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Abstract. The MPC-in-the-Head (MPCitH) paradigm has recently gained
traction as a foundation for post-quantum signature schemes, offering ro-
bust security without the need for trapdoors. Despite its strong security
profile, MPCitH-based schemes suffer from high computational overhead
and large signature sizes, limiting their practical application.
This work addresses these inefficiencies by enhancing vector commit-
ments within MPCitH-based schemes. We introduce the concept of vec-
tor semi-commitment, which relaxes traditional vector commitment re-
quirements without compromising security, thus reducing signature size
while maintaining performance. We instantiate vector semi-commitment
schemes in both the random oracle model and the ideal cipher model,
leveraging recent optimizations such as the Half-tree technique. Addi-
tionally, we propose a key injection technique that further minimizes
signature size by embedding the secret key into the Half-GGM tree.
We apply these improvements to the BN++ signature scheme and prove
it fully secure in the ideal cipher model. Implementing these improve-
ments in the AIMer v2.0 signature scheme, we achieve up to 18% shorter
signatures and up to 112% faster signing and verification speeds, setting
new benchmarks for MPCitH-based schemes.

Keywords: MPC-in-the-Head, vector commitment, GGM tree, zero-knowledge
proof, digital signature, commitment scheme

1 Introduction

Recently, the MPC-in-the-Head (MPCitH) paradigm [19] has emerged as a promis-
ing approach for designing post-quantum signature schemes. This paradigm
leverages the concept of multi-party computation (MPC) to perform compu-
tations within a single entity’s “head” and has been applied to zero-knowledge
proofs and signature schemes. MPCitH-based signature schemes enable a signer
to generate a signature without relying on a trapdoor, making their security de-
pend solely on the one-way function used in key generation. This advantage al-
lows primitives without trapdoors, such as block ciphers [28,11,23], unstructured
multivariate quadratic (MQ) problem [13], or unstructured syndrome decoding
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problem [14] to base the security of signature schemes. This makes them more
reliable compared to schemes whose security is based on artificially constructed
hardness assumptions with potential gaps in the security reduction.

Despite their promising security feature, MPCitH-based signature schemes
have been hindered by relatively high computational overhead and large signa-
ture sizes, making them less efficient compared to their lattice-based counter-
parts. The inherent complexity of simulating multi-party computations results in
quadratic time and signature size with respect to the security parameter, which
can be detrimental to practical adoption. In response, many studies have fo-
cused on optimizing the efficiency of MPC-in-the-Head-based signature schemes
through protocol optimization [22,6,27,1] and improved cryptographic primi-
tives [11,23].

One notable line of work for improving the efficiency of MPCitH-based sig-
nature schemes is to optimize the GGM (Goldreich-Goldwasser-Micali) tree or
vector commitment in the context of VOLE-in-the-Head (VOLEitH) [4] which
includes the GGM tree and subsequent commitments afterward, a component
used to generate shares of the virtual parties. The GGM tree enables the se-
cure distribution of shares among the virtual parties. However, traditional GGM
tree construction can be computationally expensive, contributing significantly to
the overall inefficiency of MPCitH-based schemes. To address this, researchers
developed more efficient GGM tree constructions, such as double-length PRG
instantiated by fixed-key block cipher [9,8] and the application of Half-tree tech-
nique [10,9].

1.1 Our Contribution

In this work, we focus on improving vector commitments used in MPCitH-based
signature schemes. Our primary enhancement is to relax the vector commit-
ment requirements. A vector commitment scheme, a crucial component of our
MPCitH-based signature scheme, must satisfy two key properties: hiding and
(extractable) binding. The hiding property ensures that the commitment con-
ceals the committed values, safeguarding the data’s secrecy. The binding prop-
erty ensures that once a commitment is made, it is computationally infeasible to
alter the committed values without detection. Notably, a violation of the binding
property does not directly result in a signature forgery.

We introduce a relaxed version of vector commitment, called vector semi-
commitment, which ensures the hardness of finding a preimage and finding
“many” collisions of a commitment. Under a plausible assumption, we prove
that replacing a vector commitment with a vector semi-commitment does not
compromise security. Performance-related parameters, such as the number of
repetitions, remain unchanged, thereby reducing the signature size while main-
taining performance.

We then instantiate vector semi-commitment schemes in both the random
oracle model and the ideal cipher model. For the latter, we fully instantiate all the
random primitives using ideal cipher calls and incorporate recent optimizations
of the GGM tree construction [9,8]. By slightly modifying the Davies-Mayer
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construction provided in [8], our vector semi-commitment scheme enjoys faster
speed of both the fixed-key block cipher and the Half-tree technique.

Furthermore, we introduce a key injection technique that can be applied to
the Half-tree technique. By injecting the secret key of the signature scheme as
the root of the Half-GGM tree, the sum of the leaf nodes (which are seeds)
always equals the secret key. While MPCitH-based signatures usually include
the correction of the secret key shares, the key injection method eliminates this
requirement, leading to a reduction in signature size.

Finally, we apply all the improvements to BN++ [21], an MPCitH-based
signature scheme. We prove its full security3 in the ideal cipher model. We also
implement our improvements in AIMer v2.0 [24], achieving up to 18% shorter sig-
natures and up to 112% faster signing and verification speeds compared to AIMer
v2.0. Compared to other MPCitH-based signature schemes such as SDitH [26]
and FAEST [3], it also offers the fastest performance and the shortest signature
size. Detailed performance figures are summarized in Table 2.

1.2 Related Work

In MPCitH-based signature schemes, a prover emulates an MPC protocol among
N parties “in her head” and then opens the views of (N − 1) parties except one.
The verifier accepts if all the views are consistent with an honest execution of
the MPC protocol. Katz et al. employed the GGM tree to reduce the number
of opened random seeds from N − 1 to log N , subsequently applying it to the
MPCitH-based signature scheme Picnic [22]. Since then, the GGM tree has been
used as a core technique to reduce the signature size in the MPCitH-based
signature schemes [11,23,14,26,7].

There have been efforts to improve GGM trees. Guo et al. proposed a cor-
related GGM tree [17] in the context of correlated oblivious transfer and dis-
tributed point function. In a correlated GGM tree, the sum of all nodes at the
same level is fixed. This reduces the number of random permutation calls by half.
The correlated GGM tree was recently applied to a VOLE-in-the-Head [10].
Using the correlated GGM tree, the number of random permutation calls for
generating seeds is halved. Concurrently, Bui and Cong proposed applying the
correlated GGM tree to MPC-in-the-Head and VOLE-in-the-Head [9]. They also
replaced the random oracle calls used for commitment with random permuta-
tion calls, which can be implemented using efficient primitives such as fixed-key
AES. However, the provable security of their proposal did not exceed the birth-
day bound. Independent with the Half-tree technique, Bui et al. proposed a fast
salted GGM tree which is fully secure in the ideal cipher model [8]. Using this
salted tree, tree evaluation is as fast as the best unsalted version while preventing
multi-target attacks.

3 This means the scheme is secure against O(2λ) queries to the signing oracle or ideal
primitives.
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2 Preliminaries

2.1 Notations
For two vectors or strings a and b, their concatenation is denoted by a∥b. For
integers a and b, we denote the bitwise XOR of a and b by a ⊕ b. Bitwise right
shift by i of a is denoted by a≫ i.

We denote [n] = {1, · · · , n}. Unless stated otherwise, all logarithms are to
the base 2. For an integer a ∈ {0, 1, . . . , 255}, ⟨a⟩B is the canonical binary
representation of a, which is an 8-bit string. For a positive integer n and k < n,
the falling factorial is denoted by (n)k = n · (n− 1) · · · · · (n− k + 1).

For a set S, we write a←$ S to denote that a is chosen uniformly at random
from S. For a probability distribution D, a ←$ D denotes that a is sampled
according to the distribution D. We denote the binomial distribution with n
trials and probability p by B(n, p).

Throughout this paper, the security parameter is denoted by λ. In the mul-
tiparty computation setting, x(i) denotes the i-th party’s additive share of x,
implying that

∑
i x(i) = x.

For x ∈ {0, 1}λ, 2·x denotes multiplying x by X over F2λ for some irreducible
polynomial f(X). Similarly, 3 · x denotes multiplying x by X + 1.

2.2 Chernoff Bound
Chernoff bound is a well-known upper bound on the tail of a random variable.
As our proof relies on this upper bound, we briefly introduce the Chernoff bound
in its multiplicative form.

Let X be a random variable following the binomial distribution B(Q, p).
Then, the probability of the tail of X is upper bounded by

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

for any δ > 0, where e is Euler’s number and µ is the expectation of X.
In our security proof, we use p = 1/2λ. Then, the multiplicative Chernoff

bound is of the form
Pr[X > c] <

(
eQ

c2λ

)c

where c > 1. Given a multiset S = {x1, x2, . . . , xQ} with xi ←$ {0, 1}λ, we can
bound the probability that the maximal multi-collision mcoll in S is greater than
2λ/ log λ as follows. With λ ≥ 16 and Q ≤ 2λ−1, the probability is bounded by

Pr[mcoll > 2λ/ log λ] <

(
eQ · log λ

2λ · 2λ

)2λ/ log λ

· 2λ =
(

eQc · log λ

2λ1/2 · 2λ

)2λ/ log λ

≤
(

eQ

2 · 2λ

)2λ/ log λ

(∵ log λ ≤ λ1/2)

≤ eQ

2λ+1 (∵ eQ ≤ 2λ+1 ≤ 2Q

2λ
.

(1)
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2.3 GGM Tree

GGM tree is a binary tree proposed by Goldreich, Goldwasser, and Micali [16].
For a power-of-two integer N , one can send N − 1 out of N random strings
with log N communication by using a GGM tree. For a pseudorandom generator
G : {0, 1}n → {0, 1}2n and a root node0, the nodes in a GGM tree are defined
recursively as follows.

node1,1∥node1,2 = G(node0)
nodei,2j−1∥nodei,2j = G(nodei−1,j) for i ≥ 2 and 0 < j ≤ 2i−1

Let a GGM tree T has 2d leaf nodes. If one wants to send all leaf nodes except
k-th leaf node (i.e., noded,k), she can send a Merkle path(

node1,(((k−1)≫(d−1))⊕1)+1, node2,(((k−1)≫(d−2))⊕1)+1, . . . , noded,((k−1)⊕1)+1
)

.

We will call this Merkle path an associate path of the unopened node noded,k.
Conversely, we will call the unopened node noded,k an associate node of the
Merkle path described above. The depth of a node is defined by the length of
the shortest upward path to the root (e.g., the depth of node1,1 is 1), and the
height of a node is defined by the length of the longest downward path to a leaf
node.

