
Quantum State Obfuscation from Classical Oracles

James Bartusek*

UC Berkeley
Zvika Brakerski†

Weizmann Institute of Science
Vinod Vaikuntanathan‡

MIT

January 18, 2024

Abstract

A major unresolved question in quantum cryptography is whether it is possible to obfuscate
arbitrary quantum computation. Indeed, there is much yet to understand about the feasibility
of quantum obfuscation even in the classical oracle model, where one is given for free the
ability to obfuscate any classical circuit.

In this work, we develop a new array of techniques that we use to construct a quantum state
obfuscator, a powerful notion formalized recently by Coladangelo and Gunn (arXiv:2311.07794)
in their pursuit of better software copy-protection schemes. Quantum state obfuscation refers
to the task of compiling a quantum program, consisting of a quantum circuit 𝐶 with a classi-
cal description and an auxiliary quantum state |𝜓⟩, into a functionally-equivalent obfuscated
quantum program that hides as much as possible about 𝐶 and |𝜓⟩. We prove the security
of our obfuscator when applied to any pseudo-deterministic quantum program, i.e. one that
computes a (nearly) deterministic classical input / classical output functionality. Our security
proof is with respect to an efficient classical oracle, which may be heuristically instantiated
using quantum-secure indistinguishability obfuscation for classical circuits.

Our result improves upon the recent work of Bartusek, Kitagawa, Nishimaki and Yamakawa
(STOC 2023) who also showed how to obfuscate pseudo-deterministic quantum circuits in the
classical oracle model, but only ones with a completely classical description. Furthermore, our
result answers a question of Coladangelo and Gunn, who provide a construction of quantum
state indistinguishability obfuscation with respect to a quantum oracle, but leave the existence
of a concrete real-world candidate as an open problem. Indeed, our quantum state obfusca-
tor together with Coladangelo-Gunn gives the first candidate realization of a “best-possible”
copy-protection scheme for all polynomial-time functionalities.

Our techniques deviate significantly from previous works on quantum obfuscation. We
develop several novel technical tools which we expect to be broadly useful in quantum cryp-
tography. These tools include a publicly-verifiable, linearly-homomorphic quantum authenti-
cation scheme with classically-decodable ZX measurements (which we build from coset states),
and a method for compiling any quantum circuit into a "linear + measurement" (LM) quantum
program: an alternating sequence of CNOT operations and partial ZX measurements.

*bartusek.james@gmail.com
†zvika.brakerski@weizmann.ac.il
‡vinodv@csail.mit.edu

Contents

1 Introduction 1
1.1 Our Results . 1
1.2 Related Work . 3

2 Technical Overview 4
2.1 Quantum Authentication from Random Subspaces . 4
2.2 Linear + Measurement Quantum Programs . 7
2.3 Obfuscation Construction . 10
2.4 Discussion and Open Problems . 12

3 Preliminaries 13
3.1 Quantum Background . 14
3.2 Useful Lemmas . 15
3.3 Signature Tokens . 18

4 Authentication Scheme 19
4.1 Definitions . 19
4.2 Construction . 22
4.3 Security . 25

5 Linear + Measurement Quantum Programs 31

6 Quantum State Obfuscation: Construction 40

7 Quantum State Obfuscation: Security 45
7.1 Proof Intuition . 45
7.2 Notation . 50
7.3 Main Theorem . 51
7.4 Inductive Argument . 60
7.5 Hardness of Mapping . 64

8 Acknowledgements 76

1 Introduction

Whether white-box access to programs is more powerful than black-box access is a fundamen-
tal question in computer science. This question motivates the study of program obfuscation, the
task of converting a given program 𝒫 into an obfuscated program 𝒫 that preserves functionality
(i.e. the input-output behavior of 𝒫), yet hides all other information about 𝒫 . Indeed, the previ-
ous decades have produced exciting research in cryptography solving several foundational ques-
tions about program obfuscation, including: which notions of obfuscation are possible and which
aren’t [BGI+12, GGH+13]; which ones are useful and to what extent [SW14]; and of course, how to
construct secure program obfuscators under well-founded hardness assumptions [JLS21, JLS22].
The study of program obfuscation has given us sophisticated cryptographic primitives such as
witness encryption [GGSW13] and functional encryption [GGH+13], and it has shed new light on
foundational complexity-theoretic questions [BPR15, ILW23].

Developments in quantum information, computation, and cryptography [Wie83, BB84, Sho94,
AC12, BCM+18, Mah18b, JNV+20, Zha21] bring to fore a similarly foundational question:

Is it possible to obfuscate quantum computation, and to what extent?

Despite recent progress, there remains much to understand about the feasibility of quantum ob-
fuscation, even in a world where one has the aid of a classical oracle, equivalently a world where
ideal obfuscation of classical circuits comes for free.

The strongest known positive result on obfuscating quantum functionalities is from the recent
work of Bartusek, Kitagawa, Nishimaki and Yamakawa [BKNY23], who showed how to obfuscate
the class of classically described pseudo-deterministic quantum circuits in the classical oracle model,
under the learning with errors (LWE) assumption. (For a description of other related work, see
Section 1.2.) A deterministic quantum circuit is one that implements a classical, deterministic map
𝑥→ 𝑄(𝑥). A pseudo-deterministic circuit is nearly deterministic, i.e. its output on every (classical)
input 𝑥 is some (classical) 𝑦 with all but negligible probability, e.g. the Shor circuit for factoring. In
the classical oracle model, the obfuscated circuit as well as the (possibly adversarial) evaluator have
oracle access to an efficiently computable classical function sampled by the obfuscator.1

1.1 Our Results

In this work, we present a new array of techniques that we use to construct a quantum state obfusca-
tion scheme, an efficient compiler that converts a quantum program, consisting of a quantum circuit
𝐶 as well as an auxiliary quantum input |𝜓⟩, into an obfuscated quantum program that preserves
functionality, but hides everything else. In a nutshell, our main result constructs an ideal quantum
state obfuscator for pseudo-deterministic functionalities with respect to an efficient classical ora-
cle. The class of circuits we obfuscate is strictly more general than those obfuscated by [BKNY23],
which have a purely classical description (see Section 2.4 for a more detailed comparison). Moreover,
our security is unconditional2 while [BKNY23] additionally relied on the LWE assumption (in the
classical oracle model).

1Importantly, the actual description of this function is not necessarily revealed to the evaluator / adversary.
2Technically, we only achieve unconditional security if we allow our oracles to use a true random oracle as a sub-

routine. If we insist on the efficiency of the oracles, and thus instantiate the random oracle with a pseudo-random
function, then we must assume the existence of a quantum-secure one-way function.

1

Theorem 1.1 (Informal). There exists a quantum state obfuscator for the class of pseudo-deterministic
quantum programs achieving the notion of ideal obfuscation (Definition 6.1) in the classical oracle model.

The notion of quantum state obfuscation was recently conceptualized and defined by Coladan-
gelo and Gunn [CG23] in their pursuit of better software copy-protection schemes [Aar09]. They
show how a quantum state indistinguishability obfuscator can be used to construct a “best-possible”
copy-protection scheme, i.e. they show a scheme to copy-protect any classical function that can
be copy-protected at all! Their observation is that if there exists some (as yet unknown) copy-
protection scheme for a classical (deterministic) function 𝑥 → 𝑄(𝑥) that produces an unclon-
able quantum program (|𝜓⟩ , 𝐶), then a quantum state obfuscation of 𝑄 is just as good a copy-
protection scheme. Indeed, this follows from the fact that the obfuscation of𝑄 is indistinguishable
from an obfuscation of (|𝜓⟩ , 𝐶).

However, they leave the existence of quantum state indistinguishability obfuscation as an open
question, only providing a construction with respect to a quantum oracle that has no known (even
heuristic) real-world instantiation.

Our main result (Theorem 1.1) answers the open question from [CG23], providing a construc-
tion of quantum state obfuscation with respect to a classical oracle. The oracle can be heuristically
instantiated using a candidate quantum-secure indistinguishability obfuscation for classical cir-
cuits (e.g. [GGH15, BGMZ18, CVW18, BDGM22, GP21, WW21]), thus providing the first concrete
evidence that quantum state (indistinguishability) obfuscation is achievable. That is, while we
don’t currently have a proof in the plain model, it is plausible to conjecture the following.

Conjecture 1. Instantiating our scheme with one of the above candidate quantum-secure indistinguisha-
bility obfuscators for classical circuits yields a secure quantum state indistinguishability obfuscator.

Then, following Coladangelo-Gunn, we obtain the first candidate realization of a “best-possible”
copy-protection scheme for all polynomial-time programs.

Theorem 1.2 (Following [CG23]). Assuming the above conjecture, there exists a best-possible copy-
protection scheme for all polynomial-time classical programs.

We note that the prior work of [ALL+21] also obtains results on general-purpose copy-protection
by working in the classical oracle model, and we describe the advantages of our approach (com-
bined with [CG23]) in Section 2.4.

Our techniques deviate significantly from previous works on quantum obfuscation. For exam-
ple, while previous work [BM22, BKNY23] builds from the idea of obfuscating the verifier for a
classical verification of quantum computation scheme, we directly perform verifiable computation
on an authenticated and encrypted input. Our construction is comfortingly reminiscent of Yao’s
classical garbled circuits construction [Yao86] (in fact, the free-XOR variant [KS08]) which has had
a tremendous array of applications in cryptography. We give an overview of our techniques in
Section 2, and provide more discussion on how they compare to prior work in Section 2.4.

On the classical oracle model. Before proceeding, a word is in order about achieving results in
the classical oracle model. First, a result in this model can be interpreted as reducing the problem
of obfuscating quantum functionalities to classical functionalities. Indeed, instantiating the (effi-
ciently implementable) oracle by its indistinguishability obfuscation (iO) gives us a heuristically
secure construction in the plain model. Furthermore, by the “best-possible” security guarantee of
iO, if there exists a secure implementation of the oracle in the plain model, iO is one such.

2

Work Obfuscator
input

Obfuscator
output

Program
input

Program
output Program class Assumption/

model Result

[BK21] Classical Quantum* Quantum Quantum Unitaries w/ logarithmically
many non-Clifford gates

iO for classical
circuits iO

[BM22] Classical Classical Quantum* Classical Null circuits Classical oracle
model + LWE iO

[BKNY23] Classical Quantum Classical Classical (Pseudo)-Deterministic
circuits

Classical oracle
model + LWE VBB

[CG23] Quantum Quantum Classical Classical Deterministic circuits Quantum oracle
model iO

This work Quantum Quantum Classical Classical (Pseudo)-Deterministic
circuits

Classical oracle
model Ideal

Table 1: Summary of work on quantum obfuscation. In [BK21], the obfuscator outputs a quantum
state that can only be used to evaluate the program on one input, and then is potentially destroyed.
In [BM22], the obfuscated program can be run on quantum inputs, but requires multiple copies of
the quantum input. The last column refers to the definition of obfuscation that is actually achieved
in each work: iO is indistinguishability obfuscation, and VBB is virtual black-box obfuscation. We
note that VBB and the stronger notion of ideal obfuscation are morally very similar, and [BKNY23]
could also likely be shown to be an ideal obfuscator. Finally, we note that while achieving the
notion of VBB/ideal obfuscation is only possible in the oracle model, the results that are in the
classical oracle model yield heuristic candidates for iO in the plain model.

Secondly, results in the classical oracle model have historically been important harbingers of
subsequent research that showed analogous results without the aid of an oracle. For example,
quantum money [AC12] was first achieved in a classical oracle model before it was de-oracle-
ized [Zha21]; and copy-protection for unlearnable programs was first achieved in a quantum or-
acle model [Aar09] before it was achieved in a classical oracle model [ALL+21] and later without
oracles, for certain classes of functionalities (e.g. [CLLZ21, CMP22, LLQZ22, CG23]).

1.2 Related Work

Alagic and Fefferman [AF16] presented definitions for obfuscating quantum circuits (and obfus-
cating classical circuits using quantum states). Their results, as well as those of Alagic, Brakerski,
Dulek and Schaffner [ABDS21] are negative. The latter, for example, shows that virtual black-box
(VBB) obfuscation of classical circuits, even with the aid of quantum information, is impossible.

Broadbent and Kazmi [BK21] showed how to obfuscate quantum circuits that have only a
few non-Clifford gates. In their construction, the size of the obfuscated circuit blows up expo-
nentially with the number of 𝑇 gates. Bartusek and Malavolta [BM22] showed how to achieve
indistinguishability obfuscation of null quantum circuits and, most related to our work, Bar-
tusek, Kitagawa, Nishimaki and Yamakawa [BKNY23] showed how to obfuscate general pseudo-
deterministic quantum circuits (with a classical description) in the classical oracle model. Finally,
Coladangelo and Gunn [CG23], in a concurrent work, define the notion of quantum state (in-
distinguishability) obfuscation, show applications of this notion to software copy-protection, and
construct a quantum state indistinguishability obfuscator in the quantum oracle model. We summa-
rize these results, along with our contribution, in Table 1.

3

2 Technical Overview

During this overview, we’ll slowly build up to our construction of quantum state obfuscation,
highlighting the main ideas along the way. But first, it may be useful to convey a high level feel
for the construction. To obfuscate a quantum program (|𝜓⟩ , 𝐶) that implements the computation
𝑥→ 𝑄(𝑥), we first encode the state

| ̃︀𝜓⟩ ← Enc𝑘 (|𝜓⟩)

using a novel quantum authentication scheme (QAS) that we design with particular properties in
mind. Next, we compile 𝐶 into what we call a "linear + measurement", or LM, quantum program.
Such programs consist solely of operations that can be performed on data authenticated with our
QAS. Finally, we prepare a sequence of classical oracles F1, . . . ,F𝑡,G, where 𝑡 is the number of
"measurement layers" in the LM quantum program. The oracles F1, . . . ,F𝑡 are designed to help
the evaluator implement an encrypted sequence of adaptive measurements. They output random
labels encoding the measurement results, which are then fed into downstream oracles. The oracle
G is designed to return the output 𝑄(𝑥) if the evaluation was performed honestly. The final ob-
fuscation then consists of the state | ̃︀𝜓⟩ and the oracles F1, . . . ,F𝑡,G. We will describe each of these
pieces and how they fit together in more detail.

We begin this technical overview by presenting our quantum authentication scheme (Sec-
tion 2.1). Next, we discuss the notion of LM quantum programs, and describe a compiler that
writes any quantum program as an LM quantum program (Section 2.2). Next, we show how to use
these building blocks to construct a garbling scheme and then a full-fledged obfuscation scheme
for quantum computation (Section 2.3), and mention a couple of key ideas behind proving secu-
rity. We defer a more detailed proof overview to Section 7.1. We conclude with a discussion and
open problems (Section 2.4).

2.1 Quantum Authentication from Random Subspaces

Encode-encrypt authentication. Our starting point is the notion of an “encode-encrypt” authen-
tication scheme, as defined by Broadbent, Gutoski and Stebila [BGS13]. Such schemes are param-
eterized by a family of CSS codes C , and operate as follows. To encode a qubit |𝜓⟩, sample a
random code 𝐶 ← C from the family, sample a quantum one-time pad key (𝑥, 𝑧), and output the
“encoded-and-encrypted” state 𝑋𝑥𝑍𝑥𝐶 |𝜓⟩. As discussed by [BGS13], various choices of the code
family give rise to popular quantum authentication schemes (QAS), e.g., the polynomial scheme
used for multi-party quantum computation [BOCG+06] and verifiable delegation [ABOEM17],
and the trap code used for quantum one-time programs [BGS13] and zero-knowledge proofs for
QMA [BJSW20].

Our instantiation. A crucial aspect of obfuscation that does not arise in these other settings is the
need to preserve security when we allow the adversary to access the verifier of the authentication
scheme an a-priori unbounded number of times. Indeed, the oracles released as part of our obfusca-
tion scheme include subroutines that perform checks on authenticated data, and hence implicitly
give the adversary reusable access to the verifier. This requirement of “public-verifiability” is not
always satisfied by encode-encrypt schemes: for example, the trap code is completely insecure in
this setting, as it is possible to learn the location of the traps via repeated queries to the verifier.

4

While certain flavors of public-verifiability have been considered previously in the quantum
authentication literature (e.g. [DS18, GYZ17]), we find that a particularly simple instantiation of
the encode-encrypt framework suffices for us: sample a random subspace 𝑆, a random shift ∆,
and use the CSS code defined by the isometry 𝐸𝑆,Δ that maps |0⟩ → |𝑆⟩ , |1⟩ → |𝑆 +∆⟩.3 That is,
to encode an 𝑛-qubit state |𝜓⟩, sample a key 𝑘 = (𝑆,∆, 𝑥, 𝑧) where 𝑆 is a 𝜆-dimensional subspace
of F2𝜆+1

2 , ∆ ∈ F2𝜆+1
2 ∖ 𝑆, and 𝑥, 𝑧 ∈ {0, 1}𝑛·(2𝜆+1), and output

| ̃︀𝜓⟩ = 𝑋𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ |𝜓⟩ := Enc𝑘(|𝜓⟩).

Beyond satisfying a natural notion of public-verifiability (which will be discussed below),
the resulting QAS satisfies the following desirable properties: (i) linear-homomorphism, and (ii)
classically-decodable standard and Hadamard basis measurements (that is, a classical machine
can decode the results of standard and Hadamard basis measurements performed on authenti-
cated data). We note that these latter properties are in fact endemic to encode-encrypt schemes
(see discussion in [BGS13]), but we confirm them here for completeness.

Useful properties. First, since 𝑆 is a subspace, one can confirm that CNOTs are transversal for
this scheme as long as the same (𝑆,∆) is used to encode each qubit. That is, applying 2𝜆+1 CNOT
gates qubit-wise to an encoding of 𝑏1 and 𝑏2 yields

𝑋𝑥1,𝑥2𝑍𝑧1,𝑧2 |𝑆 + 𝑏1 ·∆⟩ |𝑆 + 𝑏2 ·∆⟩ → 𝑋𝑥1,𝑥1⊕𝑥2𝑍𝑧1⊕𝑧2,𝑧2 |𝑆 + 𝑏1 ·∆⟩ |𝑆 + (𝑏1 ⊕ 𝑏2) ·∆⟩ ,

which is indeed an encoding of the output of the CNOT operation using quantum one-time pad
keys (𝑥1, 𝑧1 ⊕ 𝑧2) and (𝑥1 ⊕ 𝑥2, 𝑧2). Thus, an evaluator can apply any sequence of CNOT gates,
which we refer to as a "linear"4 function, to authenticated data, as long as the decoder performs
the analogous updates to their one-time pad keys.

Next, we note that standard basis measurements of an encoded qubit 𝑋𝑥𝑍𝑧(𝛼 |𝑆⟩+𝛽 |𝑆 +∆⟩)
can be decoded classically. Indeed, any vector in 𝑆 + 𝑥 can be interpreted as a 0, while any vector
in 𝑆 +∆+ 𝑥 can be interpreted as a 1.

Finally, we check that the results of a Hadamard basis measurement can also be decoded clas-
sically. To do so, we’ll define the "primal" codespace 𝑆Δ := 𝑆 ∪ (𝑆 + ∆), and define the "dual"
codespace to consist of ̂︀𝑆 := 𝑆⊥Δ and ̂︀𝑆 + ̂︀∆, where ̂︀∆ is such that

̂︀𝑆̂︀Δ := ̂︀𝑆 ∪ (̂︀𝑆 + ̂︀∆) = 𝑆⊥ .

Then, it is not hard to check and confirm that

𝐻⊗(2𝜆+1)𝑋𝑥𝑍𝑧 (𝛼 |𝑆⟩+ 𝛽 |𝑆 +∆⟩) = 𝑋𝑧𝑍𝑥
(︂
𝛼+ 𝛽√

2
|̂︀𝑆⟩+ 𝛼− 𝛽√

2
|̂︀𝑆 + ̂︀∆⟩)︂ .

Thus, any vector in ̂︀𝑆+𝑧 can be interpreted as a 0 measurement result in the Hadamard basis, and
any vector in ̂︀𝑆 + ̂︀∆+ 𝑧 can be interpreted as a 1 measurement result in the Hadamard basis.

3Here, we use the standard subspace state notation: for an (affine) subspace 𝑆, |𝑆⟩ ∝
∑︀

𝑠∈𝑆 |𝑠⟩.
4Of course, all quantum gates are linear with respect to the ambient Hilbert space of exponential dimension. Here,

linearity specifically refers to the fact that any sequence of CNOT gates applies a linear function over F2 to each standard
basis vector.

5

Reusable security. Now we turn to the security of our scheme. Intuitively, we want to capture
the fact that no adversary can successfully tamper with authenticated data, even given the ability
to verify authenticated data. In more detail, given an authentication key 𝑘 = (𝑆,∆, 𝑥, 𝑧), where
𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑧 = (𝑧1, . . . , 𝑧𝑛), we define the following classical functionalities, which are pa-
rameterized by the key 𝑘 and a choice of bases 𝜃 ∈ {0, 1}𝑛.

• Dec𝑘,𝜃(̃︀𝑣): On input a tuple of vectors ̃︀𝑣 parsed as (̃︀𝑣1, . . . , ̃︀𝑣𝑛), the decoding algorithm defines
𝑣 ∈ {0, 1}𝑛 as follows. For each 𝑖 ∈ [𝑛]:

if 𝜃𝑖 = 0 : 𝑣𝑖 =

⎧⎪⎨⎪⎩
0 if ̃︀𝑣𝑖 ∈ 𝑆 + 𝑥𝑖

1 if ̃︀𝑣𝑖 ∈ 𝑆 +∆+ 𝑥𝑖

⊥ otherwise

if 𝜃𝑖 = 1 : 𝑣𝑖 =

⎧⎪⎨⎪⎩
0 if ̃︀𝑣𝑖 ∈ ̂︀𝑆 + 𝑧𝑖

1 if ̃︀𝑣𝑖 ∈ ̂︀𝑆 + ̂︀∆+ 𝑧𝑖

⊥ otherwise

.

If 𝑣𝑖 = ⊥ for some 𝑖, then output ⊥, and otherwise output 𝑣.

• Ver𝑘,𝜃(̃︀𝑣): On input a tuple of vectors ̃︀𝑣 parsed as (̃︀𝑣1, . . . , ̃︀𝑣𝑛), the verification algorithm
defines 𝑣 ∈ {⊤,⊥}𝑛 as follows.

if 𝜃𝑖 = 0 : 𝑣𝑖 =

{︃
⊤ if ̃︀𝑣𝑖 ∈ 𝑆Δ + 𝑥𝑖

⊥ otherwise
if 𝜃𝑖 = 1 : 𝑣𝑖 =

{︃
⊤ if ̃︀𝑣𝑖 ∈ ̂︀𝑆̂︀Δ + 𝑧𝑖

⊥ otherwise
.

If 𝑣𝑖 = ⊥ for some 𝑖, then output ⊥, and otherwise output ⊤.

That is, the verification algorithm just checks whether its inputs lie in the primal (resp. dual)
codespace, while the decoding algorithm additionally computes the logical bits encoded by its
inputs. We show that for any state |𝜓⟩, sequence of measurement bases 𝜃 ∈ {0, 1}𝑛, and adversarial
measurement Adv that samples

̃︀𝑣 ← AdvVer𝑘,·(·)
(︁
𝑋𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ |𝜓⟩

)︁
,

the decoded value 𝑣 ← Dec𝑘,𝜃(̃︀𝑣) is either ⊥, or its distribution is very close in total variation
distance to the distribution that results from directly measuring |𝜓⟩ in the bases 𝜃.

In fact, we also consider the possibility that the adversary is supposed to homomorphically
apply some sequence of CNOT gates (that is, a linear function 𝐿) to the authenticated data before
measuring. Thus, in full generality we also parameterize the decoding Dec𝑘,𝜃,𝐿 and verification
Ver𝑘,𝜃,𝐿 algorithms by a linear function 𝐿, which determines an updated sequence of one-time pad
keys (𝑥𝐿,1, . . . , 𝑥𝐿,𝑛), (𝑧𝐿,1, . . . , 𝑧𝐿,𝑛) to be used in the decoding and verification.

A word on the proof of security. Our proof combines two useful tricks from the literature: su-
perspace sampling ([Zha19, CLLZ21]) and the Pauli twirl [ABOEM17]. Briefly, our first step is to
sample random (say, (3𝜆/2+ 1)-dimensional) superspaces 𝑅 ⊃ 𝑆Δ, ̂︀𝑅 ⊃ ̂︀𝑆̂︀Δ and use (𝑅, ̂︀𝑅) in lieu
of (𝑆Δ, ̂︀𝑆̂︀Δ) in the definition of the oracle Ver𝑘,·,·(·). Since 𝑅 and ̂︀𝑅 are random and small enough
compared to the ambient space, the adversary cannot notice this change except with negligible
probability. Next, we imagine sampling each one-time pad vector in two parts: for 𝑥𝑖 we sam-
ple an 𝑥𝑖,𝑅 ← 𝑅 and an 𝑥𝑖,co(𝑅) ← co(𝑅), where co(𝑅) is a set of coset representatives of 𝑅, and
define 𝑥𝑖 = 𝑥𝑖,𝑅 + 𝑥𝑖,co(𝑅), and for 𝑧𝑖 we sample a 𝑧

𝑖, ̂︀𝑅 ← ̂︀𝑅 and a 𝑧
𝑖,co(̂︀𝑅)

← co(̂︀𝑅), and define
𝑧𝑖 = 𝑧

𝑖, ̂︀𝑅 + 𝑧
𝑖,co(̂︀𝑅)

. Finally, we consider the following experiment:

6

• Sample 𝑅, ̂︀𝑅, {𝑥𝑖,co(𝑅), 𝑧𝑖,co(̂︀𝑅)
}𝑖∈[𝑛] and give this information to the adversary in the clear.

Note that this is now sufficient to implement the oracle Ver𝑘,·,·(·).

• Sample random 𝑆,∆ such that ̂︀𝑅⊥ ⊂ 𝑆 ⊂ 𝑆Δ ⊂ 𝑅 and {𝑥𝑖,𝑅, 𝑧𝑖, ̂︀𝑅}𝑖∈[𝑛] to complete the
description of the authentication key (𝑆,∆, 𝑥, 𝑧). Send 𝑋𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ |𝜓⟩ to the adversary, who
mounts its attack.

At this point, we use the Pauli twirl over the space in between ̂︀𝑅⊥ and 𝑅 to show that any
adversarial operation can be decomposed into a fixed linear combination of Pauli attacks. To
conclude, we use the randomness of 𝑆,∆ to show that any fixed Pauli attack will either be rejected
with overwhelming probability or act as the identity on the encoded qubit, which completes the
proof. See Section 4 for the full details of our definitions, construction, and security proofs.

2.2 Linear + Measurement Quantum Programs

Next, we discuss our quantum program compiler. We start with any quantum circuit written using
the {CNOT, 𝐻, 𝑇} universal gate set, where 𝐻 is the Hadamard gate, and 𝑇 applies a phase of
𝑒𝑖𝜋/4. With the help of magic states, we compile the circuit into an alternating sequence of layers of
CNOT gates (i.e. linear functions) and partial standard and Hadamard basis measurements, which
we refer to as "ZX measurements".5 We refer to the resulting program as a linear + measurement
(LM) quantum program. We note that the measurements are in fact partial in two aspects: (i) they
may only operate on a subset of the qubits, and (ii) the measurement operators are projectors with
rank potentially greater than 1. Furthermore, we allow the measurements to be adaptive, that
is, their description may depend on previous measurement results (and the classical input to the
computation).

More specifically, our goal will be to write each of the 𝐻 and 𝑇 gates as a sequence of CNOT
gates, ZX measurements, and Pauli corrections derived from these measurement results. Then, the
Pauli corrections can be commuted past future CNOT gates using the update rule (𝑥1, 𝑧1), (𝑥2, 𝑧2)→
(𝑥1, 𝑧1 ⊕ 𝑧2), (𝑥1 ⊕ 𝑥2, 𝑧2), and incorporated into the description of future ZX measurements.

Handling the 𝐻 gate. Following [BGS13], we prepare the two-qubit magic state

|𝜑𝐻⟩ ∝ |00⟩+ |01⟩+ |10⟩ − |11⟩ ,

and perform the Hadamard gate as shown in Fig. 3 (Page 34), using one CNOT gate and Pauli
corrections derived from a standard basis and a Hadamard basis measurement. As remarked
in [BGS13], it might seem strange at first that we are replacing a Hadamard gate with a circuit
that nonetheless performs a Hadamard basis measurement. However, in our setting this does
represent real progress: our authentication scheme does not support applying Hadamard gates
directly to authenticated data,6 but does support the decoding of Hadamard basis measurements.

5Here, ZX is not meant to denote the composition of the Z and X operators, rather, it is meant as a shorthand for
“standard + Hadamard basis”.

6At least, while preserving its linear-homomorphism. Applying a Hadamard gate transversally to authenticated
data would result in an encoding with respect to the dual subspace, which would no longer support transversal CNOTs
with data encoded using the primal subspace.

7

Handling the 𝑇 gate. As we show on the bottom left of Fig. 4 (Page 36), the 𝑇 gate can be
implemented using the two magic states

|𝜑𝑇 ⟩ ∝ |0⟩+ 𝑒𝑖𝜋/4 |1⟩ and |𝜑𝑃𝑋⟩ ∝ 𝑖 |0⟩+ |1⟩ ,

a CNOT gate, a classically controlled CNOT gate, and Pauli corrections.
Unfortunately, controlled CNOT is a "multi-linear" operation that we don’t know how to di-

rectly implement on data authenticated with our authentication scheme. Therefore, taking inspi-
ration from the "encrypted CNOT" operation introduced in [Mah18a],7 we replace the controlled
CNOT operation with a projective measurement Γ𝑐 controlled on the classical control bit 𝑐, where

• Γ0 = {|00⟩⟨00| + |10⟩⟨10| , |01⟩⟨01| + |11⟩⟨11|}. That is, it measures its second input in the
standard basis and has no effect on its first input.

• Γ1 = {|00⟩⟨00| + |11⟩⟨11| , |01⟩⟨01| + |10⟩⟨10|}. That is, it measures the XOR of its two inputs,
partially collapsing both.

Note that Γ1 can roughly be seen as applying CNOT “out of place”, writing the result to a third
register, and then measuring it. We also remark that both of these measurements are diagonal in
the standard basis, and thus can be performed on our authenticated data.

In the implementation of the 𝑇 gate shown on the bottom left of Fig. 4, the 𝑐-CNOT operation
is applied to the two magic states, followed by a measurement of the second magic state wire in
the standard basis, and finally a 𝑍 correction to the first magic state wire conditioned on both
𝑐 and the measurement outcome. One can show that the result of these operations is identical
to what is shown on the bottom right of Fig. 4: measure Γ𝑐 on the two magic state wires, then
measure the second magic state wire in the Hadamard basis, and finally apply a 𝑍 correction to
the first magic state wire conditioned on both 𝑐 and the XOR of the two measurement results. We
make this precise in the proof of Claim 5.5, showing that our Γ𝑐-based implementation of the 𝑇
gate works as expected.

Formalizing LM quantum programs. By combining these observations, we are able to specify
any quantum program with 𝑡many 𝑇 gates using an 𝑛-qubit state |𝜓⟩ (which in particular includes
all of the necessary magic state) along with a sequence

𝐿1,𝑀𝜃1,𝑓
(·)
1

, . . . , 𝐿𝑡,𝑀𝜃𝑡,𝑓
(·)
𝑡
, 𝐿𝑡+1,𝑀𝜃𝑡+1,𝑔(·)

where

• Each 𝐿𝑖 is a sequence of CNOT gates.

• Each 𝑀
𝜃𝑖,𝑓

(·)
𝑖

(and 𝑀𝜃𝑖,𝑔(·)
) describes a partial ZX measurement in the following way:

– 𝜃𝑖 ∈ {0, 1,⊥}𝑛 defines a partial set of measurement bases. We define Φ𝑖,0 := {𝑗 : 𝜃𝑖,𝑗 =
0} to be the set of registers measured in the standard basis and Φ𝑖,1 := {𝑗 : 𝜃𝑖,𝑗 = 1} to
be the set of registers measured in the Hadamard basis, and define Φ𝑖 := (Φ𝑖,0,Φ𝑖,1) to
be the total set of registers on which the 𝑖’th measurement is performed.

7Those familiar with [Mah18a]’s encrypted CNOT may notice the parallels: in [Mah18a]’s setting, these two mea-
surements correspond to the two types of “claws” generated by the lattice-based encryption of 𝑐.

8

– Each 𝑓
(·)
𝑖 is a function that assigns measurement outcomes to basis states. The super-

script indicates that its description may depend on previously generated information,
i.e. the classical input 𝑥 to the computation and previous measurement results.

– To be precise, 𝑀
𝜃𝑖,𝑓

(·)
𝑖

can be described by the following measurement operators:⎧⎪⎨⎪⎩𝐻Φ𝑖,1

⎛⎜⎝ ∑︁
𝑚:𝑓

(·)
𝑖 (𝑚Φ𝑖)=𝑦

|𝑚⟩⟨𝑚|

⎞⎟⎠𝐻Φ𝑖,1

⎫⎪⎬⎪⎭
𝑦

,

where 𝐻Φ𝑖,1 applies a Hadamard gate to each qubit in the set Φ𝑖,1, and 𝑚Φ𝑖 is the sub-
string of 𝑚 consisting of the indices in Φ𝑖.

Thus, we have written our quantum program as an alternating sequence of linear operations
and partial ZX measurements. We formalize this notion of an "LM quantum program" in Defini-
tion 5.1, and provide an example diagram of an LM quantum program in Fig. 2.

