pair of final queries as:

βs1 = δ0 · gr1 , β1−s1 =
δ1
gr1

(b) sends q1 = (β0, β1) to S.

6. S-side Response Generation: GenRes(m0,m1, pk, q1, spS)→ res

(a) aborts if C 6= β0 · β1.

(b) picks two uniformly random values: y0, y1

$← Zp.
(c) computes a response pair (e0, e1) as follows:

e0 := (e0,0, e0,1) = (gy0 , G(βy00)⊕ (m0||r3))

e1 := (e1,0, e1,1) = (gy1 , G(βy11)⊕ (m1||r3))

(d) randomly permutes the elements of the pair (e0, e1) as follows: π(e0, e1)→ (e′0, e
′
1).

(e) sends res = (e′0, e
′
1) to R.

7. R-side Message Extraction: Retreive(res, req, pk, spR)→ms

(a) sets x = r2 + r1 · (−1)s2 .
(b) retrieves message ms as follows. ∀i, 0 ≤ i ≤ 1 :

i. sets y = G((e′i,0)
x)⊕ e′i,1.

ii. calls parse(γ, y)→ (u1, u2).
iii. sets ms = u1, if u2 = r3.

Fig. 2: DUQ-OT: Our 1-out-of-2 OT that supports query delegation while preserving the privacy of query
from R.

15

identical distribution in both models. Both C and C ′ have also been picked uniformly at random from Zp;
therefore, they have identical distributions.

In the ideal model, ē0 always contains encryption of actual message ms while ē1 always contains a
dummy value u. However, in the ideal model the elements of pair (ē0, ē1) and in the real model the elements
of pair (e0, e1) have been randomly permuted, which results in (ē′0, ē

′
1) and (e′0, e

′
1) respectively. Therefore,

the permuted pairs have identical distributions too.
We conclude that the two views are computationally indistinguishable, i.e., Relation 7 (in Section 6.1)

holds.

Corrupt Sender S. In the real model, S’s view is: ViewDUQ-OT

S

(
(m0,m1), ε, ε, ε, s

)
= {rS, C, r3, β0, β1},

where rS is the outcome of the internal random coin of S. Next, we construct an idea-model simulator SimS
which receives {m0,m1} from S.

1. initiates an empty view and appends uniformly random coin r′S to it, where r′S will be used to generate
random values for S.

2. picks random values C ′, r′
$← Zp, r′3

$← {0, 1}λ.

3. sets β′0 = gr
′

and β′1 = C′

gr
′ .

4. appends C ′, r′3, β
′
0, and β′1 to the view and outputs the view.

Next, we explain why the two views in the ideal and real models are indistinguishable. Recall, in the real
model, (βs, β1−s) have the following form: βs = gx and β1−s = ga−x, where a = DL(C) and C = ga.

In this ideal model, as a and x have been picked uniformly at random and unknown to the adversary,
due to DL assumption, βs and β1−s have identical distributions and are indistinguishable.

In the ideal model, r′ and C ′ have been picked uniformly at random and we know that a′ in C ′ = ga
′

is
a uniformly random value, unknown to the adversary; thus, due to DL assumption, β′0 and β′1 have identical
distributions too. The same holds for values C and C ′. Moreover, values βs, β1−s, β

′
0, and β′1 have been defined

over the same field, Zp. Thus, they have identical distributions and are indistinguishable. The same holds
for values r3 in the real model and r′3 in the ideal model.

Therefore, the two views are computationally indistinguishable, i.e., Relation 4 (in Section 6.1) holds.

Corrupt Server P2. In the real execution, P2’s view is: ViewDUQ-OT
P2

(
(m0,m1), ε, ε, ε, s

)
= {g, C, p, s2, r2}.

Below, we show how an ideal-model simulator SimP2
works.

1. initiates an empty view. It chooses a random generator g and a large random prime number p.

2. picks two uniformly random values s′2
$← U and C ′, r′2

$← Zp, where U is the output range of SS(.).
3. appends s′2, C

′ and r′2 to the view and outputs the view.

Next, we explain why the views in the ideal and real models are indistinguishable. Values g and p have been
selected uniformly at random in both models. Thus, they have identical distributions in the real and ideal
models. Since r2 and r′2 have been picked uniformly at random from Zp−1, they have identical distributions.

Also, due to the security of SS(.) each share s2 is indistinguishable from a random value s′2, where
s′2 ∈ U. Also, both C and C ′ have been picked uniformly at random from Zp. Therefore, they have identical
distributions.

Thus, the two views are computationally indistinguishable, i.e., Relation 5 w.r.t. P2 (in Section 6.1) holds.

Corrupt Server P1. In the real execution, P1’s view is: ViewDUQ-OT
P1

(
(m0,m1), ε, ε, ε, s

)
= {g, C, p, s1, r1,

δ0, δ1}. Ideal-model SimP1
works as follows.

1. initiates an empty view. It chooses a large random prime number p and a random generator g.

2. picks two random values δ′0, δ
′
1

$← Zp.
3. picks two uniformly random values s′1

$← U and C ′, r′1
$← Zp, where U is the output range of SS(.).

16

4. appends s′1, g, C
′, p, r′1, δ

′
0, δ
′
1 to the view and outputs the view.

Now, we explain why the views in the ideal and real models are indistinguishable. Recall, in the real
model, P1 receives δs2 = gr2 and δ1−s2 = ga−r2 from P2. Since a and r2 have been picked uniformly at random
and unknown to the adversary due to DL assumption, δs2 and δ1−s2 (or δ0 and δ1) have identical distributions
and are indistinguishable from random values (of the same field).

In the ideal model, δ′0 and δ′1 have been picked uniformly at random; therefore, they have identical
distributions too. Moreover, values δs, δ1−s, δ

′
0, and δ′1 have been defined over the same field, Zp. So, they have

identical distributions and are indistinguishable. Due to the security of SS(.) each share s1 is indistinguishable
from a random value s′1, where s′1 ∈ U. Furthermore, (r1, C) and (r′1, C

′) have identical distributions, as
they are picked uniformly at random from Zp. Values g and p in the real and ideal models have identical
distributions as they have been picked uniformly at random.

Hence, the two views are computationally indistinguishable, i.e., Relation 5 w.r.t. P2 (in Section 6.1)
holds.

Corrupt T . T’s view can be easily simulated. It has input s, but it receives no messages from its counterparts
and receives no output from the protocol. Thus, its real-world view is defined as ViewDUQ-OT

T

(
(m0,m1), ε, ε, ε,

s
)

= {rT , g, C, p}, where rT is the outcome of the internal random coin of T and is used to generate random
values. Ideal-model SimT initiates an empty view, picks r′T , g, C, and p uniformly at random, and adds them
to the view. Since, in the real model, the adversary is passive, then it picks its randomness according to the
protocol’s description; thus, rT , g, C, p and r′T , g, C, p have identical distributions.

