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Abstract

The use of zero-knowledge Succinct Non-Interactive Arguments of Knowledge (zk-SNARK) and
similar types of proofs has become increasingly popular as a solution for improving scalability,
privacy, and interoperability of blockchain systems. However, even with the most advanced
proving systems, verifying a single SNARK proof can require a significant amount of compu-
tational resources making it expensive to be performed on-chain. This becomes a noticeable
bottleneck in scaling SNARK-based applications.

Further efficiency improvement to avoid this bottleneck lies in utilizing distributed recursive
proof composition to aggregate multiple existing proofs into one that verifies all underlying
proofs.

Building upon this concept, we present a new protocol for decentralized recursive proof
aggregation allowing one unique proof to aggregate many input proofs to be efficiently verified
on-chain, increasing the throughput and cost efficiency of SNARK-based blockchains. The
protocol is designed for decentralized environments where independent actors (provers) can join
and contribute to the proof generation process. We also present an incentive scheme for such
actors. The protocol is abstract enough to be used with a variety of proving systems that
support recursive aggregation.
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1 Introduction

In recent years, the utilization of zk-SNARKS[7, 10, 21, 12] and STARKs[6, 26] has witnessed
a significant upsurge across various domains. These innovative methods have addressed critical
challenges and unlocked new possibilities for enhancing privacy, scalability, and interoperability
in the realm of blockchain technology and beyond.

One notable application is the implementation of zk-EVM rollups[4, 33, 25, 2], which leverage
zero-knowledge proofs to facilitate scalability. By compressing transaction data while retaining
its validity, zk-EVM rollups enhance efficiency without compromising security. Another applica-
tion is the SNARK-based sidechains[16, 17] and bridges[31] that enable seamless communication
between disparate blockchain networks, fostering secure and trustless interoperability. Succinct
blockchains with fully proven state also heavily rely on SNARKs[14, 9]. In addition to that,
SNARKs can play a crucial role in enabling use cases where user data privacy is required while
engaging in decentralized applications[3, 1].

Furthermore, the fusion of zero-knowledge principles with Artificial Intelligence (AI) holds
immense potential. It allows AI models to be employed without the need for on-chain execution.
Instead, only the verification of the executed result occurs on-chain, reducing computational
overhead while maintaining the integrity of the AI processes.
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As regulatory compliance becomes increasingly important, digital identity will become es-
sential in many use cases. Zero-knowledge proofs will be key in maintaining a balance between
privacy and meeting new regulatory standards.

Given these developments, it is clear that blockchain networks must accommodate an ever-
increasing volume of transactions reliant on zero-knowledge proofs. The throughput of these
networks will be heavily influenced by their efficiency to verify proofs at scale. However, the
verification of a single zero-knowledge proof, even utilizing the most efficient proving systems,
can consume a substantial portion of the computational budget for verifying the entire block,
and it might exceed the computational limit for individual transaction verification [28, 29].

This situation is further exacerbated when a specific use case requires the usage of proving
systems with efficient proof aggregation that generally are much less efficient in verification
speed and proof size. For instance, consider ZK rollups, such as those employing zkEVM with
STARKs[25] or sidechain bridges with fully proven states[17]. In these scenarios, achieving
verification performance suitable for the target blockchain requires converting the proof by
performing so-called proof wrapping. This process can take several hours, hindering many
use cases. The situation becomes even worse considering the need to support many ZK-based
applications such as rollups, cross-chain bridges, privacy preserving transactions, etc.

An approach that can address these challenges consists of constructing a system that lever-
ages the advantages of efficient recursive proof composition[11, 14, 9]. Recursive proof com-
position involves creating new proofs that encapsulate and verify multiple existing proofs. By
aggregating the proofs, it’s possible to substantially reduce the verification cost and improve
the scalability of a blockchain system supporting ZK-enabled transactions. The recursive ap-
proach can optimize the verification process and mitigate the issues introduced by expensive
proof wrappings mentioned previously.

Building upon this concept, we present a scalable and robust protocol for decentralized
recursive proof aggregation. It allows one unique proof aggregating many proofs for different
transactions. The transactions can be totally unrelated (e.g., some transactions can use ZK for
protecting user data privacy, some for compliance purposes, and others using ZK to validate a
zk-rollup state update) and may even utilize different proving systems. The resulting proof could
be verified more efficiently having a constant verification time independent from the number of
aggregated proofs. This would not only enhance the scalability and efficiency of a blockchain
system but also make it more feasible for use cases that require low latency, removing the need
for expensive proof wrappings.

Such a protocol can be implemented as a service on top of an existing blockchain system.
It is designed to work in a decentralized environment where independent actors (provers) can
join and contribute to the recursive proof generation process. The protocol is designed to create
competition between provers in order to incentivize fair cost of proof generation. As the proof
aggregation process requires the creation and dissemination of many intermediate proofs, we also
discuss how to avoid expensive proof verification during broadcasting, which further improves
the efficiency of the aggregation process.

1.1 Related Work

A lot of research effort has been devoted to the problem of improving the efficiency of prov-
ing systems. Active use of SNARKs and STARKs in blockchain systems continues to attract
attention to this field. The main improvement directions are:

1. Developing more efficient proving systems [27, 21, 6, 13, 22, 30].

2. Distributing generation of a single proof [15, 23].
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3. Aggregation of several proofs for efficient verification[14, 32, 8].

Here we briefly discuss some of the relevant works.
[15] focuses on distributing the generation of a single SNARK proof by secret-sharing the

witness and utilizing multi-party computation protocols to distribute proof generation. Con-
trary, we are focusing not on distributing the computational work of generating a particular
proof but on distributing the recursive aggregation of many ZK proofs so that each server will
work on its own proof. The framework presented in [15] can complement our work by helping
generate base proofs that are aggregated using our protocol.

Mina [14, 9] introduced the notion of a succinct blockchain relying on recursive SNARKs to
prove state transitions. Mina’s approach to decentralized proof generation shares a few aspects
with the goal we want to achieve. The main difference is that Mina produces aggregated proofs
for proving state transitions and this implies coordinating the aggregation based on a predefined
order of transactions. On the contrary, our objective is to aggregate independent proofs created
by users or external systems. The absence of dependencies enables certain design possibilities
for the protocol.

[32, 8] rigorously analyzes decentralized proof creation in the context of proving state tran-
sitions in sidechains. As with Mina, the main difference with our work is that we consider
independent proofs while proving state transitions introduces dependency among aggregated
proofs.

2 Preliminaries

Throughout the paper, whenever we use the term “proof” or “ZK proof” we essentially mean
Succinct Non-Interactive Argument of Knowledge (SNARK). However, the presented algorithms
and protocols are generic enough to be used with other similar proving systems, such as STARKs.

In what follows we introduce some relevant definitions and notations.

Definition 2.1. Collision-Resistant Hash Function (CRH). A hash functionH is collision-
resistant if the probability of finding two different input strings a and b such that H(a) = H(b)
is negligible (a more formal definition can be found, e.g., in [18]).

Whenever we refer to a hash function, we suppose it is collision-resistant.

Definition 2.2. Strict Binary Tree (SBT). A strict binary tree is a tree in which every
node is either a leaf or has exactly two children (left and right) (see Fig. 1).