However, looking ahead, it will be convenient to apply our obfuscator not to a completely
arbitrary LM quantum program, but rather to an LM quantum program that satisfies a particular
structural property. This property is described in Definition 5.2, and satisfied by LM quantum
programs output by our compiler described above. In order to formalize such programs (and
our obfuscator), it will be necessary to introduce some further notation. For the purpose of this
technical overview, we will introduce the notation and show how it is applied to the concrete
compiler described above, but defer further details and a formalization of the property given by
Definition 5.2 to the body.

It may be helpful to refer to Fig. 4 (our implementation of the 𝑇 gate) and Fig. 2 (the exam-
ple LM quantum program) while reading what follows. We begin by specifying (disjoint) sets
𝑉1, . . . , 𝑉𝑡+1 and (disjoint) sets 𝑊1, . . . ,𝑊𝑡 with the following properties.

• Φ1 = (𝑉1,𝑊1),Φ2 = (𝑉1, 𝑉2,𝑊2), . . . ,Φ𝑡 = (𝑉1, . . . , 𝑉𝑡,𝑊𝑡),Φ𝑡+1 = (𝑉1, . . . , 𝑉𝑡+1) = [𝑛].

• 𝑉𝑖 are the set of registers that are fully collapsed in the standard or Hadamard basis by the 𝑖’th
measurement. Concretely, 𝑉𝑖 consists of the 3rd wire of the (𝑖 − 1)’th 𝑇 -gate circuit (Fig. 4),
1st and 2nd wires of any𝐻-gate circuit (Fig. 3) in the 𝑖’th layer, and 1st wire of the 𝑖’th 𝑇 -gate
circuit (Fig. 4).

• 𝑊𝑖 are the set of registers that are partially collapsed by the 𝑖’th measurement. Concretely,
𝑊𝑖 consists of the two magic state wires used for the 𝑖’th 𝑇 gate circuit. Indeed, the 𝑖’th
measurement applies the controlled measurement Γ𝑐𝑖 to these wires, which only partially
collapses them.

Then, we are able to specify further details about the 𝑓 (·)𝑖 and 𝑔(·) measurements.

• Each 𝑓 (·)𝑖 takes as input some sequence (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖) and outputs 𝑣𝑖 (fully collapsing the 𝑉𝑖
registers) along with a bit 𝑟𝑖 (partially collapsing the 𝑊𝑖 registers).

• In order to compute the bit 𝑟𝑖, the function 𝑓 (·)𝑖 first needs to compute the 𝑖’th control bit 𝑐𝑖,
which may depend on the input 𝑥 and all previous measurement results (𝑣1, . . . , 𝑣𝑖, 𝑟1, . . . , 𝑟𝑖−1).

9

While we are able to provide 𝑓 (·)𝑖 with the values 𝑣1, . . . , 𝑣𝑖−1 on registers 𝑉1, . . . , 𝑉𝑖−1 (which
have been collapsed by previous measurements), this is not the case for the bits 𝑟1, . . . , 𝑟𝑖−1,
since the 𝑊1, . . . ,𝑊𝑖−1 registers may have been computed on since previous measurements.
To handle this, we remember the previous results 𝑟1, . . . , 𝑟𝑖−1, and paramaterize 𝑓𝑥,𝑟1,...,𝑟𝑖−1

𝑖

by the input 𝑥 and previously generated bits 𝑟1, . . . , 𝑟𝑖−1. Thus, the actual measurements are
specified adaptively using the previously generated bits 𝑟1, . . . , 𝑟𝑖−1.

• In a similar manner, the function 𝑔𝑥,𝑟1,...,𝑟𝑡 is parameterized by the input 𝑥 and previously
generated bits 𝑟1, . . . , 𝑟𝑡. It takes as input some sequence (𝑣1, . . . , 𝑣𝑡+1) and instead of per-
forming an intermediate measurement, it computes the final output 𝑦 = 𝑄(𝑥).

Finally, we have set up enough notation to start discussing our actual obfuscation construction,
which follows.

2.3 Obfuscation Construction

So far, we have discussed a method for authenticating quantum states | ̃︀𝜓⟩ = Enc𝑘(|𝜓⟩) using key
𝑘 = (𝑆,∆, 𝑥, 𝑧), and a method for writing any quantum program as

|𝜓⟩ , 𝐿1,𝑀𝜃1,𝑓
(·)
1

, . . . , 𝐿𝑡,𝑀𝜃𝑡,𝑓
(·)
𝑡
, 𝐿𝑡+1,𝑀𝜃𝑡+1,𝑔(·)

where |𝜓⟩ consists of a quantum state that was part of the description of the original program, as
well as some magic states.

Garbling via encrypted measurements. We will build up to our full obfuscation construction
by first describing how to garble quantum circuits using our approach. That is, we’ll suppose that
the evaluator is only interested in computing the output on a particular input 𝑥, and show how to
design oracles F1[𝑥], . . . ,F𝑡[𝑥],G[𝑥] that, along with the authenticated state | ̃︀𝜓⟩ = Enc𝑘(|𝜓⟩), allow
the evaluator to perform the entire computation on top of authenticated data, and eventually
obtain 𝑄(𝑥) without learning anything else about the program’s implementation.

The basic idea is to implement the measurement𝑀
𝜃𝑖,𝑓

(𝑥,·)
𝑖

on authenticated data using an oracle

F𝑖[𝑥], that, instead of outputting the results (𝑣𝑖, 𝑟𝑖) in the clear, outputs the encoded version ̃︀𝑣𝑖 of 𝑣𝑖
(that is, ̃︀𝑣𝑖 is in the support of the authenticated state that encodes the logical string 𝑣𝑖) along with
a random label ℓ𝑖 representing the bit 𝑟𝑖. We will always denote vectors that result from measuring
authenticated states (but not decoding) with a tilde (e.g. ̃︀𝑣𝑖).

Roughly F𝑖[𝑥] will be implemented as follows. It takes as input vectors ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖 from
the support of authenticated states (obtained from authenticated wires 𝑉1, . . . , 𝑉𝑖,𝑊𝑖), as well as
labels ℓ1, . . . , ℓ𝑖−1 that encode the results 𝑟1, . . . , 𝑟𝑖−1 of previous measurements. It first decodes its
inputs, and then uses the decoded values to compute the next measurement results (𝑣𝑖, 𝑟𝑖). Finally,
it outputs the encodings (̃︀𝑣𝑖, ℓ𝑖) where ℓ𝑖 is a label for 𝑟𝑖 computed via a random oracle 𝐻 .

We will implement G[𝑥] in exactly the same way, except that it directly outputs the result 𝑦.
Sketches of these oracles follow.

F𝑖[𝑥](̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)

10

1. (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖)← Dec𝑘,𝜃𝑖,𝐿𝑖...𝐿1(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖).8 Abort if the output is ⊥.

2. For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),
and let 𝑟𝜄 be the bit such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 , or abort if there is no such bit.

3. Compute (𝑣𝑖, 𝑟𝑖) = 𝑓
𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖).

4. Set ℓ𝑖 := 𝐻(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (̃︀𝑣𝑖, ℓ𝑖).
G[𝑥](̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡)

1. (𝑣1, . . . , 𝑣𝑡+1)← Dec𝑘,𝜃𝑖,𝐿𝑡+1...𝐿1(̃︀𝑣1, . . . , ̃︀𝑣𝑡+1). Abort if the output is ⊥.

2. For each 𝜄 ∈ [𝑡], let

ℓ𝜄,0 = 𝐻(̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),
and let 𝑟𝜄 be the bit such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 , or abort if there is no such bit.

3. Compute and output 𝑦 = 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1).

Proving the security of this garbled program consists of two main steps: (1) a “soundness”
argument establishing that no adversary, given | ̃︀𝜓⟩ and oracle access to F1[𝑥], . . . ,F𝑡[𝑥] should
be able to output classical strings (̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) such that G[𝑥](̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) /∈
{𝑄(𝑥),⊥}, and (2) a “simulation” argument establishing that the F1[𝑥], . . . ,F𝑡[𝑥] oracles can be sim-
ulated using a verification oracle Ver𝑘,·,·(·) for the authentication scheme instead of the decoding
functionality Dec𝑘,·,·(·). Indeed, a common theme throughout our proof strategy is understand-
ing how we can replace Dec𝑘,·,·(·) with Ver𝑘,·,·(·) so that we can then appeal to the security of the
authentication scheme. Further discussion on these two steps can be found in our proof intuition
section, Section 7.1. Here, we just mention that the main idea for the soundness argument is an
inductive strategy, where we perform the first measurement and appeal to soundness of a garbled
program with one fewer measurement layer.

From garbling to obfuscation via signature tokens. To complete our construction of full-fledged
obfuscation, it remains to show how to grant the evaluator the ability to execute the circuit on any
input 𝑥 of its choice, without risking any other leakage on the description of the program. A
natural idea is to re-define F1, . . . ,F𝑡,G so that they additionally take 𝑥 as input, and include 𝑥
in the hashes 𝐻(𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖) that define the output labels. We intuitively want to
sample different output labels for each 𝑥 so that the resulting obfuscation scheme can roughly be
seen as a “concatenation” of independently sampled garbling schemes for each 𝑥 (that share the same
initial authenticated state). However, it turns out that this is not yet enough to ensure security.

Indeed, nothing is preventing the adversary from applying a type of “mixed input” attack,
where they evaluate honestly on an input 𝑥, but at some point insert a measurement implemented

8Recall the description of the decoding oracle Dec from Section 2.1. We additionally parameterize the oracle with a
concatenation of the linear functions 𝐿𝑖 . . . 𝐿1, which determines the sequence of Pauli one-time-pad keys to be used
during the decoding.

11

by the oracle F𝑖(𝑥
′, ·) on some input 𝑥′ ̸= 𝑥. That is, at layer 𝑖, the adversary would first implement

F𝑖(𝑥
′, ·) (and ignore the output labels) to collapse the state in some way before continuing with

their honest evaluation procedure using F𝑖(𝑥, ·). Unfortunately, this rogue call to F𝑖(𝑥
′, ·) wouldn’t

destroy the current state enough to cause the remaining oracle calls to F𝑖(𝑥, ·), . . . ,F𝑡(𝑥, ·),G(𝑥, ·)
to abort, but might collapse the state in a manner inconsistent with an honest evaluation on input
𝑥, eventually allowing the adversary to break the “soundness” of the scheme by finding an input
to G(𝑥, ·) that results in an output 𝑦 ̸= 𝑄(𝑥).

Taking inspiration from [BKNY23] who faced a similar issue, we solve our problem via the use
of signature tokens [BS16]. This quantum cryptographic primitive consists of a quantum signing
key |sk⟩ that may be used to produce a classical signature 𝜎𝑥 on any single message 𝑥 but never two
signatures 𝜎𝑥, 𝜎𝑥′ on two different messages 𝑥, 𝑥′ simultaneously. We include a quantum signing
key |sk⟩ as part of our obfuscation construction, and re-define the oracles F1, . . . ,F𝑡,G to take 𝑥 and
a signature 𝜎𝑥 as input, abort if the signature is invalid, and otherwise include both in the hashes
𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖) that define the output labels.

Intuitively, this prevents the above attack. Once the adversary has begun an honest evaluation
on some input 𝑥, it must “know” some valid signature 𝜎𝑥, preventing it from querying the oracles
on any input that starts with (𝑥′, 𝜎𝑥′). That is, if it actually want to evaluate on 𝑥′, it must uncom-
pute everything it has computed so far to return to |sk⟩ before it can produce a signature 𝜎𝑥′ and
begin evaluating on 𝑥′.

We provide more details about this approach in the proof intuition section, Section 7.1. Of
note is the fact that we crucially use a purified random oracle [Zha19] in order to extract a sig-
nature token on 𝑥 from any adversary who has begun evaluating the obfuscated program on 𝑥.
Formalizing this approach is one of trickier aspects of the proof, and we describe a toy problem in
Section 7.1 that may provide some intuition for the actual proof.

2.4 Discussion and Open Problems

Comparison with [ALL+21]. In Section 1, we described an application of our construction to
“best-possible” copy-protection, a notion recently introduced by [CG23]. However, it has already
been shown by [ALL+21] that copy-protection for all unlearnable functions exists in the classical
oracle model. So what is the advantage of our approach?

The catch with [ALL+21] is that it is also known that copy-protection for all unlearnable func-
tions is unachievable in the plain model [ALP21]. Thus, one cannot expect to instantiate [ALL+21]’s
construction in the plain model with, say, an indistinguishably obfuscator, and conjecture that
their notion of security still holds. Moreover, it is unclear (to us) how one would prove that
[ALL+21] or any other approach is a “best-possible” copy-protector without going through the
intermediate notion of quantum state indistinguishability obfuscation.

On the other hand, there is no known impossibility for quantum state indistinguishability ob-
fuscation in the plain model. Thus, one can conjecture that our approach (or some variant of it)
will eventually yield a quantum state indistinguishability obfuscator in the plain model, which,
by the results of [CG23], would immediately yield best-possible copy-protection for any function-
ality. Hence, we view our results (combined with [CG23]) as marking significant progress towards
the long-standing goal of achieving general-purpose copy-protection from concrete cryptographic
assumptions.

12

Comparison with [BKNY23]. As mentioned in Section 1, our techniques differ significantly from
prior work on quantum obfuscation. To be more concrete, let’s take the example of [BKNY23], who
constructed obfuscation for classically-described pseudo-deterministic quantum functionalities.

At a high level, their approach was to encrypt the description of the circuit 𝑄→ Enc(𝑄) using
a blind quantum computation protocol (e.g. [Mah18a]) and prepare a classical oracle that is able to
verify the result of computing Enc(𝑄) → Enc(𝑄(𝑥)), and decrypt the result if verification passes.
But if the program |𝑄⟩ is described quantumly, this approach completely breaks down, since the
classical oracle cannot even interpret the quantum statement Enc(|𝑄⟩)→ Enc(𝑄(𝑥)) to be verified.

Our approach is to not only encrypt |𝑄⟩ but to authenticate it as well. Then, we design oracles
that are able to verify the blind computation along the way, as opposed to all at once at the end of the
computation. That is, while both approaches make fundamental use of both blind and verifiable
quantum computation, they differ significantly in execution.

Finally, it is worth mentioning that the [BKNY23] approach may prove to be advantageous in
the case where we are only interested in obfuscating quantum circuits with a classical description,
and desire to produce an obfuscated program that also has a classical description. Given the fact
that quantum state obfuscation is a best-possible copy-protector, it is actually inherent that our
obfuscated program includes (unclonable) quantum states, even when applied to a circuit with
classical description. On the other hand, while the [BKNY23] approach as currently implemented
also produces obfuscated programs with a quantum description, it is reasonable to hope that it
could be de-quantized. Indeed, the only reason that [BKNY23]’s construction includes a quantum
state is that two of their building blocks - signature tokens and Pauli functional commitments - are
constructed using quantum keys. However, it is plausible that both of these building blocks could
be instantiated with a classical key (e.g. using the ideas of [AGKZ20], though proving security
may be difficult). We leave further exploration of these ideas to future work.

Open problems. We conclude this overview by mentioning a couple of natural open problems
that are motivated by this work. Perhaps most obviously, can we obtain provable security in the
plain model from quantum-secure indistinguishability obfuscation (or a different concrete and
plausible assumption on classical obfuscators)? Besides representing major progress in our under-
standing of quantum obfuscation, answering this question would have significant implications for
general-purpose software copy-protection (due to [CG23]), another area where positive results are
difficult to come by.

Next, can we generalize beyond pseudo-deterministic programs? As a first step, can we ob-
fuscate sampling circuits, i.e. those with classical inputs that produce a distribution over classical
outputs? Interestingly, while [BKNY23]’s construction does not even satisfy correctness for (even
classically-described) sampling circuits, our approach can plausibly be applied to sampling cir-
cuits, although it remains open to obtain any provable guarantees. Finally, the feasibility of obfus-
cating general-purpose circuits with quantum inputs and/or quantum outputs is still wide open,
and remains a fascinating direction for future exploration, with potential applications beyond
cryptography, e.g. to quantum complexity theory.

3 Preliminaries

Let 𝜆 denote the security parameter. We write negl(·) to denote any negligible function, which
is a function 𝑓 such that for every constant 𝑐 ∈ N there exists 𝑁 ∈ N such that for all 𝑛 > 𝑁 ,

13

𝑓(𝑛) < 𝑛−𝑐. We write non-negl(·) to denote any function 𝑓 that is not negligible. That is, there
exists a constant 𝑐 such that for infinitely many 𝑛, 𝑓(𝑛) ≥ 𝑛−𝑐. Finally, we write poly(·) to denote
any polynomial function 𝑓 . That is, there exists a constant 𝑐 such that for all 𝑛 ∈ N, 𝑓(𝑛) ≤ 𝑛−𝑐.
For two probability distributions 𝐷0, 𝐷1 with classical support 𝑆, let

TV (𝐷0, 𝐷1) :=
∑︁
𝑥∈𝑆
|𝐷0(𝑥)−𝐷1(𝑥)|

denote the total variation distance. For a set 𝑆, we let 𝑥← 𝑆 denote sampling a uniformly random
element 𝑥 from 𝑆. If 𝐷 is a distribution, we let 𝑥← 𝐷 denote sampling from 𝐷, and let

{𝑥 : 𝑥← 𝐷0} ≈𝜖 {𝑥 : 𝑥← 𝐷1}

denote that TV(𝐷0, 𝐷1) ≤ 𝜖. Finally, we denote a linear combination of distributions by

(1− 𝛿){𝑥 : 𝑥← 𝐷0}+ 𝛿{𝑥 : 𝑥← 𝐷1},

meaning that with probability 1− 𝛿, sample from 𝐷0 and with probability 𝛿, sample from 𝐷1.

3.1 Quantum Background

An 𝑛-qubit register 𝒳 is a named Hilbert space C2𝑛 . A pure quantum state on register 𝒳 is a unit
vector |𝜓⟩𝒳 ∈ C2𝑛 . A mixed state on register 𝒳 is described by a density matrix 𝜌𝒳 ∈ C2𝑛×2𝑛 ,
which is a positive semi-definite Hermitian operator with trace 1.

A quantum operation 𝐹 is a completely-positive trace-preserving (CPTP) map from a register 𝒳
to a register 𝒴 , which in general may have different dimensions. That is, on input a density matrix
𝜌𝒳 , the operation 𝐹 produces 𝐹 (𝜌𝒳) = 𝜏𝒴 a mixed state on register 𝒴 . A unitary 𝑈 : 𝒳 → 𝒳 is
a special case of a quantum operation that satisfies 𝑈 †𝑈 = 𝑈𝑈 † = ℐ𝒳 , where ℐ𝒳 is the identity
matrix on register 𝒳 . A projector Π is a Hermitian operator such that Π2 = Π, and a projective
measurement is a collection of projectors {Π𝑖}𝑖 such that

∑︀
𝑖Π𝑖 = ℐ. Throughout this work, we will

often write an expression like Π |𝜓⟩, where |𝜓⟩ has been defined on some multiple registers, say
𝒳 , 𝒴 , and 𝒵 , and Π has only been defined on a subset of these registers, say 𝒴 . In this case, we
technically mean (ℐ𝒳 ⊗Π⊗ℐ𝒵) |𝜓⟩, but we drop the identity matrices to reduce notational clutter.

A family of quantum circuits is in general a sequence of quantum operations {𝐶𝜆}𝜆∈N, param-
eterized by the security parameter 𝜆. We say that the family is quantum polynomial time (QPT) if 𝐶𝜆
can be implemented with a poly(𝜆)-size quantum circuit. A family of oracle-aided quantum circuits
{𝐶F

𝜆}𝜆∈N has access to an oracle F : {0, 1}* → {0, 1}* that implements some deterministic classical
map. That is, 𝐶𝜆 can apply a unitary that maps |𝑥⟩ |𝑦⟩ → |𝑥⟩ |𝑦 ⊕ F(𝑥)⟩. We say that the family
is quantum polynomial query (QPQ) if 𝐶𝜆 only makes poly(𝜆)-many queries to F, but is otherwise
computationally unbounded.

Let Tr denote the trace operator. For registers 𝒳 ,𝒴 , the partial trace Tr𝒴 is the unique operation
from 𝒳 ,𝒴 to 𝒳 such that for all (𝜌, 𝜏)𝒳 ,𝒴 , Tr𝒴(𝜌, 𝜏) = Tr(𝜏)𝜌. The trace distance between states 𝜌, 𝜏 ,
denoted TD(𝜌, 𝜏) is defined as

TD(𝜌, 𝜏) :=
1

2
Tr

(︂√︁
(𝜌− 𝜏)†(𝜌− 𝜏)

)︂
.

The trace distance between two states 𝜌 and 𝜏 is an upper bound on the probability that any
(unbounded) algorithm can distinguish 𝜌 and 𝜏 .

14

For any set 𝑆, we define 𝑂[𝑆] to be the boolean function that checks for membership in 𝑆 and
define the projector

Π[𝑆] =
∑︁
𝑠∈𝑆
|𝑠⟩⟨𝑠| .

Definition 3.1 (Quantum Program). A quantum implementation of a functionality with classical inputs
and outputs, or, a quantum program, is a pair (|𝜓⟩ , 𝐶), where |𝜓⟩ is a state and 𝐶 is the classical
description of a quantum circuit. For any classical input 𝑥 ∈ {0, 1}𝑚, we write 𝑦 ← 𝐶(|𝑥⟩ |𝜓⟩) to denote
the result of running 𝐶 and then measuring a dedicated 𝑚′-qubit output register in the standard basis to
obtain 𝑦.

• We say that the program is deterministic if for all 𝑥, there exists 𝑦 ∈ {0, 1}𝑚′ such that

Pr[𝐶(|𝑥⟩ |𝜓⟩) = 𝑦] = 1.

• We say that a family of quantum programs {(|𝜓𝜆⟩ , 𝐶𝜆)}𝜆∈N is 𝜖−pseudo-deterministic for some
𝜖 = 𝜖(𝜆) if for all sequences of inputs {𝑥𝜆}𝜆∈N, there exists a sequence of outputs {𝑦𝜆}𝜆∈N such that

Pr[𝐶𝜆(|𝑥𝜆⟩ |𝜓𝜆⟩)→ 𝑦𝜆] ≥ 1− 𝜖(𝜆).

We will often leave the dependence on 𝜆 implicit, and just refer to (pseudo)-deterministic programs
(|𝜓⟩ , 𝐶). We will denote by 𝑄(𝑥) the string 𝑦 such that Pr[𝐶(|𝑥⟩ |𝜓⟩)→ 𝑦] ≥ 1− 𝜖(𝜆), and refer to 𝑄 as
the map induced by (|𝜓⟩ , 𝐶).

3.2 Useful Lemmas

Lemma 3.2 (Gentle measurement [Win99]). Let 𝜌 be a quantum state and let (Π, ℐ −Π) be a projective
measurement such that Tr(Π𝜌) ≥ 1− 𝛿. Let

𝜌′ =
Π𝜌Π

Tr(Π𝜌)

be the state after applying (Π, ℐ − Π) to 𝜌 and post-selecting on obtaining the first outcome. Then,
TD(𝜌, 𝜌′) ≤ 2

√
𝛿.

Lemma 3.3 (Pauli Twirl over Affine Subspaces). Let𝑅, ̂︀𝑅 ⊆ F𝑛2 be subspaces of F𝑛2 , and let (𝑥0, 𝑧0, 𝑥1, 𝑧1)
be such that either 𝑥0 ⊕ 𝑥1 /∈ ̂︀𝑅⊥ or 𝑧0 ⊕ 𝑧1 /∈ 𝑅⊥. Then for any ∆ /∈ 𝑅, ̂︀∆ /∈ ̂︀𝑅 and density matrix 𝜌 on
𝑚 ≥ 𝑛 qubits, ∑︁

𝑥∈𝑅+Δ,𝑧∈ ̂︀𝑅+̂︀Δ
(𝑍𝑧𝑋𝑥)(𝑋𝑥0𝑍𝑧0)(𝑋𝑥𝑍𝑧)𝜌(𝑍𝑧𝑋𝑥)(𝑍𝑧1𝑋𝑥1)(𝑋𝑥𝑍𝑧) = 0.

15

Proof. Using the fact that 𝑋𝑥𝑍𝑧 = (−1)𝑥·𝑧𝑍𝑧𝑋𝑥, we write∑︁
𝑥∈𝑅+Δ,𝑧∈ ̂︀𝑅+̂︀Δ

(𝑍𝑧𝑋𝑥)(𝑋𝑥0𝑍𝑧0)(𝑋𝑥𝑍𝑧)𝜌(𝑍𝑧𝑋𝑥)(𝑍𝑧1𝑋𝑥1)(𝑋𝑥𝑍𝑧)

=
∑︁

𝑥∈𝑅+Δ,𝑧∈ ̂︀𝑅+̂︀Δ
(−1)𝑥·𝑧0+𝑧·𝑥0+𝑥·𝑧1+𝑧·𝑥1(𝑋𝑥0𝑍𝑧0)𝜌(𝑍𝑧1𝑋𝑥1)

=

⎛⎝ ∑︁
𝑧∈ ̂︀𝑅+̂︀Δ

(−1)𝑧·(𝑥0⊕𝑥1)
⎞⎠(︃ ∑︁

𝑥∈𝑅+Δ

(−1)𝑥·(𝑧0⊕𝑧1)
)︃
(𝑥𝑥0𝑍𝑧0)𝜌(𝑍𝑧1𝑋𝑥1)

=

⎛⎝∑︁
𝑧∈ ̂︀𝑅

(−1)𝑧·(𝑥0⊕𝑥1)
⎞⎠(︃∑︁

𝑥∈𝑅
(−1)𝑥·(𝑧0⊕𝑧1)

)︃
(−1)̂︀Δ·(𝑥0⊕𝑥1)(−1)Δ·(𝑧0⊕𝑧1)(𝑥𝑥0𝑍𝑧0)𝜌(𝑍𝑧1𝑋𝑥1)

= 0,

where the last equality follows because either 𝑥0 ⊕ 𝑥1 /∈ ̂︀𝑅⊥ or 𝑧0 ⊕ 𝑧1 /∈ 𝑅⊥.

The following two lemmas are applications of Cauchy-Schwarz. The first is adapted from
[DS23].

Lemma 3.4. Let 𝒦 be a set of keys, 𝑁 an integer, and {|𝜓𝑘⟩ , {Π𝑘,𝑖}𝑖∈[𝑁], 𝑂𝑘}𝑘∈𝒦 be a set of states |𝜓𝑘⟩,
projective submeasurements {Π𝑘,𝑖}𝑖∈[𝑁], and classical functions 𝑂𝑘 such that |𝜓𝑘⟩ ∈ Im(

∑︀
𝑖Π𝑘,𝑖) for each

𝑘. Then for any distinguisher 𝐷, which we take to be an oracle-aided binary outcome projector, it holds that

E
𝑘←𝒦

[︀
‖𝐷𝑂𝑘 |𝜓𝑘⟩ ‖2

]︀
−
∑︁
𝑖

E
𝑘←𝒦
‖𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2 ≤ 𝑁 ·

⎡⎣∑︁
𝑖 ̸=𝑗

E
𝑘←𝒦
‖Π𝑘,𝑗𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2

⎤⎦1/2

.

Proof.

E
𝑘←𝒦

[︂⃦⃦⃦⃦
𝐷𝑂𝑘 |𝜓𝑘⟩

⃦⃦2]︂
= E

𝑘←𝒦

[︃⃒⃒⃒⃒
⟨𝜓𝑘|

(︃∑︁
𝑖

Π𝑘,𝑖

)︃
𝐷𝑂𝑘

(︃∑︁
𝑖

Π𝑘,𝑖

)︃
|𝜓𝑘⟩

⃒⃒⃒⃒]︃

= E
𝑘←𝒦

⎡⎣⃒⃒⃒⃒∑︁
𝑖

⟨𝜓𝑘|Π𝑘,𝑖𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩+
∑︁
𝑖 ̸=𝑗
⟨𝜓𝑘|Π𝑘,𝑗𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃒⃒⃒⃒⎤⎦
≤
∑︁
𝑖

E
𝑘←𝒦

⃦⃦
𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃦⃦2
+ E
𝑘←𝒦

⎡⎣∑︁
𝑖 ̸=𝑗

⃒⃒⃒⃒
⟨𝜓𝑘|Π𝑘,𝑗𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃒⃒⃒⃒⎤⎦
≤
∑︁
𝑖

E
𝑘←𝒦

⃦⃦
𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃦⃦2
+ E
𝑘←𝒦

⎡⎣∑︁
𝑖 ̸=𝑗

√︁
⟨𝜓𝑘|Π𝑘,𝑖𝐷𝑂𝑘Π𝑘,𝑗𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⎤⎦
≤
∑︁
𝑖

E
𝑘←𝒦

⃦⃦
𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃦⃦2
+𝑁 · E

𝑘←𝒦

⎡⎢⎣
⎛⎝∑︁
𝑖 ̸=𝑗
‖Π𝑘,𝑗𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2

⎞⎠1/2
⎤⎥⎦

16

≤
∑︁
𝑖

E
𝑘←𝒦

⃦⃦
𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃦⃦2
+𝑁 ·

⎡⎣∑︁
𝑖 ̸=𝑗

E
𝑘←𝒦
‖Π𝑘,𝑗𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2

⎤⎦1/2

,

where the first inequality is the triangle inequality, the second follows from Cauchy-Schwarz
applied to vectors |𝜓𝑘⟩ and Π𝑘,𝑗𝐷

𝑂𝑘Π𝑘,𝑖 |𝜓⟩, the third follows from Cauchy-Shwarz applied to the
length 𝑁2 vector (1, . . . , 1) and the vector with (𝑖, 𝑗)’th entry equal to√︁

⟨𝜓𝑘|Π𝑘,𝑖𝐷𝑂𝑘Π𝑘,𝑗𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩,

and the fourth is Jensen’s inequality.

Lemma 3.5. Let 𝒦 be a set of keys, 𝑁 an integer, and {|𝜓𝑘⟩ , {Π𝑘,𝑖}𝑖∈[𝑁], 𝑂𝑘,Γ𝑘}𝑘∈𝒦 be a set of states
|𝜓𝑘⟩, projective submeasurements {Π𝑘,𝑖}𝑖∈[𝑁], classical function 𝑂𝑘, and projective measurements Γ𝑘 such
that |𝜓𝑘⟩ ∈ Im(

∑︀
𝑖Π𝑘,𝑖) for each 𝑘. Then for any oracle-aided unitary 𝑈 , it holds that

E
𝑘←𝒦

[‖Γ𝑘𝑈𝑂𝑘 |𝜓𝑘⟩ ‖2] ≤ 𝑁 ·
∑︁
𝑖

E
𝑘←𝒦
‖Γ𝑘𝑈𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2.

Proof.

E
𝑘←𝒦

[‖Γ𝑘𝑈𝑂𝑘 |𝜓𝑘⟩ ‖2]

≤ E
𝑘←𝒦

⎡⎣(︃∑︁
𝑖

‖Γ𝑘𝑈𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖

)︃2
⎤⎦

≤ E
𝑘←𝒦

⎡⎣⎛⎝√𝑁√︃∑︁
𝑖

‖Γ𝑘𝑈𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2

⎞⎠2⎤⎦
= 𝑁 ·

∑︁
𝑖

E
𝑘←𝒦
‖Γ𝑘𝑈𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2,

where the first inequality is the triangle inequality, and the second follows from Cauchy-
Shwarz applied to the length𝑁 vector (1, . . . , 1) and the vector with 𝑖’th entry equal to ‖Γ𝑘𝑈𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖.

We will frequently invoke the following lemma in order to switch between two oracles that
differ on hard-to-find inputs. The proof is a standard oracle hybrid argument.

Lemma 3.6. For each 𝜆 ∈ N, let 𝒦𝜆 be a set of keys, and {|𝜓𝑘⟩ , 𝑂0
𝑘, 𝑂

1
𝑘, 𝑆𝑘}𝑘∈𝒦𝜆

be a set of states |𝜓𝑘⟩,
classical functions 𝑂0

𝑘, 𝑂
1
𝑘, and sets of inputs 𝑆𝑘. Suppose that the following properties holds.

1. The oracles 𝑂0
𝑘 and 𝑂1

𝑘 are identical on inputs outside of 𝑆𝑘.

2. For any oracle-aided unitary 𝑈 with 𝑞 = 𝑞(𝜆) queries, there is some 𝜖 = 𝜖(𝜆) such that

E
𝑘←𝒦

[︁⃦⃦
Π[𝑆𝑘]𝑈

𝑂0
𝑘 |𝜓𝑘⟩

⃦⃦2]︁ ≤ 𝜖.
17

Then, for any oracle-aided unitary 𝑈 with 𝑞(𝜆) queries and distinguisher 𝐷,⃒⃒⃒⃒
Pr
𝑘←𝒦

[︁
𝐷
(︁
𝑘, 𝑈𝑂

0
𝑘 |𝜓𝑘⟩

)︁
= 0
]︁
− Pr
𝑘←𝒦

[︁
𝐷
(︁
𝑘, 𝑈𝑂

1
𝑘 |𝜓𝑘⟩

)︁
= 0
]︁ ⃒⃒⃒⃒
≤ 4𝑞

√
𝜖.