Thus, the two views are computationally indistinguishable, i.e., Relation 6 (in Section 6.1) holds. �

7 Delegated-Query Multi-Receiver Oblivious Transfers

In this section, we present two new variants of DQ–OT 2

1; namely, (1) Delegated-Query Multi-Receiver OT
(DQMR–OT 2

1) and (2) Delegated-Unknown-Query Multi-Receiver OT (DUQMR–OT 2

1). They are suitable
for the multi-receiver setting in which the sender maintains a (large) database containing z pairs of messages
m = [(m0,0,m1,0), . . . , (m0,z−1, m1,z−1)].

In this setting, each pair, say v-th pair (m0,v, m1,v) ∈m is related to a receiver, Rj, where 0 ≤ v ≤ z− 1.
Both variants (in addition to offering the efficiency, SPC, and security guarantee of DQ–OT 2

1) ensure that (i)
a receiver learns nothing about the total number of receivers/pairs (i.e., z) and (ii) the sender learns nothing
about which receiver is sending the query, i.e., a message pair’s index for which a query was generated. In
the remainder of this section, we discuss these new variants.

7.1 Delegated-Query Multi-Receiver OT

The first variant DQMR–OT 2

1 considers the setting where server P1 or P2 knows a client’s related pair’s index
in the sender’s database.

Security Definition. The functionality that DQMR–OT 2

1 computes takes as input (i) a vector of messages
m = [(m0,0,m1,0), . . . , (m0,z−1, m1,z−1)] from S, (ii) an index v of a pair in m from P1, (iii) empty string ε
from P2, and (iv) the index s (where s ∈ {0, 1}) from R. It outputs an empty string ε to S, z to P1, ε to P2,
and outputs to R s-th message from v-th pair in the vector, i.e., ms,v. Formally, we define the functionality
as: FDQMR–OT 2

1
:
(
[(m0,0,m1,0), . . . , (m0,z−1, m1,z−1)], v, ε, s

)
→ (ε, z, ε,ms,v), where v ∈ {0, . . . , z − 1}. Next,

we present a formal definition of DQMR–OT 2

1.

Definition 6 (DQMR–OT 2

1). Let FDQMR–OT 2
1

be the functionality defined above. We say that protocol Γ
realizes FDQMR–OT 2

1
in the presence of passive adversary S, R, P1, or P2, if for every non-uniform PPT

adversary A in the real model, there exists a non-uniform PPT simulator Sim in the ideal model, such that:

17

{
SimS

(
m, ε

)}
m,v,s

c≡
{
ViewΓS

(
m, v, ε, s

)}
m,v,s

(8){
SimP1

(v, z)
}

m,v,s

c≡
{
ViewΓP1

(
m, v, ε, s

)}
m,v,s

(9){
SimP2

(ε, ε)
}

m,v,s

c≡
{
ViewΓP2

(
m, v, ε, s

)}
m,v,s

(10){
SimR

(
s,FDQMR–OT 2

1

(
m, v, ε, s

))}
m,v,s

c≡
{
ViewΓR

(
m, v, ε, s

)}
m,v,s

(11)

where m = [(m0,0,m1,0), . . . , (m0,z−1,m1,z−1)].

Strawman Approaches. One may consider using one of the following ideas in the multi-receiver setting:

1. Using an existing single-receiver OT, e.g., in [26] , employing one of the following approaches:

– Approach 1 : receiver Rj sends a standard OT query to S which computes the response for all z pairs
of messages. Subsequently, S sends z pair of responses to receiver Rj which discards all pairs from the
response except for v-th pair. Rj extracts its message mv from the selected pair, similar to a regular
1-out-of-2 OT. However, this approach results in the leakage of the entire database size to Rj.

– Approach 2 : Rj sends a standard OT query to S, along with the index v of its record. This can be
perceived as if S holds a single record/pair. Accordingly, S generates a response in the same manner
as it does in regular 1-out-of-2 OT. Nevertheless, Approach 2 leaks to S the index v of the record
that Rj is interested.

2. Using an existing multi-receiver OT, e.g., in [6] . This will also come with a privacy cost. The existing
multi-receiver OTs reveal the entire database’s size to each receiver (as discussed in Section 4.2). In this
scenario, a receiver can learn the number of private records other companies have in the same database.
This type of leakage is particularly significant, especially when coupled with specific auxiliary information.

Hence, a fully private multi-receiver OT is necessary to ensure user privacy in real-world cloud settings.

Protocol. We present DQMR–OT that realizes DQMR–OT 2

1. We build DQMR–OT upon DQ-OT (presented
in Figure 1). DQMR–OT relies on our observation that in DQ-OT, given the response of S, P1 cannot learn
anything, e.g., about the plaintext messages mi of S. Below, we formally state it.

Lemma 1. Let g be a generator of a group G (defined in Section 3.4) whose order is a prime number p and
log2(p) = λ is a security parameter. Also, let (r1, r2, y1, y2) be elements of G picked uniformly at random,
C = ga be a random public value whose discrete logarithm is unknown, (m0,m1) be two arbitrary messages,
and H be a hash function modelled as a RO (as defined in Section 3.1), where its output size is δ-bit. Let

γ =
+

− r1
+

− r2, β0 = ga+γ, and β1 = ga−γ. If DL, RO, and CDH assumptions hold, then given r1, C, g
r2 , and

C
gr2 , a PPT distinguisher cannot distinguish (i) gy0 and gy1 form random elements of G and (ii) H(βy00)⊕m0

and H(βy11)⊕m1 from random elements from {0, 1}σ, except for a negligible probability µ(λ).

Proof. First, we focus on the first element of pairs (gy0 , H(βy00) ⊕m0) and (gy1 , H(βy11) ⊕m1). Since y0 and
y1 have been picked uniformly at random and unknown to the adversary, gy0 and gy1 are indistinguishable
from random elements of group G.

Next, we turn our attention to the second element of the pairs. Given C = ga, due to DL problem, value
a cannot be extracted by a PPT adversary, except for a probability at most µ(λ). We also know that, due
to CDH assumption, a PPT adversary cannot compute β

yi
i (i.e., the input of H(.)), given gyi , r1, C, g

r2 , and
C
gr2 , where i ∈ {0, 1}, except for a probability at most µ(λ).

We know that H(.) has been considered as a random oracle and its output is indistinguishable from a
random value. Therefore, H(βy00)⊕m0 and H(βy11)⊕m1 are indistinguishable from random elements of {0, 1}δ,
except for a negligible probability, µ(λ). �

18

The main idea behind the design of DQMR–OT is as follows. Given a message pair from P1, S needs to
compute the response for all of the receivers and sends the result to P1, which picks and sends only one pair
in the response to the specific receiver who sent the query and discards the rest of the pairs it received from
S. Therefore, R receives a single pair (so it cannot learn the total number of receivers or the database size),
and the server cannot know which receiver sent the query as it generates the response for all of them. As we
will prove, P1 itself cannot learn the actual query of R, too.

