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Abstract. One distinguishable feature of file-inject attacks on search-
able encryption schemes is the 100% query recovery rate, i.e., confirming
the corresponding keyword for each query. The main efficiency consider-
ation of file-injection attacks is the number of injected files. In the work
of Zhang et al. (USENIX 2016), | log2 |K|| injected files are required, each
of which contains |K|/2 keywords for the keyword set K. Based on the
construction of the uniform (s, n)-set, Wang et al. need fewer injected
files when considering the threshold countermeasure. In this work, we
propose a new attack that further reduces the number of injected files
where Wang et al. need up to 38% more injections to achieve the same
results. The attack is based on an increment (s, n)-set, which is also
defined in this paper.

Keywords: Searchable encryption · File-injection attack · Binomial ·
Increment (s, n)-set

1 Introduction

Ensuring exclusive data access remains a paramount concern, often necessitating
external cloud servers due to limited user storage capacity. To enable efficient
data searches, these servers must implement search-over-plaintext methods for
speed and efficacy.

Song et al. [18] were pioneers in proposing a cryptographic scheme tailored
to address the challenge of searching encrypted data, particularly enabling con-
trolled and concealed keyword searches. This general searchable encryption (SE)
framework entails the storage of an index and database on the server. Each key-
word within a file undergoes independent encryption, alongside the encryption of
the file as a whole. Retrieval of files containing specific keywords involves the user
generating a token by encrypting the desired keyword, which is then matched
against all encrypted keywords stored on the server. Upon a match, the entire
encrypted file is returned to the user for decryption. Since the introduction of
this foundational scheme, numerous researchers have proposed diverse variants
of SE schemes [2, 4, 5, 9, 12, 15, 19]. These schemes offer varying levels of file and
keyword privacy, with the ORAM scheme emerging as the most secure, effec-
tively concealing access pattern leakage [12]. However, schemes with minimal
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leakage patterns tend to be computationally intensive and impractical. Alterna-
tively, other proposed schemes, while computationally less burdensome, permit
a marginally higher degree of leakage. Cash et al. [3] categorized these schemes
into distinct leakage levels: L1, L2, L3, and L4, each revealing different degrees of
information about keyword occurrences. Subsequent studies have demonstrated
the potential exploitation of even minimal leakage to extract significant informa-
tion from databases, emphasizing the critical role of prior knowledge in facilitat-
ing successful attacks [1, 8, 10, 13]. Recovery of keywords involves retrieving the
keyword associated with the queried token, representing an encrypted keyword
of a file.

Attacks on SE schemes may manifest as either passive or active. Passive
attacks entail the observation of leakage patterns to construct keyword-query
matches [6, 10, 14,17]. These attacks refrain from interfering with protocols and
leverage preexisting knowledge to execute their strategies. Passive attacks typ-
ically target weaker schemes exhibiting higher leakage levels (L2-L4) and often
necessitate external or prior knowledge for execution. Conversely, active attacks
involve servers injecting files into a user’s database to glean insights. Injection
attacks leverage either file access patterns or volume patterns [1, 3, 16, 20–22].
Active attacks, typically assuming L1 leakage or less, necessitate minimal prior
knowledge, contrasting with the requirements of passive attacks. Successful re-
covery of keywords in active attacks is consistently achieved with 100% accuracy,
with the performance metric being the number of injections required for a suc-
cessful attack.

Cash et al. [3] were among the first to introduce an active attack wherein the
server sends files to the client, subsequently encrypted and stored by the client.
These attacks typically assume L2-L3 leakage, akin to passive attacks. Attack-
ers construct files of their choosing and transmit them to users, compelling the
application of the scheme to the received file, thereby enabling observation of ci-
phertext by the server. Zhang et al. [22] categorized such attacks as file-injection
attacks and introduced the Binary-attack, premised on L1 leakage and injecting
half of the keyword universe per injection, akin to binary search methodologies.

Countermeasures such as thresholds and padding are implemented to impede
the success of attacks. Thresholds impose limits on the number of keywords a
file can contain, while padding obscures actual results by introducing additional
files alongside queried files. Wang et al. [20] proposed an alternative approach to
injection attacks based on finite set theory, offering superior performance com-
pared to previous methods. This approach, known as the FST-attack, necessi-
tates fewer injections than the Binary-attack under certain conditions, leveraging
so-called (s, n)-sets to enhance attack efficacy. Despite these advancements, the
FST-attack’s reliance on singular s values for all identified keywords represents
a notable limitation.

Organization of the paper. The organization of the rest of the paper goes
as follows. In Section 2, the description of the SSE scheme, file-injection, thresh-
olds, and the latest state-of-the-art full file-injection attack on SSE schemes are
given. In Section 3, our Binomial-attack is explained in detail, together with how
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it can easily be applied under any threshold and dataset size, and the perfor-
mances of our attack compared to previous file-injection attacks are visualised.
In Section 4, we show the consequences of padding on our attack and compare
these with the consequences on the FST-attack. In Section 5, a mitigation is
proposed to perform better under a scheme that uses padding, with minimal
trade-off. In Section 6 and 7 the results and untouched topics of the paper are
debated. Finally, the paper is summarized in Section 8.