Proof. For each 𝑖 ∈ [0, . . . , 𝑞], define hybrid ℋ𝑖 to sample 𝑘 ← 𝒦 and output (𝑘, 𝑈 (·) |𝜓𝑘⟩), where
𝑈 ’s first 𝑞− 𝑖 oracle queries are answered with 𝑂0

𝑘 and 𝑈 ’s final 𝑖 oracle queries are answered with
𝑂1
𝑘. For each 𝑖 ∈ [0, . . . , 𝑞 − 1], define hybrid ℋ′𝑖 to be identical to ℋ𝑖 except that we apply the

measurement {Π[𝑆𝑘], ℐ − Π[𝑆𝑘]} to 𝑈 ’s state right before the 𝑞 − 𝑖’th oracle query, and post-select
on obtaining the second outcome. Then for any 𝑖 ∈ [0, . . . , 𝑞 − 1],

• By condition 2 of the lemma statement and Lemma 3.2, it holds that TD(ℋ𝑖,ℋ′𝑖) ≤ 2
√
𝜖.

• By conditions 1 and 2 of the lemma statement and Lemma 3.2, it holds that TD(ℋ′𝑖,ℋ𝑖+1) ≤
2
√
𝜖.

Thus, the lemma follows by summing over the 2𝑞 hybrid switches.

3.3 Signature Tokens

A signature token scheme consists of algorithms (TokGen,TokSign,TokVer) with the following syn-
tax.

• TokGen(1𝜆)→ (vk, |sk⟩): The TokGen algorithm takes as input the security parameter 1𝜆 and
outputs a classical verification key vk and a quantum signing key |sk⟩.

• TokSign(𝑏, |sk⟩) → 𝜎: The TokSign algorithm takes as input a bit 𝑏 ∈ {0, 1} and the signing
key |sk⟩, and outputs a classical signature 𝜎.

• TokVer(vk, 𝑏, 𝜎) → {⊤,⊥}: The TokVer algorithm takes as input a verification key vk, a bit 𝑏,
and a signature 𝜎, and outputs ⊤ or ⊥.

A signature token should satisfy the following definition of correctness.

Definition 3.7. A signature token scheme (TokGen,TokSign,TokVer) is correct if for any 𝑏 ∈ {0, 1},

Pr

[︂
TokVer(vk, 𝑏, 𝜎) = ⊤ :

(vk, |sk⟩)← Gen(1𝜆)
𝜎 ← Sign(𝑏, |sk⟩)

]︂
= 1.

A signature token should satisfy the following definition of security. Note that we give the
adversary oracle access to the verification functionality, and ask for exponential security.

Definition 3.8. A signature token scheme (TokGen,TokSign,TokVer) satisfies unforgeability if for any
QPQ adversary {A𝜆}𝜆∈N,

Pr

[︃
TokVer(vk, 0, 𝜎0) = ⊤ ∧
TokVer(vk, 1, 𝜎1) = ⊤

:
(vk, |sk⟩)← Gen(1𝜆)

(𝜎0, 𝜎1)← A
TokVer[vk]
𝜆 (|sk⟩)

]︃
= 2−Ω(𝜆),

where TokVer[vk] is the functionality TokVer(vk, ·, ·).

Imported Theorem 3.9 ([BS16]). There exists a signature token scheme that satisfies Definition 3.7 and
Definition 3.8.

18

4 Authentication Scheme

In this section, we introduce the notion of a “publicly-verifiable linearly-homomorphic QAS (Quan-
tum Authentication Scheme) with classically-decodable ZX measurements.” We then provide a
construction and security proof.

4.1 Definitions

The following notation will be heavily referenced both throughout this section, and throughout
the remainder of the paper.

Partial ZX measurements. Given a string 𝜃 ∈ {0, 1,⊥}𝑛, define sets

Φ𝜃 := {𝑖 : 𝜃𝑖 ̸= ⊥}, Φ𝜃,0 = {𝑖 : 𝜃𝑖 = 0}, Φ𝜃,1 = {𝑖 : 𝜃𝑖 = 1}, Φ𝜃,⊥ := {𝑖 : 𝜃𝑖 = ⊥}.

We will often write Φ,Φ0,Φ1,Φ⊥ instead of Φ𝜃,Φ𝜃,0,Φ𝜃,1,Φ𝜃,⊥ when the choice of 𝜃 is clear from
context. The string 𝜃 will be used to denote the basis of a partial measurement on 𝑛 qubits, where
the 0 indices are measured in the standard basis and the 1 indices are measured in the Hadamard
basis. We will also need the following notation.

• Given a string 𝑚 ∈ {0, 1}𝑛 and a set Φ ⊆ [𝑛], let 𝑚Φ denote the substring of 𝑚 consisting of
bits {𝑚𝑖}𝑖∈Φ.

• Given 𝜃 ∈ {0, 1,⊥}𝑛 and a set Φ ⊆ [𝑛], define 𝜃[Φ] to be equal to 𝜃 on indices in 𝑉 and ⊥
everywhere else.

• Given a registerℳ, an operation 𝑈 onℳ, and a subset Φ ⊆ [𝑛], let 𝑈Φ be the operation on
ℳ⊗𝑛 that applies 𝑈 to the 𝑖’th copy ofℳ for each 𝑖 ∈ Φ.

For any 𝜃 ∈ {0, 1,⊥}𝑛 and classical function 𝑓 : {0, 1}|Φ| → {0, 1}*, let 𝑀𝜃,𝑓 be the projective
measurement on 𝑛 qubits defined by the operators⎧⎨⎩𝐻Φ1

⎛⎝ ∑︁
𝑚:𝑓(𝑚Φ)=𝑦

|𝑚⟩⟨𝑚|

⎞⎠𝐻Φ1

⎫⎬⎭
𝑦

.

For any 𝑛-qubit registerℳ, we write

𝑀𝜃,𝑓 (ℳ)→ℳ, 𝑦

to refer to the operation that measuresℳ according to 𝑀𝜃,𝑓 and then writes the classical result 𝑦
to a new register. Sometime we will write 𝑀𝜃,𝑓 (ℳ)→ 𝑦 to denote just the classical measurement
result 𝑦.

Linear operations. We will use 𝐿 to denote a sequence of CNOT gates on 𝑛 qubits, which we
refer to as a linear operation. While all quantum gates are linear with respect to the ambient Hilbert
space of exponential dimension, here linearity specifically refers to the fact that any sequence
of CNOT gates applies a linear function over F2 to each standard basis vector. In an abuse of
notation, 𝐿 will either refer to the classical description of a series of CNOT gates or to the actual
unitary operation that applies these gates. Which case should be clear from context.

19

Syntax. A publicly-verifiable, linearly-homomorphic quantum authentiation scheme (QAS) with
classically-decodable ZX measurements has the following syntax. Let 𝑝 = 𝑝(𝜆) be a polynomial.

• Gen(1𝜆, 𝑛) → 𝑘: The key generation algorithm takes as input a security parameter 1𝜆 and
number of qubits 𝑛 = poly(𝜆), and outputs an authentication key 𝑘.

• Enc𝑘(ℳ) → 𝒞: The encoding algorithm is an isometry parameterized by an authentication
key 𝑘 that maps a state on an 𝑛-qubit registerℳ :=ℳ1⊗ · · · ⊗ℳ𝑛 to a state on an 𝑛𝑝-qubit
register 𝒞 := 𝒞1 ⊗ · · · ⊗ 𝒞𝑛, where each 𝒞𝑖 is an 𝑝-qubit register.

• LinEval𝐿(𝒞) → 𝒞: The linearly-homomorphic evaluation procedure is a unitary parameter-
ized by a linear operation 𝐿 that operates on register 𝒞.

• Dec𝑘,𝐿,𝜃 (𝑐)→ 𝑚∪{⊥}: The classical decoding algorithm is parameterized by an authentica-
tion key 𝑘, a linear operation 𝐿, and a choice of bases 𝜃 ∈ {0, 1,⊥}𝑛. It takes as input a string
𝑐 ∈ {0, 1}|Φ|·𝑝 and outputs either a classical string 𝑚 ∈ {0, 1}|Φ| or ⊥.

• Ver𝑘,𝐿,𝜃(𝑐) → {⊤,⊥}: The classical verification algorithm is identical to Dec except that
whenever Dec outputs an 𝑚 ̸= ⊥, Ver outputs ⊤.

Partial ZX measurements on authenticated states. First, given the parameter 𝑝, define

̃︀Φ :=
⋃︁
𝑖∈Φ
{(𝑖− 1)𝑝+ 1, . . . , 𝑖𝑝} ⊆ [𝑛𝑝].

That is, ̃︀Φ contains the 𝑖’th chunk of 𝑝 indices for each 𝑖 ∈ Φ. Define ̃︀Φ0, ̃︀Φ1, ̃︀Φ⊥ analogously.
For any 𝜃 ∈ {0, 1,⊥}𝑛, classical function 𝑓 : {0, 1}|Φ| → {0, 1}*, authentication key 𝑘, and linear
operation 𝐿, let ̃︁𝑀𝜃,𝑓,𝑘,𝐿 be the projective measurement on 𝑛𝑝 qubits defined by the operators⎧⎪⎨⎪⎩𝐻 ̃︀Φ1

⎛⎜⎝ ∑︁
𝑐:𝑓(Dec𝑘,𝐿,𝜃(𝑐̃︀Φ))=𝑦

|𝑐⟩⟨𝑐|

⎞⎟⎠𝐻
̃︀Φ1

⎫⎪⎬⎪⎭
𝑦

∪

⎧⎪⎨⎪⎩𝐻 ̃︀Φ1

⎛⎜⎝ ∑︁
𝑐:Dec𝑘,𝐿,𝜃(𝑐̃︀Φ)=⊥

|𝑐⟩⟨𝑐|

⎞⎟⎠𝐻
̃︀Φ1

⎫⎪⎬⎪⎭ .

For any 𝑛𝑝-qubit register 𝒞, we write

̃︁𝑀𝜃,𝑓,𝑘,𝐿(𝒞)→ 𝒞, 𝑦

to refer to the operation that measures 𝒞 according to 𝑀𝜃,𝑓,𝑘,𝐿 and then writes the classical result
𝑦 to a new register. Sometimes we will write ̃︁𝑀𝜃,𝑓,𝑘,𝐿(𝒞)→ 𝑦 to denote just the classical measure-
ment result 𝑦.

Correctness. Our definition of correctness roughly states that encoding, applying a linear ho-
momorphism, and then applying a partial measurement to the encoded state is equivalent to first
applying the linear operation, applying the partial measurement, and then encoding. This def-
inition supports composition of multiple partial measurements on encoded data, which will be
necessary for our application to obfuscation.

20

Definition 4.1 (Correctness). A publicly-verifiable linearly-homomorphic QAS with classically-decodable
ZX measurements is correct if the following holds. For any linear operation 𝐿, bases 𝜃 ∈ {0, 1,⊥}𝑛,
𝑓 : {0, 1}|Φ| → {0, 1}*, and 𝑘 ∈ Gen(1𝜆, 𝑛),

LinEval†𝐿 ∘ ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘ LinEval𝐿 ∘ Enc𝑘 = Enc𝑘 ∘ 𝐿† ∘𝑀𝜃,𝑓 ∘ 𝐿.

Note that both sequences of operations above mapℳ→ (𝒞, 𝑦), whereℳ is an 𝑛-qubit register, 𝒞 is an
𝑛𝑝-qubit register, and 𝑦 is a classical measurement outcome.

Security Next, we formalize two security properties. The first roughly states that no adversary
with access to the verification oracle can change the distribution resulting from a partial measure-
ment on the encoded state.

Definition 4.2 (Security). A publicly-verifiable linearly-homomorphic QAS with classically-decodable ZX
measurements is secure if the following holds. For any linear operation 𝐿, bases 𝜃 ∈ {0, 1,⊥}𝑛, 𝑓 :
{0, 1}|Φ| → {0, 1}*, and oracle-aided adversary 𝐴 : 𝒞 → 𝒞, there exists an 𝜖(𝜆) ∈ [0, 1] such that for any
𝑛-qubit state |𝜓⟩,

{︂
𝑦 :

𝑘 ← Gen(1𝜆, 𝑛)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘𝐴Ver𝑘,·,·(·) ∘ Enc𝑘(ℳ)

}︂
≈2−Ω(𝜆) (1− 𝜖(𝜆)) {𝑦 : 𝑦 ←𝑀𝜃,𝑓 ∘ 𝐿(ℳ)}+ 𝜖(𝜆){⊥}.

Remark 4.3. Although the adversary 𝐴 is defined as a (oracle-aided) general quantum map from 𝒞 → 𝒞,
we can without loss of generality take it to be a (oracle-aided) unitary that additionally operates on some
workspace register 𝒜 initialized to |0⟩. We leave the workspace register 𝒜 implicit when writing 𝑦 ←̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘𝐴Ver𝑘,·,·(·) ∘ Enc𝑘(ℳ), and note that ̃︁𝑀𝜃,𝑓,𝑘,𝐿 only operates on 𝒞.

Next, we describe a weaker security property that is immediately implied by Definition 4.2,
but will be convenient to use in our application to obfuscation.

Definition 4.4 (Mapping Security). For any linear operation 𝐿, bases 𝜃 ∈ {0, 1,⊥}𝑛, 𝑓 : {0, 1}|Φ| →
{0, 1}*, 𝑛-qubit state |𝜓⟩, and set 𝐵 ⊂ {0, 1}* such that

Pr[𝑦 ∈ 𝐵 : 𝑦 ←𝑀𝜃,𝑓 ∘ 𝐿(|𝜓⟩)] = 0,

it holds that for any oracle-aided adversary 𝐴 : 𝒞 → 𝒞,

Pr

[︂
𝑦 ∈ 𝐵 :

𝑘 ← Gen(1𝜆, 1𝑛)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘𝐴Ver𝑘,·,·(·) ∘ Enc𝑘(|𝜓⟩)

]︂
= 2−Ω(𝜆).

Finally, we define a notion of privacy, which states that any two encoded states are indistin-
guishable, even given the verification oracle.

Definition 4.5 (Privacy). For any 𝑛-qubit states |𝜓0⟩ , |𝜓1⟩ and oracle-aided binary outcome projector 𝐷,⃒⃒⃒⃒
Pr

𝑘←Gen(1𝜆,𝑛)

[︁
1← 𝐷Ver𝑘,·,·(·) ∘ Enc𝑘(|𝜓0⟩)

]︁
− Pr
𝑘←Gen(1𝜆,𝑛)

[︁
1← 𝐷Ver𝑘,·,·(·) ∘ Enc𝑘(|𝜓1⟩)

]︁ ⃒⃒⃒⃒
= 2−Ω(𝜆).

21

4.2 Construction

Paulis and updates. We specify several notational conventions regarding sets {𝑥𝑖}𝑖∈[𝑛], {𝑧𝑖}𝑖∈[𝑛]
that describe Pauli corrections on 𝑛 registers.

• As 𝑛 will be clear from context, let 𝑥 := (𝑥1, . . . , 𝑥𝑛) and 𝑧 := (𝑧1, . . . , 𝑧𝑛).

• Given a linear operation 𝐿 on 𝑛 qubits, let 𝐿(𝑥, 𝑧) := (𝑥𝐿, 𝑧𝐿) be the result of starting
with (𝑥, 𝑧), and, for each CNOT gate in 𝐿, sequentially applying the CNOT update rule
(𝑥𝑖, 𝑧𝑖), (𝑥𝑗 , 𝑧𝑗)→ (𝑥𝑖, 𝑧𝑖 ⊕ 𝑧𝑗), (𝑥𝑖 ⊕ 𝑥𝑗 , 𝑧𝑗). Note that this is yet another interpretation for 𝐿,
which in another context could refer to the unitary that applies the sequence of CNOT gates.

• Let 𝐿−1 be the inverse of 𝐿, and note that 𝐿−1(𝑥𝐿, 𝑧𝐿) = (𝑥, 𝑧).

• Given 𝑥 = (𝑥1, . . . , 𝑥𝑛) or 𝑥𝐿 = (𝑥𝐿,1, . . . , 𝑥𝐿,𝑛) and a subset Φ ⊆ [𝑛], let 𝑥Φ := {𝑥𝑖}𝑖∈Φ
and 𝑥𝐿,Φ := {𝑥𝐿,𝑖}𝑖∈Φ. Given disjoint sets Φ0,Φ1 ⊂ [𝑛], we let 𝑥Φ0 , 𝑥Φ1 refer to the union
{𝑥𝑖}𝑖∈Φ0 ∪ {𝑥𝑖}𝑖∈Φ1 .

Subspaces. Given a 𝜆-dimensional subspace 𝑆 ⊂ F2𝜆+1
2 and a vector ∆ ∈ F2𝜆+1

2 ∖ 𝑆, define the
(𝜆+ 1)-dimensional subspace

𝑆Δ := 𝑆 ∪ (𝑆 +∆).

Let the dual subspace of 𝑆Δ be ̂︀𝑆 := 𝑆⊥Δ; note that

• ̂︀𝑆 is 𝜆-dimensional; and

• since 𝑆Δ ⊃ 𝑆, its dual subspace ̂︀𝑆 := 𝑆⊥Δ ⊂ 𝑆⊥.

Let ̂︀∆ be an arbitrary choice of a vector such that 𝑆⊥ = ̂︀𝑆 ∪ (̂︀𝑆 + ̂︀∆), and define

̂︀𝑆̂︀Δ := 𝑆⊥ = ̂︀𝑆 ∪ (̂︀𝑆 + ̂︀∆) .

Given a subspace 𝑆, define the state

|𝑆⟩ := 1√︀
|𝑆|

∑︁
𝑠∈𝑆
|𝑠⟩ ,

and note that
𝐻⊗2𝜆+1 |𝑆⟩ = |𝑆⊥⟩ .

Next, given any 𝜆-dimensional subspace 𝑆 and ∆ /∈ 𝑆, define the isometry 𝐸𝑆,Δ from 1 qubit
to 2𝜆+ 1 qubits that maps |0⟩ → |𝑆⟩ and |1⟩ → |𝑆 +∆⟩.

Theorem 4.6. The QAS described in Figure 1 satisfies correctness (Definition 4.1).

Proof. First, we show two key claims.

Claim 4.7. For any 𝑆 and ∆, it holds that 𝐻⊗2𝜆+1𝐸̂︀𝑆,̂︀Δ = 𝐸𝑆,Δ𝐻 .

22

Publicly-verifiable linearly-homomorphic QAS with classically-decodable ZX
measurements

• Gen(1𝜆, 𝑛): Sample a uniformly random 𝜆-dimensional subspace 𝑆 ⊂ F2𝜆+1
2 , vector Δ ← F2𝜆+1

2 ∖ 𝑆, and
𝑥𝑖, 𝑧𝑖 ← F2𝜆+1

2 for each 𝑖 ∈ [𝑛]. Output 𝑘 := (𝑆,Δ, 𝑥, 𝑧).

• Enc𝑘 = 𝑋𝑥𝑍𝑧𝐸⊗𝑛
𝑆,Δ.

• LinEval𝐿(𝒞): Parse register 𝒞 = 𝒞1 ⊗ · · · ⊗ 𝒞𝑛, where each 𝒞𝑖 is a (2𝜆+1)-qubit register. For each CNOT in
𝐿 from qubit 𝑖 to 𝑗, apply CNOT⊗2𝜆+1 from register 𝒞𝑖 to 𝒞𝑗 .

• Dec𝑘,𝐿,𝜃(𝑐): Parse 𝑐 = {𝑐𝑖}𝑖∈Φ. Define {𝑚𝑖}𝑖∈Φ as follows.

∀𝑖 ∈ Φ0 : 𝑚𝑖 =

⎧⎪⎨⎪⎩
0 if 𝑐𝑖 ∈ 𝑆 + 𝑥𝐿,𝑖

1 if 𝑐𝑖 ∈ 𝑆 +Δ+ 𝑥𝐿,𝑖

⊥ otherwise
∀𝑖 ∈ Φ1 : 𝑚𝑖 =

⎧⎪⎨⎪⎩
0 if 𝑐𝑖 ∈ ̂︀𝑆 + 𝑧𝐿,𝑖

1 if 𝑐𝑖 ∈ ̂︀𝑆 + ̂︀Δ+ 𝑧𝐿,𝑖

⊥ otherwise

If any 𝑚𝑖 = ⊥, then output ⊥, and otherwise output 𝑚 = {𝑚𝑖}𝑖∈Φ.

• Ver𝑘,𝐿,𝜃(𝑐):a Parse 𝑐 = {𝑐𝑖}𝑖∈Φ. For each 𝑖 ∈ Φ0, output ⊥ if 𝑐𝑖 /∈ 𝑆Δ + 𝑥𝐿,𝑖. For each 𝑖 ∈ Φ1, output ⊥ if
𝑐𝑖 /∈ ̂︀𝑆̂︀Δ + 𝑧𝐿,𝑖. Otherwise, output ⊤.

aThis procedure is already determined by Dec𝑘,𝐿,𝜃(𝑐), but we write it explicitly for clarity in the proof.

Figure 1: Our construction of a publicly-verifiable linearly-homomorphic QAS with classically-
decodable ZX measurements.

Proof. We show that the maps are equivalent by checking their behavior on the basis {|+⟩ , |−⟩}.
First,

𝐻⊗2𝜆+1𝐸̂︀𝑆,̂︀Δ |+⟩ = 𝐻⊗2𝜆+1 |̂︀𝑆̂︀Δ⟩ = |𝑆⟩ = 𝐸𝑆,Δ |0⟩ = 𝐸𝑆,Δ𝐻 |+⟩ .

Next,

𝐻⊗2𝜆+1𝐸̂︀𝑆,̂︀Δ |−⟩ = 𝐻⊗2𝜆+1
(︁
|̂︀𝑆⟩ − |̂︀𝑆 + ̂︀∆⟩)︁ = 𝐻⊗2𝜆+1𝑍Δ |̂︀𝑆̂︀Δ⟩ = |𝑆 +∆⟩ = 𝐸𝑆,Δ |1⟩ = 𝐸𝑆,Δ𝐻 |−⟩ .

Claim 4.8. For any 𝑆,∆, and 𝐿, LinEval𝐿𝐸⊗𝑛𝑆,Δ = 𝐸⊗𝑛𝑆,Δ𝐿

Proof. We show this for the case where 𝐿 contains a single CNOT gate, and the full proof follows
by applying the argument sequentially. We show that the maps are equivalent by checking their
behavior on the basis {|𝑏1, 𝑏2⟩}𝑏1,𝑏2∈{0,1}.

CNOT⊗2𝜆+1𝐸⊗2𝑆,Δ |𝑏1, 𝑏2⟩

= CNOT⊗2𝜆+1 |𝑆 + 𝑏1 ·∆⟩ |𝑆 + 𝑏2 ·∆⟩

=
1

2𝜆
CNOT⊗2𝜆+1

∑︁
𝑠1∈𝑆
|𝑠1 + 𝑏1 ·∆⟩

∑︁
𝑠2∈𝑆
|𝑠2 + 𝑏2 ·∆⟩

23

=
1

2𝜆

∑︁
𝑠1∈𝑆
|𝑠1 + 𝑏1 ·∆⟩

∑︁
𝑠2∈𝑆
|(𝑠1 + 𝑠2) + (𝑏1 + 𝑏2) ·∆⟩

= |𝑆 + 𝑏1 ·∆⟩ |𝑆 + (𝑏1 + 𝑏2) ·∆⟩
= 𝐸⊗2𝑆,ΔCNOT |𝑏1, 𝑏2⟩ .

Now, define measurements 𝑀 ′𝜃,𝑓 ,̃︁𝑀 ′𝜃,𝑓,𝑘,𝐿 so that

𝑀𝜃,𝑓 = 𝐻Φ1𝑀 ′𝜃,𝑓𝐻
Φ1 , and ̃︁𝑀𝜃,𝑓,𝑘,𝐿 = 𝐻

̃︀Φ1𝑋𝑥𝐿,Φ0
,𝑧𝐿,Φ1̃︁𝑀 ′𝜃,𝑓,𝑘,𝐿𝑋𝑥𝐿,Φ0

,𝑧𝐿,Φ1𝐻
̃︀Φ1 .

To be concrete,

𝑀 ′𝜃,𝑓 :=

⎧⎨⎩ ∑︁
𝑚:𝑓(𝑚Φ)=𝑦

|𝑚⟩⟨𝑚|

⎫⎬⎭
𝑦

,

and

̃︁𝑀 ′𝜃,𝑓,𝑘,𝐿 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑︁

𝑚:𝑓(𝑚Φ)=𝑦

⎛⎜⎜⎜⎜⎝
∑︁

𝑐:{𝑐𝑖∈𝑆+𝑚𝑖·Δ}𝑖∈Φ0
,

{𝑐𝑖∈̂︀𝑆+𝑚𝑖·̂︀Δ}𝑖∈Φ1

|𝑐⟩⟨𝑐|

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
𝑦

∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁

𝑐:∃𝑖∈Φ0 s.t. 𝑐𝑖 /∈𝑆Δ

∨∃𝑖∈Φ1 s.t. 𝑐𝑖 /∈̂︀𝑆̂︀Δ
|𝑐⟩⟨𝑐|

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Observe that

̃︁𝑀 ′𝜃,𝑓,𝑘,𝐿 (︁𝐸⊗|Φ⊥∪Φ0|
𝑆,Δ ⊗ 𝐸⊗|Φ1|̂︀𝑆,̂︀Δ

)︁
=
(︁
𝐸
⊗|Φ⊥∪Φ0|
𝑆,Δ ⊗ 𝐸⊗|Φ1|̂︀𝑆,̂︀Δ

)︁
𝑀 ′𝜃,𝑓 .

Then,

LinEval†𝐿
̃︁𝑀𝜃,𝑓,𝑘,𝐿LinEval𝐿Enc𝑘

= LinEval†𝐿
̃︁𝑀𝜃,𝑓,𝑘,𝐿LinEval𝐿𝑋

𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ

= LinEval†𝐿
̃︁𝑀𝜃,𝑓,𝑘,𝐿𝑋

𝑥𝐿𝑍𝑧𝐿LinEval𝐿𝐸
⊗𝑛
𝑆,Δ

= LinEval†𝐿
̃︁𝑀𝜃,𝑓,𝑘,𝐿𝑋

𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 (Claim 4.8)

= LinEval†𝐿𝐻
̃︀Φ1𝑋𝑥𝐿,Φ0

𝑧𝐿,Φ1̃︁𝑀 ′𝜃,𝑓,𝑘,𝐿𝑋𝑥𝐿,Φ0
,𝑧𝐿,Φ1𝐻

̃︀Φ1𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿

= LinEval†𝐿𝐻
̃︀Φ1𝑋𝑥𝐿,Φ0

𝑧𝐿,Φ1̃︁𝑀 ′𝜃,𝑓,𝑘,𝐿𝑋𝑥𝐿,Φ⊥𝑍𝑧𝐿,Φ⊥ ,𝑧𝐿,Φ0
,𝑥𝐿,Φ1𝐻

̃︀Φ1𝐸⊗𝑛𝑆,Δ𝐿

= LinEval†𝐿𝐻
̃︀Φ1𝑋𝑥𝐿,Φ⊥ ,𝑥𝐿,Φ0

,𝑧𝐿,Φ1𝑍𝑧𝐿,Φ⊥ ,𝑧𝐿,Φ0
,𝑥𝐿,Φ1̃︁𝑀 ′𝜃,𝑓,𝑘,𝐿𝐻 ̃︀Φ1𝐸⊗𝑛𝑆,Δ𝐿

= LinEval†𝐿𝑋
𝑥𝐿𝑍𝑧𝐿𝐻

̃︀Φ1̃︁𝑀 ′𝜃,𝑓,𝑘,𝐿𝐻 ̃︀Φ1𝐸⊗𝑛𝑆,Δ𝐿

= LinEval†𝐿𝑋
𝑥𝐿𝑍𝑧𝐿𝐻

̃︀Φ1̃︁𝑀 ′𝜃,𝑓,𝑘,𝐿 (︁𝐸⊗|Φ⊥∪Φ0|
𝑆,Δ ⊗ 𝐸⊗|Φ1|̂︀𝑆,̂︀Δ

)︁
𝐻Φ1𝐿 (Claim 4.7)

= LinEval†𝐿𝑋
𝑥𝐿𝑍𝑧𝐿𝐻

̃︀Φ1

(︁
𝐸
⊗|Φ⊥∪Φ0|
𝑆,Δ ⊗ 𝐸⊗|Φ1|̂︀𝑆,̂︀Δ

)︁
𝑀 ′𝜃,𝑓𝐻

Φ1𝐿

= LinEval†𝐿𝑋
𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐻

Φ1𝑀 ′𝜃,𝑓𝐻
Φ1𝐿

24

= 𝑋𝑥𝑍𝑧LinEval†𝐿𝐸
⊗𝑛
𝑆,Δ𝑀𝜃,𝑓𝐿

= 𝑋𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ𝐿
†𝑀𝜃,𝑓𝐿

= Enc𝑘𝐿
†𝑀𝜃,𝑓𝐿.

4.3 Security

Theorem 4.9. The QAS described in Figure 1 satisfies security (Definition 4.2).

Proof. We begin by modifying the Gen procedure and Ver𝑘,·,·(·) oracle, and arguing that the output
of the experiment remains (almost) unaffected. In particular, we will "expand" the verification
oracle with random superspaces 𝑅 ⊃ 𝑆Δ and ̂︀𝑅 ⊃ ̂︀𝑆̂︀Δ. Consider the following procedures.

• Gen′(1𝜆, 𝑛): Sample a uniformly random 𝜆-dimensional subspace 𝑆 ⊂ F2𝜆+1
2 , vector ∆ ←

F2𝜆+1
2 ∖ 𝑆, and 𝑥𝑖, 𝑧𝑖 ← F2𝜆+1

2 for each 𝑖 ∈ [𝑛]. Sample uniformly random (3𝜆/2 + 1)-
dimensional subspaces 𝑅, ̂︀𝑅 ⊂ F2𝜆+1

2 conditioned on 𝑆Δ ⊂ 𝑅 and ̂︀𝑆̂︀Δ ⊂ ̂︀𝑅. Output 𝑘 :=

(𝑆,∆, 𝑥, 𝑧) along with (𝑅, ̂︀𝑅).
• Ver′

𝑘,𝑅, ̂︀𝑅,𝐿,𝜃(𝑐): Parse 𝑐 = {𝑐𝑖}𝑖∈Φ. For each 𝑖 ∈ Φ0, output ⊥ if 𝑐𝑖 /∈ 𝑅 + 𝑥𝐿,𝑖. For each 𝑖 ∈ Φ1,

output ⊥ if 𝑐𝑖 /∈ ̂︀𝑅+ 𝑧𝐿,𝑖. Otherwise, output ⊤.

Claim 4.10. For any 𝐿, 𝜃, 𝑓, 𝐴, and |𝜓⟩, it holds that{︂
𝑦 :

𝑘 ← Gen(1𝜆, 𝑛)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘𝐴Ver𝑘,·,·(·) ∘ Enc𝑘(|𝜓⟩)

}︂
≈2−Ω(𝜆)

{︃
𝑦 :

(𝑘,𝑅, ̂︀𝑅)← Gen′(1𝜆, 𝑛)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘𝐴
Ver′

𝑘,𝑅, ̂︀𝑅,·,·
(·) ∘ Enc𝑘(|𝜓⟩)

}︃
.

Proof. Note that these distributions can be sampled by a reduction given oracle access to either
(𝑂[𝑆Δ], 𝑂[̂︀𝑆̂︀Δ]) or (𝑂[𝑅], 𝑂[̂︀𝑅]). Now, for any fixed (𝜆+1)-dimensional subspaces 𝑆Δ, ̂︀𝑆Δ and any
vector 𝑣,

Pr
𝑅, ̂︀𝑅[𝑣 ∈ 𝑅 ∖ 𝑆Δ ∪ ̂︀𝑅 ∖ ̂︀𝑆̂︀Δ] ≤ |𝑅 ∖ 𝑆Δ|

|F2𝜆+1
2 ∖ 𝑆Δ|

+
| ̂︀𝑅 ∖ ̂︀𝑆̂︀Δ|
|F2𝜆+1

2 ∖ ̂︀𝑆̂︀Δ| = 2 · 2
3𝜆/2+1 − 2𝜆+1

22𝜆+1 − 2𝜆+1
= 2−Ω(𝜆),

where the probability is over sampling random (3𝜆/2 + 1)-dimensional subspaces 𝑅, ̂︀𝑅 condi-
tioned on 𝑆Δ ⊂ 𝑅 and ̂︀𝑆̂︀Δ ⊂ ̂︀𝑅. Then the claim follows by noting that (𝑂[𝑆Δ], 𝑂[̂︀𝑆̂︀Δ]) and
(𝑂[𝑅], 𝑂[̂︀𝑅]) are identical outside of 𝑅 ∖ 𝑆Δ and ̂︀𝑅 ∖ ̂︀𝑆Δ, and applying Lemma 3.6 (a standard
oracle hybrid argument).

Now, fix any (3𝜆/2 + 1)-dimensional subspaces 𝑅, ̂︀𝑅 such that ̂︀𝑅⊥ ⊂ 𝑅, and consider the
following procedure.

• Gen′
𝑅, ̂︀𝑅(1𝜆, 𝑛): Sample a uniformly random subspace 𝑆 ⊂ F2𝜆+1

2 conditioned on ̂︀𝑅⊥ ⊂ 𝑆 ⊂

𝑅, sample a uniformly random vector ∆ ← 𝑅 ∖ 𝑆, and sample uniformly random 𝑥𝑅𝑖 , 𝑧
̂︀𝑅
𝑖 ←

(𝑅, ̂︀𝑅) for each 𝑖 ∈ [𝑛]. Set 𝑥𝑅 = (𝑥𝑅1 , . . . , 𝑥
𝑅
𝑛), 𝑧

̂︀𝑅 = (𝑧
̂︀𝑅
1 , . . . , 𝑧

̂︀𝑅
𝑛) and output (𝑆,∆, 𝑥𝑅, 𝑧 ̂︀𝑅).

