
Two-party GOST in two parts: fruitless search and
fruitful synthesis

Liliya Akhmetzyanova, Evgeny Alekseev, Alexandra Babueva,
Lidiia Nikiforova and Stanislav Smyshlyaev

CryptoPro LLC, Russia
{lah, alekseev, babueva, nikiforova, svs}@cryptopro.ru

Abstract

In the current paper we investigate the possibility of designing secure two-party
signature scheme with the same verification algorithm as in the Russian standardized
scheme (GOST scheme). We solve this problem in two parts. The first part is a
(fruitless) search for an appropriate scheme in the literature. It turned out that all
existing schemes are insecure in the strong security models. The second part is a
synthesis of new signature scheme and ends fruitfully. We synthesize a new two-
party GOST signature scheme, additionally using the commitment scheme, guided
by the features of the GOST signature scheme, as well as the known attacks on
existing schemes. We prove that this scheme is secure in a bijective random oracle
model in the case when one of the parties is malicious under the assumption that
the classical GOST scheme is unforgeable in a bijective random oracle model and
the commitment scheme is modelled as a random oracle.

Keywords: two-party signature, GOST signature.

1 Introduction
Electronic document management systems become a common daily occurrence in

the modern world. Signature scheme is a fundamental component of these systems. The
systems involve the client, who owns a private signing key, and the server, who manages
the documents. The server sends the document to the client, who checks it and signs.
It is highly desirable to implement the client side at the user mobile device to make the
information system as user-friendly as possible. There is a problem of secure storage of
the private key on a mobile device, since it is easy to gain physical access to the device,
for example, as a result of theft. If the adversary gets access to the private key, it will be
able to sign documents on behalf of the user. So, we need a way to protect the private
key stored on the mobile device.

One method of protection is to use the so-called two-party signature scheme instead of
the classical signature scheme. This method involves the private key sharing between the
client and the server and generating the signature as a result of an interactive protocol
run between them. We assume that no trusted party is involved in this process. Such
protocol should not allow either party to create a signature without interacting with the

1

other party. In particular, the server can not sign any document without the owner of
the signing key. At the same time in case of theft of the user’s device, the adversary
gets access to only one part of the key and needs to interact with the server to create a
signature. Note that the server can notify the user about each execution of the protocol
via an outside channel, for example, by e-mail. The user whose mobile device has been
stolen can report this to the server and forbid the possibility of creating a signature.

This method of protection should remain completely transparent to all external sys-
tems that can potentially use the generated signature. That is, it should not differ from
the classic signature generated when the key is fully stored on the user’s device. This
means that the verification algorithm should be the same as in the classical scheme. We
use the Russian signature scheme defined in [8, 9, 10, 11] (hereinafter — GOST scheme) as
a classical signature scheme. Thus, to implement the described method of protecting the
private key, we need a two-party signature scheme with the same verification algorithm
as in the GOST scheme.

In literature there are a number of schemes [4, 16, 13, 14, 1, 20] based on GOST
signature equation, in which the signature is generated by several signers. It is not only
two-party schemes, but also schemes for more participants: collective signature schemes
(for n parties) and threshold signature schemes where any subset of at least t out of the
n parties can produce a valid signature. Note that such schemes are the extensions of
two-party schemes, therefore they can also be used for private key protection.

However, it turned out that all existing schemes are not suitable for solving our
problem. Some of them are proven secure in the weak security models while others are
vulnerable to the attacks. Let’s consider these schemes. The threshold signature scheme
proposed in [1] uses a third trusted party to form the signature. The signature scheme
proposed in [13] uses a new secret sharing algorithm for key generation and signing pro-
tocols and is proven secure only against passive adversary. The scheme proposed in [20]
appeared to be insecure if the adversary is given the opportunity to open parallel sessions
of the signing protocol. In this paper, we build a ROS-style attack [2] on this scheme (see
Appendix A.1). In [4, 16, 14] there is no description of the distributed key generation
protocol for the proposed scheme. It is not clear how to implement it if no third trusted
party is involved. Moreover, the signing protocol of this scheme is vulnerable to a ROS
attack.

We synthesize a new two-party GOST signature scheme, additionally using the com-
mitment scheme, guided by the features of the GOST signature scheme, as well as the
known attacks on existing schemes. Our scheme does not use any non-standard cryp-
tographic mechanisms such as homomorphic encryption. Section 3 presents the design
rationale of this scheme. A formal description of the scheme is provided in the Section 4.
We prove that this scheme is secure in a bijective random oracle model in the case when
one of the parties is malicious under the assumption that the classical GOST scheme is
unforgeable in a bijective random oracle model and the commitment scheme is modelled
as a random oracle. Our proof is based on the security proof of the GOST signature
scheme presented in [5] and the security proof for the two-party Schnorr signature scheme
[17]. A description of the security model and the main result are presented in the Section
5.

2

2 Basic notations and definitions
By {0, 1}∗ we denote the set of all bit strings of finite length including the empty

string. If p is a prime number then the set Zp is a finite field of size p. We assume the
canonic representation of the elements in Zp as integers in the interval [0 . . . p− 1]. Each
non-zero element x in Zp has an inverse 1/x. We define Z∗

p as the set Zp without zero
element.

We denote the group of points of elliptic curve over the field Zp as G, the order of
the prime subgroup of G as q and elliptic curve point of order q as P . We denote the
x-coordinate of the point R ∈ G as R.x. We denote by H the hash function that maps
binary strings of arbitrary length to the binary string of length h.

If the value s is chosen from a set S uniformly at random, then we denote s U←− S. If
the variable x gets the value val then we denote x←− val. Similarly, if the variable x gets
the value of the variable y then we denote x ←− y. If the variable x gets the result of an
algorithm A we denote x←− A.

The signature scheme SS is determined by three algorithms:

– (d,Q)← KGen(): a probabilistic key generation algorithm that returns the signature
key pair (d,Q), where d is a private signing key, Q is a public verifying key.

– σ ← Sign(d,m): a probabilistic signing algorithm that takes a signing key d and a
message m as an input and outputs a signature σ for the message m.

– b ← Verify(Q,m, σ): a (deterministic) verification algorithm that takes a public
verifying key Q, a message m and a signature σ as an input and outputs 1 if σ is
valid and 0 otherwise.

The two-party signature scheme 2p-SS is determined by three algorithms:

– ((d1, Q), (d2, Q)) ← KGen⟨P1(),P2()⟩: an interactive key generation protocol that
is run between a party P1 and a party P2; for i ∈ {1, 2} Pi outputs it’s private key
di and a public verifying key Q.

– (σ, σ) ← Sign⟨P1(d1, Q,m),P2(d2, Q,m)⟩: an interactive signing protocol that is
run between a party P1 and a party P2; for i ∈ {1, 2} Pi takes it’s private key di, a
public verifying key Q and a message m as an input and outputs a signature σ for
the message m if the interaction completes successfully and ⊥ otherwise.

– b ← Verify(Q,m, σ): a (deterministic) verification algorithm that takes a public
verifying key Q, a message m and a signature σ as an input and outputs 1 if σ is
valid and 0 otherwise.

The commitment scheme is determined by two algorithms:

– (op, comm) ← Cmt(m): a commitment algorithm that takes message m ∈ {0, 1}∗
as an input and outputs a commitment comm ∈ {0, 1}n and an opening value
op ∈ {0, 1}κ.

– b← Open(comm,m, op): a (deterministic) opening algorithm that takes a commit-
ment comm ∈ {0, 1}n, a message m ∈ {0, 1}∗ and an opening value op ∈ {0, 1}κ
and outputs 1 if (op, comm) is valid on m and 0 otherwise.

3

3 Design rationale
The GOST signature is a pair (r, s):

s = ke+ dr, r = R.x mod q = (kP).x mod q,

where k is selected uniformly from Z∗
q, d ∈ Z∗

q is a private key, e is the hash of the message
m. The secret parameters are the long-term signing key d and the ephemeral value k.

Two-party signature scheme implies that both parties contribute to the generation
of all secret parameters. Note that the signature equation is linear with respect to secret
parameters d and k. Thus, the straightforward way is to use additive secret sharing of
these parameters: k = k1 + k2, d = d1 + d2. Then the signature (r, s) is formed as:

s = (k1 + k2)e+ (d1 + d2)r = (k1e+ d1r) + (k2e+ d2r),

r = (R1 +R2).x mod q = (k1P + k2P).x mod q.

Consider the naive version of the two-party GOST signature scheme between partic-
ipants P1 and P2. The key generation protocol KGen and the signing protocol Sign are
shown at Figure 1 and Figure 2 respectively.

Key generation protocol. At first, let’s consider the KGen protocol. We claim that
this key generation algorithm is not secure. Indeed, the party P2 can choose Q2 depending
on Q1 in such a way that it will know the discrete logarithm of the final public key Q, i.e.
the private key d. For example, the party P2 can setQ2 = P−Q1. Then,Q = Q1+Q2 = P ,
d = 1.

One way to protect against this attack is to use a commitment scheme just like in the
two-party Schnorr signature scheme [17]. Instead of sending Q1, the party P1 can send
the commitment to the value Q1. Then party P2 does not know any information about Q1

due to the «hiding» property of the commitment scheme and generates Q2 independently
of Q1. The party P1 cannot change Q1 after it receives Q2 from the party P2 due to the
«binding» property of the commitment scheme.

Another way of protection is to use the multiplicative method of the private key d
sharing as in the scheme proposed in [20]. The simple version of the algorithm is shown
at Figure 3. The party P2 can also set the Q2 value depending on Q1. However in such
case it only knows how d depends on d1, but does not know the d value itself because of
unpredictability of d1. For example, the party P2 can set Q2 = Q1. Then, the party P1

calculates Q = d1 ·Q1 = d21 · P .
Note that in case of the multiplicative key sharing there is no obvious way how to

further use the key shares to create a signature. Specifically, participants must calculate
the value d1 · d2 · r without revealing the secret to the other party. The authors of the
paper [20] use the additively homomorphic encryption scheme based on factoring problem
for such calculation.

Since we strive not to use non-standard cryptographic mechanisms, we decide to use
the additive secret sharing with the commitment scheme.

4

KGen

P1 () P2 ()

d1
U←− Z∗

q

Q1 ← d1 · P

Q1

d2
U←− Z∗

q

Q2 ← d2 · P
Q← Q1 +Q2

Q2

Q← Q1 +Q2

return (d1, Q) return (d2, Q)

Figure 1: The key generation protocol of the naive version of the two-party GOST

Sign

P1 (d1, Q,m) P2 (d2, Q,m)

e← H(m) e← H(m)

k1
U←− Z∗

q

R1 ← k1 · P

R1

k2
U←− Z∗

q

R2 ← k2 · P
r ← (R1 +R2).x mod q

s2 ← k2 · e+ d2 · r

R2, s2

r ← (R1 +R2).x mod q

s1 ← k1 · e+ d1 · r
s← s1 + s2

s1

s← s1 + s2

return ⟨r, s⟩ return ⟨r, s⟩

Figure 2: The signing protocol of the naive version of the two-party GOST

5

KGen

P1 () P2 ()

d1
U←− Z∗

q

Q1 ← d1 · P

Q1

d2
U←− Z∗

q

Q2 ← d2 · P
Q← d2 ·Q1

Q2

Q← d1 ·Q2

return (d1, Q) return (d2, Q)

Figure 3: The KGen protocol of the scheme from [20]

Signing protocol. Let’s consider the Sign protocol from Figure 2 which is the same as
in the schemes proposed in [4, 16, 14]. We claim that it is not secure, since it is vulnerable
to the ROS-style attack. Note that in the scheme proposed in [4] party P2 sends r instead
of R2, but these are equivalent cases, since the R2 value can be restored from r and R1.