Figure 1: Examples of strict binary trees.

Any mention of a binary tree assumes a strict binary tree.
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Definition 2.3. Merkle Hash Tree (MHT). The Merkle Hash Tree, or simply Merkle Tree
(MT), is a strict binary tree where the value of an internal node is computed as the hash of
values of its children, and the value of a leaf node is the direct hash of a data block represented
by this leaf (see Fig. 2) [24].

h1

h31 h32 h33 h34

h41 h42

data1

h43 h44 h45 h46 h47 h48

h21 h22

h41= H(data1)

data5 data7

h1= H(h21 | h22)

h21= H(h31 | h32) h22= H(h33 | h34)

data2 data3 data4 data6 data8

Figure 2: Merkle Hash Tree.

We call the top-level node (h1 in Fig. 2) the root hash of the MHT. Given that a collision-
resistant hash function is used to calculate tree nodes, we can consider root hash as a tree
authenticator: it is impossible to tamper even a single bit of data in the tree without also
changing the root hash.

An important feature of the Merkle tree structure is that it produces a concise proof of a
particular data block’s membership in a tree with the particular root hash. E.g., if one wants to
prove that data4 (Fig. 2) is included in the MHT tree with the root hash h1, they just need to
provide a verifier with the data block along with a tuple of internal nodes (h43, h31, h22) that will
allow recalculating the tree root and comparing it to the provided root h1. We call it Merkle
proof.

Definition 2.4. Succinct Non-Interactive Argument of Knowledge (SNARK).
A SNARK is a proving system consisting of a triplet of algorithms (Setup, Prove, Verify) that
allows proving satisfiability of a set of inputs to an arithmetic constraint system. An arithmetic
constraint system C is a set of constraints for a specific computation. We indicate a satisfying
assignment as C(a,w), where a is a public input and w is a witness (see, e.g., [30] for more
formal definition).

The algorithms (Setup, Prove, V erify) are defined such that

1. (pk, vk)← Setup(C, 1λ) bootstraps SNARK for a constraint system C under security
parameter λ. The bootstrapped SNARK is specified by a pair of keys (pk, vk) which
are a proving key and a verification key correspondingly.

2. π ← Prove(pk, a, w) evaluates a proof π, which confirms that (a,w) is a satisfying
assignment for C.

3. true/false← V erify(vk, a, π) verifies that π is a valid proof attesting to the satisfying
assignment (a,w) for the constraint system C.

Algorithms (Setup, Prove, V erify) satisfy the following properties:

1. Completeness. For any constraint system C and (a,w), if π ← Prove(pk, a, w) is a
valid proof, then V erify(vk, a, π) is always true.
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2. Knowledge soundness. If a pair (a,w) is not a satisfying assignment for C, then
the probability of obtaining π such that V erify(vk, a, π) = true is negligible.

3. Succinctness. For every constraint system C bootstrapped with (pk, vk) and every
a ∈ F r, the size of a proof and verification time is polynomial in λ.

Definition 2.5. Recursive proof aggregation. Let assume we have two independent
SNARK proofs represented by tuples p1 := (vkA, (aA1 , π

A
1 )) and p2 := (vkB , (aB2 , π

B
2 )), where

vkA and vkB are verification keys of some arbitrary SNARK systems A and B, and pairs
(aA1 , π

A
1 ) and (aB2 , π

B
2 ) are concrete public inputs and proof evaluations for them. The recursive

proof aggregation is realized by a special Merge SNARK that proves the following statement:
“given verification keys vkA and vkB and public inputs aA1 and aB2 , there exist (πA

1 , π
B
2 ) such

that V erify(vkA, aA1 , π
A
1 ) and V erify(vkB , aB2 , π

B
2 ) evaluates to true”.

The algorithms (Setup, Prove, V erify) for the MergeSNARK are defined as follows:

1. (pkMerge, vkMerge) ← Setup(CMerge, 1
λ), where CMerge implements verification of

aggregated proofs.

2. πMerge ← Prove(pkMerge, aMerge, wMerge), where

– public input aMerge commits to public inputs aA1 , a
B
2 and verification keys vkA, vkB

of the aggregated proofs,

– witness wMerge contains aggregated proofs p1 and p2.

3. true/false← V erify(vkMerge, aMerge, πMerge) attests the statement defined above.

Note that the public input aMerge and witness wMerge may contain some additional information
not related to the aggregated proofs.

By applying the MergeSNARK recursively not only to some arbitrary input proofs, but
also to Merge proofs themselves, it is possible to construct a single SNARK proof that attests
to many base input proofs.

Note that the terms “aggregated proof” and “merged proof” are used interchangeably through-
out the paper.

The notation pi is used to denote some abstract proof when the concrete details are not impor-
tant. pbase

i denotes some base input proof that is to be aggregated. pagg
i:j denotes an aggregated

proof obtained using Merge SNARK, where i : j identifies the range of aggregated base proofs
(e.g., pagg

1:4 denotes an aggregated proof that verifies 4 input proofs pbase
1 ,pbase

2 ,pbase
3 ,pbase

4 .
p{base,agg} denotes either base or aggregated proof. We omit subscript indices if it is not im-

portant. The notation pagg
n:m ← merge(p

{base,agg}
n:j ,p

{base,agg}
j+1:m ) denotes that the proof pagg

n:m

merges two proofs p
{base,agg}
n:j and p

{base,agg}
j+1:m using the Merge SNARK. In general, the aggre-

gated base proof indices are not necessarily continuous, so we may also use notation pagg
x,y ←

merge(p
{base,agg}
x ,p

{base,agg}
y ), where x, y can be anything (e.g., ranges, or sequences of values,

or singles).
The aggregated proofs can be represented as strict binary trees where leaves are base input

proofs and all intermediate nodes are themselves aggregated proofs (see example in Fig. 6).
We define the weight w(pi) of the proof pi as the number of base proofs aggregated by it

(i.e., the number of leaves in its tree representation). By convention, the weight of a base proof
equals one: w(pbase

i ) = 1.
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3 The General Scheme

In the proposed design, we introduce aggregation as a service, where a user delegates the task
of aggregating a ZK proof for his transaction along with other proofs submitted by other users.
The result of such aggregation is going to be submitted on-chain on a regular basis, eliminating
the need to directly include the original users’ proofs.

The aggregation service consists of on-chain and off-chain components. The off-chain com-
ponent primarily manages the aggregation process: it handles user requests and continuously
schedules proofs merging. The on-chain component manages submission and verification of the
aggregated proof, charges users and pays out rewards for the aggregation work done by provers
and other involved actors.

The basic flow is shown in Fig. 3. In order to participate in the protocol, all actors (e.g.,
provers) should be registered on-chain. The on-chain component can be implemented, for in-
stance, as a smart contract, or integrated natively in the consensus protocol of a blockchain
system.

