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Abstract. In this article, we examine Differential Fault Attacks (DFA) targeting two stream ciphers, FLIP and
FiLIP. We explore the fault model where an adversary flips a single bit of the key at an unknown position. Our
analysis involves establishing complexity bounds for these attacks, contingent upon the cryptographic parameters
of the Boolean functions employed as filters and the key size. Initially, we demonstrate how the concept of sensitivity
enables the detection of the fault position using only a few keystream bits. This represents an enhancement over
previous DFA methodologies applied to these ciphers. Subsequently, we leverage the properties of the filter’s
derivatives to execute attacks. This approach is universally applicable to any filter, and we delineate specific attack
strategies for the two function families previously implemented in these ciphers.

1 Introduction

Since the late 1990s, there has been a growing demonstration and refinement of side-channel attacks
targeting implemented cryptographic primitives, as exemplified in works such as [Koc96,BDL97,KJJ99].
These attacks illustrate the inadequacy of the black-box security model, which assumes an adversary only
has access to the input and output of an algorithm. This realization has spurred the need to explore the
security of cryptographic primitives within a broader model that better aligns with real-world contexts.
Throughout the years, various side-channel attacks have been scrutinized. These attacks can be categorized
as passive-solely observing the device executing the algorithms or active, involving manipulating the
device’s computations, often termed fault attacks. Among these, Differential Fault Attacks (DFA) form
a subset, operating on comparing a cryptographic primitive’s behaviour on an unaltered device with its
behaviour after introducing a fault. Initially employed in public key encryption schemes, DFA have been
demonstrated on symmetric encryption schemes, commencing with block ciphers [BS97], and and later on
stream ciphers [HS04].

Stream ciphers, as symmetric encryption schemes, are typically characterized by public parameters
like an Initial Value (IV) and a secret key. These elements are combined within a state to generate a
keystream. This keystream is then applied to the plaintext to produce the ciphertext, often via a bit-by-bit
XOR operation. Since the 1980s, numerous stream ciphers have been explored in various contexts, including
the eSTREAM competition’s standardization process [Rob08]. The focus of this article lies in investigating
security within a specific attack and fault model. We operate within the known-plaintext/ciphertext model,
where the adversary accesses the keystream. However, unlike the chosen plaintext model, the adversary
lacks control over the chosen plaintexts or the IV used in the scheme. Regarding faults, we consider a potent
attacker equipped with sophisticated tools capable of inducing differences in the cipher state. Specifically,
this attacker can flip the value of a single bit within the cipher state without knowledge of its position. In
this context of a differential fault attack, the adversary has access to two keystreams: one derived from the
un-tampered device (si; i = 1, . . . ,m) and another obtained from the device affected by a single fault (s′i;
i = 1, . . . ,m). Leveraging these si and s′i, the attacker endeavors to reconstruct the cipher’s state, aiming



ultimately to retrieve the secret key. If the attacker successfully retrieves the secret key within a feasible time
frame, we label the cipher as prone to DFA.

In this particular type of DFA, the process typically involves these steps:

1. Injecting a fault: During the keystream generation phase, a fault is introduced randomly into the state of
the cipher.

2. Locating the fault: Determining the position of the injected fault by analyzing both the normal and faulty
keystream bits.

3. Forming equations: Constructing a system of equations utilizing the normal and faulty keystream bits.
4. Solving equations: Resolving the system of equations to retrieve the secret key.

Within this article, our focus encompasses steps 2 through 4, delving into the analysis of time and data
complexity associated with these attacks. Since the attacker lacks prior knowledge about the fault’s location,
existing literature presents limited techniques to identify it. Among these, the most prevalent method is
signature-based fault identification. This technique has been extensively explored across various stream
ciphers, notably in works such as [BM13,MSS17,SSMC17] for identifying the location of the injected fault
for Mickey [Bab08], Plantlet [MAM17], Grain [HJMM08], Acorn [Hon16] and Lizard [HKM17].

FLIP [MJSC16] and FiLIP [MCJS19a] are two families of stream ciphers tailored for the context of
Hybrid Homomorphic Encryption (HHE) [NLV11]. In the realm of HHE, fault attacks are of particular
interest as they target the client side, aiming to recover the symmetric scheme’s key. This breach allows
decryption of all data sent by the client during the protocol. Symmetric ciphers devised for HHE might
be more prone to fault attacks due to their simpler algebraic structure due to the constraints necessary for
efficient homomorphic evaluation. Both FLIP and FiLIP rely on distinct paradigms that leverage public
wire-cross permutations alongside a single filter function. The core security of these ciphers predominantly
derives from the cryptographic properties of the Boolean function utilized as the filter. FLIP employs Direct
Sums of Monomials (DSM) as its filter, while FiLIP instantiates two function families: DSM and Xor-
Thresholds. In recent studies [RBM20,RKMR23], practical Differential Fault Attacks (DFAs) have been
proposed for FLIP and FiLIP instantiated with DSM functions. In [RBM20], Roy et al. propose a practical
DFA on FLIP (and Kreyvium [CCF+16]). They show that the secret key of FLIP can be recovered by
injecting only one bit fault in the key register. In [RKMR23], Radheshwar et al. propose a practical DFA
on FiLIP instantiated with DSM functions (and Rasta [DEG+18]). The authors show that the secret key of
both the ciphers can be recovered in feasible time by injecting only one bit fault in the key register. These
DFAs on FLIP and FiLIP instantiated with DSM functions [RBM20,RKMR23] encountered difficulty in
predicting the fault position due to the randomized wire-cross permutations within the state. Consequently,
these attacks relied on guessing the fault’s location. For each guess, a system of equations involving state
bits was constructed. These equations were then solved, and the correct key was discerned using previously
known keystream bits from the multitude of solutions.

1.1 Our contributions

This paper presents theoretical differential fault attacks on both FLIP and FiLIP, proving the complexity
bounds of these attacks based on the cryptographic parameters of the Boolean function used as filters and
the key size. Specifically:

– First, we revisit the DFA proposed in prior works [RBM20,RKMR23] by introducing a novel technique
to identify the fault’s location in the key register. We demonstrate that the concept of the influence of a
coordinate is sufficient to determine the fault position provably. By examining this criterion on specific
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derivatives of the filter function used in FLIP (or FiLIP), we can pinpoint the fault location with a limited
number of keystream bits and high probability. This technique corresponds to Algorithm 1 for both the
ciphers. It exhibits an asymptotic complexity bounded byO(mn) both for FLIP and FiLIP with the filter
function considered, where n denotes the key size and m denotes the number of keystream bits used.
In practice, it significantly enhances prior DFAs [RBM20,RKMR23] by discarding fault positions with
only a few keystream bits instead of necessitating n individual attacks for each possible fault position.

– Then, once the fault position is determined, we illustrate how conducting a DFA on FLIP (or FiLIP)
with filter function f parallels executing a standard attack on a specific derivative of f . Additionally,
we correlate the complexity of key recovery in the DFA of F(i)LIP to attacks on the paradigms of FLIP
and FiLIP using other functions [MJSC16,MCJS19b]. This contribution offers insight into finding filter
functions for FLIP and FiLIP paradigms that can mitigate these DFAs. Boolean functions where all
derivatives (in vectors of Hamming weight one) are secure filters for F(i)LIP in the black-box model.

