
SuperFL: Privacy-Preserving Federated Learning
with Efficiency and Robustness

Yulin Zhao , Hualin Zhou , Zhiguo Wan , Member, IEEE

ABSTRACT

Federated Learning (FL) accomplishes collaborative model
training without the need to share local training data. However,
existing FL aggregation approaches suffer from inefficiency,
privacy vulnerabilities, and neglect of poisoning attacks,
severely impacting the overall performance and reliability
of model training. In order to address these challenges, we
propose SuperFL, an efficient two-server aggregation scheme
that is both privacy preserving and secure against poisoning
attacks. The two semi-honest servers S0 and S1 collaborate
with each other, with a shuffle server S0 in charge of privacy-
preserving random clustering, while an analysis server S1
responsible for robustness detection, identifying and filtering
malicious model updates. Our scheme employs a novel combi-
nation of homomorphic encryption and proxy re-encryption to
realize secure server-to-server collaboration. We also utilize
a novel sparse matrix projection compression technique to
enhance communication efficiency and significantly reduce
communication overhead. To resist poisoning attacks, we
introduce a dual-filter algorithm based on trusted root, combine
dimensionality reduction and norm calculation to identify
malicious model updates.

Extensive experiments validate the efficiency and robustness
of our scheme. SuperFL achieves impressive compression
ratios, ranging from 5-40x, under different models while main-
taining comparable model accuracy as the baseline. Notably,
our solution demonstrates a maximal model accuracy decrease
of no more than 2% and 6% on the MNIST and CIFAR-10
datasets respectively, under specific compression ratios and the
presence of malicious clients.

I. INTRODUCTION

In recent years, the field of machine learning has witnessed
a remarkable success story in federated learning [1] – a
groundbreaking paradigm that allows multiple clients to col-
laboratively train a model without the need to share their raw
training data. This innovative approach has not only advanced

Manuscript created January, 2024. (Yulin Zhao and Hualin Zhou contributed
equally to this work.) (Corresponding author: Zhiguo Wan.)

Yulin Zhao and Hualin Zhou are with Institute of Software Chinese
Academy of Sciences, Beijing 100190, China, and also with Hangzhou
Institute for Advanced Study, University of Chinese Academy of Sci-
ences, Hangzhou 310024, China (e-mail: zhaoyulin22@mails.ucas.ac.cn;
zhouhualin22@mails.ucas.ac.cn).

Zhiguo Wan is with Zhejiang Laboratory, Hangzhou, Zhejiang 311121,
China (e-mail: wanzhiguo@zhejianglab.com).

the frontiers of collaborative machine learning but has also
emerged as a promising solution to address the long-standing
issue of data isolation, often referred to as the “isolated islands
problem.”

Federated learning achieves its collaborative learning goals
by sharing model updates from clients. While ensuring the
confidentiality of the original training data, this strategy
introduces three new concerns: privacy leakage, poisoning
attack and communication overhead. The first problem is that
federated learning can cause privacy leakage, because the
model updates uploaded by clients in federated learning can
cause privacy security. Some previous work has proved that it
is possible to extract private training data from publicly shared
model updates [2]. The second problem is that federated
learning is vulnerable to poisoning attacks [3], [4] due to its
distributed environment. Specifically, malicious clients upload
malicious model updates to destroy the global model accuracy
of training. The third issue is the significant communication
overhead of federated learning, as a substantial number of
model parameters need to be exchanged between the various
participants and the central server, resulting in a substantial
amount of data transmission.

In order to solve the above problems, numerous related
studies has been conducted, however, most of the existing
schemes either provide privacy protection [5], [6], [7], or
resist poisoning attacks [8], [9], [10], or reduce communication
overhead [11], [12]. Some attempts have since been made to
achieve these the properties [13], [14], [15]. However, their
schemes are limited and each lacks comprehensive considera-
tion.

From the perspective of most schemes, it is still difficult
to solve the three properties at the same time. One major
challenge is balancing privacy and robustness. Many privacy-
preserving schemes do not support robust aggregation, because
under privacy protection, it is difficult for the server to access
and analyze the model updates of any client. The second obsta-
cle is achieving robust aggregation under model compression,
because model compression will cause changes in structure
and accuracy, which makes it difficult for robust algorithms to
filter malicious model update detection. The third difficulty is
how to combine compression and privacy protection technique.
Many model compression methods rely on specific operations
and structures, which are not applicable to privacy protection
techniques such as homomorphic encryption and secret shar-
ing. Therefore, it is crucial to identify a solution that facilitates
robust aggregation against malicious model updates while also

https://orcid.org/0009-0008-3886-3780
https://orcid.org/0009-0004-0328-8561
https://orcid.org/0000-0003-1319-1224

considering privacy preservation and reducing communication
overhead.