The original ROS attack was proposed in [2], the authors show that it is applicable
to some threshold signature schemes [7, 12]. The attack works if the one party is given
the opportunity to open l ⩾ ⌈log q⌉ parallel sessions of signing protocol with the other
party. Let’s discuss the features of signing protocol from Figure 2 that make the attack
applicable. The main observation is that one party can select its parameters when it
knows the parameters selected by the other party. Indeed, the party P2 can open l parallel
sessions with P1, receive l points R1

1, . . . , R
l
1 and construct the corresponding R2 points in

some specific way dependent on R1 values. Note that in the scheme from [20] the party P2

also can vary R2 after receiving R1 from the party P1. We provide an explicit description
of ROS-style attack on this scheme in Appendix A.1 and some modification of this attack
for scheme defined at Figure 2 in Appendix A.2.

We use the commitment scheme to protect against this attack. Instead of sending R1,
the party P1 can send the commitment to the value R1. Then party P2 does not know
any information about R1 due to the «hiding» property of the commitment scheme and
generates R2 independently of R1. The party P1 cannot change R1 after it receives R2 from
the party P2 due to the «binding» property of the commitment scheme. Consequently,
each party cannot vary any parameters after receiving the parameters selected by the
other party.

Note that up to this point we have assumed that the message initially exists on
both sides, i.e. given them as an input. In practice, one of the parties usually forwards
the message to the other. It is important that each party captures the message before
it learns the parameters of the other party to protect against the ROS-style attack. We
provide the description of the attack on the modification of discussed signing protocol in
which the party P1 selects message m and sends it to the party P2 after receiving R2 in
Appendix A.3.

6

4 Two-party GOST
In this section we describe the two-party signature scheme 2p-GOST. It is based on

the GOST signature scheme.
The key generation protocol KGen and the signing protocol Sign use a commitment

scheme. The party P1 computes the Cmt function for commitment generation, the party
P2 computes the Open function for commitment verification during the protocols execu-
tion.

Note that the HMAC [19] can be used as a commitment. Then for m ∈ {0, 1}∗ the
commitment scheme is defined at Figure 4.

Cmt(m)

1 : op
U←− {0, 1}κ

2 : comm← HMAC(op,m)

3 : return (op, comm)

Open(comm,m, op)

1 : comm′ ← HMAC(op,m)

2 : if (comm′ ̸= comm) : return 0

3 : return 1

Figure 4: HMAC as a commitment.

Key generation protocol. The party P1 and party P2 execute the KGen protocol. As
a result of executing, a new key pair (d,Q) for the GOST scheme is implicitly formed.
But the signing key d does not appear on either side. The output of the party P1 is a
private key share d1 and signature verification key Q. The output of the party P2 is a
private key share d2 and signature verification key Q. Note that d = d1 + d2.

A detailed description of the protocol is presented at Figure 5.

7

KGen

P1 () P2 ()

d1
U←− Z∗

q

Q1 ← d1 · P
(opQ, commQ)← Cmt(Q1)

commQ

d2
U←− Z∗

q

Q2 ← d2 · P

Q2

if (Q2 = −Q1) : return ⊥
Q← Q1 +Q2

opQ, Q1

if (Open(commQ, Q1, opQ) = 0) : return ⊥
if (Q1 = −Q2) : return ⊥
Q← Q1 +Q2

return (d1, Q) return (d2, Q)

Figure 5: Key generation protocol of the 2p-GOST signature scheme.

Verification algorithm. This algorithm can be executed by anyone with the use of
verification key Q and is the same as in the GOST signature scheme. A detailed description
of the algorithm is presented at Figure 6.

Verify(Q,m, ⟨r, s⟩)

1 : if (s = 0 ∨ r = 0) : return 0

2 : e← H(m)

3 : if e = 0 : e← 1

4 : R← e−1sP − e−1rQ

5 : if (R.x mod q ̸= r) : return 0

6 : return 1

Figure 6: Verification algorithm of the 2p-GOST signature scheme.

Signing protocol. The party P1 and party P2 execute this protocol. Party P1 takes
d1, Q generated as a result of KGen and the message m as an input. Party P2 takes d2, Q
generated as a result of KGen and the message m as an input. As a result of executing,
each of the parties receives a signature σ for the message m corresponding to the signature
verification key Q.

8

A detailed description of the protocol is presented at Figure 7.

Sign

P1 (d1, Q,m) P2 (d2, Q,m)

k1
U←− Z∗

q

R1 ← k1 · P
(opR, commR)← Cmt(R1)

commR

k2
U←− Z∗

q

R2 ← k2 · P

R2

if (R2 = −R1) : return ⊥
r ← (R1 +R2).x mod q

if (r = 0) : return ⊥
e← H(m)

if (e = 0) : e← 1

s1 ← k1 · e+ d1 · r

opR, R1, s1

if (Open(commR, R1, opR) = 0) : return ⊥
if (R1 = −R2) : return ⊥
e← H(m)

if (e = 0) : e← 1

r ← (R1 +R2).x mod q

s2 ← k2 · e+ d2 · r
s← s1 + s2

σ ← (r, s)

if (Verify(Q,m, σ) = 0) : return ⊥

s2

s← s1 + s2

σ ← (r, s)

if (Verify(Q,m, σ) = 0) : return ⊥
return σ return σ

Figure 7: Signing protocol of the 2p-GOST signature scheme.

Note that GOST signature algorithm checks non-equality of r and s values to zero.
The Sign protocol does not contain an explicit check of s value being zero, since parties

9

execute the Verify algorithm at the same round at which they calculate s, and the Verify
algorithm contains this check. By the same reason, the party P2 does not check equality
of r to the zero.

5 Security notions and bounds
We introduce sOMUF-PCA notion (strong One More Unforgeability under Party Com-

promised Attack) to analyze the security of the 2p-GOST scheme. It is a natural commonly
used model [17], [15] implying that the adversary acts as one of the parties.

We prove the security under some idealized assumptions:

– we model commitment scheme as a random oracle; the commitment for KGen pro-
tocol is modeled as oracle qRO; the commitment for Sign protocol is modeled as
oracle rRO. The random oracle [3] is an ideal primitive which models a random
function via oracle. It provides a random output for each new query, identical input
queries are given the same answer;

– we model conversion function r = f(R) in the GOST signature scheme using the
bijective random oracle (see detailes below). The bijective random oracle [6] is an
idealized public bijection that is accessible, in both directions, via oracles.

The security is reduced to the security of the GOST scheme regarding the sUF-KO (strong
Unforgeability under Key Only attack) notion and the signum-relative collision resistant
property of the used hash function family.

Before proceeding to the formulation of the result, let’s define the considered target
security model, the signum-relative collision resistant property, the sUF-KO notion and
the bijective random oracle.

sOMUF-PCA notion. Let’s describe the sOMUF-PCA notion informally. The adversary
A compromises one of the parties and communicates with the other party in the 2p-SS
signature scheme. At the beginning, it can execute the KGen protocol once by querying
a KGen oracle. This oracle models the actions of the honest (uncompromised) party.
After executing the KGen protocol adversary can execute the Sign protocol. Meanwhile,
the adversary can open the parallel sessions of this protocol. For these, the adversary can
make queries to the NewSign oracle for opening the session and then to the Sign oracle
for execution the signing protocol. Sign oracle models the actions of the honest party.
The adversary has the capability not to finish the sessions and provoke the failures on the
honest party side. The adversary’s goal is to make l+1 correct (message, signature) pairs
after l successful interactions with the honest party. The probability of achieving the goal
by the adversary A is denoted by AdvsOMUF-PCA

2p-GOST (A).
Note that such way to formulate the threat via one-more forgery captures the intuition

that it is impossible to create a forgery without interacting with an honest party. It was
introduced for defining unforgeability of blind signature schemes [18]. The classical way
to define unforgeability for standard signature scheme is to make only one forgery that
is correct and non-trivial, i.e. was not obtained as a result of honest execution of the
protocol. However, in case of two-party schemes some problems may occur while defining
non-triviality. Indeed, as soon as the proposed model allows the adversary not to finish
the sessions, the following situation is possible. The adversary acting as P2 computes the
signature value and does not send it to the honest party at the last flow of the signing

10

protocol. In this case the honest party could not determine whether the signature, returned
as a forgery, is indeed fresh or was generated in the unfinished session. To address this
problem we use one-more setting and consider the interaction successful if the honest party
completes the computation of it’s part of the signature and sends it to the adversary.

The formal description of the sOMUF-PCA notion is given in Appendix B.

Signum-relative collision resistant property. This property for a hash function
family means that it is difficult to find two different messages m1, m2 such that the hash
function values from these messages match up to the sign.

Throughout the paper we consider implicitly keyed hash functions H: {0, 1}∗ 7→
{0, 1}h with initialization vector assumed to be an implicit key. The experiments of the
up-coming security definitions should be understood as implicitly first picking a random
initialization vector IV ∈ IV and giving it to the adversary.

Definition 1 (SCR property). For the family of hash functions H

AdvSCRH (A) = Pr
[
(m1,m2)

$←− A : H(m1) = ±H(m2) ∧m1 ̸= m2

]
sUF-KO notion. Consider the sUF-KO (strong Unforgeability under Key Only attack)
notion for the signature scheme SS. The adversary A receives signature verification key
Q. It’s goal is to make a forgery.

Definition 2. For a signature scheme SS

AdvsUF-KO
SS (A) = Pr

[
ExpsUF-KO

SS (A)→ 1
]
,

where the experiment ExpsUF-KO
SS (A) is defined in the following way:

ExpsUF-KO
SS (A)

1 : (d,Q)← SS.KGen()

2 : (m,σ)
$←− A(Q)

3 : res← SS.Verify(Q,m, σ)

4 : return res

Bijective random oracle. Bijective random oracle model (BRO model) was proposed
in [6] to achieve provable security for signature schemes based on the ElGamal signature
equation. In particular, GOST scheme is proven secure in the BRO model [5] (under some
assumptions on the used primitives).

Bijective random oracle is used to model the mapping from group elements to the
space Zq used in GOST signature: r = f(R) = R.x mod q. We decompose the conversion
function f as follows:

f = ψ ◦ Π ◦ ϕ,

where Π is a bijection. The idea is to reflect in ϕ the structure of f that involves only
its domain and to reflect in ψ the structure that involves only its range; the component
that is responsible for disrupting any algebraic link between the domain and the range is
modeled by Π. In security proofs we will replace Π by a bijective random oracle.

For the 2p-GOST and GOST signature schemes:

11

– ϕ : G → {0, 1}N , N = ⌈log2 p⌉, is deterministic encoding function that is imple-
mented as the mapping the point with coordinates (x, y) to the bit representation
of the x-coordinate. This is semi-injection function, i.e. it is injective except for the
mutually inverse elements A,B for which the equality ϕ(A) = ϕ(B) holds;

– ψ : {0, 1, . . . , 2N − 1} → Zq is a function that maps integer to elements of Zq that
is implemented as the reduction of an integer modulo q;

– Π : {0, 1}N → {0, 1, . . . , 2N − 1} is the link in the middle, bridging the range of ϕ
with the domain of ψ.