25

Next, let co(𝑅) be an arbitrary set of coset representatives of 𝑅, let co(̂︀𝑅) be an arbitrary set of
coset representatives of ̂︀𝑅, and fix any

𝑥co(𝑅) =
(︁
𝑥
co(𝑅)
1 , . . . , 𝑥co(𝑅)

𝑛

)︁
, 𝑧co(

̂︀𝑅) =
(︁
𝑧
co(̂︀𝑅)
1 , . . . , 𝑧co(

̂︀𝑅)
𝑛

)︁
,

where each 𝑥
co(𝑅)
𝑖 ∈ co(𝑅) and 𝑧

co(̂︀𝑅)
𝑖 ∈ co(̂︀𝑅). Then the proof of the theorem follows by com-

bining Claim 4.10 with the following claim. Notice that the adversary 𝐴 in the following claim
no longer requires access to the "expanded" oracle Ver′

𝑘,𝑅, ̂︀𝑅,·,·(·), since 𝐴 is allowed to depend on(︁
𝑅, ̂︀𝑅, 𝑥co(𝑅), 𝑧co(

̂︀𝑅)
)︁

, which suffice to implement Ver′
𝑘,𝑅, ̂︀𝑅,·,·(·).

Claim 4.11. Fix any 𝑅, ̂︀𝑅, 𝑥co(𝑅), 𝑧co(
̂︀𝑅). Then for any 𝐿, 𝜃, 𝑓 , and unitary 𝐴,9 there exists an 𝜖 = 𝜖(𝜆) ∈

[0, 1] such that for any |𝜓⟩,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩𝑦 :

(︁
𝑆,∆, 𝑥𝑅, 𝑧

̂︀𝑅)︁← Gen′
𝑅, ̂︀𝑅(1𝜆, 𝑛)

𝑥 := 𝑥𝑅 + 𝑥co(𝑅), 𝑧 := 𝑧
̂︀𝑅 + 𝑧co(

̂︀𝑅)

𝑘 := (𝑆,∆, 𝑥, 𝑧)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘𝐴 ∘ Enc𝑘(|𝜓⟩)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ≈2−Ω(𝜆) (1− 𝜖) {𝑦 : 𝑦 ←𝑀𝜃,𝑓 ∘ 𝐿(|𝜓⟩)}+ 𝜖 {⊥} .

Proof. Let 𝒟 be the distribution described by the LHS of the statement in the claim. Next, define

𝑥
co(𝑅)
𝐿 , 𝑧

co(̂︀𝑅)
𝐿 := 𝐿(𝑥co(𝑅), 𝑧co(

̂︀𝑅)), and define the distribution 𝒦𝐿 as follows.

𝒦𝐿 :=

⎧⎪⎪⎨⎪⎪⎩(𝑆,∆, 𝑥𝐿, 𝑧𝐿) :

(︁
𝑆,∆, 𝑥𝑅, 𝑧

̂︀𝑅)︁← Gen′
𝑅, ̂︀𝑅(1𝜆, 𝑛)

𝑥𝑅𝐿 , 𝑧
̂︀𝑅
𝐿 := 𝐿(𝑥𝑅, 𝑧

̂︀𝑅)
𝑥𝐿 := 𝑥𝑅𝐿 + 𝑥

co(𝑅)
𝐿 , 𝑧𝐿 := 𝑧

̂︀𝑅
𝐿 + 𝑧

co(̂︀𝑅)
𝐿

⎫⎪⎪⎬⎪⎪⎭ .

Observe that the distribution over 𝑘 = (𝑆,∆, 𝑥, 𝑧) as sampled by 𝒟 is equivalent to the distri-
bution that results from sampling (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ← 𝒦𝐿 and setting (𝑥, 𝑧) = 𝐿−1(𝑥𝐿, 𝑧𝐿). Thus, we
can write 𝒟 equivalently as

𝒟 =

⎧⎪⎪⎨⎪⎪⎩𝑦 :

(𝑆,∆, 𝑥𝐿, 𝑧𝐿)← 𝒦𝐿
(𝑥, 𝑧) := 𝐿−1(𝑥𝐿, 𝑧𝐿)

𝑘 := (𝑆,∆, 𝑥, 𝑧)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘𝐴 ∘ Enc𝑘(|𝜓⟩)

⎫⎪⎪⎬⎪⎪⎭ .

Moreover, the vectors (𝑥𝐿, 𝑧𝐿) obtained by sampling (𝑆,∆, 𝑥𝐿, 𝑧𝐿)← 𝒦𝐿 are such that 𝑥𝐿 and
𝑧𝐿 are uniformly random over an affine subspaces, namely,

𝑥𝐿 ← 𝑅⊕𝑛 + 𝑥
co(𝑅)
𝐿 , and 𝑧𝐿 ← ̂︀𝑅⊕𝑛 + 𝑧

co(̂︀𝑅)
𝐿 .

This follows because 𝐿 is full rank, and the vectors 𝑥𝑅, 𝑧 ̂︀𝑅 = (𝑥𝑅1 , . . . , 𝑥
𝑅
𝑛), (𝑧

̂︀𝑅
1 , . . . , 𝑧

̂︀𝑅
𝑛) ob-

tained by sampling (︁
𝑆,∆, 𝑥𝑅, 𝑧

̂︀𝑅)︁← Gen′
𝑅, ̂︀𝑅(1𝜆, 𝑛)

9As noted in Remark 4.3, by introducing a sufficiently large workspace register 𝒜 initialized to |0⟩, we can assume
without loss of generality that the adversary 𝐴 is unitary. This additional workspace register 𝒜 is left implicit in the
description of the claim and proof.

26

are such that each 𝑥𝑅𝑖 is uniformly random over 𝑅 and each 𝑧 ̂︀𝑅
𝑖 is uniformly random over ̂︀𝑅. The

fact that 𝑥𝐿 and 𝑧𝐿 are uniform over affine subspaces will be used later in the proof when we apply
the Pauli twirl over affine subspaces (Lemma 3.3).

Next, we introduce some more notation.

• For each 𝑦 ∈ range(𝑓), define

𝑉𝑦 :=
⋃︁

𝑚:𝑓(𝑚Φ)=𝑦

⎛⎝⨂︁
𝑖∈Φ0

(𝑆 +𝑚𝑖 ·∆)
⨂︁
𝑖∈Φ1

(︁̂︀𝑆 +𝑚𝑖 · ̂︀∆)︁
⎞⎠ ,

and define
𝑉⊥ := {0, 1}(2𝜆+1)𝑛 ∖

⋃︁
𝑦∈range(𝑓)

𝑉𝑦.

For 𝑦 ∈ range(𝑓) ∪ {⊥}, define |𝑉𝑦⟩ :=
∑︀

𝑣∈𝑉𝑦 |𝑣⟩.

• Define the unitary𝐵 := 𝐴∘LinEval†𝐿. Note that the "honest"𝐴 operation just applies LinEval𝐿,
so in this case 𝐵 is the identity.

• For any pure state |𝜑⟩, define Mx[|𝜑⟩] := |𝜑⟩⟨𝜑| .

Now, given any (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ∈ 𝒦𝐿, which defines (𝑥, 𝑧) = 𝐿−1(𝑥𝐿, 𝑧𝐿), and any 𝑦 ∈ range(𝑓)∪
{⊥}, we can write the probability that 𝒟 outputs 𝑦 as

⃦⃦⃦
Π[𝑉𝑦]𝑋

𝑥𝐿,Φ0
,𝑧𝐿,Φ1𝐻

̃︀Φ1𝐴Enc(𝑆,Δ,𝑥,𝑧) |𝜓⟩
⃦⃦⃦2

=
⃦⃦⃦
Π[𝑉𝑦]𝑋

𝑥𝐿,Φ0
,𝑧𝐿,Φ1𝐻

̃︀Φ1𝐵LinEval𝐿𝑋
𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ |𝜓⟩

⃦⃦⃦2
=
⃦⃦⃦
Π[𝑉𝑦]𝐻

̃︀Φ1𝑋𝑥𝐿,Φ0𝑍𝑧𝐿,Φ1𝐵𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
⃦⃦⃦2

=
⃦⃦⃦
Π[𝑉𝑦]𝐻

̃︀Φ1𝑋𝑥𝐿𝑍𝑧𝐿𝐵𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
⃦⃦⃦2
,

where in the last line, we have inserted Pauli𝑋 operations on registers that are either measured
in the Hadamard basis or not measured at all and Pauli 𝑍 operations on registers that are either
measured in the standard basis or not measured at all. Doing this has no effect on the outcome.
Thus, we can write the distribution 𝒟 concisely as

𝒟 =
∑︁

𝑦∈range(𝑓)∪{⊥}

|𝑦⟩⟨𝑦| 1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)∈𝒦𝐿

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝐵𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
]︁
|𝑉𝑦⟩ .

To complete the proof, we will decompose 𝐵 as a sum of Paulis, and factor out terms that will
cause 𝒟 to output ⊥ (with high probability). Eventually, we’ll be left with terms that do not affect
the outcome of directly measuring 𝐿 |𝜓⟩. To begin with, let

𝒫 :=
{︁
𝑋𝑥𝑍𝑧 : 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ {0, 1}(2𝜆+1)𝑛

}︁
,

27

and define the subsets

𝒫⊥ :=
{︁
𝑋𝑥𝑍𝑧 : ∃𝑖 ∈ Φ0 s.t. 𝑥𝑖 /∈ 𝑅 or ∃𝑖 ∈ Φ1 s.t. 𝑧𝑖 /∈ ̂︀𝑅}︁ , 𝒫⊤ = 𝒫 ∖ 𝒫⊥.

Then we can write 𝐵 as

𝐵 =
∑︁
𝑃∈𝒫⊤

𝛼𝑃𝑃 +
∑︁
𝑃∈𝒫⊥

𝛼𝑃𝑃 := 𝐵⊤ +𝐵⊥,

for some coefficients 𝛼𝑃 .
Note that for any 𝑦 ∈ range(𝑓), (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ∈ 𝒦𝐿, and 𝑃 ∈ 𝑃⊥,

⟨𝑉𝑦|𝐻
̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑃𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩ = 0,

which follows by definition of 𝑉𝑦, since 𝑆Δ ⊂ 𝑅 and ̂︀𝑆̂︀Δ ⊂ ̂︀𝑅. Thus there exists an 𝜖⊥ such that

𝒟 =
∑︁

𝑦∈range(𝑓)∪{⊥}

|𝑦⟩⟨𝑦| 1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝐵⊤𝑋
𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩

]︁
|𝑉𝑦⟩+𝜖⊥ |⊥⟩⟨⊥| .

Next, we define the following.

• Let 𝐶 ≃ 𝑅/ ̂︀𝑅⊥ be a subspace of coset representatives of ̂︀𝑅⊥ in 𝑅.

• Let ̂︀𝐶 ≃ ̂︀𝑅/𝑅⊥ be a subspace of coset representatives of 𝑅⊥ in ̂︀𝑅.

• Define the set of Paulis

𝒫
𝐶, ̂︀𝐶 :=

⎧⎨⎩𝑋𝑥𝑍𝑧 :

{︀
𝑥𝑖 ∈ 𝐶, 𝑧𝑖 = 02𝜆+1

}︀
𝑖∈Φ0

,
{︁
𝑥𝑖 = 02𝜆+1, 𝑧𝑖 ∈ ̂︀𝐶}︁

𝑖∈Φ1

,{︀
𝑥𝑖 = 02𝜆+1, 𝑧𝑖 = 02𝜆+1

}︀
𝑖∈Φ⊥

⎫⎬⎭ .

Now, for any (𝑥, 𝑧) = (𝑥1, . . . , 𝑥𝑛, 𝑧1, . . . , 𝑧𝑛) such that 𝑃 = 𝑋𝑥𝑍𝑧 ∈ 𝒫⊤, define (𝑥′, 𝑧′) =
(𝑥′1, . . . , 𝑥

′
𝑛, 𝑧
′
1, . . . , 𝑧

′
𝑛) such that 𝑋𝑥′𝑍𝑧

′ ∈ 𝒫
𝐶, ̂︀𝐶 as follows.

• For 𝑖 ∈ Φ0, let 𝑥′𝑖 ∈ 𝐶 be the representative of 𝑥𝑖’s coset (recall that 𝑥𝑖 ∈ 𝑅 by definition of
𝒫⊤), and let 𝑧′𝑖 = 02𝜆+1.

• For 𝑖 ∈ Φ1, let 𝑧′𝑖 ∈ ̂︀𝐶 be the representative of 𝑧𝑖’s coset (recall that 𝑧𝑖 ∈ ̂︀𝑅 by definition of
𝒫⊤), and let 𝑥′𝑖 = 02𝜆+1.

• For 𝑖 ∈ Φ⊥, let 𝑥′𝑖 = 02𝜆+1, 𝑧′𝑖 = 02𝜆+1.

Then note that for all 𝑦 ∈ range(𝑓) ∪ {⊥} and (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ∈ 𝒦𝐿, it holds that

⟨𝑉𝑦|𝐻
̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑋𝑥𝑍𝑧𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩ = ⟨𝑉𝑦|𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑋𝑥′𝑍𝑧
′
𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩ ,

which follows by definition of 𝑉𝑦 and the fact that 𝑆, ̂︀𝑆 are always sampled so that ̂︀𝑅⊥ ⊂ 𝑆 and
𝑅⊥ ⊂ ̂︀𝑆.

28

That is, we have identified for any 𝑃 ∈ 𝒫⊤ a canonical 𝑃 ′ ∈ 𝒫
𝐶, ̂︀𝐶 for which 𝑃 ′ will have the

same behavior as 𝑃 over all (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ∈ 𝒦𝐿. Thus, we can replace 𝐵⊤ in the expression for 𝒟
with ∑︁

𝑃∈𝒫
𝐶, ̂︀𝐶

𝛼𝑃𝑃

for some coefficients 𝛼𝑃 , and write 𝒟 as

∑︁
𝑦∈range(𝑓)∪{⊥}

|𝑦⟩⟨𝑦| 1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx

⎡⎣𝐻 ̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿

⎛⎝ ∑︁
𝑃∈𝒫

𝐶, ̂︀𝐶
𝛼𝑃𝑃

⎞⎠𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩

⎤⎦ |𝑉𝑦⟩
+ 𝜖⊥ |⊥⟩⟨⊥|

=
∑︁

𝑦∈range(𝑓)∪{⊥}

|𝑦⟩⟨𝑦|
∑︁

𝑃0,𝑃1∈𝒫𝐶, ̂︀𝐶
𝛼𝑃0𝛼

*
𝑃1

1

|𝒦𝐿|⎛⎝ ∑︁
(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|𝐻
̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑃0𝑋

𝑥𝐿𝑍𝑧𝐿Mx
[︁
𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩

]︁
𝑍𝑧𝐿𝑋𝑥𝐿𝑃 †1𝑋

𝑥𝐿𝑍𝑧𝐿𝐻
̃︀Φ1 |𝑉𝑦⟩

⎞⎠
+ 𝜖⊥ |⊥⟩⟨⊥|

Now, we are finally ready to apply the the Pauli twirl over affine subspaces (Lemma 3.3). To
do so, we make the following observations.

• As noted above, 𝑥𝐿 ← 𝑅⊕𝑛 + 𝑥
co(𝑅)
𝐿 , and 𝑧𝐿 ← ̂︀𝑅⊕𝑛 + 𝑧

co(̂︀𝑅)
𝐿 are uniformly random over

affine subspaces of 𝑅⊕𝑛 and ̂︀𝑅⊕𝑛 respectively.

• Consider any 𝑋𝑥0𝑍𝑧0 ̸= 𝑋𝑥1𝑍𝑧1 ∈ 𝒫
𝐶, ̂︀𝐶 . If 𝑥0 ̸= 𝑥1, then there exists some index 𝑖 ∈ [𝑛] such

that 𝑥0,𝑖 ⊕ 𝑥1,𝑖 /∈ ̂︀𝑅⊥ and thus, 𝑥0 ⊕ 𝑥1 /∈ (̂︀𝑅⊕𝑛)⊥. Otherwise, 𝑧0 ̸= 𝑧1, and there exists some
index 𝑖 ∈ [𝑛] such that 𝑧0,𝑖 ⊕ 𝑧1,𝑖 /∈ 𝑅⊥ and thus, 𝑧0 ⊕ 𝑧1 /∈ (𝑅⊕𝑛)⊥.

Then by Lemma 3.3, all the cross-terms 𝑃0 ̸= 𝑃1 are killed in the above expression for𝒟, which
we can now write as

∑︁
𝑦∈range(𝑓)∪{⊥}

|𝑦⟩⟨𝑦|
∑︁

𝑃∈𝒫
𝐶, ̂︀𝐶

𝛼𝑃𝛼
*
𝑃

1

|𝒦𝐿|

⎛⎝ ∑︁
(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑃𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
]︁
|𝑉𝑦⟩

⎞⎠
+ 𝜖⊥ |⊥⟩⟨⊥| ,

Finally, since 𝑆,∆ are chosen uniformly at random conditioned on ̂︀𝑅⊥ ⊂ 𝑆Δ ⊂ 𝑅, we have
that for any fixed 𝑃 ∈ 𝒫

𝐶, ̂︀𝐶 ∖ ℐ,

∑︁
𝑦∈range(𝑓)∪{⊥}

1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑃𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
]︁
|𝑉𝑦⟩

≤ |𝑆Δ ∖
̂︀𝑅⊥|

|𝑅 ∖ ̂︀𝑅⊥| +
|̂︀𝑆̂︀Δ ∖𝑅⊥|
| ̂︀𝑅 ∖𝑅⊥| = 2 · 2𝜆+1 − 2𝜆

23𝜆/2+1 − 2𝜆
= 2−Ω(𝜆).

29

Thus, 𝒟 is within 2−Ω(𝜆) total variation distance of

(1− 𝜖⊥)
∑︁
𝑦

|𝑦⟩⟨𝑦| 1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿ℐ𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
]︁
|𝑉𝑦⟩+ 𝜖⊥ |⊥⟩⟨⊥|

= (1− 𝜖⊥)
∑︁
𝑦

|𝑦⟩⟨𝑦| 1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
]︁
|𝑉𝑦⟩+ 𝜖⊥ |⊥⟩⟨⊥|

= (1− 𝜖⊥)
∑︁
𝑦

|𝑦⟩⟨𝑦|

⎛⎝ ∑︁
𝑚:𝑓(𝑚)=𝑦

⟨𝑚|

⎞⎠Mx
[︀
𝐻Φ1𝐿 |𝜓⟩

]︀⎛⎝ ∑︁
𝑚:𝑓(𝑚)=𝑦

|𝑚⟩

⎞⎠+ 𝜖⊥ |⊥⟩⟨⊥|

= (1− 𝜖⊥){𝑦 : 𝑦 ←𝑀𝜃,𝑓 ∘ 𝐿(|𝜓⟩)}+ 𝜖⊥{⊥},

which completes the proof.

Theorem 4.12. The QAS described in Figure 1 satisfies privacy (Definition 4.5).

Proof. First, recalling the definitions of Gen′,Ver′ in the proof of Theorem 4.9, and applying the
oracle indistinguishability argued during the proof of Claim 4.10, it suffices to show that

⃒⃒⃒⃒
Pr

𝑘,𝑅, ̂︀𝑅←Gen′(1𝜆,𝑛)

[︁
1← 𝐴

Ver′
𝑘,𝑅, ̂︀𝑅,·,·

(·) ∘ Enc𝑘(|𝜓0⟩)
]︁
− Pr
𝑘,𝑅, ̂︀𝑅←Gen′(1𝜆,𝑛)

[︁
1← 𝐴

Ver′
𝑘,𝑅, ̂︀𝑅,·,·

(·) ∘ Enc𝑘(|𝜓1⟩)
]︁ ⃒⃒⃒⃒

= 0.

To see this, we’ll show that we can give enough information to𝐴 for it to implement Ver′
𝑘,𝑅, ̂︀𝑅,·,·(·)

while preserving sufficient randomness to one-time pad the input state.
Consider the following equivalent description of Gen′(1𝜆, 𝑛).

Gen′(1𝜆, 𝑛):

• Sample a uniformly random 𝜆-dimensional subspace 𝑆 ⊂ F2𝜆+1
2 , vector ∆← F2𝜆+1

2 ∖ 𝑆, and
uniformly random (3𝜆/2 + 1)-dimensional subspaces 𝑅, ̂︀𝑅 ⊂ F2𝜆+1

2 conditioned on 𝑆Δ ⊂ 𝑅

and ̂︀𝑆̂︀Δ ⊂ ̂︀𝑅.

• Let 𝐻Δ be the 2𝜆-dimensional subspace perpendicular to ∆ and 𝐻̂︀Δ be the 2𝜆-dimensional
subspace perpendicular to ̂︀∆. For each 𝑖 ∈ [𝑛], sample 𝑥𝑖,Δ ← 𝐻Δ, 𝑏𝑖 ← {0, 1}, 𝑧

𝑖,̂︀Δ ←
𝐻̂︀Δ, 𝑐𝑖 ← {0, 1}, and define 𝑥𝑖 = 𝑥𝑖,Δ + 𝑏𝑖 ·∆ and 𝑧𝑖 = 𝑧

𝑖,̂︀Δ + 𝑐𝑖 · ̂︀∆.

• Output (𝑆,∆, 𝑥, 𝑧), 𝑅, ̂︀𝑅.

Now, fix any choice of 𝑆,∆, 𝑅, ̂︀𝑅, 𝑥Δ, 𝑧̂︀Δ sampled during the procedure Gen′(1𝜆, 𝑛), where

𝑥Δ := (𝑥1,Δ, · · · , 𝑥𝑛,Δ) and 𝑧̂︀Δ :=
(︁
𝑧
1,̂︀Δ, · · · , 𝑧𝑛,̂︀Δ

)︁
, and consider the following procedure that

completes the sampling of the key.

Gen′
𝑆,Δ,𝑅, ̂︀𝑅,𝑥Δ,𝑧̂︀Δ(1𝜆, 𝑛):

30

• For each 𝑖 ∈ [𝑛], sample 𝑏𝑖, 𝑐𝑖 ← {0, 1}, and define 𝑥𝑖 = 𝑥𝑖,Δ + 𝑏𝑖 ·∆ and 𝑧𝑖 = 𝑧
𝑖,̂︀Δ + 𝑐𝑖 · ̂︀∆.

• Output (𝑆,∆, 𝑥, 𝑧).

Since the oracle Ver′
𝑘,𝑅, ̂︀𝑅,·,·(·) can be implemented given just the fixed information 𝑆,∆, 𝑅, ̂︀𝑅, 𝑥Δ, 𝑧̂︀Δ,

it suffices to show that for any 𝑆,∆, 𝑅, ̂︀𝑅, 𝑥Δ, 𝑧̂︀Δ and any adversary 𝐴 (whose description may de-
pend on this information), it holds that⃒⃒⃒⃒

Pr
𝑘
[1← 𝐴(Enc𝑘(|𝜓0⟩))]− Pr

𝑘
[1← 𝐴(Enc𝑘(|𝜓1⟩))]

⃒⃒⃒⃒
= 0,

where the probability is over 𝑘 ← Gen′
𝑆,Δ,𝑅, ̂︀𝑅,𝑥Δ,𝑧̂︀Δ(1𝜆, 𝑛). Since

Enc𝑘 = 𝑋𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ = 𝑋𝑥Δ𝑍𝑧̂︀Δ𝑋𝑏1·Δ...𝑏𝑛·Δ𝑍𝑐1···
̂︀Δ...𝑐𝑛·̂︀Δ𝐸⊗𝑛𝑆,Δ = 𝑋𝑥Δ𝑍𝑧̂︀Δ𝐸⊗𝑛𝑆,Δ𝑋𝑏1...𝑏𝑛𝑍𝑐1...𝑐𝑛 ,

this follows from the quantum one-time pad [AMTDW00]. That is, we use the fact that∑︁
𝑏1,...,𝑏𝑛,𝑐1,...,𝑐𝑛

Mx
[︁
𝑋𝑏1,...,𝑏𝑛𝑍𝑐1,...,𝑐𝑛 |𝜓0⟩

]︁
=

∑︁
𝑏1,...,𝑏𝑛,𝑐1,...,𝑐𝑛

Mx
[︁
𝑋𝑏1,...,𝑏𝑛𝑍𝑐1,...,𝑐𝑛 |𝜓1⟩

]︁
.

5 Linear + Measurement Quantum Programs

In this section, we show that any quantum program with classical input and output (Definition 3.1)
can be implemented using a "linear + measurement" (LM) quantum program.

In slightly more detail, we make use of magic states in order to write any quantum circuit as
an alternating sequence of linear operations 𝐿𝑖 (by which we mean a sequence of CNOT gates)
and partial ZX measurements 𝑀𝜃𝑖,𝑓𝑖 , where the description of each 𝑓𝑖 may depend on the classical
input 𝑥 as well as previous measurement results. We encourage the reader to review our notation
for partial ZX measurements 𝑀𝜃𝑖,𝑓𝑖 described at the beginning of Section 4.1. We remark here
that these measurements are "partial" in two aspects: (i) they may only operate on a subset of
the qubits, and (ii) each measurement outcome may be associated with multiple basis vectors,
meaning that the input qubits are not necessarily fully collapsed. We also remark that for the
purpose of this paper, we restrict attention to circuits with classical inputs and outputs, but note
that one could consider circuits with quantum inputs and outputs as well.

We first formally define LM quantum programs, and accompany this with a diagram in Fig. 2.

Definition 5.1 (LM quantum program). An LM quantum program with classical input and output is
described by:

• A quantum state |𝜓⟩ on 𝑛 qubits.

• Linear operations 𝐿1, . . . , 𝐿𝑡+1, where each 𝐿𝑖 is a sequence of CNOT gates.

31

• Partial ZX measurements𝑀
𝜃1,𝑓

(·)
1

,𝑀
𝜃2,𝑓

(·)
2

, . . . ,𝑀
𝜃𝑡,𝑓

(·)
𝑡

,𝑀𝜃𝑡+1,𝑔(·)
defined by sets of bases {𝜃𝑖}𝑖∈[𝑡+1]

and classical functions {𝑓 (·)𝑖 }𝑖∈[𝑡], 𝑔(·), which will be parameterized by the input 𝑥 as well as previous
measurement results. In line with the notation introduced in Section 4.1, for each 𝑖 ∈ [𝑡 + 1], we
define Φ𝑖 ⊆ [𝑛] be the set of wires such that 𝜃𝑖 ̸= ⊥. That is, Φ𝑖 is the set of wires on which the 𝑖’th
partial measurement operates.

Now, we will find it useful to introduce further notation drawing attention to which wires are simply
measured in either the standard or Hamadard basis by the 𝑖’th partial ZX measurement, and which are not
fully collapsed. In particular, we define disjoint sets 𝑉1, . . . , 𝑉𝑡+1 and sets 𝑊1, . . . ,𝑊𝑡 with the following
properties.

• Φ1 = (𝑉1,𝑊1),Φ2 = (𝑉1, 𝑉2,𝑊2), . . . ,Φ𝑡 = (𝑉1, . . . , 𝑉𝑡,𝑊𝑡),Φ𝑡+1 = (𝑉1, . . . , 𝑉𝑡+1) = [𝑛].

• The 𝑖’th measurement takes previously collapsed wires 𝑉1, . . . , 𝑉𝑖−1 as input, "fully" collapses wires
𝑉𝑖, and "partially" collapses wires 𝑊𝑖. This will be made precise by the evaluation procedure defined
below, where the 𝑣𝑖 are inputs from the 𝑉𝑖 wires and 𝑤𝑖 are inputs from the 𝑊𝑖 wires.

• Each 𝐿𝑖 does not operate on {𝑉𝑗}𝑗<𝑖. That is, fully collapsed registers are no longer computed on.

Finally, given an input 𝑥 ∈ {0, 1}𝑚, let LMEval
(︀
𝑥, |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔

)︀
→ 𝑦 be the

formal evaluation procedure, defined as follows:

• Initialize an 𝑛-qubit registerℳ with |𝜓⟩.

• Compute ((𝑣1, 𝑟1),ℳ)←𝑀𝜃1,𝑓𝑥1
∘ 𝐿1(ℳ), where 𝑓𝑥1 (𝑣1, 𝑤1) = (𝑣1, 𝑟1).

• Compute ((𝑣2, 𝑟2),ℳ)←𝑀𝜃2,𝑓
𝑥,𝑟1
2
∘ 𝐿2(ℳ), where 𝑓𝑥,𝑟12 (𝑣1, 𝑣2, 𝑤2) = (𝑣2, 𝑟2).

• . . .

• Compute ((𝑣𝑡, 𝑟𝑡),ℳ)←𝑀
𝜃𝑡,𝑓

𝑥,𝑟1,...,𝑟𝑡−1
𝑡

∘ 𝐿𝑡(ℳ), where 𝑓𝑥,𝑟1,...,𝑟𝑡−1

𝑡 (𝑣1, . . . , 𝑣𝑡, 𝑤𝑡) = (𝑣𝑡, 𝑟𝑡).

• Compute output 𝑦 ←𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡 ∘ 𝐿𝑡+1(ℳ), where 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1) = 𝑦.

Observe that any alternating sequence of linear operations and partial ZX measurements may
be written in the form introduced in the above definition, by simply defining each of the sets 𝑉𝑖 to
be empty, and writing each function as 𝑓𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑤𝑖) → 𝑟𝑖 (that is, we can always choose not to
treat any of the wires as fully collapsed in the above formalism). So, why did we bother explicitly
defining the 𝑉𝑖 and 𝑊𝑖 sets? The reason is that we will actually be interested in a “subclass” of
LM quantum programs whose partially collapsed wires (the 𝑊𝑖 wires) have a particularly simple
structure. The diagram shown in Fig. 2 is indeed an example of such an LM quantum program.

Definition 5.2 (LM quantum program with standard-basis-collapsible 𝑊 wires). An LM quantum
program has standard-basis-collapsible 𝑊 wires if:

• 𝑊1, . . . ,𝑊𝑛 consist of only standard basis indices, that is, 𝜃𝑖,𝑗 = 0 for 𝑖 ∈ [𝑡] and 𝑗 ∈𝑊𝑖.

• For 𝑖 ∈ [𝑡], 𝑊𝑖 is disjoint from Φ1 ∪ · · · ∪Φ𝑖−1, and the operations 𝐿1, . . . , 𝐿𝑖−1 are either classically
controlled on or do not operate on 𝑊𝑖. In particular, for each 𝑖 ∈ [𝑡], the entire operation of the LM
program up to and including the 𝑖’th measurement is diagonal in the standard basis on the wires 𝑊𝑖.

32

𝑟1 𝑟2

|𝜓⟩ 𝐿1

𝐿2

𝐿3

𝑀𝜃3,𝑔𝑥,𝑟1,𝑟2

𝑦

𝑀𝜃2,𝑓
𝑥,𝑟1
2

𝑀𝜃1,𝑓𝑥1

𝑣2

𝑣1 𝑣1

𝑉3

𝑊2

𝑊1 𝑉2 𝑉2

𝑉1 𝑉1 𝑉1

Figure 2: Diagram of an LM quantum program. We use some non-standard quantum circuit no-
tation, so we provide some explanation. Each partial ZX measurement 𝑀

𝜃1,𝑓
(·)
1

,𝑀
𝜃2,𝑓

(·)
2

,𝑀𝜃3,𝑔(·)

is applied to the wires coming from the left of the corresponding box, some of which may be
classical. Some wires (namely, 𝑉1, 𝑉2, and 𝑉3) are fully collapsed by the measurement, producing
classical output wires coming from the right. Other wires (namely, 𝑊1 and 𝑊2) are only partially
collapsed, so their corresponding output wires are still quantum. Additional classical outputs
(namely, 𝑟1 and 𝑟2) are produced by these measurements, which are denoted by classical wires
coming out of the bottom. Note that the description of later measurements depend on 𝑟1, 𝑟2.
Finally, we remark that one could instead introduce explicit ancillary wires for the input 𝑥 and
intermediate measurement results 𝑟1, 𝑟2, but writing the circuit in the manner above is visually
suggestive of the structure of our eventual obfuscation scheme.

33

|𝜓⟩ 𝐻

|𝜑𝐻⟩
𝑍 𝑋 𝐻 |𝜓⟩

Figure 3: Implementation of the 𝐻 gate with the 𝐻-magic state |𝜑𝐻⟩ ∝ |00⟩+ |01⟩+ |10⟩ − |11⟩.

This standard-basis-collapsible 𝑊 wires property ensures that if one were to measure ("collapse")
the 𝑊1, . . . ,𝑊𝑛 wires in the standard basis before executing the program, the 𝑊𝑖 wires would re-
main completely unaffected throughout the execution of the program up to and including the 𝑖’th
measurement (though they could be affected after the 𝑖’th measurement). Note that this is not
a correctness property, indeed, collapsing the 𝑊1, . . . ,𝑊𝑛 wires at the beginning of the compu-
tation would likely completely change the desired functionality. However, it turns out that this
property will be crucial for arguing the security of our obfuscation scheme in the following sec-
tions (in particular, refer to the "Collapsing the F oracles" discussion in the proof intuition section,
Section 7.1).