Recently, a few studies have implemented the above three
properties of federated learning schemes, including RoFL [16],
ELSA [17]. However, RoFL uses expensive zero-knowledge
proof to enforce norm bounds so that defenses attacks, which
makes the efficiency very low. ELSA [17] is not suitable
for running other robust aggregation methods such as krum,
median, because it is expensive to run these defenses under
secure multi-party computation.

For these reasons, we propose SuperFL. Recent studies have
provided us with ideas for proposing SuperFL. The CKKS is a
fully homomorphic encryption technique proposed by Cheon
et al [18], which supports floating-point operations and is more
efficient. Therefore, it is considered as a privacy-preserving
technique. In order to better adapt to homomorphic encryption,
we consider a linear additive compression method [19] rather
than a sparse method with indexed transmission [11], [12].
For the consideration of robust aggregation, we introduce a
proxy re-encryption in our scheme. Prior privacy-preserving
schemes have struggled with robust aggregation due to the
inability of servers to access model updates while encrypted,
thereby hindering their ability to perform corresponding robust
operations. Our novel approach involves randomly dividing
all encrypted model updates into multiple clusters and then
aggregating them according to the additivity of homomor-
phic encryption. Cluster aggregation offers the advantage
of protecting individual model update, such that even upon
decryption, the server only sees the average aggregated model
update, thus ensuring privacy. We employ proxy re-encryption
to transform cluster aggregated ciphertexts prior to decryption,
facilitating the implementation of subsequent robust aggre-
gation. In terms of robust aggregation, we first introduce a
trusted root (with minimal data collection) as a benchmark,
given that random cluster aggregation can result in more than
half of the clusters being malicious. We utilize a dual filter
combining norm and PCA defense to screen for malicious
updates. Norm filtering can identify malicious model updates
with larger update values, while PCA effectively discriminates
between compressed update values. Finally, TABLE I gives
a comparison of the our’s SuperFL scheme with previous
FL schemes. The results indicate that our scheme improves
communication efficiency while achieving privacy protection,
and resists poisoning attacks with the support of dual filters.

The principal contributions of our work are delineated as
follows:

• We propose a novel collaborative two-server aggregation
mode, comprising a shuffle server S0 and an analysis
server S1. S0 handles random clustering, while S1 man-
ages robust aggregation. We combine fully homomorphic
encryption CKKS and proxy re-encryption to realize a se-
cure collaborative aggregation framework. This paradigm
supports Byzantine robustness while protecting the pri-
vacy of clients. The key idea is to resolve the conflict
between robustness and privacy protection from different
perspectives of two non-colluding servers.

TABLE I
A COMPARA TIVE SUMMARY BETWEEN OUR SCHEME AND

PREVIOUS SCHEMES

FL
Schemes

Compression Privacy
Preserve

Poisoning
Resilience

Defense
Mechanism

FedAvg ✕ ✕ ✕ No
PBFL [14] ✕ ✓ ✓ Single
CPFed [15] ✓ ✓ ✕ No
lp-proj [13] ✓ ✕ ✓ Single
ELSA [17] ✕ ✓ ✓ Single
RoFL [16] ✓ ✓ ✓ Single
SuperFL ✓ ✓ ✓ Double

Note: Compression:Whether compressing model updates or not. Privacy
Preserve:Whether possessing privacy-presserving capacity or not. Poisoning
Resilience:Whether possessing defense method against malicious model up-
dates or not. Defense Mechanism:One defense mechanism or multiple defense
mechanisms.

• We optimize and implement an efficient sketch com-
pression method utilizing coordinate embedding [20] and
sparse embedding [21]. This method effectively reduces
communication overhead and integrates seamlessly with
homomorphic encryption schemes.

• Based on the assumption of a trusted root data set, we
design an effective defense method against Byzantine at-
tacks. This method combines feature dimension reduction
and norm detection to eliminate malicious model updates,
providing resistance against poisoning attacks. Our robust
method exhibits strong defense capabilities against both
targeted and untargeted attacks. It is also compatible with
our compression and secure aggregation methods.