Finally, we are ready to formulate the security bound for the 2p-GOST scheme.

Theorem 1. Let A be an adversary with time complexity T in the sOMUF-PCA model
for the 2p-GOST scheme, making at most qR and qQ queries to the random oracles rRO
and qRO respectively, at most qBRO and qBRO−1 queries to the bijective random oracles
BRO and BRO−1 respectively and at most qsign queries to the oracle NewSign. Then,
there exist an adversary B in the sUF-KO model for the GOST scheme and an adversary
C that breaks the signum-relative collision resistant property of H, such that:

AdvsOMUF-PCA
2p-GOST (A) ⩽ AdvsUF-KO

GOST (B) + AdvSCRH (C)+

+
qQ + qsign · (qR + qsign)

2min{κ,n} +
2(qBRO + qBRO−1 + 3qsign + 1)2

q
,

where κ, n are the parameters of the underlying commitment scheme.
An adversary B makes at most (qBRO +2qsign+1) and qBRO−1 queries to the bijective

random oracles BRO and BRO−1 respectively. The time complexities of B and C are at
most 3T .

The proof of the theorem is provided in Appendix C.
The interpretation of the random oracle model and bijective random oracle model in

our case is as follows. We do not cover the methods of cryptoanalysis that use the features
of structure of the concrete commitment scheme to link its domain and range or exploit
the connection between two algebraic structures: bit strings encoding the coordinates of
elliptic curve points and the corresponding integers (see [3], [6]).

Let discuss the obtained security bound. Each term of the bound corresponds to
the specific directions of cryptoanalysis that are meaningful for the proposed scheme.
The first two terms reflect methods targeted at breaking the security of the underlying
cryptographic mechanisms — the GOST signature scheme (in the no-message setting)
and the hash function. Obviously, breaking each of these mechanisms allows to obtain a
forgery for 2p-GOST.

The third term reflects methods of cryptoanalysis targeted at the commitment scheme
(as a black box) and assuming the dishonest computation of commitment values by one
of the parties. Indeed, this term is equal to the probability of guessing the input (output)
of the commitment function, modelled as a random oracle, by its output (input) without
querying it. Note that if the adversary is able to do so, the attacks described in Section 3
for the naive version of 2p-GOST become possible.

The last term in the bound reflects methods of cryptoanalysis assuming gathering
the large number of (message, signature) pairs and exploiting some collisions or other
connections of their values. A prime example of such attack is to find two signatures

12

generated with the same k = k1 + k2 value and recovering the signing key. The success of

such attack is of order
q2sign
q

.

Note that the obtained security bound demonstrates that our method of construct-
ing two-party scheme based on the GOST scheme does not add any additional security
assumptions except for the assumption that commitment is modelled as random oracle.
Indeed, other two assumptions, bijective random oracle and signum-relative collision re-
sistance of the used hash function family, are also the underlying assumptions for the
security of the GOST scheme in the chosen-message setting (for details see [5]).

6 Conclusion
The first result of this paper is devoted to the analysis of existing signature schemes

based on GOST signature equation, in which the signature is generated by several signers.
We show that all these schemes are not suitable for providing signing key protection
on the user mobile device. Some of these schemes use a trusted third party, others are
proven secure in the weak security models. Moreover, we provide the attacks breaking
unforgeability for some of these schemes.

The second result of this paper is devoted to the synthesis of the secure two-party
signature scheme with the same verification algorithm as in the GOST signature scheme.
We propose the 2p-GOST scheme which uses the commitment scheme. We prove that this
scheme is secure in the case when one of the parties is malicious under the assumption
that the classical GOST scheme is unforgeable and commitment scheme is modelled as a
random oracle. This scheme can be used for providing signing key protection on the user
mobile device.

References
[1] Beresneva, Anastasia and Epishkina, Anna and Isupova, Olga and Kogos, Konstantin and

Shimkiv, Mikhail, “Special digital signature schemes based on GOST R 34.10-2012”, IEEE,
2016, 135–140.

[2] Benhamouda, Fabrice and Lepoint, Tancrède and Loss, Julian and Orrù, Michele and
Raykova, Mariana, “On the (in) security of ROS”, Journal of Cryptology, 35:4 (2022), 25.

[3] Bellare, Mihir and Rogaway, Phillip, “Random oracles are practical: A paradigm for design-
ing efficient protocols”, Proceedings of the 1st ACM Conference on Computer and Commu-
nications Security, 1993, 62–73.

[4] Dzhunkovsky P. O., Ditenkova A. S., “Porogovaya schema podpisi s razdeleniem secreta
na baze GOST R 34.10-2001 [Threshold scheme of a digital signature with a shared secret
based on GOST R 34.10-2001]”, Bezopasnost‘ Informatsionnykh Tekhnologiy [IT Security
(Russia)],, 17:3 (2010), 61–65.

[5] Fersch, Manuel, “The provable security of elgamal-type signature schemes”, 2018.
[6] Fersch, Manuel and Kiltz, Eike and Poettering, Bertram, “On the provable security of (EC)

DSA signatures”, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, 2016, 1651–1662.

[7] Gennaro, Rosario and Jarecki, Stanislaw and Krawczyk, Hugo and Rabin, Tal, “Secure
distributed key generation for discrete-log based cryptosystems”, Journal of Cryptology, 20
(2007), 51–83.

[8] GOST R 34.10-2012. Information technology. Cryptographic data security. Signature and
verification processes of electronic digital signature. National standard of the Russian Fed-
eration, STANDARTINFORM, 2012, In Russian.

13

[9] GOST 34.10-2018. Information technology. Cryptographic data security. Signature and ver-
ification processes of electronic digital signature. Interstate standard, Interstate Council for
Standardization, Metrology and Certification (ISC), 2018, In Russian.

[10] ISO/IEC 14888-3:2018, IT Security techniques – Digital signatures with appendix – Part
3: Discrete logarithm based mechanisms – Section 6: Certificate-based mechanisms – 6.9:
ECRDSA, 2018.

[11] Dolmatov V., Degtyarev A., GOST R 34.10-2012: Digital Signature Algorithm, RFC 7091,
DOI 10.17487/RFC7091, 2013, https://www.rfc-editor.org/info/rfc7091.

[12] Komlo, Chelsea and Goldberg, Ian, “FROST: flexible round-optimized Schnorr threshold
signatures”, Selected Areas in Cryptography: 27th International Conference, Halifax, NS,
Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers 27, Springer, 2021,
34–65.

[13] Kim, Sungwook and Kim, Jihye and Cheon, Jung Hee and Ju, Seong-ho, “Threshold signa-
ture schemes for ElGamal variants”, Computer Standards & Interfaces, 33:4 (2011), 432–437.

[14] Kim, Tuan Nguyen and Ngoc, Duy Ho and Moldovyan, Nikolay A, “New Collective Sig-
natures Based on the Elliptic Curve Discrete Logarithm Problem”, CMC-COMPUTERS
MATERIALS & CONTINUA, 73:1 (2022), 595–610.

[15] Lindell, Yehuda, “Fast secure two-party ECDSA signing”, Advances in Cryptology–CRYPTO
2017: 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20–24, 2017, Proceedings, Part II 37, Springer, 2017, 613–644.

[16] Moldovyan, Nikolai Andreevich, “Theoretical minimum and digital signature algorithms
[there is a vulture]”, 2010.

[17] Nicolosi, Antonio and Krohn, Maxwell N and Dodis, Yevgeniy and Mazieres, David, “Proac-
tive Two-Party Signatures for User Authentication,”, NDSS, 2003.

[18] Pointcheval, David and Stern, Jacques, “Provably secure blind signature schemes”, Advances
in Cryptology—ASIACRYPT’96: International Conference on the Theory and Applications
of Cryptology and Information Security Kyongju, Korea, November 3–7, 1996 Proceedings,
Springer, 1996, 252–265.

[19] Krawczyk H., Bellare M., Canetti R., HMAC: Keyed-hashing for message authentication,
RFC2104, 1997, https://www.rfc-editor.org/info/rfc2104.

[20] Zhang, Yunru and Luo, Min and Choo, Kim-Kwang Raymond and Li, Li and He, Debiao,
“Efficient and Secure Two-Party Distributed Signing Protocol for the GOST Signature Al-
gorithm”, Security and Privacy in Social Networks and Big Data: 6th International Sym-
posium, SocialSec 2020, Tianjin, China, September 26–27, 2020, Proceedings 6, Springer,
2020, 3–19.

14

A ROS-style attacks

A.1 Scheme Zhang-Luo-Choo-Li-He

The scheme proposed in [20] uses the additively homomorphic encryption scheme
(Encpk(·), Decsk(·)), where keys (sk, pk) are known to P1, and cd = Encpk(d1) is known
to P2. In the attack, we use encryption scheme honestly, so details related to its correct
using are omitted.

The signing protocol of this scheme is presented at Figure 8.

Sign

P1 (d1, Q,m, (sk, pk)) P2 (d2, Q,m, cd)

e← H(m) e← H(m)

k1
U←− Z∗

q

R1 ← k1 · P
ck ← Encpk(k1)

R1, ck

k2
U←− Z∗

q

R2 ← k2 · P
R← k2 ·R1

r ← R.x mod q

cs ← rd2cd + ek2ck

R2, cs

r ← R.x mod q

s← Decsk(cs)

s

return ⟨r, s⟩ return ⟨r, s⟩

Figure 8: Signing protocol of the signature scheme [20].

The attack, presented below, allows an adversary acting as P2 to construct (l + 1)
correct (message, signature) pairs after l ⩾ ⌈log q⌉ successful interactions with P1. The
adversary acts as follows:

1. Selects message ml ∈ {0, 1}∗ for which a signature will be forged, let el = H(ml).

2. Opens l parallel sessions for some messages m0, . . . ,ml−1, querying P1, let ei =
H(mi), 0 ⩽ i ⩽ l − 1, and receives corresponding points R0

1, . . . , R
l−1
1 .

3. Selects ki,02 , k
i,1
2 ∈ Z∗

q, 0 ⩽ i ⩽ l − 1, then Ri,0 = ki,02 R
i
1, Ri,1 = ki,12 R

i
1, 0 ⩽ i ⩽ l − 1,

ri,0 = Ri,0.x mod q, ri,1 = Ri,1.x mod q, 0 ⩽ i ⩽ l − 1, such that ki,12
−1
ri,1 ̸=

ki,02
−1
ri,0, 0 ⩽ i ⩽ l − 1.

15

4. Defines (ρ0, ρ1, . . . , ρl) as the vector of coefficients placed before xi in the function

f : Zl
q → Zq; f(x0, . . . , xl−1) =

l−1∑
i=0

2i
xi − ki,02

−1
ri,0

ki,12
−1
ri,1 − ki,02

−1
ri,0︸ ︷︷ ︸

b′i

=
l−1∑
i=0

ρixi + ρl. Note that

if xi = ki,02
−1
ri,0 then b′i = 0, if xi = ki,12

−1
ri,1 then b′i = 1 .

5. Defines Rl = e−1
l

(
l−1∑
i=0

ρieiR
i
1 − ρlQ

)
.