2.4 BN++ Zero-knowledge Protocol

In this section, we briefly review the BN++ proof system [21], one of the state-
of-the-art MPCitH-based zero-knowledge protocols. At a high level, BN++ is a
variant of the BN protocol [5] with several optimization techniques applied to
reduce the signature size.
Protocol Overview. BN++ essentially simulates multiparty computation
of triple checking protocol, which verifies that all the multiplication triples are
honestly generated. To check C multiplication triples (xj , yj , zj = xj ·yj)C

j=1 over
a finite field F in the multiparty computation setting with N parties, helping
values ((aj , bj)C

j=1, c) are required, where aj ← F, bj = yj , and c =
∑C

j=1 aj · bj .
Each party holds secret shares of the multiplication triples (xj , yj , zj)C

j=1 and
helping values ((aj , bj)C

j=1, c). Then the protocol proceeds as follows.

– A prover is given random challenges ϵ1, · · · , ϵC ∈ F.

– For i ∈ [N ], the i-th party locally sets α
(i)
1 , · · · , α

(i)
C where α

(i)
j = ϵj ·x(i)

j +a
(i)
j .

– The parties open α1, · · · , αC by broadcasting their shares.
– For i ∈ [N ], the i-th party locally sets

v(i) =
C∑

j=1
ϵj · z(i)

j −
C∑

j=1
αj · b(i)

j + c(i).

– The parties open v by broadcasting their shares and output Accept if v = 0.
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By Lemma 1, the probability that there exist incorrect triples and the parties
output Accept in a single run of the above steps is upper bounded by 1/|F|.

Lemma 1 ([21]). If the secret-shared input (xj , yj , zj)j∈[C] contains an incor-
rect multiplication triple, or if the shares of ((aj , yj)j∈[C], c) form an incorrect
dot product, then the parties output Accept in the sub-protocol with probability
at most 1/|F|.

Signature Size. By applying the Fiat-Shamir transform [12], one can obtain
a signature scheme from the BN++ proof system. In this signature scheme, the
signature size is given as

6λ + τ · (3λ + λ · ⌈log2(N)⌉+M(C)),

where λ is the security parameter, C is the number of multiplication gates in the
underlying symmetric primitive, andM(C) = (2C + 1) · log2(|F|). In particular,
M(C) is defined from the observation that sharing the secret share offsets for
(zj)C

j=1 and c, and opening shares for (αj)C
j=1 occurs for each repetition, using

C, 1, and C elements of F, respectively.

2.5 H-coefficient Technique

The H-coefficient technique is a powerful method used in the analysis of crypto-
graphic algorithms, particularly in the context of provable security. Introduced
by Patarin, this technique provides a systematic way to bound the distinguish-
ing advantage of an adversary interacting with an idealized cryptographic system
and a real implementation. The core idea of the H-coefficient technique is to par-
tition the set of possible transcripts (i.e., sequences of queries and responses) into
two subsets: “good” and “bad” transcripts. The probability of bad transcripts
can be shown to be negligible, while the probability of distinguishing between
the distributions of good transcripts can be tightly bounded.

The technique is especially useful in scenarios involving pseudorandom func-
tions (PRFs), encryption schemes, and protocols where interactions can be mod-
eled as sequences of random variables. By leveraging the H-coefficient technique,
one can obtain strong security guarantees with clear, quantifiable bounds.

To illustrate the H-coefficient technique, we present the following lemma,
which is a fundamental component of the technique:

Lemma 2 (H-Coefficient Lemma). Let A be an algorithm that interacts
with either an ideal world I or a real world R and tries to distinguish two
worlds. Let Tid and Tre be the distribution of transcript in the ideal world and
the real world, respectively, and T denote the set of all attainable transcripts in
the ideal world. Suppose there exist partition TGood (good transcripts) and TBad
(bad transcripts) of T , and constants ϵ and δ such that for any γ ∈ TGood,

Pr[Tid ∈ TBad] ≤ ϵ,
Pr[γ = Tre]
Pr[γ = Tid] ≥ 1− δ.
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Then, the distinguishing advantage of A in distinguishing I from R is bounded
by:

Advdist
I,R(A) ≤ ϵ + δ.

This lemma provides a clear framework for analyzing the security of cryp-
tographic protocols. By carefully defining the sets of good and bad transcripts
and bounding their probabilities, one can apply the H-coefficient technique to
obtain rigorous security proofs.

3 Vector Semi-commitment

In the context of MPCitH-based signature schemes, vector commitment (VC)
abstracts the process of generating views and corresponding commitments. A
vector commitment scheme typically consists of four sub-algorithms: Commit,
Open, Recon, and Verify. The Commit algorithm generates the views of virtual
parties and commits to these views. When a verifier challenges which views to
reveal, the prover uses Open to disclose a subset of the views. Open produces par-
tial decommitment information. Using this partial decommitment information,
the verifier runs Recon to reconstruct the revealed messages and the correspond-
ing commitments. Finally, the verifier uses Verify to check the validity of the
partial decommitment information.

A vector semi-commitment scheme shares the same interface as vector com-
mitments, with one of its properties relaxed compared to traditional vector com-
mitments. We introduce the interface of vector semi-commitment in the random
oracle model. Although the following is described in the context of the random
oracle model, it can be easily adapted to the ideal cipher model.

Definition 1 (Vector Semi-commitment). Let H be a random oracle. An
IV-based vector commitment scheme VSC with message space M in a random
oracle model is defined by the following PPT algorithms.

– CommitH(salt, root)→ (com, decom, (m1, . . . , mN )): given an IV (= salt) and
root, output a commitment com with opening information decom for mes-
sages m = (m1, . . . , mN ) ∈MN .

– OpenH(salt, decom, I)→ pdecom: given an IV (= salt), opening information
decom and a subset I ⊆ [N ] of indices, output a partial opening information
pdecom for I.

– ReconH(salt, pdecom, I) → ((mi)i∈I , com): given an IV (= salt), a partial
opening information pdecom for a subset I, output partially reconstructed
messages and the full commitment com.

– VerifyH(salt, com, pdecom, I)→{(mi)i∈I} ∪ {⊥}: given an IV (= salt), com-
mitment com, a partial opening information pdecom, and a subset I, either
output the messages (mi)i∈I (accept) or ⊥ (reject).

Although the interface is written for a general subset I, we will primarily
consider I as a subset missing a single element unless otherwise specified. We
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will refer to this opening as all-but-one, and I as an all-but-one subset. If the
context is clear, we will omit the random oracle indication (H).

The messages of vector semi-commitments are seeds in the signature scheme.
If a prover can fix the sum of these seeds, it can be used to distribute shares
without correction. Specifically, if a λ-bit substring of the secret key sk is injected
as root, the correction of the secret key shares (usually denoted by ∆sk) is always
zero. The Half-tree technique [17] enables this in vector semi-commitments, and
the following property is inspired by this technique.

Definition 2 (Correlated Vector Semi-commitment). A vector commit-
ment scheme (CommitH , OpenH , VerifyH) is called correlated vector commitment
if

CommitH(salt, root) = (com, decom, (m1, . . . , mN ))

implies msbλ(m1 ⊕ · · · ⊕mN ) = root

The major difference between vector semi-commitment and vector commit-
ment is the binding property. Informally, the binding property of a commitment
implies that it is hard to find multiple messages corresponding to the same com-
mitment. A vector semi-commitment has a relaxed version of this property: the
extractable semi-binding property. This property implies that while an adversary
may find a small number of messages corresponding to the same commitment,
it is hard to find a large number of such messages.

Definition 3 (Extractable Semi-binding). Let VSC be an IV-based vector
semi-commitment scheme in the random oracle model with random oracle H. Let
Ext(Q, com)→ (mi)i∈[N ] be a PPT algorithm that, given a set of query-response
pairs of random oracle queries Q and a commitment com, outputs the committed
messages (mi)i∈[N ]. The u-extractable semi-binding game for VSC, denoted as
u-ESB, with N = poly(λ) and Q queries to the random oracle and stateful A, is
defined as follows.

1. (salt, com, pdecomI , (mi)i∈I , I)← AH(1λ, Q)
2. ((m(j)

i )i∈[N ])j∈J ← Ext(Q, com), where Q is the set {(xi, H(xi))} of query-
response pairs of queries A made to H and |J | ≤ u.

3. Output 1 if VerifyH(salt, com, pdecomI , I) → (m∗
i )i∈I but m∗

i ̸= mi for any
i ∈ I; otherwise, output 0.

We define A’s u-extractable semi-binding advantage by

Advu-ESB
VSC (A) = Pr[A wins u-ESB]

Although the extractor Ext extracts the messages (m(j)
i )i,j , the purpose of the

extractable semi-binding game is to bound the number of valid pdecom for the
same com. Therefore, the extractor should be programmed to extract messages
only from valid pdecom’s. We note that Ext may output mi = ⊥ if the committed
value at index i is invalid.
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The next property of vector semi-commitment is hiding, but the following
definition is in the multi-instance form. The intuition behind the multi-instance
hiding property is that given multiple puncturable PRF instances and their
commitments, the punctured messages are indistinguishable from random.

Definition 4 (Multi-Instance Hiding). Let VSC be an IV-based vector semi-
commitment scheme in the random oracle model with random oracle H. The
multi-instance hiding game for vector semi-commitments, QI-MIH, with N =
poly(λ) and Q queries to the random oracle and stateful A is defined as follows.

1. root←$ {0, 1}λ, b∗ ←$ {0, 1}
2. For j ∈ [QI ], do the following:

(a) saltj ←$ {0, 1}2λ

(b) (comj , decomj , (m∗
j,1, . . . , m∗

j,N ))← CommitH(saltj , root)
(c) īj ←$ [N ], Ij = [N ] \ {̄ij}
(d) pdecomIj

← OpenH(saltj , decom, Ij)
(e) mj,i ← m∗

j,i for i ∈ Ij.
3. (x1, . . . , xq)←AH((saltj , pdecomIj

, Ij)j∈[QI ])

4. For j ∈ [QI ], set mj,̄ij
←

{
m∗

j,̄ij
if b∗ = 0,

←$ M otherwise.

5. b← A((mj,i)i∈[N ],j∈[QI ], (xi, H(xi))i∈[q]).
6. Output 1 if b = b∗, else 0.

We define A’s multi-instance hiding advantage by

AdvQI -MIH
VSC (A) =

∣∣∣∣Pr[A wins QI-MIH]− 1
2

∣∣∣∣ .

We call VSC is multi-instance hiding if advantage of any QI-MIH adversary for
polynomially bounded QI is negligible.

