
Improved All-but-One Vector Commitment with
Applications to Post-Quantum Signatures

Dung Bui1, Kelong Cong2 and Cyprien Delpech de Saint Guilhem3

1 IRIF & Université Paris Cité, Paris, France
2 Zama SAS, Paris, France

3 KU Leuven, COSIC, Leuven, Belgium

Abstract. Post-quantum digital signature schemes have recently received increased
attention due to the NIST standardization project for additional signatures. MPC-
in-the-Head and VOLE-in-the-Head are general techniques for constructing such
signatures from zero-knowledge proof systems. A common theme between the two is
an all-but-one vector commitment scheme which internally uses GGM trees. This
primitive is responsible for a significant part of the computational time during signing
and verification.
A more efficient technique for constructing GGM trees is the half-tree technique,
introduced by Guo et al. (Eurocrypt 2023). Our work builds an all-but-one vector
commitment scheme from the half-tree technique, and further generalizes it to an
all-but-τ vector commitment scheme. Crucially, our work avoids the use of the
random oracle assumption in an important step, which means our binding proof is
non-trivial and instead relies on the random permutation oracle. Since this oracle
can be instantiated using fixed-key AES which has hardware support, we achieve
faster signing and verification times.
We integrate our vector commitment scheme into FAEST (faest.info), a round one
candidate in the NIST standardization process, and demonstrates its performance
with a prototype implementation. For λ = 128, our experimental results show a
nearly 3.5-fold improvement in signing and verification times.
Keywords: Vector commitment · Correlation robustness · Post-quantum signature
· Zero-knowledge proof

1 Introduction
Many signature schemes are built from zero-knowledge (ZK) proofs, which allows a
prover, who holds a secret witness, to convince a verifier that this witness satisfies some
public statement without revealing any other information about the witness. From digital
signature schemes to privacy-preserving electronic voting, ZK proofs have many applications
and are widely used in practice.

Due to the threat of quantum computing, there is a strong demand for post-quantum
ZK proofs and signature schemes. A powerful, generic technique called MPC-in-the-
Head (MPCitH), introduced by Ishai et al. [IKOS07], has been applied to build many
efficient proof systems [KKW18, BN20, DOT21, FJR22, AGH+23, CCJ23]. Many of
these can be used to construct signature schemes using the Fiat–Shamir transform [FS87]
since MPCitH protocols are always public-coin. In this line of work, the proof size and
the computational complexity are inherently linear in the circuit size, where the circuit
represents the statement that the prover wishes to prove. As such, the research community

E-mail: bui@irif.fr (Dung Bui), kelong.cong@zama.ai (Kelong Cong), cyprien.
delpechdesaintguilhem@kuleuven.be (Cyprien Delpech de Saint Guilhem)

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2024-01-22.

https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0002-0147-2566
faest.info
mailto:bui@irif.fr
mailto:kelong.cong@zama.ai
mailto:cyprien.delpechdesaintguilhem@kuleuven.be
mailto:cyprien.delpechdesaintguilhem@kuleuven.be
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Improved All-but-One VC with Applications to PQ Signatures

has given a lot of attention to reducing the concrete costs incurred by MPCitH proof
system.

Another line of work which also has linear computation and communication complexity
is called VOLE-based ZK proofs [WYKW21, BMRS21, YSWW21], which are typically
more efficient than most MPCitH protocols. However, these protocols assume the existence
of vector oblivious linear function evaluation (VOLE) correlations between the prover and
the verifier, which can be generated efficiently using two-party protocols [BCG+19]. Due of
this requirement, VOLE-based protocols could not operate in the public-coin model, until
the introduction of the VOLE-in-the-Head (VOLEitH) approach by Baum et al. [BBD+23].
In addition to a generic ZK proof system, Baum et al. used this approach to build the
FAEST post-quantum signature scheme, only based on AES and hash functions, which
outperforms prior MPCitH constructions when AES is used as the circuit/statement.

A common requirement between the two techniques, MPCitH and VOLEitH, is the
need to commit to a set of randomness (e.g., transcript of the parties) and then to reveal
all but one element in this set. This can be accomplished using GGM trees [GGM84] where
a single seed is expanded to many leaves using a length-doubling PRG. Revealing all but
one leaf then requires a communication cost that is only logarithmic in the total number
of leaves since the prover can simply send the co-path to the verifier, and the verifier can
expand the sub-trees defined by this co-path to obtain all the leaves except one.

In 2023, Guo et al. introduced the notion of correlated GGM trees [GYW+23] where
the authors replaced the length-doubling PRG using the more efficient Davies–Meyer
construction [Win84]. This change reduces the number of PRG calls by a half for the
intermediate nodes of the GGM tree, hence the name “half-tree”. The authors constructed
a puncturable pseudorandom function (PPRF) from such correlated GGM trees and showed
how it can be applied to two-party protocols such as correlated oblivious transfer (COT)
and distributed point function (DPF) evaluation.

However, the construction by Guo et al. [GYW+23] is not directly compatible with
MPCitH and VOLEitH protocols to improve their efficiency since these protocols instead
require an all-but-one vector commitment scheme, which is a stronger primitive than a
PPRF. This work constructs an all-but-one vector commitment scheme using correlated
GGM trees and demonstrates how it can be applied to post-quantum ZK proof systems
and signature schemes.

1.1 Contributions
Our contributions are summarized below.

1. We propose an all-but-one vector commitment (VC) scheme VCHT in Section 4 and
prove its binding and hiding properties. Our VC construction is based on the half-tree
technique, which uses a circular correlation robust (CCR) hash function, and leads
to better concrete efficiency than the PPRFs used in existing MPCitH schemes.
In particular, we reduce the number of AES calls by a half in the intermediate nodes
and replace the leaf expansion procedure with fixed-key AES, which is about 50×
faster than SHAKE.

2. Our security proof of the binding property is not trivial and relies on modelling our
chosen instantiation of the (CCR) hash function using a random permutation oracle.
This is an alternative model to the random oracle and it can be instantiated using
more efficient primitives such as fixed-key AES.

3. We generalize the notion of our all-but-one VC scheme VCHT to the all-but-τ case,
making use of multiple correlated trees, denoted by VCMT(N, τ) (Section 5). This
captures the setting where τ repetitions of VCHT of size N are used. Using VCMT(N, τ),

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 3

we estimate 2-fold improvement in both proving and verification times in a state-
of-the-art MPCitH system [AGH+23] by running their implementation. In the
all-but-τ setting, we additionally show the security can be improved using different
instantiations of the CCR hash function (Section 6).

4. Finally, we give a prototype implementation (Section 7) of the FAEST signature
scheme that uses our all-but-τ VC scheme and perform experimental evaluation.
The improved reference implementation is between 1.11× and 1.57× faster across all
parameter sets. The optimized implementation is nearly 3.5× faster for λ = 128.

1.2 Related Work
1.2.1 MPC-in-the-Head

The state of the art MPCitH based signatures use a variety of problems as the statement in
the ZK proof such as the syndrome decoding problem [FJR22, AGH+23, CCJ23], the min
rank problem [ABC+23] and so on. In this work, we are not concerned with the concrete
hard problem, but the core idea from the seminal work of [IKOS07] which is a compiler
that can convert an MPC protocol into an honest-verifier zero-knowledge (HVZK) proof.
Suppose we have an MPC protocol with the following properties:

• N parties (P1, · · · , PN), each party hold an additive share Jx⃗Ki of input x⃗ and their
goal is to securely evaluate a function f : {0, 1}∗ → {0, 1} on x⃗.

• Secure against passive corruption of N − 1 parties i.e the view of (N − 1) parties
does not reveal any information about the secret x⃗.

Then the HVZK proof of knowledge of x⃗ such that f(x⃗) = 1 is constructed as follows:

• Prover additively shares the witness x⃗ into (Jx⃗K1, . . . , Jx⃗KN) among N virtual parties
(P1, · · · , PN) and emulate the MPC protocol “in the head”.

• Prover sends commitments to the view of each party to the verifier.

• Verifier chooses randomly (N − 1) parties and asks Prover to open the view of these
parties except one. Verifier later accepts if all the views are consistent with an honest
execution of MPC protocol with output 1 and the commitment.

For efficiency, the GGM tree is used to stretch the witness and open the view of N − 1
parties with a communication cost of only O(λ log2 N). The GGM tree needs to have a
specific structure where the last leaves are obtained from a random oracle and these leaves
are then used as the shares of witness and input to a commitment scheme, to commit the
view of the parities. To ensure the soundness and the ZK properties, this commitment
scheme needs to have (extractable) binding and hiding respectively. From this point of
view, an all-but-one vector commitment (detailed in Section 3.3) can be directly plugged
into MPCitH protocols.

1.2.2 VOLE-in-the-Head and All-but-One VC

The VOLEitH technique, introduced by Baum et al. [BBD+23], turns a designated verifier
proof system based on VOLE such as Wolverine [WYKW21] and QuickSilver [YSWW21]
into a public-coin proof system. In more detail, if the prover holds (u⃗, v⃗) and the verifier
holds (w⃗, ∆) such that the correlation w⃗ = u⃗∆ − v⃗ holds, it is possible to create a very
efficient ZK proof for circuits. Another way to view the correlation above is in the form of
information-theoretic message authentication codes (IT-MAC) on the vector u⃗, where v⃗
is called the MAC and w⃗ is called the MAC key. However, a setup phases is needed to

4 Improved All-but-One VC with Applications to PQ Signatures

produce the correlation above which makes such proof systems only work in the designated
verifier setting.