2 Preliminaries

2.1 Searchable Encryption

An searchable encryption (SE) scheme has three algorithms: encryption, search,
and update (only for dynamic) algorithms.

The encryption algorithm takes as input a set of files F = {F1, · · · , Fn} and
a secret key from the data owner, and outputs the encrypted files. These cipher-
texts are then stored on the cloud server. The search algorithm takes a secret key
and a keyword k as input, and outputs a query(token) t, which allows the cloud
server to search the files that contain the corresponding keyword k among the
encrypted files. The data owner can then decrypt the returned documents from
the server and identify all related files to the keyword k. The update algorithm
only applies to the dynamic SE schemes, which outputs updated files, given a
secret key and a set of files.

2.2 File Injection Attack

One of the goals of the attacker is called query recovery. The attack attempts to
recover the underlying keywords to queries, which threatens query privacy and
file privacy. We focus on file-injection attacks in this paper.

Instead of passive attacks, the attacker in file-injection attacks is active by
sending to the data owner some proper documents, which are then encrypted
by the latter and also stored on the cloud according to the SE schemes. As an
example, one can inject files to a user by sending designed emails in the email
system. The attacker then observes the returned files, especially its own injected
files, corresponding to the queries through the search algorithm. According to
the returned (previously injected) files, the attacker can achieve the goal of query
recovery.

The first file-injection attack is proposed by Cash et al. [3] and further im-
proved by Zhang et al. [22]. We show an example of the binary-search attack in
Table 1 that injects log2(|K|) files and achieves a 100% query recovery, where
|K| is the size of the keyword set. In this example, if returned files corresponding
to a query t are F1 and F3, then we know its underlying keyword is k2. Analo-
gously, other keywords can also be matched according to different combinations
of returned files.

In this work, our file-injection attack is based on the same assumption in [3,
22] that the attacker knows the file access pattern (i.e., knowing the returned files
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Files k1 k2 k3 k4 k5 k6 k7 k8

F1 1 1 1 1 0 0 0 0
F2 1 0 1 0 1 0 1 0
F3 1 1 0 0 1 1 0 0

Table 1: An example of the binary-attack file with a keyword universe of 8.
Keywords are assigned into files: F1, F2, F3, where 1 denotes the presence of the
corresponding keyword and 0 indicates its absence.

according to queries) and also can identify the files on the cloud corresponding
to its injected files. One distinguishable feature of file-inject attacks is the 100%
query recovery rate, so we evaluate the efficiency of such attacks from the number
of injected files.

Wang et al. [20] further improved the work [22] to deal with the countermea-
sures of a threshold of a maximal number of keywords in each file.

2.3 FST-Attack

In this section, we review the definition of a uniform (s, n)-set and how the FST-
attack works [20], based on the uniform (s, n)-set. The method to construct a
uniform (s, n)-set of a finite set is presented by Liu and Cao [11].

Definition 1 (Uniform (s, n)-set [20]). Let a set A = {d1, d2, · · · , dm} and
the subsets A1, A2, · · · , An ⊂ A be called a uniform (s, n)-set of A (m ≥

(
n

s−1

)
)

if the following three conditions are satisfied:

– |A1| = |A2| = · · · = |An|;
– For any s subsets Ai1 , · · · , Ais ∈ {A1, · · · , An}, there is

s⋃
j=1

Aij = A;

– For any s − 1 subsets Ai1 , · · · , Ais−1 ∈ {A1, · · · , An} there is
s−1⋃
j=1

Aij =

A\{di}.

Where n denotes the number of injected files, |Ai| the size of each injected file
and m the keyword universe.

A uniform (s, n)-set for a finite set with size m has the following properties,
when we choose m =

(
n

s−1

)
.

Lemma 1 ( [20]). Let (A1, A2, · · · , An) be a uniform (s, n)-set, then we have

– Size. The size of each file Ai is |Ai| =
(
n− 1
s− 1

)
for 1 ≤ i ≤ n.

– Intersection. Let r = n− s+ 1, then the size of the intersection of arbitrary
r files is only 1: | ∩r

j=1 Aij | = 1.
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Based on the uniform (s, n)-set, Wang et al. [20] presents a file-injection
attack to SE. We assume the keyword set K = {k1, k2, · · · , km}.

Their basic attack is to first construct a uniform (s, n)-set {A1, A2, · · · , An}
based on the technique presented by Liu and Cao [11] for the keyword set K
such that

(
n

s−1

)
≥ m1, and then generate a file set of size n: {D1, D2, · · · , Dn},

where the file Di contains the same keyword in the Ai for 1 ≤ i ≤ n. Those
files are then injected into the SE scheme, and the attack recovers the keyword
corresponding to a token by the returned n− s+ 1 files. The correctness of the
basic attack is guaranteed by Lemma 1, i.e., there only exists one keyword in
the intersection of n− s+ 1 files.