6. Defines rl = Rl.x mod q.

7. Defines b0, . . . , bl−1 from the following equation: rl =
l−1∑
i=0

2ibi.

8. Defines ki2 = ki,bi2 , ri = ri,bi , 0 ⩽ i ⩽ l − 1; therefore, according to step 4, rl =
l−1∑
i=0

2ibi =
l−1∑
i=0

ρik
i
2
−1
ri + ρl.

9. Defines Ri
2 = ki2P , 0 ⩽ i ⩽ l − 1.

10. Calculates c0s, . . . , cl−1
s , according to the protocol.

11. Sends R0
2, . . . , R

l−1
2 and c0s, . . . , cl−1

s values to P1 in the corresponding sessions;

12. Obtains responses s0, . . . , sl−1 such that:

ki2
−1
si = ki1ei + d1d2rik

i
2

−1
, 0 ⩽ i ⩽ l − 1.

13. Defines sl =
l−1∑
i=0

ρik
i
2
−1
si =

l−1∑
i=0

ρik
i
1ei +

l−1∑
i=0

ρid1d2rik
i
2
−1.

14. Outputs {mi, (ri, s
i)}li=0.

Indeed, for 0 ⩽ i ⩽ l − 1 signature (ri, s
i) is valid for mi by attack construction.

Consider the case i = l.
We show that the following signature verification equation holds:

el
−1slP = Rl + el

−1rlQ.

The left side:

el
−1slP = el

−1

l−1∑
i=0

ρieiR
i
1 +Qel

−1

l−1∑
i=0

ρirik
i
2

−1
.

The right side:

Rl + el
−1rlQ = e−1

l

(
l−1∑
i=0

ρieiR
i
1 − ρlQ

)
+ el

−1Q

(
l−1∑
i=0

ρik
i
2

−1
ri + ρl

)
=

= el
−1

l−1∑
i=0

ρieiR
i
1 +Qel

−1

l−1∑
i=0

ρirik
i
2

−1
.

A condition l ⩾ ⌈log q⌉ is is necessary in order to be able to carry out the step 7.

16

A.2 ROS attack on the straightforward scheme

This section contains some modification of the attack, described in Appendix A.1, for
scheme defined at Figure 2.

We describe only the different steps:

3. Selects ki,02 , k
i,1
2 ∈ Z∗

q, 0 ⩽ i ⩽ l − 1, then Ri,0 = ki,02 P + Ri
1, Ri,1 = ki,12 P + Ri

1,
0 ⩽ i ⩽ l − 1, ri,0 = Ri,0.x mod q, ri,1 = Ri,1.x mod q, 0 ⩽ i ⩽ l − 1, such that
ri,1el(ei)

−1 ̸= ri,0el(ei)
−1, 0 ⩽ i ⩽ l − 1.

4. Defines (ρ0, ρ1, . . . , ρl) as the vector of coefficients placed before xi in the function

f : Zl
q → Zq; f(x0, . . . , xl−1) =

l−1∑
i=0

2i
xi − ri,0el(ei)−1

ri,1el(ei)−1 − ri,0el(ei)−1︸ ︷︷ ︸
b′i

=
l−1∑
i=0

ρixi + ρl. Note

that if xi = ri,0el(ei)
−1 then b′i = 0, if xi = ri,1el(ei)

−1 then b′i = 1 .

5. Defines Rl
1 =

l−1∑
i=0

ρiR
i
1 − e−1

l ρlQ1.

6. Selects kl2 ∈ Z∗
q and defines Rl

2 = kl2P . Defines Rl = Rl
1 +Rl

2 and rl = Rl.x mod q.

8. Defines ki2 = ki,bi2 , ri = ri,bi , 0 ⩽ i ⩽ l − 1; rl =
l−1∑
i=0

2ibi = el
l−1∑
i=0

ρie
−1
i ri + ρl.

10. Calculates s02, . . . , s
l−1
2 , according to the protocol.

11. Sends R0
2, . . . , R

l−1
2 and s02, . . . , s

l−1
2 values to P1 in the corresponding sessions.

12. Obtains responses s01, . . . , s
l−1
1 such that:

si1 = ki1ei + d1ri 0 ⩽ i ⩽ l − 1.

13 Defines sl1 = el
l−1∑
i=0

ρiei
−1si1, sl2 = kl2el + rld2, si = si1 + si2; 0 ⩽ i ⩽ l.

Indeed, for 0 ⩽ i ⩽ l − 1 signature (ri, s
i) is valid for mi by attack construction.

Consider the case i = l.
We show that the following signature verification equation holds:

Rl = el
−1(slP − rlQ).

17

el
−1(slP − rlQ) = el

−1(sl1P + sl2P − rlQ1 − rlQ2) =

=
l−1∑
i=0

ρiei
−1si1P + kl2P + e−1

l rld2P − e−1
l rlQ2 − e−1

l rlQ1 =

=
l−1∑
i=0

ρiei
−1si1P − e−1

l rlQ1 +Rl
2 =

=
l−1∑
i=0

ρiei
−1si1P −Q1

(
l−1∑
i=0

ρie
−1
i ri + e−1

l ρl

)
+Rl

2 =

=
l−1∑
i=0

ρi e
−1
i (si1P − riQ1)︸ ︷︷ ︸

=Ri
1

−ρle−1
l Q1 +Rl

2 =

=
l−1∑
i=0

ρiR
i
1 − ρle−1

l Q1︸ ︷︷ ︸
=Rl

1

+Rl
2 =

= Rl
1 +Rl

2 = Rl.

A.3 ROS attack on the scheme with sent message

Let’s describe a ROS attack on the following modification of the singing protocol at
Figure 2: the message m is argument only for P1, the party P2 receives m from the party
P1 in the third transmission.

This attack uses an opportunity to open several parallel sessions. The attack allows
an adversary acting as P1 to construct (l + 1) correct (message, signature) pairs after
l ⩾ ⌈log q⌉ successful interactions with P2.

The adversary acts as follows:

1. Selects message ml ∈ {0, 1}∗ for which a signature will be forged, let el = H(ml).

2. Opens l parallel sessions, selects Ri
1 = ki1P, 0 ⩽ i ⩽ l − 1, and sends corresponding

comm0
R, . . . , comm

l−1
R to the second user. Receives R0

2, . . . , R
l−1
2 .

3. Defines ri = (Ri
1 +Ri

2).x mod q, 0 ⩽ i ⩽ l − 1.

4. Selects m0
i ,m

1
i , 0 ⩽ i ⩽ l − 1, such that r′i,0 ̸= r′i,1, where:

e0i = H(m0
i), e

1
i = H(m1

i),

r′i,0 = el(e
0
i)

−1ri, r
′
i,1 = el(e

1
i)

−1ri.

5. Defines (ρ0, ρ1, . . . , ρl) as the vector of coefficients placed before xi in the function

f : Zl
q → Zq; f(x0, . . . , xl−1) =

l−1∑
i=0

2i
xi − r′i,0
r′i,1 − r′i,0︸ ︷︷ ︸

b′i

=
l−1∑
i=0

ρixi + ρl. Note that if xi = r′i,0

then b′i = 0, if xi = r′i,1 then b′i = 1 .

18

6. Defines Rl
2 =

l−1∑
i=0

ρiR
i
2 − e−1

l ρlQ2.

7. Selects kl1 from Z∗
q and defines Rl

1 = kl1P .

8. Defines rl = (Rl
1 +Rl

2).x mod q.

9. Defines b0, . . . , bl−1 from the following equation: rl =
l−1∑
i=0

2ibi.

10. Defines r′i = r′i,bi , ei = ebii ,mi = mbi
i , 0 ⩽ i ⩽ l − 1; therefore rl =

l−1∑
i=0

ρir
′
i + ρl =

el
l−1∑
i=0

ρie
−1
i ri + ρl.

11. Calculates si1, according to the protocol: si1 = ki1 · ei + ri · d1.

12. Sends opiR, Ri
1, s

i
1, 0 ⩽ i ⩽ l− 1, values to P2 in the corresponding opened sessions.

13. Obtains responses s02, . . . , s
l−1
2 such that:

si2P = eiR
i
2 + riQ2, 0 ⩽ i ⩽ l − 1.

14. Defines sl2 = el
l−1∑
i=0

ρie
−1
i si2. Calculates sl1 = kl1el + rl · d1.

15. Defines si = si1 + si2, 0 ⩽ i ⩽ l.

16. Outputs {mi, (ri, s
i)}li=0.

Indeed, for 0 ⩽ i ⩽ l− 1 signature (ri, s
i) is valid for mi by attack construction. Consider

the case i = l.
We show that the following signature verification equation holds:

Rl = el
−1(slP − rlQ).

Rl′ = el
−1
(
slP − rlQ

)
= el

−1
(
(sl1 + sl2)P − rl(Q1 +Q2)

)
=

= el
−1

el l−1∑
i=0

ρie
−1
i si2P −

(
el

l−1∑
i=0

ρie
−1
i ri + ρl

)
·Q2 + (sl1P − rlQ1)︸ ︷︷ ︸

=elR
l
1

 =

=
l−1∑
i=0

ρie
−1
i si2P −

l−1∑
i=0

ρie
−1
i riQ2 − el−1ρlQ2 +Rl

1 =

=
l−1∑
i=0

ρi e
−1
i (si2P − riQ2)︸ ︷︷ ︸

=Ri
2

−el−1ρlQ2 +Rl
1 =

l−1∑
i=0

ρiR
i
2 − el−1ρlQ2︸ ︷︷ ︸
=Rl

2

+Rl
1 = Rl

2 +Rl
1.

and Rl′ .x = rl mod q from the step 8.
A condition l ⩾ ⌈log q⌉ is is necessary in order to be able to carry out the step 9.

19

B Security notions
In this section we formally define the security model used for two-party signature

schemes.

Definition 3. For a two-party signature scheme 2p-SS

AdvsOMUF-PCA
2p-SS (A) = Pr

[
ExpsOMUF-PCA

2p-SS (A)→ 1
]
,

where the experiment ExpsOMUF-PCA
2p-SS (A) is defined in the following way:

ExpsOMUF-PCA
2p-SS (A)

Π
U←− Perm

(
{0, 1}N → {0, . . . , 2N − 1}

)
ΠR

U←− Func({0, 1}κ ×G→ {0, 1}n)

ΠQ
U←− Func({0, 1}κ ×G→ {0, 1}n)

l← 0, SESS ← ∅
sid← −1
roundkg ← 0, ctxkg ← ∅
p← A()
if (p ̸= 1 ∧ p ̸= 2) : return ⊥
(Q, dp)← (ε, ε)

{(mi, ⟨ri, si⟩)}l+1
i=1

$←− AKGen,NewSign,Sign,BRO,BRO−1,rRO,qRO(p)

return ((∀i ̸= j ∈ {1, . . . , l + 1} :
(mi, ⟨ri, si⟩) ̸= (mj , ⟨rj , sj⟩))∧
∧ (∀i ∈ {1, . . . , l + 1} : Verify(Q,mi, ⟨ri, si⟩)))

Oracle BRO(α)

return Π(α)

Oracle BRO−1(β)

return Π−1(β)

rRO(opR, R)

return ΠR(opR, R)

qRO(opQ, Q)

return ΠQ(opQ, Q)

KGen(msg)

if (Q ̸= ε) : return ⊥
return ExecKGenp(msg)

NewSign(m)

if (Q = ε ∨ dp = ε) : return ⊥
round← 0, ctx← {round}, f lag ← 0

state← (m, ctx, flag)

sid← sid+ 1

SESS ← SESS ∪ {(sid, state)}
return sid

Sign(sid,msg)

if ((sid, ·) /∈ SESS) : return ⊥
state← SESS[sid]

(state′,msg′)← ExecSignp(state,msg)

if (msg′ = ⊥) : return ⊥
SESS[sid]← state′

(m, ctx, flag)← state′

if (flag) : l← l + 1

return msg′

where ExecKGenp and ExecSignp are functions that define the execution of the KGen and
Sign protocols of the 2p-SS scheme by an uncompromised party, i.e. P3−p.