In order to describe the flow, let’s take as an example an on-chain application that leverages
ZK proofs to protect users’ data privacy. In such a scenario, in order to interact with the
application, a user should provide a ZK proof along with the transaction. In our model, the
user instead of directly submitting the transaction with the proof, will first submit an off-chain
request to aggregate it. When the aggregation is done, the final aggregated proof is submitted
on-chain. At this point the user will be automatically charged for the successful aggregation
work and will be able to submit his transaction on-chain referring to the aggregated proof instead
of including the initial base proof directly. This process can be made totally transparent to the
user by implementing a well-designed user interface.

Off-chain component

On-chain component

1. User 
aggregation 
request

 
2. Aggregation 
process

 
3. Aggregated 
proof 
submission

 
4. User 
account 
charged

 
5. User 
transaction 
submission

 
6. Prover 
reward 
withdrawal

Aggregated 
proof

User 
transaction

Refers

Figure 3: Basic flow of the aggregation service.

This section focuses mostly on the aggregation process defining the necessary protocols. The
next section will provide details on how this can be realized in a blockchain setting. We identify
the following core elements of the recursive proof aggregation:

1. Merging protocol. It defines the strategy for building the aggregation proof tree. There
can be many strategies, our goal is to define the optimal one which provides the best
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throughput, resilience to malicious actions, and balanced utilization of the blockchain for
submissions.

2. Incentives protocol. It defines the incentives system for the involved actors (e.g.,
provers) such that it facilitates honest and cost-optimized execution of the merging pro-
tocol.

3.1 Model

We identify the following actors participating in the proof aggregation:

1. Submitters. They submit final aggregated proofs on-chain. From the merging protocol
perspective their task is to pick up an aggregated proof and include it into a block or
submit to the smart contract (depending on the implementation).

2. Schedulers. Special entities that coordinate the proof aggregation process. Specifically,
their task is to maintain a sequence of proofs and provide a schedule defining who, how,
and when make the computational work of merging proofs.

3. Provers. The actual workers who perform the task of merging proofs according to the
schedule provided by schedulers.

4. Users. Users submit requests for the ZK proofs they want to be aggregated. When
the corresponding ZK proof is aggregated and submitted on-chain, the user can submit a
transaction referring to the aggregated proof.

Let proof submitters, schedulers, and provers be represented by the corresponding sets B, S,
and P. Let NB = |B|, NS = |S|, and NP = |P| be, correspondingly, the number of submitters,
schedulers, and provers in the system. We assume that the honest majority assumption holds
for the sets of proof submitters and schedulers.

Let Qzkp = (pi)i≥1 be a sequence of ZK proofs to be aggregated. It consists of both newly
requested base proofs and already merged proofs that have not been submitted on-chain and
wait for further aggregation.

The main goal of the protocol is to merge many base proofs pbase
i so that they can be in-

cluded and verified on-chain as part of a single aggregated proof pagg
i:j . We assume that sets B,

S, and P constitute a global state, so that all actors in the system have a consistent view of
them. On the other hand, each actor has its own view of Qzkp (it is never committed on-chain).
We denote the local state of party p as Qp

zkp. In many cases there will be no difference in local
views Qzkp of different parties, so we will not explicitly differentiate them.

The protocol operates in the environment where time is divided into slots sli of constant dura-
tion. The time of the slots is synchronized among all actors.

We assume a model where messages are delivered to all network participants by the end of
the slot where they have been issued. E.g., if a proof pagg

1:2 ← merge(p1,p2) has been scheduled
and produced in slot sl0, then all actors will receive pagg

1:2 until the end of sl0.
Every slot sli is assigned with a single proof scheduler si ∈ S. Moreover, all slots are grouped

into submission epochs of length L (L is a system parameter). Every submission epoch Ei is
assigned with a single submitter sbk ∈ B. The slot sli belongs to the epoch Ej iff j = ⌊ i

L⌋ (see
Fig. 4).

Note that the exact assignment protocol is out of scope for this research and depends on the
particular platform where the aggregation service is implemented. We formalize the assignment
procedure through the functions scheduler : N → S and submitter : N → B which, given a slot
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sl0
s1

sl1
s3

sl2
s7

sl3
s5

sl4
s7

sl5
s11

sl6
s12

sl7
s15

sl8
s3

sl9
s4

sl10
s9

sl11
s8

sl12
s13

sl13
s10

sl14
s1

sl15
s2

Submission epoch  E0
Submitter sb1

Submission epoch  E1
Submitter sb2

Slot

Scheduler

Figure 4: Example of slots and submission epochs. There are two epochs of length L = 8.
Submitters sb1 and sb2 are assigned to epochs E0 and E1 correspondingly. Moreover, every slot
is assigned with a single scheduler.

or epoch, returns correspondingly the scheduler si assigned to the slot or submitter sbi assigned
to the epoch (e.g., in Fig. 4 scheduler(sl10) = s8, submitter(E1) = sb2).

We assume that at most one proof from Qzkp is extracted and submitted on-chain during
every submission epoch. The submitter is allowed (but not obliged) to submit on-chain exactly
one aggregated proof during his epoch. Note that for doing this the submission epochs should
be synchronized on-chain such that it is possible to explicitly define the submission period. For
instance, it can be done by attaching epoch boundaries to slots or blocks in the underlying
blockchain system. The exact mechanism is out of scope for this research and highly depends
on the blockchain system where the protocol will be implemented.

Every slot the following actions are performed:

1. A proof scheduler assigned for slot sli issues a schedule schi at the beginning of the slot.
The schedule defines which provers should merge what ZK proofs.

2. A prover prk ∈ P, if assigned to merge two proofs pi and pj , does it and disseminates the
resulting merged proof pagg

i,j ← merge(pi,pj) to other network participants.

We assume that dissemination of the schedule and merged proofs are done within a single slot.

Every submission epoch Ee the following action is performed:

• The submitter of epoch Ee takes one aggregated proof, scheduled by some schi ∈ Ee, and
submits it on-chain.

Without loss of generality, let’s assume that schedulers do it at a particular slot during their
epoch. For instance, the aggregated proof is picked up from Qzkp and submitted on-chain in
the last slot of the epoch. Then, the submission cadence will be strictly csubm = L slots. We
will call such a slot a submission slot.

3.2 Merging Protocol

In this section we put aside the schedulers and discuss what will be the most efficient strategy
to build an aggregated proof. We define efficiency by two metrics:

• the average number of ZK proofs that can be aggregated and submitted on-chain per unit
of time,

• balanced distribution of the number of base proofs aggregated by submitted proofs.

Let’s define the following theorem which will help us to select an efficient merging protocol.
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Theorem 1. Given a set of provers P, aggregated proof submission period csubm = L (in slots),
and assuming a prover can generate only one proof per slot, the maximal average number of base
proofs that can be aggregated by submitted proofs is |P| · csubm + 1.

Proof (sketch). Any merging strategy assumes building some aggregated proof which can be
represented as a strict binary tree where internal nodes are merged proofs and leaves are base
proofs. A strict binary tree with Nl leaves contains 2Nl − 1 total nodes of which Nl − 1 are
non-leaf nodes representing merged proofs. So, independently of the strategy used to build the
tree, it requires Nl − 1 mergings to aggregate Nl base proofs.

Given |P| provers and csubm slots per submission, the overall computational capacity of
provers is |P| · csubm proofs per submission, thus the maximal average number of base proofs
that can be aggregated per submission is |P| · csubm + 1.