3.1 Instantiation from Random Oracle

In this section, we instantiate VSC from a random oracle, dubbed RO-VSC, and
prove the extractable semi-binding property and multi-instance hiding property.
Let Hcom : {0, 1}∗ → {0, 1}λ, Htree : {0, 1}∗ → {0, 1}λ, and Hexp : {0, 1}∗ →
F2C+1 be random oracles. Then, RO-VSC is constructed as Figure 1.

The commitment process CommitH involves an evaluation of the Half-GGM
tree to generate seeds and tapes, culminating in the output of a commitment com
and opening information decom. The opening algorithm OpenH extracts path
information for a given index set, while the reconstruction algorithm ReconH

rebuilds messages and commitments from path data and verifies the integrity
of the commitment. Finally, the verification algorithm VerifyH ensures that the
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– Parameters: a triple of random oracles H = (Hcom, Htree, Hexp), an integer
C, a power-of-two integer N = 2d.

– Inputs: salt ∈ {0, 1}2λ, and root ∈ {0, 1}λ.

– CommitH(salt, root):
1. Set node1,1 ← root.
2. For each level e ∈ [d− 1] and i ∈ [2e], set

nodee+1,2i−1 ← Htree(salt, nodee,i)
nodee+1,2i ← Htree(salt, nodee,i)⊕ nodee,i.

3. For i ∈ [N ], set
seedi ← noded,i

comi ← Hcom(salt, i, seedi)
tapei ← Hexp(salt, i, seedi)
mi = seedi ∥ tapei

4. Output a commitment com = (com1, . . . , comN ) with opening informa-
tion decom = ((nodee,i)e∈[d−1],i∈[2e], com), and messages (m1, . . . , mN ).

– OpenH(salt, decom, I = [N ] \ {̄i}):
1. Set pathI ← (noded−e+1,ie

)e∈[d−1] where ie = (⌊(̄i−1)/2e−1⌋⊕1) + 1 for
e ∈ [d− 1];

2. Output pdecom = (pathI , comī)

– ReconH(salt, pdecom, I = [N ] \ {̄i}):
1. Similarly as Step 2 in Commit, expand each node in pathI and get

(noded,i)i∈I .
2. For i ∈ I, do Step 3 in Commit.
3. Output ((mi)i∈I , com).

– VerifyH(salt, com = (com∗
i )i∈[N ], pdecom, I = [N ] \ {̄i}):

1. Similarly as Step 2 in Commit, expand each node in pathI and get
(noded,i)i∈I .

2. For i ∈ I, do Step 3 in Commit.
3. Output (mi)i∈I if com = com∗

i for all i ∈ I, or output ⊥ otherwise.

Fig. 1: RO-VSC
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reconstructed messages match the original commitment. The integer C corre-
sponds to the number of multiplication gates, and the integer N corresponds to
the number of parties in the signature scheme.

Before proving the extractable semi-binding property, we bound the collision
probability as follows.

Lemma 3. Let Hcom : {0, 1}∗ → {0, 1}λ, Htree : {0, 1}∗ → {0, 1}λ be random
oracles. Let A be arbitrary adversary that makes Qc queries to Hcom and Qt

queries to Htree. Then, the probability that A finds salt ∈ {0, 1}2λ, i ∈ N, and
distinct n, n′ ∈ {0, 1}λ such that{

Hcom(salt, i, Htree(salt, n)) = Hcom(salt, i, Htree(salt, n′)),
Hcom(salt, i, (Htree(salt, n)⊕ n)) = Hcom(salt, i, (Htree(salt, n′)⊕ n′))

(2)

is at most 9Q/2λ.

Proof. Without loss of generality, assume that A queries to the random oracles
with fixed salt and i, and we omit the salt and i input for each random oracle
query. At the end of the game, we define Htree(x) = ⊥ (resp. Hcom(x) = ⊥) for
non-queried input x to Htree (resp. Hcom), and we consider that two ⊥’s are not
identical for simplicity. We define

L1 =
{

(n, l, l′) ∈ {0, 1}3λ : Htree(n) = l, Hcom(l) = Hcom(l′), l ̸= l′} ,

L2 =
{

(n, r, r′) ∈ {0, 1}3λ : Htree(n)⊕ n = r, Hcom(r) = Hcom(r′), r ̸= r′} ,

L3 =
{

(n, l, l′, r, r′) ∈ {0, 1}5λ : (n, l, l′) ∈ L1, (n, r, r′) ∈ L2
}

and auxiliary events Auxi for i ∈ [3], where

Auxi⇔|Li| > Qc

and let Aux = Aux1 ∨ Aux2 ∨ Aux3. Then, by Markov’s inequality, we have

Pr [Aux1] ≤ Ex [|L1|]
Qc

≤ 1
Qc

(
QtQc

2λ
+ QtQ

2
c

22λ

)
,

Pr [Aux2] ≤ Ex [|L2|]
Qc

≤ 1
Qc

(
QtQc

2λ
+ QtQ

2
c

22λ

)
,

Pr [Aux3] ≤ Ex [|L3|]
Qc

≤ 1
Qc

(
QtQ

2
c

22λ
+ 2QtQ

3
c

23λ
+ QtQ

4
c

24λ

)
.

For each query Htree(n), we say Bad occurs if there exists n′ ̸= n satisfies (2).
Let Htree(n) = l, n ⊕ l = r, Htree(n′) = l′, and n′ ⊕ l′ = r′. We classify the Bad
into sub-events, up to the freshness of l and r.

– L1⇔ l = l′ or l is fresh. Observe that n should satisfies

(Htree(n) = l′) ∨ (Htree(n) ̸= l′ ∧Hcom(l) = Hcom(l′)).
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– L2⇔ l is not fresh and l ̸= l′. Observe that n should satisfies

(n′, l′, Htree(n)) ∈ L1.

– R1⇔ r = r′ or r is fresh. Observe that n should satisfies

(Htree(n)⊕ n = r′) ∨ (Htree(n)⊕ n ̸= r′ ∧Hcom(r) = Hcom(r′)).

– R2⇔ r is not fresh and r ̸= r′. Observe that n should satisfies

(n′, r′, Htree(n)⊕ n) ∈ L2.

Note that one cannot have l = l′ and r = r′ at the same time, since it implies
n = n′. Then, we have

Pr [L1 ∧ R1] ≤ 3Q2
t

22λ
, Pr [L2 ∧ R1 ∧ ¬Aux1] ≤ 2QtQc

22λ
,

Pr [L1 ∧ R2 ∧ ¬Aux2] ≤ 2QtQc

22λ
, Pr [L2 ∧ R2 ∧ ¬Aux3] ≤ QtQc

22λ
,

and

Pr [Bad] ≤ Pr [Aux] +
∑

i,j∈[2]

Pr [Li ∧ Rj ∧ ¬Aux]

≤ 2Qt

2λ
+ 3Q2

t + 8QtQc

22λ
+ 2QtQ

2
c

23λ
+ QtQ

3
c

24λ
≤ 9Q

2λ

provided that Qc + Qt ≤ Q ≤ 2λ−1, which concludes the proof. ⊓⊔

Now we can prove the extractable semi-binding property of RO-VSC using
this lemma.
Lemma 4. Let Hcom : {0, 1}∗ → {0, 1}λ and Htree : {0, 1}∗ → {0, 1}λ be a
random oracle. Let A be an arbitrary adversary that makes Q queries to the
random oracles. Then A’s u-extractable semi-binding advantage Advu-ESB

RO-VSC(A)
against RO-VSC is bounded by

Advu-ESB
RO-VSC(A) ≤ 11Q

2λ
,

for u = 2N
(

λ
log λ

)2
.

Proof. Intuitively, according to Lemma 3, the probability of finding a collision
in commitments derived by a non-leaf node is negligible. Furthermore, for each
leaf node, the number of multi-collisions is bounded by Chernoff bound. We now
proceed to formally bound the adversary’s advantage.

Let Qt be the number of queries to Htree and Qc be the number of queries to
Hcom. Without loss of generality, assume that A queries to random oracles with
fixed salt, and we omit the salt input for each random oracle query. Let Qt and
Qc be the collection of queries to Htree and Hcom, respectively. At the end of the
game, we define Htree(x) = ⊥ (resp. Hcom(x) = ⊥) for non-queried input x to
Htree (resp. Hcom), and we consider that two ⊥’s are not identical for simplicity.

We first define the extractor Ext(Qt,Qc, com = (com1, . . . , comN )) as follows.
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1. For each i ∈ [N ], find S0,i such that

S0,i = {s : Hcom(i, s) = comi}

2. For each e ∈ [d− 1] and i ∈ [N/2e], find Se,i such that

Se,i = {n : Htree(s) ∈ Se−1,2i−1, Htree(s)⊕ s ∈ Se−1,2i}

3. For i ∈ [N ], let

Ai =
{

(p1, . . . , pd) : pe ∈ Se−1,ie−1 for e ∈ [d]
}

where ie = (⌊(̄i− 1)/2e⌋ ⊕ 1) + 1 for e ∈ [d− 1]
4. Let S be the set of messages, where

S =
{

(s1, . . . , sN ) : si = ⊥ if S0,i = ∅ and si ∈ S0,i otherwise,

Recon(p1, . . . , pd, comi, I = [N ] \ {i}) = (si)i∈I for (p1, . . . , pd) ∈ Ai

}
5. Finally, Ext outputs arbitrary u or less elements in S.

We define some bad events.

– Bad1⇔ there exists e ∈ [d− 1] and i ∈ [N/2e] such that |Se,i| ≥ 2.
– Bad2⇔ there exists i ∈ [N ] such that |S0,i| ≥ 2λ/ log λ.

By Lemma 3 and (1),
Pr [Bad1 ∨ Bad2] ≤ 11Q

2λ
(3)

In the following, we analyze the extracting condition without bad events.

– As S contains all possible (pdecomI , I), A wins the game only if |S| ≥ u.
– By ¬Bad1, we have |S| ≤

∑
i∈[N/2] |S0,2i| · |S0,2i−1|. Then, by ¬Bad2, we have

|S| ≤ 2N

(
λ

log λ

)2
.

Therefore, A cannot win the game without bad events so we have

Advu-ESB
RO-VSC(A) ≤ Pr [Bad1 ∨ Bad2] ≤ 11Q

2λ

provided that u = 2N
(

λ
log λ

)2
. ⊓⊔

Lemma 5. Let Hcom : {0, 1}∗ → {0, 1}λ and Htree : {0, 1}∗ → {0, 1}λ be a
random oracle. Let A be an arbitrary adversary that makes Q queries to the ran-
dom oracles. Then A’s multi-instance hiding advantage AdvQI -MIH

RO-VSC(A) against
RO-VSC is bounded by

AdvQI -MIH
RO-VSC(A) ≤ Q2

I

22λ
+ Q

2λ
.