The central observation in the VOLEitH technique is that the verifier does not need
(w⃗, ∆) at all in the VOLE-based proof system until the final step where it performs the
MAC check. To remove the setup step, the prover commits to (u⃗, v⃗) and then runs the
VOLE-based proof system with the verifier. At the end, the verifier sends the challenge ∆
which then allows it to compute w⃗.

The procedure above makes use of an all-but-one vector commitment (VC) scheme,
defined by Baum et al. [BBD+23], where the prover commits to the leaves of a GGM tree
and hides one of the leaves. The opening essentially reveals the hidden leaf and binds it to
the initial commitment. The definition of the all-but-one VC is given in Section 3.3 and
how VC is turned into VOLE correlations is detailed in Section 7.3.

1.2.3 Correlated GGM Tree

The correlated GGM tree technique, by Guo et al. [GYW+23], is a key building block in
our construction, which we explain in more detail in Section 2.

1.3 Concurrent Work
Recently, Cui et al. [CLY+24] also proposed to use the half tree optimization on the
FAEST signature schemes, the result is a new scheme called ReSolveD. However, since
ReSolveD only applied the half-tree construction to compute intermediate nodes of the
tree instead of using it for the entire tree i.e., to construct the leaves that are later used to
define seeds and commitments. Therefore, ReSolveD still needs to call SHAKE to expand
a leaf node into a seed and a commitment of length 3λ, which is the primary bottleneck,
whereas our construction uses AES for this step. As a result, our scheme outperforms
both constructions in terms of signing and verification time.

2 Technical Overview
We begin with an overview of the components and techniques used in this work.

2.1 Correlated GGM Tree
Consider the GGM-based punturable pseudorandom function where one party has a master
sd and then expandss it into a binary tree of depth log2 N with N leaves {sd0, . . . , sdN−1}
by using a length-doubling PRG. To reveal all the seeds except sdi, for a given i, the party
only needs to send log2 N nodes on the co-path from the root sd to the i-th leave. An
example is given in Figure 1.

sd $← {0, 1}λ

X0

sd0 sd1

X1

sd2 sd3

X0∥X1 ← PRG(sd)
sd0∥sd1 ← PRG(X0)
sd2∥sd3 ← PRG(X1)

Figure 1: Example of a GGM tree.

Recently, a variant of GGM trees called correlated GGM trees was introduced to
optimize both the communication and computation cost of GGM tree using the half-tree
technique [GYW+23]. Following the Davies–Meyer construction [Win84], for a parent x,

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 5

the left child is constructed using H(x) and the right child is constructed using H(x)⊕ x.
We give an example in Figure 2.

Consequently, the sum of all nodes on every layer of the tree is always equal to
an certain offset ∆. The pseudorandomness of the hidden leaf is guaranteed when H
has the circular correlation robustness (CCR) property which we detail in Definition 2.
Informally, this means the adversary cannot distinguish between the real oracle defined as
Occr

H,∆(x, b) := H(x⊕∆)⊕ b ·∆ and an ideal oracle that outputs the result of a random
function. Existing instantiations of CCR-secure functions H are all based on a random
permutation π : {0, 1}λ → {0, 1}λ and a linear orthomorphism σ : {0, 1}λ → {0, 1}λ, where
λ is the security parameter [GKWY20].

?
X0

$← {0, 1}λ

sd0 ← H(X0) sd1 ← sd0 ⊕X0

X1 ← X0 ⊕∆, ∆ $← {0, 1}λ

sd2 ← H(X1) sd3 ← sd2 ⊕X1

Figure 2: Example of a correlated GGM tree.

2.2 Vector Commitment from Half-Tree
Taking advantage of correlated GGM trees, we propose an all-but-one vector commitment
construction VCHT. In our construction, the root sd is first expanded into two children
X0, X1 using a length doubling PRG. Then, the intermediate nodes are computed the same
way as in a correlated GGM tree using a CCR hash function Hccr where the correlation
∆ = X0 ⊕X1 is defined by the first level nodes. Finally, once the tree is expanded, we use
the technique from Guo et al. [GYW+23] to derive both a message sdi and a commitment
comi using the same Hccr (and not a random oracle) while taking care to break the
correlation with ∆ so that revealing of all the commitments does not leak additional
information. To maintain security, we modify the way to compute the commitment comi,
instead of calling Hccr once, we use the concatenation of two Hccr calls to extend the length
of comi to be 2λ, this helps us to avoid a collision attack in the commitment scheme
against the binding property.

We then formally prove that our VCHT construction satisfies hiding and straight-line
extractable binding. Specifically, the original all-but-one vector commitment construc-
tion [BBD+23] relies on the random oracle model for its security proof. This is not possible
in our construction since one of the random oracles is replaced by the CCR oracle. Our
insight is to rely on the specific instantiation of CCR-secure function Hccr that is built on
top of a public permutation. This observation allows us to “partially” model Hccr using a
random permutation oracle (RPO), which is similar to a random oracle except input and
output have the same length and must be a permutation.

In term of efficiency, we instantiate Hccr(x) : {0, 1}λ → {0, 1}λ as Hccr(x) := π(σ(x))⊕
σ(x). For λ = 128, the permutation π is implemented by using fixed-key AES which can
be up to 50× faster than using a cryptographic hash function due to hardware support
for AES provided by modern processors [BHKR13]. For the intermediate nodes, our
construction reduce the number of calls to AES by a half compared to other MPCitH
schemes based on GGM tree [BDK+21, FJR22, AGH+23, BBD+23]. Additionally, many
tree expansion algorithms are implemented using AES counter mode [FJR22] which is less
efficient than fixed-key AES used in our protocol, due to the key schedule. Regarding the
leaf nodes, which may be used as shares of the witness and/or shares of the preprocessing
material of the virtual parties in MPCitH protocols, our construction only needs AES calls
instead of SHAKE calls [BBD+23]. For λ ∈ {192, 256}, we instantiate the permutation

6 Improved All-but-One VC with Applications to PQ Signatures

using Rijndael since AES does not support block sizes other than 128.

2.3 Generalized to Multi-instance Vector Commitment
We expect our VCHT scheme can be used to optimize all the existing MPCitH and
VOLEitH signatures based on the GGM tree or Punturable PRF [BDK+21, FJR22,
AGH+23, CCJ23, BBD+23] in both signing and verification times. For all of these
schemes, to maintain the soundness of the underlying special honest verifier zero-knowledge
protocol [FJR22, AGH+23, CCJ23] or to have a better performance [BBD+23], parallel
repetition is needed with different input and randomness τ times (τ is usually between 10
and 30). Therefore, we generalize our VCHT to multi-instance vector commitment denoted
by VCMT, and introduce multi-hiding and multi-binding definitions that are based on single
hiding and binding.

Specifically, our VCMT run parallel τ different single VCHT in the same security setting
i.e., depth of the tree, hash function, permutation for CCR in each tree (same iv), except
for each tree the offset ∆i are generated independently, using the same method as in the
single tree setting. The randomness of PRG and sdi allow us to reduce the security of our
multi-instance VCMT in the multi-hiding game to that of VCHT in the single-hiding game.
Additionally, our VCMT satisfies multi-extractable binding where the proof directly follows
from the single tree case as well.

2.4 Better Concrete Security
Since the goal of our VCHT is to improve the efficiency of digital signature schemes while
preserving their security, we need to make sure the advantage AdvEUF-CMA

A (λ) of A in
EUF-CMA (existential unforgeability under adaptive chosen-message attacks) game is
negligible i.e., the verifier cannot produce a valid signature for an unsigned message after
making polynomially-many queries to a signing oracle.

When using our VC scheme within an MPCitH signature scheme Sig, where the signer
produces the tree expansion, the advantage AdvAdpHiding

A,VCHT
(λ) in the hiding game counts

towards AdvEUF-CMA
A,Sig (λ). Therefore, we investigate using two different variants of the CCR

hash function: tweakable CCR and multi-tweakable CCR. These result in two variants
of our VCHT scheme with tighter concrete security at the expense of slightly increased
computation.

In our concrete instantiation, the AES-based Hccr is (t, q, ρ, ϵ)-circular correlation robust
where ϵ = O((qt + q2)/2λ), A makes q queries in running time t (t can be considered as the
number of AES calls made by A). The first variant uses tweakable CCR to get a smaller ϵ
while the second variant of VC from multi-instance tweakable TCC in the ideal cipher
model (using different permutations for every single tree) that allows ϵ = O(q/2λ). The
details are shown in Section 6.

3 Preliminaries
We recall various security definitions of hash functions that are securely implemented using
a block-cipher (circular correlation robustness, tweakable and multi-tweakable circular
correlation robustness). Since all of these hash functions are instantiated and proved secure
in random permutation model (RPM) or ideal cipher model (ICM), we also define these
oracles. The definition of all-but-one vector commitment [BBD+23] is shown in Section 3.3
followed by the real-or-random hiding and extractable-binding games.

Notation. Let λ denote a computational security parameter. If b is a bit, let b̄ denote
its negation. For N ∈ N, let [N] denote the set {0, . . . , N − 1}. We let negl(λ) denote any

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 7

function that is negligible in the security parameter.