– Finally, for the key recovery phase, we introduce two strategies tailored to the specific filter functions
of FLIP and FiLIP. For FLIP, we investigate the properties of the derivative of DSM and introduce
a novel equation generation technique in Algorithm 2, applicable to all proposed instances of FLIP
ciphers. We prove that in this scenario, the secret key of FLIP can be recovered with high probability at
a complexity ofO(nm). Additionally, empirical experiments showcase the practical aspect of the attack
on an instance with n = 530, demonstrating that the secret key can be retrieved in less than a minute
with a single-bit fault in the key register. For FiLIP, we develop a strategy tailored to Xor-threshold
instances. Upon identifying the fault location, we demonstrate that with these filters, we can formulate
a linear system of equations involving the secret key bits using Algorithm 3. This approach results in a
successful DFA with high probability at a complexity ofO(mω), where ω denotes the exponent for linear
system inversion (2 < ω ≤ 3). We also perform concrete experiments on one instance of FiLIPXOR-THR
to illustrate the practical impact of these attacks.

1.2 Comparison with former works

The precision in locating the fault significantly impacts the attack’s performance. In both [RBM20]
and [RKMR23], the attacker posits a hypothesis about the fault’s location and subsequently solves the
corresponding system of equations derived from XORing the actual and faulty keystreams. In this scenario,
the attacker must solve n algebraic systems of equations for FLIP (or N for FiLIP), followed by testing
the candidate key. Contrastingly, our techniques enable determining the fault location using a bounded
number of equations, reducing the process to solving only one system. Given that the key size typically
ranges between several hundred to a few thousand bits for these schemes, this distinction holds substantial
significance. To illustrate, for a scheme comprising n key bits and denoting T1 as the time complexity of
fault detection and T2 as the complexity of solving the faulty system, our techniques curtail the complexity
from previous attacks, diminishing it from O(nT2) to O(T1 + T2).

Comparing the time taken for attacks in [RBM20] and [RKMR23] on FLIP-530 and FiLIP instances
highlights the efficiency gains of our fault location techniques. In [RBM20], for FLIP-530, the average time
reported is n/2 × 262 seconds, equivalent to approximately 19 hours on average. Conversely, our method
achieves this task in less than a minute for the same instance. In [RKMR23], the attack’s average runtime
is 1508 × N/2 seconds, approximately 375 hours. Our fault location technique improves this by a factor
of around N/2, significantly reducing the time required to a few minutes. Specifically, for an instance of
FiLIP using Xor-Threshold functions, the attack completes in only 580 seconds. For a clearer comparison,
we have summarized these timings in Table 1.
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Scheme instance FLIP-530 FLIP-530 FiLIP-DSM-1792 FiLIP-XThr-1024

Reference [RBM20] this work [RKMR23] this work

Time 19h 32s 751h 581s
Table 1: Comparison of the average time of DFA on FLIP and FiLIP

2 Preliminaries

We use the following notations in this article. We use [n] to represent the set of integers from 1 to n, both
included and + instead of ⊕ for the addition over F2. For an element a ∈ F2 we denote by wH(a) its
Hamming weight wH(a) = #{i ∈ [n] | ai = 1}. Ek,n denotes the set {a ∈ Fn2 |wH(a) = k}. The Hamming
weight of a function refers to the Hamming weight of its truth table. For j ∈ [n], ej refers to the element of
Fn2 with j-th coordinate being 1 and the n− 1 others being 0. We denote by log the logarithm in basis 2.

We refer to wire-cross permutations of size n the re-arrangements of length-n vectors. For a wire-cross
permutation P ∈ Sn, for an element x ∈ Fn2 we denote by P (x) ∈ Fn2 the permutation of x and for an integer
i ∈ [n] we denote by P (i) the position of the i-th element after applying P , i.e. P (i) = supp(P (ei)).

Let m,m′ ∈ N, m′ ≤ m and p ∈ R, 0 ≤ p ≤ 1, we denote by B (m′,m, p) the probability Pr [X ≥ m′]
when X is a random variable following the binomial law with probability of success p and number of tries
m. The value of B (m′,m, p) can be obtained from the cumulative distribution of such binomial law.

2.1 Boolean Functions

We recall general concepts on Boolean functions we use in this article; for a deeper introduction to Boolean
functions and their cryptographic properties, we refer to the book [Car21].

Definition 1 (Boolean Function). A Boolean function f with n variables is a function from Fn2 to F2. The
set of all Boolean functions in n variables will be denoted by Bn.

Definition 2 (Algebraic Normal Form (ANF)). We call Algebraic Normal Form of a Boolean function f
its n-variable polynomial representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x

2
1+x1, . . . , x

2
n+xn)):

f(x) =
∑
I⊆[n]

aI

(∏
i∈I

xi

)
=
∑
I⊆[n]

aIx
I ,

where aI ∈ F2.

– The algebraic degree of f is deg(f) = max
{I | aI=1}

|I| (with the convention that deg(0) = 0).

– Any term
∏
i∈I xi in such an ANF is called a monomial and its degree equals |I|. A function with only

one non-zero coefficient aI , where I is non-empty, is called a monomial function.

Definition 3 (Derivative). Let f ∈ Bn and a ∈ Fn2 , we call derivative in the direction a (or with input
difference a) of f the Boolean function:

Daf(x) = f(x) + f(x+ a).

We introduce the different families of Boolean functions used to instantiate the filter functions of FLIP
of FiLIP.
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Definition 4 (Direct sum). Let f be a Boolean function of n variables and g be a Boolean function of m
variables, the direct sum h of f and g is defined by:

h(x, y) = f(x) + g(y), where x ∈ Fn2 and y ∈ Fm2 .

Definition 5 (Direct Sum of Monomials). Let f be a non-constant n-variable Boolean function. We call f
a Direct Sum of Monomials (or DSM) if the following holds for its ANF:

∀(I, J) such that aI = aJ = 1, I ∩ J ∈ {∅, I ∪ J}.

In other words, in the ANF of such functions, each variable appears at most once.

Definition 6 (Direct Sum Vector [MJSC16]). Let f be a DSM, we define its direct sum vector (DSV):

mf = [m1,m2, . . . ,mk],

of length k = deg(f), where mi is the number of monomials of degree i, i > 0, in the ANF of f :

mi = |{I ⊂ [n]}; aI = 1 and |I| = i}|.

Definition 7 (Majority Function). For any positive integer n we define the Boolean function MAJn as:

∀x = (x1, . . . , xn) ∈ Fn2 , MAJn(x) :=

{
0 if wH(x) ≤ n

2 ,

1 otherwise.

Definition 8 (Threshold Function). For any positive integer d ≤ n + 1 we define the Boolean function
Td,n as:

∀x = (x1, . . . , xn) ∈ Fn2 , Td,n(x) =

{
0 if wH(x) < d,

1 otherwise.

Definition 9 (Xor-Threshold Function). For any positive integers k, d and n such that d ≤ n+1 we define
XORk + Td,n for all z = (x1, . . . , xk, y1, . . . , yn) ∈ Fk+n2 as follows:

(XORk + Td,n)(z) = x1 + · · ·+ xk + Td,n(y1, . . . , yn) = XORk(x) + Td,n(y).