14 Seongkwang Kim, Byeonghak Lee, and Mincheol Son

Proof. Let Qt be the number of queries to Htree and Qc be the number of queries
to Hcom. Let QI be the number of instances.

We will bound the advantage using the H-coefficient technique. Denote I as
the ideal world where the hidden nodes are always replaced with random strings,
and denote R the real world where the hidden nodes are remain unchanged. Let
γ be the transcript of A which contains queries to the random oracles and the
instances given in the game. The parent node of the hidden seed node is derived
by node = mī ⊕m((̄i−1)⊕1)+1. Now we define some events of bad transcripts as
follows.

– Bad1: two salt’s in the given instance collide. Since salt is sampled uniformly
at random, Pr[Bad1] ≤ Q2

I/22λ.
– Bad2: a query (salt, mī) is queried to Hcom. Pr[Bad2 ∧ ¬Bad1] ≤ Qc/2λ.
– Bad3: a query (salt, node) is queried to Htree. Pr[Bad3 ∧ ¬Bad1] ≤ Qt/2λ.

We say TBad be the set of bad transcripts, while TGood be the complement of
TBad, and let Tid (resp. Tre) be the distribution of γ in I (resp. R). As Q random
oracle queries and QI instances of mī are included in transcripts, for γ ∈ TGood,

Pr[Tid = γ] = Pr[Tre = γ] =
(

1
2λ

)Q+QI

.

So, the advantage is bounded by

AdvQI -MIH
RO-VSC(A) ≤ Q2

I

22λ
+ Q

2λ
.

⊓⊔

3.2 Instantiation from an Ideal Cipher

Now we replace the random oracles with a ideal cipher E. We instantiate VSC
from the ideal cipher, named IC-VSC, and also prove its properties. Let E :
{0, 1}λ × {0, 1}λ → {0, 1}λ be a ideal cipher. Then IC-VSC is constructed as
Figure 2.

The main difference between IC-VSC and RO-VSC is that all the random ora-
cles are replaced with the ideal cipher so that a sophisticated domain separation
is required. To separate the domains of com, tape, and node, the IV salt is used
in two parts: key, and input masking. We note that the new variable b represents
the current repetition in the signature scheme.

Proving the extractable semi-binding and multi-instance hiding properties of
IC-VSC is similar to that of RO-VSC. Due to page limitations, we only provide
the statement here and include the full proofs in Appendix B.
Lemma 6. Let E : {0, 1}λ × {0, 1}λ → {0, 1}λ be an ideal cipher. Let A be an
arbitrary adversary that makes Q queries to E. Then, A’s u-extractable semi-
binding advantage Advu-ESB

IC-VSC(A) against IC-VSC is bounded by

Advu-ESB
IC-VSC(A) ≤ 12Q

2λ
,
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– Parameters: an ideal cipher E, integer C, a power-of-two integer N , and
d = log N .

– Inputs: salt = (salt1, salt2, b) ∈ {0, 1}λ+λ+8, and root ∈ {0, 1}λ.

– CommitE(salt, root):
1. Set node1,1 ← root.
2. For each level e ∈ [d− 1] and i ∈ [2e], set

nodee+1,2i−1 ← 2 · nodee,i ⊕ Esalt2(nodee,i ⊕ salt1)
nodee+1,2i ← nodee+1,2i−1 ⊕ nodee,i.

3. For i ∈ [N ], set
seedi ← noded,i

ctr[b, i, 0]← 0λ−24 ∥ b ∥ ⟨i⟩B ∥ ⟨0⟩B
comi ← Eseedi

(ctr[b, i, 0]⊕ salt1)

(a) For j ∈ [2C + 1],
ctr[b, i, 0]← 0λ−24 ∥ b ∥ ⟨i⟩B ∥ ⟨j⟩B
tapei,j ← Eseedi

(ctr[b, i, j]⊕ salt1)

(b) Set tapei ← tapei,1 ∥ · · · ∥ tapei,2C+1 and mi ← seedi ∥ tapei.
4. Output a commitment com = (com1, . . . , comN ) with opening informa-

tion decom = ((nodee,i)e∈[d−1],i∈[N ], com), and messages (m1, . . . , mN ).

– OpenE(salt, decom, I = [N ] \ {̄i}):
1. Set pathI ← (noded−e+1,ie

)e∈[d−1] where ie = (⌊(̄i−1)/2e−1⌋⊕1) + 1 for
e ∈ [d− 1];

2. Output pdecom = (pathI , comī)

– ReconE(salt, pdecom, I = [N ] \ {̄i}):
1. Similarly as Step 2 in Commit, expand each node in pathI and get

(noded,i)i∈I .
2. For i ∈ I, do Step 3 in CommitE .
3. Output ((mi)i∈I , com).

– VerifyE(salt, com = (com∗
i )i∈[N ], pdecom, I = [N ] \ {̄i}):

1. Similarly as Step 2 in Commit, expand each node in pathI and get
(noded,i)i∈I .

2. For i ∈ I, do Step 3 in CommitE .
3. Output (mi)i∈I if com = com∗

i for all i ∈ I, or output ⊥ otherwise.

Fig. 2: IC-VSC
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for u = 2N
(

λ
log λ

)2
.

Proof. See Appendix B for the full proof.

Lemma 7. Let E : {0, 1}λ × {0, 1}λ → {0, 1}λ be an ideal cipher. Let A be an
arbitrary adversary that makes Q queries to E. Then, A’s multi-instance hiding
advantage AdvQI -MIH

IC-VSC (A) against IC-VSC is bounded by

AdvQI -MIH
IC-VSC (A) ≤ Q2

I

22λ
+ 6λ ·Q

2λ · log λ
.

Proof. See Appendix B for the full proof.

4 Application of VSC to BN++

4.1 Description of Reduced BN++

In this section, we apply IC-VSC to BN++, dubbed reduced BN++. The signing
and verification algorithms of the reduced BN++ can be found in Algorithm 5
and Algorithm 6 in Appendix A. The major differences between the reduced
BN++ and the original BN++ can be summarized into three points:

– The GGM trees are replaced by correlated half-trees. Roots of the trees are
now fixed to the secret key sk ∈ {0, 1}λ. If the secret key is longer than λ
bits, the roots are fixed to the most significant λ bits of the secret key.

– The sizes of each commitments are reduced from 2λ bits to λ bits.
– Most of the random oracle calls are replaced by primitives based on a ideal

cipher. Now, there are only 5 calls to random oracles for a signing query.

There are also some minor changes compared to the original BN++. The
following modifications are made for either minor efficiency improvements or
ease of proof.

– The message to be signed is hashed by H0 : {0, 1}∗ → {0, 1}2λ along with
the public key.

– The salt is generated by running H3 : {0, 1}∗ → {0, 1}2λ with inputs the
secret key sk, hashed message µ, and internal randomness ρ, rather than
randomly sampled.

– The offsets ∆ck, ∆zk,j are added to the last share, rather than to the first
share.

– The function expanding h1 and h2 (the original function name in BN++ is
Expand) is divided into two different functions: ExpandH1 : {0, 1}2λ → FCτ

and ExpandH2 : {0, 1}2λ → [N ]τ . These two functions are modeled as random
oracles in the security proof.
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4.2 Security Proof of Reduced BN++

In this section, we prove the security of reduced BN++. The main difference
between the security proofs for BN++ and reduced BN++ is that the reduced
commit size no longer allows VSC to provide binding. In the original proof,
there can be only a single tuple of shares corresponding to a single H1 query.
However, in the reduced version, multiple tuples can exist, and new shares can be
discovered even after the H1 query. Consequently, the proof is no longer based
on limiting the probability that a tuple of shares passes a random challenge.
Instead, it focuses on the difficulty an attacker faces in finding a tuple of shares
that passes a given challenge within a limited number of queries. This change
complicates the proof and makes it challenging to use modular proofs that follow
from the properties of VSC. Therefore, we abandon modular proofs and directly
exploit the internal structure of VSC to prove the security of reduced BN++.

Theorem 1 (EUF-KO Security of reduced BN++). Let (N, τ, λ,F) be
parameters of the reduced BN++ (rBN++) signature scheme where |F| = 2λ and
N = 2d. Assume that H1, H2 : {0, 1}∗ → {0, 1}2λ, and Expand are modeled as
random oracles. Let A be an arbitrary adversary against the EUF-KO security
of reduced BN++ that makes a total of Q random oracle queries and P of ideal
cipher queries. Then there exist PPT adversaries

– B against OWF-security of KeyGen with Q random oracle queries and P
ideal cipher queries,

– C against extractable semi-binding security with P ideal cipher queries,

such that

Adveuf-ko
rBN++ ≤

Q2

22λ
+ (4µ + 2)Q

2λ
+ 14P

2λ
+ Advowf(B) + Advu-ESB

IC-VSC(C)

+ Q1 ·
τ∑

i=τ ′

(
τ

i

) (
u

|F|

)i (
1− u

|F|

)τ−i

+ Q2

Nτ−τ ′

where µ = 2λ/ log λ, u = µ2N/2.

Proof. Suppose that all the queries to H1 (resp. H2) are listed in Q1 (resp. Q2)
and let |Q1| = Q1 (resp. |Q2| = Q2).

We program the random oracles for A as in Algorithm 2, 3, 1, and 4 re-
spectively. MultCheck in Algorithm 1 is the multiplication checking protocol in
Section 2.4. Also, MultCheck(i)

1 and MultCheck(i)
2 in Algorithm 4 are the first

round and second round of the multiplication checking protocol in Section 2.4
for the i-th party. Observe that the above programming does not change the
output distribution of random oracles. We have

Pr [A wins] ≤ Pr [Bad] + Pr [A wins | ¬Bad]

where Bad =
∨6

i=1 Badi. Now we analyze each bad event as follows.
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Algorithm 1. H1
(
salt, σ1 = (comk, ∆k)k∈[τ ]

)
:

1 h1
$←− {0, 1}2λ

2 if h1 ∈ H1 then
3 Raise Bad1 and abort
4 h1 → H1.
5 (ϵ1, . . . , ϵτ )←ExpandH1(h1)
6 Succ1[salt, h1]←∅
7 for k ∈ [τ ] do
8 for (m1, . . . , mN ) ∈ Ext (salt, comk) where ⊥ /∈ (m1, . . . , mN ) do
9 mN ← mN ⊕ (0λ ∥∆k)

10 root←msbλ

(∑
i∈[N ] mi

)
11 if KeyGen(root) = ct then
12 Raise Bad2 and abort. // Secret key is found

13 (α(i), v(i))i∈[N ]←MultCheck
(
ϵk, (mi)i∈[N ]

)
14 if

∑
i∈[N ] v(i) = 0 then

15 k→Succ[salt, h1] // Multiplication checking cheated

16 if |Succ1[salt, h1]| ≥ τ ′ then
17 Raise Bad3 and abort. // Too many cheated iterations

18 (salt, σ1, h1)→Q1
19 Return h1.