• We conduct extensive experiments using well-established
datasets, comparing our scheme with previous state-of-
the-art approaches. The results illustrate the superior
performance of our scheme in terms of both robustness
and efficiency.

The remainder of this paper is structured as follows: Section
II introduces relevant works in the field related to our paper.
Section III introduces preliminary knowledge. Section IV
introduces the system model, design goals. The specific details
of our scheme are described in Section V. Section VI presents
the security analysis and discussion. Section VII introduces
our experiment results. Finally, section VIII wraps up with a
conclusion.

II. RELATED WORK

Focusing on several challenges to be solved in our scheme,
we will introduce the corresponding aspects of federated
learning related work.

A. Secure Aggregation of Federated Learning

To date, primary secure aggregation methods in federated
learning involve homomorphic encryption [22] [23], secure
multi-party computation [24] [5] [25], and differential privacy
[26] [27] [6]. However, these methods fall short in resisting
poisoning attacks due to privacy techniques safeguarding the
uploaded model updates. Server can only access aggregated

values, concealing malicious updates within, making it chal-
lenging to counter poisoning attacks. To align with secure
aggregation, Aramoon et al. [28] and Li et al. [29] propose a
robust defense strategy after the server collects model updates
from groups. Aramoon et al.’s scheme, based on secret sharing,
sacrifices system security during group collection. Li et al.’s
scheme, using homomorphic encryption, requires numerous
edge servers and demands the central server to maintain
verification data at scale, making it impractical.

B. Federated Learning Against Poisoning Attacks

Poisoning attacks are common in federated learning, with
adversaries employing data poisoning attacks (e.g., label flip-
ping) and model poisoning attacks (e.g., gauss attacks) to
compromise the global model. Data poisoning attacks indi-
rectly affect the global model by contaminating local data,
while model poisoning attacks manipulate model updates
during communication, impacting global model accuracy. The
widely-used FedAvg [30] employs a simple average aggre-
gation strategy, making it vulnerable to poisoning attacks.
Robust aggregation schemes, including Krum/Multi-Krum [8],
Trimmed-Mean/Median [31], FLTrust [32], Norm Bounding
[33], signGaurd [10], and Bulyan [34], aim to address these
issues. However, they analyze model updates in plaintext, com-
promising client privacy. Miao et al. [14] proposed a privacy-
protected robust aggregation using homomorphic encryption
and cosine similarity. However, the computation cost under
ciphertext is high, especially for large models. Lycklama’s
RoFL [16] resists poisoning attacks by imposing constraints
on norms using Bulletproofs [35], but its collective verification
by all clients and central servers poses efficiency challenges.
ELSA [17] uses MPC for norm constraints, offering more
efficiency, but secure multi-party computation limits support
for complex defense methods like Krum [8] and Median [31]
due to cost constraints.

C. Model Compression of Federated Learning

The considerable communication overhead in federated
learning presents a major challenge. To tackle this, com-
pression methods like random-k sparsification [11] and Top-
K sparsification [12] have been proposed, selecting model
update parameters randomly or based on the k largest ab-
solute values. However, ensuring alignment of these selected
parameters across diverse models for federated aggregation
proves challenging, especially when integrating with privacy
protection techniques like homomorphic encryption. Lu et al.
[36] proposed a scheme compatible with secure aggregation
and Top-K, but it introduces an additional communication
round, causing significant time overhead. Sketching is an
effective model compression method, like FetchSGD [37].
Despite supporting linear addition, its efficiency in multiple
random projection sketch calculations is relatively low. Zhao
et al.’s compression method integrates coordinate embedding
[20], eliminating redundant projection operations. However,
their scheme [19] lacks privacy protection, and attempts to
introduce differential privacy result in a trade-off between

privacy and data availability, impacting model performance
and complicating malicious update detection by the server.
Lin et al. [13] proposed a method combining subspace learning
model compression and robustness, but it inadequately protects
client privacy.

III. PRELIMINARIES

This section briefly introduces the knowledge of federated
learning, poisoing attack, byzantine-robust federated learn-
ing, threshold fully homomorphic encryption and proxy re-
encryption.