Consider the case where one of the receivers, say Rj, wants to send a query. In this case, within DQMR–OT,
messages (s1, r1), (s2, r2) and (β0, β1) are generated the same way as they are computed in DQ-OT. However,
given (β0, β1), S generates z pairs and sends them to P1 who forwards only v-th pair to Rj and discards the
rest. Given the pair, Rj computes the result the same way a receiver does in DQ-OT. Figure 6 in Appendix
B presents DQMR–OT in detail.

7.2 Delegated-Unknown-Query Multi-Receiver OT

The second variant DUQMR–OT 2

1 can be considered as a variant of DUQ–OT 2

1. It is suitable for the setting
where servers P1 and P2 do not (and must not) know a client’s related index in the sender’s database (as
well as the index s of the message that the client is interested in).

Security Definition. The functionality that DUQMR–OT 2

1 computes takes as input (i) a vector of messages
m = [(m0,0,m1,0), . . . , (m0,z−1, m1,z−1)] from S, (ii) an index v of a pair in m from T , (iii) the index s of
a message in a pair (where s ∈ {0, 1}) from T , (iv) the total number z of message pairs from T , (v) empty
string ε from P1, (vi) ε from P2, and (vii) ε from R. It outputs an empty string ε to S and T , z to P1, ε to
P2, and outputs to R s-th message from v-th pair in m, i.e., ms,v. Formally, we define the functionality as:
FDUQMR–OT 2

1
:
(
[(m0,0,m1,0), . . . , (m0,z−1, m1,z−1)], (v, s, z), ε, ε, ε

)
→ (ε, ε, z, ε,ms,v), where v ∈ {0, . . . , z−1}.

Next, we present a formal definition of DUQMR–OT 2

1.

Definition 7 (DUQMR–OT 2

1). Let FDUQMR–OT 2
1

be the functionality defined above. We assert that protocol
Γ realizes FDUQMR–OT 2

1
in the presence of passive adversary S, R, T , P1, or P2, if for every non-uniform

PPT adversary A in the real model, there exists a non-uniform PPT simulator Sim in the ideal model, such
that:

{
SimS

(
m, ε

)}
m,s

c≡
{
ViewΓS

(
m, (v, s, z), ε, ε, ε

)}
m,s

(12)

{
SimPi(ε, outi)

}
m,s

c≡
{
ViewΓPi

(
m, (v, s, z), ε, ε, ε

)}
m,s

(13)

{
SimT

(
(v, s, z), ε

)}
m,s

c≡
{
ViewΓT

(
m, (v, s, z), ε, ε, ε

)}
m,s

(14)

{
SimR

(
ε,FDUQMR–OT 2

1

(
m, (v, s, z), ε, ε, ε

)))}
m,s

c≡
{
ViewΓR

(
m, (v, s, z), ε, ε, ε

)}
m,s

(15)

where m = [(m0,0,m1,0), . . . , (m0,z−1,m1,z−1)], out1 = z, out2 = ε, and ∀i, i ∈ {1, 2}.

19

Protocol. We proceed to present DUQMR–OT that realizes DUQMR–OT 2

1. We build DQMR–OT upon proto-
col DUQ-OT (presented in Figure 2). DUQMR–OT mainly relies on Lemma 1 and the following technique. To
fetch a record mv “securely” from a semi-honest S that holds a database of the form a = [m0,m1, . . . ,mz−1]

T

where T denotes transpose, without revealing which plaintext record we want to fetch, we can perform as
follows:

1. set vector b = [b0, . . . , bz−1], where all bis are set to zero except for v-th element bv which is set to 1.
2. encrypt each element of b using additively homomorphic encryption, e.g., Paillier encryption. Let b′ be

the vector of the encrypted elements.
3. send b′ to the database holder which performs b′ × a homomorphically, and sends us the single result
res.

4. decrypt res to discover mv.
8

In our DUQMR–OT, b′ is not sent for each query to S. Instead, b′ is stored once in one of the servers,
for example, P1. Any time S computes a vector of responses, say a, to an OT query, it sends a to P1 which
computes b′ × a homomorphically and sends the result to R. Subsequently, R can decrypt it and find the
message it was interested. Thus, P1 obliviously filters out all other records of field elements that do not
belong to Rj and sends to Rj only the messages that Rj is allowed to fetch. Figure 3 presents DUQMR–OT
in detail.

Theorem 3. Let FDUQMR–OT 2
1

be the functionality defined in Section 7.2. If DL, CDH, and RO assumptions

hold and additive homomorphic encryption satisfies IND-CPA, then DUQMR–OT (presented in Figure 3)
securely computes FDUQMR–OT 2

1
in the presence of semi-honest adversaries, w.r.t. Definition 7.

7.3 DUQMR–OT’s Security Proof

We prove the security of DUQMR–OT, i.e., Theorem 3.

Proof. To prove the theorem, we consider the cases where each party is corrupt at a time.

Corrupt R. In the real execution, R’s view is: ViewDUQMR–OT

R

(
m, (v, s, z) ε, ε, ε

)
= {rR, g, C, p, r3, s2, o0, o1,

ms,v}, where g is a random generator, p is a large random prime number, o0 := (o0,0, o0,1), o1 := (o1,0, o1,1),
C = ga is a random value and public parameter, a is a random value, and rR is the outcome of the internal
random coin of R that is used to (i) generate (r1, r2) and (ii) its public and private keys pair for additive
homomorphic encryption.

We will construct a simulator SimR that creates a view for R such that (i) R will see only a pair of
messages rather than z pairs, and (ii) the view is indistinguishable from the view of corrupt R in the real
model. SimR which receives ms,v from R performs as follows.

1. initiates an empty view and appends uniformly random coin r′R to it, where r′R will be used to generate
R-side randomness. It selects a large random prime number p and a random generator g.

2. sets response as follows:

– picks random values: C ′, r′1, r
′
2, y
′
0, y
′
1

$← Zp, r′3
$← {0, 1}λ, s′

$← {0, 1}, and u
$← {0, 1}σ+λ.

– sets x = r′2 + r′1 · (−1)s
′

and β′0 = gx.

– sets ē0 :=
(
ē0,0 = gy

′
0 , ē0,1 = G(β

′y′0
0)⊕ (ms,v||r′3)

)
and ē1 := (ē1,0 = gy

′
1 , ē1,1 = u).

– encrypts the elements of the pair under pk as follows. ∀i, i′, 0 ≤ i, i′ ≤ 1 : ōi,i′ = Enc(pk, ēi,i′). Let
ō0 := (ō0,0, ō0,1) and ō1 := (ō1,0, ō1,1).