Now let’s define a concrete merging protocol.

Algorithm 1: Merging Protocol

Definitions:
– Qzkp is a sequence of elements indexed from 1 (i.e., Qzkp[1] is a head element)

– px ← remove(Qzkp, j) removes j’s element from the sequence Qzkp and stores it in the
variable px

– insert(Qzkp, j)← px inserts proof px at position j in Qzkp

Initialization:

Qzkp = [pbase
1 ,pbase

2 ,pbase
3 , ...]− initial infinite sequence of base proofs

P = {pr1, pr2, ..., prk} − fixed set of provers

for every slot sli do

if sli is a proof submission slot then

p{base,agg} ← remove(Qzkp, 1) // remove head element from Qzkp

Submit p{base,agg} on-chain as an aggregated proof

for j ← 1 to |P| do
px ← remove(Qzkp, j)

py ← remove(Qzkp, j + 1)

pagg
x,y ← mergeprj (px,py) // designated pair of proofs for every prover prj

insert(Qzkp, j)← pagg
x,y

The example execution is represented in Fig. 5. It shows how the sequence Qzkp evolves as
slots pass. Fig. 6 represents binary trees of merged proofs that are submitted on-chain.

The described algorithm defines the merging strategy. Note that it is not adopted to work
in a decentralized environment yet. Later we will see how to turn this protocol to work in a
decentralized setting with help of schedulers. For now our goal is to analyze whether it satisfies
necessary efficiency properties.

Lemma 2. The protocol described by Algorithm 1 provides throughput of |P|·csubm+1 aggregated
base proofs per one submitted on-chain proof.
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Figure 5: Merging protocol execution example in a setting with |P| = 4 provers and csubm =
L = 2 aggregation submission cadence.
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at slots 2,4, and 6.
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Proof (sketch). After the warm-up period the submitted aggregated proofs will always represent
strict binary trees with a certain repeated structure containing |P| · csubm+1 leaves. Given that
|P| ·csubm+1 per proof is a maximal achievable aggregation throughput due to Theorem 1, thus
Algorithm 1 is optimal. The detailed analyses of proof trees generation has been done in [32].
We refer an interested reader to Section 4 in [32] which analyses a similar merging protocol.

Now let’s see how to turn Algorithm 1 to work in a decentralized environment.

3.3 Decentralized Merging Protocol

Algorithm 1 defines a merging protocol. But it is not adopted for the decentralized environment:
it does not address how provers are assigned to work on proofs from Qzkp and how they are
incentivized.

We address these issues in the following way:

1. The aggregation process is coordinated by schedulers which assign provers to merge
particular proofs according to their local views Qsi

zkp. At the beginning of each slot an
assigned scheduler issues a schedule and shares it with all network participants.

2. The newly generated aggregated proofs are then propagated through the network till the
end of the slot where the schedule appeared. Every scheduler and prover update their
local views of Qzkp with newly generated proofs.

3. Every submission epoch, an assigned submitter extracts one proof from his local Qsbi
zkp and

submits it on-chain.

Note that under the assumption of messages dissemination till the end of the slot, all partic-
ipants should have the same view of Qzkp. In what follows we may omit referring to local views
Qsi

zkp of particular parties and instead refer to Qzkp assuming local views are consistent.
As we will see later in more details, we can also assume that schedulers do not need to

know when and what proof from Qzkp is going to be submitted on-chain, so they can continue
scheduling proofs aggregation without having to coordinate with the submission process. More-
over, as we will see in Section 3.4, both schedulers and provers are incentivized to aggregate
further also the proofs that might already be included on-chain. This means that the submitted
aggregated proofs might partially overlap in terms of base input proofs they aggregate. For
now, we just assume that the on-chain aggregation service logic handles this by disabling the
overlapped subtree. We will discuss it in more detail in the following sections.

Now let’s define the decentralized version of the merging protocol more formally. We start
by defining a schedule:

schn := (se1, se2, ..., sem),

which is a sequence of schedule entries sei that assign a particular prover prj ∈ P to merge 2
proofs px and py from Qzkp:

sei := (prj , (px,py)).

Then the decentralized merging protocol is defined by Algorithm 2.
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Algorithm 2: Decentralized Merging Protocol

Definitions:
– scheduler : N → S – an assignment procedure such that for every slot sli there is a
single scheduler sj ← scheduler(sli)

– submitter : N → B – an assignment procedure such that for every submission epoch Ei

there is a single submitter sbj ← submitter(Ei)

Initialization:

Qzkp = [pbase
1 ,pbase

2 , ...,pbase
p ]− initial sequence of base proofs

P = {pr1, pr2, ..., prk} − fixed set of provers

S = {s1, s2, ..., sc} − fixed set of schedulers

B = {sb1, sb2, ..., sbb} − fixed set of submitters

for every slot sli every scheduler sj ∈ S do

if sj = scheduler(sli) is an assigned scheduler for sli then
At the beginning of the slot, sj issues a schi := (se1, se2, ..., sem), assigning, at

his discretiona, the provers from P to the pairs of proofs from Q
sj
zkp. The pairs of

proofs for merging are selected as in Algorithm 1.

for every slot sli every submitter sbj ∈ B do
if sli ∈ Ek such that sbj = submitter(Ek) and sli is a proof submission slot for sbj

then

sbj takes the head proof from Q
sbj
zkp and submits it on-chain

for every slot sli every prover prj ∈ P do
prj observes schi created by sj = scheduler(sli)

if there is sen ∈ schi such that sen = (prj , (px,py)) then
prj computes pagg

x,y ← merge(px,py) and broadcasts pagg
x,y to the network

for every slot sli every actor p ∈ {S ∪P ∪B} do
Observe the network and update its local view Qp

zkp as follows:

if there is a new valid proof pagg
x,y ̸∈ Qp

zkp that has been generated by prj according to

some sen = (prj , (px,py)) ∈ schi then

Remove px and py from Qp
zkp and insert pagg

x,y

if there is a new valid proof pbase
v ̸∈ Qp

zkp that has been requested for aggregation

then

Insert pbase
v in Qp

zkp

aIt may be based on the prover cost and other observed factors

Example in Fig. 7 shows how the proofs are merged and how the sequence Qzkp evolves
as slots pass. Every slot has its own assigned scheduler which issues a schedule according to
his local view Qsi

zkp. The submission epoch length is L = 2, so that every second slot the
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assigned submitter takes one aggregated proof and submits it on-chain. Note that submitted
proofs continue being aggregated so that schedulers do not have to observe the chain to avoid
aggregation of proofs already appeared on-chain. This is an important feature as it keeps two
processes of scheduling and submitting completely independent.
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Figure 7: Example of the decentralized merging protocol execution in a setting with |P| = 4
provers and csubm = L = 2 submission cadence. The proofs are aggregated independently
whether they are submitted or not.

Fig. 8 continues the example on Fig. 7 and shows the binary tree representing the aggregated
proof pagg

1:16 that has been submitted on-chain at slot sl6. As seen, the subtree of the proofs with
the root pagg

1:8 (in red) has already been submitted on-chain at slot sl4. It means that pagg
1:16 will

validate only base input proofs (pbase
i )9≤i≤16 while the subtree under pagg

1:8 is disabled.
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Figure 8: Aggregation tree of the proof pagg
1:16 from example on Fig. 7.