When the threshold countermeasure is taken into consideration, that is the
number of keywords in each file should be smaller than a threshold T , they
proposed an advanced file-injection attack, aiming at obtaining a minimum n,
the number of files that should be injected. Towards this goal, they choose the
minimum n such that 

(
n− 1

s− 1

)
≤ T(

n

s− 1

)
≥ m.

(1)

Moreover, they present look-up tables to determine the optimal s and n corre-
sponding to the threshold T and the number of keywords in different intervals.

Example 1. As an example of recovering 23 keywords {k1, k2, · · · , k23} with
threshold 7, we solve the Eq. (1) for T = 7 and m = 23 and then get a minimum
n = 8 and s = n−1 = 7. The corresponding injected files according to a uniform
(7, 8)-set are shown in Table 2. Note that some parts in files {D1, · · · , D8} are
left as blank since the number of keywords in these files has reached 23. Each
keyword can be matched by n − s + 1 = 2 returned files. For example, if files
D1 and D2 are returned after a query to a token t, we know the corresponding
keyword to t is k1.

This example also explains our major motivation: a single uniform (s, n)-set
of the keyword set may not maximize the ability of a file injection attack, or
in other words, the number of injected files n is not optimal. The reason is the
number of keywords in injected files may be far from reaching the threshold.

3 A New File-injection Attack

In this chapter, we present our new file-injection attack to searchable encryption
schemes. It is based on our new definition of a subset family of a finite set,
called increment [r, n]-set. Our main technique is to construct an increment
[r, n]-set of the keyword set with the help of a new construction method for
the uniform (s, n)-sets. Compared to the uniform (s, n)-set used in [20], the

1 It means the maximal number of keywords in the uniform (s, n)-set is greater than
the keyword size m.
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(7, 8)-set

Files Col1 Col2 Col3 Col4 Col5 Col6 Col7

F1 k22 k23
F2 k16 k17 k18 k19 k20 k21
F3 k11 k12 k13 k14 k15 k21
F4 k7 k8 k9 k10 k15 k20
F5 k4 k5 k6 k10 k14 k19
F6 k2 k3 k6 k9 k13 k18
F7 k1 k3 k5 k8 k12 k17 k23
F8 k1 k2 k4 k7 k11 k16 k22

Table 2: An example of recovering 23 keywords with threshold T=7 by the
uniform (7, 8)-set.

increment [r, n]-set enables us to put more keywords in the injected files, thus
significantly reducing the number of injected files.

3.1 New construction method of (s, n)-sets

To establish the integrity of our new (s, n)-set construct, we initially define a
positional pattern as a distinct relative arrangement of files used to identify a
keyword. Each positional pattern offers up to n variations before repeating itself.
If all variants of a positional pattern are employed, they occupy at most n · r
positions across r columns.

Consider the simplest positional pattern where files are consecutive. This
pattern generates variants as illustrated in Table 3.

Table 3: An example of all the variants possible from a positional pattern (P.P.)
for n = 7 and r = 3, and how they would be injected.

Variants Injected structure

Files P.P. v1 v2 v3 v4 v5 v6 v7 col1 col2 col3

F1 x k1 k6 k7 k1 k7 k6
F2 x k1 k2 k7 k1 k7 k2
F3 x k1 k2 k3 k1 k3 k2
F4 k2 k3 k4 k4 k3 k2
F5 k3 k4 k5 k4 k3 k5
F6 k4 k5 k6 k4 k6 k5
F7 k5 k6 k7 k7 k6 k5

Given that each positional pattern occupies r columns (with exceptions noted
for trivial edge cases, discussed later), patterns can be inserted into the files un-
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til the threshold restricts usage to fewer than r columns. For the remaining
columns, we consistently employ positional pattern (P.P. 1) from Table 3. Pre-
ceding columns in front of these columns can be filled with complete positional
patterns, utilizing all variants of the pattern across r columns. See Table 4 for a
visual clarification.

Table 4: An example of the construct of the injected files for x4r ≤ T ≤ x5r, n =
7 and r = 3. Where up till the last positional pattern (P.P.) random positional
patterns can be used to make unique combinations and the last positional pattern
consists out of consecutive files (P.P. 1). If T = xir, the threshold ends precisely
in between positional patterns. If xir < T < xi+1r, P.P. 1 should be used from
xir onward. All columns in P.P. 1 can identify n

r keywords.
P.P.3 P.P.4 P.P.5 P.P.1

Files col7 col8 col9 col10 col11 col12 col13 col14 col15 col16 col17 col18
F1 · · · k15 k18 k21 k22 k25 k28 k29 k31 k35 k1 k7 k6 · · ·
F2 · · · k15 k16 k19 k22 k23 k26 k29 k30 k32 k1 k7 k2 · · ·
F3 · · · k16 k17 k20 k23 k24 k27 k30 k31 k33 k1 k3 k2 · · ·
F4 · · · k17 k18 k21 k24 k25 k28 k31 k32 k34 k4 k3 k2 · · ·
F5 · · · k15 k18 k19 k22 k25 k26 k32 k33 k35 k4 k3 k5 · · ·
F6 · · · k16 k19 k20 k23 k26 k27 k29 k33 k34 k4 k6 k5 · · ·
F7 · · · k17 k20 k21 k24 k27 k28 k30 k34 k35 k7 k6 k5 · · ·

99K

99K

99K

99K

99K

99K

99K

T = x1r x2r x3r x4r x4r + 2
x4r + 1 x5r

Proof For our proof, we start by assuming T = xi · r + 1 and generalize from
there. In the case of T = xi · r + 1, one column is left for the new positional
pattern. In this column, there are three possible scenarios, where n left stands
for the number of free spots in the column available for keyword combinations:

1. n left > r : inject the variant starting from on the first available spot.
2. n left < r : inject the variant starting from on the first available spot and

continue at the beginning of the next column.
3. n left = r : n/r is a an integer, inject the last variant to fully occupy the

column.