Let’s define the functions ExecKGenp and ExecSignp, where p = 1, 2, for the 2p-GOST
scheme.

20

ExecKGen1(msg)

1 : if (roundkg = 0) :

2 : d1
U←− Z∗

q

3 : Q1 ← d1P

4 : opQ
U←− {0, 1}κ

5 : commQ ← qRO(opQ, Q1)

6 : msg′ ← {commQ}
7 : else if (roundkg = 1) :

8 : Q2 ← msg

9 : if (Q2 = −Q1) : return ⊥
10 : Q← Q1 +Q2

11 : msg′ ← {opQ, Q1}
12 : else :

13 : msg′ ← ε

14 : roundkg ← roundkg + 1

15 : // Update the ctxkg value

16 : return msg′

ExecSign1(state,msg)

1 : round← state.ctx.round

2 : if (round = 0) :

3 : e← H(state.m)

4 : if (e = 0) : e← 1

5 : k1
U←− Zq

6 : R1 ← k1P

7 : opR
U←− {0, 1}κ

8 : commR ← rRO(opR, R1)

9 : msg′ ← {commR}
10 : else if (round = 1) :

11 : R2 ← msg

12 : if (R2 = −R1) :

13 : return (state,⊥)
14 : R← R1 +R2

15 : r ← ψ(Π(ϕ(R)))

16 : if (r = 0) : return (state,⊥)
17 : s1 ← k1 · e+ d1 · r
18 : state.flag ← 1

19 : msg′ ← {opR, R1, s1}
20 : else if (round = 2) :

21 : s2 ← msg

22 : s← s1 + s2

23 : msg′ ← ε

24 : if (Verify(Q, state.m, ⟨r, s⟩) = 0) :

25 : return (state,⊥)
26 : else

27 : msg′ ← ε

28 : // Update the state.ctx value

29 : return (state,msg′)

ExecKGen2(msg)

1 : if (roundkg = 0) :

2 : commQ ← msg

3 : d2
U←− Z∗

q

4 : Q2 ← d2P

5 : msg′ ← {Q2}
6 : else if (roundkg = 1) :

7 : opQ, Q1 ← msg

8 : if (commQ ̸= qRO(opQ, Q1)) :

9 : return ⊥
10 : if (Q1 = −Q2) : return ⊥
11 : Q← Q1 +Q2

12 : msg′ ← ε

13 : else :

14 : msg′ ← ε

15 : roundkg ← roundkg + 1

16 : // Update the ctxkg value

17 : return msg′

ExecSign2(state,msg)

1 : round← state.ctx.round

2 : if (round = 0) :

3 : e← H(state.m)

4 : if (e = 0) : e← 1

5 : commR ← msg

6 : k2
U←− Zq

7 : R2 ← k2P

8 : msg′ ← {R2}
9 : else if (round = 1) :

10 : (opR, R1, s1)← msg

11 : if (commR ̸= rRO(opR, R1)) :

12 : return (state,⊥)
13 : if (R1 = −R2) :

14 : return (state,⊥)
15 : R← R1 +R2

16 : r ← ψ(Π(ϕ(R)))

17 : s2 ← k2 · e+ d2 · r
18 : s← s1 + s2

19 : state.flag ← 1

20 : msg′ ← {s2}
21 : if (Verify(Q, state.m, ⟨r, s⟩) = 0) :

22 : return (state,⊥)
23 : else :

24 : msg′ ← ε

25 : // Update the state.ctx value

26 : return (state,msg′)

C Security proof of the scheme
Proof. Let’s Exp0(A) denote the original security experiment as defined in the
sOMUF-PCA security model definition (see Definition 3). We fix A – the adversary that
makes forgery for the 2p-GOST scheme in the sOMUF-PCA model. The adversary has the
access to the random oracles rRO, qRO, the bijective random oracles BRO and BRO−1,
the key generation oracle KGen, the NewSign oracle, initiating a new signing session,
and the signing oracle Sign. We assume that adversary can make at most qR and qQ
queries to the oracles rRO and qRO respectively, at most qBRO and qBRO−1 queries to the
oracles BRO and BRO−1 respectively and at most qsign queries to the oracle NewSign.
Our goal is to upper-bound Pr

[
ExpsOMUF-PCA

2p-GOST (A)→ 1
]
= Pr

[
Exp0(A)→ 1

]
.

Construction of adversary C. Exp1(A) is the modification of the Exp0(A) obtained
by implementing Π, ΠR, ΠQ using «lazy sampling» (see Figure 9). Here and after we
denote the difference between experiments by color in pseudocode. We write abort in
the experiment pseudocode as a shortcut for return 0 and in the oracle pseudocode to
denote that experiment should stop and return 0.

The idea is to «open» new pairs (α,Π(x)) and triples (opR, R,ΠR(opR, R)) or
(opQ, Q,ΠQ(opQ, Q)) as soon as the adversary asks for it. From now onward we denote by
Π the subset of ({0, 1}N , {0, . . . , 2N − 1}), which is defined by the union of two sets ΠS

and ΠO. We store the pairs obtained from queries to the BRO and BRO−1 oracles in ΠO

set and the pairs obtained from queries to the Sign oracle in ΠS set. If (α, β) ∈ Π, we

21

denote β as Π(α) and α as Π−1(β). We write (α, ·) ∈ Π shorthand for the condition that
there exists β such that (α, β) ∈ Π. We write (·, α) ∈ Π shorthand for the condition that
there exists β such that (α, β) ∈ Π. Analogically, we denote by ΠR and ΠQ the subsets of
({0, 1}κ,G, {0, 1}n), that store the triples obtained from queries to the rRO and qRO or-
acle respectively. The shorthands for the conditions that there exist the triples belonging
to the corresponding sets are defined in the same way as for Π set.

These modifications do not affect the distribution on qRO and rRO outputs. There
are the following differences between Exp0(A) and Exp1(A) in implementing permutation
Π:

1. at the BRO oracle: abort if (·, β) ∈ Π (line 3);

2. at the BRO−1 oracle: abort if (α, ·) ∈ Π (line 3);

3. at the Sign oracle in the function ExecSign1 or the function ExecSign2: abort if
(·, β) ∈ Π (line 19 or 24).

To estimate the difference between Exp0(A) and Exp1(A), we should estimate the
probability that Exp1(A) aborts in these ways.

Let’s consider the BRO oracle. Note that is executed not only when adversary makes
direct query to it but also during the Verify procedure (in signing oracle and finalization of
the experiment). Since the number of forgeries does not exceed (qsign +1), the number of
BRO executions does not exceed (qBRO+2qsign+1). The value β is uniformly distributed
on a set {0, . . . , 2N − 1} of cardinality 2N . In the worst case the adversary A has already
made all queries to the BRO, BRO−1, Sign oracles and thus Π contains at least (qBRO +
qBRO−1+3qsign+1) elements. The abort condition is met if the value β hits one of elements

in Π. We can estimate this probability as
qBRO + qBRO−1 + 3qsign + 1

2N
. As oracle BRO is

executed at most (qBRO + 2qsign + 1) times, the overall probability can be bounded by

(qBRO + 2qsign + 1) · qBRO + qBRO−1 + 3qsign + 1

2N
.

Similarly, consider the BRO−1 and Sign oracles. We get the following:

Pr
[
abort in line 3 at the BRO−1 oracle

]
⩽

⩽ qBRO−1 · qBRO + qBRO−1 + 3qsign + 1

2N
;

Pr
[
abort in line 19 in ExecSign1 at the Sign oracle

]
=

= Pr
[
abort in line 24 in ExecSign2 at the Sign oracle

]
⩽

⩽ qsign ·
qBRO + qBRO−1 + 3qsign + 1

2N
.

Thus,

Pr
[
Exp0(A)→ 1

]
− Pr

[
Exp1(A)→ 1

]
⩽

(qBRO + qBRO−1 + 3qsign + 1)2

2N
.

22

Exp1(A)

1 : (ΠO,ΠS)← (∅, ∅),Π← ΠO ∪ΠS

2 : ΠR ← ∅
3 : ΠQ ← ∅
4 : l← 0, SESS ← ∅
5 : sid← −1
6 : roundkg ← 0, ctxkg ← ∅
7 : p← A()
8 : if (p ̸= 1 ∧ p ̸= 2) : return ⊥
9 : (Q, dp)← (ε, ε)

10 : {(mi, ⟨ri, si⟩)}l+1
i=1

$←− AKGen,NewSign,Sign,BRO,BRO−1,rRO,qRO(p)

11 : return ((∀i ̸= j ∈ {1, . . . , l + 1} :
12 : (mi, ⟨ri, si⟩) ̸= (mj , ⟨rj , sj⟩))∧
13 : ∧ (∀i ∈ {1, . . . , l + 1} : Verify(Q,mi, ⟨ri, si⟩)))

Oracle BRO(α)

1 : if (α, ·) ∈ Π : return Π(α)

2 : β
U←− {0, . . . , 2N − 1}

3 : if ((·, β) ∈ Π) : abort

4 : ΠO ← ΠO ∪ {(α, β)}
5 : Π← ΠO ∪ΠS

6 : return β

Oracle BRO−1(β)

1 : if (·, β) ∈ Π : return Π−1(β)

2 : α
U←− {0, 1}N

3 : if ((α, ·) ∈ Π) : abort

4 : ΠO ← ΠO ∪ {(α, β)}
5 : Π← ΠO ∪ΠS

6 : return β

rRO(opR, R)

1 : if ((opR, R, ·) ∈ ΠR) : return ΠR(opR, R)

2 : commR
U←− {0, 1}n

3 : ΠR ← ΠR ∪ {(opR, R, commR)}
4 : return commR

qRO(opQ, Q)

1 : if ((opQ, Q, ·) ∈ ΠQ) : return ΠQ(opQ, Q)

2 : commQ
U←− {0, 1}n

3 : ΠQ ← ΠQ ∪ {(opQ, Q, commQ)}
4 : return commQ

ExecSign1(state,msg) (Exp1)

1 : round← state.ctx.round

2 : if (round = 0) :

3 : e← H(state.m)

4 : if (e = 0) : e← 1

5 : k1
U←− Zq

6 : R1 ← k1P

7 : opR
U←− {0, 1}κ

8 : commR ← rRO(opR, R1)

9 : msg′ ← {commR}
10 : else if (round = 1) :

11 : R2 ← msg

12 : if (R2 = −R1) :

13 : return (state,⊥)
14 : R← R1 +R2

15 : if ((ϕ(R), ·) ∈ Π) :

16 : r ← ψ(Π(ϕ(R)))