As can be seen, Algorithm 2 differs from Algorithm 1 in one important aspect: it also
aggregates proofs that have already been submitted on-chain. We argue that it will have a little
impact on the throughput compared to Algorithm 1 (detailed analyses can be found in [32]).

Note that Algorithm 2 does not impose strict rules on what proofs from Qzkp should be
picked up for merging and to which provers they should be assigned. The schedulers do it on
their own discretion. But we would like the aggregation process to follow the protocol described
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in Algorithm 1, which has been shown efficient. This implies that schedulers should prioritize
proofs with higher weight. Enforcing required behavior at the consensus level is challenging and
inefficient, thus, we rely on the incentive scheme to encourage schedulers to follow the merging
strategy defined by Algorithm 1. In such a way, the aggregation process will produce a structure
where at each slot, a subtree of constant size will be merged to an existing tree of proofs (see
example in Fig. 9).

sl2

sl3

sl4

sl5

sl6

sl7

sl1

sl8

Figure 9: Example of the aggregation process in the case of 2 provers. The submission cadence
is every second slot, the black left arrow denotes the proof being submitted on-chain. Dotted
circles represent base input proofs obtained from users. Solid circles represent aggregated proofs.

Regarding the selection of provers, we assume that schedulers do it on their own discretion
(for instance, the most cost efficient and reliable provers are selected). The following section
describes an incentive scheme adjusted to encourage the desired behavior.

3.4 Incentives Protocol

The protocol from Section 3.2 defines the set of actors and merging strategy that provides
maximal throughput. The crucial component to realize this protocol is how to incentivize
actors to follow the merging strategy.

We assume that the only incentive to participate in the protocol is the direct fees collected
from users wanting their base proofs being aggregated. Thus, we need a protocol on how to
distribute the fees collected from users.

An important observation here is that the number of proofs that is generated during the
aggregation process is approximately the same as the number of initial base proofs (e.g., see
example in Fig. 6), but their “importance” is different. Moreover, we need to incentivize not
only provers, who do the actual job, but also schedulers, who coordinate provers, and submitters,
who submit the final aggregated proof on-chain.

We assume that every request for aggregation pays a self-set aggregation fee feeagg(p
base
i ).

Moreover, we define feeagg(p
agg) for the aggregated proofs as a remaining fee after deducting the

cost required to produce pagg. These remaining fees provide incentives for further aggregation.
We also assume that prover cost cost(prk) (the payment for which a prover is willing to do

a computational job) is constant and specified upon prover registration in the system1.

1Of course nothing prevents from implementing a flexible update mechanism, but the point is that proving
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Then, the distribution of fees is done according to the following rules:

Fee distribution rules

1. Every two proofs px and py that are scheduled in slot sli by scheduler sj to be
recursively merged into a single proof pagg

x,y by a prover prk collectively possess
feetotal(p

agg
x,y ) = feeagg(px) + feeagg(py)

2. feetotal is splitted into 3 parts defined by system parameters CUR, INC,AGG ∈
(0, 1) such that AGG ≥ 0.5 and CUR+ INC +AGG = 1:

(a) feecur(p
agg
x,y ) = CUR ·feetotal(pagg

x,y ) is paid to the to the scheduler and prover
at the current level for generating pagg

x,y , it is divided as follows:

i. Prover reward: rprk(p
agg
x,y ) = cost(prk) ≤ feecur(p

agg
x,y ) (the prover cost

cannot be larger than the amount of fees available for this proof).

ii. Scheduler reward: rsi(p
agg
x,y ) = feecur(p

agg
x,y )− rprk(p

agg
x,y ).

(b) feeinc(p
agg
x,y ) = INC · feetotal(pagg

x,y ) is reserved for the inclusion of the final
aggregated proof on-chain.

(c) feeagg(p
agg
x,y ) = AGG · feetotal(pagg

x,y ) is reserved for further aggregation (i.e.,
it becomes the fee of pagg

x,y at the next level of recursion).

3. System parameters CUR, INC,AGG can be defined differently depending on the
required properties.

Example in Fig. 10 represents distribution of fees while aggregating 8 base proofs. The
system parameters CUR, INC,AGG are set such that at each level 40% is paid to the scheduler
and prover, 5% is reserved for the submitter, and 55% always goes to the next level to pay for
further aggregation.

3.4.1 Inclusion fee

The inclusion fee is paid to the submitter of the aggregated proof (we also call it submitter’s
reward), it should at least compensate for the transaction fee on the target blockchain system.
The inclusion fees from all the proofs constituting the submitted aggregated proof, except those
which have already been submitted, are summed up and paid to the submitter:

rsbk(p
agg
x ) =

∑
pagg

y ∈V

feeinc(p
agg
y ), (1)

where pagg
x is the submitted proof and set V contains all underlying aggregated proofs that has

not been submitted yet:

V = {pagg
y | pagg

y ⊆ pagg
x AND pagg

y has not been submitted previoiusly}.

Considering example on Fig. 10 let assume that proofs pagg
1:4 and pagg

1:8 has been submitted
on chain by sb1 and sb2 correspondingly. Then, the reward of sb1 is the sum of inclusion fees
constituting pagg

1:4 (marked with red) and reward of sb2 is the sum of inclusion fees constituting
pagg
1:8 except those underlying pagg

1:4 (marked with green):

rsb1(p
agg
1:4 ) = feeinc(p

agg
1:4 ) + feeinc(p

agg
1:2 ) + feeinc(p

agg
3:4 ) = 31,

costs of different provers should be known before the work is scheduled, so that schedulers can decide which
provers to choose based on this information
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Figure 10: Example of fees distribution assuming the setup CUR = 0.4, INC = 0.05, AGG =
0.55. The inclusion fees from red proofs will be paid to the submitter of pagg

1:4 , while inclusion
fees from green proofs will be paid to the submitter of pagg

1:8 .

rsb2(p
agg
1:8 ) = feeinc(p

agg
1:8 ) + feeinc(p

agg
5:8 ) + feeinc(p

agg
5:6 ) + feeinc(p

agg
7:8 ) = 37.54,

The basic idea behind accumulating inclusion fees is that it can accommodate the changing
on-chain fees. The submitter may choose to skip submission if inclusion fees do not cover his
expenses, in this case the aggregation would keep going and inclusion fees would accumulate
until there is enough to be submitted on-chain.

3.4.2 Aggregation fee

Note that AGG > 0.5 provides us an important feature: the fee paid for merging proofs grows
with the weight of the proofs being merged (though, it has an upper bound dependent on the
AGG parameter). This creates an incentive for the schedulers to prioritize proofs with larger
weight facilitating the merging strategy specified by Algorithm 1.

4 Aggregation as a Service

As discussed earlier, aggregation is a service, where a client delegates the task of aggregating a
ZK proof for its transaction with proofs submitted by other users thus eliminating the need to
include it directly alongside the actual transaction.

So far in Section 3 we established the core elements of the aggregation process. Even though
it is designed to work in a decentralized network, it does not address possible malicious behavior
of different actors.