The first scenario will ultimately progress to either the second or third sce-
nario, both of which are illustrated in Table 5. In both scenarios, the column will
eventually contain n

r combinations. Let’s now consider T = xi · r + 2, following
from the previous scenarios which concluded with either scenario 2 or 3.
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Table 5: Construction of the last T (mod r) columns of an (s, n)-set under the
two different possible scenarios, guaranteeing n

r identifiable keywords per
column.

(a) Second scenario

P.P.1

Files col16 col17 col18
F1 · · · k1 k7 k6 · · ·
F2 · · · k1 k7 k2 · · ·
F3 · · · k1 k3 k2 · · ·
F4 · · · k4 k3 k2 · · ·
F5 · · · k4 k3 k5 · · ·
F6 · · · k4 k6 k5 · · ·
F7 · · · k7 k6 k5 · · ·

99K

99K

99K

99K

T = x4r x4r + 2
x4r + 1 x5r

(b) Third scenario

P.P.1

Files col16 col17 col18
F1 · · · k1 k5 k6 · · ·
F2 · · · k1 k2 k6 · · ·
F3 · · · k1 k2 k3 · · ·
F4 · · · k4 k2 k3 · · ·
F5 · · · k4 k5 k3 · · ·
F6 · · · k4 k5 k6 · · ·

99K

99K

99K

99K

T = x4r x4r + 2
x4r + 1 x5r

– In the case of scenario 2: n and r are relatively prime. The variants will not
repeat themselves for n ·r spaces, equivalent to n·r

n = r columns. This means
that variants will not repeat until T = xi · r + r = xi+1 · r.

– In the case of scenario 3: n
r is an integer, which makes n/r variants of the

positional pattern. Repeating the same steps from the T = xi ·r+1 scenario,
starting from a different unused position point, will not lead to repetition
until all variants are utilized, totaling n variants. Together, these variants
occupy n · r spaces, equivalent to n·r

n = r columns.

Repeating this for the next T will eventually lead to T = xi · r + r, after
which the reasoning can be started from T = xi+1 · r + 1 again.

This concludes that for any T , the described positional pattern P.P.1 can con-
sistently identify n

r keywords within a single column. By consistently using this
positional pattern in the last T (mod r) columns, we guarantee the identification
of n

r keywords per column.

edge case. if n and r are co-prime (gcd(r, n) = 1) all positional patterns have
n variants and take r columns. If gcd(r, n) = cp, where cp > 1, there is at least
1 positional pattern that has less than n variants. namely v = n/cp variants.
If cp/2 is an integer, there is also a positional variant which has v = n/(cp/2)
variants, and so on. These take v·r

n columns per pattern. All other positional
patterns have n variants and hence r columns. Note v·r

n still holds for cp = 1.
The fact that there can be one or two positional patterns with less than r columns
does not pose any trouble as P.P. 1 is always used as last positional pattern. Any
positional pattern can be used for the construct of the files as long as the last
pattern is the P.P. 1 pattern, to guarantee n

r keywords per column.
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3.2 Increment [r, n]-Set

The main idea of the increment [r, n]-set is to optimize the available space in the
injected files, which are defined as follows.

Definition 2 (Increment [r, n]-set). Let A be a set, then the subsets
A1, A2, · · · , An ⊂ A are called an increment [r, n]-set of A if the following con-
ditions are satisfied:

– |A1| = |A2| = · · · = |An−r+1|;
– Elements in A1, A2, · · · , An are separated into r blocks such that the i-th

(1 ≤ i ≤ r) block of A1, A2, · · · , An forms a uniform (n− i+1, n)-set of the
union set of the i-th block of A1, A2, · · · , An.

An (s, n)-set is here a single block and the increment [r, n]-set consists out of
multiple (s, n)-sets (blocks), where the r is increased per block. Recall that for
a uniform (s, n)-set, a keyword can be uniquely recovered by r = n − s + 1
returned files. Therefore, the keywords in the i-th block of an increment [r, n]-
set are determined by n−(n− i+1)+1 = i files, since the i-th block is a uniform
(n − i + 1, n)-set by definition. That is, the keywords in the 1st block can be
represented by 1 file, the keywords in the 2nd block by 2 files, and so on. This
is what we call an increment.

We denote the i-th block of Aj by Ai
j for 1 ≤ j ≤ n, then we get the following

corollary which follows from Lemma 1.