2.2 FLIP and FiLIP

(Improved) filter permutator paradigm of stream ciphers FLIP and FiLIP are families of stream
ciphers following the Filter Permutator paradigm (FP) [MJSC16] and Improved Filter Permutator paradigm
(IFP) [MCJS19a]. In Figure 1 we represent these two paradigms.

The filter permutator is composed of four parts: a register where the key is stored, a forward
secure PseudoRandom Number Generator (PRNG) initialized with a public IV, a generator of wire-cross
permutations, and a filter function which produces the keystream. For a security parameter λ, to encrypt
m ≤ 2λ bits under a secret key K ∈ Fn2 (such that wH(K) = n/2), the public parameters of the PRNG are
chosen and then the following process is executed for each keystream bit si (for i ∈ [m]):

- The PRNG is updated, its output determines the n to n elements permutation Pi at time i,
- the keystream bit si is computed as si = f(Pi(K)).
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The IFP contains the four parts of the filter permutator and two generators, one to select subsets of the key
and one to generate fixed size binary strings called whitenings. The main differences of these modifications
to the FP paradigm are that the key register is bigger than the input size of the filter function, and that
a pseudorandom binary string is added to the input of the filter functions. For a security parameter λ, to
encrypt m ≤ 2λ bits under a secret key K ∈ FN2 , the public parameters of the PRNG are chosen. Then the
following process is executed for each keystream bit si (for i ∈ [m]):

- The PRNG is updated, its output determines the subset Si of n-out-of-N elements, the permutation Pi
from n to n elements at time i, and the whitening wi, that is a n-size binary vector,

- the subset is applied to the key,
- the permutation is applied,
- the whitening is added,
- the keystream bit si is computed, si = f(Pi(Si(K)) + wi).

Key register K Key register KIV IV

PRNG PRNG

Perm.
Gen.

Perm.
Gen.

Subset

Whitening

f f

m c m c
Fig. 1: Filter permutator and improved filter permutator paradigms.

FLIP FLIP [MJSC16] stream cipher family is an instantiation of the FP paradigm where the PRNG is
the forward secure PRG construction from [BY03] using the AES as underlying block cipher. The filter
functions are all DSM functions (see Definition 5). We recall them in Table 2.

n mf λ

530 [50, 72, 8, 8, 8, 8, 8, 8, 8] 80

662 [50, 72, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] 80

1394 [90, 120, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8] 128

1704 [91, 124, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] 128

Table 2: FLIP instances

FiLIP FiLIP [MCJS19a] stream cipher family is an instantiation of the IFP paradigm. The PRG is instanced,
but for FLIP, there are more differences in the filter functions. Two kinds of instances have been introduced,
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with DSM functions and with Xor-Threshold functions in the long version [MCJS19b], we recall them in
Table 3.

n N mf λ

512 16384 [89, 67, 47, 37] 80

430 1792 [80, 40, 15, 15, 15, 15] 80

320 1800 [80, 40, 0, 20, 0, 0, 0, 10] 128

1216 16384 [128, 64, 0, 80, 0, 0, 0, 80] 128

1280 4096 [128, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64] 128

n N XORk + Td,m λ

144 2048 113, 16, 31 80

144 2048 81, 32, 63 80

256 1536 129, 64, 127 80

512 1024 257, 128, 255 80

256 8192 129, 64, 127 128

512 4096 257, 128, 255 128

Table 3: FiLIP instances

3 DFA attack on filter permutators

3.1 Generalizing the attack of [RBM20] on FLIP

Using the description of FLIP (Section 2.2), the i-th keystream bit can be written as si = f(Pi(x)). When
a fault has been injected in the j-th position of the key register, the i-th produced output can be written as
s′i = f(Pi(x + ej)). The DFA adversary is able to get the two keystreams and hence to obtain for each
output:

s”i = si + s′i = f(Pi(x)) + f(Pi(x+ ej)) = DPi(ej)f(Pi(x)),

where DPi(ej)f(Pi(x)) denotes the derivative of the function f(Pi(x)) in the direction Pi(ej). Therefore,
the DFA adversary can obtain a system of equations which corresponds to the keystream of an instance of
FLIP with the same IV, the same key with one variable less (xj), and each time one of the n filter functions
Dej′f ; particular derivative of the initial filter function.

In [RBM20], the attack is presented on FLIP530, where the filter function is a DSM of degree 9. The
attack uses the simple algebraic structure of the functions Dejf for j ∈ [n]; monomial functions of degree
at most 8, to solve the system of equations given by s”i with a SAT-solver. The attack is performed for the n
possible locations of the fault: for each j ∈ [n] the system given by the s”i is solved with the SAT-solver, if
the solution is compatible with the Hamming weight of K (i.e. n/2) then it is kept in the set of solutions S .
After solving the n systems, if |S| > 1, the attacker generates a large number of keystream bits from each
potential solution and compares it with the keystream given by si which were previously collected for the
unknown key. Assuming the time complexity of the SAT-solver is T , and that it dominates the complexity
of the keystream comparisons to discard false solutions, the total time complexity is O(nT ).

7



In the following, we show how to improve the complexity of the attack by determining first the position
of the fault, and then applying the attack on Dejf . In this case the time complexity decreases toO(T1+T2),
where T1 is the complexity of determining the position j of the fault, and T2 can be taken as the complexity
of the best attack against FLIP with filter function Dejf . In Section 3.2 we show how the complexity can
be estimated from a filter permutator with filter function f , by means of cryptographic properties of f . In
Section 3.3 we focus on the filter functions used for the cipher FLIP, namely direct sum of monomials, and
give precise attack complexity bounds in this case.

3.2 DFA on filter permutators and filter properties

Determining the fault position First, to determine where the fault occurs we recall the concept of the
influence of a coordinate and introduce the notion of 0-influence set and 1-influence set of a function.

Definition 10 (Influence e.g. [KKL88]). Let f ∈ Bn, the influence of a coordinate i ∈ [n] on f is:

infi(f) =
#{x ∈ Fn2 | f(x) 6= f(x+ ei)}

2n
.

Additionally we denote by infi,S(f) the influence of i on f when its inputs are taken from the set S ⊂ Fn2
only: infi,S(f) = #{x ∈ S | f(x) 6= f(x+ ei)}/|S|.

The influence measures how much the variation of a coordinate affects the output. The following
definition focuses on the two extreme cases where a coordinate has no influence, or full influence, on the
output.

Definition 11. Let f ∈ Bn, we call 0-influence set Inf0(f) = {i ∈ [n] | infi(f) = 0} and 1-influence set
Inf1(f) = {i ∈ [n] | infi(f) = 1}.

The following proposition allows to link the values of the stream obtained by the DFA adversary and the
0-influence set (respectively 1-influence set) of the filter:

Proposition 1. Let f ∈ Bn, j′ ∈ [n], P be a (wire-cross) permutation of Fn2 , and s”(x) = Dej′f(P (x))
then:

– If s”(x) = 0 then P−1(j′) 6∈ Inf1(f),
– if s”(x) = 1 then P−1(j′) 6∈ Inf0(f).