– randomly permutes the element of pair (ō0, ō1). Let (ō′0, ō
′
1) be the result.

3. appends (g, C ′, p, r′3, s
′, ō′0, ō

′
1,ms,v) to the view and outputs the view.

8 Such a technique was previously used by Devet et al. [16] in the “private information retrieval” research line.

20

1. S-side Initialization: Init(1λ)→ pk

Chooses a large random prime number p, random element C
$← Zp, and generator g. Publishes

pk = (C, p, g).
2. Rj-side One-off Setup: R.Setup(1λ)→ (pkj, skj)

Generates a key pair for the homomorphic encryption, by calling KGen(1λ) → (skj, pkj). Sends
pkj to T and S.

3. T -side One-off Setup: T.Setup(z, pkj)→ wj

(a) initializes an empty vector wj = [] of size z.
(b) creates a compressing vector, by setting v-th position of wj to encrypted 1 and setting the

rest of z − 1 positions to encrypted 0. ∀t, 0 ≤ t ≤ z − 1 :

i. sets d = 1, if t = v; sets d = 0, otherwise.
ii. appends Enc(pkj, d) to wj.

(c) sends wj to P1.

4. Rj-side Delegation: R.Request(pk)→req = (req1, req2)

(a) picks random values: r1, r2
$← Zp.

(b) sends req1 = r1 to P1 and req2 = r2 to P2.

5. T -side Query Generation: T.Request(1λ, s, pk)→(req′1, req
′
2, spS)

(a) splits the private index s into two shares (s1, s2) by calling SS(1λ, s, 2, 2)→ (s1, s2).

(b) picks a uniformly random value: r3
$← {0, 1}λ.

(c) sends req′1 = s1 to P1, req
′
2 = s2 to P2. It sends secret parameter spS = r3 to S and spR =

(req′2, spS) to R.

6. P2-side Query Generation: P2.GenQuery(req2, req
′
2, pk)→ q2

(a) computes queries: δs2 = gr2 , δ1−s2 = C
gr2 .

(b) sends q2 = (δ0, δ1) to P1.

7. P1-side Query Generation: P1.GenQuery(req1, req
′
1, q2, pk)→q1

(a) computes queries as: βs1 = δ0 · gr1 , β1−s1 = δ1
gr1

(b) sends q1 = (β0, β1) to S.

8. S-side Response Generation: GenRes(m0,0,m1,0, . . . ,m0,z−1, m1,z−1, pk, q1, spS)→ res

(a) aborts if C 6= β0 · β1.
(b) computes a response as follows. ∀t, 0 ≤ t ≤ z − 1 :

i. picks two random values y0,t, y1,t

$← Zp.
ii. computes response:

e0,t := (e0,0,t, e0,1,t) = (gy0,t , G(β
y0,t
0)⊕ (m0,t||r3))

e1,t := (e1,0,t, e1,1,t) = (gy1,t , G(β
y1,t
1)⊕ (m1,t||r3))

iii. randomly permutes the elements of each pair (e0,t, e1,t) as π(e0,t, e1,t)→ (e′0,t, e
′
1,t).

(c) sends res = (e′0,0, e
′
1,0), . . . , (e

′
0,z−1, e

′
1,z−1) to P1.

9. P1-side Oblivious Filtering: OblFilter(res, pkj,wj)→res′

(a) compresses S’s response using vector wj as follows. ∀i, i′, 0 ≤ i, i′ ≤ 1 :

oi,i′ = (e′
i,i′,0

H

× wj[0])
H

+ ...
H

+ (e′
i,i′,z−1

H

× wj[z − 1]).
(b) sends res′ = (o0,0, o0,1), (o1,0, o1,1) to Rj.

10. R-side Message Extraction: Retreive(res′, req, skj, pk, spR)→ms

(a) decrypts the response from P1 as follows. ∀i, i′, 0 ≤ i, i′ ≤ 1 : Dec(skj, oi,i′)→ o′
i,i′ .

(b) sets x = r2 + r1 · (−1)s2 .
(c) retrieves message ms,v as follows. ∀i, 0 ≤ i ≤ 1 :

i. sets y = G((o′i,0)
x)⊕ o′i,1.

ii. calls parse(γ, y)→ (u1, u2).
iii. sets ms,v = u1, if u2 = r3.

Fig. 3: Phases 1–8 of DUQMR–OT.

21

Now, we argue that the views in the ideal and real models are indistinguishable. As we are in the
semi-honest model, the adversary picks its randomness according to the protocol description; so, rR and r′R
model have identical distributions, so do values (r3, s2) in the real model and (r′3, s

′) in the ideal model,
component-wise. Moreover, values g and p in the real and ideal models, as they have been picked uniformly
at random. For the sake of simplicity, in the ideal model let ē′j = ē1 = (gy

′
1 , u) and in the real model let

e′i = e1−s = (gy1−s,v , G(β
y1−s,v
1−s) ⊕ (m1−s,v||r3)), where i, j ∈ {0, 1}. Note that ē′j and e′i contain the elements

that the adversary gets after decrypting the messages it receives from P1 in the real model and from SimR
in the ideal model.

We will explain that e′i in the real model and ē′j in the ideal model are indistinguishable. In the real model,

it holds that e1−s = (gy1−s,v , G(β
y1−s,v
1−s) ⊕ (m1−s,v||r3)), where β

y1−s,v
1−s = C

gx = ga−x. Since y1−s,v in the real

model and y′1 in the ideal model have been picked uniformly at random and unknown to the adversary, gy1−s,v

and gy
′
1 have identical distributions. Moreover, in the real model, given C = ga, due to DL problem, a cannot

be computed by a PPT adversary. Also, due to CDH assumption, R cannot compute β
y1−s,v
1−s , given gy1−s and

ga−x. We know that G(.) is considered a random oracle and its output is indistinguishable from a random
value. Therefore, G(β

y1−s,v
1−s) ⊕ (m1−s,v||r3) in the real model and u in the ideal model are indistinguishable.

This means that e′i and ē′j are indistinguishable too, due to DL, CDH, and RO assumptions.

Also, ciphertexts ō1,0 = Enc(pk, gy
′
1) and ō1,1 = Enc(pk, u) in the ideal model and ciphertexts o1−s,0 =

Enc(pk, gy1−s,v) and o1−s,1 = Enc(pk, G(β
y1−s,v
1−s)⊕ (m1−s,v||r3)) in the real model have identical distributions

due to IND-CPA property of the additive homomorphic encryption. Furthermore, (i) ys,v in the real model
and y′0 in the ideal model have been picked uniformly at random and (ii) the decryption of both e′1−i and
ē′1−j contain ms,v; therefore, e′1−i and ē′1−j have identical distributions. Also, ms,v has identical distribution
in both models. Both C and C ′ have also been picked uniformly at random from Zp−1; therefore, they have
identical distributions.