Algorithm 2. ExpandH1(h1):
1 h1 → H1.
2

(
(ϵk,j)j∈[ℓ]

)
k∈[τ ]

$←− (Fℓ)τ .
3 Return

(
(ϵk,j)j∈[ℓ]

)
k∈[τ ].

Algorithm 3. ExpandH2(h2):
1 h2 → H2.
2 (̄i1, ī2, . . . , īτ ) $←− ([N ])τ .
3 Return (̄i1, ī2, . . . , īτ ).
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Algorithm 4. H2

(
salt, h1, σ2 =

(
(α(i)

k , v
(i)
k )i∈[N ],k∈[τ ]

))
:

1 h1→H1

2 h2
$←− {0, 1}2λ

3 if h2 ∈ H2 then
4 Raise Bad1 and abort.
5 h2→H2, (salt, h1, σ2, h2)→Q2.
6 if ∃k ∈ [τ ] such that

∑
i∈[N ] v

(i)
k ̸= 0 then

7 Return h2.
8 if ∃σ1 such that (h1, σ1) ∈ Q1 then
9 Parse σ1 as (comk, ∆k)k∈[τ ]

10 (ϵ1, . . . , ϵτ )←ExpandH1(h1)
11

(̄
i1, . . . , īτ

)
←ExpandH2(h2)

12 else
13 Return h2.

14 Succ2[salt, h2]←∅.
15 for k ∈ [τ ] \ Succ1[salt, h1] do
16 J ←∅
17 for (m1, . . . , mN ) ∈ Ext(salt, comk) do
18 if mN ̸= ⊥ then
19 mN←mN ⊕ (0λ ∥∆k)
20 if ⊥ /∈ (m1, . . . , mN ) then
21 root←msbλ

(∑
i∈[N ] mi

)
22 if KeyGen(root) = ct then
23 Raise Bad2 and abort. // Secret key is found

24 for i ∈ [N ], β(i)←MultCheck(i)
1 (ϵk, mi)

25 for i ∈ [N ], w(i)←MultCheck(i)
2 (ϵk, mi, αk)

26 if ∀i ∈ [N ], (α(i)
k , v

(i)
k ) = (β(i), w(i)) then

27 Raise Bad4 and abort.
28 else if ∃j, ∀i ∈ [N ] \ {j}, (α(i)

k , v
(i)
k ) = (β(i), w(i)) then

29 j→J .

30 if |J | ≥ 2 then
31 Raise Bad5 and abort.
32 else if J =

{
īk

}
then

33 k→Succ2[salt, h2]

34 if |Succ2[salt, h2]| ≥ τ − τ ′ then
35 Raise Bad6 and abort. // Too many cheated iterations

36 Return h2.
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– Upper bounding Pr [Bad1]. As |h1| = |h2| = 2λ, we have

Pr [Bad1] ≤ Q2

22λ
.

Note that without Bad1, we can avoid the event for preimage/collision-
finding of H1 and H2.

– Upper bounding Pr [Bad2]. Let B be an adversary that use A as a subroutine,
and checks whether Bad2 occurs by some root. Then, the winning probability
of B is at least Pr [Bad2], so we have

Pr [Bad2] ≤ Advowf(B)

– Upper bounding Pr [Bad3]. By the definition of Ext, the number of extracted
messages is always less or equal than u. Therefore, for each k ∈ [τ ], the
success probability of cheating the multiplication checking is upper bounded
by u

|F| and we have

Pr [Bad3] ≤ Q1 ·
τ∑

i=τ ′

(
τ

i

) (
u

|F|

)i (
1− u

|F|

)τ−i

– Upper bounding Pr [Bad4]. Let us fix H1 query and assume that Bad4 oc-
curs at k-th iteration with (m1, . . . , mN ). Since (m1, . . . , mN ) is extracted
messages, there exists ideal cipher queries such that

Emi,0(ctr[k, i, 0]⊕ salt1) = comi, for i ∈ [N ], (a)
Emi,0(ctr[k, i, j]⊕ salt1) = mi,j , for i ∈ [N ], j ∈ [2C + 1] (b)

Let a ∈ [N ] be the party index such that Ema,0(ctr[k, a, 0]⊕ salt1) = coma is
the last query in (a). As k /∈ Succ1[salt, h1], the above query is done after the
query to H1. We divide two cases, up to the order of ideal cipher queries.
• Case 1: Ema,0(ctr[k, a, 0]⊕ salt1) = coma is the last query in (a) and (b).

Then, there are at most 1 candidate of ma,0 that passes multiplication
check with fixed challenge ϵk. Also, by (8) in Lemma 94, there are at most

2λ
log λ of (N − 1) tuple of seeds (mi,0)i∈[N ]\{a} such satisfies (a) except
with probability 14P/2λ. Since E should satisfy the equation for ma,0,
we have

Pr [Bad4 with Case 1.] ≤ µQ1

2λ − P
+ 14P

2λ
≤ 2µQ1

2λ
+ 14P

2λ

provided that P ≤ 2λ−1.
• Case 2: Emb,0(ctr[k, b, j]⊕ salt1) = mb,j is the last query in (a) and (b).

Similar to Case 1, the candidate of mb,j is now at most 1. The difference

4 ideal cipher based version of (3) in Lemma 4.
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is, there are at most P candidates of ma,0 and E should satisfy two
equations, so we have

Pr [Bad4 with Case 2.] ≤ 2µQ1P

(2λ − P )2 + 14P

2λ
≤ 2µQ1

2λ
+ 14P

2λ

provided that P ≤ 2λ−1.
All in all, we get

Pr [Bad4] ≤ 4µQ1

2λ
+ 14P

2λ

– Upper bounding Pr [Bad5]. Let us fix the query to H2 and assume that Bad5
occurs by two extracted messages in k-th iteration: (m1, . . . , mN ) adds j1
to J and (m′

1, . . . , m′
N ) adds j2 to J . Then, by the definition of Ext, there

exists (m′′
1 , . . . , m′′

N ) in extracted message sets, such that m′′
i ∈ {mi, m′

i}
for i ∈ [N ] \ {j1, j2}, m′′

j1
= m′

j1
and m′′

j2
= mj2 . As k /∈ Succ1[salt, h1],

(m′′
1 , . . . , m′′

N ) induces Bad4, so

Pr [Bad5 ∧ ¬Bad4] = 0.

Since the game immediately aborts if Bad4 occurs, we can conclude that
Pr [Bad5] = 0.

– Upper bounding Pr [Bad6]. Since |J | ≤ 1 for iterations in all queries to H2,
we have

Pr [Bad6] ≤ Q2

Nτ−τ ′

All in all, we have

Pr [Bad] ≤Advowf(B) + Q2

22λ
+ 4µQ1

2λ
+ 14P

2λ

+ Q1 ·
τ∑

i=τ ′

(
τ

i

) (
u

|F|

)i (
1− u

|F|

)τ−i

+ Q2

Nτ−τ ′ (4)

What is left is to upper bound Pr [A wins | ¬Bad]. Suppose that A outputs valid
forgery (

salt, h1, h2, (pdecomk, ∆k, α
(̄ik)
k )k∈[τ ]

)
but Bad does not occurs. Then, the forgery should satisfy followings.

– There exists σ1 = (comk, ∆k)k∈[τ ] such that (salt, σ1, h1) ∈ Q1.
– There exists σ2 = (α(i)

k , v
(i)
k )i∈[N ],k∈[τ ] such that (salt, h1, σ2, h2) ∈ Q2.

– Let Fail = [τ ] \ (Succ1[salt, h1] ∪ Succ2[salt, h1, h2]) . Then, Fail ̸= ∅.
– Fix a ∈ Fail, and let

ExpandH1(h1) = (ϵk)k∈[τ ],

ExpandH2(h2) = (̄ik)k∈[τ ],

Recon(salt, pdecoma, Ia) = ((mi)i∈Ia
, com)
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where mīa
= ⊥ and Ia = [N ] \

{
īa

}
. Then, we have

Verify(salt, com, pdecoma, Ia) = (mi)i∈Ia .

If (m1, . . . , mN ) /∈ Ext(com, ∆a), one can directly construct adversary C against
semi-binding security of VSC using A as subroutine, so

Pr [A wins ∧ (m1, . . . , mN ) /∈ Ext(com, ∆a) | ¬Bad] ≤ Advu-ESB(C). (5)

Now assume that (m1, . . . , mN ) ∈ Ext(com, ∆a) By the definition of Ext,
there exists ideal cipher queries such that

Emi,0(ctr[a, i, 0]⊕ salt1) = comi, for i ∈ Ia, (c)

Let b ∈ [N ] be the party index such that Emb,0(ctr[k, b, 0]⊕ salt1) = comb is the
last query in (c). As a ∈ Fail, the above query is done after the query to H2.
Also, there exists ideal cipher queries such that

Emb,0(ctr[a, b, j]⊕ salt1) = mb,j , for j ∈ [2C + 1]. (d)

and let c ∈ [ℓ] be the circuit index such that

Emb,c
(ctr[a, b, c]⊕ salt1) =

{
comb if c = 0
mb,c otherwise

is the last query in (d). Since mb should satisfy the conditions

MultCheck(b)
1 (ϵa, mb) = α(b)

a

MultCheck(b)
2 (ϵa, mb, αa) = v(b)

a

there are at most 1 candidate of mb,c. Therefore, we have

Pr [A wins ∧ (m1, . . . , mN ) ∈ Ext(com, ∆a)] ≤ Q2

2λ − P
≤ 2Q2

2λ
. (6)

We conclude the proof by combining 4, 5 and 6. ⊓⊔

Theorem 2 (EUF-CMA Security of Reduced BN++). Assume that H0,
H1, H2, and Expand are modeled as random oracles and that the (N, τ, λ) pa-
rameters of reduced BN++ are appropriately chosen where |F| = 2λ. Let IC-VSC
be a correlated vector semi-commitment based on the ideal cipher E which is
multi-instance hiding. For a PPT adversary A against the EUF-CMA security
of reduced BN++ with a total of Qsig signing oracle queries, Q random oracle,
and P ideal cipher queries, there exist PPT adversaries

– B against the EUF-KO security of reduced BN++5,
5 We assume B has the same amount of queries to random oracles.
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– C against the PRF security of H3
6,

– D against the hiding security of IC-VSC

such that

Adveuf-cma
rBN++(A) ≤ (Qsig + Q)2

22λ
+ 2Qsig(Qsig + P )

22λ
+ Qsig ·Advprf

H3
(C)

+ AdvQsig-MIH
IC-VSC (D) + Adveuf-ko

rBN++(B)

Proof. Let A be an EUF-CMA adversary against reduced BN++ for given
(iv, ct). Let G0 be the original EUF-CMA game. Let Osig be the signing oracle,
and let Qi for i = 0, 1, 2 be the number of queries made to Hi by A. We begin
to prove the security of the deterministic version of reduced BN++ (ρ ← 0n),
and prove that of the probabilistic version later. Without loss of generality, we
assume that all messages in signing queries are distinct.