Proof. For both the cases we show the contrapositive. If P−1(j′) ∈ Inf1(f) then from Definition 11
infj′(f(P (x))) = 1 therefore s”(x) = Dej′f(P (x)) = 1. By similar arguments, P−1(j′) ∈ Inf0(f)
implies s”(x) = Dej′f(P (x)) = 0, finishing the proof.

Then, using the stream s”i and the influence sets of f we propose Algorithm 1 to determine the fault
location.

The principle of the algorithm is to use each stream value s”i to discard potential positions of j, applying
Proposition 1. Accordingly, the algorithm is useful for an attacker provided the two influence sets are not
both null. We study the complexity of Algorithm 1 in the following proposition.

Proposition 2. Let f be an n-variable function f with influence sets Inf0(f) and Inf1(f). A DFA adversary
can recover the fault position j ∈ [n] of FLIPf using m keystream bits s”i with the time complexity O(mn)
and the success probability Pr [L = {j}].
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Input: Keystream size m, binary stream s”i for i ∈ [m], permutations Pi for i ∈ [m], and f ’s
influence sets Inf0(f) and Inf1(f).

Output: a set S ⊆ [n] containing the fault position j.
L := [n] ; // The candidate list of fault positions
cpt := 1 ;
while Cardinal(L)>1 & cpt ≤ m do

if s”cpt = 0 then
for k ∈ Inf1(f) do

Compute Pi(k);
Remove Pi(k) from L;

end
end
if s”cpt = 1 then

for k ∈ Inf0(f) do
Compute Pi(k);
Remove Pi(k) from L;

end
end
cpt← cpt +1;

end
return L

Algorithm 1: Determining the fault position.

– If 0 < ` = min(|Inf0(f)|, |Inf1(f)|) then Pr [L = {j}] ≥ 1− (n− 1)
(
1− `

n−1

)m
.

– If Infε(f) 6= 0 and |Inf1−ε(f)| = 0 for ε ∈ {0, 1} then:

Pr [L = {j}] ≥ B
(
m′,m, p

)(
1− (n− 1)

(
1− |Inf

ε(f)|
n− 1

)m′)
,

where m′ ∈ [m] and p = ε+ (1− 2ε) 1n
∑n

j′=1 infj′,En
2 ,n

(f).

Proof. We begin with the case where Inf0(f) and Inf1(f) are both not empty. Denoting ` = min(|Inf0(f)|,
|Inf1(f)|), each equation alone allows removing at least ` possible positions for j. Since the permutations Pi
are uniformly distributed we can estimate the number of equations needed before having the set L containing
only j using the "balls-in-bins" approach. Each equation gives at least ` random positions of [n] \ {j}, then
the probability for one of the n − 1 positions (seen as bins), called j′, to have not been removed after m
equations (seen as m launches of at least ` balls) is: Pr [j′ ∈ L] ≤

(
1− `

n−1

)m
. Having only j in L after

m equations corresponds to having n− 1 other positions appearing in at least one equation, hence by union
bound after m equations Pr [L = {j}] ≥ 1− (n− 1)

(
1− `

n−1

)m
.

When only one of the influence sets is non-null, only one part of the equations allows removing potential
positions. In the case Inf1(f) 6= ∅ (respectively Inf0(f) 6= ∅) only the equations such that s”i = 0
(respectively s”i = 1) allow to decrease L in Algorithm 1. Hence, we can study the probability of the
algorithm returning j similarly as before by pondering it by the probability Pr [s”i = 1]. More precisely, the
probability of getting at least m′ over m equations such that s”i = 0 (respectively s”i = 1) is given by
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a binomial law with parameter p = 1 − Pr [s”i = 1] (respectively (p = Pr [s”i = 1]). Hence we compute
Pr [s”i = 1].

We know that s”i = DPi(ej)f(Pi(x)) then the uniform distribution of the permutations Pi implies:

Pr [s”i = 1] =
n∑

j′=1

Pr
[
Pi(j) = j′

]
· Pr
[
DePi(j)

f(Pi(x)) = 1 |Pi(j) = j′
]

=
1

n

n∑
j′=1

Pr
[
Dej′f(Pi(x)) = 1 |Pi(j) = j′

]
=

1

n

n∑
j′=1

Pr [f(Pi(x)) 6= f(Pi(x+ ej))]

=
1

n

n∑
j′=1

infj′,En
2 ,n

(f) = pf ,

where the probability is taken over the random wire-cross permutations Pi. Thereafter, in the case Inf1(f) 6=
∅ (respectively Inf0(f) 6= ∅), the algorithm recovers j with probability:

Pr [L = {j}] ≥ B
(
m′,m, p

)(
1− (n− 1)

(
1− |Inf

ε(f)|
n− 1

)m′)
,

where m′ ∈ [m], and p = 1− pf (respectively p = pf ).
We finish with the time complexity of Algorithm 1. Since for each equation used by the algorithm it

computes at most max(|Inf0(f)|, |Inf1(f)|) indexes to remove from L, its time complexity is (roughly)
upper bounded by O(nm).

Note that even if Algorithm 1 does not return j but a bigger set containing it, a key recovery attack is
still possible. An attacker can use the algorithm until obtaining a set of n′ potential positions (with 1 <
n′ < n), and then apply the strategy presented in [RBM20]: solve the equation system for the n′ positions
and determine the correct one. It leads to a time complexity of O(nm + n′T ) where T denotes the time
complexity of solving the equation system.

Attack on Dejf Once the faulted position j is known, for each keystream element s”i the attacker knows
which one of the derivatives gives this value. Since the permutations are uniformly distributed Pi(j) is
uniformly distributed. Hence, each n derivative has the same probability of being obtained. One attack
strategy consists of considering only the equations corresponding to the derivative g and mounting the attack
on the filter permutator with this filter function. In this case, the attacker obtains a system of equations with
shape s”i = g(Pi(x)), in the n − 1 non-faulted variables of the key, and can therefore apply any attack on
the filter permutator in n− 1 variables and filter function g.

Different attacks are considered for this paradigm, and listed in [MJSC16] (Section 3.4), such as
algebraic attacks [CM03] and fast algebraic attacks [Cou03a], correlation attacks [Sie84] and high order
correlation attacks [Cou03b]. All these attacks can be improved with guess and determine techniques, as
illustrated by the cryptanalysis of Duval et al. [DLR16] on a preliminary version of FLIP, and attacks
exploiting the Hamming weight invariance of the filter’s input are explored in [CMR17]. Accordingly,
denoting by T2 and D2 the time and data complexity of the key recovery attack of FLIP instantiated with g
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and an n− 1-bit secret key, the time complexity of the part of this DFA after determining the fault position
is O(T2). Regarding the data complexity, it is O(p−1g D2), where pg denotes the probability of obtaining the
derivative g.

3.3 Differential properties of DSM and attack on FLIP

Derivative of DSM functions

Proposition 3. Let n ∈ N∗, f ∈ Bn a DSM and j ∈ [n], the following holds on Dejf :

– If xj does not appear in the ANF of f , then Dejf is the constant function 0.
– If xj appears in a monomial of degree 1 of f then Dejf is the constant function 1.
– If xj appears in a monomial of degree t > 1 of f then Dejf is a monomial function of degree t− 1.