This section establishes additional elements required to make the aggregation process secure
and reliable in the environment with malicious actors. We also discuss some technical aspects
of the recursive proof aggregation in more detail.
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4.1 Functional and Security Requirements

The aggregation service must satisfy the following requirements:

1. Non-repudiation of aggregation requests. Once a user requested aggregation and the
off-chain component did the work which ended up in the on-chain submission, the user is
obliged to pay for this work. This is an important requirement given that the request and
aggregation process are performed off-chain. As we cannot enforce payments off-chain, we
have to make sure that the user will eventually pay once the aggregation is done. The
violation of this requirement would provide a possibility to overwhelm the service with
many junk requests wasting resources and disrupting normal operation.

2. Guarantee of rewards. The provers and schedulers should be guaranteed to receive
their rewards for the aggregation job once the aggregated proof is submitted on-chain.
Such guarantee should not rely on trust to any specific party.

We satisfy these requirements by utilizing the capabilities of recursive ZK proofs. In a
nutshell, the idea is to embed the information about user fees and rewards into the aggregation
process, such that the submitted aggregated proof, besides verifying underlying base proofs,
commits also to the fee and reward information.

The following subsections provide more details on how this can be achieved. Note that we
omit many details and in some cases the description may be simplified and incomplete. Our
goal is to describe basic principles of the aggregation service.

4.2 Details of Recursive Aggregation

In what follows we assume that the type of ZK proofs we are dealing with is SNARK (Succinct
Non-interactive Argument of Knowledge). Though, the protocol can also be applied to other
types of ZK proofs having similar properties (e.g., STARKs). The idea of recursive proofs has
been discussed, e.g., in [14, 9, 11, 16].

In a nutshell, we would like to define a SNARK that attests to several underlying SNARK
proofs provided by users. It can be done by applying proof composition techniques. Then we
will be able to construct a single SNARK proof that attests to many base proofs.

Definition 4.1. Recursive SNARKs for the aggregation service. We define recursive
SNARKs composition as a triple of SNARKs (Base,Merge, F inal) such that:

1. Base is a SNARK that wraps arbitrary user SNARK into a unified one that is suitable
for further aggregation with Merge SNARK.

2. Merge is a SNARK that merges two other SNARKs (either Base or Merge) proving the
validity of underlying proofs and additionally committing to the information about the
prover, the scheduler, and fees.

3. Final is a SNARK that wraps a Merge proof before its submission on-chain. The Merge
proof is not suitable for direct submission, so Final SNARK does final preparation and
adds additional information.

We detail each of them in the following subsections. In general, the Base SNARK is an
initial wrap made by a user, the Final SNARK is the final wrap made by a submitter, and the
Merge SNARK is the main aggregation mechanism used by provers and schedulers. Note that
the Merge SNARK is conceptually the one introduced by Definition 2.5 amended with some
additional logic related to fee management. Figure 11 represents different types of SNARKs
used in the aggregation process.
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Figure 11: SNARKs used in the aggregation process. B - Base SNARK, M - Merge SNARK,
F - Final SNARK.

4.2.1 Base SNARK

The Base SNARK is required to unify the representation of arbitrary user SNARKs, so users
have to wrap their proofs using Base SNARK before requesting aggregation.

Definition 4.2. Base SNARK for the aggregation service. The Base SNARK is defined
by a triplet (Setup, Prove, V erify) such that:

– (pkBase, vkBase)← Setup(1λ) bootstraps Base SNARK;

– πBase ← Prove(pkBase, aBase, wBase) where aBase is a public input that commits to user
information, paid fee, and arbitrary user SNARK. The witness wBase contains data re-
quired to verify user request;

– true/false← V erify(vkBase, aBase, πBase) verifies that Base is a valid proof attesting to
the validity of an arbitrary user proof.

To request aggregation a user provides a pair (aBase, πBase), where aBase = H(user info, au, vku)
is a public input which commits to user information user info = (pub key, fee, nonce) and an
arbitrary SNARK proof represented by a verification key vku and public input au.

The witness wBase = (πu, sig) contains the user SNARK proof and a signature of the
message m = H(fee, nonce, au, vku). πBase attests that true ← V erify(vku, au, πu) and that
the signature sig is valid.

4.2.2 Merge SNARK

The Merge SNARK underpins the recursive aggregation process. At each level the public input
commits to the information about the fees, the prover and scheduler, as well as information
about underlying levels.

Definition 4.3. Merge SNARK for the aggregation service. The Merge SNARK is
defined by a triplet (Setup, Prove, V erify) such that:
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– (pkMerge, vkMerge)← Setup(1λ) bootstraps Merge SNARK;

– πMerge ← Prove(pkMerge, aMerge, wMerge) evaluates proof πMerge confirming underlying
proofs πbm

1 and πbm
1 (πbm

{1,2} ∈ wMerge, bm ∈ {Base,Merge}) are valid and addition-
ally verifies information about the prover, scheduler, and fees committed in public input
aMerge;

– true/false← V erify(vkMerge, aMerge, πMerge) verifies that πMerge is a valid proof.

The public input aMerge is defined as follows:

aMerge def
= (H(aggr info), Pcom, Scom), (2)

aggr info
def
= (pkpr, feecur, H(schc), aggr info 1, aggr info 2),

where

pkpr − prover public key,
cost − prover registered cost of work,
feecur − current level aggregation fee,
H(schc) − schedule hash,
aggr info 1− aggr info of the 1st underlying Merge proof (or user info if it is a Base

proof),
aggr info 2− aggr info of the 2nd underlying Merge proof (or user info if it is a Base

proof),
Pcom − provers commitment (e.g., Merkle root hash of the prover’s list),
Scom − schedulers commitment (e.g., Merkle root hash of the scheduler’s list).

The Merge SNARK enforces the following rules:

Merge SNARK Statement

1. The proof has been generated by an assigned prover according to the valid schedule.

2. The two underlying proofs are valid:

true← V erify(vk{Merge,Base}, a1, π1),

true← V erify(vk{Merge,Base}, a2, π2),

where

ai = aMerge
i = (H(aggr info i), Pcom, Scom)− if πi is a Merge proof, or

ai = aBase
i = (H(aggr info i), au, vku) − if πi is a Base proof.

3. The current level aggregation fee is the sum of fees passed to the next level from
two underlying proofs (as defined in Section 3.4).

4. Schedule hash H(schc) represents a valid schedule, which has been issued by an
assigned scheduler.

Note that the aggr info argument of the public input basically constitutes a root of a Merkle
tree with leaves representing base proofs and each node containing additional metadata about
the aggregation process. So it commits to the whole aggregation process such that one can
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easily show that a certain node is present in the tree by providing a node and corresponding
Merkle path (e.g., a prover can easily show that he generated a certain proof and is entitled for
a reward for that).

4.2.3 Final SNARK

The Final SNARK is generated by a submitter, it wraps the Merge SNARK. Note that the Merge
SNARK represents an aggregated proof for many base proofs. As defined by Algorithm 2 in
Section 3.2, the base proofs are aggregated continuously so a certain subtree of the Merge proof
could have already been submitted. As previously described such subtree should be disabled
and this operation is done by the Final SNARK. The Final SNARK can also allow the usage
of another proving system that is more efficient for on-chain verification compared to the one
used in Merge SNARK.