A. Federated Learning

Federated Learning (FL) is a machine learning in which
multiple clients collaborate to solve machine learning prob-
lems under the coordination of a central server or service
provider. The original data of each client is stored locally and
will not be exchanged or transferred. Finally, all clients train
a global model together.

Fig. 1. The system architecture of federated learning

In federated learning setting, Assuming that n clients
{u1, u2, . . . , un} and one central parametric aggregation
server in federated learning, each client ui has a local dataset
Di, and each communication round t, t = 1, 2, 3, . . . , T . The
federated learning algorithm runs as follows:

step➀: each client ui downloads the latest global model
from the server.

step➁: each client ui trains based on its own local dataset
Di, then obtain local model update gr

i and submit it to the
server.

step➂: the server aggregates local model updates gr
i from

all the clients, i = 1, 2, . . . , n and gets a new global model
θr+1 = θr −Gr, where Gr is 1

n

∑n
i=1 g

r
i .

The above steps are repeated until convergence or number
of training count reached.

B. Fully Homomorphic Encryption

Fully homomorphic encryption perform any number of
addition and multiplication operations on encrypted data with-
out decrypting it. In 2009, Craig Gentry first proposed an
fully homomorphic algorithm based on ideal lattices [38].
A typical FHE scheme is Cheon-Kim-Kim-Song(CKKS) [18]
which supports floating point-like Single Instruction Multiple
Data (SIMD) multiplication. Let N be a power-of-two, a
positive integer M = 2N , a real vector z, the polynomial

ring R = Z[X]/(XN +1) is the M -th cyclotomic field’s ring
of integers, cyclotomic ring S = R[X]/(XN + 1). Let RQ

= R/QR for the residue ring of R modulo an integer Q. For
convenience, give a fix integer p > 0, a fixed integer k, a
modulus Q0. For a level 0<l ≤ L, a ciphertext of level l is a
vector in Rk

Ql
, where Ql = plQ0. For encode and decode, first

define the space H = {z = (zj)j∈Z∗
M
∈ CN : zj = z−j , ∀j ∈

Z∗
M}, let T be a multiplicative subgroup of Z∗

M satisfying
Z∗
M/T = {±1}, where Z∗

M = {x ∈ ZM : gcd(x,M) = 1} for
the multiplicative group of units in ZM . Canonical embedding
map σ : S → CN , space H can be identified with CN/2

via the natural projection π, which can be represented by
(zj)j∈Z∗

M
7→ (zj)j∈T . The encoding algorithm transforms a

vector z = (zi)i∈T into a polynomial m(X) ∈ R through
σ−1◦π−1, where π−1(z)[j] is zj if j ∈ T , the decoding
algorithm is to transform an arbitrary polynomial m(X) ∈ R
into a complex vector z such that z = π ◦ σ(m) ∈ CN/2.

CKKS consists of the following algorithms:
KeyGen(1λ). For a security parameter λ, generate a secret

value sk for decryption, a public information pk for encryp-
tion, and a evaluation key evk.

Ecd(z,∆) → m. For a (N/2)-dimensional vector z =
(zj)j∈T of complex numbers and a scaling factor ∆. Firstly,
expands z into π−1(z) ∈ H, then multiply the scaling factor ∆,
and finally computes its discretization to σ(R). Return the cor-
responding integral polynomial m = σ−1(⌊∆ · π−1(z)⌉σ(R)).

Dcd(m,∆) → z. For an input polynomial m ∈ R, output
the vector z = π ◦ σ(∆−1 ·m).

Enc(m, pk). For a given polynomial m ∈ R, output a
ciphertext c ∈ Rk

Ql.
Dec(c, sk)→ m. For a ciphertext c at level l, this algorithm

outputs a polynomial m′ ← ⟨c, sk⟩ (mod Ql) using the secret
key sk.

Add(c1, c2). For given encrypts of m1 and m2, output an
encryption of m1 +m2. The error in outputting ciphertext is
limited by the sum of two errors in the input ciphertext.

Mult(c1, c2, evk). For a pair of ciphertexts (c1, c2), output
a ciphertext cmult ∈ Rk

Ql
using the evaluation key evk.