Proof. We focus on the expression of f(x + ej) in the different cases. In the first case, since xj does not
appear in the ANF of f we get f(x+ ej) = f(x) hence Dejf = 0.

In the second case, f can be written as the direct sum of xj and g in n− 1 variables (that we will denote
by x′), hence f(x+ ej) = xj + 1 + g(x′) and therefore

Dejf(x) = xj + g(x′) + xj + 1 + g(x′) = 1.

In the third case, f can be written as the direct sum of xj
∏t−1
k=1 xik (where i1, · · · , it−1 are distinct

indices in [n]) and g in n− t variables (that we denote by x′), hence f(x+ej) = (xj +1)
∏t−1
k=1 xik + g(x

′)
and therefore:

Dejf(x) = xj

t−1∏
k=1

xik + g(x′) + xj

t−1∏
k=1

xik +

t−1∏
k=1

xik + g(x′) =

t−1∏
k=1

xik .

Hence Dejf is a monomial function of degree t− 1, concluding the proof.

Proposition 4. Let n ∈ N∗ and f ∈ Bn a DSM with DSV mf = [m1, · · · ,mk]:

– |Inf0(f)| = n−
∑k

i=1mi.
– |Inf1(f)| = m1.
– infi,En

2 ,n
(f) takes the value:

0 If xi does not appear in the ANF of f
1 If xi appears in a monomial of degree 1, i.e. the m1 part.
(n−(d−1)
n
2−(d−1))

(n
n
2
)

If xi appears in a monomial of degree d, i.e. the md part.

Proof. We begin with the two first items. From the definition of the influence (Definition 10) for any function
f we get:

infi(f) =
#{x ∈ Fn2 | f(x) 6= f(x+ ei)}

2n
=

2wH(Deif)

2n
.

Hence infi(f) = 0 ⇔ wH(Deif) = 0 which means Deif is the null function, and infi(f) = 1 ⇔
wH(Deif) = 2n−1 which means Deif is the constant function 1. Combining it with Proposition 3, since f
is a DSM, infi(f) = 0 if and only if xi does not appear in its ANF, which is the case for n −

∑k
i=1mi by
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definition of the DSV. On the other side, infi(f) = 1 if and only if xi appears in a monomial of degree 1,
which is the case for exactly m1 variables by definition of the DSV. It allows to conclude on |Inf0(f)| and
|Inf1(f)|.

For the last part, by definition:

infi,En
2 ,n

(f) =
#{x ∈ En

2
,n |Deif(x) = 1}
#En

2
,n

=
#{x ∈ En

2
,n |Deif(x) = 1}(

n
n
2

) .

Using Proposition 3, Deif is either the null function (giving infi,S(f) = 0 for any set S), the constant
function 1 (giving infi,S(f) = 1 for any set S), or a monomial function of degree d − 1. In the latter case,
over the

(
n
n/2

)
elements of En/2,n, only the ones with the d−1 variables of the degree d−1 monomial being

ones give Deif = 1, which corresponds to the
( n−(d−1)
n/2−(d−1)

)(
d−1
d−1
)

elements having d − 1 variables equal to
one in the degree d − 1 monomial and the n/2 − (d − 1) other variables equal to one in the non selected
variables.

Corollary 1. Let f ∈ Bn a DSM, if mf = [m1, · · · ,mk] then:

1

n

n∑
i=1

infi,En
2 ,n

(f) =
1

n

k∑
i=1

imi

(n−(i−1)
n
2
−(i−1)

)(
n
n
2

) ≥ m1

n
.

Based on the derivatives of DSM functions we consider a dedicated attack on FLIP. First the fault
position j is determined with Algorithm 1 using that |Inf1(f)| 6= 0 for these filters (Proposition 4). Then,
we consider the following attack strategy:

Strategy S1: The attacker collects the equations where DPi(ej)f is a degree 1 function, since these
equations are of type s”i = xk it directly gives the value of xk. When all variables except xj have been
determined, xj is obtained from the Hamming weight of the key (fixed to n/2).

We describe the attack scenario as Algorithm 2 and study its complexity in the following proposition.

Proposition 5. Let n ∈ N∗ and f be an n-variable DSM with DSV mf = [m1, · · · ,mk], a DFA adversary
implementing strategy S1 can recover the key of FLIPf using m keystream bits s”i with the time complexity
O(nm) and the success probability ps ≥ p1p2, where p1 is the probability of success of Algorithm 1 and

p2 = B

(
m′,m,

2m2

n

)(
1− (n− 1)

(
1− 1

n− 1

)m′)
,

with m′ ∈ [m].

Proof. The time complexity and success probability are obtained by analyzing the complexity of Algo-
rithm 1 and then Algorithm 2. The time complexity and success probability for Algorithm 1 come from
Proposition 2, and we denote it T1 and p1 in the remaining part of the proof.

The cost of Algorithm 1 apart, the time complexity of Algorithm 2 is dominated by the while loop, where
each time it does at most 3 tests and 4 affectations/additions. Hence, the while loop leads to a complexity
of O(m), and then the total complexity remains in O(mn). The success probability can be estimated as
ps = p1p2 where p2 refers to the probability of determining entirely K provided j, i.e. the probability of
determining the n − 1 key bits during the while loop. We bound this probability with a similar manner as
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Input: Keystream size m, binary stream s”i for i ∈ [m], permutations Pi for i ∈ [m], n and mf .
Output: key K.
K := [x1, . . . , xn] ; // key with undetermined values
j := Algorithm 1 on inputs (m, s”i for i ∈ [m], Pi for i ∈ [m], [m1], ∅) ;
i := 1 ;
w := 0 ;
cpt := 0 ;
// the counter of determined key values
while cpt < n− 1 & i ≤ m do

// Tests if Pi(j) belongs to the m2 part
if DPi(ej)f is a degree-1 monomial xk then

// Tests if xk is undetermined
if xk ∈ K then

K[k]← s”i ;
cpt← cpt+1 ;
if xk = 1 then

w← w+1 ;
end

end
end
i← i+1 ;

end
if cpt = n− 1 then

K[j]← n/2−w ;
end
return K ;

Algorithm 2: Attack strategy S1.

in the proof of Proposition 2, using the "balls in bins" approach. Since the permutations Pi are uniformly
distributed j appears in a degree 2 monomial with probability 2m2/n and in this case DPi(ej)f = xk where
k is uniformly distributed in [n] \ {j}. Accordingly, the probability of having at least m′ over m equations
with j in the degree-2 part for m′ ∈ [m] is given by B (m′,m, 2m2/n). Over m′ such equations, each
variable xk with k ∈ [n] \ {j} appears with probability 1/(n − 1), the variable xk appears in none of the

m′ equations with probability
(
1− 1

n−1

)m′
, and by union bound all variables appear at least once with

probability at least 1− (n− 1)
(
1− 1

n−1

)m′
. Therefore:

p2 = B
(
m′,m, 2m2/n

)(
1− (n− 1)

(
1− 1

n− 1

)m′)
, and ps = p1p2.