Corollary 1. If (A1, A2, · · · , An) is an increment [r, n]-set of A, then we have

|Ai
j | =

(n− 1
n− i

)
,

for 1 ≤ i ≤ r, 1 ≤ j ≤ n.

Therefore, we know that the size of Aj is |Aj | =
∑s

i=1

(
n−1
n−i

)
for 1 ≤ j ≤ n.

The main idea of our basic file-injection attack is to construct an increment [r, n]-
set, instead of complete independent (s, n)-sets spread over different chunks of
files, like FST does. We are aiming at reducing the total number of injected files
n to as few files as possible. Keywords are recovered according to the different
combinations of returned files (details are present in Section [3.3]).

Example 2. We give an example of an increment [r, n]-set of the keyword set
{k1, k2, · · · , k23} with threshold seven for a comparison to the example in Table
2. We compute r and the minimum n such that

r∑
i=1

(
n− 1

n− i

)
≤ 7

r∑
i=1

(
n

n− i

)
≥ 23,

(2)
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(6, 6)-set (5, 6)-set (4, 6)-set

Files Col1 Col2 Col3 Col4 Col5 Col6 Col7

F1 k1 k7 k10 k13 k15 k19 k22
F2 k2 k7 k11 k14 k16 k20 k22
F3 k3 k8 k11 k13 k17 k21 k22
F4 k4 k8 k12 k14 k18 k19 k23
F5 k5 k9 k12 k15 k17 k20 k23
F6 k6 k9 k10 k16 k18 k21 k23

Table 6: An example of recovering 23 keywords with threshold T=7 by an in-
crement [3, 6]-set, which is divided into 3 blocks. Keywords in the 1st, 2nd, and
3rd block can be recovered by 1, 2, and 3 returned files, respectively.

and then we get r = 3 and n = 6. The increment [3, 6]-set of the aimed keyword
set is shown in Table 6. Compared to Example 1, it reduces the number of
injected files from 8 to 6! Every space in these files is filled with keywords, while
still controlling the total number of keywords within the threshold.

A trick to find the optimal n to Eq. 2 is to try r for values in {1, 2, · · · } in a
row, and a general technique to construct an increment [r, n]-set for m keywords
with threshold T is presented in Sect. 3.3.

3.3 Construction of Increment [r, n]-Set

In this section, we present a way to the construction of increment [r, n]-set of a
finite set, which uses the method of constructing uniform (s, n)-set proposed in
Sect. 3.1 as a subroutine.

Given as input the size of the keyword m and threshold of the number of
keywords in a file T , we aim to construct an increment [r, n]-set of the keyword
set with the minimum n such that (1) the size of each file should not be greater
than the threshold T , and (2) the maximal number of keywords that those files
can recover is at least m. To maximize the recovery ability under condition (1),
our overall idea is to construct r uniform (n − i + 1, n)-sets by the technique
shown in Sect. 3.1 for 1 ≤ i ≤ r and return the first T columns as the aimed
set. Then by Lemma 1, we know the first r− 1 blocks take

∑r−1
i=1

(
n−1
n−i

)
columns

and can recover
∑r−1

i=1

(
n

n−i

)
keywords in total. The last block takes the rest

T−
∑r−1

i=1

(
n−1
n−i

)
columns and allows to recover ⌊n/r·[T−

∑r−1
i=1

(
n−1
n−i

)
]⌋ keywords.

Then the condition (2) is equal to

r−1∑
i=1

(
n

n− i

)
+

⌊
n

r
·

[
T −

r−1∑
i=1

(
n− 1

n− i

)]⌋
≥ m. (3)

We proceed in the discussion of r starting from 1 to T . For each r, we record all
the possible n to the Inequality 3, with the minimum one as the optimal solution.
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For simplicity of exposition, we denote NK(r, n) as the left part of the above
inequality. The whole process of constructing an increment [r, n]-set is present
in Algorithm 1.

Algorithm 1 Construction of increment [r, n]-set

Input: Number of keywords m, threshold T
Output: An increment [r, n]-set of the keyword set {k1, k2, · · · , km}
1: Initialize an empty candidate set: candidate← [ ]
2: for r = 1 to T do
3: Solve n from NK(r, n) ≥ T and denote the minimum n as n0

4: Append (r, n0) to candidate
5: r = r + 1
6: end for
7: Find (r, n0) with the minimum n0 and corresponding r from candidate
8: for i = 1 to r do
9: Construct a uniform (n0−i+1, n0)-set of keywords with index from

∑i−1
j=1

(
n0−1
n0−j

)
to

∑i
j=1

(
n0−1
n0−j

)
by the technique proposed in Sect. 3.1

10: end for
11: Output the first T columns of the created files

Going back to Example 1, we compute the Inequality 3 to get candidate =
[(2, 7), (3, 6), (4, 7)]. Then we know the optimal increment [r, n]-set is r = 3, and
n = 6.

3.4 Binomial-Attack

Given the keyword universe K = {k1, k2, · · · , km} and the threshold T as the
maximal number of keywords in each file, we present our file injection attack in
Algorithm 2, which is based on the increment [r, n]-set of the K.