3.1 Oracles
The random permutation model (RPM) assumes that all parties have oracle access to a
public permutation π : {0, 1}n → {0, 1}n (selected at random from the set of permutations)
and its inverse π−1. An ideal cipher is an ideal primitive that models a random block
cipher E : {0, 1}λ×{0, 1}n → {0, 1}n. Each key k ∈ {0, 1}λ defines a random permutation
Ek = E(k, .) on {0, 1}n. The ideal primitive provides oracle access to E and E−1; that
is, on query (0, k, m), the primitive answers c = Ek(m), and on query (1, k, c), the
primitive answers m such that c = Ek(m). Modelling a fixed-key block cipher as a random
permutation is weaker than modelling the block cipher as an ideal cipher; in particular,
related-key attacks are not relevant in the fixed-key setting [CPS08, GKWY20].

Definition 1 (Random Permutation Oracle (RPO)). Given k ∈ {0, 1}λ, let πk : {0, 1}λ →
{0, 1}λ be a permutation selected uniformly at random. The random permutation oracle
Oπ is defined as follows:

• On input x ∈ {0, 1}λ, outputs πk(x).
• On input (inv, x), outputs π−1

k (x).

In this work, we denote the query and response of Oπ as (x,Oπ(x)), since the queries
for the inverse of permutation can be considered as (O−1

π (x), x).

3.2 Hash Function
Definition 2 (Circular Correlation Robustness (CCR) [GKWY20]). Let H : {0, 1}λ →
{0, 1}λ, χ be a distribution on {0, 1}λ, and Occr

H,∆(x, b) := H(x⊕∆)⊕ b ·∆ be an oracle for
x, ∆ ∈ {0, 1}λ and b ∈ {0, 1}.

H is (t, q, ρ, ϵ)-circular correlation robust if, for any distinguisher D running in time at
most t and making at most q queries to Occr

H,∆(·, ·), and any χ with min-entropy at least ρ,
it holds that ∣∣∣∣ Pr

∆←χ

[
DO

ccr
H,∆(·,·)(1λ) = 1

]
− Pr

f←Fλ+1,λ

[
Df(·,·)(1λ) = 1

]∣∣∣∣ ≤ ϵ,

where D cannot query both (x, 0) and (x, 1) for any x ∈ {0, 1}λ.

A CCR hash function can be constructed from a fixed-key block cipher (e.g., AES)
modelled as a random permutation and a linear orthomorphism [GKWY20]. Specifically,
the construction Hccr(x) = AES(σ(x)) + σ(x) is proven to be secure, where σ is the linear
orthomorphism. The authors give two efficient constructions for the linear orthomorphism.
(1) If x is in a finite field, then we can define σ(x) = c · x, where c ̸= {0, 1}. (2)
In the bit-vector representation, another orthomorphism can be defined as σ(xl∥xr) =
(xl ⊕ xr)∥xl. The overhead introduced by the orthomorphism is negligible compared to
running AES [GKWY20].

3.3 Vector Commitment Schemes
A (non-interactive) vector commitment (VC) scheme (with message space M and com-
mitment space C) in the RO model is defined by four PPT algorithms (SetupH, CommitH

crs,
OpenH

crs, VerifyH
crs) (see [BBD+23] for details) which satisfy correctness, binding and hiding.

We also say a VC scheme is iv-based if some of its internal components require an initial-
isation vector. Although three out of the four algorithms take crs as an implicit input, we
do not work in the CRS model that is common in other proof systems since we do not
require a trusted setup. The CRS in our work can be considered as a public parameter.

8 Improved All-but-One VC with Applications to PQ Signatures

When constructing a VC scheme using the half-tree technique, we need to ensure the
hiding property still holds; that is, seeds at unopened indices remain hidden, even after
opening a subset of indices.

Definition 3 (VC Real-or-Random Hiding [BBD+23]). Let VC be an iv-based vector com-
mitment scheme in the RO model with random oracle H. The adaptive hiding experiment
for VC, AdpHiding, with N = poly(λ) and stateful A is defined as follows.

1. crs← SetupH(1λ, N)

2. b
$← {0, 1}

3. sd $← {0, 1}λ, iv $← {0, 1}λ

4. (com, decom, (sd∗1, . . . , sd∗N))← CommitH
crs(sd, iv)

5. I ← AH(1λ, crs, com)

6. pdecomI ← Opencrs(decom, I)

7. sdi ← sd∗i for i ∈ I

8. For i /∈ I, sdi ←

{
sd∗i , if b = 0

$←M, otherwise

9. b′ ← A({sdi}i∈[N], decomI , iv).

10. Output 1 (win) if b′ = b else 0 (lose).

The selective hiding experiment for VC, SelHiding, is defined similarly but A must choose I
prior to receiving com.

We define A’s advantage as:

AdvAdpHiding
A,VC (λ) = Pr[A wins AdpHiding]− 1

2 ,

and similarly for the SelHiding game.
We say VC is adaptively (resp. selectively) hiding if every PPT adversary A has negligible

advantage in the respective game.

We must also show that a VC scheme is extractable-binding, so that, after committing,
an adversary is bound to the messages contained in the commitments, except for the one(s)
that it does not open.

Definition 4 (VC Extractable-Binding). Let VC be a vector commitment constructed
from two hash functions H1 and Hccr and let Ext be a PPT algorithm defined as:

• Ext (pp, (Q1, Qπ), com)→ (sdi)i∈[N]: given an instance of VC public parameters pp,
query-response lists Q1 and Qπ, and a commitment com ∈ C, return the messages
committed to by com. (Ext may output sdi = ⊥ to signify an invalid commitment.)

For any N ≤ poly(λ) and stateful adversary A, we define the straight-line extractable-
binding game, ExtBind, against VC as follows:

1. pp← SetupH1,Hccr (1λ, N)

2. com← AH1,Hccr (1λ, pp)

3. {sd∗i }i∈[N] ← Ext(pp, (Q1, Qπ), com).

4. (I, pdecomI)← AH1,Hccr (open)

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 9

5. Ouput 0 (failure) if:

• VerifyH1,Hccr (com, j∗, pdecomj∗) = ⊥, i.e., the opening is not valid; or
• VerifyH1,Hccr (com, j∗, pdecomj∗) = {sdi}i∈I and sdi = sd∗i for all i ̸= j∗, i.e., the

opening is valid but extraction by Ext was successful.

6. Otherwise, output 1 (success).
We define A’s advantage as AdvExtBind

A,VC (λ) = Pr[1← ExtBind].
Let A be any PPT adversary with oracle access to H1 and Hccr, resulting in query-

response lists Q1 and Qπ respectively. Note that Qπ stores the permutation queries which
is used internally by Hccr. We say VC is straight-line extractable-binding w.r.t. Ext if

AdvExtBind
A,VC (λ) ≤ negl(λ).

To prove VC extractable-binding, we use a lemma about collisions in random oracle
below.
Lemma 1 (Collisions in random oracle). Given a collision-resistant hash function H :
{0, 1}∗ → {0, 1}2λ and H is modeled as an random oracle. For any PPT algorithm making
q queries to H has probability of at most q2/22λ encountering a collision.

4 The Half-Tree Construction
In this section, we use the half-tree technique of Guo et al. [GYW+23] to construct a
vector commitment scheme. While their work improved the state-of-the-art schemes such
as PPRF, DPF and COT by reducing the number of random permutation calls and the
communication by a half; we show that the half-tree technique can also be used to construct
a vector commitment scheme with strong security, i.e., adaptive hiding and straight-line
extractable binding. Our construction is provably secure in the random permutation model
and the random oracle model.

Our vector commitment construction closely follows the half-tree construction of Guo et
al. [GYW+23] except that we break the correlation on the leaf nodes to produce (sdi, comi)
using Hccr, the same function used to expand the tree. This is because in the proof we need
to create the secret un-opened leaf using the CCR oracle without knowing the nodes leading
to the secret leaf. Specifically, we define (sdi = Hccr(Xi), comi := Hccr(Xi⊕ 1)∥Hccr(Xi⊕ 2)
where Xi is corresponding parent in previous layer. The final commitment com to the
tree is still computed using the random oracle H1 as in the FAEST specification. Our
construction, which we name VCHT, is given in Figure 3.

4.1 All-but-one Hiding Security
We first prove that our half-tree based construction VCHT is all-but-one-hiding.
Remark 1. Guo et al. proved that their Hccr construction in the random permutation
model is (t, |Qπ|, ρ, ϵccr)-circular collision resistant [GKWY20, Theorem 5] with

ϵccr = 2t|Qπ|
2ρ

+ |Qπ|2

2λ+1 .

Other constructions of Hccr exist, which we explore in Section 6, that offer better security
but less efficiency.
Theorem 1. VCHT is all-but-one adaptive hiding Let Hccr be (t, q, ρ, ϵ)-circular correlation
robust and let H1 be a random oracle Then, for any adversary A in the adaptive hiding
vector commitment game against the VCHT scheme making |Q1| queries to H1, we have

AdvAdpHiding
A,VCHT

(λ) ≤ |Q1|
22λ

+ AdvPRG
BPRG,PRG(λ) + ϵ.

10 Improved All-but-One VC with Applications to PQ Signatures

Figure 3: VCHT(N) the all-but-one vector commitment.

Parameters:
• Tree size N = 2d ∈ N, computational security parameter λ.
• Hccr : {0, 1}λ → {0, 1}λ circular correlation-robust hash function.
• H1 : {0, 1}∗ → {0, 1}2λ collision-resistant hash function.

Setup(1λ, N):
1. Compute crs0 ← Hccr.Setup(1λ) resp. crs1 ← H1.Setup(1λ).
2. Define crs = (λ, d, crs0, crs1), which is implicitly input to all other algorithms.