To conclude this part, we give the relevant parameters of the 4 FLIP instances relatively to the criteria
we described in this section, and the estimated complexity of the DFA attacks we described in Table 4, for
an example of choice for m and m′. In all these cases we get that with high probability with less than 220

13



samples, the adversary determines the fault position and recovers the key. In Section 3.4, we test the attack
in practice, and show that a lower number of samples is sufficient on average, reducing it from at least 215

to at most 28.

instance n mf |Inf1(f)| 1
n

∑n
j′=1 infj′,En

2 ,n
(f) log(m) log(m′) ps ≥

530 [50, 72, 87] 50 0.259 15 13 0.999

662 [50, 72, 413] 50 0.196 16 13 0.997

1394 [90, 120, 814] 90 0.162 17 14 0.989

1704 [91, 124, 521] 91 0.132 18 15 0.999

Table 4: FLIP instances and DFA attacks

3.4 Concrete attack on one instance of FLIP

To illustrate our DFA on FLIP we consider one instance of FLIP and perform experiments. We consider FLIP
with n = 530 and mf = [50, 72, 87] and simulate the attack. We first collect m many normal keystream
bits, then we inject a single bit fault at a random location of the key register and collect m many faulty
keystream bits for the same key and IV. We use Algorithm 1 to determine the location of the injected fault.
Depending upon the number of selected keystream bits m and the number of tries, Algorithm 1 returns a set
with possible fault location (see Table 5). In practice we observed that m = 28 is sufficient for Algorithm 1
to return the correct location of the injected fault. After the location of the injected fault is identified, we
run Algorithm 2 to recover the secret key. Experimentally, we observe that if we consider 20000 normal
and faulty keystream bits then Algorithm 2 returns the correct secret key in approximately 32 seconds. The
complete experiment was performed using SageMath software [Sag17] installed in a laptop with processor
of 2.80GHz clock, 16 GB RAM and linux (Ubuntu 22.10) environment.

Table 5: Success rate of Algorithm 1 for FLIP530

m # tries |L| < 5 |L| = 1

26 100 11 0

27 100 100 95

28 100 100 100

4 DFA attack on improved filter permutators

We generalize the approach of the previous section to improved filter permutators. Following the previous
section’s architecture, we first explain how a similar differential fault attack can be mounted even with a
subset selection and a whitening. Then, we analyze the complexity of finding the error position in the case
of IFP with a result analogous to Proposition 2, and we reduce the complexity of the attack to the one of
IFP whose filter is a derivative of the initial filter. In Section 4.3, we focus on the instances of FiLIP: we
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study the derivatives of Xor-Threshold functions and investigate the attack complexity on FiLIP-DSM and
FiLIP-XOR-THR. Finally, to illustrate this DFA strategy, we implement a concrete attack on an instance of
FiLIP.

4.1 Generalizing the attack to IFP

In the following, we show that the DFA attack on FP can be generalized to IFP and analyzed similarly.
Without the fault injection the i-th output of FiLIP can be written as si = f(Pi(Si(x)) + ωi), where (in
contrast with FLIP) Si is a n-out-of-N subset, and wi a public vector from Fn2 . Since Pi, Si and ωi are
known, each keystream bit can be written as:

si = g(P ′i (x+ ω′i)),

where:

– g ∈ BN is the direct sum of f and the null function on N − n variables.
– P̃i is the N to N wire-cross permutation consisting in applying Pi over Si to get the first n bits and

mapping the [N ] \ Si other indexes from n+ 1 to N .
– w̃i is the whitening vector of length N defined as w̃i(j) = wi(Pi[Si[j]]) if j ∈ Si and 0 otherwise.

Then, when a fault has been injected in the j-th position of the key register, the i-th produced output can be
written as s′i = g(P̃i(x+ ω̃i + ej)) and therefore:

s”i = si + s′i = g(P̃i(x+ ω̃i)) + g(P̃i(x+ ω̃i + ej)) = DP̃i(ej)
g(P̃i(x+ ω̃i)).

Note that g(x) and g(x + ω̃i) have the same cryptographic properties; hence we can apply the same attack
as in Section 3, and in this case, the complexity of the attacks depend on the properties of Dej′g.

4.2 DFA on improved filter permutators and filter properties

Determining the fault position

Proposition 6. Let g be an N -variable function with influence sets Inf0(g) and Inf1(g), a DFA adversary
can recover the fault position j ∈ [N ] of FiLIPf using m keystream bits s”i with the time complexity
O(mN), and the success probability Pr [L = {j}].

– If 0 < ` = min(|Inf0(g)|, |Inf1(g)|) then Pr [L = {j}] ≥ 1− (N − 1)
(
1− `

N−1

)m
.

– If |Infε(g)| 6= 0 and |Inf1−ε(g)| = 0 for ε ∈ {0, 1} then:

Pr [L = {j}] ≥ B
(
m′,m, p

)(
1− (N − 1)

(
1− `

N − 1

)m′)
,

where m′ ∈ [m] and p = ε+ (1− 2ε) 1
N

∑N
j′=1 infj′(f).

Proof. The proof is very similar to the one of Proposition 2, seen over g (the N -variable function) rather
than f , the only difference is the addition of a whitening ωi which randomizes the input of f (the n-variable
function).

We begin with the case where Inf0(g) and Inf1(g) are both not empty. Denoting ` = min(|Inf0(g)|, |Inf1(g))|,
each equation alone allows removing at least ` possible positions for j. Since the permutations P̃i are
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uniformly distributed, we can estimate the number of equations needed before having the set L containing
only j using the "balls-in-bins" approach. Each equation gives at least ` random positions of [N ] \ {j}, then
the probability for one of the N − 1 positions (seen as bins), called j′, to have not been removed after m
equations (seen as m launches of at least ` balls) is: Pr [j′ ∈ L] ≤

(
1− `

N−1

)m
. Having only j in L after

m equations corresponds to having N − 1 other positions appearing in at least one equation, hence by union
bound after m equations Pr [L = {j}] ≥ 1− (N − 1)

(
1− `

N−1

)m
.

When only one of the influence sets is non-null, only one part of the equations allows removing potential
positions. In the case Inf1(g) 6= ∅ (respectively Inf0(g) 6= ∅) only the equations such that s”i = 0
(respectively s”i = 1) allow to decrease L in Algorithm 1. Hence, we can study the probability of the
algorithm returning j similarly as before by pondering it by the probability Pr [s”i = 1]. More precisely, the
probability of getting at least m′ over m equations such that s”i = 0 (respectively s”i = 1) is given by
a binomial law with parameter p = 1 − Pr [s”i = 1] (respectively (p = Pr [s”i = 1]). Hence we compute
Pr [s”i = 1].