Algorithm 2 Binomial-attack

Input: Keyword set K = {k1, k2, · · · , km}, threshold T , a query token t
Output: Keyword corresponding to the token t

1: Generate an increment [r, n]-set A1, A2, · · · , An of K with threshold T by Algorithm
1

2: for j = 1 to n do
3: Let a file Di contain the same keywords as Ai

4: end for
5: Inject files {F1, F2, · · · , Fn} into the SE scheme
6: return the corresponding keyword to t according to the returned i files(1 ≤ i ≤ r)

Now that the structure of the attack is understood, we can proceed to calcu-
late the required number of injections to achieve the desired number of identifi-
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able keywords. There are multiple formulas to calculate the required number of
injections. The appropriate formula to utilize depends on at which (n−r+1, n)-
set the threshold will limit the attack from injecting more combinations.

Deciding the Number of Injections. The attack always starts with r =
1 and progresses incrementally from there on forth. At some point within an
(n− r + 1, n)-set, the threshold will limit the number of keywords it can inject.
Refer to Table 6 for a visual representation.

By Eq. 3 we know the number of keywords an (n − r + 1, n)-set can utilize
for a certain threshold, under a specific r. When the threshold is reached in the
(n − 1, n)-set, where r = 2 the equation can be written in terms of n like the
following:

F2(K,T ) =
2K

T + 1
(4)

Similarly to the (n− 2, n)-set, where r = 3, the equation becomes:

F3(K,T ) =
−(3 + 2T ) +

√
(3 + 2T )2 + 24K

2
(5)

The formulas F4(K,T ) and beyond are only of relevance when the threshold
is a significant portion of the number of keywords that need to be injected.

Deciding the Injection Formulas. The next step involves determining the
appropriate utilization of each formula for different scenarios.

To determine the appropriate value for r in the increment [r, n]-set, we must
assess whether the threshold allows for additional keywords in the files following
a uniform (n − r + 1, n)-set. This evaluation must be conducted for each r,
commencing at r = 2. By Lemma 1 we know the first two blocks utilize a total
of n columns. Therefore if T > n, the (n− 2, n)-set can also be used. However,
the value of n remains unknown at this stage. To address this uncertainty, we
substitute n = T into F2. This yields the threshold at which both the (n −
r + 1, n)-sets in the increment [2, n]-set become uniform and precisely meet the
threshold. If the keyword universe exceeds this value, the attack will require more
than T injections. Conversely, if the keyword universe falls below this value, fewer
than T injections are required. Consequently, there will be residual space in the
injected files for (at least) the (n − 2, n)-set. The minimum value of K to only
be able to build up to an Increment [2, n]-set is outlined as follows:

MinF2
(T ) =

1

2
T 2 +

1

2
T (6)

F2 should be applied when the outcome of MinF2
(T ) ≤ K. Alternatively, the

formula of MinF3
determines whether F3 or F4 should be utilized. Following the

same procedures as before, we get:
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MinF3
(T ) =

2 + T

3
· 1 +

√
8T − 7

2
+

T − 1

3
(7)

These formulas already hold an improvement over FST, since FST had a
lookup table with overlapping values and no clear points to choose from. Using
our previous example 1, we see MinF2

(7) > 23 and MinF3
(7) < 23. This means

we need to use F3, which results in F3(23, 7) = 6 files.

3.5 Performance under Different Thresholds

The results consistently demonstrate the superiority of the Binomial-attack over
the FST-attack across various thresholds and dataset sizes.

The Binomial-attack consistently outperforms the FST-attack with at least
one injected file, regardless of the dataset size. With a threshold of 200, the most
substantial disparity occurs in datasets ranging from 7 200 to 7 400 keywords,
where the FST-attack requires 33 more injections compared to the Binomial-
attack. This represents a 38% increase in injections needed by the FST-attack
for equivalent results. In previous studies, the Enron dataset [7] served as a
benchmark for attack performance. When applied to the Enron dataset, the
FST-attack requires 83 files to cover the entire keyword universe, whereas the
Binomial-attack accomplishes this with only 65 files. Thus, in this real dataset
scenario, the FST-attack necessitates 28% more injections than the Binomial-
attack.

To provide a comprehensive overview of these differences, Fig. 1 illustrates
the comparative performance of the Binary-, FST-, and Binomial-attack across
various thresholds, with datasets ranging up to 20 000 keywords.
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(a) T=100. (b) T=200.

(c) T=300.

Fig. 1: Performance of different injection attacks under different thresholds.

4 File-injection Attacks on SE Schemes with Keyword
Padding

Keyword padding serves as a countermeasure within the SE scheme aimed at
obscuring query results by returning more files than necessary. In addition to
the files containing the queried keyword, the scheme also includes random files
from the dataset in its response. In this chapter, we delve into the consequences
of padding and compare the implications between the FST- and Binomial-attack
methodologies. Previous studies, such as the FST- and Binary-attack, explored
this topic assuming a file dataset of 30 109 files and a keyword universe of 5 050
keywords. The scheme adopts a threshold of 200, and on average, a query yields
matches on 560 files, with an additional 60% of random files included (336 files).
Section 4.1 delves into the quantitative effects of padding, while Section 4.2
presents a visual exploration of these effects.