Commit(sd, iv):
1. Compute X0∥X1 ← PRG(sd, iv; 2λ).
2. Compute ∆ := X0 ⊕X1.
3. For i ∈ [2, d], define

Xb1,...,bi−1,0 = Hccr(Xb1,...,bi−1),
Xb1,...,bi−1,1 = Hccr(Xb1,...,bi−1)⊕Xb1,...,bi−1

where each bj ∈ {0, 1} for all j ∈ [1, i− 1].
4. For j ∈ [0, N − 1], bit-decompose j as

∑d

i=1 2d+1−i · bi for bi ∈ {0, 1}, let

sdj := Hccr(Xb1,...,bd) and comj := Hccr(Xb1,...,bd ⊕ 1)∥Hccr(Xb1,...,bd ⊕ 2).

5. Compute com := H1(iv∥com0∥ . . . ∥comN−1).
6. Output the commitment com, the opening decom := (∆, X) and the seeds (sd0, . . . ,

sdN−1).

Open(decom = (∆, X), j∗ ∈ [N]):
1. Bit-decompose j∗ as

∑d

i=1 2d+1−i · bi for bi ∈ {0, 1}, compute the path Kj∗ =
{Xb̄1 , Xb1,b̄2 , . . . , Xb1,b2,...b̄d

} as in Commit.
2. Output the all-but-one opening pdecomj∗ := (comj∗ , Kj∗).

Verify(com, I = [0, N − 1] \ j∗, decomI = (comj∗ , Kj∗)):
1. Recompute (sd′

i, com′
i) from decomI for i ̸= j∗.

2. Let com′
j∗ := comj∗ .

3. If com ̸= com′ where com′ := H1(com′
0, . . . , com′

N−1) output ⊥.
Otherwise output (sd′

i)i∈I .

In the proof, we rely on the following observation of Guo et al. [GYW+23]. Suppose
we start with two nodes (X, X ⊕∆) in the correlated GGM tree, we show an example of
how to construct inputs for adversary A using the CCR oracle Occr, i.e., without knowing
∆. Suppose the secret path is j∗ = (1, 0), we sample the first off-path node X

$← {0, 1}λ.
Then the second off-path node X(1,1) ← Hccr(X ⊕∆)⊕ (X ⊕∆) can be computed using
Occr(X, 1) ⊕ X. Next we need to compute the secret seed sd(1,0) ← Hccr(Hccr(X ⊕ ∆))
and commitment com(1,0) ← Hccr(Hccr(X ⊕∆)⊕ 1)∥Hccr(Hccr(X ⊕∆)⊕ 2). This can be
done using calls to Occr(X(1,1) ⊕X, 0) and Occr(X(1,1) ⊕X ⊕ 1, 0). Observe that in the
real world, Occr(X(1,1) ⊕X, 0) = Hccr(Hccr(X ⊕∆)), as desired. Using Occr with a fixed
second input 0 for the left and the right child is a trick that bypasses the need to compute
the parent of (sd(1,0), com(1,0)). This example is illustrated in Figure 4 and these ideas
are generalized in the full proof below. We prove the adaptive hiding scenario where the
adversary is stronger than the selective hiding scenario.

Proof of Theorem 1. Let ⅁0 be the real game where A is given the real opening and seeds.
Let ⅁1 be the same as ⅁0 except the seed on the secret path is random.

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 11

?
X

Hccr(X) Hccr(X)⊕X

?

?

Occr(X(1,1) ⊕X, 0) Occr(X(1,1) ⊕X ⊕ 1, 0)

X(1,1) ← Occr(X, 1)⊕X

Figure 4: Example of how to use Occr to construct a VC opening where the secret path is
(1, 0), i.e., traverse right and then traverse left.

The reduction. Let B be a distinguisher which has access to the CCR oracle Occr(x, b).
Recall that the oracle takes input x ∈ λ and a bit b, and then outputs either Hccr(x⊕∆)⊕b·∆
or the output of some truly random function, depending on some internal bit b∗. Further,
B can program the random oracle OH1 . The goal of B is to output a bit that distinguishes
between the two cases. Distinguisher B, which can be seen as an adversary against the
CCR game, works as follows in the adaptive setting.

1. Sample b
$← {0, 1}, sd $← {0, 1}λ and iv ∈ {0, 1}2λ.

2. Sample a commitment com $← {0, 1}λ instead of executing CommitH
crs(sd).

3. Receive the challenge I ← A(1λ, crs, com), where I = [N] \ j∗.

4. View j∗ as the secret path in the tree in binary, i.e., j∗ =
∑d

i=1 2d+1−ibi. If bi = 0,
it means traverse to the left child, otherwise traverse to the right child.

5. Assume w.l.o.g. b1 = 1, i.e., the secret path begins on the right sub-tree. Then we
simulate the execution of Commit(sd) as follows.

(a) Sample Xb̄1
← {0, 1}λ as the left node.

(b) For i ∈ [2, d], compute

Xb1,...,b̄i
← Occr

(⊕
j∈[i−1]

Xb1,...,b̄j
, b̄i

)
⊕

(
b̄i ·

⊕
j∈[i−1]

Xb1,...,b̄j

)

X ′
b1,...,b̄i

← Xb1,...,b̄i
⊕

(
b̄i ·

⊕
j∈[i−1]

Xb1,...,b̄j

)
.

6. Given the sibling nodes {Xb̄1
, . . . , Xb1,...,b̄d

}, all nodes before the final level in the
tree can be obtained using Hccr except Xb1,...,bd

(i.e., Xj∗).

7. Next, the leaves can be computed as sdj ← Hccr(Xj), comj ← Hccr(Xj⊕1)∥Hccr(Xj⊕
2), for j ∈ [0, N − 1] \ {j∗}.

8. Additionally, sdj∗ ←

{
Occr(X ′b1,...b̄d

, 0), if b = 0
random from {0, 1}λ, if b = 1

,

and comj∗ ← Occr(X ′b1,...b̄d
⊕ 1, 0)∥Occr(X ′b1,...b̄d

⊕ 2, 0).

9. Program OH1 to output com on input iv∥com0∥ . . . ∥comN−1 or abort if it has already
been queried.

10. Assign decomI ← {comj∗ , {Xb̄1
, . . . , Xb1,...,b̄d

}} and then call

b′ ← A({sdi}i∈[0,N−1], decomI , iv).

12 Improved All-but-One VC with Applications to PQ Signatures

11. Output 1 if b = b′, otherwise output 0.

The case for b1 = 0 is symmetrical since we can start with two nodes (X, X ⊕∆) for an
unknown ∆. This is the same as generating Y

$← {0, 1}λ and setting the two initial nodes
to be Y ⊕∆ = X, Y = X ⊕∆.

B’s advantage. Recall that b∗ ∈ {0, 1} is the CCR oracle’s hidden bit; if b∗ = 1 then B
is in the real world (Occr runs Hccr internally) and b∗ = 0 is the ideal world. The advantage
of B in the CCR distinguishing game is

AdvCCR
B,Hccr

(λ) =
∣∣Pr[1← BOccr (1λ) | b∗ = 1]− Pr[1← BOccr (1λ) | b∗ = 0]

∣∣ .

There are two differences between the adaptative hiding game of Definition 3 and the
game that B simulates for A:

(i) B aborts if the programming of OH1 fails; and
(ii) X0 or X1 is uniformly random, instead of being computed from PRG(sd, iv; 2λ).

The first difference is noticeable if A queries OH1 with the same iv as in the program-
ming attempt; since iv ∈ {0, 1}2λ is sampled at random and hidden from A before the
programming, we have

Pr[A notices (i)] ≤ |Q1|
22λ

(1)

The second difference reduces to distinguishing the output of PRG from a uniformly
sampled output, so the probability that A behaves differently is exactly AdvPRG

BPRG,PRG(λ), for
a PPT reduction BPRG which plays the PRG game against PRG using A as a subroutine.
Therefore we have

Pr[A notices (ii)] ≤ AdvPRG
BPRG,PRG(λ) (2)

Observe that if b∗ = 1, then, after changes (i) and (ii), A’s view is distributed identically
to ⅁0 if b = 1 (i.e., B uses the real seed sdj∗) and A’s view is distributed identically to ⅁1
if b = 0. So we can write

Pr[1← BOccr (1λ) | b∗ = 1] = Pr[A wins changed VC game].

On the other hand, if b∗ = 0, then the view of A is always sampled uniformly at
random. So A’s output, i.e., b′, is independent of the bit b selected by B. Thus we have

Pr[1← BOccr (1λ) | b∗ = 0] = 1
2 .

Putting Equations (1) and (2) and the probabilities together, we arrive at

AdvAdpHiding
A,VCHT

(λ) ≤ |Q1|
22λ

+ AdvPRG
BPRG,PRG(λ) + AdvCCR

B,Hccr
(λ).

Assuming that Hccr is (t, q, ρ, ϵ)-CCR yields the theorem statement.

4.2 Extractable-Binding Security
We now prove our VC satisfies extractable binding property in random oracle and random
permutation model. Thanks to the extension of the length of commitment comi to 2λ, our
VC is computationally binding with the security level λ since the probability of collision for
comi will be bounded by q2/22λ, where q is the number of queries to permutation oracle
(see lemma 2 for details).

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 13

Lemma 2 (Collision probability of concatenated CCR). Given Qπ random permutation
queries, and Hccr is defined in Remark 1, then the collision probability

Pr
x,x′∈Qπ

(x ̸= x′ | Hccr(x⊕ 1) = Hccr(x′ ⊕ 1) ∧ Hccr(x⊕ 2) = Hccr(x′ ⊕ 2))

≤ |Qπ|(|Qπ| − 1)
22λ+1 .