17 : else

18 : β
U←− {0, . . . , 2N − 1}

19 : if ((·, β) ∈ Π) : abort

20 : ΠS ← ΠS ∪ {(ϕ(R), β)}
21 : Π← ΠS ∪ΠO

22 : r ← ψ(β)

23 : if (r = 0) : return (state,⊥)
24 : s1 ← k1 · e+ d1 · r
25 : state.flag ← 1

26 : msg′ ← {opR, R1, s1}
27 : else if (round = 2) :

28 : s2 ← msg

29 : s← s1 + s2

30 : msg′ ← ε

31 : if (Verify(Q, state.m, ⟨r, s⟩) = 0) :

32 : return (state,⊥)
33 : else

34 : msg′ ← ε

35 : // Update the state.ctx value

36 : return (state,msg′)

ExecSign2(state,msg) (Exp1)

1 : round← state.ctx.round

2 : if (round = 0) :

3 : e← H(state.m)

4 : if (e = 0) : e← 1

5 : commR ← msg

6 : k2
U←− Zq

7 : R2 ← k2P

8 : msg′ ← {R2}
9 : else if (round = 1) :

10 : (opR, R1, s1)← msg

11 : if (commR ̸= rRO(opR, R1)) :

12 : return (state,⊥)
13 : if (R1 = −R2) :

14 : return (state,⊥)
15 : R← R1 +R2

16 : if ((ϕ(R), ·) ∈ Π) :

17 : r ← ψ(Π(ϕ(R)))

18 : else

19 : β
U←− {0, . . . , 2N − 1}

20 : if ((·, β) ∈ Π) : abort

21 : ΠS ← ΠS ∪ {(ϕ(R), β)}
22 : Π← ΠS ∪ΠO

23 : r ← ψ(β)

24 : s2 ← k2 · e+ d2 · r
25 : s← s1 + s2

26 : state.flag ← 1

27 : msg′ ← {s2}
28 : if (Verify(Q, state.m, ⟨r, s⟩) = 0) :

29 : return (state,⊥)
30 : else :

31 : msg′ ← ε

32 : // Update the state.ctx value

33 : return (state,msg′)

Figure 9: Exp1(A) for the 2p-GOST scheme in the sOMUF-PCA model.

Exp2 is the modification of the Exp1 in which forgeries obtained by finding a signum-
relative collision are not counted (see Figure 10).

To estimate the difference between the Exp1 and Exp2, we should estimate the
probability that the Exp2 aborts in line 12.

Let construct an adversary C that breaks the signum-relative collision resistant prop-
erty of H. The adversary C implements the Exp2 for A. Note that he is able to do this
as soon as we replace Π, ΠR, ΠQ implementations with lazy sampling. A delivers (l + 1)
forgeries to C, and C finds the signum-relative collision iff the condition in lines 11-12 is
met.

23

Thus, we obtain the following bound:

Pr
[
Exp1(A)⇒ 1

]
− Pr

[
Exp2(A)⇒ 1

]
⩽ AdvSCRH (C).

The adversary C implements Exp2 and thus processes at most qR queries to the
oracle rRO, at most qQ queries to the oracle qRO, at most qBRO + 2qsign + 1 queries to
the oracle BRO, at most qBRO−1 queries to the oracle BRO−1 and at most qsign queries to
the oracles NewSign, at most 1 query to the oracle KGen, checks the collision condition
and verifies the forgeries obtained from A. Adversary C uses at most 3T computational
resources since it needs to simulate signing oracle (at most qsign ⩽ T queries) and check
the forgeries ((qsign + 1) pairs).

Exp2(A)

1 : (ΠO,ΠS)← (∅, ∅),Π← ΠO ∪ΠS

2 : ΠR ← ∅
3 : ΠQ ← ∅
4 : l← 0, SESS ← ∅
5 : sid← −1
6 : roundkg ← 0, ctxkg ← ∅
7 : p← A()
8 : if (p ̸= 1 ∧ p ̸= 2) : return ⊥
9 : (Q, dp)← (ε, ε)

10 : {(mi, ⟨ri, si⟩)}l+1
i=1

$←− AKGen,NewSign,Sign,BRO,BRO−1,rRO,qRO(p)

11 : ∀i ̸= j ∈ {1, . . . , l + 1},mi ̸= mj :

12 : if (H(mi) = ±H(mj)) : abort

13 : return ((∀i ̸= j ∈ {1, . . . , l + 1} :
14 : (mi, ⟨ri, si⟩) ̸= (mj , ⟨rj , sj⟩))∧
15 : ∧ (∀i ∈ {1, . . . , l + 1} : Verify(Q,mi, ⟨ri, si⟩)))

Figure 10: Exp2(A) for the 2p-GOST scheme in the sOMUF-PCA model.

There are two cases in experiment Exp2(A), depending on which p value the adversary
A chooses:

1. the party P2 is compromised, i.e. p = 1;

2. the party P1 is compromised, i.e. p = 2.

Thus,

Pr
[
Exp2(A)→ 1

]
= Pr

[
Exp2(A)→ 1|p = 1

]
Pr[p = 1]+

+ Pr
[
Exp2(A)→ 1|p = 2

]
Pr[p = 2] ⩽

⩽ max
{
Pr
[
Exp2(A)→ 1|p = 1

]
,Pr
[
Exp2(A)→ 1|p = 2

]}
.

Let’s consider both of these cases separately.

24

The party P2 is compromised. Consider the Exp2(A) under the assumption that
p = 1. In the further experiments we change the ExecKGen1 and ExecSign1 functions
behaviour only (see Figure 11).

The ExecKGen1 function in Exp3 is the modification of the ExecKGen1 function in
Exp2 (same as in Exp1) by adding the abort condition in case of choosing opQ that
already belongs to set ΠQ (line 9). Note that on round 0 we only select commQ uniformly
without querying random oracle qRO. We fix the values Q1 and opQ on the round 1 and
verify if opQ belongs to set ΠQ or not. Thus, we preserve the ability of the adversary to
receive commQ and conduct an exhaustive search using the random oracle qRO.

We should estimate the probability of this event to estimate the difference between
the Exp2 and Exp3. The value opQ is uniformly distributed in a set {0, 1}κ of cardinality
2κ. In the worst case the adversary A has already made all queries to the qRO oracle
and thus ΠQ contains at least qQ elements. The abort condition is met if the value opQ
hits one of elements in ΠQ. We can estimate this probability as

qQ
2κ

. As oracle KGen is

executed once, the overall probability can be bounded by
qQ
2κ

.

Similarly, the ExecSign1 function in Exp3 is the modification of the ExecSign1 function
in Exp2 (same as in Exp1) by adding the abort condition in case of choosing opR that
already belongs to set ΠR (line 12). Note that on round 0 we only select commR uniformly
without using random oracle rRO. We fix the values R1 and opR on the round 1 and verify
if opR belongs to set ΠQ or not. Thus, we preserve the ability of the adversary to receive
commR and conduct an exhaustive search using the random oracle rRO.

We should estimate the probability of this event to estimate the difference between
the Exp2 and Exp3. The value opR is uniformly distributed in a set {0, 1}κ of cardinality
2κ. In the worst case the adversary A has already made all queries to the rRO and Sign
oracles and thus ΠR contains at least qR + qsign elements. The abort condition is met if

the value opR hits one of elements in ΠR. We can estimate this probability as
qR + qsign

2κ
.

As oracle Sign is executed at most qsign times, the overall probability can be bounded by

qsign ·
qR + qsign

2κ
.

Thus,

Pr
[
Exp2(A)→ 1

]
− Pr

[
Exp3(A)→ 1

]
⩽
qQ
2κ

+ qsign ·
qR + qsign

2κ
.

25

ExecKGen1(msg) (Exp3)

1 : if (roundkg = 0) :

2 : commQ
U←− {0, 1}n

3 : msg′ ← {commQ}
4 : else if (roundkg = 1) :

5 : Q2 ← msg

6 : d1
U←− Z∗

q

7 : Q1 ← d1P

8 : opQ
U←− {0, 1}κ

9 : if ((opQ, ·, ·) ∈ ΠQ) : abort

10 : ΠQ ← ΠQ ∪ {opQ, Q1, commQ}
11 : if (Q2 = −Q1) : return ⊥
12 : Q← Q1 +Q2

13 : msg′ ← {opQ, Q1}
14 : else :

15 : msg′ ← ε

16 : roundkg ← roundkg + 1

17 : // Update the ctxkg value

18 : return msg′

ExecSign1(state,msg) (Exp3)

1 : round← state.ctx.round

2 : if (round = 0) :

3 : e← H(state.m)

4 : if (e = 0) : e← 1

5 : commR
U←− {0, 1}l

6 : msg′ ← {commR}
7 : else if (round = 1) :

8 : R2 ← msg

9 : k1
U←− Zq

10 : R1 ← k1P

11 : opR
U←− {0, 1}κ

12 : if ((opR, ·, ·) ∈ ΠR) : abort

13 : ΠR ← ΠR ∪ {opR, R1, commR}
14 : if (R2 = −R1) :

15 : return (state,⊥)
16 : R← R1 +R2

17 : if ((ϕ(R), ·) ∈ Π) :

18 : r ← ψ(Π(ϕ(R)))

19 : else :

20 : β
U←− {0, . . . , 2N − 1}

21 : if ((·, β) ∈ Π) : abort

22 : ΠS ← ΠS ∪ {(ϕ(R), β)}
23 : Π← ΠS ∪ΠO

24 : r ← ψ(β)

25 : if (r = 0) : return (state,⊥)
26 : s1 ← k1 · e+ d1 · r
27 : state.flag ← 1

28 : msg′ ← {opR, R1, s1}
29 : else if (round = 2) :

30 : s2 ← msg

31 : s← s1 + s2

32 : msg′ ← ε

33 : if (Verify(Q, state.m, ⟨r, s⟩) = 0) :

34 : return (state,⊥)
35 : else

36 : msg′ ← ε

37 : // Update the state.ctx value

38 : return (state,msg′)

ExecSign1(state,msg) (Exp4)

1 : round← state.ctx.round

2 : if (round = 0) :

3 : e← H(state.m)

4 : if (e = 0) : e← 1

5 : commR
U←− {0, 1}l

6 : msg′ ← {commR}
7 : else if (round = 1) :

8 : R2 ← msg

9 : β
U←− {0, . . . , 2N − 1}

10 : r ← ψ(β)

11 : s1
U←− Zq

12 : R1 ← e−1s1P − e−1rQ1

13 : opR
U←− {0, 1}κ

14 : if ((opR, ·, ·) ∈ ΠR) : abort

15 : ΠR ← ΠR ∪ {opR, R1, commR}
16 : if (R2 = −R1) :

17 : return (state,⊥)
18 : R← R1 +R2

19 : if (r = 0) : return (state,⊥)
20 : if ((ϕ(R), ·) ∈ Π) : abort

21 : if ((·, β) ∈ Π) : abort

22 : ΠS ← ΠS ∪ {(ϕ(R), β)}
23 : Π← ΠS ∪ΠO

24 : state.flag ← 1

25 : msg′ ←← {opR, R1, s1}
26 : else if (round = 2) :

27 : s2 ← msg

28 : s← s1 + s2

29 : msg′ ← ε

30 : if (Verify(Q, state.m, ⟨r, s⟩) = 0) :

31 : return (state,⊥)
32 : else

33 : msg′ ← ε

34 : // Update the state.ctx value

35 : return (state′,msg′)

Figure 11: The ExecKGen1 and ExecSign1 functions in Exp3(A), Exp4(A)

The signing oracle in the Exp4 gets along with only public information. Values β and
s1 are randomly chosen from the relevant sets and then point R1 is constructed. We define
the corresponding pair in Π implementation by saving this pair in the ΠS set. Note that
if we couldn’t do so (i.e., β already belongs to the Π), the abort condition is met like in
the Exp3.