We know that s”i = DP̃i(ej)
g(P̃i(x+ ω̃i)) therefore since Pi, Si and ωi are uniformly distributed:

Pr [s”i = 1] = Pr
[
g(P̃i(x+ ω̃i) 6= g(P̃i(x+ ω̃i + ej)

]
= Pr

[
g(P̃i(x+ ω̃i) 6= g(P̃i(x+ ω̃i + ej) | P̃i(j) ∈ Si

]
· Pr
[
P̃i(j) ∈ Si

]
+ Pr

[
g(P̃i(x+ ω̃i) 6= g(P̃i(x+ ω̃i + ej) | P̃i(j) 6∈ Si

]
· Pr
[
P̃i(j) 6∈ Si

]
=

n

N
Pr
[
f(Si(P̃i(x+ ωi))) 6= f(Si(P̃i(x+ ω̃i + ej)))

]
+ 0,

where the last equation comes from the fact that Si is taken uniformly at random from the set of n-out-of-N
subsets, and the N − n last inputs of g have no influence. Then, denoting by x′ the restriction of x over Si,
Pr [s”i = 1]

=
n

N

n∑
j′=1

Pr
[
f(Si(P̃i(x+ ωi))) 6= f(Si(P̃i(x+ ω̃i + ej))) |Si(P̃i(j)) = j′

]
· Pr
[
Si(P̃i(j)) = j′

]
=

1

N

n∑
j′=1

Pr
[
f(Pi)(x

′ + ωi) 6= f(Pi)(x
′ + ωi + e′j)

]
=

1

N

n∑
j′=1

infj′(f) = pg,

where the second equation comes from the fact that both Si and Pi are taken uniformly at random. The
last equation comes from the fact that the influence of a variable is invariant to the addition of a constant,
∀a ∈ Fn2 , ∀i ∈ [n]:

infi(f(x)) =
#{x ∈ Fn2 | f(x) 6= f(x+ ei)}

2n
,

=
#{x ∈ Fn2 | f(x+ a) 6= f(x+ a+ ei)}

2n
= infi(f(x+ a)).

Hence, in the case Inf1(g) 6= ∅ (respectively Inf0(g) 6= ∅), the algorithm recovers j with probability:

Pr [L = {j}] ≥ B
(
m′,m, p

)(
1− (N − 1)

(
1− `

N − 1

)m′)
,
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where m′ ∈ [m], and p = 1− pg (respectively p = pg).
We finish with the time complexity of Algorithm 1. Since for each equation used by the algorithm

it computes at most max(|Inf0(g)|, |Inf1(g)|) indexes to remove from L, its time complexity is (roughly)
upper bounded by O(Nm).

Remark 1. All instances of IFP use N > n, then Inf0(g) is not empty, it contains at least N − n elements.
Moreover, for all filter functions f that are the direct sum of an XOR part and another function such as
all candidate instances [MCJS19a,MCJS19b,HMR20,CDPP22,MPP23], the XORk part provides already k
elements in Inf1(g). Accordingly, for such filter functions the first case of Proposition 6 always applies, both
0-influence set and 1-influence set can be used.

Attack on Dej′g. Using Algorithm 1 and Proposition 6 an adversary can determine the fault position and
then perform an attack on the system given by Dej′g, using the general approach described in Section 3.2
adapted to the IFP. It gives a time complexity of O(T1 + T2), where T1 is the complexity of determining
the position j of the fault, and T2 can be taken as the complexity of the best attack against FiLIP with filter
function De′j

g.

4.3 Differential properties of Xor-Threshold and attack on FiLIP

Derivative of Xor-Threshold functions FiLIP instances use filter functions which are DSM or Xor-
Threshold functions, since the influence properties of DSM are already given in Proposition 4, we study
the ones of Xor-Threshold in the following. The standard cryptographic properties (algebraic immunity,
nonlinearity, resilience, · · · ) of these functions were studied in [CM22].

Proposition 7. Let f ∈ Bn a Xor-Threshold XORk + Td,m and i ∈ [n], the following holds on Deif :

– If xi does not appear in the ANF of f , then Deif is the constant function 0.
– If xi appears in the XORk part then Deif is the constant function 1.
– If xi appears in the threshold part Td,m of f then Deif is a the indicator function of the set Ed−1,m−1.

Proof. The first and second cases are the same as in Proposition 3. We focus on the third case. In this
case, we write x as (y, z) to split the part y in the xor and the part z in the threshold and write x + ei
as (y, z + ej). Thereafter f(x + ei) = x + Td,m(z + ej) and f(x + ei) differs from f(x) if and only if
Td,m(z + ej) 6= Td,m(z). Since the Hamming weights of z and z + ej have a difference of 1, the threshold
function gives a different output if and only if the Hamming weight of z without the j-th variable is d − 1.
Thereafter Deif(y, z) = 1Ed−1,m−1

(z1, . . . , zj−1, zj+1, . . . , zm), where 1Ed−1,m−1
denotes the characteristic

function of the set Ed−1,m−1.

Proposition 8. Let n ∈ N∗ and f ∈ Bn be a Xor-Threshold function XORk + Td,m with 2 ≤ d ≤ m:

– |Inf0(f)| = n− k −m.
– |Inf1(f)| = k.

Proof. As shown in Proposition 4’s proof, infi(f) = 0 if and only if Deif is the null function, and infi(f) =
1 if and only if Deif is the constant function 1. Using Proposition 7 Deif is null when xi does not appear in
the ANF of f (the n−m−k mute variables), Deif is the constant function when xi appears in the XORk part.
Since 2 ≤ d ≤ m, the function 1Ed−1,m−1

is not constant, therefore we can conclude |Inf0(f)| = n− k−m
and |Inf1(f)| = k.
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The attack strategy of Section 3.3 naturally extends to FiLIP-DSM instances, in the following we
describe one strategy tailored to FiLIP-XOR-THR based on the derivatives of these functions. First the
fault position j is determined with Algorithm 1 using that both |Inf1(g)| 6= 0 and |Inf0(g)| 6= 0 for these
filters (Proposition 8). Then, we consider the following attack strategy S2 which takes in consideration that
for a Xor-Threshold function Deif is often constant and gives few usable equations to determine the key
variables.

Strategy S2: The attacker collects the equations where DP̃i(ej)
g(P̃i(x + ω̃i)) is the indicator of an

hypercube slice Ek,n′ and s”i = 1. These equations correspond to the cases where the n′ + 1 variables
with the associated whitening in input to the threshold function, minus the faulted position, give a vector of
Hamming weight exactly k. For one such equation, renaming these variables y1, . . . , yn′ and the associated
(public) whitening z1, . . . , zn′ the attacker can derive the linear equation

∑n′

i=1 yi+zi = (k mod 2). Then,
the attacker collects (at least)N−1 such equations and solves the linear system. Finally, the faulted variable
or a few undetermined variables, if the system is redundant, are recovered by taking equations given by si
where these variables appear in the XOR part.

Proposition 9. Let f be an n-variable function XORk+Td,n′ . Assuming recovering a linear system ofN−1
equations with m samples in the first phase is sufficient to invert the remaining system in the second phase,
a DFA adversary can recover the key of FiLIPf using m ≥ N keystream bits s”i with complexity O(mω),
where ω is the exponent for the linear system exponent (2 < ω ≤ 3), and probability of success ps = p1p2,
where p1 is the probability of success of Algorithm 1 and

p2 = B

(
N − 1,m,

n′
(
n′−1
d−1
)

N2n′−1

)
,

with m′ ∈ [m].

Proof. The time complexity and success probability are obtained by analyzing the complexity of Algo-
rithm 1 and then Algorithm 3. The time complexity and success probability for Algorithm 1 come from
Proposition 2. We denote it by T1 and p1 in the rest of the proof.