C. Proxy Re-Encryption

Assuming that there are two participants Alice and Bob,
in the Proxy Re-Encryption scheme, the semi-trusted proxy
is given a re-encryption key, and the proxy can convert the
ciphertext under the Alice public key to the ciphertext under
the Bob public key. However, the proxy cannot learn any
useful information of the encrypted message under either key.
A fully homomorphic encryption proxy re-encryption scheme
[39] is proposed by Polyakov et al. The main idea is to use
the FHE key switching to perform the proxy re-encryption of
the ciphertext with the re-encryption key, which represents the
encryption of the old secret key using the public key of the
new secret key. The specific proxy re-encryption includes the
following algorithms:

Setup(1λ)→ pp. According to a security parameter λ, the
setup algorithm outputs public parameters pp.

KeyGen(pp, 1λ)→ (pk, sk). For public parameters pp and
security parameter 1λ, the key generation algorithm outputs a
public-secrect key pairs (pk, sk).

ReKeyGen(pp, ski, pkj)→ rki→j . For a secret key ski of
the delegator party i, a public key pkj of the delegatee party
j and public parameters pp, output a re-encryption key rki→j

from party i to party j.
Enc(pp, pk,m) → c. For a public key pk, a plaintext m

and public parameters pp, output the ciphertext c.
ReEnc(pp, pk, ci) → cj . For a re-encryption key rki→j , a

ciphertext ci of party i and public parameters pp, transforms
ci into ciphertext cj that party j can decrypt.

Dec(pp, sk, c)→ m. For a secret key sk, a ciphertext c and
public parameters pp, recovers message m.

D. Sketching and Coordinate-wise Embedding

Sketching proves effective in tensor decomposition by ap-
proximating the original tensor with a reduced-dimensional
sketch component. This approach significantly reduces cal-
culation and storage requirements without sacrificing much
accuracy [40].

The essence of sketching involves the projection opera-
tion on the high-dimensional tensor. Traditionally, a common
method employs crafting a projection matrix, mapping the
high-dimensional tensor to a low-dimensional space. However,
to ensure model training convergence, it is crucial that the ten-
sor in the final low-dimensional space can be reconstructed to
approximate the original high-dimensional tensor. The coordi-
nate embedding technique [20] adeptly facilitates constructing
the projection matrix, efficiently meeting this requirement.

Definition 1 (α-coordinate-wise embedding). Given the pa-
rameter α ∈ R, we say a randomized matrix R ∈ Rb×ℓ with
distribution Π satisfies α-coordinate-wise embedding property
if for any fixed vector g, h ∈ Rℓ, we have

1. E
R∼Π

[h⊤R⊤Rg] = h⊤g,

2. E
R∼Π

[(h⊤R⊤Rg)2] ≤ (h⊤g)2 +
α

b
||h||22 · ||g||

2
2.

In the above definition, α is a small constant for the common
sketch projection matrix, if h is a one-hot vector, we can get

1. E
R∼Π

[R⊤Rg] = g,

2. E
R∼Π

[(R⊤Rg)2] ≤ (1 +
αℓ

b
) · ||g||22.

Through the above derivation, we can get the method of
transforming high-dimensional tensor into low-dimensional
tensor, and use coordinate embedding technique to realize
the unbiased estimation of the original tensor. Zhao et al.
[19] used this dimension reduction method to compress the
model, and gave the relevant model training convergence
proof. Coordinate embedding is suitable for many projection
methods, such as sparse projection [21].

Definition 2 (Sparse embedding matrix based on coordinate
embedding). Let h : [n] × [s] → [bs] and σ : [n] × [s] →
{−1, 1} are random hash functions, we say R ∈ Rb×n is a

sparse embedding matrix based on coordinate embedding with
parameter s if R (j−1)b

s +h(i,j),i
= σ(i,j)√

s
for all (i, j) ∈ [n]×[s]

and all other entries to zero.

IV. PROBLEM FORMULATION

In this section, we formalize the system model, threat
model, and design goals, respectively.

A. System Model

Fig. 2. System Model.

In our paper, we consider a federated learning architecture
for privacy protection, as shown in fig 2. Our proposed system
model consists of follow classes:

• Key Generation Center (KGC): The KGC is an indepen-
dent and trusted organization that distributes and manages
public key, private key and proxy re-encrypt key.

• Clients: Clients have own local datasets. Clients only have
public key. All clients’ public key is same. During the
learning process, each client trains its local model over
private dataset and exchanges the encrypted compressed
local model updates through the S0.

• Shuffle Server (S0): The S0 server is mainly used for ran-
dom cluster aggregation and ciphertexts transformation.
Firstly, S0 shuffles ciphertexts of model updates from all
clients and aggregates them in a clustered manner. Then
S0 uses a proxy key to transform the ciphertexts. Finally,
it sends the results back to S1.