In the ideal model, ē0 always contains encryption of actual message ms,v while ē1 always contains a
dummy value u. However, in the ideal model the encryption of the elements of pair (ē0, ē1) and in the real
model the encryption of the elements of pair (e0,v, e1,v) have been randomly permuted, which results in (ō′0, ō

′
1)

and (o0, o1) respectively. Moreover, ciphertexts ō0,0 = Enc(pk, gy
′
0) and ō0,1 = Enc(pk, G(β

′y′0
0)⊕ (ms,v||r′3))) in

the ideal model and ciphertexts os,0 = Enc(pk, gys,v) and os,1 = Enc(pk, G(βys,vs) ⊕ (ms,v||r3)) have identical
distributions due to IND-CPA property of the additive homomorphic encryption. Thus, the permuted pairs
have identical distributions too.

We conclude that the two views are computationally indistinguishable, i.e., Relation 15 (in Section 7.2)
holds. That means, even though S holds z pairs of messages and generates a response for all of them, R’s
view is still identical to the case where S holds only two pairs of messages.

Corrupt S. This case is identical to the corrupt S in the proof of DUQ-OT (in Section 6.3) with a minor
difference. Specifically, the real-model view of S in this case is identical to the real-model view of S in DUQ-
OT. Nevertheless, now SimS receives a vector m = [(m0,0,m1,0), ..., (m0,z−1, m1,z−1)] from S, instead of only
a single pair that SimS receives in the proof of DUQ-OT. SimS still carries out the same way it does in the
corrupt S case in the proof of DUQ-OT. Therefore, the same argument that we used (in Section 6.3) to
argue why real model and ideal model views are indistinguishable (when S is corrupt), can be used in this
case as well.

Therefore, Relation 12 (in Section 7.2) holds.

Corrupt P2. This case is identical to the corrupt P2 case in the proof of DUQ-OT. Thus, Relation 13 (in
Section 7.2) holds.

Corrupt P1. In the real execution, P1’s view is: ViewDUQMR–OT

P1

(
m, (v, s, z), ε, ε, ε

)
= {g, C, p, s1,wj, r1, δ0, δ1,

(e′0,0, e
′
1,0), ..., (e′0,z−1, e

′
1,z−1)}. Ideal-model SimP1

operates as follows.

1. initiates an empty view. It selects a large random prime number p and a random generator g.

22

2. picks two random values δ′0, δ
′
1

$← Zp.
3. constructs an empty vector w′. It picks z uniformly at random elements w′0, ..., w

′
z from the encryption

(ciphertext) range and inserts the elements into w′.

4. picks two uniformly random values s′1
$← U and C ′, r′1

$← Zp, where U is the output range of SS(.).

5. picks z pairs of random values as follows (a0,0, a1,0), ..., (a0,z−1, a1,z−1)
$← Zp.

6. appends s′1, g, C
′, p, r′1, δ

′
0, δ
′
1 and pairs (a0,0, a1,0), ..., (a0,z−1, a1,z−1) to the view and outputs the view.

Next, we argue that the views in the ideal and real models are indistinguishable. The main difference
between this case and the corrupt P1 case in the proof of DUQ-OT (in Section 6.3) is that now, in the real
model, P1 has: (i) a vector wj of ciphertexts and (ii) z pairs (e′0,0, e

′
1,0), ..., (e

′
0,z−1, e

′
1,z−1). Therefore, we can

reuse the same argument we provided for the corrupt P1 case in the proof of DUQ-OT to argue that the
views (excluding wj and (e′0,0, e

′
1,0), ..., (e

′
0,z−1, e

′
1,z−1)) have identical distributions.

Due to Lemma 1, the elements of each pair (e′0,i, e
′
1,i) in the real model are indistinguishable from the

elements of each pair (a0,i, a1,i) in the ideal model, for all i, 0 ≤ i ≤ z−1. Also, due to the IND-CPA property
of the additive homomorphic encryption scheme, the elements of wj in the real model are indistinguishable
from the elements of w′ in the ideal model.

Hence, Relation 13 (in Section 7.2) holds.

Corrupt T . This case is identical to the corrupt T in the proof of DUQ-OT, with a minor difference;
namely, in this case, T also has input z which is the total number of message pairs that S holds. Thus, we
can reuse the same argument provided for the corrupt T in the proof of DUQ-OT to show that the real and
ideal models are indistinguishable. Thus, Relation 14 (in Section 7.2) holds. �

8 A Compiler for Generic OT with Constant Size Response

In this section, we present a compiler that transforms any 1-out-of-n OT that requires R to receive n messages
(as a response) into a 1-out-of-n OT that enables R to receive only a constant number of messages.

The main technique we rely on is the encrypted binary vector that we used in Section 7.2. The high-level
idea is as follows. During query computation, R (along with its vector that encodes its index s ∈ {0, n− 1})
computes a binary vector of size n, where all elements of the vector are set to 0 except for s-th element which
is set to 1. R encrypts each element of the vector and sends the result as well as its query to S. Subsequently,
S computes a response vector (the same manner it does in regular OT), homomorphically multiplies each
element of the response by the element of the encrypted vector (component-wise), and then homomorphically
sums all the products. It sends the result (which is now constant with regard to n) to R, which decrypts the
response and retrieves the result ms.

Next, we will present a generic OT’s syntax, and introduce the generic compiler using the syntax.

8.1 Syntax of a Conventional OT

Since we aim to treat any OT in a block-box manner, we first present the syntax of an OT. A conventional
(or non-delegated) 1-out-of-n OT (OT n1) has the following algorithms:

• S.Init(1λ)→ pk: a probabilistic algorithm run by S. It takes as input security parameter 1λ and returns
a public key pk.

• R.GenQuery(pk, n, s)→ (q, sp): a probabilistic algorithm run by R. It takes as input pk, the total number
of messages n, and a secret index s. It returns a query (vector) q and a secret parameter sp.

• S.GenRes(m0, . . . ,mn−1, pk, q) → res: a probabilistic algorithm run by S. It takes as input pk and q. It
generates an encoded response (vector) res.

• R.Retreive(res, q, sp, pk, s) → ms: a deterministic algorithm run by S. It takes as input res, q, sp, pk,
and s. It returns message ms.

23

The functionality that a 1-out-of-n OT computes can be defined as: FOT n1 :
(
(m0, . . . ,mn−1), s

)
→ (ε,ms).

Informally, the security of 1-out-of-n OT states that (1) R’s view can be simulated given its input query s
and output message ms and (2) S’s view can be simulated given its input messages (m0, . . . ,mn−1). We refer
readers to [22] for further discussion on 1-out-of-n OT.