The cost of Algorithm 1 apart, the time complexity of Algorithm 3 is dominated by the linear system
inversions. The two while loops have at most m iterations, doing one test and deriving one linear equation
in the first loop, doing up to t ≤ N tests and deriving one linear equation in the second loop. Since the cost
of solving the two linear systems with at most m equations in (at most) N binary variables is O(mω). It
dominates over the cost of the two loops and the cost of Algorithm 1 which is T1 = O(mN).

The success probability can be estimated as ps = p1p2 where p2 refers to the probability of determining
entirely K provided j. We assume that the probability p2 is the same as the probability of obtaining the
N − 1 equations; that is, we consider that if the attacker gets a linear system of N − 1 equations with m
samples in the first loop, then inverting this system and performing the second loop with the m samples
to find the last variables always succeed. Thereafter, we bound the probability of getting the N − 1 linear
equations. Since Si and Pi are uniformly distributed, the probability that Pi(Si(j)) belongs to [k + 1, n]
is n′/N , and then since wi is uniformly distributed, the probability that the input of the threshold function
without xj has Hamming weight d−1 is

(
n′−1
d−1
)
/2n

′−1. Finally, the probability that at least N −1 equations
over m satisfy the condition is:

B

(
N − 1,m,

n′
(
n′−1
d−1
)

N2n′−1

)
.
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Input: Keystream size m, binary stream s”i for i ∈ [m], subsets Si, permutations Pi and whitening
ωi for i ∈ [m], n, N and the parameters k, d, n′ of the Xor-Threshold function f .

Output: key K.
K := [x1, . . . , xN ] ; // key with undetermined values
j := Algorithm 1 on inputs (m, s”i for i ∈ [m], P̃i for i ∈ [m], [k], [n+ 1, N ]) ;
i := 1 ;
cpt := 0 // the counter of linear equation produced
while cpt < N − 1 & i ≤ m do

// Tests if P̃i(j) falls in the threshold part and s”i = 1
if j ∈ Si, Pi(Si(j)) ∈ [k + 1, n] & si” = 1 then

Stores the linear equation
∑n−1

`=1 y` + z` = d− 1 mod 2 // where y` and z` are the
n′ − 1 variables different from the fault entering the threshold with
xj and z` their associated whitening

end
i← i+1 ;

end
Solve the linear system ;
Update K ;
L := [t ∈ K such that xt is still undetermined] ;
` := 1 ;
while ` ≤ i do

// Keep the linear equations where no undetermined variables are in the
threshold part

if ∀t ∈ L, P̃i(t) 6∈ [k + 1, n] then
// Since all the variables in the threshold part are known, the

remaining equation is a linear equation with variables from L only.
Store the linear equation obtained by evaluating s`.

end
`← `+1 ;

end
Solve the linear system ;
return K ;

Algorithm 3: Attack strategy S2.

We finish this part by estimating the probability of success of Strategy S2 on the different instances
of FiLIP with Xor-Threshold functions (Table 3). As in Proposition 9 we assume that the N − 1 linear
equations obtained are independent and allow to recover the full key. The estimated probabilities of success
are presented in Table 6, for an example of choice for m. Note that if the N − 1 linear equations are not
sufficient to recover the full key, we can collect m′ > N − 1 linear equations; it only impacts p2 for the
success probability where the "N−1" term is changed by "m′". In these cases, with a high probability using
less than 220 samples, the adversary recovers the fault position and determines the key.
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instance N k, d, n′ |Inf0(f)| |Inf1(f)| log(m) ps ≥
2048 113, 16, 31 1904 113 20 0.999

2048 81, 32, 63 1904 81 20 0.999

1536 129, 64, 127 1280 129 19 0.999

1024 257, 128, 255 512 257 17 0.999

8192 129, 64, 127 7936 129 23 0.999

4096 257, 128, 255 3584 257 21 0.999

Table 6: FiLIP instances and DFA attacks

4.4 Concrete attack on one instance of FiLIP

To illustrate our DFA on FiLIP we consider one instance of FiLIP, the one with N = 1024 (the smallest
value of N for the instances from this family) and filter XOR257 + T128,255 (See Table 3). We simulate the
DFA attack by first collecting m normal keystream bits, and then collecting m faulted keystream bits for the
same key and IV after flipping one of the key bits. Then, we use Algorithm 1 to determine the location of
the fault. We display in Table 7 the size of L we observed depending on the value of m. For this filter, in
practice,m = 25 is sufficient to detect the position of the fault. Then, we simulate the second part of the DFA
with a simplified version of Algorithm 3, In the simulation, the faulty bit is always selected in the filter, and
we use an SAT-solver that has already been implemented to solve the linear system. The experiment using
SageMath software [Sag17] and m = 45000 took approximately 290 seconds on a laptop with processor
of 2.80 GHz clock, 16 GB RAM and linux (Ubuntu 22.10) environment. For this filter, the probability of
the faulty bit to be selected is 512

1024 = 0.5. Hence, we expect a timing of approximately 580 seconds for
Algorithm 3.

Table 7: Success rate of Algorithm 1 for FiLIP with filter XOR257 + T128,255

m # tries |L| < 5 |L| = 1

16 100 84 19

24 100 100 93

32 100 100 100

5 Conclusion and open questions

In this article we studied new theoretical differential fault attacks on the stream ciphers FLIP and FiLIP
considering the fault model where one random bit of the key is flipped before the keystream generation.
We presented DFA strategies for both ciphers which time and data complexity can be bounded using
cryptographic parameters of the derivatives (in the direction of Hamming weight one vectors) of the filter
function. More precisely, the sensitivity notions are used to detect the fault position with few keystream
bits, improving upon the DFA presented in [RBM20] and [RKMR23]. Then, the different black-box attacks
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described on the filter permutator model (for FLIP) and improved filter permutator model (for FiLIP) on a
filter f can be applied to the derivative of the filter in our context. Based on the properties of the derivatives of
DSM and Xor-Threshold functions, we proposed specialized algorithms for the different instances of FLIP
and FiLIP. Finally, we illustrated the practicability of our theoretical attacks with an example on FLIP-530
and FiLIP with filter XOR257 + T128,255.

Two main open questions arise from this work:

– DFA countermeasure. First, the complexities of the attack directly come from (standard) cryptographic
parameters of derivatives of the filter function. One interesting direction to avoid the proposed DFA on
FLIP and FiLIP is, therefore, to find Boolean functions with strong derivatives. Since the functions
used for these ciphers are already subject to different constraints, such as being cheap to evaluate
homomorphically and having good parameters even after fixing a limited number of variables, finding
an appropriate function satisfying this additional requirement is an engaging challenge. Alternatively,
finding functions with a small 0-influence set and a small 1-influence set will make the fault localization
part of the attack more costly.

– Fault model. Second, the fault model we considered flips only one bit; a natural generalization consists
of studying the attacks where the injected fault flips t bits, with t bounded but potentially unknown. In
this case, the attacks we presented could be generalized, relying on the properties of other derivatives
of the filter function. For example, if t is sufficiently small, the derivatives of f in vectors of Hamming
weight at most t could still be studied, potentially leading to successful differential fault attacks for this
more general model.
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