Theorem 5.3. Any quantum program (|𝜓⟩ , 𝐶) (Definition 3.1) can be compiled into an equivalent LM
quantum program (|𝜓′⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔) with standard-basis-collapsible𝑊 wires, where
{𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔 only depend on the description of 𝐶 (and not |𝜓⟩). Moreover, the com-
piler runs in polynomial time in the size of its input (|𝜓⟩ , 𝐶).

Proof. We will use a circuit representation very similar to that described in [BGS13], except for a
key difference in how we implement the 𝑇 gate, inspired by the encrypted CNOT operation in-
troduced in [Mah18a]. We write the quantum circuit 𝐶 using the {CNOT, 𝐻, 𝑇} universal gate set,
where 𝑇 is the gate that applies a phase of 𝑒𝑖𝜋/4. Given magic states, we’ll show how to imple-
ment𝐻 and 𝑇 gates using only CNOT gates and Pauli (𝑋 and 𝑍) gates controlled on the results of
partial ZX measurements. Then, we will observe that the Pauli gates can be subsumed into the de-
scription of the measurements, leaving only layers of CNOT gates and partial ZX measurements.

First, we’ll describe our implementations of the 𝐻 and 𝑇 gates and prove that they are correct.
Then, we’ll complete the proof with an inductive argument, showing how to build an LM quantum
program one gate at a time.

Implementing the 𝐻 gate. Following [BGS13], we use a two-qubit magic state

|𝜑𝐻⟩ ∝ |00⟩+ |01⟩+ |10⟩ − |11⟩

to implement the Hadamard gate, via the circuit in Figure 3. For completeness, we show that the
circuit indeed implements the Hadamard gate.

Claim 5.4. The circuit in Figure 3 implements the Hadamard gate.

Proof. Write |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩. After the CNOT gate, the joint state of all three qubits can be

34

written as

𝛼 |000⟩+𝛼 |001⟩+ 𝛼 |010⟩ − 𝛼 |011⟩+ 𝛽 |100⟩ − 𝛽 |101⟩+ 𝛽 |110⟩+ 𝛽 |111⟩

=
(︁
(𝛼+ 𝛽) |+⟩ |00⟩+ (𝛼− 𝛽) |+⟩ |01⟩

)︁
+
(︁
(𝛼+ 𝛽) |+⟩ |10⟩ − (𝛼− 𝛽) |+⟩ |11⟩

)︁
+
(︁
(𝛼− 𝛽) |−⟩ |00⟩+ (𝛼+ 𝛽) |−⟩ |01⟩

)︁
+
(︁
𝛼− 𝛽) |−⟩ |10⟩ − (𝛼+ 𝛽) |−⟩ |11⟩

)︁
After the Hadamard basis measurement on the first wire resulting in a bit 𝑥 and the standard basis
measurement on the second wire resulting in a bit 𝑧, the resulting state on the third wire is

(𝛼+ 𝛽) |0⟩+ (𝛼− 𝛽) |1⟩ = 𝐻 |𝜓⟩ if 𝑥 = 0 and 𝑧 = 0

(𝛼+ 𝛽) |0⟩ − (𝛼− 𝛽) |1⟩ = 𝑍𝐻 |𝜓⟩ if 𝑥 = 0 and 𝑧 = 1

(𝛼− 𝛽) |0⟩+ (𝛼+ 𝛽) |1⟩ = 𝑋𝐻 |𝜓⟩ if 𝑥 = 1 and 𝑧 = 0

(𝛼− 𝛽) |0⟩ − (𝛼+ 𝛽) |1⟩ = 𝑍𝑋𝐻 |𝜓⟩ if 𝑥 = 1 and 𝑧 = 1

Applying the 𝑍 and 𝑋 corrections now gives the state 𝐻 |𝜓⟩.

Implementing the 𝑇 gate. We will use two magic states

|𝜑𝑇 ⟩ ∝ |0⟩+ 𝑒𝑖𝜋/4 |1⟩ and |𝜑𝑃𝑋⟩ ∝ 𝑖 |0⟩+ |1⟩

and the circuit on the bottom right of Figure 4. First, we clarify notation in the figure. Γ𝑐 is a
projective measurement controlled on the bit 𝑐 from the first wire, and is defined as follows.

• Γ0 = {|00⟩⟨00| + |10⟩⟨10| , |01⟩⟨01| + |11⟩⟨11|}. That is, it measures its second input in the
standard basis.

• Γ1 = {|00⟩⟨00|+ |11⟩⟨11| , |01⟩⟨01|+ |10⟩⟨10|}. That is, it measures the XOR of its two inputs.

The measurement Γ𝑐 is applied to the second and third wires, which remain quantum wires,
and produces a classical bit 𝑟 indicating which of the two measurement results was observed. In
this figure, this bit 𝑟 is carried on the classical wire coming from the right of Γ𝑐. In an abuse of
notation, we will also use Γ𝑐 as a function to define measurement outcomes:

Γ0(00) = Γ0(10) = 0, Γ0(01) = Γ0(11) = 1,

Γ1(00) = Γ1(11) = 0, Γ1(01) = Γ1(10) = 1

The control logic for the 𝑍 gate is 𝑐 · (𝑟 ⊕ ℎ), where 𝑐 is the result of measuring the first wire,
𝑟 is the result of measuring Γ𝑐, and ℎ is the result of measuring the third wire in the Hadamard
basis. We will now confirm this representation of the 𝑇 gate works as expected.

Claim 5.5. The bottom right circuit in Figure 4 implements the 𝑇 gate.

Proof. Write |𝜓⟩ = 𝛼 |0⟩+ 𝛽 |1⟩. Applying the first CNOT yields

𝛼 |00⟩+ 𝑒𝑖𝜋/4𝛽 |01⟩+ 𝛽 |10⟩+ 𝑒𝑖𝜋/4𝛼 |11⟩
= |0⟩ (𝛼 |0⟩+ 𝑒𝑖𝜋/4𝛽 |1⟩) + |1⟩ (𝛽 |0⟩+ 𝑒𝑖𝜋/4𝛼 |1⟩).

35

|𝜓⟩

|𝜑𝑇 ⟩ 𝑃𝑋 𝑇 |𝜓⟩

+
|𝜓⟩ 𝑍 𝑋 𝑃𝑋 |𝜓⟩

|𝜑𝑃𝑋⟩

⇒

|𝜓⟩

|𝜑𝑇 ⟩ 𝑍 𝑋 𝑇 |𝜓⟩

|𝜑𝑃𝑋⟩

𝑃𝑋

⇒
⊕

|𝜓⟩

|𝜑𝑇 ⟩

Γ𝑐

𝑍 𝑋 𝑇 |𝜓⟩

|𝜑𝑃𝑋⟩ 𝐻

"M" layer

Figure 4: Implementation of the 𝑇 gate. First, we combine an implementation of the 𝑇 gate using
the 𝑇 -magic state |𝜑𝑇 ⟩ ∝ |0⟩ + 𝑒𝑖𝜋/4 |1⟩ (upper left) with an implementation of the 𝑃𝑋 gate us-
ing the 𝑃𝑋-magic state |𝜑𝑃𝑋⟩ ∝ 𝑖 |0⟩ + |1⟩ (upper right) to obtain the circuit on the bottom left.
This circuit includes a classically controlled CNOT gate, which is not supported by LM quantum
programs. We replace the classically controlled CNOT with a classically controlled projective mea-
surement to arrive at the circuit on the bottom right. Here, Γ𝑐 represents a measurement controlled
on the bit 𝑐 from the first wire to be applied to the second and third wires. These wires are only
partially collapsed by this measurement, so they remain quantum wires. However, Γ𝑐 also pro-
duces a measurement result 𝑟, which is carried on the classical wire coming from the right. The
final 𝑍 gate is controlled on the bit 𝑐 · (𝑟 ⊕ ℎ), where ℎ is the result of measuring the third wire
in the Hadamard basis. The dashed box will eventually become a measurement layer in our im-
plementation of an LM circuit (though we remark that the input for this measurement will also
include wires from previous 𝐻-gate and 𝑇 -gate circuits).

36

If the result of measuring the first wire is 𝑐 = 0, the state on the second wire is already

𝛼 |0⟩+ 𝑒𝑖𝜋/4𝛽 |1⟩ = 𝑇 |𝜓⟩ .

In this case, we measure Γ0, which only collapses the third wire, and neither the 𝑍 nor 𝑋 correc-
tions is applied to the second wire, which remains in the state 𝑇 |𝜓⟩.

If the result of measuring the first wire is 𝑐 = 1, then the second wire is in the state

𝛽 |0⟩+ 𝑒𝑖𝜋/4𝛼 |1⟩ .

In this case, we measure Γ1 on

(𝛽 |0⟩+ 𝑒𝑖𝜋/4𝛼 |1⟩)(𝑖 |0⟩+ |1⟩).

If the result is 𝑟 = 0, the state has collapsed to

𝑖𝛽 |00⟩+ 𝑒𝑖𝜋/4𝛼 |11⟩
= 𝑒𝑖𝜋/4𝛽 |00⟩+ 𝛼 |11⟩

=
(︁
𝑒𝑖𝜋/4𝛽 |0⟩+ 𝛼 |1⟩

)︁
|+⟩+

(︁
𝑒𝑖𝜋/4𝛽 |0⟩ − 𝛼 |1⟩

)︁
|−⟩

= 𝑋𝑇 |𝜓⟩ |+⟩+ 𝑍𝑋𝑇 |𝜓⟩ |−⟩ ,

so applying the 𝑍 correction controlled on 𝑐 · (𝑟 ⊕ ℎ) = ℎ followed by the 𝑋 correction results
in 𝑇 |𝜓⟩. If the result is 𝑟 = 1, the state has collapsed to

𝛽 |01⟩+ 𝑖𝑒𝑖𝜋/4𝛼 |10⟩
= 𝑒𝑖𝜋/4𝛽 |01⟩ − 𝛼 |10⟩

=
(︁
𝑒𝑖𝜋/4 |0⟩ − 𝛼 |1⟩

)︁
|+⟩ −

(︁
𝑒𝑖𝜋/4𝛽 |0⟩+ 𝛼 |1⟩

)︁
|−⟩

= 𝑍𝑋𝑇 |𝜓⟩ |+⟩ − 𝑍𝑇 |𝜓⟩ |−⟩ ,

so applying the 𝑍 correction controlled on 𝑐 · (𝑟 ⊕ ℎ) = 1 ⊕ ℎ followed by the 𝑋 correction
results in 𝑇 |𝜓⟩.

Inductive argument. In order to carry out an inductive argument, we will first generalize the
notion of an LM quantum program to support quantum output. We will actually allow the output
to be correct up to some Pauli errors that can be computed by measuring some ancillary registers
in the standard or Hadamard basis and applying a classical function to the measurement results.

First, we fix some notation. Throughout the proof, we’ll keep track of disjoint sets of wires
𝑉1, . . . , 𝑉𝑡, 𝑉

*
𝑡+1, 𝑂, where 𝑉1 ∪ · · · ∪ 𝑉𝑡 ∪ 𝑉 *𝑡+1 ∪𝑂 = [𝑛]. We will also keep track of strings 𝑣, ̂︀𝑥, ̂︀𝑧 ∈

{0, 1,⊥}𝑛, where 𝑣 denotes a subset of measurement results (from wires 𝑉1 ∪ · · · ∪ 𝑉𝑡 ∪ 𝑉 *𝑡+1), and̂︀𝑥, ̂︀𝑧 denote Pauli corrections to be applied to the wires in 𝑂. For any set 𝑉 , we let 𝑣(𝑉) (resp.̂︀𝑥(𝑉), ̂︀𝑧(𝑉)) be the string restricted to indices in the set 𝑉 . In particular, for an index 𝑖 ∈ [𝑛], 𝑣(𝑖) is
just the 𝑖’th entry of 𝑣. Finally, for each 𝑖 ∈ [𝑡], we define 𝑣𝑖 := 𝑣(𝑉𝑖), and we define 𝑣*𝑡+1 := 𝑣(𝑉

*
𝑡+1).

37

Definition 5.6 (LM quantum program with Pauli-encoded quantum output). An LM quantum pro-
gram with Pauli-encoded quantum output is defined like a standard LM quantum program (Definition 5.1),
except for the following differences.

• There is no final measurement 𝑀𝜃𝑡+1,𝑔(·)
, and thus 𝜃𝑡+1 and 𝑔(·) are undefined.

• The set [𝑛] ∖ (𝑉1 ∪ · · · ∪ 𝑉𝑡) consists of disjoint sets 𝑉 *𝑡+1 and 𝑂, where 𝑂 contains the Pauli-encoded
output. We will refer to 𝑂 as the "active" set of wires.

• There is a string 𝜃*𝑡+1 ∈ {0, 1,⊥}𝑛 that is 0 or 1 on 𝑉 *𝑡+1 (determining whether these registers are
measured in the standard or Hadamard basis) and ⊥ everywhere else.

• There is a classical function ℎ(𝑥, 𝑣1, . . . , 𝑣𝑡, 𝑣*𝑡+1, 𝑟1, . . . , 𝑟𝑡) → {0, 1}2|𝑂| that operates on the pro-
gram input 𝑥 and previous measurement results, and outputs Pauli corrections ̂︀𝑥(𝑂), ̂︀𝑧(𝑂) ∈ {0, 1}|𝑂|
to be applied to the 𝑂 registers.

Note that the program is defined by a state |𝜓⟩ along with {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡], {𝑓
(·)
𝑖 }𝑖∈[𝑡], 𝜃*𝑡+1, ℎ.

First, the following claim will confirm that it suffices to compile the quantum program (|𝜓⟩ , 𝐶)
into an LM quantum program with Pauli-encoded quantum output.

Claim 5.7. Consider any LM quantum program with Pauli-encoded quantum output that computes a
classical output functionality. That is, the (Pauli encoding of the) output we are interested in is determined
by measuring the 𝑂 registers in the standard basis. Then, this program can be written as a standard LM
quantum program (Definition 5.1).

Proof. It suffices to define the final measurement 𝑀𝜃𝑡+1,𝑔(·)
. Set 𝜃𝑡+1 ∈ {0, 1}𝑛 to be equal to 𝜃𝑡 on

the sets 𝑉1, . . . , 𝑉𝑡, equal to 𝜃*𝑡+1 on the set 𝑉 *𝑡+1 and equal to 0 on the set𝑂. Let 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1)

be defined as follows. Parse 𝑣𝑡+1 as (𝑣*𝑡+1, 𝑦
′), compute ℎ(𝑥, 𝑣1, . . . , 𝑣𝑡, 𝑣*𝑡+1, 𝑟1, . . . , 𝑟𝑡) = (̂︀𝑥(𝑂), ̂︀𝑧(𝑂)),

and output 𝑦 = 𝑦′ ⊕ ̂︀𝑥(𝑂).

Now, we show how to compile any quantum program (|𝜓⟩ , 𝐶) into an LM quantum program
with Pauli-encoded quantum output. We proceed by induction over the number of gates ℓ in 𝐶.

Base case. Suppose that 𝐶 contains 0 gates. That is, there is no state |𝜓⟩ and the functionality is
just the identity applied to input 𝑥. In this case, 𝑛 = |𝑥|, 𝑡 = 0, 𝐿1 is empty, 𝜃*1 = ⊥𝑛, and the LM
quantum program is defined by (|0𝑛⟩ , ℎ), where ℎ(𝑥) = (𝑥, 0𝑛).

Inductive step. Consider a quantum program (|𝜓⟩ , 𝐶) with ℓ + 1 gates, and begin by writing
𝐶 as (𝐶ℓ, 𝐺), where 𝐶ℓ contains the first ℓ gates, and 𝐺 ∈ {CNOT, 𝐻, 𝑇} is the final gate. By the
inductive hypothesis, we know that (|𝜓⟩ , 𝐶ℓ) can be written as an LM quantum program with
Pauli-encoded quantum output: |𝜓′⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡], {𝑓

(·)
𝑖 }𝑖∈[𝑡], 𝜃*𝑡+1, ℎ, where 𝑡 is the number

of 𝑇 gates in 𝐶ℓ. Now, we consider three cases corresponding to the gate 𝐺, which by definition
will be applied to one (or two) wire(s) in the "active" set 𝑂. In each case, we describe how to
update the description of the LM quantum program for (|𝜓⟩ , 𝐶ℓ) so that it now has the same
functionality as the full quantum program (|𝜓⟩ , 𝐶). The fact that these updates implement the
desired functionality follow from Claim 5.4 and Claim 5.5 above.

38

• CNOT from wire 𝑖 to 𝑗: Append the description of this gate to the end of 𝐿𝑡+1 and append
the operation (̂︀𝑥(𝑖), ̂︀𝑧(𝑖)), (̂︀𝑥(𝑗), ̂︀𝑧(𝑗))→ (̂︀𝑥(𝑖), ̂︀𝑧(𝑖) ⊕ ̂︀𝑧(𝑗)), (̂︀𝑥(𝑖) ⊕ ̂︀𝑥(𝑗), ̂︀𝑧(𝑗)) to the end of ℎ.

• 𝐻 on wire 𝑖: Refer to Fig. 3.

– Introduce two new wires (𝑛+ 1, 𝑛+ 2) and append |𝜑𝐻⟩ to |𝜓′⟩.
– Append the description of a CNOT gate from wire 𝑖 to 𝑛+ 1 to the end of 𝐿𝑡+1.

– Remove wire 𝑖 from and add wire 𝑛+ 2 to 𝑂.

– Add wires 𝑖 and 𝑛+ 1 to 𝑉 *𝑡+1.

– For 𝜏 ∈ [𝑡], define 𝜃𝜏,𝑛+1 = 𝜃𝜏,𝑛+2 = ⊥. Define 𝜃*𝑡+1,𝑖 = 1, 𝜃*𝑡+1,𝑛+1 = 0, and 𝜃*𝑡+1,𝑛+2 = ⊥.

– Update ℎ to ℎ′ as follows. The function ℎ′ will now take two additional input bits
𝑣(𝑖), 𝑣(𝑛+1) as part of 𝑣*𝑡+1 and its output will now include (̂︀𝑥(𝑛+2), ̂︀𝑧(𝑛+2)) rather than
(̂︀𝑥(𝑖), ̂︀𝑧(𝑖)), computed as follows. Let ̂︀𝑥(𝑂), ̂︀𝑧(𝑂) = ℎ(𝑥, 𝑣1, . . . , 𝑣𝑡, 𝑣

*
𝑡+1, 𝑟1, . . . , 𝑟𝑡) be the

output of the original ℎ, which includes (̂︀𝑥(𝑖), ̂︀𝑧(𝑖)). Then the output of ℎ′ includeŝ︀𝑥(𝑛+2) := 𝑣(𝑖) ⊕ ̂︀𝑧(𝑖) and ̂︀𝑧(𝑛+2) := 𝑣(𝑛+1) ⊕ ̂︀𝑥(𝑖).
• 𝑇 on wire 𝑖: Refer to Fig. 4.

– Introduce two new wires (𝑛+ 1, 𝑛+ 2) and append |𝜑𝑇 ⟩ |𝜓𝑃𝑋⟩ to |𝜓′⟩.
– Append the description of a CNOT gate from wire 𝑛+ 1 to 𝑖 to the end of 𝐿𝑡+1.

– Remove wire 𝑖 from and add wire 𝑛+ 1 to 𝑂.

– Define 𝑉𝑡+1 := 𝑉 *𝑡+1 ∪ {𝑖} and define 𝑊𝑡+1 := {𝑛+ 1, 𝑛+ 2}.
– For 𝜏 ∈ [𝑡], define 𝜃𝜏,𝑛+1 = 𝜃𝜏,𝑛+2 = ⊥. Define 𝜃𝑡+1 to be equal to 𝜃𝑡 on the sets 𝑉1, . . . , 𝑉𝑡,

equal to 𝜃*𝑡+1 on the set 𝑉 *𝑡+1, equal to 0 on index 𝑖, and equal to ⊥ everywhere else.

– Define a function 𝑓𝑥,𝑟1,...,𝑟𝑡𝑡+1 (𝑣1, . . . , 𝑣𝑡+1, 𝑤𝑡+1) as follows, where 𝑣𝑡+1 = (𝑣*𝑡+1, 𝑣
(𝑖)). First,

compute (̂︀𝑥(𝑂), ̂︀𝑧(𝑂)) = ℎ(𝑥, 𝑣1, . . . , 𝑣𝑡, 𝑣
*
𝑡+1, 𝑟1, . . . , 𝑟𝑡), which includes (̂︀𝑥(𝑖), ̂︀𝑧(𝑖)). Then,

set 𝑐 = 𝑣(𝑖) ⊕ ̂︀𝑥(𝑖), and output (𝑣𝑡+1,Γ𝑐(𝑤𝑡+1)). This defines measurement 𝑀
𝜃𝑡+1,𝑓

(·)
𝑡+1

.

– Initialize 𝑉 *𝑡+2 := {𝑛 + 2}, 𝜃*𝑡+2 to be equal to 1 at index 𝑛 + 2 and ⊥ everywhere else,
and 𝐿𝑡+2 to be empty.

– Update ℎ to ℎ′ as follows. The function ℎ′ will now take an additional input bit 𝑣(𝑖)

as part of 𝑣𝑡+1, an additional input bit 𝑣(𝑛+2) as part of 𝑣*𝑡+2, and an additional input
bit 𝑟𝑡+1. Its output will now include (̂︀𝑥(𝑛+1), ̂︀𝑧(𝑛+1)) rather than (̂︀𝑥(𝑖), ̂︀𝑧(𝑖)), computed
as follows. Let ̂︀𝑥(𝑂), ̂︀𝑧(𝑂) = ℎ(𝑥, 𝑣1, . . . , 𝑣𝑡, 𝑣

*
𝑡+1, 𝑟1, . . . , 𝑟𝑡) be the output of the original

ℎ, which includes (̂︀𝑥(𝑖), ̂︀𝑧(𝑖)). Then the output of ℎ′ includes ̂︀𝑥(𝑛+1) := 𝑣(𝑖) ⊕ ̂︀𝑥(𝑖) and̂︀𝑧(𝑛+1) := (𝑣(𝑖) ⊕ ̂︀𝑥(𝑖)) · (𝑣(𝑛+2) ⊕ 𝑟𝑡+1).

This completes the description of the compiler. Observe that the 𝑊𝑖 wires consist of the two
magic state wires used to implement the 𝑖’th 𝑇 gate (one initialized with |𝜑𝑇 ⟩ and the other ini-
tialized with |𝜑𝑃𝑋⟩). The |𝜑𝑇 ⟩ wire is used as the control for a single CNOT gate just prior to the
𝑖’th measurement, and the |𝜑𝑃𝑋⟩ wire is not touched until the 𝑖’th measurement. Thus, since Γ𝑐
is a standard basis projector, all the requirements of the standard-basis-collapsible 𝑊 wires property
(Definition 5.2) are fulfilled.

39

6 Quantum State Obfuscation: Construction

In this section, we define quantum state obfuscation, describe our construction, and show that it
is correct. We will prove security in the following section.

Definition 6.1 (Quantum State Obfuscation). For any 𝜖 = 𝜖(𝜆), let 𝒞𝜖 be the set of families of 𝜖-pseudo-
deterministic quantum programs (Definition 3.1), where each family {|𝜓𝜆⟩ , 𝐶𝜆}𝜆∈N ∈ 𝒞𝜖 is associated with
an induced family of maps {𝑄𝜆 : {0, 1}𝑚(𝜆) → {0, 1}𝑚′(𝜆)}𝜆∈N. A quantum state obfuscator is a pair of
QPT algorithms (QObf,QEval) with the following syntax.

• QObf
(︀
1𝜆, |𝜓⟩ , 𝐶

)︀
→ | ̃︀𝜓⟩: The obfuscator takes as input the security parameter 1𝜆 and a quantum

program (|𝜓⟩ , 𝐶), and outputs an obfuscated state | ̃︀𝜓⟩.
• QEval

(︁
𝑥, | ̃︀𝜓⟩)︁ → 𝑦: The evaluation algorithm takes an input 𝑥 ∈ {0, 1}𝑚(𝜆) and an obfuscated

state | ̃︀𝜓⟩, and outputs 𝑦 ∈ {0, 1}𝑚′(𝜆).

Correctness is defined as follows for any quantum program {|𝜓𝜆⟩ , 𝐶𝜆}𝜆∈N.

∀𝑥 ∈ {0, 1}𝑚(𝜆),Pr
[︁
QEval

(︁
𝑥, | ̃︀𝜓⟩)︁ = 𝑄𝜆(𝑥) : | ̃︀𝜓⟩ ← QObf

(︁
1𝜆, |𝜓𝜆⟩ , 𝐶𝜆

)︁]︁
= 1− negl(𝜆).

We define two notions of security with respect to some pseudo-deterministic parameter 𝜖 = 𝜖(𝜆).

• Ideal Obfuscation: For any QPT adversary {𝐴𝜆}𝜆∈N, there exists a QPT simulator {Sim𝜆}𝜆∈N
such that for any polynomial 𝑛(𝜆), program {|𝜓𝜆⟩ , 𝐶𝜆}𝜆∈N ∈ 𝒞𝜖 with induced family of maps {𝑄𝜆 :
{0, 1}𝑚(𝜆) → {0, 1}𝑚′(𝜆)}𝜆∈N such that |𝜓𝜆⟩ has at most 𝑛(𝜆) qubits and 𝐶𝜆 has at most 𝑛(𝜆) gates,
and QPT distinguisher {𝐷𝜆}𝜆∈N,

⃒⃒⃒⃒
Pr
[︁
1← 𝐷𝜆

(︁
𝐴𝜆

(︁
QObf

(︁
1𝜆, |𝜓𝜆⟩ , 𝐶𝜆

)︁)︁)︁]︁
− Pr

[︁
1← 𝐷𝜆

(︁
Sim𝑄𝜆

𝜆

(︁
1𝜆, 𝑛(𝜆),𝑚(𝜆),𝑚′(𝜆)

)︁)︁]︁ ⃒⃒⃒⃒
= negl(𝜆).

• Indistinguishability Obfuscation: For any polynomial 𝑛(𝜆), pair of families {|𝜓𝜆,0⟩ , 𝐶𝜆,0}𝜆∈N,
{|𝜓𝜆,1⟩ , 𝐶𝜆,1}𝜆∈N ∈ 𝒞𝜖 with the same induced map {𝑄𝜆 : {0, 1}𝑚(𝜆) → {0, 1}𝑚′(𝜆)}𝜆∈N such that
|𝜓𝜆,0⟩ and |𝜓𝜆,1⟩ both have at most 𝑛(𝜆) qubits and 𝐶𝜆,0 and 𝐶𝜆,1 both have at most 𝑛(𝜆) gates, and
QPT adversary {𝐴𝜆}𝜆∈N,⃒⃒⃒⃒
Pr
[︁
1← 𝐴𝜆

(︁
QObf

(︁
1𝜆, |𝜓𝜆,0⟩ , 𝐶𝜆,0

)︁)︁]︁
−Pr

[︁
1← 𝐴𝜆

(︁
QObf

(︁
1𝜆, |𝜓𝜆,1⟩ , 𝐶𝜆,1

)︁)︁]︁ ⃒⃒⃒⃒
= negl(𝜆).

Remark 6.2 (Classical Oracle Model). In this work, we construct quantum state obfusation in the clas-
sical oracle model. In this model, we allow QObf to additionally output the description of a classical
deterministic functionality 𝑂, and both QEval and the adversary 𝐴𝜆 are granted quantum-accessible oracle
access to 𝑂. Any scheme in the classical oracle model may be heuristically instantiated in the plain model
by using a post-quantum indistinguishability obfuscator to obfuscate 𝑂 and include its obfuscation in the
description of the state | ̃︀𝜓⟩.

40

Our construction of quantum state obfuscation in the classical oracle model makes use of the
following ingredients.

• Publicly-verifiable, linearly-homomorphic QAS with classically-decodable ZX measurements
(Gen,Enc, LinEval,Dec,Ver), defined in Section 4.

• Signature token (TokGen,TokSign,TokVer), defined in Section 3.3.

• A pseudorandom function 𝐹𝑘 secure against superposition-query attacks [Zha12].

For any polynomials 𝑛 = 𝑛(𝜆), 𝑚 = 𝑚(𝜆), and 𝑚′ = 𝑚′(𝜆), let{︀
|𝜓unv
𝜆,𝑛,𝑚,𝑚′⟩ , 𝐶unv

𝜆,𝑛,𝑚,𝑚′
}︀
𝜆∈N

be the family of universal (𝑛,𝑚,𝑚′) quantum programs. That is, for any family of quantum pro-
grams {|𝜑𝜆⟩ , 𝐶𝜆}𝜆∈N where |𝜑𝜆⟩ has at most 𝑛 qubits, 𝐶𝜆 has as most 𝑛 gates, and 𝑄 : {0, 1}𝑚 →
{0, 1}𝑚′

, it holds that for all 𝜆 and inputs 𝑥,

𝐶unv
𝜆,𝑛,𝑚,𝑚′

(︀
|𝑥⟩ |𝐶𝜆⟩ |𝜑𝜆⟩ |𝜓unv

𝜆,𝑛,𝑚,𝑚′⟩
)︀
= 𝐶𝜆 (|𝑥⟩ |𝜑𝜆⟩) .

By Theorem 5.3, for any (𝑛,𝑚,𝑚′) family {|𝜑𝜆⟩ , 𝐶𝜆}𝜆∈N, we can write each quantum program

|𝐶𝜆⟩ |𝜑𝜆⟩ |𝜓unv
𝜆,𝑛,𝑚,𝑚′⟩ , 𝐶unv

𝜆,𝑛,𝑚,𝑚′

as an LM quantum program (︀
|𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔

)︀
that satisfies the standard-basis-collapsible𝑊 wires property (Definition 5.2), where we have dropped
the indexing by 𝜆 to reduce notational clutter. Note that Theorem 5.3 guarantees that |𝜓⟩ con-
tains the complete description of (|𝜑𝜆⟩ , 𝐶𝜆), and that the classical part of the program ({𝐿𝑖}𝑖∈[𝑡+1],
{𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔) only depends on 𝐶unv

𝜆,𝑛,𝑚,𝑚′ . Thus, we consider everything but |𝜓⟩ to be pub-
lic, and our obfuscator will take as input a quantum state |𝜓⟩, and its goal is to hide |𝜓⟩. Finally,
we assume without loss of generality that each 𝑟𝑖 (being part of the output of 𝑓𝑖) is a single bit,
which is convenient (though not strictly necessary) for describing the construction and proof, and
is satisfied by the output of the compiler given in Theorem 5.3.

The construction is given in Figure 5, and incorporates the following public parameters:

• Security parameter 𝜆.

• Classical part of the LM quantum program {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔. This informa-
tion determines the number of qubits 𝑛 = poly(𝜆) in the input state |𝜓⟩, classical input size
𝑚 = poly(𝜆), and classical output size 𝑚′(𝜆). Recall from Section 4.1 that each 𝜃𝑖 defines
subsets

Φ𝜃𝑖 ,Φ𝜃𝑖,0,Φ𝜃𝑖,1,Φ𝜃𝑖,⊥,
̃︀Φ𝜃𝑖 , ̃︀Φ𝜃𝑖,0, ̃︀Φ𝜃𝑖,1, ̃︀Φ𝜃𝑖,⊥,

and in what follows we drop the 𝜃 and write these subsets as

Φ𝑖,Φ𝑖,0,Φ𝑖,1,Φ𝑖,⊥, ̃︀Φ𝑖, ̃︀Φ𝑖,0, ̃︀Φ𝑖,1, ̃︀Φ𝑖,⊥.
41

• Derived security parameter 𝜅 := max{𝜆, 𝑛4} = poly(𝜆).

We will also make use of the following notation. Given a register 𝒳 and classical functionality
F, we let

(𝑦,𝒳)← F(𝒳)

denote the result of initializing a new register 𝒴 , coherently applying the map

|𝑥⟩𝒳 |0⟩𝒴 → |𝑥⟩𝒳 |F(𝑥)⟩𝒴 ,

and then measuring register 𝒴 to obtain output 𝑦.

Theorem 6.3. The scheme described in Fig. 5 is a quantum state obfuscator that satisfies correctness (Def-
inition 6.1).

Proof. Fix the classical part of an LM quantum program {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔, and let
𝑥, |𝜓⟩ be such that there exists 𝑦 such that

Pr
[︀
LMEval

(︀
𝑥, |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔

)︀
→ 𝑦

]︀
= 1− negl(𝜆).

Technically, we mean an infinite family of programs, inputs, states, and outputs, parameterized
by the security parameter 𝜆, but we keep this implicit. We will show via a sequence of hybrids
that

Pr

[︃
𝑦* = 𝑦 :

| ̃︀𝜓⟩ , 𝑂 ← QObf(1𝜆, |𝜓⟩)
𝑦* ← QEval𝑂

(︁
𝑥, | ̃︀𝜓⟩)︁

]︃
= 1− negl(𝜆).

Each hybrid will describe a distribution over 𝑦*, beginning with the distribution above, which
we denoteℋ0.

• ℋ1: This is the same as ℋ0 except that 𝐻(·) is defined to be a uniformly random function
with range {0, 1}𝜅 rather than the PRF 𝐹𝑘′ .

• ℋ2: This is the same as ℋ1 except that the functions F1, . . . ,F𝑡,G ignore their input 𝜎𝑥 and
don’t apply TokVer.

• ℋ3: This is the same as ℋ2 except that instead of inputting and outputting the labels ℓ𝜄, the
functions 𝐹1, . . . , 𝐹𝑡, 𝐺 directly input and output the bits 𝑟𝜄. That is, these functions are de-
fined as follows.