Definition 4.4. Final SNARK for the aggregation service. The Final SNARK is defined
by a triplet (Setup, Prove, V erify) such that:

– (pkFinal, vkFinal)← Setup(1λ) bootstraps Final SNARK;

– πFinal ← Prove(pkFinal, aFinal, wFinal) evaluates a proof πFinal that confirms πMerge ∈
wFinal is valid and additionally verifies the submitter info and information about all vali-
dated base proofs committed in public input aFinal;

– true/false← V erify(vkFinal, aFinal, πFinal) verifies that πFinal is a valid proof.

The public input aFinal is defined as follows:

aFinal def
= (proven data[], disabled nodes[], H(aggr info final), Pcom, Scom, sb info), (3)

base data
def
= (au, vku, pub key, fee, nonce),

where

proven data[] − an array of base data entries containing information about the
aggregated base proofs (including information about the users who
requested aggregation and fees - it is the same information committed in
the corresponding aBase),

disabled nodes[] − an array of root nodes of the disabled subtrees,
aggr info final − a modified aggr info from the underlying Merge SNARK, where the

disabled nodes are nullified,
Pcom − provers commitment (e.g., Merkle root hash of the prover’s list),
Scom − schedulers commitment (e.g., Merkle root hash of the scheduler’s list),
sb info − information about the submitter.

The Final SNARK enforces the following rules:
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Final SNARK Statement

1. The proof has been submitted by an assigned submitter and there is a valid signature
sig ∈ wFinal made with the private key of the submitter on the message m =
H(proven data[], disabled nodes[], aggr info final, sb info).

2. The underlying Merge proof is valid:

true← V erify(vkMerge, aMerge, πMerge),

where aMerge = (aggr info, Pcom, Scom).

3. The aggr info final is exactly the same as aggr info except the nodes provided
in disabled nodes which are nullified.

4. The submitter fee is the sum of the inclusion fees of all nodes in the aggregation
tree except disabled.

5. proven data corresponds to actually aggregated base proofs excluding disabled ones.

The Final proof πFinal is part of a transaction that is submitted and verified on-chain along
with the public input aFinal. Pcom and Scom are provided by the on-chain verifier. Once the
Final proof is included on chain, the users, which proofs were aggregated, are charged with fees
stated in proven data.

Note that we omitted many details to ease explanation. What is most important is the
recursive accumulation of the fee information. Recall from the incentive scheme defined in
Section 3.4 that at each level of aggregation, the fees collected from the underlying proofs are
splitted among prover, scheduler, submitter, and next level fees. To be able later to provide
the rewards to the corresponding actors, the information is embedded into the aggregation
information. aggr info final is basically a hash commitment of this information.

4.3 Aggregation Requests and User Accounts

As discussed in Section 3, the aggregation request from a user is done off-chain and the aggrega-
tion work is performed before the user gets charged for it. The user will be charged only when
the transaction with the final aggregated proof is submitted on-chain. This creates a challenge:
how to ensure that users will eventually pay for their aggregation requests? If it is
not adequately addressed then the system will be vulnerable to the denial-of-service attacks.

We address this issue by introducing the following rules:

1. The aggregation service maintains an account for each user on-chain. The account must be
created and topped up by the user before any off-chain request is submitted. The balance
of accounts is controlled by the aggregation service, the user is not able to withdraw assets
freely from his account.

2. The transaction with the final aggregated proof is accepted on-chain if and only if corre-
sponding user accounts have enough balance to pay for every underlying base proof that
has been aggregated.

3. The schedulers and provers are incentivized to pick up for aggregation only those requests
that come from users with enough on-chain balance. Otherwise they might end up doing
work that will not be accepted by the on-chain component and they will not be rewarded.
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More formally, the aggregation service maintains an account user acc for every registered
user:

user acc
def
= (pub key, balance, nonce), (4)

where

pub key − public key of the user
balance − prepaid amount that has been transferred by the user to the aggregation service
nonce − user nonce that is increased with every aggregation request, it is needed to

prevent requests replay.

The aggregation request itself is a signed transaction disseminated off-chain:

user request
def
= (pub key, fee, nonce, au, vku, πBase), (5)

where

au, vku − public input and verification key of an arbitrary user SNARK that is being
aggregated

πBase − Base proof that verifies underlying user proof and user signature for the message
msg = H(fee, nonce, au, vku).

Upon receiving the request, a scheduler picks it up for processing if and only if there is
enough balance in the on-chain user account to pay fees stated in the request and the nonce
is higher than the one stored in the account. If there are several requests from the same user
being aggregated at the same time, the on-chain balance should be enough to cover all of them.

The prepaid user accounts satisfy an important functional requirement of our aggregation
service - non-repudiation of aggregation requests.

4.4 Aggregated Proof Submission

The aggregated proof can be submitted on-chain once per submission epoch. Each submission
epoch has an assigned submitter which can do this. The on-chain component must verify the
validity of the submitter.

The aggregated proof submission transaction has the following structure:

aggregated proof transaction
def
= (proven data[], disabled nodes[],

aggr info final, sb info, πFinal), (6)

where

proven data[] − an array of user request data entries which contain information about
the user and proof that has been aggregated:

user request data
def
= (pub key, fee, nonce, au, vku)

disabled nodes − an array of nodes representing the disabled subtrees in the aggregation
tree

aggr info final − a hash of the Merkle tree root of the aggregation info (as defined by [3])
sb info − information about the submitter (public key and submitter rewards)
πFinal − the final proof.
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On-chain aggregated proof transaction processing

Transaction Verification:

1. Verify that the submitter is a valid one for the current submission epoch.

2. Verify final proof: true← V erify(vkFinal, aFinal, πFinal), where

aFinal = (proven data[], disabled nodes[], aggr info final, Pcom, Scom, sb info).

Note that Pcom and Scom are provided directly by the on-chain verifier.

3. Verify disabled nodes[]: the entries must point only to the subtrees that have al-
ready been submitted on-chain and that have not been disabled before.

4. Verify for each user request data in proven data[] that the corresponding user has
enough balance in his on-chain account and that the account nonce is less than the
one from user request data.

If the transaction verification succeeds, the on-chain state is updated as fol-
lows:

1. For each user request data in proven data[] update the corresponding user account:

(a) Decrease the user balance by fee defined in user request data,

(b) Update the user nonce with nonce defined in user request data.

2. Transfer all collected user fees to the reward pool of the aggregation service.

3. Save aggr info final as a commitment of the aggregation process.

4.5 Rewards Withdrawal

The rewards are paid out from the collected fees that are kept by the aggregation service. The on-
chain component maintains a reward pool from which every prover and scheduler can withdraw
their rewards. Recall that every aggr proof transaction (see (6)) contains an aggr info final
which commits to the aggregation tree. Each node in the aggregation tree represents a Merge
proof and contains information about the prover, scheduler and corresponding fees (e.g., as in
Fig. 10). A prover/scheduler can create a withdrawal transaction providing a proof of his work.
The proof is basically a reference to a particular aggr info (2) value and corresponding Merkle
path.