G1: This game acts the same as G0 except that it aborts if there exist two different
queries on H0 with the same outputs. As the output length of H0 is 2λ, we
have

Pr[G1 aborts] ≤ (Qsig + Q0)2

22λ
.

G2: Osig replaces salt ∈ {0, 1}2λ and root seeds (seedk)k∈[τ ] ∈ ({0, 1}λ)τ with
randomly sampled values, instead of computing H3(pt, µ, ρ). As µ is always
distinct for each query, the difference between this game and the previous
one reduces to the PRF security of H3 with secret key pt. Therefore, there
exists a PPT adversary C against the PRF security of H3 such that

|Pr[A wins G1]− Pr[A wins G2]| ≤ Qsig ·Advprf
H3

(C).

G3: Osig samples h1 ∈ {0, 1}2λ at random instead of computing

H1(µ, salt, (comk, (pk(i)
k )i∈[N ], ∆ck, (∆zk,j)j∈[C])k∈[τ ])

and programs the random oracle H1 to output h1 for the respective query.
The first challenge (ϵk,j)k∈[τ ],j∈[ℓ+1] is derived by expanding the randomly
sampled h1. The simulation is aborted if the queries to H1 have been made
previously in a signing oracle query. As salt ∈ {0, 1}2λ is random, this game
is indistinguishable from the previous game unless the simulation is aborted,
and the probability of abort is

Pr[G3 aborts] ≤ Qsig(Qsig + Q1)
22λ

.

G4: Osig now samples h2 ∈ {0, 1}2λ at random instead of computing

H2(h1, salt, ((α(i)
k )i∈[N ], (v(i)

k )i∈[N ])k∈[τ ])
6 H3 itself is not a PRF, but it is used as a PRF with key prepending. We use this

notation for convenience.
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and also program the random oracle H2 to output h2 for the respective
query. In this game, both h1 and h2 are sampled in advance, and all the
derived values are computed from h1 and h2. After computing all such values,
Osig program the H1 oracle and the H2 oracle. The simulation is aborted
if the queries to H2 have been made previously in a signing oracle query.
As h1 ∈ {0, 1}2λ is random, this game is indistinguishable with the previous
game unless the simulation is aborted, and the probability of abort is

Pr[G4 aborts] ≤ Qsig(Qsig + Q2)
22λ

.

G5: Osig replaces the seed of the unopened parties seed(̄ik)
k ∥tape(̄ik)

k in the IC-VSC
with a random element for each k ∈ [τ ]. Since īk’s are all random, the
difference between this game and the previous one reduces to the hiding
game of VSC. Then, there exists a PPT adversary D against the hiding
game of VSC such that

|Pr[A wins G4]− Pr[A wins G5]| ≤ AdvQsig-MIH
IC-VSC (D).

G6: Osig replaces com(̄ik)
k with randomly sampled elements for each k. The dif-

ference between this game and the previous one reduces to indistinguisha-
bility from uniform random. We prove the indistinguishability using the H-
coefficient technique. Let T be a transcript of signing oracle queries of the
form (salt, ctr, com(̄ik)

k ) and ideal cipher queries of the form (K, X, Y ) such
that EK(X) = Y . After the distinguishing game, we will give seed(̄ik)

k to
compute the probability easily. We define the bad events as follows.
• Bad1: salt2 = K and ctr ⊕ salt1 = X. The probability in the G6 is

Pr[Bad1] ≤ Qsig(Qsig + P )
22λ

.

• Bad2: salt2 = K and com(̄ik)
k = Y . The probability in the G6 is

Pr[Bad2] ≤ Qsig(Qsig + P )
22λ

.

Let TBad be the set of transcripts with bad events and TGood is complement
of TBad. Let TG5 and TG6 be the distribution of transcripts in G5 and G6,
respectively. Then,

Pr [TG6 ∈ TBad] ≤ 2Qsig(Qsig + P )
22λ

and for γ ∈ TGood,

Pr[γ = TG5 ] = 1
(2λ)Qsig

·
∏
seed

1
(2λ)Pseed

≥
∏
seed

1
(2λ)P ′

seed+Pseed

= Pr[γ = TG5 ]
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where Pseed is the number of ideal cipher queries with same seed, and P ′
seed

is the number of ideal cipher queries involved in the signing oracle queries.
We note that

∑
seed Pseed = P and

∑
seed P ′

seed = Qsig. By Lemma 2, the
distinguishing advantage between two games is bounded by

|Pr[A wins G5]− Pr[A wins G6]| ≤ 2Qsig(Qsig + P )
22λ

.

G7: Osig replaces
(∆ck, (∆tk,j)j∈[C])k∈[τ ]

with random elements instead of computing them using pt and S-box out-
puts. As

(
(t(̄ik)

k,j )j∈[ℓ], c
(̄ik)
k

)
k∈[τ ]

is random, the distribution of these variables
does not change.
Note that now for all k ∈ [τ ], (α(̄ik)

k )k∈[τ ] is random and independent of pt.
If the multiplication triple is wrong, then v

(̄ik)
k ← −

∑
i ̸=īk

v
(i)
k is different

from an honest value derived from legitimate calculation. However, (̄ik) is
unopened and the multiplication check is still passed. Since the signature
oracle in G7 does not depend on the secret key pt, it implies that G7 can be
reduced to the EUF-KO security. Therefore, there exists a PPT adversary
B on EUF-KO security against reduced BN++ such that

Pr[A wins G7] ≤ Adveuf-ko
rBN++(B).

All in all, we have

Adveuf-cma
rBN++(A) ≤ (Qsig + Q0)2

22λ
+ Qsig ·Advprf

H3
(C)

+ Qsig(Qsig + Q1)
22λ

+ Qsig(Qsig + Q2)
22λ

+ AdvQsig-MIH
IC-VSC (D)

+ 2Qsig(Qsig + P )
22λ

+ Adveuf-ko
rBN++(B)

≤ (Qsig + Q)2

22λ
+ 2Qsig(Qsig + P )

22λ
+ Qsig ·Advprf

H3
(C)

+ AdvQsig-MIH
IC-VSC (D) + Adveuf-ko

rBN++(B)

provided that Q0 + Q1 + Q2 ≤ Q.
For the non-deterministic version of A, all games are defined in a manner

almost identical to the deterministic version, with the exception of handling
two queries to Osig that involve the same messages and ρ values. If (m, ρ) are
identical in two queries, the outputs must also be identical; thus, we avoid ran-
dom sampling and use already programmed outputs for the random oracles in
such cases. Consequently, the differences between the adjacent games remain
unchanged from the deterministic version, leading to the same bounds on the
advantage of A. ⊓⊔
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4.3 Parameters and Efficiency

The parameters N and τ can be chosen to prevent the soundness attack [20].
As in the EUF-KO security proof, since the vector semi-commitment allows u
valid partial decommitment information, the complexity of the soundness attack
is slightly different from the original BN++ paper. The total complexity of the
attack C is computed as

P1 =
τ∑

k=τ ′

(
τ

k

) (
u

|F|

)k

·
(

1− u

|F|

)τ−k

P2 = 1
Nτ−τ ′

C = min
0≤τ ′≤τ

(1/P1 + 1/P2).

If the field size |F| is large enough, then τ ′ remains unchanged and it implies
(N, τ) in reduced BN++ is same as the original BN++. For a small field, τ may
be required to be much larger.

Efficiency improvements of reduced BN++ can be explained by the reduced
number of random oracle calls and reduced signature size. In the literature,
random oracles are implemented as a comparatively heavy hash functions such as
SHAKE, whereas pseudorandom generators and ideal ciphers are implemented
using the AES block cipher. In reduced BN++, the random oracle calls for
commitments are translated into ideal cipher calls, and PRG calls for GGM
trees are translated into a halved number of ideal cipher calls. Signature size is
reduced by 2τλ bits due to ∆sk and reduced commitment size. The results are
summarized in Table 1. In this table, it is assumed that the secret key size is λ
bits.

Scheme Field
N τ

RO PRG or IC Sig. size
Size call call (B)

BN++

2128 16 33 532 1056C + 1518 1056C + 3792
2128 256 17 4356 8704C + 13022 544C + 3088
264 16 34 548 544C + 1564 544C + 3904
264 256 18 4612 4608C + 13788 288C + 3264

Reduced BN++

2128 16 33 5 1056C + 1551 1056C + 2736
2128 256 17 5 8704C + 13039 544C + 2544
264 16 34 5 544C + 1598 544C + 2816
264 256 18 5 4608C + 13806 288C + 2688

Table 1: Parameter sets for 128 bit security and the number of calls to the
random oracles and the ideal cipher. Repeated multiplier is not applied for both
schemes. C is the number of F-multiplications in the targeted circuit.
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5 Performance

As many MPCitH-based signature schemes (specifically the first round candi-
dates in the NIST call for additional post-quantum signatures) have similar forms
with BN++, our improvements can be applied (possibly with some tweaks).
However, our improvements may not be always applied in the best way for ef-
ficiency; if the probability of passing the first challenge is tight enough before
applying our improvements (e.g., SDitH-L1-hyp [26] has the probability 2−71.2),
the application may require larger τ for security. We choose AIMer v2.0 [24] for
the performance measurement since it is the best scheme for efficiency improve-
ment. We will call it reduced AIMer. For application to similar non-interactive
zero-knowledge proofs such as Threshold-Computation-in-the-Head (TCitH) [15]
and VOLE-in-the-Head (VOLEitH) [4], we leave it as a future work.