F𝑖(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, 𝑟1, . . . , 𝑟𝑖−1):
– Compute (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) and output ⊥ if the result is ⊥.

– Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖).

– Output (̃︀𝑣𝑖, 𝑟𝑖).
G(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, 𝑟1, . . . , 𝑟𝑡) :

– Compute (𝑣1, . . . , 𝑣𝑡+1) = Dec𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1(̃︀𝑣1, . . . , ̃︀𝑣𝑡+1) and output ⊥ if the result is ⊥.

42

Quantum State Obfuscation

QObf
(︀
1𝜆, |𝜓⟩

)︀
:

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Sample 𝑘′ ← {0, 1}𝜆 for PRF 𝐹𝑘′ : {0, 1}* → {0, 1}𝜅 and let 𝐻(·) := 𝐹𝑘′(·).
• For each 𝑖 ∈ [𝑡], define the function F𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℎ𝜄,𝑟𝜄 .

– Compute (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) and output ⊥ if the result is ⊥.

– Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖).

– Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (̃︀𝑣𝑖, ℓ𝑖).
• Define the function G(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡):

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑡], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

– Compute (𝑣1, . . . , 𝑣𝑡+1) = Dec𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1(̃︀𝑣1, . . . , ̃︀𝑣𝑡+1) and output ⊥ if the result is ⊥.

– Output 𝑦 = 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1).

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1, . . . ,F𝑡,G) .

QEval𝑂
(︁
𝑥, | ̃︀𝜓⟩)︁:

• Parse | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1, . . . ,F𝑡,G).

• Sample 𝜎𝑥 ← TokSign(𝑥, |sk⟩).
• Initialize a register 𝒞 with |𝜓𝑘⟩, and do the following for 𝑖 ∈ [𝑡]:

– 𝒞 ← 𝐻
̃︀Φ𝑖,1LinEval𝐿𝑖(𝒞).

– Measure
(︁̃︀𝑣𝑖, ℓ𝑖, 𝒞̃︀Φ𝑖

)︁
← F𝑖

(︁
𝑥, 𝜎𝑥, 𝒞̃︀Φ𝑖

, ℓ1, . . . , ℓ𝑖−1

)︁
.

– 𝒞 ← 𝐻
̃︀Φ𝑖,1(𝒞).

• 𝒞 ← 𝐻
̃︀Φ𝑡+1,1LinEval𝐿𝑡+1(𝒞).

• Measure 𝑦 ← G
(︁
𝑥, 𝜎𝑥, 𝒞̃︀Φ𝑡+1

, ℓ1, . . . , ℓ𝑡
)︁

and output 𝑦.

Figure 5: Construction of quantum state obfuscation.

– Output 𝑦 = 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1).

• ℋ4: This is the same as ℋ3 except that the functions F1, . . . ,F𝑡 output 𝑣𝜄 rather than ̃︀𝑣𝜄. That

43

is, these functions are defined as follows.

F𝑖(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, 𝑟1, . . . , 𝑟𝑖−1):
– Compute (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) and output ⊥ if the result is ⊥.

– Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖).

– Output (𝑣𝑖, 𝑟𝑖).

G(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡, ̃︀𝑣𝑡+1, 𝑟1, . . . , 𝑟𝑡) :

– Compute 𝑣1, . . . , 𝑣𝑡+1 = Dec𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1(̃︀𝑣1, . . . , ̃︀𝑣𝑡+1) and output ⊥ if the result is ⊥.

– Output 𝑦 = 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1).

To complete the proof, we combine the following observations.

• ℋ0 ≈negl(𝜆) ℋ1: This follows from the (superposition-query) security of the PRF.

• ℋ1 ≡ ℋ2: This follows from the correctness of the signature token (Definition 3.7).

• ℋ2 ≈negl(𝜆) ℋ3: The only difference between these hybrids occurs if in ℋ2, a query to F𝑖 or
G outputs ⊥ due to the fact that ℓ𝜄,0 = ℓ𝜄,1. Since 𝐻 is a uniformly random function, each
ℓ𝜄,0 = ℓ𝜄,1 with probability 1/2𝜅 = negl(𝜆), and the observation follows because 𝑡 = poly(𝜆).

• ℋ3 ≡ ℋ4: Starting withℋ4, in which the logical measurements of 𝑣1, . . . , 𝑣𝑡+1 are performed,
we can imagine, after the 𝑖’th measurement, further collapsing the 𝑉𝑖 register to obtain the
outcome ̃︀𝑣𝑖 as in ℋ3. This has no effect on the rest of the computation, since these registers
are no longer computed on after the 𝑖’th measurement, and will continue to decode to 𝑣𝑖.

• ℋ4 ≡ LMEval
(︀
𝑥, |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔

)︀
: This follows from the correctness of

the authentication scheme (Definition 4.1). Indeed, for a given key 𝑘 ∈ Gen(1𝜅, 𝑛), we can
write the distribution sampled byℋ4 as follows:

– Initialize register 𝒞 to Enc𝑘(|𝜓⟩).

– Compute ((𝑣1, 𝑟1), 𝒞)← ̃︁𝑀𝜃1,𝑓𝑥1 ,𝑘,𝐿1 ∘ LinEval𝐿1(𝒞).
– . . .

– Compute ((𝑣𝑡, 𝑟𝑡), 𝒞)← ̃︁𝑀
𝜃𝑡,𝑓

𝑥,𝑟1,...,𝑟𝑡−1
𝑡 ,𝑘,𝐿𝑡...𝐿1

∘ LinEval𝐿𝑡(𝒞).

– Compute output 𝑦 ← ̃︁𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡 ,𝑘,𝐿𝑡+1...𝐿1 ∘ LinEval𝐿𝑡+1(𝒞).

Now, we apply the expression in the definition of correctness (Definition 4.1) to the first
measurement to obtain an equivalent sampling procedure:

– Initialize registerℳ to |𝜓⟩.

– Compute ((𝑣1, 𝑟1),ℳ)← 𝐿†1 ∘𝑀𝜃1,𝑓𝑥1
∘ 𝐿1(ℳ).

– Compute 𝒞 ← Enc𝑘(ℳ)

– Compute ((𝑣2, 𝑟2), 𝒞)← ̃︁𝑀𝜃2,𝑓
𝑥,𝑟1
2 ,𝑘,𝐿2𝐿1

∘ LinEval𝐿2𝐿1(𝒞).

44

– . . .

– Compute ((𝑣𝑡, 𝑟𝑡), 𝒞)← ̃︁𝑀
𝜃𝑡,𝑓

𝑥,𝑟1,...,𝑟𝑡−1
𝑡 ,𝑘,𝐿𝑡...𝐿1

∘ LinEval𝐿𝑡(𝒞).

– Compute output 𝑦 ← ̃︁𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡 ,𝑘,𝐿𝑡+1...𝐿1 ∘ LinEval𝐿𝑡+1(𝒞).

By applying the expression iteratively for each measurement, we obtain:

– Initialize registerℳ to |𝜓⟩.

– Compute ((𝑣1, 𝑟1),ℳ)← 𝐿†1 ∘𝑀𝜃1,𝑓𝑥1
∘ 𝐿1(ℳ).

– Compute ((𝑣2, 𝑟2),ℳ)← 𝐿†1𝐿
†
2 ∘𝑀𝜃2,𝑓

𝑥,𝑟1
2
∘ 𝐿2𝐿1(ℳ).

– . . .

– Compute ((𝑣𝑡, 𝑟𝑡),ℳ)← 𝐿†1 . . . 𝐿
†
𝑡 ∘𝑀𝜃𝑡,𝑓

𝑥,𝑟1,...,𝑟𝑡−1
𝑡

∘ 𝐿𝑡 . . . 𝐿1(ℳ).

– Compute output 𝑦 ←𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡 ∘ 𝐿𝑡+1 . . . 𝐿1(ℳ).

By canceling 𝐿†𝑖𝐿𝑖 = ℐ, we obtain LMEval
(︀
𝑥, |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔

)︀
:

– Initialize registerℳ to |𝜓⟩.
– Compute ((𝑣1, 𝑟1),ℳ)←𝑀𝜃1,𝑓𝑥1

∘ 𝐿1(ℳ).

– Compute ((𝑣2, 𝑟2),ℳ)←𝑀𝜃2,𝑓
𝑥,𝑟1
2
∘ 𝐿2(ℳ).

– . . .

– Compute ((𝑣𝑡, 𝑟𝑡),ℳ)←𝑀
𝜃𝑡,𝑓

𝑥,𝑟1,...,𝑟𝑡−1
𝑡

∘ 𝐿𝑡(ℳ).

– Compute output 𝑦 ←𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡 ∘ 𝐿𝑡+1(ℳ).

7 Quantum State Obfuscation: Security

In this section, we prove that the scheme described in Fig. 5 is an ideal quantum state obfuscator
in the classical oracle model. We provide some intuition in Section 7.1 and set up some notation
in Section 7.2 before coming to the formal proof in Section 7.3 - Section 7.5.

7.1 Proof Intuition

We begin by discussing three main ideas used in our proof. This will not be a step-by-step outline
of the proof, rather, it will try to convey the main intuitive ideas. Broadly speaking, we will want to
simulate the oracles F1, . . . ,F𝑡,G so that they no longer require access to the decoding functionality
of the authentication scheme, and G can get by with just oracle access to the induced functionality
𝑄. Once this is done, we can appeal to privacy of the authentication scheme (Definition 4.5) in
order to switch |𝜓⟩ to |0𝑛⟩, thus removing all information about the input state.

The first idea below will help us simulate the G oracle, the second will us help simulate the
F oracles, and the third is a way to extract signature tokens from the adversary using a purified
random oracle, which we will use when proving the indistinguishability of the simulated oracles.

45

Proving soundness by induction. As mentioned in the technical overview (Section 2.3), one of
the main steps in our proof of security is to show the following soundness guarantee. Fix any input
𝑥*. Then we would like to show that, given |𝜓⟩ and oracle access to F1, . . . ,F𝑡,G, the adversary
cannot prepare a "bad" query (𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) with the property that

G(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) /∈ {𝑄(𝑥*),⊥}.

That is, if G does not abort on an input that starts with 𝑥*, then it better be the case that it returns
the correct output 𝑄(𝑥*).

To simplify the discussion for now, let’s consider the simpler case of a garbled program, which
only allows the adversary to evaluate on a single input 𝑥*. That is, suppose we hard-code 𝑥* into
the oracles F1[𝑥*], . . . ,F𝑡[𝑥*],G[𝑥*], which now only accept inputs that begin with 𝑥*.

Our goal will be to show that the adversary is “forced” to follow an honest evaluation path on
input 𝑥*. Since the honest evaluation path actually branches at each measurement, we will essen-
tially analyze each of these possible branching executions. To do so, let’s suppose by induction
that the soundness condition holds for any program with 𝑡 − 1 measurement layers. Then, for
each possible outcome (𝑣1, 𝑟1) of the first measurement (using input 𝑥*) that occurs with non-zero
probability, define Π[𝑥*, 𝑣1, 𝑟1] to be the projector onto the space of initial states |𝜓⟩ that produce
that outcome. Thus, we can write

|𝜓⟩ =
∑︁
𝑣1,𝑟1

Π[𝑥*, 𝑣1, 𝑟1] |𝜓⟩ ,

and analyze each component | ̃︀𝜓[𝑥*, 𝑣1, 𝑟1]⟩ := Enc𝑘(Π[𝑥
*, 𝑣1, 𝑟1] |𝜓⟩) separately.

The key step is to show that, if the adversary is initialized with | ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩ for some (𝑣*1, 𝑟
*
1),

then we can hard-code the measurement results (𝑣*1, 𝑟
*
1) into the oracles F1[𝑥

*], . . . ,F𝑡[𝑥
*] with-

out the adversary noticing. That is, we define oracles F1[𝑥
*, 𝑣*1, 𝑟

*
1], . . . ,F𝑡[𝑥

*, 𝑣*1, 𝑟
*
1] that oper-

ate like F1[𝑥
*], . . . ,F𝑡[𝑥

], except that F1[𝑥, 𝑣*1, 𝑟
*
1] always outputs the label representing 𝑟*1, and

F2[𝑥
*, 𝑣*1, 𝑟

*
1], . . . ,F𝑡[𝑥

*, 𝑣*1, 𝑟
*
1] use (𝑣*1, 𝑟

*
1) instead of decoding their inputs ̃︀𝑣1 and ℓ1.

We will prove the indistinguishability of F1[𝑥*], . . . ,F𝑡[𝑥*] and F1[𝑥
*, 𝑣*1, 𝑟

*
1], . . . ,F𝑡[𝑥

*, 𝑣*1, 𝑟
*
1] by

reducing to security of the authentication scheme. Note that distinguishing these oracles requires
the adversary to find a differing input to one of the oracles. Now, assuming that the oracles can be
simulated using Ver𝑘,·,·(·) instead of Dec𝑘,·,·(·) (which we have yet to argue, but will address in the
following section), this means that it suffices to show that the adversary cannot map

| ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩ → | ̃︀𝜓[𝑥*, 𝑣1, 𝑟1]⟩
for some (𝑣1, 𝑟1) ̸= (𝑣*1, 𝑟

*
1) just given access to the verification oracle Ver𝑘,·,·(·). However, doing so

would certainly imply that the adversary can change the measurement results of an authenticated
state (given the verification oracle), which violates the security of the authentication scheme.

Finally, we view the state | ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩ and oracles F1[𝑥
*, 𝑣*1, 𝑟

*
1], . . . ,F𝑡[𝑥

*, 𝑣*1, 𝑟
*
1] as an exam-

ple of a garbled (𝑡 − 1)-layer program, and finish the proof of soundness by appealing to the
induction hypothesis.

The formal inductive argument is given in Section 7.4.

Collapsing the F oracles. Now, we address the claim made above that the F oracles can be sim-
ulated given Ver𝑘,·,·(·) instead of Dec𝑘,·,·(·). Note that we can only hope that this simulation is

46

indistinguishable to an adversary with no access to the G oracle, since the real F oracles can be
used to actually implement the computation 𝑥 → 𝑄(𝑥), while the simulated oracles cannot since
they don’t actually decode their inputs. However, it turns out that this suffices for us, since we
can simulate the G oracle when we need to apply this indistinguishability.

The main idea is to “collapse” the oracles F1, . . . ,F𝑡, showing that the adversary cannot distin-
guish them from oracles FSim1, . . . ,FSim𝑡 that always output either the “zero” label

𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0)
or ⊥. These oracles now do not have to actually run 𝑓𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖) to compute the bit
𝑟𝑖, meaning that the decoding operation in F𝑖 can be replaced with a verification operation.

But how do we show that the oracles can be collapsed? Again, we will use the idea of split-
ting |𝜓⟩ up into orthogonal components and analyzing each component separately. Here is where
we make use of the standard-basis-collapsible 𝑊 wires property of the LM quantum program (Def-
inition 5.2). In particular, we will define the orthogonal components by measuring the wires
𝑊1, . . . ,𝑊𝑡 in the standard basis. That is, we will write

|𝜓⟩ =
∑︁
𝑤

Π[𝑤] |𝜓⟩ ,

where Π[𝑤] is the projection of wires 𝑊1, . . . ,𝑊𝑡 onto standard basis measurement results 𝑤 =
(𝑤1, . . . , 𝑤𝑡).

The point is that if the oracle F𝑖 only receives inputs that include encodings ̃︀𝑤 = (̃︀𝑤1, . . . , ̃︀𝑤𝑡) of
some fixed 𝑤 = (𝑤1, . . . , 𝑤𝑡), then, for each "prefix" (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1), it will only ever
query the random oracle 𝐻 on

either (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0) or (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 1),
where the last bit is a deterministic function of 𝑤 and the prefix. But since each of these values is
distributed as a uniformly random string, this behavior is identical (from the adversary’s perspec-
tive) to, for each prefix, always querying the zero label

𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0).
Thus, it suffices to show, roughly, that given | ̃︀𝜓[𝑤]⟩ := Enc𝑘(Π[𝑤] |𝜓⟩), the adversary cannot

map
| ̃︀𝜓[𝑤]⟩ → | ̃︀𝜓[𝑤′]⟩

for 𝑤′ ̸= 𝑤, given access to the verification oracle Ver𝑘,·,·(·). This again follows directly from
security of our authentication scheme.

The ideas sketched here are used to simulate the F oracles in our main sequence of hybrids
given in Section 7.3, and also in lower-level hybrids in Section 7.5.

Extracting signature tokens. Recall that the inductive argument sketched above for proving the
soundness condition assumed that the oracles only respond on a single fixed input 𝑥*. Unfortu-
nately, as discussed in Section 2.3, the situation gets more complicated when we grant the adver-
sary access to the oracles on any input 𝑥 of their choice. The reason is that it is no longer clear that
the adversary cannot perform the map

47

| ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩ → | ̃︀𝜓[𝑥*, 𝑣1, 𝑟1]⟩
by using an oracle query on an input 𝑥 ̸= 𝑥*. Indeed, while the (𝑉1,𝑊1) registers of | ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩
are collapsed to a state that yields a fixed (𝑣*1, 𝑟

*
1) ← 𝑓𝑥

*
1 (𝑉1,𝑊1), applying 𝑓𝑥1 (𝑉1,𝑊1) for some

𝑥 ̸= 𝑥* might disturb the registers 𝑉1,𝑊1 (since 𝑓𝑥
*

1 and 𝑓𝑥1 might be different functions!), thus
changing the outcome of 𝑓𝑥

*
1 (𝑉1,𝑊1).

Now, as discussed in Section 2.3, we use signature tokens to prevent this potential attack.
Recall that the oracle F1 only responds on input 𝑥 if additionally given a valid signature token 𝜎𝑥.
Thus, we will want to formalize the following claim: if the adversary uses F1(𝑥, . . .) to perform
some "non-trivial" operation on the authenticated state | ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩, it is possible to extract a
valid signature 𝜎𝑥 from the adversary. Once this 𝜎𝑥 is extracted, the security of the signature token
scheme implies that the adversary won’t be able to continue evaluating on 𝑥*, and, in particular,
we won’t have to worry about the adversary breaking the soundness condition for input 𝑥*.

We will show this claim by purifying the random oracle [Zha19], introducing a “database”
register that is initialized with a different state in uniform superposition for each input to𝐻 . Then,
we’ll argue that if the adversary has used F𝑖(𝑥, ·) to execute a measurement on the authenticated
state, the database register must be disturbed at some inputs that begin with (𝑥, 𝜎𝑥). Thus, an
extractor can simply measure the database register in the Hadamard basis, and obtain a signature
on 𝑥 by observing which registers were no longer in uniform superposition.

For the purpose of this overview, we consider a simplified version of this problem that still
conveys the fundamental ideas in our proof. We’ll take the random oracle to have a single bit of
output, only consider the authentication of a single qubit state, and analyze the concrete authen-
tication scheme based on coset states (though we stress that our eventual proof just makes use of
generic properties of the authentication scheme). Here is the setup:

• An authentication key 𝑘 = (𝑆,∆, 𝑥, 𝑧) is sampled.

• The adversary 𝐴 is given an authenticated 0 state 𝑋𝑥𝑍𝑧 |𝑆⟩ along with access to the follow-
ing oracle 𝑂 that can be used to implement a logical Hadamard basis measurement:

𝑂(̃︀𝑣) =
⎧⎪⎨⎪⎩
𝐻(0) if ̃︀𝑣 ∈ ̂︀𝑆 + 𝑧

𝐻(1) if ̃︀𝑣 ∈ ̂︀𝑆 + ̂︀∆+ 𝑧

⊥ otherwise

,

where 𝐻 is a random oracle {0, 1} → {0, 1}. 𝐻 will be purified and implemented using a
database register initialized to |++⟩.

• We claim that the adversary cannot produce any vector in 𝑆 +∆+ 𝑥 (that is, a vector in the
support of an authenticated 1 state) at the same time that the database register is in the state
|++⟩:

E
[︁⃦⃦

(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)𝐴𝑂 (𝑋𝑥𝑍𝑧 |𝑆⟩) |++⟩
⃦⃦2]︁

= negl(𝜆).

To be clear, 𝐴 operates on input state𝑋𝑥𝑍𝑧 |𝑆⟩ (along with some potential extra workspace),
and the database registers are operated on by 𝑂 when answering 𝐴’s queries.

Notice that it is easy for the adversary to produce just a vector in 𝑆 + ∆ + 𝑥 (with constant
probability) by using the oracle 𝑂 to honestly to implement a Hadamard basis measurement. The

48

trick is to show that once they do this, it is impossible for them to make queries to 𝑂 that return
the state of the database to |++⟩, while still remembering their vector in 𝑆 +∆+ 𝑥.

Our first step is to decompose 𝑋𝑥𝑍𝑧 |𝑆⟩ into orthogonal components corresponding to the
authenticated plus and minus state. That is,

𝑋𝑥𝑍𝑧 |𝑆⟩ = 1√
2
𝐻⊗2𝜆+1𝑋𝑧𝑍𝑥 |̂︀𝑆⟩+ 1√

2
𝐻⊗2𝜆+1𝑋𝑧𝑍𝑥 |̂︀𝑆 + ̂︀∆⟩ := |̃︀+⟩+ |̃︀−⟩ .

Then, for 𝑏 ∈ {0, 1}, we define oracles

𝑂[𝑏](̃︀𝑣) = {︃𝐻(𝑏) if ̃︀𝑣 ∈ ̂︀𝑆̂︀Δ + 𝑧

⊥ otherwise
,

that are identical to 𝑂, except that they always query the random oracle on bit 𝑏. Then we observe
that

𝐴𝑂 |̃︀+⟩ ≈negl(𝜆) 𝐴
𝑂[0] |̃︀+⟩ , and 𝐴𝑂 |̃︀−⟩ ≈negl(𝜆) 𝐴

𝑂[1] |̃︀−⟩ .
This follows from the security of the authentication scheme, which implies that 𝐴 cannot map

between |̃︀+⟩ and |̃︀−⟩. That is, on input |̃︀+⟩, 𝐴 won’t be able to find any input on which 𝑂 and
𝑂[0] differ, and on input |̃︀−⟩, 𝐴 won’t be able to find any input on which 𝑂 and 𝑂[1] differ.

Next, we observe that the state of the system that results from using oracle 𝑂[1] is actually
equivalent to the state that results from first swapping the database registers of 𝐻 , using 𝑂[0], and
then swapping back. Thus, it holds that

E
[︁⃦⃦

(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)𝐴𝑂 (𝑋𝑥𝑍𝑧 |𝑆⟩) |++⟩
⃦⃦2]︁

= E
[︁⃦⃦

(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)
(︀
𝐴𝑂 |̃︀+⟩ |++⟩+𝐴𝑂 |̃︀−⟩ |++⟩

)︀ ⃦⃦2]︁
≈negl(𝜆) E

[︁⃦⃦
(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)

(︁
𝐴𝑂[0] |̃︀+⟩ |++⟩+𝐴𝑂[1] |̃︀−⟩ |++⟩

)︁ ⃦⃦2]︁
= E

[︁⃦⃦
(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)

(︁
𝐴𝑂[0] |̃︀+⟩ |++⟩+ SWAP𝐴𝑂[0] |̃︀−⟩SWAP |++⟩

)︁ ⃦⃦2]︁
= E

[︁⃦⃦
Π[𝑆 +∆+ 𝑥]

(︁
|++⟩⟨++|𝐴𝑂[0] |̃︀+⟩ |++⟩+ |++⟩⟨++| SWAP𝐴𝑂[0] |̃︀−⟩SWAP |++⟩

)︁ ⃦⃦2]︁
= E

[︁⃦⃦
Π[𝑆 +∆+ 𝑥]

(︁
|++⟩⟨++|𝐴𝑂[0] |̃︀+⟩ |++⟩+ |++⟩⟨++|𝐴𝑂[0] |̃︀−⟩ |++⟩

)︁ ⃦⃦2]︁
= E

[︁⃦⃦
(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)

(︁
𝐴𝑂[0] |̃︀+⟩ |++⟩+𝐴𝑂[0] |̃︀−⟩ |++⟩

)︁ ⃦⃦2]︁
= E

[︁⃦⃦
(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)𝐴𝑂[0]𝑋𝑥𝑍𝑧 |𝑆⟩ |++⟩

⃦⃦2]︁
= negl(𝜆),

where the last step follows from security of the authentication scheme, since 𝑂[0] can be im-
plemented with just the verification oracle of the authentication scheme. Note that we crucially
used the fact that we are projecting back onto |++⟩⟨++| in the step where we remove the left-most
SWAP operation, which follows because SWAP |++⟩ = |++⟩. Indeed, as discussed above, the

49

claim would not be true without the projection onto |++⟩⟨++|, since the adversary can obtain a
vector in Π[𝑆 +∆+ 𝑥] while disturbing the database register.

To conclude, we note that this same logic can be extended to more general measurements on
more general authenticated states, which ultimately will be used to extract a valid signature on 𝑥
from any adversary that is actively using the oracles F1, . . . ,F𝑡,G to evaluate the computation on
input 𝑥. This implies that the adversary cannot launch mixed input attacks, which is one of the
main hurdles to overcome in proving the security of our quantum state obfuscator.

The ideas sketched here are used in Section 7.5, and in particular in the proof of Lemma 7.25.

7.2 Notation

In this section, we review some important notation and define new notation that will be used
throughout the proof.

• |𝜓⟩ is the 𝑛-qubit input state.

• {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔 is the classical part of the description of an LM quantum
program.

• Parameters: 𝑚 is the size of the classical input, and 𝜅 is a derived security parameter that is
sufficiently larger than 𝜆, 𝑛. We will often use the facts that 𝑛 ≥ 𝑡,𝑚 and 𝜅 = 𝜔(𝑛).

• See Definition 5.1 for the definition of sets (𝑉1, . . . , 𝑉𝑡+1) and (𝑊1, . . . ,𝑊𝑡). The 𝑖’th mea-
surement for 𝑖 ∈ [𝑡] operates on (𝑉1, . . . , 𝑉𝑖,𝑊𝑖) and the 𝑡 + 1’st measurement operates on
(𝑉1, . . . , 𝑉𝑡+1) = [𝑛]. We will assume that the LM quantum program has standard-basis-
collapsible 𝑊 wires (Definition 5.2) so in particular, 𝜃𝑖,𝑗 = 0 for all 𝑗 ∈ 𝑊𝑖 (that is, 𝑊𝑖 are
standard basis registers for the 𝑖’th measurement).

• 𝑘 = (𝑆,∆, 𝑥, 𝑧) is a key for the authentication scheme.

• See Section 4.1 for the description of our partial𝑍𝑋 measurement notation𝑀𝜃,𝑓 and ̃︁𝑀𝜃,𝑓,𝑘,𝐿.
In particular, {︁

𝑀
𝜃𝑖,𝑓

𝑥,𝑟1,...,𝑟𝑖−1
𝑖

}︁
𝑖∈[𝑡]

,𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡

are the sequence of measurements applied by the LM quantum program, and{︁̃︁𝑀
𝜃𝑖,𝑓

𝑥,𝑟1,...,𝑟𝑖−1
𝑖 ,𝑘,𝐿𝑖...𝐿1

}︁
𝑖∈[𝑡]

,̃︁𝑀𝜃𝑡+1,𝑔
𝑥,𝑟1,...,𝑟𝑡
𝑖 ,𝑘,𝐿𝑡+1...𝐿1

are the corresponding sequence of measurements applied to qubits authenticated using the
key 𝑘.

• We will often refer to a partial set of measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏] for some 𝜏 ∈ [𝑡 +
1]. Note that in the case 𝜏 = 𝑡 + 1, the value 𝑟*𝑡+1 will always be empty, since the final
measurement of an LM quantum program only outputs 𝑣𝑡+1. We only include this empty
value so that the notation is consistent across each measurement layer.

50

• Fix any input 𝑥* and partial set of measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏] for some 𝜏 ∈ [𝑡+1]. First,
we explicitly define the projectors that constitute the 𝑀 measurements:

𝑀
𝜃𝜏 ,𝑓

𝑥*,𝑟*1 ,...,𝑟*𝜏−1
𝜏

:=
{︁
Π𝑥

*,𝑟*1 ,...,𝑟
*
𝜏−1 [𝑣𝜏 , 𝑟𝜏]

}︁
𝑣𝜏 ,𝑟𝜏

,

𝑀
𝜃𝑡+1,𝑔

𝑥*,𝑟*1 ,...,𝑟*𝑡
:=
{︁
Π𝑥

*,𝑟*1 ,...,𝑟
*
𝑡 [𝑣𝑡+1]

}︁
𝑣𝑡+1

.

Next, we define a (sub-normalized) initial state for each set of partial measurement results
{𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]:

|𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩ := 𝐿†1 . . . 𝐿
†
𝜏Π

𝑥*,𝑟*1 ,...,𝑟
*
𝜏−1 [𝑣*𝜏 , 𝑟

*
𝜏]𝐿𝜏 . . .Π

𝑥* [𝑣*1, 𝑟
*
1]𝐿1 |𝜓⟩ .

• During the proof, we will make use of the collapsible 𝑊 wires property, and consider mea-
suring (some subset of) the 𝑊 wires in the standard basis at the beginning of the computa-
tion. For any string of measurement results 𝑤*𝑖 ∈ {0, 1}|𝑊𝑖|, define corresponding sets

𝑃 [𝑤*𝑖] :=
{︀ ̃︀𝑤𝑖 : Dec𝑘,∅,𝜃𝑖[𝑊𝑖](̃︀𝑤𝑖) = 𝑤*𝑖

}︀
, 𝑃 [¬𝑤*𝑖] :=

{︀ ̃︀𝑤𝑖 : Dec𝑘,∅,𝜃𝑖[𝑊𝑖](̃︀𝑤𝑖) /∈ {𝑤*𝑖 ,⊥}}︀ ,
where ∅ indicates an empty sequence of CNOT gates, in other words, the identity. Also recall
the notation 𝜃[𝑉] defined in Section 4.1 indicating a string that is equal to 𝜃 on the subset of
indices 𝑉 and ⊥ everywhere else. Next, define the projectors

Π[𝑤*] := Π[𝑃 [𝑤*𝑖]], Π[¬𝑤*] := Π[𝑃 [¬𝑤*𝑖]].

Finally, for any set 𝑆 ⊆ [𝑡] and {𝑤*𝑖 }𝑖∈𝑆 where each 𝑤*𝑖 ∈ {0, 1}|𝑊𝑖|, define

Π[{𝑤*𝑖 }𝑖∈𝑆] :=
⨂︁
𝑖∈𝑆

Π[𝑤*𝑖], Π[¬{𝑤*𝑖 }𝑖∈𝑆] :=
∑︁
𝑖∈𝑆

Π[¬𝑤*𝑖].

7.3 Main Theorem

Theorem 7.1. For any 𝜖 = 𝜖(𝜆) = negl(𝜆) · 2−2𝑚(𝜆), the scheme described in Figure 5 is a quantum state
obfuscator that satisfies ideal obfuscation (Definition 6.1) for 𝜖-pseudo-deterministic families of quantum
programs.

Remark 7.2. One might hope that the above theorem could be shown for any 𝜖 = negl(𝜆), and we leave this
open. However, we remark that in the case where the input program has a completely classical description
(e.g. the case handled by [BKNY23]), one can first repeat the circuit poly(𝜆) times to generically go from
negl(𝜆)-pseudo-determinism to negl(𝜆) ·2−2𝑚(𝜆)-pseudo-determinism. Thus, this result captures a strictly
more general class of programs than [BKNY23]. Moreover, the application to best-possible copy-protection
[CG23] only requires obfuscating fully deterministic computation.

51

Proof. Throughout this proof, we will often drop the dependence of functions and circuit families
on the parameter 𝜆 in order to reduce notational clutter. Let 𝑛,𝑚,𝑚′ be any polynomials (in 𝜆), and
suppose that |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔 is an LM quantum program such that |𝜓⟩ has at
most 𝑛 qubits, there are at most 𝑛 gates in the circuit, and the classical input has 𝑚 bits. Suppose
that this LM quantum program is 𝜖-pseudo-deterministic for a small enough 𝜖 as specified by the
theorem statement, and let 𝑄 be the induced map of this LM quantum program. Consider any
QPT10 adversary𝐴 and distinguisher𝐷, and define𝐷[𝐴] to be the procedure that runs𝐴, feeds its
output to 𝐷, and then runs 𝐷 to produce a binary-valued outcome. Thus, we can write the "real"
obfuscation experiment as

Pr
[︁
1← 𝐷

(︁
𝐴
(︁
QObf

(︁
1𝜆, |𝜓⟩

)︁)︁)︁]︁
= E

(| ̃︀𝜓⟩,𝑂)←QObf(1𝜆,|𝜓⟩)

[︁⃦⃦
𝐷[𝐴]𝑂 | ̃︀𝜓⟩ ⃦⃦2]︁ .

Now, we will consider a sequence of hybrid distributions over (state, oracle) pairs (| ̃︀𝜓⟩ , 𝑂),
beginning with the real distribution QObf0 := QObf, and ending with a fully simulated distribu-
tion QObf6 that no longer needs to take |𝜓⟩ as input (and instead uses oracle access to𝑄). Our first
step will be to switch the oracle G to a simulated oracle GSim that verifies rather than decodes the
intermediate labels and final authenticated measurement, and uses oracle access to 𝑄 to respond
in the case that verification passes. Next, we’ll "collapse" the oracles F1, . . . ,F𝑡 as described in
Section 7.1, using a strategy derived from the collapsible 𝑊 wires property of the LM quantum
program. Finally, we’ll replace the input |𝜓⟩with the all zeros input |0𝑛⟩.