8.2 The Compiler

We present the compiler in detail in Figure 4. We highlight that in the case where each ei ∈ res contains
more than one value, e.g., ei = [e0,i, . . . , ew−1,i] (due to a certain protocol design), then each element of
ei is separately multiplied and added by the element of vector b′, e.g., the j-st element of the response is

ej,0
H

× b′[0]
H

+ . . .
H

+ ej,n−1

H

× b′[n− 1], for all j, 0 ≤ j ≤ w − 1. In this case, only w elements are sent to R.

1. S-side Initialization: Init(1λ)→ pk
This phase involves S.
(a) calls S.Init(1λ)→ pk.
(b) publishes pk.

2. R-side Setup: Setup(1λ)→ (skR, pkR)
This phase involves R.
(a) calls KGen(1λ)→ (skR, pkR).
(b) publishes pkR.

3. R-side Query Generation: GenQuery(pkR, n, s)→ (q, sp, b′)
This phase involves R.
(a) calls R.GenQuery(pk, n, s)→ (q, sp).
(b) constructs a vector b = [b0, . . . , bn−1], as:

i. sets every element bi to zero except for s-th element bs which is set to 1.
ii. encrypts each element of b using additive homomorphic encryption, ∀0 ≤ i ≤ n− 1 : b′i =

Enc(pkR, bi). Let b′ be the vector of the encrypted elements.

(c) sends q and b′ to S and locally stores sp.
4. S-side Response Generation: GenRes(m0, . . . ,mn−1, pk, pkR, q, b

′)→ res
This phase involves S.
(a) calls S.GenRes(m0, . . . ,mn−1, pk, q)→ res. Let res = [e0, . . . , en−1].
(b) compresses the response using vector b′ as follows. ∀i, 0 ≤ i ≤ n− 1 :

e = (e0
H

× b′[0])
H

+ . . .
H

+ (en−1

H

× b′[n− 1])

(c) sends res = e to R.
5. R-side Message Extraction. Retreive(res, q, sp, pk, skR, s)→ ms

This phase involves R.

(a) calls Dec(skR, res)→ res′.
(b) calls R.Retreive(res′, q, sp, pk, s)→ ms.

Fig. 4: A compiler that turns a 1-out-of-n OT with response size O(n) to a 1-out-of-n OT with response size
O(1).

Theorem 4. Let FOT n1 be the functionality defined above. If OT n1 is secure and additive homomorphic
encryption meets IND-CPA, then generic OT with constant size response (presented in Figure 4) (i) securely
computes FOT n1 in the presence of semi-honest adversaries and (ii) offers O(1) response size, w.r.t. the total
number of messages n.

24

8.3 Proof of Theorem 4

Proof (sketch). Compared to an original 1-out-of-n OT, the only extra information that S learns in the real
model is a vector of n encrypted binary elements. Since the elements have been encrypted and the encryption
satisfies IND-CPA, each ciphertext in the vector is indistinguishable from an element picked uniformly at
random from the ciphertext (or encryption) range. Therefore, it would suffice for a simulator to pick n
random values and add them to the view. As long as the view of S in the original 1-out-of-n OT can be
simulated, the view of S in the new 1-out-of-n OT can be simulated too (given the above changes).

Interestingly, in the real model, R learns less information than it learns in the original 1-out-of-n OT
because it only learns the encryption of the final message ms. The simulator (given ms and s) encrypts ms

the same way as it does in the ideal model in the 1-out-of-n OT. After that, it encrypts the result again
(using the additive homomorphic encryption) and sends the ciphertext to R. Since in both models, R receives
the same number of values in response, the values have been encrypted twice, and R can decrypt them using
the same approaches, the two models have identical distributions.

Moreover, the response size is O(1), because the response is the result of (1) multiplying two vectors of
size n component-wise and (2) then summing up the products which results in a single value in the case
where each element of the response contains a single value (or w values if each element of the response
contains w values). �

9 Conclusion

OT is a crucial privacy-preserving technology. OTs have found extensive applications in designing secure
Multi-Party Computation (MPC) protocols [51], Federated Learning (FL) [50], and in accessing sensitive
field elements of remote private databases while preserving privacy [6]. In this work, we have identified
various gaps both in the privacy of databases and in the OT research. We proposed several novel OTs to
address these gaps. We have presented a few real-world applications of the proposed OTs, while also formally
defining and proving their security within the simulation-based model.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: EUROCRYPT (2001)
2. Arora, S., Beams, A., Chatzigiannis, P., Meiser, S., Patel, K., Raghuraman, S., Rindal, P., Shah, H., Wang, Y.,

Wu, Y., et al.: Privacy-preserving financial anomaly detection via federated learning & multi-party computation.
arXiv preprint (2023)

3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster
secure computation. In: CCS’13 (2013)

4. Blakley, G.R.: One time pads are key safegaurding schemes, not cryptosystems. fast key safeguarding schemes
(threshold schemes) exist. In: IEEE S&P (1980)

5. Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious transfer with hidden access control from
attribute-based encryption. In: SCN (2012)

6. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control. In: CCS (2009)
7. Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable priced oblivious transfer with rechargeable wallets. In:

FC (2010)
8. Camenisch, J., Dubovitskaya, M., Neven, G., Zaverucha, G.M.: Oblivious transfer with hidden access control

policies. In: PKC (2011)
9. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Advances in Cryptology -

EUROCRYPT (2007)
10. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. IACR Cryptol.

ePrint Arch. (1997)
11. Chen, Y., Chou, J., Hou, X.: A novel k-out-of-n oblivious transfer protocols based on bilinear pairings. IACR

Cryptol. ePrint Arch. (2010)
12. Chu, C., Tzeng, W.: Efficient k -out-of-n oblivious transfer schemes with adaptive and non-adaptive queries. In:

PKC (2005)

25

13. Corniaux, C.L.F., Ghodosi, H.: A verifiable 1-out-of-n distributed oblivious transfer protocol. IACR Cryptol.
ePrint Arch. (2013)

14. Council, G.M.: The dialogue leading to a decision (2020), t.ly/UA Yn
15. Department of Justice–U.S. Attorney’s Office: Former jp morgan chase bank employee sentenced to four years in

prison for selling customer account information (2018)
16. Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information retrieval. In: USENIX Security (2012)
17. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory (1976)
18. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In:

CCS (2013)
19. DrivenData: U.S. PETs prize challenge–transforming financial crime prevention (2023), https://www.drivendata.

org/competitions/98/nist-federated-learning-1/page/524/
20. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM (1985)
21. General Medical Council: Withholding information from patients (2022)
22. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press

(2004)
23. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: ASIACRYPT (2008)
24. Harnik, D., Ishai, Y., Kushilevitz, E.: How many oblivious transfers are needed for secure multiparty computation?