Environment. We developed reduced AIMer in C, with AVX2 and AES-NI in-
structions. A large part of our implementation is taken from the AIMer v2.0
source code.7 For other schemes, we used packages that have been officially sub-
mitted to NIST PQC standardization project, and all the packages were compiled
using the default options in the compilation scripts. Our experiments were mea-
sured in a single thread of AMD Ryzen Threadripper PRO 5995WX 64-cores
with 128GB memory. For a fair comparison, we measure the execution time for
each signature scheme on the same CPU using the taskset command.

In Table 2, we compare the performance of reduced AIMer with various post-
quantum signature schemes. We measured all the benchmarks of listed schemes
in the same environment, and the table only contains publicly available im-
plementations. It lists different schemes along with their respective public key
sizes (|pk|), signature sizes (|sig|), signing times (Sign), and verification times
(Verify). The sizes are provided in bytes (B), while the times for signing and ver-
ification are given in kilo-cycles (Kc). The table includes NIST-selected schemes
Dilithium2, and SPHINCS+, as well as the first round MPCitH-based candidates
of the NIST call for additional signatures like SDitH, FAEST, and AIMer.

From the data, we observe significant improvements in reduced AIMer com-
pared to AIMer v2.0. Reduced AIMer enjoys up to 109% faster signing and 112%
faster verification, as well as up to 18% smaller signature sizes. Compare to other
MPCitH-based signature schemes, reduced AIMer enjoys the fastest signing and
verification times and smallest signature sizes. When compared with selected al-
gorithms, reduced AIMer shows significant superiority in performance compared
to SPHINCS+, while it is quite inefficient compared to Dilithium.

Application of One-tree Technique. Recently, Baum et al. introduced batched
all-but-one vector commitment (BAVC) [2] which consists of

1. a single large GGM tree containing all the τN seeds,
2. a proof-of-work mechanism.
7 The source codes are retrieved from https://aimer-signature.org

https://aimer-signature.org
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Scheme |pk| |sig| Sign Verify
(B) (B) (Kc) (Kc)

Dilithium2 [25] 1,312 2,420 162 57
SPHINCS+-128f∗ [18] 32 17,088 38,216 2,158
SPHINCS+-128s∗ [18] 32 7,856 748,053 799
SDitH-Hypercube-gf256 [26] 132 8,496 20,820 10,935
FAEST-128f [3] 32 6,336 2,387 2,344
FAEST-128s [3] 32 5,006 20,926 20,936
AIMer-v2.0-128f [24] 32 5,888 788 752
AIMer-v2.0-128s [24] 32 4,160 5,926 5,812
Reduced AIMer-128f 32 4,848 421 395
Reduced AIMer-128s 32 3,632 2,826 2,730
*: -SHAKE256-simple

Table 2: Performance Comparison of post-quantum signature schemes.

For the first one, the single large GGM tree generates all the τN seeds and reveals
all-but-τ seeds. This technique has the effect of reducing average-case (but not
worst-case) signature size. Unfortunately, this technique cannot be applied to
the reduced BN++ scheme since the reduced BN++ scheme requires each root
of the τ trees to be fixed.

For the second one, the last challenge hash (H2 in the reduced BN++ scheme)
checks whether the last w bits are all zero. If the bits are not all zero, the prover
calls the hash once more with an increased counter, which is called proof-of-
work. The prover includes the counter in the signature for the verifier to verify
without the proof-of-work. Fortunately, this technique can be directly applied to
the reduced BN++ scheme. In Table 3, we summarize the increased number of
random oracle calls and reduced signature size for a reasonable amount of proof-
of-work. Unlike FAEST, since the reduced BN++ scheme calls almost no random
oracle per signature, the proof-of-work mechanism may incur some computation
overhead.

N τ w RO call IC call Sig. size
16 33 0 5 3663 4848
16 32 4 21 3552 4706
16 31 8 271 3441 4562
256 17 0 5 30447 3634
256 16 8 271 28656 3426

Table 3: The number of calls to the random oracles and the ideal cipher for
reduced AIMer when the proof-of-work is applied. w is the number of bits for
the proof-of-work. We assume that the counter is 2-byte long.
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A Detailed Description of the reduced BN++ Signature
Scheme

Algorithm 5. Sign(sk, pk, m) - reduced BN++, signing algorithm.
// Phase 1: Committing to the views of the parties.

1 Compute the hash of the message: µ← H0(pk, m)
2 Sample randomness: ρ←$ {0, 1}λ (ρ← 0λ for deterministic signature)
3 Compute salt: salt← H3(sk, µ, ρ).
4 for each repetition k ∈ [τ ] do
5 (comk, decomk, (seed(i)

k ∥tape(i)
k )i∈[N ])←

IC-VSC.Commit((salt∥⟨τ⟩B , k), sk).
6 for each gate g with index j do
7 if g is an addition with inputs (xk,j , yk,j) then
8 For each party i, set the output share of z

(i)
k,j = x

(i)
k,j + y

(i)
k,j .

9 if g is a multiplication with inputs (xk,j , yk,j) then
10 For each party i, sample z

(i)
k,j ← Sample(tape(i)

k ).
11 Compute output offset and adjust the last share:

∆zk,j = zk,j −
∑

i z
(i)
k,j , z

(N)
k,j ← z

(N)
k,j + ∆zk,j .

12 For each party i, sample a
(i)
k,j ← Sample(tape(i)

k ).
13 Compute ak,j =

∑
i a

(i)
k,j and set bk,j = yk,j .

14 Compute ck =
∑

j ak,j · bk,j .
15 For each party i, sample c

(i)
k ← Sample(tape(i)

k ).
16 Compute offset and adjust the last share : ∆ck = ck −

∑
i c

(i)
k ,

c
(N)
k ← c

(N)
k + ∆ck.

17 Set σ1 ← (salt, (comk, ∆ck, (∆zk,j)j∈[C])k∈[τ ]).
// Phase 2: Challenging the checking protocol.

18 Compute challenge: h1 ← H1(µ, σ1), ((ϵk,j)j∈[C])k∈[τ ] ← ExpandH1(h1).
// Phase 3: Committing to the checking protocol.

19 for each repetition k ∈ [τ ] do
20 Simulate the triple checking protocol as in Section 2.4 for all parties

with challenge ϵk,j . The inputs are (x(i)
k,j , y

(i)
k,j , z

(i)
k,j , a

(i)
k,j , b

(i)
k,j , c

(i)
k ),

and let α
(i)
k,j and v

(i)
k be the broadcast values.

21 Set σ2 ← (salt, (((α(i)
k,j)j∈[C], v

(i)
k )i∈[N ])k∈[τ ]).

// Phase 4: Challenging the views of the MPC protocol.
22 Compute challenge hash: h2 ← H2(h1, σ2), (̄ik)k∈[τ ] ← ExpandH2(h2).

// Phase 5: Opening the views.
23 for each repetition k ∈ [τ ] do
24 pdecomk ← IC-VSC.Open((salt, k), decomk, [N ] \ {̄ik}).

25 Output σ ← (salt, h1, h2, (pdecomk, ∆ck, (∆zk,j , α
(̄ik)
k,j )j∈[ℓ])k∈[τ ]).
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Algorithm 6. Verify(pk, m, σ) - reduced BN++, verification algorithm.

1 Parse σ as (salt, h1, h2, (pdecomk, ∆ck, (∆zk,j , α
(̄ik)
k,j )j∈[ℓ])k∈[τ ]).

2 Compute the hash value of the message: µ← H0(pk, m)
3 Expand hashes:

((ϵk,j)j∈[ℓ+1])k∈[τ ] ← ExpandH1(h1) and (̄ik)k∈[τ ] ← ExpandH2(h2).
4 for each repetition k ∈ [τ ] do
5 ((seed(i)

k ∥tape(i)
k )i∈[N ]\{īk}, comk)←

IC-VSC.Recon(salt∥⟨τ⟩B , pdecomk, [N ] \ {̄ik}).
6 for each party i ∈ [N ] \ {̄ik} do
7 for each gate g with index j do
8 if g is an addition with inputs (xk,j , yk,j) then
9 Compute the output share of z

(i)
k,j = x

(i)
k,j + y

(i)
k,j .

10 if g is a multiplication with inputs (x(i)
k,j , y

(i)
k,j) then

11 Sample an output share: z
(i)
k,j ← Sample(tape(i)

k ).
12 if i = N then
13 Adjust the last share z

(i)
e,j ← z

(i)
e,j + ∆ze,j .

14 Sample a
(i)
k,j ← Sample(tape(i)

k ), and set b
(i)
k,j = y

(i)
k,j .

15 Sample c
(i)
k ← Sample(tape(i)

k )
16 if i = N then
17 Adjust the last share c

(i)
k ← c

(i)
k + ∆ck.

18 Let pk(i)
k be the final output shares.

19 Compute pk(̄ik)
k = pk−

∑
i̸=īk

pk(i)
k .

20 Set σ1 ← (salt, (comk, (pk(i)
k )i∈[N ], ∆ck, (∆zk,j)j∈[C])k∈[τ ]). Set

h′
1 ← H1(µ, σ1).

21 for each parallel execution k ∈ [τ ] do
22 for each party i ∈ [N ] \ {̄ik} do
23 Simulate the triple checking protocol as in Section 2.4 for all

parties with challenge ϵk,j . The inputs are
(x(i)

k,j , y
(i)
k , z

(i)
k,j , a

(i)
k,j , b

(i)
k,j , c

(i)
k ), and let α

(i)
k,j and v

(i)
k be the

broadcast values.
24 Compute v

(̄ik)
k = 0−

∑
i ̸=īk

v
(i)
k .

25 Set σ2 ← (salt, (((α(i)
k,j)j∈[C], v

(i)
k )i∈[N ])k∈[τ ]), and h′

2 ← H2(h′
1, σ2).

26 Output Accept if h1 = h′
1 and h2 = h′

2, or output Reject otherwise.
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B Security Proofs for IC-VSC

In this section, we provide a security proof of the extractable semi-binding and
multi-instance hiding property for IC-VSC. The outline of the proof is similar to
the proof in Section 3.1.

B.1 Extratable Semi-Binding Property
Lemma 8. Let E : {0, 1}λ × {0, 1}λ → {0, 1}λ be an ideal cipher. Let A be
an arbitrary adversary that makes Q queries to E. Then, the probability that
A finds salt = (salt1, salt2, b) ∈ {0, 1}λ+λ+8, i ∈ {0, 2, . . . , 254}, and distinct
n, n′ ∈ {0, 1}λ such that

E2·n⊕Esalt2 (n⊕salt1)((0b0λ−24∥b∥⟨i⟩B∥⟨0⟩B)⊕ salt1)
= E2·n′⊕Esalt2 (n′⊕salt1)((0b0λ−24∥b∥⟨i⟩B∥⟨0⟩B)⊕ salt1),
E2·n⊕Esalt2 (n⊕salt1)⊕n((0b0λ−24∥b∥⟨i + 1⟩B∥⟨0⟩B)⊕ salt1)
= E2·n′⊕Esalt2 (n′⊕salt1)⊕n′((0b0λ−24∥b∥⟨i + 1⟩B∥⟨0⟩B)⊕ salt1),

(7)

is at most 10Q/2λ.