Proof of Lemma 2. Using Bayer’s formula we rewrite the probability of collision as below:

Pr
x,x′∈Qπ

[x ̸= x′ | Hccr(x⊕ 1) = Hccr(x′ ⊕ 1) ∧ Hccr(x⊕ 2) = Hccr(x′ ⊕ 2)] = A ·B

where A := Prx,x′∈Qπ
(x ̸= x′ | Hccr(x⊕ 1) = Hccr(x′ ⊕ 1))

and B := Pr (Hccr(x⊕ 2) = Hccr(x′ ⊕ 2) | Hccr(x⊕ 1) = Hccr(x′ ⊕ 1)).
To compute A, fix an arbitrary x ∈ Qπ, we have

Pr
x′∈Qπ

(∃x ̸= x′ | Hccr(x⊕ 1) = Hccr(x′ ⊕ 1))

= Pr
x′∈Qπ

(∃x ̸= x′ | π(σ(x⊕ 1))⊕ σ(x⊕ 1) = π(σ(x′ ⊕ 1))⊕ σ(x′ ⊕ 1))

≤ (|Qπ| − 1) · Pr (x ̸= x′ | π(σ(x′ ⊕ 1)) = π(σ(x⊕ 1))⊕ σ(x⊕ 1)⊕ σ(x′ ⊕ 1))

≤ (|Qπ| − 1) · 1
2λ

(since π is a random permutation).

Then consider x ∈ Qπ, each pair (x, x′) is computed twice. we have

A = Pr
x,x′∈Qπ

(x ̸= x′ | Hccr(x⊕ 1) = Hccr(x′ ⊕ 1)) ≤ 1
2 ·
|Qπ|(|Qπ| − 1)

2λ
,

To compute B we observe about the instantiation of Hccr i.e Hccr(x) = π(σ(x)) + σ(x)
where σ(x) := xL ⊕ xR∥xL. For x ≠ x′ such that Hccr(x ⊕ 1) = Hccr(x′ ⊕ 1) we then
compute the probability of Hccr(x⊕ 2) = Hccr(x′ ⊕ 2). From the instantiation of Hccr, we
have if Hccr(x⊕ 2) = Hccr(x′ ⊕ 2) then

Hccr(x⊕ 1) + Hccr(x⊕ 2) = Hccr(x′ ⊕ 1) + Hccr(x′ ⊕ 2)
=⇒ π(σ(x⊕ 1)) + π(σ(x⊕ 2)) = π(σ(x′ ⊕ 1)) + π(σ(x′ ⊕ 2))

=⇒ π(σ(x⊕ 2)) + π(σ(x′ ⊕ 2)) = π(σ(x⊕ 1)) + π(σ(x′ ⊕ 1)) ≤ 1
2λ

since π is random permutation and π(σ(x⊕1))+π(σ(x′⊕1)) is fixed. Therefore B ≤ 1
2λ .

Theorem 2 (VCHT is extractable-binding). Let H1 be a random oracle and let Hccr be
defined in the random permutation model by Hccr : x 7→ Oπ(σ(x)) ⊕ σ(x), where σ is a
linear orthomorphism. Then, for any PPT adversary AH1,Oπ making |Q1| queries to H1,
and assuming this construction of Hccr is (t, |Qπ|, ρ, ϵccr)-CCR, there exist an extractor
algorithm Ext such that

AdvExtBinding
A,VCHT

(λ) ≤ |Q1|2

22λ
+ |Qπ|(|Qπ| − 1)

22λ+1 .

Proof of Theorem 2. We define the extractor algorithm Ext which takes as input the tuple
(pp, (Q1, Qπ), com), where Q1 and Qπ result from A’s queries to H1 and Oπ respectively,
and com is output by A. First we argue that Ext is capable of inverting Hccr.

14 Improved All-but-One VC with Applications to PQ Signatures

Extractability of Hccr. To recover sdi from any comi, Ext must first invert Hccr. Since
the latter is defined in terms of Oπ, the extractor only has access to A’s queries on Qπ.
However, note that if Y = Hccr(X), then it holds that Y ⊕σ(X) = Oπ(σ(X)) and therefore
the pair (σ(X), Y ⊕ σ(X)) must appear on Qπ.

Thus, when given comi, Ext checks whether two entries (x1,Oπ(x1)), (x2,Oπ(x2)) exists
on Qπ such that x1 ⊕Oπ(x1)∥x2 ⊕Oπ(x2) = comi and σ−1(x1)⊕ 1 = σ−1(x2)⊕ 2; if it
does, then Ext concludes that comi = Hccr(σ−1(x1))∥Hccr(σ−1(x2)), and therefore that the
committed leaf is Xi = σ−1(x1)⊕1; if Ext finds no such pair of queries on Qπ, it outputs ⊥
as the committed leaf.

Extraction. Then, Ext proceeds as follows:

1. Ext parses Q1 to find the pre-image iv∥com0∥ . . . ∥comN−1 of com under H1. If this
either does not exist or is multiply-defined, then Ext outputs ⊥ for all {sd∗i }i∈[N].

We show that the probability Ext outputs ⊥ is at most |Q1|2/22λ. By assumption
that A wins the ExtBind game, com is valid and verified using the H1 oracle, therefore
Q1 must have at least one pre-image for com. Multiple preimages would consist in a
collision for H1, since it is modelled as a random oracle then Lemma 1 implies that
the probability Ext outputs ⊥ for this reason is bound by |Q1|2/22λ.

2. If Ext did not output ⊥ for every seed, then for each comi, for i ∈ [N], Ext uses Qπ

to extract the tree leaf Xi as described above.

• If there is an unique Xi, Ext sets sd∗i = Hccr(Xi).
• If Ext finds no such Xi, or it finds multiple suitable leaves, then it sets sd∗i = ⊥.

By assumption that A wins the ExtBind game, every comi for i ∈ I, must have at
least one valid Hccr preimage that is extractable using Qπ, and there can be at most
one value of i ∈ [N] for which sd∗i = ⊥. If any comi has more than one preimage,
then this contradicts the collision-resistance of Hccr; therefore the probability that
this happens is bound by the probability in Lemma 2.

3. If Ext did not output ⊥ for more than one seed, then the adversary can only win
if (1) sd∗i ̸= ⊥ for i ∈ I and (2) there exists i∗ ∈ I such that sdi∗ ≠ sd∗i∗ for
{sdi}i∈I ← VerifyH1,Oπ (com, j∗, pdecomj∗) (i.e., verification passes but extraction
failed). However, case (2) is impossible by the existence and uniqueness of the
pre-image Xi of comi for i ∈ I and the deterministic derivation of sdi from Xi.

Thus the only way for A to win is for Ext to fail in the extraction, and by the arguments
above, we have

AdvExtBind
A,VCHT

(λ) ≤ |Q1|2

22λ
+ |Qπ|(|Qπ| − 1)

22λ+1

which concludes the proof.

5 Multi-Tree Vector Commitment
In this section, we show how to generalize our VCHT to a multi-tree vector commitment
scheme VCMT(N, τ) in Figure 5. Intuitively, our multi-tree is a repetition of τ single tree
VCHT by carefully using the randomness of PRG, CCR hash function, and random oracle to
ensure the security is maintained. In particular, the {sdi}i∈[0,τ−1] for each tree is generated
from PRG with a random input sd.

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 15

Figure 5: VCMT(N, τ) the all-but-τ vector commitment.

Parameters:
• Tree depth N = 2d ∈ N, computational security parameter λ.
• A repetition parameter τ ∈ N.
• Hccr : {0, 1}λ → {0, 1}λ circular correlation-robust hash function.
• H1 : {0, 1}∗ → {0, 1}2λ collision-resistant hash function and H is instantiated as a

random oracle.

Setup(1λ, N, τ):
1. Compute crs0 ← Hccr.Setup(1λ) resp. crs1 ← H1.Setup(1λ).
2. Define crs = (λ, d, τ, crs0, crs1) which is implicitly input to all other algorithms.

Commit(sd, iv):
1. Compute sd0∥ . . . ∥sdτ−1 ← PRG(sd, iv; τλ).
2. For i ∈ [τ], compute (comi, decomi, (sdi

j)j∈[N])← VCHT.Commit(sdi, iv).
3. Compute hcom ← H1(iv∥com0∥ . . . ∥comτ−1).
4. Let decom := (decom0, . . . , decomτ−1).
5. Output (hcom, decom, (sdi

j)i∈[τ],j∈[N]).

Open
(
decom, I = ∪τ−1

i=0 [iN, (i + 1)N − 1] \ j̃i
)
:

1. For i ∈ [τ], compute
1. Write Ii = [N] \ (j̃i − iN).
2. Compute pdecomIi ← VCHT.Open(decomi, Ii).

2. Output the all-but-τ opening pdecomI := (pdecomIi)i∈[τ].

Verify (hcom, I, pdecomI):
1. For i ∈ [τ], compute

1. Write Ii = [N] \ (j̃i − iN).
2. Recompute (sdi

j , comi
j)j∈Ii from pdecomIi .

3. Let comi
j̃i := comi

j̃i from pdecomIi .
4. Compute comi ← H1(iv∥comi

0∥ . . . ∥comi
N−1).

2. Compute h′
com ← H1(iv∥com0∥ . . . ∥comτ−1).

3. If h′
com ̸= hcom, output ⊥; otherwise output (sdi

j)i∈[τ],j∈[Ii].