• Analysis Server (S1): Server has strong computing power
and is a robust aggregator for malicious update filtering.
Initially, it decrypts ciphertexts from S0 with sk1. After
obtaining the decryption results, the correct model update
values are aggregated using a robust algorithm. Finally,
the aggregated results are sent to each client.

Our system undergoes several steps. In the initialization
phase, KGC generates the public security parameter pp,
along with two pairs of public and secret keys (pk, sk) and
(pk1, sk1). Additionally, it creates the proxy re-encryption
key repk ← ReKeyGen(pp, sk1, pk). The public key pk is

broadcast to each client, while repk and sk1 are sent to the
server S0 and S1 respectively. Subsequently, S1 generates the
shared projection matrix P required by the compression and
broadcasts it to each client. In the first stage, clients locally
compress the model update in accordance with P, encrypt
it using pk, and transmit the ciphertexts to the server S0.
Moving to the second stage, S0 shuffles and mixes the received
model updates within random clusters, resulting in a set of
cluster-aggregated encryption values. Employing the proxy
re-encryption key repk, the ciphertexts are transformed and
forwarded to the server S1. In the third stage, S1 decrypts
the ciphertexts using sk1. Subsequently, malicious updates are
identified and eliminated through norm filtering and principal
component analysis (PCA). Finally, S1 obtains the aggregated
compression of the model updates, sending the aggregation
back to each client.

B. Threat Model

In our proposed scheme, the KGC is considered as fully
trusted third party and hence would never collude with any
entity. Shuffle server S0 and analysis server S1 are viewed
as honest but curious, meaning that they honestly execute
the established protocols but may be curious to deduce some
sensitive information such as model updates uploaded by local
clients. In addition, both of the servers are assumed to be
non-colluding, otherwise they will obtain private information
from the clients. In our system, we discuss two types of
clients. One is the type of honest clients, which runs according
to regulations and uploads real trained model updates. The
other is the type of malicious clients, which uploads malicious
model updates or uploads model updates trained with poisoned
data to reduce global model accuracy.

C. Design Goals

• Privacy. In our scheme, we protect the privacy of the
model updates uploaded by the clients. No third party or
participant can infer the original information of the client.

• Robustness. In our scheme, we use robust aggregation
algorithms to resist malicious client’s attacks and select
the correct model updates for aggregation.

• Efficiency. Our scheme should reduce the scale of model
update transmission, thereby reducing the computational
and transmission burden under ciphertext.

• Accuracy. Our scheme ensures the model achieves a
high level of accuracy while concurrently safeguarding
privacy and resisting poisoning attacks. The objective
is to maintain the global model accuracy as closely as
possible to the baseline model accuracy.

V. DESIGN OF OUR SCHEME

In this section, we will introduce a technical overview and
provide a detailed description of our entire solution. The main
notations are shown in TABLE II.

TABLE II
NOTATIONS

Notation Description
Di Training dataset of the client ui

D0 The trusted root dataset collected by S1

U All clients participating in aggregation
Mk k-th cluster
wr

i Local model of the client ui in the r-th iteration
η Local learning rate
gr
i Model update of the client ui in the r-th iteration

gr,l
i Model update of the client ui in the l-th local iteration

in the r-th global iteration
gr
Mk

Model update aggregation of the cluster Mk in the r-th
iteration

gr Model update aggregation in the r-th iteration
gr
0 Model update for trusted root dataset in the r-th iteration

θr Global model in the r-th iteration
g̃ Compression of any model update or model update

aggregation g
b Batch size
x Number of clients
y Number of clients in each cluster
t Global iterations
e Local iterations
c Number of clusters
pk Public key of clients U
sk1 Secret key of server S1

repk Re-encrypt key of S0

Q The set of compressed model update aggregation values
for all clusters

[[g̃]]key Encryption of any compressed model update or model
update aggregation g̃ using key

A. Technical Overview

Inspired by recent studies, our approach is anchored in
the utilization of CKKS fully homomorphic encryption [18],
due to its support for floating-point operations and superior
efficiency in privacy protection.

In order to optimize compatibility with homomorphic en-
cryption, SuperFL adopts a compression method that supports
linear operation. At initialization, the server only needs to
broadcast a public sparse matrix P to all clients, and each
client can project and compress its own model update gr

i based
on P in r round.