Proof. At the end of game, we define Ek(x) = ⊥ for non-queried input (k, x) to
E, and we write⊥ ≠ ⊥ for simplicity. We also denote ctrl = 0b0λ−24∥b∥⟨i⟩B∥⟨0⟩B
and ctrr = 0b0λ−24∥b∥⟨i + 1⟩B∥⟨0⟩B . We define

L1 = {(n, l, l′) ∈ {0, 1}3λ : 2 · n⊕ Esalt2(n⊕ salt1) = l,

El(ctrl ⊕ salt1) = E′
l(ctrl ⊕ salt1), l ̸= l′},

L2 = {(n, r, r′) ∈ {0, 1}3λ : 2 · n⊕ Esalt2(n⊕ salt1)⊕ n = r,

Er(ctrr ⊕ salt1) = E′
r(ctrr ⊕ salt1), r ̸= r′},

L3 =
{

(n, l, l′, r, r′) ∈ {0, 1}5λ : (n, l, l′) ∈ L1, (n, r, r′) ∈ L2
}

and auxiliary events Auxj for j ∈ [3], where

Auxj⇔|Li| > Q

and let Aux = Aux1 ∨ Aux2 ∨ Aux3. Then, by Markov’s inequality, we have

Pr [Aux1] ≤ Ex [|L1|]
Q

≤ 1
Q

(
Q2

2λ
+ Q3

22λ

)
,

Pr [Aux2] ≤ Ex [|L2|]
Q

≤ 1
Q

(
Q2

2λ
+ Q3

22λ

)
,

Pr [Aux3] ≤ Ex [|L3|]
Q

≤ 1
Q

(
Q3

22λ
+ 2Q4

23λ
+ Q5

24λ

)
.

For each query Esalt2(n′′), let n = n′′⊕salt1. We say Bad occurs if there exists n′ ̸=
n satisfies (7). Let 2·n⊕Esalt2(n⊕salt1) = l, n⊕l = r, 2·n′⊕Esalt2(n′⊕salt1) = l′,
and n′ ⊕ l′ = r′. We classify the Bad into sub-events, up to the freshness of
El(ctrl ⊕ salt1) and Er(ctrr ⊕ salt1).
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– L1⇔ l = l′ or El(ctrl ⊕ salt1) is fresh. Observe that n should satisfies

(2 · n⊕ Esalt2(n⊕ salt1) = l′)∨
(2 · n⊕ Esalt2(n⊕ salt1) ̸= l′ ∧ El(ctrl ⊕ salt1) = El′(ctrl ⊕ salt1)).

– L2⇔ El(ctrl ⊕ salt1) is not fresh and l ̸= l′. Observe that n should satisfies

(n′, l′, 2 · n⊕ Esalt2(n⊕ salt1)) ∈ L1.

– R1⇔ r = r′ or Er(ctrr ⊕ salt1) is fresh. Observe that n should satisfies

(2 · n⊕ Esalt2(n⊕ salt1)⊕ n = r′)∨
(2 · n⊕ Esalt2(n⊕ salt1)⊕ n ̸= r′ ∧ Er(ctrr ⊕ salt1) = Er′(ctrr ⊕ salt1)).

– R2⇔ Er(ctrr ⊕ salt1) is not fresh and r ̸= r′. Observe that n should satisfies

(n′, r′, (2 · n⊕ Esalt2(n⊕ salt1)⊕ n) ∈ L2.

Note that one cannot have l = l′ and r = r′ at the same time, since it implies
n = n′. Then, we have

Pr [L1 ∧ R1] ≤ 6Q2

22λ
, Pr [L2 ∧ R1 ∧ ¬Aux1] ≤ 2Q2

22λ
,

Pr [L1 ∧ R2 ∧ ¬Aux2] ≤ 2Q2

22λ
, Pr [L2 ∧ R2 ∧ ¬Aux3] ≤ Q2

22λ
,

and

Pr [Bad] ≤ Pr [Aux] +
∑

i,j∈[2]

Pr [Li ∧ Rj ∧ ¬Aux]

≤ 2Q

2λ
+ 14Q2

22λ
+ 2Q3

23λ
+ Q4

24λ

≤ 10Q

2λ

provided that Q ≤ 2λ−1, which concludes the proof. ⊓⊔
Lemma 9. Let E : {0, 1}λ × {0, 1}λ → {0, 1}λ be an ideal cipher. Let A be an
arbitrary adversary that makes Q queries to E. Then, A’s u-extractable semi-
binding advantage Advu-ESB

IC-VSC(A) against IC-VSC is bounded by

Advu-ESB
IC-VSC(A) ≤ 14Q

2λ
,

for u = N · (2λ/ log λ).
Proof. Intuitively, according to Lemma 8, the probability of finding a collision
in commitments derived by a non-leaf node is negligible. Furthermore, for each
leaf node, the number of multi-collisions is bounded by Chernoff bound. We now
proceed to formally bound the adversary’s advantage.

Let Q be the number of queries to E and Q be the collection of all queries to
E. Without loss of generality, we remove the salt input in Commit and consider
as all salts are equaled to 0λ.

We first define the extractor Ext(Q, com = (com1, . . . , comN )) as follows.
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1. For each i ∈ [N ], find S0,i such that

S0,i = {s : Es(ctr[0, i, 0]) = comi}

2. For each e ∈ [d− 1] and i ∈ [N/2e], find Se,i such that

Se,i = {n : E0(s)⊕ 2s ∈ Se−1,2i−1, E0(s)⊕ 3s ∈ Se−1,2i}

3. For i ∈ [N ], let

Ai =
{

(p1, . . . , pd) : pe ∈ Se−1,ie−1 for e ∈ [d]
}

where ie = (⌊(̄i− 1)/2e⌋ ⊕ 1) + 1 for e ∈ [d− 1]
4. Let S be the set of messages, where

S =
{

(s1, . . . , sN ) : si = ⊥ if S0,i = ∅ and si ∈ S0,i otherwise,

Recon(p1, . . . , pd, comi, I = [N ] \ {i}) = (si)i∈I for (p1, . . . , pd) ∈ Ai

}
5. Finally, Ext outputs arbitrary u or less elements in S.

We define some bad events.

– Bad1⇔ there exists e ∈ [d− 1] and i ∈ [N/2e] such that |Se,i| ≥ 2.
– Bad2⇔ there exists i ∈ [N ] such that |S0,i| ≥ 2λ/ log λ.

Observe that Pr [|S0.i| ≥ c] ≤ Pr [X ≥ c] where X follows B(Q, 2/2λ). Similar
to (1), one have

Pr [Bad2] ≤ 4Q

2λ

By Lemma 8 and (1),
Pr [Bad1 ∨ Bad2] ≤ 14Q

2λ
(8)

In the following, we analyze the extracting condition without bad events.

– As S contains all possible (pdecomI , I), A wins the game only if |S| ≥ u.
– By ¬Bad1, we have |S| ≤

∑
i∈[N/2] |S0,2i| · |S0,2i−1|. Then, by ¬Bad2, we have

|S| ≤ 2N

(
λ

log λ

)2
.

Therefore, A cannot win the game without bad events so we have

Advu-ESB
IC-VSC(A) ≤ Pr [Bad1 ∨ Bad2] ≤ 11Q

2λ

provided that u = 2N
(

λ
log λ

)2
. ⊓⊔
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B.2 Multi-Instance Hiding Property
Lemma 10. Let E : {0, 1}λ×{0, 1}λ → {0, 1}λ be an ideal cipher. Let A be an
arbitrary adversary that makes Q queries to E. Then, A’s multi-instance hiding
advantage AdvQI -MIH

IC-VSC (A) against IC-VSC is bounded by

AdvMIH
IC-VSC(A) ≤ Q2

I

22λ
+ 6λ ·Q

2λ · log λ
.

Proof. Let QI be the number of instances. We will bound the advantage using
the H-coefficient technique. Denote I the ideal world where the hidden nodes
are always replaced to random strings, and denote R the real world where the
hidden nodes are always unchanged. Let T be the transcript of A which contains
queries to the random oracles and the instances given in the game. The parent
node of the hidden seed node is derived by node = mī ⊕m((̄i−1)⊕1)+1. Now we
define some events of bad transcript as follows.

– Bad1: The maximal multi-collision in salt1 is greater than 2λ/ log λ. From
Equation 1, Pr[Bad1] ≤ 2QI/2λ.

– Bad2: The maximal multi-collision in salt2 is greater than 2λ/ log λ. From
Equation 1, Pr[Bad2] ≤ 2QI/2λ.

– Bad3: A query (mī, (0b0λ−24∥b∥⟨i⟩B∥⟨0⟩B)⊕salt1) is queried to E. Pr[Bad3∧
¬Bad1] ≤ (2λ ·Q)/(2λ · log λ).

– Bad4: A query (salt2, mī ⊕ salt1) is queried to E. Pr[Bad4 ∧ ¬Bad2] ≤ (2λ ·
Q)/(2λ · log λ).

– Bad5.1: A mī is a left child and a query (salt2, 2 · mī ⊕ salt1) is queried to
E−1.

– Bad5.2: A mī is a right child and a query (salt2, 2 ·mī⊕mī⊕ salt1) is queried
to E−1. Pr[(Bad5.1 ∨ Bad5.2) ∧ ¬Bad2] ≤ (2λ ·Q)/(2λ · log λ).

We say TBad be the set of bad transcripts, while TGood be the complement of
TBad, and let Tid (resp. Tre) be the distribution of γ in I (resp. R). As Q ideal
cipher queries and QI instances of mī are included in transcripts, for γ ∈ TGood,

Pr[γ = Tid] = 1
(2λ)QI

·
∏

s∈{0,1}λ

1
(2λ)Ps

,

where Ps denotes the number of ideal cipher queries with key input s. Addition-
ally, depending on oracle queries, some values may be excluded as candidates
for mī,

Pr[γ = Tre] ≥
1

(2λ)QI
·

∏
s∈{0,1}λ

1
(2λ)Ps

,

where Ps denotes the number of ideal cipher queries with key input s. Therefore,
by Lemma 2, the advantage is bounded by

Adv4QI -MIH
IC-VSC (A) ≤ Q2

I

22λ
+ 6λ ·Q

2λ · log λ
.

⊓⊔
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