5.1 All-but-tau Hiding Security
The multi-tree vector commitment scheme of Figure 5 keeps τ messages out of its opening,
instead of just one. Because of this difference, we first sketch the following definition.

Definition 5 (Multi-Tree VC all-but-τ Hiding). Let VCMT(N, τ) be an iv-based vector
commitment scheme in the RO model with random oracle H1 the adaptive multi-hiding
experiment for VCMT, AdpMulHiding, with N = poly(λ) and stateful A is defined similarly
to the AdpHiding experiment, with the difference that the set I of opened messages must
omit τ indices (rather than one) and that these τ messages are either all real or all random
when presented to A.

Theorem 3. Let Hccr be (t, q, ρ, ϵ)-circular correlation robust and let H1 be a random
oracle. Then, for any PPT adversary A in the adaptive multi-hiding vector commitment
game against the VCMT scheme, we have

AdvAdpMulHiding
A,VCMT

(λ) ≤ |Q1|
22λ

+ (1 + τ)AdvPRG
BPRG,PRG(λ) + τ · ϵ.

Theorem 3, sketch. Similarly to the proof of Theorem 1, we first perform two game changes:
(i) We sample hcom

$← {0, 1}2λ to give to A before later programming OH1 appropriately
and aborting if that fails.

16 Improved All-but-One VC with Applications to PQ Signatures

(ii) We sample the root seeds sd0, . . . , sdτ−1 from {0, 1}λ instead of computing them
with PRG(sd, iv; τλ).

Letting ⅁ denote the AdpMulHiding game originally played by A, and ⅁′ denote the game
after these two changes, we have

Pr[A wins ⅁] ≤ |Q1|
22λ

+ AdvPRG
BPRG,PRG(λ) + Pr[A wins ⅁′].

Now that the random oracle is programmed, and the seeds are uniformly random, we
run a hybrid argument where the output of each VCHT.Commit call has its hidden message
selected by I replaced by a random value. Applying Theorem 1 (with the omission of
the |Q1|

22λ term since the programming happens outside of VCHT) yields the final advantage
statement.

5.2 Extractable-Binding Security
The multi-tree construction VCMT is extractable-binding in a similar way to the single-tree
construction; however, since there are additional calls to H1 modelled as a random oracle,
one of the terms is looser by a factor of τ . We formalise this in the following theorem.

Theorem 4. Let H1 be a random oracle and let Hccr be defined in the random permutation
model by Hccr : x 7→ Oπ(σ(x))⊕ σ(x), where σ is a linear orthomorphism. Then, for any
PPT adversary AH1,Oπ making |Q1| queries to H1 and |Qπ| queries to Oπ, there exists an
extractor Ext such that

AdvExtBinding
A,VCMT

(λ) ≤ (1 + τ)|Q1|2

22λ
+ |Qπ|(|Qπ| − 1)

22λ+1

Theorem 4. We first note that Ext can invert Hccr using the list Qπ of queries to Oπ in
the same way as in the proof of Theorem 2.

Extraction. The extractor Ext must extract in three steps:

1. Using Q1, Ext finds the pre-image iv∥com0∥ . . . ∥comτ−1 of hcom; if it does not exist
or is multiply-defined, then Ext outputs ⊥ for all messages.
As for Theorem 2, the assumption that A wins implies at least one pre-image exists
and the probability that a collision for H1 is found is bound by |Q1|2/22λ by Lemma 1.

2. For each i ∈ [τ], Ext finds the pre-image iv∥comi
0∥ . . . ∥comi

N−1 of comi; if it does
not exist, or is multiply-defined, then Ext outputs ⊥ for all messages from the i-th
instance of VCHT.
As for Theorem 2, the probability that this happens for each i is bound by |Q1|2/22λ

by Lemma 1 and by the assumption that A wins. Taking the union bound implies that
the probability of Ext not finding pre-images for each comi is bound by τ |Q1|2/22λ.

3. Finally, for each comi
j for i ∈ [τ], j ∈ [N], Ext uses Qπ to extract the leaf Xi

j ; if it
exists and is unique, it sets sdi

j = Hccr(Xi
j), otherwise it sets sdi

j = ⊥.
By the same argument as for Theorem 2, the probability that a collision is found for
Hccr in the random permutation model is bound by Lemma 2.

Since, as before, the only way for A to win is for Ext to fail in one of the three types of
extraction outlined above, we obtain the final advantage statement.

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 17

6 Improving Security
Our schemes, VCHT and VCMT, are constructed using a CCR hash function Hccr in random
permutation model. In this section, we investigate the efficiency and security level of our
construction for the multi-hiding advantage of AdvAdpMulHiding

A,VCMT
(λ) by using different kinds

of CCR hash functions and their instantiations. We show that our VCMT can achieve a
tighter security while the efficiency is still comparable with PPRF protocols used in current
MPCitH and VOLEitH schemes.

6.1 VC from CCR in Random Permutation Model
In our construction of VCHT (Figure 3), recall that the CCR hash function Hccr : {0, 1}λ →
{0, 1}λ is instantiated from a random permutation π and a linear orthomorphism σ as
Hccr(x) := π(σ(x)) + σ(x). Guo et al. [GKWY20] used the H-coefficient technique [PS04,
CS14] to show that Hccr is a (t, q, ρ, ϵccr)-circular correlation robust where

ϵccr = 2tq

2ρ
+ q2

2λ+1 .

Because we use block-cipher (AES) to implement the permutation π, we can assume ρ = λ,
the values t, q are the number of queries which A makes to the random permutation oracle
Oπ and Occr, respectively. Recall that the advantage in multi-hiding game is

AdvAdpHiding
A,VCHT

(λ) ≤ |Q1|
22λ

+ AdvPRG
BPRG,PRG(λ) + ϵccr,

for N = 216 (this is parameters for hybercube MPCitH protocols [AGH+23]) and the
security level λ (meaning the random permutation domain is {0, 1}λ), adversary A needs
to make 2λ−16 queries to the permutation π to completely break our VCHT.

Using techniques in the CCR hash function literature [GKW+20, GKWY20, GYW+23,
CT21], we show that our security can be strengthened by using tweakable-CCR (TCCR)
and multi-instance tweakable-CCR (MiTCCR) in our all-but-τ construction VCMT.

6.2 VC from TCCR in Random Permutation Model
To make the use of Htccr function which is a (t, q, ρ, ϵ)-TCCR where the oracle is defined
as Otccr

H,∆(x, i, b) := H(x ⊕∆, i) ⊕ b ·∆ and has a similar security definition as CCR. We
refer to [GKWY20] for the exact definition. Our VCMT construction (Figure 5) can be
modified to use one global ∆ for all instances. The tweak i in TCCR is defined to be the
index i ∈ [τ] of the instance. That is, the tweak i is the same within each tree but varies
between trees in our construction. We discuss two instances of TCCR.

1. Guo et al. [GKWY20] defined a TCCR hash function Htccr(x, i) := π(π(x)⊕ i)⊕π(x)
where π : {0, 1}λ → {0, 1}λ is modelled as a random permutation and the adversary’s
advantage in the TCCR game is given by

ϵ = 4q(t + q)
2λ

+ 5q2

2λ+1 + tq

2ρ
+ q

2λ
.

Note that one evaluation of H can be computed using only 2 calls to π and the
running time of TCCR instantiation using fixed-key AES is still efficient (28x faster
than SHA-256) [GKWY20].

2. Chen and Tessaro [CT21] introduced two new TCCR (one-call and two-call to
permutation). While the tweakable one-call construction matches the security of
the most secure two-call construction of [GKWY20]; the new two-call construction,
defined as Htccr(m, i) := π2(π1(σ(m))⊕ i)⊕ σ(m), has better security of ϵ = O((√q ·
t + q2)/2λ).

18 Improved All-but-One VC with Applications to PQ Signatures

6.3 VC from MiTCCR in Ideal Cipher Model
MiTCCR hash function HE

mtccr is defined using the oracle Otccr
H,∆(x, i, b) := H(x⊕∆, i)⊕b ·∆,

we refer to [GKWY20] for the definition details. It is more secure than TCCR or CCR
because the adversary A is given access to multiple independently keyed functions rather
than just one, and the concrete security bound depends on the maximum number of times
µ that the adversary A repeats any particular tweak.

The function HE
mtccr ((p, q, u, µ, ρ, ϵ)-MiTCCR) is defined by HE

mtccr(x, i) := E(i, σ(x))⊕
σ(x) under an ideal cipher E : {0, 1}λ × {0, 1}λ → {0, 1}λ. The distinguishing advantage

ϵ = 2µp

2λ
+ (µ− 1)q

2λ

is significantly smaller than the advantages in TCCR and CCR, and it is not proportional
to q · p. When using HE

mtccr, our VCMT(N, τ) construction is the same except that the i-th
tree is built from a different random permutation πi ∈ E with parameters q = N · τ , µ
equal to the number of queries to the forgery game, and tweak domain T = [τ].

7 Application and Evaluation
7.1 Identification Schemes Against Malicious Verifier
All signature schemes following the MPCitH paradigm have an underlying 5-round honest-
verifier zero-knowledge proof based on a PPRF where the security of the GGM tree for
the PPRF is maintained only when the prover knows the random challenge beforehand
(non-adaptive security). Therefore, when using our VC in the 5-round ZK protocol we
directly obtain a 5-round ZK protocol against malicious verifier, which can be used for an
identification scheme.