A pivotal innovation within SuperFL is the introduction of
a novel proxy re-encryption scheme to address the challenges
posed by robust aggregation. Recognizing the limitations of
conventional privacy protection schemes, particularly the en-
crypted model update inaccessibility during encryption, Su-
perFL uses a random cluster aggregation mode with two non-
colluding servers (shuffle server S0 and analysis server S1).
Proxy re-encryption serves as a perfect bridge for communica-
tion between two servers. Server S0 holds the proxy key repk
while S1 holds its own secret key sk. S1 can only wait for S0
to complete cluster aggregation and then complete ciphertext
conversion before decrypting. This approach safeguards each
individual model update gr

i , the server S1 only perceives the
average aggregation value gr

Mk
, adapting to our subsequent

robustness method.
To further enhance robust aggregation, SuperFL introduces

a trusted root as a stringent criterion. In light of the potential
risks associated with random cluster aggregation leading to
malicious clusters, SuperFL employs a dual filter mechanism.
This mechanism combines norm and principal component
analysis (PCA) defense to effectively filter out malicious
updates. Norm filters model updates with larger update val-
ues, while PCA distinguishes differences between compressed
update values, providing a comprehensive defense against
poisoning attacks.

In summary, SuperFL is a comprehensive FL framework
that balances efficiency and security through advanced homo-
morphic encryption, innovative compression techniques, and
robust aggregation strategies, as shown in Figure 2.

B. Model Update Computation

1) Client local model update computation: In the r-th
iterations of the global training, each client ui, i ∈ [1, x] get
the latest global model wr

i . Then, each client ui trains the
model with its own local dataset Di to obtain a model update
gr
i . The equation for updating the local model is as Eq. 1:

θr,li = θr,l−1
i − η∇f(Di, θ

r,l−1
i) (1)

where f(Di, θ
r,l−1
i) is the loss for client ui in the l-th local

iteration, ∇ is the derivation operation, η is local learning rate.
2) Server trusted root model update computation: The

server’s trusted root dataset’s model update process is con-
sistent with the client’s local model update. Both of which
input the global model from the previous round of update. The
difference is the dataset. Above update called ModelUpdate is
in Algorithm 1.

Algorithm 1 ModelUpdate

Input: local training datasets D, local learning rate η, batch
size b, local iterations e, model w.

Output: Client model update
1: θr,0i ← w
2: for l = 1, · · · , e
3: Sample data from dataset D with batch size b
4: Calculate ∇f(D, θr,l−1

i)
5: θr,li ← θr,l−1

i - η∇f(D, θr,l−1
i)

6: gr
i ← θr,ei - w

7: return gr
i

C. Sparse Embedding Sketch Compression

In federated learning, communication cost emerges as a
critical issue, particularly with the substantial overhead as-
sociated with transmitting high-dimensional models. Model
compression becomes imperative to alleviate this burden. In
the context of privacy protection, the server needs to securely
aggregate model parameters in the ciphertext state, which
means that the compression results must maintain computabil-
ity, which is a significant challenge. To achieve efficient model
compression and transmission, we propose sparse embedding
sketch compression to further optimize our federated learning
aggregation scheme. This is a model compression method

based on random projection sketch. Subsequent sections will
detail the steps.

1) Initialize projection matrix: To ensure compression
doesn’t hinder federated learning convergence, we must guar-
antee that decompressed model updates approximate pre-
compression updates. Using the coordinate embedding tech-
nique [20], we construct a public projection matrix meeting
the criteria. Server S1 broadcasts this matrix to all clients, who
then use it for model compression across multiple rounds.

We combine coordinate embedding [20] and sparse em-
bedding [21] to directly compute the Compressed Sparse
Row format (CSR) of the projection matrix. This enhances
transmission and computational efficiency. CSR sparse ma-
trix format supports various arithmetic operations like matrix
multiplication and transposition. Algorithm 2 provides detailed
steps.