The description of these distributions follow (but no claims about indistinguishability yet).
The difference between adjacent distributions are highlighted in red, and whenever we write 𝑤*,
we parse it at 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], where each 𝑤*𝑖 ∈ {0, 1}|𝑊𝑖|.

QObf1(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• Define F1, . . . ,F𝑡 as in QObf0.

• Define G as in QObf0.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1, . . . ,F𝑡,G) .

QObf2(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• Define F1, . . . ,F𝑡 as in QObf0.

• Define the function GSim (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) :

10The only reason that we restrict our adversary to be quantum polynomial-time as opposed to quantum polynomial-
query is the very first step in our proof, where we replace the PRF with a random oracle. If we allow the obfuscation
scheme to use a true random oracle (thus sacrificing the efficiency of the oracles), then we obtain security against any
QPQ adversary.

52

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑡], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
– Output ⊥ if Ver𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1(̃︀𝑣1, . . . , ̃︀𝑣𝑡+1) = ⊥.

– Output 𝑄(𝑥).

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1, . . . ,F𝑡,GSim) .

QObf3(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function F𝑖[𝑤
*] (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

– Compute (𝑣1, . . . , 𝑣𝑖, ·) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) and output ⊥ if the result is ⊥.

– Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤
*
𝑖).

– Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (̃︀𝑣𝑖, ℓ𝑖).
• Define GSim as in QObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1[·], . . . ,F𝑡[·],GSim) .

QObf4(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function F𝑖[𝑤
*] (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

– Compute (𝑣1, . . . , 𝑣𝑖, ·) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) and output ⊥ if the result is ⊥.

– For 𝜄 ∈ [𝑖], compute (·, 𝑟𝜄) = 𝑓
𝑥,𝑟1,...,𝑟𝜄−1
𝜄 (𝑣1, . . . , 𝑣𝜄, 𝑤

*
𝜄).

– Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (̃︀𝑣𝑖, ℓ𝑖).
• Define GSim as in QObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1[·], . . . ,F𝑡[·],GSim) .

QObf5(1
𝜆, |𝜓⟩):

53

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function FSim𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
– Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) = ⊥.

– Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0), and output (̃︀𝑣𝑖, ℓ𝑖).
• Define GSim as in QObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1, . . . ,FSim𝑡,GSim) .

QObf6(1
𝜆):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|0𝑛⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• Define FSim1, . . . ,FSim𝑡 as in QObf4.

• Define GSim as in QObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1, . . . ,FSim𝑡,GSim) .

Later, we will use these distributions to define a sequence of hybrids starting with the real
obfuscation experiment and ending with the simulated obfuscation experiment. But first, we will
establish several claims about these distributions that will be useful while arguing indistinguisha-
bility of the hybrids.

This first claim establishes that, once the oracles are simulated, no adversary can map a state
whose 𝑊 wires have been collapsed to outcome 𝑤* onto the support of a state with different out-
comes 𝑤 ̸= 𝑤*. At the end of this sequence of claims, we will have established that this property
holds even in QObf2, where the F𝑖 oracles are not yet simulated.

Claim 7.3. For any QPQ unitary 𝑈 and any 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that

E
[︁⃦⃦

Π[¬𝑤*]𝑈𝑂Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , 𝑂 ← QObf5(1
𝜆, |𝜓⟩)

]︁
= 2−Ω(𝜅).

Proof. The key point is that in QObf5, none of the oracles FSim1, . . . ,FSim𝑡,GSim require access
to the the decryption oracle Dec𝑘,·,·(·) for the authentication scheme. Rather, they can be imple-
mented just given access to the verification oracle Ver𝑘,·,·(·). Now, since the 𝑊 wires are authen-
ticated, the hardness of mapping from the support of 𝑤* to 𝑤 for any 𝑤 ̸= 𝑤* follows directly
from the security of the authentication scheme (Theorem 4.9), and in particular that it satisfies
Definition 4.4 (mapping security).

In the proof of the next two claims, we will use the following notation. Fix a key 𝑘 and
𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], and define the following function.

54

𝑅[𝑘,𝑤*] : (𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖)→ 𝑟𝑖

• Compute (𝑣1, . . . , 𝑣𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉1,...,𝑉𝑖](̃︀𝑣1, . . . , ̃︀𝑣𝑖) and output ⊥ if the result is ⊥.

• For 𝜄 ∈ [𝑖], compute (·, 𝑟𝜄) = 𝑓
𝑥,𝑟1,...,𝑟𝜄−1
𝜄 (𝑣1, . . . , 𝑣𝜄, 𝑤

*
𝜄).

• Output 𝑟𝑖.

This function determines the bit 𝑟𝑖 when the 𝑤* outcomes have been hard-coded into the ora-
cles, and we will use it when showing indistinguishability between QObf3,QObf4, and QObf5 in
the case where the 𝑊 wires of the input state have been collapsed to outcome 𝑤*.

Claim 7.4. For any (unbounded) distinguisher 𝐷 and any 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that

E
[︁⃦⃦
𝐷F1[𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← QObf4(1

𝜆, |𝜓⟩)
]︁

= E
[︁⃦⃦
𝐷FSim1,...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : |𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← QObf5(1

𝜆, |𝜓⟩)
]︁
,

where 𝐷’s input includes the key 𝑘 sampled by QObf4,QObf5.

Proof. In QObf4, we have that

F𝑖[𝑤
](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1) ∈ {𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑅[𝑘,𝑤](̃︀𝑣1, . . . , ̃︀𝑣𝑖)),⊥},

while in QObf5, we have that

FSim𝑖[𝑤
*](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1) ∈ {𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0),⊥}.

Both implementations of the oracles will always output ⊥ on the same set of inputs, since this
is true of Dec𝑘,·,·(·) and Ver𝑘,·,·(·) by definition. Finally, their non-⊥ answers are identically dis-
tributed over the randomness of the random oracle 𝐻 , since each (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)
fixes a single choice of bit𝑅[𝑘,𝑤*](̃︀𝑣1, . . . , ̃︀𝑣𝑖) ∈ {0, 1}, and for any (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1),

𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 0) and 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 1)
are identically distributed (each is a uniformly random string).

Claim 7.5. For any QPQ distinguisher 𝐷 and any 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that⃒⃒⃒⃒
E
[︁⃦⃦
𝐷F1[𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← QObf3(1

𝜆, |𝜓⟩)
]︁

− E
[︁⃦⃦
𝐷F1[𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← QObf4(1

𝜆, |𝜓⟩)
]︁ ⃒⃒⃒⃒

= 2−Ω(𝜅),

where 𝐷’s input includes the key 𝑘 sampled by QObf3,QObf4.

55

Proof. Observe that the oracles F𝑖[𝑤*] in these experiments are identical except for on inputs

(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)
such that there exists an 𝜄 ∈ [𝑖− 1] with

ℓ𝜄 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1−𝑅[𝑘,𝑤*](̃︀𝑣1, . . . , ̃︀𝑣𝜄)).
However, the oracles F𝑖[𝑤

*] in QObf4 are defined to never output such an ℓ𝜄, and thus such an
input can only be guessed with probability 2−𝜅 over the randomness of 𝐻 . The claim follows by
applying Lemma 3.6 (a standard oracle hybrid argument).

Next, we combine what we have shown so far - the hardness of mapping between Π[𝑤*] and
Π[¬𝑤*] in QObf5 and the indistinguishability of QObf3 and QObf5 - to show the indistinguishabil-
ity of QObf2 and QObf3 (in the case where the 𝑊 wires are collapsed to some 𝑤*).

Claim 7.6. For any QPQ distinguisher 𝐷 and any 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that⃒⃒⃒⃒
E
[︁⃦⃦
𝐷F1,...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QObf2(1

𝜆, |𝜓⟩)
]︁

− E
[︁⃦⃦
𝐷F1[𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← QObf3(1

𝜆, |𝜓⟩)
]︁ ⃒⃒⃒⃒

= 2−Ω(𝜅),

where 𝐷’s input includes the key 𝑘 sampled by QObf2,QObf3.

Proof. Observe that the oracles F𝑖,F𝑖[𝑤*] in these experiments are identical except for on inputs

(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)
such that ̃︀𝑤𝑖 ∈ 𝑃 [¬𝑤*𝑖]. By combining the previous three claims, we see that no QPQ adversary can
find such a ̃︀𝑤𝑖 in QObf3 except with probability 2−Ω(𝜅). The claim follows by applying Lemma 3.6
(a standard oracle hybrid argument).

Next, we state a direct corollary of these four claims, which is the hardness of mapping be-
tween Π[𝑤*] and Π[¬𝑤*] even in QObf2.

Corollary 7.7. For any QPQ unitary 𝑈 , and any 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that

E
[︁⃦⃦

Π[¬𝑤*𝑖]𝑈𝑂Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , 𝑂 ← QObf2(1
𝜆, |𝜓⟩)

]︁
= 2−Ω(𝜅).

Finally, we consider a sequence of hybrids beginning with the real obfuscation experiment
as described at the beginning of the proof, and ending with the simulated experiment using a
simulator that we define below.

• The real experiment:

ℋ0 = E
[︁⃦⃦
𝐷[𝐴]F1,...,G | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,G)← QObf0(1

𝜆, |𝜓⟩)
]︁

• Replace PRF with random oracle:

ℋ1 = E
[︁⃦⃦
𝐷[𝐴]F1,...,G | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,G)← QObf1(1

𝜆, |𝜓⟩)
]︁

56

• Simulate the G oracle:

ℋ2 = E
[︁⃦⃦
𝐷[𝐴]F1,...,GSim | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QObf2(1

𝜆, |𝜓⟩)
]︁

• Split | ̃︀𝜓⟩ into orthogonal components:

ℋ3 = E

[︃∑︁
𝑤*

⃦⃦
𝐷[𝐴]F1,...,GSimΠ[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QObf2(1

𝜆, |𝜓⟩)

]︃
.

• Hard-code the 𝑤* measurement results:

ℋ4 = E

[︃∑︁
𝑤*

⃦⃦
𝐷[𝐴]F1[𝑤*],...,GSimΠ[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← QObf3(1

𝜆, |𝜓⟩)

]︃
.

• Simulate the F1, . . . ,F𝑡 oracles:

ℋ5 = E

[︃∑︁
𝑤*

⃦⃦
𝐷[𝐴]FSim1,...,GSimΠ[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← QObf5(1

𝜆, |𝜓⟩)

]︃
.

• Put | ̃︀𝜓⟩ back together:

ℋ6 = E
[︁⃦⃦
𝐷[𝐴]FSim1,...,GSim | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← QObf5(1

𝜆, |𝜓⟩)
]︁
.

• Simulate the state:

ℋ7 = E
[︁⃦⃦
𝐷[𝐴]FSim1,...,GSim | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← QObf6(1

𝜆)
]︁
.

Now, we are ready to define the simulator Sim𝑄(1𝜆, 𝑛,𝑚,𝑚′) for our obfuscation scheme:

• Sample | ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← QObf6(1
𝜆).

• Output 𝐴FSim1,...,FSim𝑡,GSim | ̃︀𝜓⟩.
Thus, the simulated experiment is exactly

Pr
[︁
1← 𝐷

(︁
Sim𝑄

(︁
1𝜆, 𝑛,𝑚,𝑚′

)︁)︁]︁
= ℋ7.

The following set of claims then completes the proof.

Claim 7.8. |ℋ0 −ℋ1| = negl(𝜆).

Proof. This follows directly from the security of the PRF against quantum superposition-query
attacks.

Claim 7.9. |ℋ1 −ℋ2| = negl(𝜆).

57

Proof. Suppose that we sample | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,G)← QObf1(1
𝜆, |𝜓⟩), and then define the set

𝐵 = {(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) : G(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) /∈ {𝑄(𝑥),⊥}} .

Observe that the only difference between QObf1 and QObf2 is the definition of the oracles G,GSim,
and that these oracles are identical outside of the set 𝐵. Suppose for contradiction that the claim
is false. Then by Lemma 3.6 (which is a standard oracle hybrid argument), there must exist an
adversary that can find an input on which G and GSim differ with non-negligible probability. That
is, there exists a QPQ unitary 𝑈 such that

E
[︁⃦⃦

Π[𝐵]𝑈F1,...,GSim | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QObf2(1
𝜆, |𝜓⟩)

]︁
= 𝛿(𝜆)

for some 𝛿(𝜆) = non-negl(𝜆). Now, for each input 𝑥, define

𝐵[𝑥] := {(𝑥, ·) : (𝑥, ·) ∈ 𝐵}.

Then by a union bound, there must exist some 𝑥* ∈ {0, 1}𝑚 such that

E
[︁⃦⃦

Π [𝐵[𝑥*]]𝑈F1,...,F𝑡,GSim | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QObf2(1
𝜆, |𝜓⟩)

]︁
≥ 𝛿(𝜆) · 2−𝑚.

Next, define Coh-LMEval[𝑥*] to be the unitary that coherently applies the evaluation procedure
LMEval(𝑥*, ·, {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔) for the LM quantum program that we are obfuscat-
ing, and define

⃒⃒
𝜓′𝑥*
⟩︀
:= Coh-LMEval[𝑥*]† |𝑄(𝑥*)⟩⟨𝑄(𝑥*)|Coh-LMEval[𝑥*] |𝜓⟩ , |𝜓𝑥*⟩ :=

|𝜓′𝑥*⟩
‖ |𝜓′𝑥*⟩ ‖

.

That is, |𝜓𝑥*⟩ is the result of running the LM quantum program coherently on input 𝑥* and post-
selecting on obtaining the “correct” output 𝑄(𝑥*). By the 𝜖-pseudo-determinism of 𝑄 and Gentle
Measurement (Lemma 3.2), there is some 𝛿′(𝜆) = non-negl(𝜆) such that

E
[︁⃦⃦

Π[𝐵[𝑥*]]𝑈F1,...,GSim | ̃︀𝜓𝑥*⟩ ⃦⃦2 : | ̃︀𝜓𝑥*⟩ , (F1, . . . ,F𝑡,GSim)← QObf2(1
𝜆, |𝜓𝑥*⟩)

]︁
≥ 𝛿′(𝜆) · 2−𝑚 ≥ 𝛿′(𝜆) · 2−𝑛.

However, this violates Lemma 7.16 with 𝜏 = 0, which is proven in the following section. Indeed,
plugging in 𝜅 = 𝑛4, the lemma states that, for some constant 𝑐,

E
[︁⃦⃦

Π[𝐵[𝑥*]]𝑈F1,...,GSim | ̃︀𝜓𝑥*⟩ ⃦⃦2 : | ̃︀𝜓𝑥*⟩ , (F1, . . . ,F𝑡,GSim)← QObf2(1
𝜆, |𝜓𝑥*⟩)

]︁
= 23𝑛(𝑡+1)−𝑐𝑛4

= 2−Ω(𝑛2) < 𝛿′(𝜆) · 2−𝑛,

which gives us the contradiction.

Claim 7.10. |ℋ2 −ℋ3| ≤ 2−Ω(𝜅).

58

Proof.

|ℋ2 −ℋ3|

≤ 2𝑛 ·

⎡⎣ ∑︁
𝑤* ̸=𝑤′*

E
[︁⃦⃦

Π[𝑤′
*
]𝐷F1,...,GSim

1 Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QObf2(1
𝜆, |𝜓⟩)

]︁⎤⎦1/2

≤ 2𝑛 ·

[︃
2𝑛 ·

∑︁
𝑤*

E
[︁⃦⃦

Π[¬𝑤*]𝐷F1,...,GSim
1 Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QObf2(1

𝜆, |𝜓⟩)
]︁]︃1/2

≤ 22𝑛 · 2−Ω(𝜅) = 2−Ω(𝜅),

where the first inequality follows from Lemma 3.4 (which is an application of Cauchy-Schwarz)
and the third follows from Corollary 7.7 proven above.

Claim 7.11. |ℋ3 −ℋ4| = 2−Ω(𝜅).

Proof. This follows from Corollary 7.7 proven above and Lemma 3.6 (which is a standard oracle
hybrid argument).

Claim 7.12. |ℋ4 −ℋ5| = 2−Ω(𝜅).

Proof. This follows by combining Claim 7.5 and Claim 7.4 proven above.

Claim 7.13. |ℋ5 −ℋ6| ≤ 2−Ω(𝜅).

Proof.

|ℋ5 −ℋ6|

≤ 2𝑛 ·

⎡⎣ ∑︁
𝑤* ̸=𝑤′*

E
[︁⃦⃦

Π[𝑤′
*
]𝐷FSim1,...,GSim

1 Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ ,F1, . . . ,F𝑡,GSim← QObf5(1
𝜆, |𝜓⟩)

]︁⎤⎦1/2

≤ 2𝑛 ·

[︃
2𝑛 ·

∑︁
𝑤*

E
[︁⃦⃦

Π[¬𝑤*]𝐷FSim1,...,GSim
1 Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ ,F1, . . . ,F𝑡,GSim← QObf5(1

𝜆, |𝜓⟩)
]︁]︃1/2

≤ 22𝑛 · 2−Ω(𝜅) = 2−Ω(𝜅),

where the first inequality follows from Lemma 3.4 (which is an application of Cauchy-Schwarz)
and the third follows from Claim 7.3 proven above.

Claim 7.14. |ℋ6 −ℋ7| ≤ 2−Ω(𝜅).

Proof. This follows from privacy of the authentication scheme (Theorem 4.12), since the oracles in
ℋ6 can be implemented with oracle access to Ver𝑘,·,·(·) rather than Dec𝑘,·,·(·).

59

7.4 Inductive Argument

In this section, we give an inductive proof of Lemma 7.16, which was required by Claim 7.9 above.
First, we describe a variant of QObf that we call ParMeas, which supports hard-coding an input
𝑥* and the first 𝜏 partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏] into the oracles F1, . . . ,F𝑡. When these
results are hard-coded, the inputs ̃︀𝑣1, . . . , ̃︀𝑣𝜏 , ℓ1, . . . , ℓ𝜏 are merely verified rather than decoded by
the oracles F1, . . . ,F𝑡, and the hard-coded results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏] are used in place of the decoded
results.

We define the distribution to include two additional outputs:

• The set 𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]] contains the "bad" set of inputs that verify properly but decode to
an incorrect output 𝑄(𝑥*), when using the hard-coded values {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏].

• The set 𝐶[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]] contains the set of inputs on which the oracles would differ had
the latest measurement (𝑣*𝜏 , 𝑟*𝜏) not been hard-coded.

ParMeas(1𝜆, |𝜓⟩):
• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑥 ̸= 𝑥*, output F𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where F𝑖 is defined as in QObf.

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [min{𝜏, 𝑖− 1}], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
– If 𝑖 ≤ 𝜏 :

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) = ⊥.

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟
*
𝑖), and output (ℓ𝑖, ̃︀𝑣𝑖).

– If 𝑖 > 𝜏 :

* For each 𝜄 ∈ [𝜏 + 1, 𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉1,...,𝑉𝜏](̃︀𝑣1, . . . , ̃︀𝑣𝜏) = ⊥.

* Compute (𝑣𝜏+1, . . . , 𝑣𝑖, 𝑤𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉𝜏+1,...,𝑉𝑖,𝑊𝑖](̃︀𝑣𝜏+1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖), and output ⊥ if
the result is ⊥.

* Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟*1 ,...,𝑟*𝜏 ,𝑟𝜏+1,...,𝑟𝑖−1

𝑖 (𝑣*1 , . . . , 𝑣
*
𝜏 , 𝑣𝜏+1, . . . , 𝑣𝑖, 𝑤𝑖).

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (ℓ𝑖, ̃︀𝑣𝑖).
• Define GSim as in QObf2.

• Let 𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]] be the set of (𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) such that the output of the following
procedure is /∈ {𝑄(𝑥),⊥}:

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑡], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. If 𝜄 > 𝜏 , let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

60

– Output ⊥ if Ver𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1[𝑉1,...,𝑉𝜏](̃︀𝑣1, . . . , ̃︀𝑣𝜏) = ⊥.

– Compute (𝑣𝜏+1, . . . , 𝑣𝑡+1) = Dec𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1[𝑉𝜏+1,...,𝑉𝑡+1](̃︀𝑣𝜏+1, . . . , ̃︀𝑣𝑡+1), and output ⊥ if the
result is ⊥.

– Output 𝑔𝑥,𝑟
*
1 ,...,𝑟*𝜏 ,𝑟𝜏+1,...,𝑟𝑡(𝑣*1 , . . . , 𝑣

*
𝜏 , 𝑣𝜏+1, . . . , 𝑣𝑡+1).

• Let 𝐶[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]] be the set that includes, for any 𝑖 ∈ [𝜏], all (𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1) such
that

F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]](𝑥

, 𝜎𝑥 , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)

̸= F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]](𝑥

, 𝜎𝑥 , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1),

and all (𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) such that

(𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) ∈ 𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]] ∖𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]].

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1[·], . . . ,F𝑡[·],GSim) , 𝐵[·], 𝐶[·].

We now make a few remarks.

• Throughout the remainder of the proof, we will be working with fully-deterministic LM quan-
tum programs for a given input 𝑥*, i.e.

Pr
[︀
LMEval(𝑥*, |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡+1], 𝑔)→ 𝑄(𝑥*)

]︀
= 1.

Indeed, recall that we performed a post-selection on the correct outcome 𝑄(𝑥*) during the
proof of Claim 7.9 above.

• Whenever we reference an input 𝑥* and partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], we always
mean measurement results that occur with non-zero probability, i.e. they are in the support
of the partial evaluation of |𝜓⟩ on input 𝑥*.

• For 𝜏 = 0 (i.e. no partial measurements), the above distribution ParMeas is identical to QObf2
augmented with the set 𝐵[𝑥*] as defined in the proof of Claim 7.9 (and 𝐶[𝑥*] is undefined in
this case since it requires 𝜏 ≥ 1).

• For any input 𝑥* and full set of measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝑡+1], the set𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝑡+1]]
is empty, by virtue of the fact that these measurement results occur with non-zero probabil-
ity, and the program outputs 𝑄(𝑥*) with probability 1.

• In the remainder of the proof, we will make use of the notation
⃒⃒
𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]

⟩︀
as defined

in Section 7.2.

Before proving the main inductive lemma of this section, we show the following statement,
which essentially says that it is hard to find an element of

𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]] ∖𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]

given the authenticated version of
⃒⃒
𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]

⟩︀
and the oracles with 𝑥* and {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]

hard-coded. The meat of this proof is actually deferred to the following section, in which we
prove the "hardness of mapping" lemma, Lemma 7.24.

61

Lemma 7.15. For any input 𝑥*, 𝜏 ∈ [1, . . . , 𝑡 + 1], measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and QPQ unitary
𝑈 , it holds that

⃒⃒⃒⃒
E
[︁⃦⃦

Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏−1]],...,F𝑡[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏−1]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁

− E
[︁⃦⃦

Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],...,F𝑡[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁ ⃒⃒⃒⃒ ≤ 2−Ω(𝜅),

where both expectations are over

| ̃︀𝜓⟩ , (F1[·],F𝑡[·],GSim), 𝐵[·], 𝐶[·]← ParMeas(1𝜆,
⃒⃒
𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]

⟩︀
).

Proof. Note that the set 𝐶[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]] includes all elements of

𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]] ∖𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]

and all inputs on which F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]] and F𝑖[𝑥

*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]] differ for any 𝑖 ∈ [𝑡]. Thus, by
Lemma 3.6 (a standard oracle hybrid argument) it suffices to show that

E
[︁⃦⃦

Π
[︀
𝐶
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],...,F𝑡[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁ ≤ 2−Ω(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim), 𝐵[·], 𝐶[·]← ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

Now we consider all possible elements of the set 𝐶[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]. By inspecting the defini-
tion, we see that any element of 𝐶[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]] must fall into one of the following categories:

• An input to F𝜏 [𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]] that contains a sub-string (̃︀𝑣𝜏 , ̃︀𝑤𝜏) such that

𝑓
𝑥*,𝑟*1 ,...,𝑟

*
𝜏−1

𝜏 (𝑣*1, . . . , 𝑣
*
𝜏−1,Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏 ,𝑊𝜏](̃︀𝑣𝜏 , ̃︀𝑤𝜏)) = (·, 1− 𝑟*𝜏),

where Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏 ,𝑊𝜏](̃︀𝑣𝜏 , ̃︀𝑤𝜏) = (𝑣𝜏 , 𝑤𝜏) ̸= ⊥.

• An input to F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]] for 𝑖 > 𝜏 or an element of𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]]∖𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]

that contains either:

– ̃︀𝑣𝜏 such that Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏](̃︀𝑣𝜏) /∈ {𝑣*𝜏 ,⊥}, or

– ℓ𝜏 such that ℓ𝜏 = 𝐻(. . . , 1− 𝑟*𝜏).

First, notice that by definition, the oracles F1[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]], . . . ,F𝑡[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]],GSim never
output a label𝐻(. . . , 1−𝑟*𝜏). Thus, 𝑈 can only successfully guess an ℓ𝜏 such that ℓ𝜏 = 𝐻(. . . , 1−𝑟*𝜏)
with probability 2−𝜅 over the randomness of the random oracle.

Now, define Π[¬𝑟*𝜏] to be the projection onto strings (̃︀𝑣𝜏 , ̃︀𝑤𝜏) such that

𝑓
𝑥*,𝑟*1 ,...,𝑟

*
𝜏−1

𝜏 (𝑣*1, . . . , 𝑣
*
𝜏−1,Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏 ,𝑊𝜏](̃︀𝑣𝜏 , ̃︀𝑤𝜏)) = (·, 1− 𝑟*𝜏),

62

where Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏 ,𝑊𝜏](̃︀𝑣𝜏 , ̃︀𝑤𝜏) = (𝑣𝜏 , 𝑤𝜏) ̸= ⊥, and define Π[¬𝑣*𝜏] to be the projection onto
strings ̃︀𝑣𝜏 such that

Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏](̃︀𝑣𝜏) /∈ {𝑣*𝜏 ,⊥}.
Then, define

Π[¬(𝑣*𝜏 , 𝑟*𝜏)] := Π[¬𝑟*𝜏] + Π[¬𝑣*𝜏].

Finally, given the sampled signature token verification key vk, define the projector onto valid
signatures of 𝑥*:

Π[𝑥*, vk] :=
∑︁

𝜎:TokVer(vk,𝑥*,𝜎)=⊤

|𝜎⟩⟨𝜎| ,

and note that any element of 𝐶
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]

]︀
must include a valid signature of 𝑥*.

Now, by the preceding observations, we have that

E
[︁⃦⃦

Π
[︀
𝐶
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],...,F𝑡[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁

≤ E
[︁⃦⃦

(Π[𝑥*, vk]⊗Π[¬(𝑣*𝜏 , 𝑟*𝜏)])𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],...,F𝑡[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁+ 2−Ω(𝜅)

≤ 2−Ω(𝜅),

where the first inequality is due to the observation that ℓ𝜏 such that ℓ𝜏 = 𝐻(. . . , 1−𝑟*𝜏) can only be
guessed with probability 2−𝜅, and the second inequality is Lemma 7.24 proven in the next section.
This completes the proof.

Now, we show the main lemma of the section.

Lemma 7.16. There exist a constant 𝑐 > 0 such that for any input 𝑥*, 𝜏 ∈ [0, . . . , 𝑡 + 1], measurement
results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and QPQ unitary 𝑈 , it holds that

E
[︁⃦⃦

Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],...,F𝑡[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁ ≤ 23𝑛(𝑡+1−𝜏)−𝑐𝜅,

where the expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim), 𝐵[·], 𝐶[·]← ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

Proof. We will show this by induction on 𝜏 , starting with 𝜏 = 𝑡 + 1 and ending with 𝜏 = 0. The
base case (𝜏 = 𝑡+ 1) is trivial because the set 𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝑡+1]] is empty, as noted above.

Now, we will let 𝑐 be a constant such that 2−𝑐𝜅 is an upper bound on the expression in the state-
ment of Lemma 7.15. For the inductive step, suppose that Lemma 7.16 holds for some 𝜏 ∈ [𝑡+ 1].
Consider any 𝑥* and measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and define the following two distributions
over | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim), 𝐵[·] (dropping the set 𝐶[·] since we don’t need it for this proof):

• 𝒟 : ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]]⟩).

• 𝒟[𝑣*𝜏 , 𝑟*𝜏] : ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

63

To show that Lemma 7.16 holds for 𝜏 − 1, we have that

E
| ̃︀𝜓⟩,(F1[·],...,F𝑡[·],GSim),𝐵[·]←𝒟

[︁⃦⃦
Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏−1]],...,GSim | ̃︀𝜓⟩ ⃦⃦2]︁

≤ 2𝑛 ·
∑︁
𝑣*𝜏 ,𝑟

*
𝜏

E
| ̃︀𝜓⟩,(F1[·],...,F𝑡[·],GSim),

𝐵[·]←𝒟[𝑣*𝜏 ,𝑟*𝜏]

[︁⃦⃦
Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏−1]],...,GSim | ̃︀𝜓⟩ ⃦⃦2]︁

≤ 2𝑛 ·
∑︁
𝑣*𝜏 ,𝑟

*
𝜏

E
| ̃︀𝜓⟩,(F1[·],...,F𝑡[·],GSim),

𝐵[·]←𝒟[𝑣*𝜏 ,𝑟*𝜏]

[︁⃦⃦
Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],...,GSim | ̃︀𝜓⟩ ⃦⃦2]︁+ 22𝑛−𝑐𝜅

≤ 22𝑛+3𝑛(𝑡+1−𝜏)−𝑐𝜅 + 22𝑛−𝑐𝜅

≤ 23𝑛(𝑡+1−(𝜏−1))−𝑐𝜅−𝑛 + 22𝑛−𝑐𝜅

≤ 23𝑛(𝑡+1−(𝜏−1))−𝑐𝜅,

where

• The first inequality follows from Lemma 3.5 (an application of Cauchy-Schwarz).

• The second inequality follows from Lemma 7.15 proven above.

• The third inequality follows from Lemma 7.16 for 𝜏 (the induction hypothesis).

• The final inequality follows because the two summands can each be bounded by the quantity
23𝑛(𝑡+1−(𝜏−1))−𝑐𝜅−1.

7.5 Hardness of Mapping

Our final step is to prove the "hardness of mapping" lemma, Lemma 7.24, that was required for
Lemma 7.15 above. But first, we will need to introduce some "partial simulation" hybrid distribu-
tions ParSim𝑖. We let ParSim0 = ParMeas as defined in the preceding section. We will change the
distribution gradually until it corresponds to a simulated distribution, equivalent to QObf5 from
Section 7.3.

ParSim1(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], {𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑥 ̸= 𝑥*, output F𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where F𝑖 is defined as in QObf.

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [min{𝜏, 𝑖− 1}], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.

64

– If 𝑖 ≤ 𝜏 :

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) = ⊥.

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟
*
𝑖), and output (ℓ𝑖, ̃︀𝑣𝑖).

– If 𝑖 > 𝜏 :

* For each 𝜄 ∈ [𝜏 + 1, 𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉1,...,𝑉𝜏 ,𝑊𝑖](̃︀𝑣1, . . . , ̃︀𝑣𝜏 , ̃︀𝑤𝑖) = ⊥.

* Compute (𝑣𝜏+1, . . . , 𝑣𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉𝜏+1,...,𝑉𝑖](̃︀𝑣𝜏+1, . . . , ̃︀𝑣𝑖), and output ⊥ if the result
is ⊥.

* Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟*1 ,...,𝑟*𝜏 ,𝑟𝜏+1,...,𝑟𝑖−1

𝑖 (𝑣*1 , . . . , 𝑣
*
𝜏 , 𝑣𝜏+1, . . . , 𝑣𝑖, 𝑤

*
𝑖).

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (ℓ𝑖, ̃︀𝑣𝑖).
• Define GSim as in QObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1[·], . . . ,F𝑡[·],GSim) .

ParSim2(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], {𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑥 ̸= 𝑥*, output F𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where F𝑖 is defined as in QObf.

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
– If 𝑖 ≤ 𝜏 :

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) = ⊥.

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟
*
𝑖), and output (ℓ𝑖, ̃︀𝑣𝑖).

– If 𝑖 > 𝜏 :

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉1,...,𝑉𝜏 ,𝑊𝑖](̃︀𝑣1, . . . , ̃︀𝑣𝜏 , ̃︀𝑤𝑖) = ⊥.

* Compute (𝑣𝜏+1, . . . , 𝑣𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉𝜏+1,...,𝑉𝑖](̃︀𝑣𝜏+1, . . . , ̃︀𝑣𝑖), and output ⊥ if the result
is ⊥.

* For 𝜄 ∈ [𝜏 + 1, 𝑖], compute (·, 𝑟𝜄) = 𝑓
𝑥,𝑟*1 ,...,𝑟*𝜏 ,𝑟𝜏+1,...,𝑟𝜄−1
𝜄 (𝑣*1 , . . . , 𝑣

*
𝜏 , 𝑣𝜏+1, . . . , 𝑣𝜄, 𝑤

*
𝜄).

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (ℓ𝑖, ̃︀𝑣𝑖).
• Define GSim as in QObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1[·], . . . ,F𝑡[·],GSim) .

ParSim3(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

65

• For each 𝑖 ∈ [𝑡], define the function FSim𝑖[𝑥
*](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑥 ̸= 𝑥*, output F𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where F𝑖 is defined as in QObf.

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
– Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) = ⊥.

– Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0), and output (̃︀𝑣𝑖, ℓ𝑖).
• Define GSim as in QObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1[·], . . . ,FSim𝑡[·],GSim) .

ParSim4(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function FSim𝑖[𝑥
, 𝑤](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑥 = 𝑥*, output FSim𝑖(𝑥
, 𝜎𝑥 , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where FSim𝑖 is defined as in QObf5.