7.2 Faster MPCitH-based Signatures
Our VC works in the random permutation model which can be efficiently instantiated by
fixed-key AES. For simplicity, we compare with existing MPCitH signature schemes and
estimate our performance at the 128-bit security level.

For one instantiation of our VC of size N = 2d, we require N AES calls for the final layer
and N/2 AES calls for the tree expansion while other works [BDK+21, AGH+23, FJR22]
uses N AES calls for tree expansion and N SHAKE calls for the last layer to expand each
leaf into a seed and a commitment. Because of hardware support, using AES instead of a
hash function like SHAKE is up to 50× faster. Although it is possible to use a faster hash
function such as BLAKE3, submissions to the NIST standardization projects prefer to
use a standardized primitive such as SHA3 and its variants. Moreover, to ensure a low
soundness error and maintain the security of the signature scheme, all schemes need to
perform τ parallel repetitions. Although prior work does not specifically use VC in their
description, we claim VC is the correct abstraction since the commitment property is still
needed as discussed in Section 1.2.

We benchmarked the hypercube variant of the optimized SDitH implementation called
“SDitH-gf256-L1-hyp” [MFG+23], which is in the first round of the additional signatures
standardization effort by NIST.1 The offline, input independent, phase took 2/3 of the
time in our experiments. It primarily consists of expanding the the GGM tree, hashing
the leaves to create commitments and share aggregation. In other words, the GGM tree
expansion and hashing/commitment takes approximately 2/3 of the total signing time.
Using our optimization, we estimate the signing time can be reduced by a third since our
construction halves the number of calls to SHA3, which is used to create commitments.

1https://csrc.nist.gov/Projects/pqc-dig-sig/

https://csrc.nist.gov/Projects/pqc-dig-sig/

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 19

7.2.1 Security

Since MPCitH protocols such as [AGH+23] do not use all-but-one vector commitment
in a blackbox way, we need to argue the resulting security bound when using our VC.
Specifically, we show that if we replace the PRG tree and the commitment defined by H0
in the hybercube protocol by our VC (the commitment is defined by concatenating of two
Hccr calls) , the security remains the same except that

• qs · τ · ϵPRG is replaced by AdvAdpHiding
A,VCHT

(λ), the advantage of the hiding game. In
particular, this term comes from the HVZK simulator (replacing one leaf in each of
τ trees by random values and programming it in the random oracle) when analysing
the ZK property of the underlying protocol.

• We separately compute all terms related to H0 since the probability of collision of
commitment defined by H0 is computed using AdvExtBinding

A,VCHT
(λ) of VC.

Note that since our VC is computationally binding, the soundness error is the same so
this lead to the AEUF−KO

A is the same as [AGH+23]. The security proof for using our VC
is stated below.
Theorem 5 (Security of Hypercube based on VC). Consider the VC in Section 4, let
it be (t, AdvAdpHiding

A,VCHT
(λ), AdvExtBinding

A,VCHT
(λ))-secure and let any adversary running in time

t have advantage at most ϵSD against the underlying syndrome decoding problem. Let
Hccr be (t, qS · τ, ρ, ϵccr)-circular collision resistant and defined in the random permutation
model; H1, H2, H3, H4 be random oracles with output length 2λ bits. Then chosen-message
adversary against the signature scheme depicted in [AGH+23] after replacing PRG tree and
the commitment by VC running in time t, making q0 queries to the random permutation and
q1, q2, q3, q4, qS queries to the random oracles, and signature scheme respectively, succeeds
in outputting a valid forgery with probability

Pr(forge) = AEUF−CMA
A ≤ AEUF−KO

A + (q0 + τ ·ND) · AdvExtBinding
A,VCHT

(λ)

+ 2 · (q + τ ·D · qs)2

2 · 2λ
+ qs · (qs + q0 + 4q)

2λ
+ AdvAdpHiding

A,VCHT
(λ)

where q = max{q1, q2, q3, q4}, D is the dimension of the hypercube, NDis the number of
secret shares, AEUF−CMA

A and AEUF−KO
A are existential unforgeability against key-only attack

and against chosen-message attacks respectively, AEUF−KO
A is computed as in [AGH+23]

from the soundness.

7.3 Faster VOLE-in-the-Head Signatures
FAEST is the first VOLE-in-the-Head signature scheme2, and is also a first round candidate
for the additional signatures standardization project by NIST. In FAEST, the output of
an all-but-τ VC scheme is converted to VOLE correlations and used by the QuickSilver
zero-knowledge proof system [YSWW21] to prove an execution of the AES algorithm.

Here, the multi-tree version of the VC scheme is crucial. For the soundness of the
proof, the VOLE correlation must have a statistical security of O(2−λ), however this would
require a single-tree construction to produce N = O(2λ) leaves, which is computationally
unfeasable. Instead, FAEST is designed such that the signer produces τ trees, each with
O(2λ/τ) leaves, producing τ independent VOLE instances each with O(2−λ/τ) security.
By de-randomising the last τ − 1 VOLE instances to align with the first, they can then be
combined into a single instance offering the required O(2−λ) security.

Below we describe two experiments; both were performed on Rocky Linux 8.8 with kernel
version 4.18.0, running on AMD Ryzen 7 PRO 2700 @ 3.2 GHz. The implementations were
built using GCC 11.2. The results for both experiments are averaged over 100 executions.

2https://faest.info/

https://faest.info/

20 Improved All-but-One VC with Applications to PQ Signatures

Table 1: Performance comparison between our half-tree variant and the standard FAEST
signature scheme using the reference implementation.

Variant Sign (µs) Speedup Verify (µs) Speedup Sig size (B)

FAEST-128S 30,822 1.48 30,743 1.47 5,006
FAEST-128F 5,678 1.27 5,403 1.28 6,336

FAEST-192S 92,458 1.26 87,156 1.32 12,752
FAEST-192F 16,720 1.14 15,704 1.15 16,800

FAEST-256S 130,480 1.22 124,629 1.25 22,116
FAEST-256F 29,046 1.11 26,968 1.13 28,416

FAEST-EM-128S 27,776 1.57 27,932 1.56 4,566
FAEST-EM-128F 4,757 1.35 4,729 1.34 5,696

FAEST-EM-192S 77,684 1.31 74,913 1.34 10,832
FAEST-EM-192F 12,522 1.19 12,427 1.19 13,920

FAEST-EM-256S 120,245 1.24 118,054 1.25 20,972
FAEST-EM-256F 25,168 1.13 24,722 1.14 26,752

7.3.1 Reference Implementation

We modified the reference implementation of FAEST3 to use our half-tree construction; our
open-source code can be found on GitHub.4 Specifically, for λ = 128, the π permutation
used in Hccr is instantiated using fixed-key AES. For λ ∈ {192, 256}, however, we resort to
using Rijndael-{192, 256} to avoid the 128-bit AES block size. Just like FAEST, our imple-
mentation uses eXtended Keccak Code Package (XKCP) for SHA3 and OpenSSL libraries
for AES. Note that XKCP and OpenSSL are already optimized for the x86 architecture
with the AVX2 and AES-NI instruction set extensions. Unfortunately, OpenSSL does not
have a Rijndael implementation so we extended the FAEST reference implementation to
support it. The experimental results are shown in Table 1. Our best results are for λ = 128
since this version uses the AES implementation from OpenSSL, which is highly optimized.

7.3.2 Optimized Implementation

An optimized implementation of FAEST5 exists which also uses the the AVX2 and AES-NI
instruction set extensions. Although the two implementations are functionally identical,
the optimized implementation does not follow the specification and thus achieves better
efficiency. We do not have a full half-tree implementation based on the optimized FAEST
implementation but to estimate our performance improvements, we tweaked it to use
fixed-key Rijndael-{128, 192, 256} for constructing the internal nodes and the leaves. The
performance results, shown in Table 2, are what we believe to be very close to the results of a
complete optimized implementation since the only missing ingredient is the orthomorphism
which has very little impact to the performance since each only consumes 1.66 cycle on the
CPU using SSE2 [GKWY20]. The performance gain is lower when λ ∈ {192, 256} since
producing one block of Rijndael-{192, 256} is slower than producing three or four blocks
of AES-{192, 256} (which is used for tree expansion in the original FAEST algorithm) as
Rijndael-{192, 256} cannot fully utilize the AES-NI instruction set.

3https://github.com/faest-sign/faest-ref
4https://github.com/KULeuven-COSIC/faest-ref-vc
5https://github.com/faest-sign/faest-avx

https://github.com/faest-sign/faest-ref
https://github.com/KULeuven-COSIC/faest-ref-vc
https://github.com/faest-sign/faest-avx

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 21

Table 2: Performance comparison between our half-tree variant and the standard FAEST
signature scheme using the optimized implementation.

Variant Sign (µs) Speedup Verify (µs) Speedup

FAEST-128S 4,587 3.33 4,620 3.21
FAEST-128F 483 3.35 486 3.38

FAEST-192S 18,652 1.76 18,873 1.76
FAEST-192F 2,010 1.67 1,964 1.71

FAEST-256S 26,195 1.63 26,253 1.62
FAEST-256F 3,161 1.56 3,082 1.60

FAEST-EM-128S 4,424 3.33 4,456 3.31
FAEST-EM-128F 468 3.46 459 3.46

FAEST-EM-192S 17,861 1.80 17,997 1.80
FAEST-EM-192F 1,848 1.73 1,825 1.75

FAEST-EM-256S 26,273 1.60 26,300 1.59
FAEST-EM-256F 3,048 1.60 3,031 1.60

Acknowledgement
We would like to thank Geoffroy Couteau (IRIF) and Tim Beyne (COSIC, KU Leuven)
for their advice as well as the anonymous reviewers for their insightful comments.