Consider the distribution on R1 and s1, that are returned by the Sign oracle on
the round 1. In the Exp3 value k1 is distributed uniformly on Zq, thus R1 is uniformly
distributed. The value r is independent on k1 (due to bijective random oracle) and thus
s1 value is also uniformly distributed on Zq.

In the Exp4 values R1 and s1 are also distributed uniformly on the corresponding
sets except of the values that lead to ϕ(R) that already belongs to Π. Let’s estimate the
probability of these «bad» event. The values s1 and r are uniformly distributed on a set Zq

and are chosen independently. Then the value R1 (and thus R) is uniformly distributed on

26

a set of cardinality q. In the worst case the adversary A has already made all queries to the
BRO, BRO−1, Sign oracles and thus Π contains at least (qBRO+qBRO−1+2qsign) elements.
Note that here we do not take into account the queries to the BRO oracle made during
finalizing the experiment (verifying the forgeries), since they are made after all queries to
the Sign oracle. The abort condition is met if the value ϕ(R) hits one of elements in Π.

We can estimate this probability as
qBRO + qBRO−1 + 2qsign

q
. As oracle Sign is executed at

most qsign times, the overall probability can be bounded by qsign ·
qBRO + qBRO−1 + 2qsign

q
.

Thus, we conclude that

Pr
[
Exp3(A)→ 1

]
− Pr

[
Exp4(A)→ 1

]
⩽ qsign ·

qBRO + qBRO−1 + 2qsign
q

.

Let construct the adversary B for the GOST scheme in the sUF-KO model that uses
A as the black box (see Figure 12).

27

BBRO∗,BRO∗−1
(Q,A)

1 : (ΠO,ΠS)← (∅, ∅),Π← ΠO ∪ΠS

2 : ΠR ← ∅
3 : ΠQ ← ∅
4 : l← 0, SESS ← ∅
5 : sid← −1
6 : roundkg ← 0, ctxkg ← ∅
7 : p← A()
8 : if (p ̸= 1 ∧ p ̸= 2) : return ⊥

9 : {(mi, ⟨ri, si⟩)}l+1
i=1

$←− AKGen,NewSign,Sign,BRO,BRO−1,rRO,qRO(p)

10 : ∀i ̸= j ∈ {1, . . . , l + 1},mi ̸= mj :

11 : if (H(mi) = ±H(mj)) : abort

12 : if ((∃i ̸= j ∈ {1, . . . , l + 1} : (mi, ⟨ri, si⟩) = (mj , ⟨rj , sj⟩)) :
13 : abort

14 : for i ∈ {1, . . . , l + 1} :
15 : ei ← H(mi)

16 : if (ei = 0) : ei ← 1

17 : Ri ← e−1
i (siP − riQ)

18 : if ψ(SimBRO(ϕ(Ri))) ̸= ri : abort

19 : if (ϕ(Ri), ·) ∈ ΠO : return (mi, ⟨ri, si⟩)
20 : Find i, j : ((ϕ(Ri), ·) ∈ ΠS) ∧ (ϕ(Ri) = ϕ(Rj))

21 : Compute d

22 : (m, ⟨r, s⟩) $←− GOST.Sign(d,m)

23 : return (m, ⟨r, s⟩)

Oracle SimBRO(α)

1 : if (α, ·) ∈ Π : return Π(α)

2 : β ← BRO∗(α)

3 : if ((·β) ∈ Π) : abort

4 : ΠO ← ΠO ∪ {(α, β)}
5 : Π← ΠO ∪ΠS

6 : return β

Oracle SimBRO−1(β)

1 : if (·, β) ∈ Π : return Π−1(β)

2 : α← BRO∗−1(β)

3 : if ((α, ·) ∈ Π) : abort

4 : ΠO ← ΠO ∪ {(α, β)}
5 : Π← ΠO ∪ΠS

6 : return β

ExecKGen1(msg)

1 : if (roundkg = 0) :

2 : commR
U←− {0, 1}n

3 : msg′ ← {commQ}
4 : else if (roundkg = 1) :

5 : Q2 ← msg

6 : Q1 ← Q−Q2

7 : opQ
U←− {0, 1}κ

8 : if ((opQ, ·, ·) ∈ ΠQ) : abort

9 : ΠQ ← ΠQ ∪ {opQ, Q1, commQ}
10 : if (Q2 = −Q1) : return ⊥
11 : Q← Q1 +Q2

12 : msg′ ← {opQ, Q1}
13 : else :

14 : msg′ ← ε

15 : roundkg ← roundkg + 1

16 : // Update the ctxkg value

17 : return msg′

Figure 12: The adversary B for the GOST scheme in the sUF-KO model that uses A as
the black box

Adversary B simulates the rRO, qRO, NewSign and Sign oracles to answer the A
queries as the corresponding oracles in the Exp4. Adversary B simulates theBRO,BRO−1

oracles by translating the queries to its own oracle (see SimBRO and SimBRO−1).
Adversary B simulates KGen oracle similar to the oracle KGen in the Exp4 with the
modification of the ExecKGen1 function. Adversary B sets Q1 value (after receiving Q2)
in such a way that the resulting public key iis equal to the public key Q, provided by its
challenger.

After receiving l+ 1 forgeries from A, B finds the suitable forgery relative to its own
challenger. Assume thatA delivers valid pairs {(mi, ⟨ri, si⟩)}l+1

i=1. This means that the set Π
contains all corresponding pairs (ϕ(Ri), β), i = 1, . . . , l+1: either these pairs were already
in the Π before verification check in line 18 or were saved after SimBRO call during

28

this check. There are two possible cases. If there exists at least one pair (ϕ(Ri), β) ∈ ΠO,
then it is already a valid forgery with respect to the oracles BRO∗, BRO∗−1 and B can
simply forward it to its own challenger. If all pairs (ϕ(Ri), β) ∈ ΠS, i = 1, . . . , l + 1, B
can recover the signing key d as described below and construct the new forgery for an
arbitrary message.

Note that there are at least l pairs in ΠS, because adding a pair to the set ΠS is
performed only during the Sign oracle execution simultaneously with incrementing the
counter l of successful sessions. Thus, if pairs (ϕ(Ri), β) ∈ ΠS, i = 1, . . . , l+ 1, then there
are two of them with indexes i, j such as ϕ(Ri) = ϕ(Rj). This means that ri = rj = ψ(β) =
r in the corresponding forgeries. The adversary B knows the corresponding ei = H(mi),
ej = H(mj).

The equations ϕ(Ri) = ϕ(Rj) implies Ri = ±Rj and thus ki = ±kj = k. So the
following linear equation system holds:{

si = kei + dr;

sj = ±kej + dr;

There are two unknown variables k and d in the system above. This system has a
unique solution whenever ei ̸= ±ej. Observe that case ei = ±ej and thus H(mi) = ±H(mj)
is excluded by lines 10, 11, if mi ̸= mj. The mi = mj condition (together with ri = rj
condition) implies either (mi, ⟨ri, si⟩) = (mj, ⟨rj, sj⟩), that is excluded by lines 12, 13, or
ki = −kj, that still allows to compute d from the system equation. Summing all, we can
always compute d if all pairs (ϕ(Ri), β), i = 1, . . . , l + 1, belongs to ΠS.

We conclude that if A delivers valid l + 1 forgeries, B delivers a valid forgery to its
own challenger and

Pr
[
Exp4(A)→ 1

]
= Pr

[
ExpsUF-KO

GOST (B)→ 1
]
.

Note that the number of queries made by B to the BRO∗ and BRO∗−1 oracles is at
most qBRO +2qsign +1 and qBRO−1 respectively. The adversary B needs the same amount
of computational resources as C.

Thus, we summarize the obtained bounds in case the party P2 is compromised:

Pr
[
Exp2(A)→ 1

]
=
(
Pr
[
Exp2(A)→ 1

]
− Pr

[
Exp3(A)→ 1

])
+

+
(
Pr
[
Exp3(A)→ 1

]
− Pr

[
Exp4(A)→ 1

])
+ Pr

[
Exp4(A)→ 1

]
⩽

⩽
qQ
2κ

+ qsign ·
qR + qsign

2κ
+ qsign ·

qBRO + qBRO−1 + 2qsign
q

+

+ Pr
[
ExpsUF-KO

GOST (B)→ 1
]
=
qQ
2κ

+ qsign ·
qR + qsign

2κ
+

+ qsign ·
qBRO + qBRO−1 + 2qsign

q
+ AdvsUF-KO

GOST (B).

The party P1 is compromised. Consider the Exp2 under the assumption that p = 2.
In the further experiments we change the ExecKGen2 and ExecSign2 functions behaviour
only (see Figure 13).

The ExecKGen2 function in Exp3 is the modification of the ExecKGen2 function in
Exp2 (same as in Exp1) by adding the abort condition in case of receiving commQ that
does not belong to set ΠQ (lines 4, 5, 12). Note that on round 0 we only set flagQ and
abort on the round 1. Thus, we preserve the ability of the adversary to receive Q2.

29

We should estimate the probability of this event to estimate the difference between
the Exp2 and Exp3. The value commQ belongs to the set {0, 1}n of cardinality 2n. In the
worst case the adversary A has already made all queries to the qRO oracle and thus ΠQ

contains at least qQ elements. The abort condition is met if the value commQ hits one of
elements in ΠQ. We can estimate this probability as

qQ
2n

. As oracle KGen is executed only

once, the overall probability can be bounded by
qQ
2n

.

Similarly, the ExecSign2 function in Exp3 is the modification of the ExecSign2 function
in Exp2 (same as in Exp1) by adding the abort condition in case of receiving commR

that does not belong to set ΠR (lines 7, 8, 16). Note that on round 0 we only set flagR
and abort on the round 1. Thus, we preserve the ability of the adversary to receive R2.

We should estimate the probability of this event to estimate the difference between
the Exp2 and Exp3. The value commR belongs to the set {0, 1}n of cardinality 2n. In
the worst case the adversary A has already made all queries to the rRO and Sign oracles
and thus ΠR contains at least qR + qsign elements. The abort condition is met if the value

commR hits one of elements in ΠR. We can estimate this probability as
qR + qsign

2n
. As

oracle Sign is executed at most qsign times, the overall probability can be bounded by

qsign ·
qR + qsign

2n
.

Thus,

Pr
[
Exp2(A)→ 1

]
− Pr

[
Exp3(A)→ 1

]
⩽
qQ
2n

+ qsign ·
qR + qsign

2n
.