– If 𝑥 ̸= 𝑥*, output FSim𝑖[𝑤
*](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where FSim𝑖[𝑤

*] is defined as in
QObf4.

• Define GSim as in QObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1[·], . . . ,FSim𝑡[·],GSim) .

ParSim5(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function FSim𝑖 as in QObf5.

• Define GSim as in QObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1, . . . ,FSim𝑡,GSim) .

Next, before proving the main lemma (Lemma 7.24) of this section, which involves ParMeas0,
we prove several claims about these hybrid distributions, which will allow us to use the properties
of simulated distributions when proving Lemma 7.24. We will essentially "work backwards" from
ParSim5 to ParSim0 in order to show the sequence of indistinguishability claims we will need.
Whenever we write {𝑤*𝑖 }𝑖∈[𝑆] for some set 𝑆 ⊆ [𝑡], we parse each 𝑤*𝑖 ∈ {0, 1}|𝑊𝑖|.

First, we confirm that the mapping hardness claims we’ll need hold in the fully simulated case
of ParSim5.

Claim 7.17. For any QPQ unitary 𝑈 , input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and 𝑤* =
{𝑤*𝑖 }𝑖∈[𝑡], it holds that

E
[︁⃦⃦

Π[¬𝑤*]𝑈𝑂Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , 𝑂 ← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩)

]︁
= 2−Ω(𝜅)

66

and

E
[︁⃦⃦

Π[¬(𝑣*𝜏 , 𝑟*𝜏)]𝑈𝑂Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , 𝑂 ← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩)

]︁
= 2−Ω(𝜅),

where Π[¬(𝑣*𝜏 , 𝑟*𝜏)] is defined in the proof of Lemma 7.15.

Proof. The key point is that in QObf5, none of the oracles FSim1, . . . ,FSim𝑡,GSim require access to
the decryption oracle Dec𝑘,·,·(·) for the authentication scheme. Rather, they can be implemented
just given access to the verification oracle Ver𝑘,·,·(·). Thus, these claims follow directly from the
security of the authentication scheme (Theorem 4.9), and in particular that it satisfies Definition 4.4
(mapping security). Note that in the second claim, we only collapse the wires {𝑊𝑖}𝑖∈[𝜏+1,𝑡], that is,
the𝑊 wires after level 𝜏 , which are disjoint from (𝑉𝜏 ,𝑊𝜏). The claim could have been trivially false
if we had collapsed the wires in (𝑉𝜏 ,𝑊𝜏), in particular to an outcome different from (𝑣*𝜏 , 𝑟

*
𝜏).

The next two claims establish the indistinguishability of ParSim3,ParSim4, and ParSim5 in the
case when all of the 𝑊 wires have been collapsed to some value 𝑤*.

Claim 7.18. For any (unbounded) distinguisher 𝐷, input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏],
and 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that

E
[︁⃦⃦
𝐷FSim1[𝑥*,𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1[·], . . . ,GSim)← ParSim4(1

𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩)
]︁

= E
[︁⃦⃦
𝐷FSim1,...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1, . . . ,GSim)← ParSim5(1

𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩)
]︁
.

where 𝐷’s input includes the key 𝑘 sampled by ParSim4,ParSim5.

Proof. The proof is exactly the same as the proof of Claim 7.4, except that here we are only switch-
ing oracle inputs on 𝑥 ̸= 𝑥* rather than all 𝑥.

Claim 7.19. For any QPQ distinguisher 𝐷, input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and 𝑤* =
{𝑤*𝑖 }𝑖∈[𝑡], it holds that⃒⃒⃒⃒
E
[︁⃦⃦
𝐷FSim1[𝑥*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1[·], . . . ,GSim)← ParSim3(1

𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩)
]︁

− E
[︁⃦⃦
𝐷FSim1[𝑥*,𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1[·], . . . ,GSim)← ParSim4(1

𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩)
]︁ ⃒⃒⃒⃒

= 2−Ω(𝜅),

where 𝐷’s input includes the key 𝑘 sampled by ParSim3,ParSim4.

Proof. The proof is exacly the same as the proof of Claim 7.5, except that here we are only switching
oracle inputs on 𝑥 ̸= 𝑥* rather than all 𝑥.

This next claim shows that in ParSim3, it is hard to map wires 𝑊𝜏+1, . . . ,𝑊𝑡 collapsed to
𝑤*𝜏+1, . . . , 𝑤

*
𝑡 to an outcome different from 𝑤*𝜏+1, . . . , 𝑤

*
𝑡 .

67

Claim 7.20. For any QPQ unitary𝑈 , input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and {𝑤*𝑖 }𝑖∈[𝜏+1,𝑡],
it holds that

E
[︁⃦⃦

Π[¬{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]]𝑈
FSim1[𝑥*],...,GSimΠ[{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2]︁ = 2−Ω(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

Proof. We write EParSim3 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

we write EParSim5 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1, . . . ,GSim)← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

and, given {𝑤*𝜄 }𝜄∈[𝜏], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡], we write 𝑤* = {𝑤*𝜄 }𝜄∈[𝜏] ∪ {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]. Then,

E
ParSim3

[︁⃦⃦
Π[¬{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]]𝑈

FSim1[𝑥*],...,GSimΠ[{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2]︁
≤ 2𝑛 ·

∑︁
{𝑤*

𝜄 }𝜄∈[𝜏]

E
ParSim3

[︁⃦⃦
Π[¬{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]]𝑈

FSim1[𝑥*],...,GSimΠ[𝑤*] | ̃︀𝜓⟩ ⃦⃦2]︁
≤ 2𝑛 ·

∑︁
{𝑤*

𝜄 }𝜄∈[𝜏]

E
ParSim5

[︁⃦⃦
Π[¬{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]]𝑈

FSim1,...,GSimΠ[𝑤*] | ̃︀𝜓⟩ ⃦⃦2]︁+ 2𝑛 · 2−Ω(𝜅)

= 2−Ω(𝜅)

where

• The first inequality follows from Lemma 3.5 (an application of Cauchy-Schwarz).

• The second inequality follows by combining Claim 7.19 and Claim 7.18 proven above.

• The third inequality follows from Claim 7.17 proven above.

In the proof of the next two claims, we will use the following notation. Fix a key 𝑘, input 𝑥*,
partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and {𝑤*𝜄 }𝑖∈[𝜏+1,𝑡], and define the following function:

𝑅[𝑘, 𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] : (̃︀𝑣1, . . . , ̃︀𝑣𝑖)→ 𝑟𝑖

• If 𝑖 ≤ 𝜏 , output 𝑟*𝑖 .

• Otherwise, compute (𝑣𝜏+1, . . . , 𝑣𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉𝜏+1,...,𝑉𝑖](̃︀𝑣𝜏+1, . . . , ̃︀𝑣𝑖), and output⊥ if the
result is ⊥.

• For 𝜄 ∈ [𝜏 + 1, 𝑖], compute (·, 𝑟𝜄) = 𝑓
𝑥*,𝑟*1 ,...,𝑟

*
𝜏 ,𝑟𝜏+1,...,𝑟𝜄−1

𝜄 (𝑣*1, . . . , 𝑣
*
𝜏 , 𝑣𝜏+1, . . . , 𝑣𝜄, 𝑤

*
𝜄).

68

• Output 𝑟𝑖.

This function determines the bit 𝑟𝑖 when 𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡] have been hard-
coded into the oracles in ParSim2. We will use it when showing indistinguishability between
ParSim1,ParSim2, and ParSim3 in the case when the 𝑊𝜏+1, . . . ,𝑊𝑡 wires of the input state have
been collapsed to outcome 𝑤*𝜏+1, . . . , 𝑤

*
𝑡 .

Claim 7.21. For any (unbounded) distinguisher 𝐷, input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏],
and {𝑤*𝜄 }𝑖∈[𝜏+1,𝑡], it holds that

E
[︁⃦⃦
𝐷F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏],{𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSim
(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁

= E
[︁⃦⃦
𝐷FSim1[𝑥*],...,GSim

(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁ ,

where the first expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim2(1
𝜆,
⃒⃒
𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]

⟩︀
),

the second expectation is over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆,
⃒⃒
𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]

⟩︀
),

and 𝐷’s input includes the keys 𝑘, vk sampled by ParSim2,ParSim3.

Proof. In ParSim2, we have that for inputs that begin with 𝑥*,

F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]](𝑥

, 𝜎𝑥 , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)
∈ {𝐻(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑅[𝑘, 𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]](̃︀𝑣1, . . . , ̃︀𝑣𝑖)),⊥},

while in ParSim3, we have that for inputs that begin with 𝑥*,

FSim𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]](𝑥

, 𝜎𝑥 , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)
∈ {𝐻(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0),⊥}.

Both implementations of the oracles are identical on inputs 𝑥 ̸= 𝑥*, and both will always out-
put ⊥ on the same set of inputs, since this is true of Dec𝑘,·,·(·) and Ver𝑘,·,·(·) by definition. Finally,
their non-⊥ answers on inputs that begin with 𝑥* are identically distributed over the randomness
of the random oracle 𝐻 , since each (𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1) fixes a single choice of bit

𝑅[𝑘, 𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]](̃︀𝑣1, . . . , ̃︀𝑣𝑖).
Indeed, for any (𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1),

𝐻(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 0) and 𝐻(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 1)
are identically distributed (each is a uniformly random string).

69

Claim 7.22. For any QPQ distinguisher 𝐷, input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and
{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡], it holds that⃒⃒⃒⃒

E
[︁⃦⃦
𝐷F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏],{𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSim
(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁

− E
[︁⃦⃦
𝐷F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏],{𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSim
(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁ ⃒⃒⃒⃒ = 2−Ω(𝜅),

where the first expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim1(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

and the second expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim2(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

and 𝐷’s input includes the keys 𝑘, vk sampled by ParSim1,ParSim2.

Proof. Observe that the oracles F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] in these experiments are identical

except for on inputs
(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)

such that there exists an 𝜄 ∈ [𝑖− 1] with

ℓ𝜄 = 𝐻(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1−𝑅[𝑘, 𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]](̃︀𝑣1, . . . , ̃︀𝑣𝜄)).
However, the oracles F𝑖[𝑥

*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] in ParSim2 are defined to never output such
an ℓ𝜄, and thus such an input can only be guessed with probability 2−𝜅 over the randomness of 𝐻 .
The claim follows by applying Lemma 3.6 (a standard oracle hybrid argument).

Now, in our final claim before the main lemma of this section, we combine what we have
shown so far to establish the indistinguishability of ParSim0 and ParSim1 in the case when the
𝑊𝜏+1, . . . ,𝑊𝑡 wires of the input state have been collapsed to some outcome 𝑤*𝜏+1, . . . , 𝑤

*
𝑡 .

Claim 7.23. For any QPQ distinguisher 𝐷, input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and
{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡], it holds that⃒⃒⃒⃒

E
[︁⃦⃦
𝐷F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],...,GSim

(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁

− E
[︁⃦⃦
𝐷F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏],{𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSim
(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁ ⃒⃒⃒⃒ = 2−Ω(𝜅),

where the first expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim0(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

the second expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim1(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

and 𝐷’s input includes the keys 𝑘, vk sampled by ParSim0,ParSim1.

70

Proof. Observe that the oracles in these experiments are identical except for on inputs that include
a ̃︀𝑤𝑖 ∈ 𝑃 [¬𝑤*𝑖] for some 𝑖 ∈ [𝜏 + 1, 𝑡]. Thus, by Lemma 3.6 (a standard oracle hybrid argument), it
suffices to show that for any QPQ unitary 𝑈 ,

E
[︁
Π[¬{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]]𝑈

F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏],{𝑤*
𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSimΠ[{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]] | ̃︀𝜓⟩]︁ = 2−Ω(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim1(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

Write EParSim1 as shorthand for the expectation over

| ̃︀𝜓⟩ , (F1[·], . . . ,FSim𝑡[·],GSim)← ParSim1(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

and write EParSim3 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

Then,

E
ParSim1

[︁
Π[¬{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]]𝑈

F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏],{𝑤*
𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSimΠ[{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]] | ̃︀𝜓⟩]︁

≤ E
ParSim3

[︁
Π[¬{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]]𝑈

FSim1[𝑥*],...,GSimΠ[{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]] | ̃︀𝜓⟩]︁+ 2−Ω(𝜅)

≤ 2−Ω(𝜅),

where the first inequality follows by combining Claim 7.22 and Claim 7.21, and the second
inequality follows from Claim 7.20, all proven above.

Now, we prove the main lemma of this section. The proof of Lemma 7.24 combines some
claims proven above with Lemma 7.25 that follows. Lemma 7.25 is a similar claim but with respect
to ParSim3 instead of ParSim0.

Lemma 7.24. For any QPQ unitary 𝑈 , input 𝑥*, and partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], it holds
that

E
[︁⃦⃦

(Π[𝑥*, vk]⊗Π[¬(𝑣*𝜏 , 𝑟*𝜏)])𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],...,GSim | ̃︀𝜓⟩ ⃦⃦2]︁ = 2−Ω(𝜅),

where the projectors are defined as in the proof of Lemma 7.15, and the expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

which, recall, is defined to be the same as

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim0(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

Proof. Write EParSim0 as shorthand for the expectation over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim1(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

71

and write EParSim3 as shorthard for the expectation over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

Then,

E
ParSim0

[︁⃦⃦
(Π[𝑥*, vk]⊗Π[¬(𝑣*𝜏 , 𝑟*𝜏)])𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],...,GSim | ̃︀𝜓⟩ ⃦⃦2]︁

≤ 2𝑛 ·
∑︁

{𝑤*
𝜄 }𝜄∈[𝜏+1,𝑡]

E
ParSim0

[︁⃦⃦
(Π[𝑥*, vk]⊗Π[¬(𝑣*𝜏 , 𝑟*𝜏)])𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏]],...,GSimΠ[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2]︁

≤ 2𝑛 ·
∑︁

{𝑤*
𝜄 }𝜄∈[𝜏+1,𝑡]

E
ParSim3

[︁⃦⃦
(Π[𝑥*, vk]⊗Π[¬(𝑣*𝜏 , 𝑟*𝜏)])𝑈FSim1[𝑥*],...,GSimΠ[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2]︁+ 2−Ω(𝜅)

≤ 2−Ω(𝜅),

where

• The first inequality follows from Lemma 3.5 (an application of Cauchy-Schwarz).

• The second inequality follows from combining Claim 7.23, Claim 7.22, and Claim 7.21 proven
above.

• The third inequality follows from Lemma 7.25 proven below.

We finally complete the proof of security of our obfuscation scheme with the following lemma.
An overview of the techniques involved in this proof, which include extraction via a purified
random oracle, is given in Section 7.1.

Lemma 7.25. For any QPQ unitary𝑈 , input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡],
it holds that

E
[︁⃦⃦

(Π[𝑥*, vk]⊗Π[¬(𝑣*𝜏 , 𝑟*𝜏)])𝑈FSim1[𝑥*],...,GSimΠ[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2]︁ = 2−Ω(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

Proof. Recall that the oracles FSim1[𝑥
*], . . . ,FSim𝑡[𝑥

*],GSim output by ParSim3 internally make use
of a random oracle 𝐻 : {0, 1}* → {0, 1}𝜅, and let 𝐾 = poly(𝜆) be an upper bound on the length of
strings that 𝐻 takes as input.

We will purify the random oracle 𝐻 , introducing an oracle register 𝒟 := {𝒟𝑎}𝑎∈{0,1}𝐾 , where
each 𝒟𝑎 is a 𝜅-qubit register. Define |+𝜅⟩ to be the uniform superposition over all 𝜅-bit strings,
and define |+𝐻⟩𝒟 := |+𝜅⟩⊗{𝒟𝑎}𝑎∈{0,1}𝐾 to be the uniform superposition over all random oracles 𝐻 .
Finally, let 𝐴[̸= 𝑥*] := {𝑎 ∈ {0, 1}𝐾 : 𝑎 = (𝑥, ·) for 𝑥 ̸= 𝑥*} be the set of all random oracle inputs /
sub-registers of 𝒟 that do not start with 𝑥*.

72

Now, the purified random oracle begins by initializing 𝒟 to the state |+𝐻⟩. Each time a query
to 𝐻 is made on input register 𝒜 and output register ℬ, we apply a unitary defined by the map

|𝑎⟩𝒜 |𝑏⟩ℬ |𝐻⟩𝒟 → |𝑎⟩
(︀
CNOT⊗𝜅

)︀𝒟𝑎,ℬ |𝑏⟩ℬ |𝐻⟩𝒟 .

For the rest of this proof, we will implement oracle queries to 𝐻 using this purified procedure,
and explicitly introduce the register 𝒟, initialized to |+𝐻⟩, in our expressions.

The central claim we need is the following, which shows that is is hard to map onto Π[¬(𝑣*𝜏 , 𝑟*𝜏)]
without disturbing the random oracle registers {𝒟𝑎}𝑎∈𝐴[̸=𝑥*]. In other words, at any point at which
the adversary’s state has some overlap with Π[¬(𝑣*𝜏 , 𝑟*𝜏)], it must be the case that the adversary
currently holds some information about a random oracle output at (𝑥, . . .) for some 𝑥 ̸= 𝑥*.

Claim 7.26. For any QPQ unitary𝑈 , input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏], and {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡],
it holds that

E
[︁⃦⃦ (︁

Π[¬(𝑣*𝜏 , 𝑟*𝜏)]⊗ |+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]
)︁
𝑈FSim1[𝑥*],...,GSim | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦2]︁
= 2−Ω(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

and
| ̃︀𝜓*⟩ := Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ .

Proof. First, consider the following distribution, which essentially toggles between ParSim4 and
ParSim5.

Sim[𝑥*](1𝜆, |𝜓⟩):
• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function FSim𝑖[𝑥
*][𝑧](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑧 = ∅, output FSim𝑖(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where FSim𝑖 is defined as in QObf5.

– Otherwise, if 𝑧 = 𝑤*:

* If 𝑥 = 𝑥*, output FSim𝑖(𝑥
, 𝜎𝑥 , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1).

* If 𝑥 ̸= 𝑥*, output FSim𝑖[𝑤
*](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where FSim𝑖[𝑤

*] is defined as
in QObf4.

• Define GSim as in QObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1[𝑥
*][·], . . . ,FSim𝑡[𝑥

*][·],GSim) .

Indeed, observe that

| ̃︀𝜓⟩ , (FSim1[𝑥
][𝑤], . . . ,FSim𝑡[𝑥

][𝑤],GSim)← Sim[𝑥*](1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩)

is equivalent to

| ̃︀𝜓⟩ , (FSim1[𝑥
, 𝑤], . . . ,FSim𝑡[𝑥

, 𝑤],GSim)← ParSim4(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

73

while
| ̃︀𝜓⟩ , (FSim1[𝑥

*][∅], . . . ,FSim𝑡[𝑥
][∅],GSim)← Sim[𝑥](1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩)

is equivalent to

| ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

Next, recall the definition of 𝑅[𝑘,𝑤*] from Section 7.3:

𝑅[𝑘,𝑤*](𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖) :
• Compute (𝑣1, . . . , 𝑣𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉1,...,𝑉𝑖](̃︀𝑣1, . . . , ̃︀𝑣𝑖). If the result is ⊥, then output ⊥.

• For 𝜄 ∈ [𝑖], compute (·, 𝑟𝜄) = 𝑓
𝑥,𝑟1,...,𝑟𝜄−1
𝜄 (𝑣1, . . . , 𝑣𝜄, 𝑤

*
𝜄).

• Output 𝑟𝑖.

Now, for any 𝑤* = {𝑤*𝜄 }𝜄∈[𝑡], define a unitary Σ[𝑤*] that permutes the registers𝐴[̸= 𝑥*] accord-
ing to the rule that, for 𝑥 ̸= 𝑥*, swaps

(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 0) and (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 1)
whenever 𝑅[𝑘,𝑤*](𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖) = 1. By definition of Sim[𝑥*], we have the following fact.

Fact 7.27. For any unitary 𝑈 and

| ̃︀𝜓⟩ , (FSim1[𝑥
*][·], . . . ,FSim𝑡[𝑥

][·],GSim) ∈ Sim[𝑥](1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

it holds that

𝑈FSim1[𝑥*][𝑤*],...,GSim | ̃︀𝜓*⟩ |+𝐻⟩𝒟 = Σ[𝑤*]𝑈FSim1[𝑥*][∅],...,GSimΣ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟 ,

where the unitary Σ[𝑤*] is applied to registers {𝒟𝑎}𝑎∈𝐴[̸=𝑥*].

We will also use the following immediate fact.

Fact 7.28. For any 𝑤*,
Σ[𝑤*] |+𝜅⟩⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*] = |+𝜅⟩⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*] .

Now, write EParSim3 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

write EParSim4 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim4(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

write EParSim5 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩),

and write ESim[𝑥*] as shorthand for

| ̃︀𝜓⟩ , (FSim1[𝑥
*][·], . . . ,FSim𝑡[𝑥

][·],GSim)← Sim[𝑥](1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

74

Then,

E
ParSim3

[︃⃦⃦⃦⃦ (︁
Π[¬(𝑣*𝜏 , 𝑟*𝜏)]⊗ |+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]

)︁
𝑈FSim1[𝑥*],...,GSim | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃

= E
ParSim3

[︃⃦⃦⃦⃦∑︁
𝑤*

(︁
Π[¬(𝑣*𝜏 , 𝑟*𝜏)]⊗ |+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]

)︁
𝑈FSim1[𝑥*],...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃

= E
ParSim3

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏)]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]

)︁
𝑈FSim1[𝑥*],...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃

≤ E
ParSim4

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏)]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]

)︁
𝑈FSim1[𝑥*,𝑤*],...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2𝑛 · 2−Ω(𝜅)

= E
Sim[𝑥*]

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏)]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]

)︁
𝑈FSim1[𝑥*][𝑤*],...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2−Ω(𝜅)

= E
Sim[𝑥*]

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏)]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]

)︁
Σ[𝑤*]𝑈FSim1[𝑥*][∅],...,GSimΣ[𝑤*]Π[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2−Ω(𝜅)

= E
Sim[𝑥*]

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏)]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]

)︁
𝑈FSim1[𝑥*][∅],...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2−Ω(𝜅)

= E
ParSim5

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏)]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]

)︁
𝑈FSim1,...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2−Ω(𝜅)

= E
ParSim5

[︃⃦⃦⃦⃦ (︁
Π[¬(𝑣*𝜏 , 𝑟*𝜏)]⊗ |+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]

)︁
𝑈FSim1,...,GSim | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2−Ω(𝜅)

≤ 2−Ω(𝜅),

where

• The first inequality follows from Claim 7.19 proven above.

• The following equality is by definition of Sim[𝑥*].

• The following equality is Fact 7.27.

• The following equality is Fact 7.28.

• The following equality is by definition of Sim[𝑥*].

• The final inequality follows from Claim 7.17 proven above.

Now, assume for contradiction that the lemma is false. Combined with the fact that Claim 7.26
is true, this implies that

75

E
[︁⃦⃦ (︁

Π[𝑥*, vk]⊗
(︁
ℐ − |+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[̸=𝑥*]

)︁)︁
𝑈FSim1[𝑥*],...,GSim | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦2]︁
= 2−𝑜(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏]]⟩).

However, this would violate the security of the signature token scheme, which we now show.
Consider the following reduction that takes as input the signing key |sk⟩ for a signature token
scheme, and has oracle access to TokVer[vk].

• Prepare | ̃︀𝜓*⟩ , |+𝐻⟩, and (FSim1[·], . . . ,FSim𝑡[·],GSim) as in the description of Lemma 7.25,
and run 𝑈FSim1[·],...,GSim | ̃︀𝜓*⟩ |+𝐻⟩, except that TokVer queries are computed by forwarding
them to TokVer[vk].

• Measure the final state of 𝑈 in the standard basis, and parse the outcome as (𝜎𝑥* , ·).

• Measure the final state on registers {𝒟𝑎}𝑎∈𝐴[̸=𝑥*] in the Hadamard basis. If any register 𝒟𝑎
gives a result other than 0𝜅, then parse 𝑎 = (𝑥, 𝜎𝑥, ·) for some 𝑥 ̸= 𝑥*.

• Output (𝜎𝑥* , 𝜎𝑥).

Then, by the definition of Π[𝑥*, vk] and the fact that the random oracle 𝐻 is only ever queried
on inputs that begin with (𝑥, 𝜎𝑥) such that TokVer(vk, 𝑥, 𝜎𝑥) = ⊤, we have that with probability
2−𝑜(𝜅), TokVer(vk, 𝑥*, 𝜎𝑥*) = TokVer(vk, 𝑥, 𝜎𝑥) = ⊤, which violates security of the signature token
scheme (Definition 3.8). Indeed, note that the signature token scheme is secure against poly(𝜆)
query bounded adversaries that otherwise have unlimited time and space, which is satisfied by
the reduction given above.

8 Acknowledgements

We thank Sam Gunn for correspondence throughout this project, including several illuminating
discussions.

References

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In Proceedings of
the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France,
15-18 July 2009, pages 229–242. IEEE Computer Society, 2009.

[ABDS21] Gorjan Alagic, Zvika Brakerski, Yfke Dulek, and Christian Schaffner. Impossibil-
ity of quantum virtual black-box obfuscation of classical circuits. In Tal Malkin
and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual In-
ternational Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part I, volume 12825 of Lecture Notes in Computer Science, pages 497–525.
Springer, 2021.

76

[ABOEM17] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive
proofs for quantum computations, 2017.

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In
Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 41–60. ACM
Press, May 2012.

[AF16] Gorjan Alagic and Bill Fefferman. On quantum obfuscation. CoRR, abs/1602.01771,
2016.

[AGKZ20] Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry. One-Shot Sig-
natures and Applications to Hybrid Quantum/Classical Authentication, page 255–268.
Association for Computing Machinery, New York, NY, USA, 2020.

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New
approaches for quantum copy-protection. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Confer-
ence, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part I, volume
12825 of Lecture Notes in Computer Science, pages 526–555. Springer, 2021.

[ALP21] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing. In Anne Can-
teaut and François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT
2021, pages 501–530, Cham, 2021. Springer International Publishing.

[AMTDW00] A. Ambainis, M. Mosca, A. Tapp, and R. De Wolf. Private quantum channels. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 547–
553, 2000.

[BB84] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and
coin tossing. In Proceedings of IEEE International Conference on Computers, Systems,
and Signal Processing, page 175, India, 1984.

[BCM+18] Zvika Brakerski, Paul F. Christiano, Urmila Mahadev, Umesh V. Vazirani, and
Thomas Vidick. A cryptographic test of quantumness and certifiable randomness
from a single quantum device. In Mikkel Thorup, editor, 59th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018,
pages 320–331. IEEE Computer Society, 2018.

[BDGM22] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
Pairings Are Not Necessary for IO: Circular-Secure LWE Suffices. In Mikołaj Bo-
jańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Collo-
quium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 28:1–28:20, Dagstuhl, Ger-
many, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J.
ACM, 59(2):6:1–6:48, 2012.

77

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15:
Provable security against zeroizing attacks. In Amos Beimel and Stefan Dziem-
bowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages 544–574. Springer,
Heidelberg, November 2018.

[BGS13] Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time programs
- (extended abstract). In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 344–360. Springer, Heidelberg, August 2013.

[BJSW20] Anne Broadbent, Zhengfeng Ji, Fang Song, and John Watrous. Zero-knowledge
proof systems for qma. SIAM Journal on Computing, 49(2):245–283, 2020.

[BK21] Anne Broadbent and Raza Ali Kazmi. Constructions for quantum indistinguisha-
bility obfuscation. In Patrick Longa and Carla Ràfols, editors, Progress in Cryptology
- LATINCRYPT 2021 - 7th International Conference on Cryptology and Information Secu-
rity in Latin America, Bogotá, Colombia, October 6-8, 2021, Proceedings, volume 12912
of Lecture Notes in Computer Science, pages 24–43. Springer, 2021.

[BKNY23] James Bartusek, Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Ob-
fuscation of pseudo-deterministic quantum circuits. In Barna Saha and Rocco A.
Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Com-
puting, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1567–1578. ACM, 2023.

[BM22] James Bartusek and Giulio Malavolta. Indistinguishability obfuscation of null quan-
tum circuits and applications. In Mark Braverman, editor, 13th Innovations in The-
oretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berke-
ley, CA, USA, volume 215 of LIPIcs, pages 15:1–15:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022.

[BOCG+06] Michael Ben-Or, Claude Crépeau, Daniel Gottesman, Avinatan Hassidim, and
Adam Smith. Secure multiparty quantum computation with (only) a strict honest
majority. pages 249 – 260, 11 2006.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a Nash equilibrium. In Venkatesan Guruswami, editor, 56th FOCS, pages
1480–1498. IEEE Computer Society Press, October 2015.

[BS16] Shalev Ben-David and Or Sattath. Quantum tokens for digital signatures. arXiv
(CoRR), abs/1609.09047, 2016.

[CG23] Andrea Coladangelo and Sam Gunn. How to use quantum indistinguishability
obfuscation, 2023.

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets
and applications to unclonable cryptography. In Tal Malkin and Chris Peikert, ed-
itors, Advances in Cryptology – CRYPTO 2021, pages 556–584, Cham, 2021. Springer
International Publishing.

78

[CMP22] Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-
protection of compute-and-compare programs in the quantum random oracle
model, 2022.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permuta-
tion branching programs: Proofs, attacks, and candidates. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
577–607. Springer, Heidelberg, August 2018.

[DS18] Yfke Dulek and Florian Speelman. Quantum ciphertext authentication and key re-
cycling with the trap code, 2018.

[DS23] Marcel Dall’Agnol and Nicholas Spooner. On the Necessity of Collapsing for Post-
Quantum and Quantum Commitments. In Omar Fawzi and Michael Walter, editors,
18th Conference on the Theory of Quantum Computation, Communication and Cryptogra-
phy (TQC 2023), volume 266 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 2:1–2:23, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 498–527. Springer, Heidelberg, March 2015.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 467–476. ACM, 2013.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular secu-
rity. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2021, page 736–749, New York, NY, USA, 2021. Association for Comput-
ing Machinery.

[GYZ17] Sumegha Garg, Henry Yuen, and Mark Zhandry. New security notions and fea-
sibility results for authentication of quantum data. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 342–371.
Springer, Heidelberg, August 2017.

[ILW23] Rahul Ilango, Jiatu Li, and R. Ryan Williams. Indistinguishability obfuscation, range
avoidance, and bounded arithmetic. In Barna Saha and Rocco A. Servedio, editors,
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023,
Orlando, FL, USA, June 20-23, 2023, pages 1076–1089. ACM, 2023.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. In Samir Khuller and Virginia Vassilevska Williams,

79

editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 60–73. ACM, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN
over $\mathbb {F}_p$, dlin, and prgs in nc0. In Orr Dunkelman and Stefan Dziem-
bowski, editors, Advances in Cryptology - EUROCRYPT 2022 - 41st Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Trondheim,
Norway, May 30 - June 3, 2022, Proceedings, Part I, volume 13275 of Lecture Notes in
Computer Science, pages 670–699. Springer, 2022.

[JNV+20] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen.
Mip*=re. CoRR, abs/2001.04383, 2020.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Mag-
nús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Ice-
land, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Pro-
gramming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture
Notes in Computer Science, pages 486–498. Springer, 2008.

[LLQZ22] Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry. Collusion resistant
copy-protection for watermarkable functionalities. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, Theory of Cryptography - 20th International Conference, TCC 2022,
Chicago, IL, USA, November 7-10, 2022, Proceedings, Part I, volume 13747 of Lecture
Notes in Computer Science, pages 294–323. Springer, 2022.

[Mah18a] Urmila Mahadev. Classical homomorphic encryption for quantum circuits. In
Mikkel Thorup, editor, 59th FOCS, pages 332–338. IEEE Computer Society Press,
October 2018.

[Mah18b] Urmila Mahadev. Classical verification of quantum computations. In Mikkel Tho-
rup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 259–267. IEEE Computer Society, 2018.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and fac-
toring. In 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New
Mexico, USA, 20-22 November 1994, pages 124–134. IEEE Computer Society, 1994.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.

[Win99] Andreas J. Winter. Coding theorem and strong converse for quantum channels.
IEEE Trans. Inf. Theory, 45(7):2481–2485, 1999.

80

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling.
In Advances in Cryptology – EUROCRYPT 2021: 40th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October
17–21, 2021, Proceedings, Part III, page 127–156, Berlin, Heidelberg, 2021. Springer-
Verlag.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 162–167. IEEE Computer Society, 1986.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 2012 IEEE 53rd
Annual Symposium on Foundations of Computer Science, pages 679–687, 2012.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quan-
tum indifferentiability. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 239–268. Springer, Heidelberg,
August 2019.

[Zha21] Mark Zhandry. Quantum lightning never strikes the same state twice. or: Quantum
money from cryptographic assumptions. J. Cryptol., 34(1):6, 2021.

81

	Introduction
	Our Results
	Related Work

	Technical Overview
	Quantum Authentication from Random Subspaces
	Linear + Measurement Quantum Programs
	Obfuscation Construction
	Discussion and Open Problems

	Preliminaries
	Quantum Background
	Useful Lemmas
	Signature Tokens

	Authentication Scheme
	Definitions
	Construction
	Security

	Linear + Measurement Quantum Programs
	Quantum State Obfuscation: Construction
	Quantum State Obfuscation: Security
	Proof Intuition
	Notation
	Main Theorem
	Inductive Argument
	Hardness of Mapping

	Acknowledgements