4.1 Calculating the Effects

To assess the impact, three key steps are necessary. Firstly, we must determine
the average number of additional injected files returned as a consequence of
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their selection for padding. Subsequently, we can proceed to determine the av-
erage number of keyword combinations we can generate. These combinations
represent distinct file arrangements utilized for the unique identification of a
single keyword, collectively referred to as the candidate set for a query. Finally,
the last step entails re-executing the attack on the candidate set to pinpoint the
specific keyword utilized.

Injected Files from Padding. To calculate the average number of injected
files chosen during padding, we can utilize the hypergeometric distribution func-
tion. Our population size is 30 109 − 560 = 29 549, since the matched files for
the query can not be chosen for the padding. The number of successes will be
F3(5 050, 200) = 64.8 ≈ 65 files, minus the average injected file response, leaves
65− 3 = 62 successes. The sample size is 336. We can calculate the probabilities
for all possible numbers of successes in the sample and then multiply each prob-
ability by the corresponding number of successes. The results are then summed
to determine the average number of injected files (p) chosen in the padding:

p =

62∑
n=1

(
62
n

)(
29549−62
336−n

)(
29549
336

) (8)

Average Candidate Set Size. The average candidate set size is determined by
three key factors associated with each (n−r+1, n)-set used to identify keywords.
The first factor considers the number of possible combinations within the given
(n−r+1, n)-set when r+p injected files are returned. The second factor accounts
for the ratio of combinations utilized in that (n − r + 1, n)-set compared to its
total possible combinations. The third factor represents the ratio of identifiable
keywords in the (n− r + 1, n)-set to the total number of identifiable keywords.
Multiplying these three factors together yields the average candidate set size per
(n− r+1, n)-set. Summing the results across all (n− r+1, n)-sets provides the
overall average candidate set size:

R∑
r=1

(
r + p

r

)
· |Kr|2(

n
r

)
· |KR|

(9)

Number of Extra Injections Needed. A straightforward method to deter-
mine the number of extra injections required is to analyze on a per-query basis.
By considering the average candidate set size per query, we can execute our
attack specifically for that particular candidate set to recover the searched key-
word. While this approach is not optimal, it suffices for comparison purposes
with the FST-attack.

4.2 Visualising the Effects

This section will demonstrate the effects of padding on both FST and the
Binomial-attack. While the Binomial-attack may not always appear significantly
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better based solely on the average candidate set size per query, it’s important to
consider that FST is generally less efficient, requiring more injections to cover the
same candidate set. Here, we present the results for a scheme with a threshold
of 200. Results for different thresholds are available in Appendix A.

Targeting the Whole Dataset. In Fig. 2, we see the average sizes of candidate
sets for different dataset sizes. The corresponding number of extra injections
required for the candidate sets is illustrated in Fig. 3. While there is a small
dataset size range where the Binomial-attack requires one more injection than
the FST-attack, FST generally performs worse for all other dataset sizes.

Fig. 2: Candidate set size per query,
T=200.

Fig. 3: Extra injection size per query,
T=200.

Targeting a Subset of the Dataset. When targeting a subset of the keyword
universe, fewer injections are required to cover the target set, benefiting both
attacks. However, not every query relates to a keyword in the target set. When
combined with padding, this may not pose an issue if we assume a consistent
average number of injected files in the padding. For instance, if two injected files
are returned and the average padding injection is also two, it suggests a search
for a keyword not in the target set. However, if a return of two injected files could
also indicate a search for a keyword occurring once or twice, all searches become
candidate sets. While these candidate sets may not contain actual keywords
from the target set, distinguishing beforehand is impossible. The only option is
to re-perform the attack on the candidate set.

In this scenario, our attack performs notably worse. This is because the
Binomial-attack initiates with an (n, n)-set. FST does not follow this approach,
resulting in fewer potential combinations when all preceding (n−r+1, n)-sets are
included in the candidate set. Figure 4 illustrates the number of extra injections
required when searching for a keyword that is not in the target set.
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5 Adopted Binomial-Attack

When the target set is a subset of the dataset, searches for keywords outside
the target set result in additional candidate sets. To mitigate the size of these
extra candidate sets, adjustments to the attack methodology are necessary. This
chapter outlines the modifications required to minimize candidate size while
maintaining effectiveness. Despite the trade-off, the attack consistently requires
fewer initial injections than FST.

5.1 Removing the (n, n)-Set

In the Binomial-attack, the lowest value for r is always one. While this minimizes
the space occupied in injected files, it also leads to greater overlap with keywords
spread across multiple injected files. Conversely, higher values of r in the (n −
r + 1, n)-sets for all keywords result in smaller candidate sets per query. To
reduce the size of candidate sets, keywords should not be identified with only
one injected file, meaning the attack starts from (n−1, n) instead of (n, n). This
frees up space that can be allocated to a different (n− r + 1, n)-set.

5.2 Results after the Mitigation

The number of identifiable keywords decreases by either n
2 or 2n

3 , depending on
which (n − r + 1, n)-set the attack terminates due to the threshold. Refer to
Table 7 for a visual representation of this transformation.