In: CRYPTO (2007)
25. Henecka, W., Schneider, T.: Faster secure two-party computation with less memory. In: CCS (2013)
26. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: CRYPTO, (2003)
27. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure

computation of set intersection. In: TCC (2009)
28. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC Press (2014)
29. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algorithms, 2nd Edition. Addison-

Wesley (1981)
30. Leigh, D., Ball, J., Garside, J., Pegg, D.: Hsbc files timeline: From swiss bank leak to fallout. The Guardian

(2015)
31. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Adaptive oblivious transfer with access control from

lattice assumptions. Theoretical Computer Science (2021)
32. Liu, M., Hu, Y.: Universally composable oblivious transfer from ideal lattice. Frontiers Comput. Sci. (2019)
33. Milmo, D., Hern, A.: BA, Boots and BBC cyber-attack: who is behind it and what happens next? (2023)
34. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC (1999)
35. Naor, M., Pinkas, B.: Distributed oblivious transfer. In: ASIACRYPT. Springer (2000)
36. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA (2001)
37. Nielsen, J.B.: Extending oblivious transfers efficiently - how to get robustness almost for free. IACR Cryptol.

ePrint Arch. (2007)
38. Osborne, C.: Salesforce warns customers of data leak caused by api error (2018), https://www.zdnet.com/article/

salesforce-warns-customers-of-data-leak-caused-by-api-error/
39. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EUROCRYPT (1999)
40. Pfleeger, C.P.: Security in computing. Prentice-Hall, Inc. (1988)
41. PwC: Accelerating transformation with industry cloud (2023), https://www.pwc.com/gx/en/news-room/

analyst-citations/2023/idc-infobrief-pwc-industry-cloud-2023.html
42. Rabin, M.: How to exchange secrets with oblivious transfer (1981)
43. Ren, Z., Yang, L., Chen, K.: Improving availability of vertical federated learning: Relaxing inference on non-

overlapping data. ACM Trans. Intell. Syst. (2022)
44. Tara Seals: Salesforce.com warns marketing customers of data leakage snafu (2018), https://threatpost.com/

salesforce-com-warns-marketing-customers-of-data-leakage-snafu/134703
45. Tzeng, W.: Efficient 1-out-n oblivious transfer schemes. In: Naccache, D., Paillier, P. (eds.) PKC (2002)
46. United States Attorney’s Office: Ex-morgan stanley adviser pleads guilty in connection with data breach (2015),

https://www.reuters.com/article/idUSKCN0RL229
47. United States Attorney’s Office: Former citibank employee pleads guilty to credit card fraud (2017), https:

//www.justice.gov/usao-mdfl/pr/former-citibank-employee-pleads-guilty-credit-card-fraud
48. Xu, G., Li, H., Zhang, Y., Xu, S., Ning, J., Deng, R.H.: Privacy-preserving federated deep learning with irregular

users. IEEE Trans. Dependable Secur. Comput. (2022)
49. Yadav, V.K., Andola, N., Verma, S., Venkatesan, S.: A survey of oblivious transfer protocol. ACM Comput. Surv.

(2022)

26

t.ly/UA_Yn
https://www.drivendata.org/competitions/98/nist-federated-learning-1/page/524/
https://www.drivendata.org/competitions/98/nist-federated-learning-1/page/524/
https://www.zdnet.com/article/salesforce-warns-customers-of-data-leak-caused-by-api-error/
https://www.zdnet.com/article/salesforce-warns-customers-of-data-leak-caused-by-api-error/
https://www.pwc.com/gx/en/news-room/analyst-citations/2023/idc-infobrief-pwc-industry-cloud-2023.html
https://www.pwc.com/gx/en/news-room/analyst-citations/2023/idc-infobrief-pwc-industry-cloud-2023.html
https://threatpost.com/salesforce-com-warns-marketing-customers-of-data-leakage-snafu/134703
https://threatpost.com/salesforce-com-warns-marketing-customers-of-data-leakage-snafu/134703
https://www.reuters.com/article/idUSKCN0RL229
https://www.justice.gov/usao-mdfl/pr/former-citibank-employee-pleads-guilty-credit-card-fraud
https://www.justice.gov/usao-mdfl/pr/former-citibank-employee-pleads-guilty-credit-card-fraud

50. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and applications. ACM Trans. Intell.
Syst. Technol. (2019)

51. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations
of Computer Science (1982)

52. Yao, G., Feng, D.: Proxy oblivious transfer protocol. In: International Conference on Availability, Reliability and
Security, ARES (2006)

53. Zhang, B., Lipmaa, H., Wang, C., Ren, K.: Practical fully simulatable oblivious transfer with sublinear commu-
nication. In: FC (2013)

54. Zhao, S., Song, X., Jiang, H., Ma, M., Zheng, Z., Xu, Q.: An efficient outsourced oblivious transfer extension
protocol and its applications. Secur. Commun. Networks (2020)

A The Original OT of Naor and Pinkas

Figure 5 restates the original OT of Naor and Pinkas [36, pp. 450, 451].

1. S-side Initialization: S.Init(1λ)→ pk

(a) chooses a random large prime number p (where log2 p = λ), a random element C
$← Zp and

random generator g.
(b) publishes pk = (C, g, p).

2. R-side Query Generation: R.GenQuery(pk, s)→ (q, sp)

(a) picks a random value r
$← Zp \ {0} and sets sp = r.

(b) sets βs = gr and β1−s = C
βs

.

(c) sends q = β0 to S and locally stores sp.

3. S-side Response Generation: S.GenRes(m0,m1, pk, q)→ res

(a) computes β1 = C
β0

.

(b) chooses two random values, y0, y1

$← Zp.
(c) encrypts the elements of the pair (m0,m1) as follows:

e0 := (e0,0, e0,1) = (gy0 , H(βy00)⊕m0)

e1 := (e1,0, e1,1) = (gy1 , H(βy11)⊕m1)

(d) sends res = (e0, e1) to R.

4. R-side Message Extraction: R.Retreive(res, sp, pk, s)→ ms

– retrieves the related message ms by computing: ms = H((es,0)
r)⊕ es,1

Fig. 5: Original OT proposed by Naor and Pinkas [36, pp. 450, 451]. In this protocol, the input of R is a
private binary index s and the input of S is a pair of private messages (m0,m1).

B DQMR–OT in more Detail

Figure 6 presents the DQMR–OT that realizes DQMR–OT 2

1.

Theorem 5. Let FDQMR–OT 2
1

be the functionality defined in Section 7.1. If DL, CDH, and RO assumptions

hold, then DQMR–OT (presented in Figure 6) securely computes FDQMR–OT 2
1

in the presence of semi-honest
adversaries, w.r.t. Definition 6.

27

1. S-side Initialization: Init(1λ)→ pk
(a) chooses a sufficiently large prime number p.

(b) selects random element C
$← Zp and generator g.

(c) publishes pk = (C, p, g).
2. Rj-side Delegation: R.Request(1λ, s, pk)→ req = (req1, req2)

(a) splits the private index s into two shares (s1, s2) by calling SS(1λ, s, 2, 2)→ (s1, s2).