Doing such a withdrawal for every generated proof or issued schedule will be very expensive
to process on-chain. Fortunately, we can rely on SNARKs to provide a single short proof for
many withdrawals.

Thus, the aggregation service implements an additional SNARK for withdrawals.

Definition 4.5. Reward withdrawal SNARK for the aggregation service.

We define the Reward SNARK such that:

– (pkRew, vkRew)← Setup(1λ) bootstraps Reward SNARK;

– πRew ← Prove(pkRew, aRew, wRew) where aRew is a public input containing the infor-
mation about the withdrawing actor (i.e., prover or scheduler), the reward sum, and an
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array of aggr info values which commits to the actor’s work. The witness wRew contains
corresponding Merkle paths and aggregation info needed for verification;

– true/false ← V erify(vkRew, aRew, πRew) verifies that πRew is a valid proof attesting to
the validity of the provided data.

Having such a SNARK it is possible to make many withdrawals within a single transaction.
Though, the on-chain logic should keep track of what has been already withdrawn by a particular
actor to prevent double withdrawal.

Note that here we omit a lot of details, providing just a general idea of how withdrawals can
be implemented.

The withdrawal mechanism satisfies one of the main functional requirements of our aggrega-
tion service - guarantee of rewards. If a prover/scheduler performed a work (e.g., generated
some intermediate proof during the aggregation process) that was submitted on-chain, he would
always have a possibility to get rewards for this work.

5 Further Scaling with Fast Proof Gossiping

Considering that the off-chain component of the aggregation service will rely on a trustless and
decentralized p2p network with similar characteristics of blockchain networks, the aggregation
protocol throughput will depend on computational complexity of the operations needed for
proofs broadcasting. More specifically, in order to protect the network against DDoS attacks,
proof broadcasting procedure requires that every node verifies each ZK proof before gossiping
it to its neighbors.

In order to further improve the protocol’s throughput, we propose an alternative approach for
the broadcasting verification process that removes the need for every node to verify each proof.
More specifically, we restrict the proof verification requirement only to the prover assigned to
merge that specific proof. In other words, proofs are broadcasted into the network without the
need to verify them, schedulers will assign the proofs to be merged to the selected provers and
only the provers will be required to verify the validity of the assigned proofs. This will signif-
icantly speed up broadcasting of proofs and, consequently, the throughput of the aggregation
service.

In order to prevent DDoS attacks, we need to make sure that an adversary cannot flood the
network with invalid proofs. To prevent this, we introduce a cryptographic proof of misbehavior.
Specifically, the cryptographic proof of misbehavior consists of a SNARK named ProofOfIn-
validProof, proving the invalidity of another proof given some public inputs and a verification
key. The main idea is to use such proof to prove the misbehavior and consequently charge
the attacker for the misbehavior proving costs in a trustless way. Such cost will be locked by
the user in the aggregation request and will be released once the aggregation proof proving the
validity/invalidity of the Base proof is included on-chain or after a timeout. Such cost will be
calculated applying a multiplier invalid proof fee mult (a system parameter) to the self set fee.
This system parameter will be calculated based on the ratio between the merge cost and the
proof of misbehavior cost.

In order to also improve gossiping of merged proofs but at the same time protecting the
system from malicious provers spreading invalid proofs through the network, the same protocol
can be applied to the merged proofs broadcasting. In this case each prover must have an
aggregation account and merge proofs, similarly to base proofs, will be shared through the
network along with the lock needed to cover the cost of invalid proof creation. In such a way the
system will be able to charge misbehaving provers but also leverage the fast gossiping protocol
for intermediate proofs.
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Going into more details, in order to charge only the actual misbehaving actors, it is important
to enforce that a specific actor submitted an invalid proof. For this purpose it is necessary to
provide the possibility to prove that the invalid proof was submitted by that specific user.

Doing a step back, in the model without this additional scaling improvement, in the merging
process it was sufficient to prove that there was a valid proof given the public inputs and the
verification key. There was no need to prove the proof was issued by a specific actor, but it was
just needed to ensure the user paid for the aggregation work.

In the new setting, in order to charge the actor for misbehavior, we need to ensure there is
no possibility for him to repudiate a submitted proof. Along this direction, in order to provide
the possibility to the prover to prove that an invalid proof was submitted by a specific actor, the
aggregation request must include a signature non rep sig of a message composed by the hash
of the proof, the public input and the verification key: non rep msg = H(au, vku, πBase). In
such a way the actor can’t repudiate the proof and the prover creating the ProofOfInvalidProof,
will also be able to prove that the user submitted an invalid proof. On the other hand such
enforcement should be seen also as an important protection for honest users and provers in order
to prevent dishonest provers from charging honest participants for invalid proofs that they did
not submit.

Going further, after having included in the aggregation request the signature of the hash of
the proof, we need to modify the aggregation request broadcast procedure in order to verify the
correctness of the signature. Obviously, in order to obtain scaling improvements, the compu-
tational cost of signature verification and message hash computation should be lower than the
proof verification. In this regard, the analysis of the level of the scaling improvements is strictly
related to the specific proving system adopted.

Just as an example, if we consider FRI[5] based recursive efficient proving systems like
Plonky2[27] using Poseidon[20] as the hash function, the hash computation is a preponderant
part of the proof verification process. Assuming that its needed to hash the same order of
magnitude of data in the proof verification process and in the non rep msg computation, in
order to produce an improvement in the broadcasting verification process, we should utilize for
the non rep msg computation a hash function that is faster in primitive than the one used by
the proving system. On the other hand we should also take into consideration that in case
of need of creating the ProofOfInvalidProof, the hash of non rep msg should be proven and
consequently the proving efficiency of such hash function will affect the invalid proof fee mult
factor. Considering these tradeoffs, the Monolith hash function[19] seems a good candidate for
the non rep msg computation as it provides primitive performances comparable to SHA3 (much
faster than Poseidon) and still acceptable proving costs.

6 Conclusions

Zero-knowledge techniques play an increasingly important role in the blockchain system allowing
a wide range of different applications, such as ZK rollups, privacy-preserving transactions, trust-
less interoperability between chains, and many more. Nevertheless, despite all developments in
optimization of ZK proving systems, their execution on-chain is still expensive.

In the paper we propose the solution to optimize proof verification. It relies on aggregation of
many initial proofs from different users into a single one that verifies all of them. By aggregating
the proofs, it is possible to substantially reduce the verification cost and improve scalability of
a blockchain system. We presented a system for decentralized recursive proof aggregation that
can be implemented as a service on top of an existing blockchain system. It is designed to work
in a decentralized environment where independent actors (provers) can join and contribute to
the recursive proof generation process.
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The research subject is still under ongoing research. In future work, we plan to uncover more
details about specific components and analysis of the proposed construction.

Leveraging the efficiency characteristics of recursive proof composition and constructing a de-
centralized protocol that embraces these principles holds the potential to revolutionize the verifi-
cation process for zero-knowledge proofs. As the blockchain landscape evolves to accommodate
ever-expanding transaction volumes and diverse use cases, developing such protocols become
increasingly important to realize the vision of decentralized, scalable, and privacy-preserving
blockchain networks.
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