30

ExecKGen2(msg) (Exp3)

1 : if (roundkg = 0) :

2 : flagQ ← 0

3 : commQ ← msg

4 : if ((·, ·, commQ) /∈ ΠQ) :

5 : flagQ ← 1

6 : d2
U←− Z∗

q

7 : Q2 ← d2P

8 : msg′ ← {Q2}
9 : else if (roundkg = 1) :

10 : opQ, Q1 ← msg

11 : if (commQ ̸= qRO(opQ, Q1)) : return ⊥
12 : if flagQ : abort

13 : if (Q2 = −Q1) : return ⊥
14 : Q← Q1 +Q2

15 : msg′ ← ε

16 : else :

17 : msg′ ← ε

18 : roundkg ← roundkg + 1

19 : // Update the ctxkg value

20 : return msg′

ExecSign2(state,msg) (Exp3)

1 : round← state.ctx.round

2 : if (round = 0) :

3 : flagR ← 0

4 : e← H(state.m)

5 : if (e = 0) : e← 1

6 : commR ← msg

7 : if ((·, ·, commR) /∈ ΠR) :

8 : flagR ← 1

9 : k2
U←− Zq

10 : R2 ← k2P

11 : msg′ ← {R2}
12 : else if (round = 1) :

13 : (opR, R1, s1)← msg

14 : if (commR ̸= rRO(opR, R1)) :

15 : return (state,⊥)
16 : if flagR : abort

17 : if (R1 = −R2) :

18 : return (state,⊥)
19 : R← R1 +R2

20 : if ((ϕ(R), ·) ∈ Π) :

21 : r ← ψ(Π(ϕ(R)))

22 : else

23 : β
U←− {0, . . . , 2N − 1}

24 : if ((·, β) ∈ Π) : abort

25 : ΠS ← ΠS ∪ {(ϕ(R), β)}
26 : Π← ΠS ∪ΠO

27 : r ← ψ(β)

28 : s2 ← k2 · e+ d2 · r
29 : s← s1 + s2

30 : state.flag ← 1

31 : msg′ ← {s2}
32 : if (Verify(Q, state.m, ⟨r, s⟩) = 0) :

33 : return (state,⊥)
34 : else :

35 : msg′ ← ε

36 : // Update the state.ctx value

37 : return (state,msg′)

ExecSign2(state,msg) (Exp4)

1 : round← state.ctx.round

2 : if (round = 0) :

3 : flagR ← 0

4 : e← H(state.m)

5 : if (e = 0) : e← 1

6 : commR ← msg

7 : if ((·, ·, commR) /∈ ΠR) :

8 : flagR ← 1

9 : β
U←− {0, . . . , 2N − 1}

10 : r ← ψ(β)

11 : s2
U←− Zq

12 : R2 ← e−1s2P − e−1rQ2

13 : msg′ ← {R2}
14 : else if (round = 1) :

15 : (op1, R1, s1)← msg

16 : if (commR ̸= rRO(opR, R1)) :

17 : return (state,⊥)
18 : if flagR : abort

19 : if (R1 = −R2) :

20 : return (state,⊥)
21 : R← R1 +R2

22 : if ((ϕ(R), ·) ∈ Π) : abort

23 : if ((·, β) ∈ Π) : abort

24 : ΠS ← ΠS ∪ {(ϕ(R), β)}
25 : Π← ΠS ∪ΠO

26 : s← s1 + s2

27 : state.flag ← 1

28 : msg′ ← {s2}
29 : if (Verify(Q, state.m, ⟨r, s⟩) = 0) :

30 : return (state,⊥)
31 : else :

32 : msg′ ← ε

33 : // Update the state.ctx value

34 : return (state,msg′)

Figure 13: The ExecKGen2 and ExecSign2 functions in Exp3(A), Exp4(A)

The signature oracle in the Exp4 gets along with only public information. Values β
and s2 are randomly chosen from the relevant sets and then point R2 is constructed. We
define the corresponding pair in Π implementation by saving this pair in the ΠS set. Note
that if we couldn’t do so (i.e., β already belongs to the Π), the abort condition is met like
in the Exp3.

Consider the distribution on R2 and s2, that are returned by the Sign oracle on the
rounds 1 and 2 respectively. In the Exp3 value k2 is distributed uniformly on Zq, thus
R2 is uniformly distributed. The value r is independent on k2 (due to bijective random
oracle) and thus s2 value is also uniformly distributed on Zq.

In the Exp4 values R2 and s2 are also distributed uniformly on the corresponding
sets except of the values that lead to ϕ(R) that already belongs to Π. Let’s estimate the

31

probability of these «bad» event. The values s2 and r are uniformly distributed on a set Zq

and are chosen independently. Then the value R2 (and thus R) is uniformly distributed on
a set of cardinality q. In the worst case the adversary A has already made all queries to the
BRO, BRO−1, Sign oracles and thus Π contains at least (qBRO+qBRO−1+2qsign) elements.
Note that here we do not take into account the queries to the BRO oracle made during
finalizing the experiment (verifying the forgeries), since they are made after all queries to
the Sign oracle. The abort condition is met if the value ϕ(R) hits one of elements in Π.

We can estimate this probability as
qBRO + qBRO−1 + 2qsign

q
. As oracle Sign is executed at

most qsign times, the overall probability can be bounded by qsign ·
qBRO + qBRO−1 + 2qsign

q
.

Thus, we conclude that

Pr
[
Exp3(A)→ 1

]
− Pr

[
Exp4(A)→ 1

]
⩽ qsign ·

qBRO + qBRO−1 + 2qsign
q

.

Let construct the adversary B for the GOST scheme in the sUF-KO model that uses
A as the black box (see Figure 14).

32

BBRO∗,BRO∗−1
(Q,A)

1 : (ΠO,ΠS)← (∅, ∅),Π← ΠO ∪ΠS

2 : ΠR ← ∅
3 : ΠQ ← ∅
4 : l← 0, SESS ← ∅
5 : sid← −1
6 : roundkg ← 0, ctxkg ← ∅
7 : p← A()
8 : if (p ̸= 1 ∧ p ̸= 2) : return ⊥

9 : {(mi, ⟨ri, si⟩)}l+1
i=1

$←− AKGen,NewSign,Sign,BRO,BRO−1,rRO,qRO(p)

10 : ∀i ̸= j ∈ {1, . . . , l + 1},mi ̸= mj :

11 : if (H(mi) = ±H(mj)) : abort

12 : if ((∃i ̸= j ∈ {1, . . . , l + 1} : (mi, ⟨ri, si⟩) = (mj , ⟨rj , sj⟩)) :
13 : abort

14 : for i ∈ {1, . . . , l + 1} :
15 : ei ← H(mi)

16 : if (ei = 0) : ei ← 1

17 : Ri ← e−1
i (siP − riQ)

18 : if ψ(SimBRO(ϕ(Ri))) ̸= ri : abort

19 : if (ϕ(Ri), ·) ∈ ΠO : return (mi, ⟨ri, si⟩)
20 : Find i, j : ((ϕ(Ri), ·) ∈ ΠS) ∧ (ϕ(Ri) = ϕ(Rj))

21 : Compute d

22 : (m, ⟨r, s⟩) $←− GOST.Sign(d,m)

23 : return (m, ⟨r, s⟩)

Oracle SimBRO(α)

1 : if (α, ·) ∈ Π : return Π(α)

2 : β ← BRO∗(α)

3 : if ((·β) ∈ Π) : abort

4 : ΠO ← ΠO ∪ {(α, β)}
5 : Π← ΠO ∪ΠS

6 : return β

Oracle SimBRO−1(β)

1 : if (·, β) ∈ Π : return Π−1(β)

2 : α← BRO∗−1(β)

3 : if ((α, ·) ∈ Π) : abort

4 : ΠO ← ΠO ∪ {(α, β)}
5 : Π← ΠO ∪ΠS

6 : return β

ExecKGen2(msg)

1 : if (roundkg = 0) :

2 : flagQ ← 0

3 : commQ ← msg

4 : if ((·, ·, commQ) /∈ ΠQ) :

5 : flagQ ← 1

6 : d2
U←− Zq

7 : Q2 ← d2P

8 : else

9 : Q1 ← ΠQ[commQ]

10 : Q2 ← Q−Q1

11 : msg′ ← {Q2}
12 : else if (roundkg = 1) :

13 : opQ, Q1 ← msg

14 : if (commQ ̸= qRO(opQ, Q1)) : return ⊥
15 : if flagQ : abort

16 : if (Q2 = −Q1) : return ⊥
17 : Q← Q1 +Q2

18 : msg′ ← ε

19 : else :

20 : msg′ ← ε

21 : roundkg ← roundkg + 1

22 : // Update the ctxkg value

23 : return msg′

Figure 14: The adversary B for the GOST scheme in the sUF-KO model that uses A as
the black box

Adversary B simulates the rRO, qRO, NewSign and Sign oracles to answer the A
queries as the corresponding oracles in the Exp4. Adversary B simulates theBRO,BRO−1

oracles by translating the queries to its own oracle (see SimBRO and SimBRO−1).
Adversary B simulates KGen oracle similar to the oracle KGen in the Exp4 with the
modification of the ExecKGen1 function. It uses the ΠQ set to know the Q1 value from the
received commitment commQ and then sets Q2 in such a way that the resulting public
key is equal to the public key Q, provided by its challenger.

Receiving the forgeries from A, the adversary B constructs the forgery for its own

33

challenger in the same way as defined in case when party P2 is compromised. So, if A
delivers a valid l + 1 pairs, B delivers a valid forgery to its own challenger and

Pr
[
Exp4(A)→ 1

]
= Pr

[
ExpsUF-KO

GOST (B)→ 1
]
.

The number of queries made by B to the BRO∗ and BRO∗−1 oracles is at most
qBRO + 2qsign + 1 and qBRO−1 respectively. The adversary B needs the same amount of
computational resources as C.

Thus, we summarize the obtained bounds in case the party P1 is compromised:

Pr
[
Exp2(A)→ 1

]
=
(
Pr
[
Exp2(A)→ 1

]
− Pr

[
Exp3(A)→ 1

])
+

+
(
Pr
[
Exp3(A)→ 1

]
− Pr

[
Exp4(A)→ 1

])
+ Pr

[
Exp4(A)→ 1

]
⩽

⩽
qQ
2n

+ qsign ·
qR + qsign

2n
+ qsign ·

qBRO + qBRO−1 + 2qsign
q

+

+ Pr
[
ExpsUF-KO

GOST (B)→ 1
]
=
qQ
2n

+ qsign ·
qR + qsign

2n
+

+ qsign ·
qBRO + qBRO−1 + 2qsign

q
+ AdvsUF-KO

GOST (B).

All in all we prove:

AdvsOMUF-PCA
2p-GOST (A) = Pr

[
Exp0(A)→ 1

]
=

=
(
Pr
[
Exp0(A)→ 1

]
− Pr

[
Exp1(A)→ 1

])
+

+
(
Pr
[
Exp1(A)→ 1

]
− Pr

[
Exp2(A)→ 1

])
+ Pr

[
Exp2(A)→ 1

]
≤

⩽
(qBRO + qBRO−1 + 3qsign + 1)2

2N
+ AdvSCRH (C) + qQ

2min{κ,n}+

+ qsign ·
qR + qsign
2min{κ,n} + qsign ·

qBRO + qBRO−1 + 2qsign
q

+ AdvsUF-KO
GOST (B) ⩽

⩽ AdvSCRH (C) + AdvsUF-KO
GOST (B) + qQ + qsign · (qR + qsign)

2min{κ,n} +

+
2(qBRO + qBRO−1 + 3qsign + 1)2

q
.

34