(b) picks two uniformly random values: r1, r2
$← Zp.

(c) sends req1 = (s1, r1) to P1 and req2 = (s2, r2) to P2.
3. P2-side Query Generation: P2.GenQuery(req2, , pk)→ q2

(a) computes a pair of partial queries:

δs2 = gr2 , δ1−s2 =
C

gr2

(b) sends q2 = (δ0, δ1) to P1.

4. P1-side Query Generation: P1.GenQuery(req1, q2, pk)→ q1

(a) computes a pair of final queries as:

βs1 = δ0 · gr1 , β1−s1 =
δ1
gr1

(b) sends q1 = (β0, β1) to S.

5. S-side Response Generation: GenRes(m0,0,m1,0, . . . ,m0,z−1,m1,z−1, pk, q1)→ res

(a) aborts if C 6= β0 · β1.
(b) computes a response as follows. ∀t, 0 ≤ t ≤ z − 1 :

i. picks two random values y0,t, y1,t

$← Zp.
ii. computes response:

e0,t := (e0,0,t, e0,1,t) = (gy0,t , H(β
y0,t
0)⊕m0,t)

e1,t := (e1,0,t, e1,1,t) = (gy1,t , H(β
y1,t
1)⊕m1,t)

(c) sends res = (e0,0, e1,0), ..., (e0,z−1, e1,z−1) to P1.

6. P1-side Oblivious Filtering: OblFilter(res)→ res′

• forwards res′ = (e0,v, e1,v) to Rj and discards the rest of the messages received from S.

7. R-side Message Extraction: Retreive(res′, req, pk)→ ms

(a) sets x = r2 + r1 · (−1)s2 .
(b) retrieves message ms,v by setting: ms,v = H((es,0,v)

x)⊕ es,1v

Fig. 6: DQMR–OT: Our protocol that realizes DQMR–OT 2

1.

28

B.1 Proof of Theorem 5

Below, we prove the security of DQMR–OT, i.e., Theorem 5.

Proof. To prove the above theorem, we consider the cases where each party is corrupt at a time.

Corrupt R. Recall that in DQMR–OT, sender S holds a vector m of z pairs of messages (as opposed to DQ-
OT where S holds only a single pair of messages). In the real execution, R’s view is: ViewDQMR–OT

R

(
m0,m1, v,

ε, s
)

= {rR, g, C, p, e0,v, e1,v,ms,v}, where C = ga is a random value and public parameter, where g is a
random generator, a is a random value, p is a large random prime number, and rR is the outcome of the
internal random coin of R and is used to generate (r1, r2).

We will construct a simulator SimR that creates a view for R such that (i) R will see only a pair of
messages (rather than z pairs), and (ii) the view is indistinguishable from the view of corrupt R in the real
model. SimR which receives (s,ms) from R operates as follows.

1. initiates an empty view and appends uniformly random coin r′R to it, where r′R will be used to generate
R-side randomness. It chooses a large random prime number p and a random generator g.

2. sets (e′0, e
′
1) as follows:

– splits s into two shares: SS(1λ, s, 2, 2)→ (s′1, s
′
2).

– picks uniformly random values: C ′, r′1, r
′
2, y
′
0, y
′
1

$← Zp.
– sets β′s = gx, where x is set as follows:
∗ x = r′2 + r′1, if (s = s1 = s2 = 0) or (s = s1 = 1 ∧ s2 = 0).
∗ x = r′2 − r′1, if (s = 0 ∧ s1 = s2 = 1) or (s = s2 = 1 ∧ s1 = 0).

– picks a uniformly random value u
$← Zp and then sets e′s = (gy

′
s , H(β′y

′
s

s)⊕ms) and e′1−s = (gy
′
1−s , u).

3. appends (g, C ′, p, r′1, r
′
2, e
′
0, e
′
1,ms) to the view and outputs the view.

The above simulator is identical to the simulator we constructed for DQ-OT. Thus, the same argument
that we used (in the corrupt R case in Section 5.4) to argue why real model and ideal model views are
indistinguishable, can be used in this case as well. That means, even though S holds z pairs of messages and
generates a response for all of them, R’s view is still identical to the case where S holds only two pairs of
messages. Hence, Relation 11 (in Section 7.1) holds.

Corrupt S. This case is identical to the corrupt S in the proof of DQ-OT (in Section 5.4) with a minor
difference. Specifically, the real-model view of S in this case is identical to the real-model view of S in DQ-
OT; however, now SimS receives a vector m = [(m0,0,m1,0), ..., (m0,z−1, m1,z−1)] from S, instead of only a
single pair that SimS receives in the proof of DQ-OT. SimS still operates the same way it does in the corrupt
S case in the proof of DQ-OT. Therefore, the same argument that we used (in Section 5.4) to argue why
real model and ideal model views are indistinguishable (when S is corrupt), can be used in this case as well.

Therefore, Relation 8 (in Section 7.1) holds.

Corrupt P2. This case is identical to the corrupt P2 case in the proof of DQ-OT. So, Relation 10 (in Section
7.1) holds.

Corrupt P1. In the real execution, P1’s view is: ViewDQMR–OT
P1

(
(m0,m1), v, ε, s

)
= {g, C, p, s1, r1, δ0, δ1, (e0,0,

e1,0), . . . , (e0,z−1, e1,z−1)}. Ideal-model SimP1
that receives v from P1 operates as follows.

1. initiates an empty view. It selects a large random prime number p and a random generator g.

2. picks two random values δ′0, δ
′
1

$← Zp.
3. picks two uniformly random values s′1

$← U and C ′, r′1
$← Zp−1, where U is the output range of SS(.).

4. picks z pairs of random values as follows (a0,0, a1,0), ..., (a0,z−1, a1,z−1)
$← Zp.

29

5. appends s′1, g, C
′, p, r′1, δ

′
0, δ
′
1 and pairs (a0,0, a1,0), ..., (a0,z−1, a1,z−1) to the view and outputs the view.

Now, we explain why the views in the ideal and real models are indistinguishable. The main difference
between this case and the corrupt P1 case in the proof of DQ-OT (in Section 5.4) is that now P1 has z
additional pairs (e0,0, a1,0), ..., (e0,z−1, a1,z−1). Therefore, regarding the views in real and ideal models excluding
the additional z pairs, we can use the same argument we provided for the corrupt P1 case in the proof of
DQ-OT to show that the two views are indistinguishable. Moreover, due to Lemma 1, the elements of each
pair (e0,i, e1,i) in the real model are indistinguishable from the elements of each pair (a0,i, a1,i) in the ideal
model, for all i, 0 ≤ i ≤ z − 1. Hence, Relation 9 (in Section 7.1) holds. �

30

	Delegated-Query Oblivious Transfer and its Practical Applications