This work was supported by CyberSecurity Research Flanders with reference number
VR20192203. Dung Bui is supported by DIM Math Innovation 2021 (N°IRIS: 21003816)
from the Paris Mathematical Sciences Foundation (FSMP) funded by the Paris Ile-de-
France Region. Part of this work was done while Dung Bui was visiting COSIC, KU
Leuven. Kelong Cong is supported by the Horizon 2020 research and innovation programme
under grant agreement No 101018342 SOTERIA. Part of this work was done while Kelong
Cong was at COSIC, KU Leuven. Cyprien Delpech de Saint Guilhem is a Junior FWO
Postdoctoral Fellow under project 1266123N.

22 Improved All-but-One VC with Applications to PQ Signatures

References
[ABC+23] Nicolas Aragon, Loïc Bidoux, Jesús-Javier Chi-Domínguez, Thibauld Feneuil,

Philippe Gaborit, Romaric Neveu, and Matthieu Rivain. MIRA: a digital signa-
ture scheme based on the minrank problem and the mpc-in-the-head paradigm.
CoRR, abs/2307.08575, 2023. URL: https://doi.org/10.48550/arXiv.
2307.08575, arXiv:2307.08575, doi:10.48550/ARXIV.2307.08575.

[AGH+23] Carlos Aguilar Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David
Joseph, and Dongze Yue. The return of the SDitH. In Hazay and Stam
[HS23], pages 564–596. doi:10.1007/978-3-031-30589-4_20.

[BBD+23] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael
Klooß, Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly Verifiable
Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head. In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology -
CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part V,
volume 14085 of Lecture Notes in Computer Science, pages 581–615. Springer,
2023. doi:10.1007/978-3-031-38554-4_19.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518. Springer,
Heidelberg, August 2019. doi:10.1007/978-3-030-26954-8_16.

[BDK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Em-
manuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and
fast signatures from AES. In Juan Garay, editor, PKC 2021, Part I,
volume 12710 of LNCS, pages 266–297. Springer, Heidelberg, May 2021.
doi:10.1007/978-3-030-75245-3_11.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway.
Efficient garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on
Security and Privacy, pages 478–492. IEEE Computer Society Press, May
2013. doi:10.1109/SP.2013.39.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl.
Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic circuits with
nested disjunctions. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 92–122, Virtual Event, August 2021.
Springer, Heidelberg. doi:10.1007/978-3-030-84259-8_4.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments
for arithmetic circuits and their application to lattice-based cryptography.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas,
editors, PKC 2020, Part I, volume 12110 of LNCS, pages 495–526. Springer,
Heidelberg, May 2020. doi:10.1007/978-3-030-45374-9_17.

[CCJ23] Eliana Carozza, Geoffroy Couteau, and Antoine Joux. Short signatures from
regular syndrome decoding in the head. In Hazay and Stam [HS23], pages
532–563. doi:10.1007/978-3-031-30589-4_19.

https://doi.org/10.48550/arXiv.2307.08575
https://doi.org/10.48550/arXiv.2307.08575
https://arxiv.org/abs/2307.08575
https://doi.org/10.48550/ARXIV.2307.08575
https://doi.org/10.1007/978-3-031-30589-4_20
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-031-30589-4_19

Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem 23

[CLY+24] Hongrui Cui, Hanlin Liu, Di Yan, Kang Yang, Yu Yu, and Kaiyi Zhang.
Resolved: Shorter signatures from regular syndrome decoding and vole-in-the-
head. Cryptology ePrint Archive, Paper 2024/040, 2024. https://eprint.
iacr.org/2024/040. URL: https://eprint.iacr.org/2024/040.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random
oracle model and the ideal cipher model are equivalent. In David Wagner, ed-
itor, CRYPTO 2008, volume 5157 of LNCS, pages 1–20. Springer, Heidelberg,
August 2008. doi:10.1007/978-3-540-85174-5_1.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 327–350. Springer, Heidelberg,
May 2014. doi:10.1007/978-3-642-55220-5_19.

[CT21] Yu Long Chen and Stefano Tessaro. Better security-efficiency trade-offs
in permutation-based two-party computation. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume 13091 of
LNCS, pages 275–304. Springer, Heidelberg, December 2021. doi:10.1007/
978-3-030-92075-3_10.

[DOT21] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy.
Limbo: Efficient zero-knowledge MPCitH-based arguments. In Vigna and Shi
[VS21], pages 3022–3036. doi:10.1145/3460120.3484595.

[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding
in the head: Shorter signatures from zero-knowledge proofs. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume
13508 of LNCS, pages 541–572. Springer, Heidelberg, August 2022. doi:
10.1007/978-3-031-15979-4_19.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. doi:10.1007/3-540-47721-7_12.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions (extended abstract). In 25th FOCS, pages 464–479. IEEE
Computer Society Press, October 1984. doi:10.1109/SFCS.1984.715949.

[GKW+20] Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, and Yu Yu. Better
concrete security for half-gates garbling (in the multi-instance setting). In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 793–822. Springer, Heidelberg, August 2020.
doi:10.1007/978-3-030-56880-1_28.

[GKWY20] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure mul-
tiparty computation from fixed-key block ciphers. In 2020 IEEE Symposium
on Security and Privacy, pages 825–841. IEEE Computer Society Press, May
2020. doi:10.1109/SP40000.2020.00016.

[GYW+23] Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie, Jiang
Zhang, and Zheli Liu. Half-tree: Halving the cost of tree expansion in COT
and DPF. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part I, volume 14004 of LNCS, pages 330–362. Springer, Heidelberg, April
2023. doi:10.1007/978-3-031-30545-0_12.

https://eprint.iacr.org/2024/040
https://eprint.iacr.org/2024/040
https://eprint.iacr.org/2024/040
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-030-92075-3_10
https://doi.org/10.1007/978-3-030-92075-3_10
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/978-3-030-56880-1_28
https://doi.org/10.1109/SP40000.2020.00016
https://doi.org/10.1007/978-3-031-30545-0_12

24 Improved All-but-One VC with Applications to PQ Signatures

[HS23] Carmit Hazay and Martijn Stam, editors. EUROCRYPT 2023, Part V,
volume 14008 of LNCS. Springer, Heidelberg, April 2023.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and
Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June 2007.
doi:10.1145/1250790.1250794.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018. doi:
10.1145/3243734.3243805.

[MFG+23] Carlos Aguilar Melchor, Thibauld Feneuil, Nicolas Gama, Shay Gueron,
James Howe, David Joseph, Antoine Joux, Edoardo Persichetti, Tovohery H.
Randrianarisoa, Matthieu Rivain, and Dongze Yue. The syndrome decoding
in the head (sd-in-the-head) signature scheme. https://www.sdith.org/
docs/sdith-v1.1.pdf, 2023. Accessed: 2023-11-03.

[PS04] Dan Page and Martijn Stam. On XTR and side-channel analysis. In
Helena Handschuh and Anwar Hasan, editors, SAC 2004, volume 3357
of LNCS, pages 54–68. Springer, Heidelberg, August 2004. doi:10.1007/
978-3-540-30564-4_4.

[VS21] Giovanni Vigna and Elaine Shi, editors. ACM CCS 2021. ACM Press,
November 2021.

[Win84] Robert S. Winternitz. A Secure One-Way Hash Function Built from DES. In
1984 IEEE Symposium on Security and Privacy, pages 88–88, Oakland, CA,
USA, April 1984. IEEE. URL: http://ieeexplore.ieee.org/document/
6234813/, doi:10.1109/SP.1984.10027.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast,
scalable, and communication-efficient zero-knowledge proofs for boolean and
arithmetic circuits. In 2021 IEEE Symposium on Security and Privacy, pages
1074–1091. IEEE Computer Society Press, May 2021. doi:10.1109/SP40001.
2021.00056.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver:
Efficient and affordable zero-knowledge proofs for circuits and polynomials
over any field. In Vigna and Shi [VS21], pages 2986–3001. doi:10.1145/
3460120.3484556.

https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://www.sdith.org/docs/sdith-v1.1.pdf
https://www.sdith.org/docs/sdith-v1.1.pdf
https://doi.org/10.1007/978-3-540-30564-4_4
https://doi.org/10.1007/978-3-540-30564-4_4
http://ieeexplore.ieee.org/document/6234813/
http://ieeexplore.ieee.org/document/6234813/
https://doi.org/10.1109/SP.1984.10027
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3460120.3484556

	Introduction
	Contributions
	Related Work
	Concurrent Work

	Technical Overview
	Correlated GGM Tree
	Vector Commitment from Half-Tree
	Generalized to Multi-instance Vector Commitment
	Better Concrete Security

	Preliminaries
	Oracles
	Hash Function
	Vector Commitment Schemes

	The Half-Tree Construction
	All-but-one Hiding Security
	Extractable-Binding Security

	Multi-Tree Vector Commitment
	All-but-tau Hiding Security
	Extractable-Binding Security

	Improving Security
	VC from CCR in Random Permutation Model
	VC from TCCR in Random Permutation Model
	VC from MiTCCR in Ideal Cipher Model

	Application and Evaluation
	Identification Schemes Against Malicious Verifier
	Faster MPCitH-based Signatures
	Faster VOLE-in-the-Head Signatures

	References