In Fig. 5, the difference in extra injections required between the FST- and
adopted Binomial-attack is illustrated. FST consistently requires an equal or
greater number of injections to recover candidate sets.

(5, 6)-set (4, 6)-set

Files Col1 Col2 Col3 Col4 Col5 Col6 Col7

F1 k1 k4 k7 k9 k13 k16 k19
F2 k1 k5 k8 k10 k14 k16 k18
F3 k2 k5 k7 k11 k15 k16 k18
F4 k2 k6 k8 k12 k13 k17 k18
F5 k3 k6 k9 k11 k14 k17 k19
F6 k3 k4 k10 k12 k15 k17 k19

Table 7: Distribution of an Increment [3, 6]-set, without (6, 6)-set, T=7.
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Fig. 4: Extra injection sizes per query
that is not in the target set, T=200.

Fig. 5: Extra injection sizes per query
that is not in the target set, T=200, for

the adopted attack.

6 Discussion

In addition to padding, there exist other countermeasures aimed at increasing the
difficulty of attacks. One such countermeasure involves the creation of clusters
of keywords, as described in [10]. When a search query is initiated for one of the
keywords within a cluster, all files containing keywords from the same cluster are
returned. This approach not only obscures the specific keyword being searched
for, but also introduces ambiguity regarding the association of injected files with
specific keywords. Due to the potential for multiple combinations of keywords
within the returned files, the attacker may be compelled to employ higher (n−
r + 1, n)-sets, necessitating a greater number of injected files. It is important
to note, however, that this countermeasure assumes a static keyword universe
and may require modification to accommodate dynamic searchable encryption
scenarios.

Despite its theoretical appeal, searchable encryption has yet to achieve
widespread adoption in practical applications and can vary significantly in its
configurations, including the implementation of countermeasures. Consequently,
predicting the exact characteristics of a searchable encryption scheme in practice
remains challenging. Nevertheless, there is value in speculating on the potential
implications of different settings and attempting to assess the scheme’s security
under various conditions, even if these scenarios remain largely theoretical at
present. This makes it harder to determine how big the safety issues of the
schemes are.

7 Future work

The additional injections required to neutralize candidate sets are primarily uti-
lized to compare the attack against FST. However, the method itself is far from
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optimal. As presented in this paper and the FST paper, each keyword necessi-
tates multiple additional injections. This approach may result in a greater num-
ber of injections than initially required for the attack. A more efficient strategy
involves combining candidate sets and reusing earlier injections, thereby reduc-
ing the overall number of additional injections required. However, the optimal
method for achieving this remains to be determined.

This attack is an active attack that makes no use of leakage apart from the
returned injected files. In contrast, other attacks combine active and passive
methods [21]. If Binary- or FST-attack methods are employed, they could be
enhanced by incorporating the Binomial-attack. Revisiting these attacks may
reveal potential improvements. We also note that further exploration into fields
such as coding theory and combinatorics using our increment [r, n]-set could
yield relevant connections and contributions and vice-versa.

8 Conclusion

The Binomial-attack represents a significant advancement over existing active
attack methods. It maximizes the storage of keywords within a limited number
of injected files by employing an Increment [r, n]-set to identify keywords. This
approach iterates through all possible combinations of an (n−r+1, n)-set starting
from r = 1, progressing with r = r + 1 until no additional space is available in
the files. The adopted Binomial-attack starts at r = 2 to decrease the candidate
set size for a query when the SE scheme uses padding as a countermeasure.

Our findings demonstrate that, regardless of the presence or absence of a
threshold, the Binomial-attack consistently outperforms both the Binary- and
FST-attack methods. However, when padding is introduced, there are specific
threshold and dataset size combinations where FST requires fewer additional
injections on average. It remains uncertain whether this advantage would persist
with the implementation of a more efficient keyword recovery method.
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A Performance Comparison under Different Scenarios

(a) T=100. (b) T=200.

(c) T=300.

Fig. 6: Candidate set sizes per query when padding is applied, under different
thresholds, where the target set is the full keyword universe, for the standard

Binomial-attack.
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(a) T=100.

(b) T=200.

(c) T=300.

Fig. 7: Extra injection sizes per query
when padding is applied, under

different thresholds, where the target
set is the full keyword universe, for the

standard Binomial-attack.

(a) T=100.

(b) T=200.

(c) T=300.

Fig. 8: Candidate set sizes per query
that is not in the target set when
padding is applied, under different
thresholds, where the target set is a

subset of the full keyword universe, for
the standard Binomial-attack.
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(a) T=100.

(b) T=200.

(c) T=300.

Fig. 9: Candidate set sizes per query
that is not in the target set when
padding is applied, under different
thresholds, where the target set is a

subset of the full keyword universe, for
the adopted Binomial-attack.

(a) T=100.

(b) T=200.

(c) T=300.

Fig. 10: Extra injection sizes per query
that is not in the target set when
padding is applied, under different
thresholds, where the target set is a

subset of the full keyword universe, for
the adopted Binomial-attack.
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