2) Compression and decompression: Assuming the model
update is a matrix g ∈ Rn×s and the public projection matrix
is P, the following compression and decompression operations
sec/desec can be obtained:

sec(g) = P⊤g (Rn×s → Rd×s)

desec(g̃) = Pg̃ (Rd×s → Rn×s)
(1)

Since all clients share the same projection matrix, the com-
pression operation of model update sec can satisfy the linear
property and can be aggregated directly on the server.∑

ui∈U
sec(gr

i) = sec(
∑
ui∈U

gri) = sec(gr) (2)

Since the model update after the decompression operation
desec is an unbiased estimate of the original model update,
we can obtain the approximate value of the original high-
dimensional model.

desec(
∑
ui∈U

sec(gri)) ≈ gr (3)

Algorithm 2 GetProjectMatrix

Input: Federated learning model dimension ℓ = ns, target
compressed model dimension ℓ′ = ds

Output: Public projection sparse matrix P in CSR format
(corresponding to the matrix of Rn×d)

1: Initialization: Server S1 generate CSR arrays values =
[], col indices = [], row ptr = [0] and random hash
function h : [n]× [s]→ [ds], σ : [n]× [s]→ {−1, 1}

2: for x = 1→ n
3: for y = 1→ s
4: Add σ(x,y)√

s
into the end of values

5: Add (y−1)d
s + h(x, y) into the end of col indices

6: Add row ptr[x− 1] + s into the end of row ptr
7: P← (values, col indices, row ptr)
8: return P

D. Secure Cluster Aggregation

To identify malicious clients, we choose the cluster aggrega-
tion method. For aggregation, homomorphic encryption facili-
tates addition between ciphertexts. Since the matrix projection

based compression operation satisfies linearity, homomorphic
addition can be directly performed after encryption. Once the
shuffle server S0 receives all ciphertexts sent by clients, it
randomly partitions the ciphertexts corresponding to different
clients into clusters, performs an average aggregation on the
ciphertexts within each cluster, and then transforms the aggre-
gated ciphertexts of each cluster using the proxy key repk. For
decryption, the analysis server S1 receives ciphertexts from
S0 and decrypts the ciphertexts using its own secret key sk1.
repk and sk1 are generated during initialization. We detail the
cluster aggregation method by SCAgg in Algorithm 3.

Algorithm 3 SCAgg

Input: local training datasets Di, local learning rate η, batch
size b, local iterations e, local model wr

i for the i-th
client’s r-th global iteration, re-encrypt key repk of server
S0, secret key sk1 of server S1

Output: The compressed model update aggregations of all
clusters Q.

1: Server S0 excutes:
2: Assign clients to clusters U = M1 ∪ M2 ∪ · · · ∪ Mc

(Ensure randomness)
3: G1 ← ∅
4: for each group Mk do
5: [[g̃r

Mk
]]pk ← 1

|Mk| ·
∑

ui∈Mk
[[g̃r

i]]pk
6: G1 ← G1 ∪ [[g̃r

Mk
]]pk

7: G2 ← ∅
8: for each [[g̃r

Mk
]]pk ∈ GA do

9: [[g̃r
Mk

]]pk1
← Re-encrypt [[g̃r

Mk
]]pk using repk.

10: G2 ← G2 ∪ [[g̃r
Mk

]]pk1

11: S0 send G2 to S1
12: Server S1 excutes:
13: Receive G2 from server S0

14: Q ← ∅
15: for each [[g̃r

Mk
]]pk1 ∈ G2 do

16: g̃r
Mk
← Decrypt [[g̃r

Mk
]]pk1 using sk1

17: Q ← Q∪ g̃r
Mk

18: return Q

E. Robust Aggregation

Our goal is to devise a defense mechanism that can exclude
model updates from clusters containing malicious clients dur-
ing compressed state aggregation. Our defense relies on the
insight that model updates from benign clients exhibit different
characteristics compared to those from malicious clients, and
random projection retains these fundamental characteristics.
This allows us to use feature dimension reduction techniques
like Principal Component Analysis (PCA) for effective feature
extraction, offering a solution to the issue at hand. We guide
trust using the self-collected root dataset of server S1 and
consider model updates with eigenvalues similar to those
derived from the trusted root dataset as benign.

After obtaining the compressed updated aggregations of c
clusters, S1 calculates a standard model update based on its
trusted root data set, embedding it into the same dimension
using a shared sparse matrix. All compressed model updates

undergo PCA analysis, and those with a distance below
the dynamic threshold from the standard model updates are
deemed safe. Updates with L2 norm exceptions relative to the
standard model update are excluded to resist scaling attacks
by malicious clients.

The root dataset collection is akin to FLTrust [32], requiring
only a small number of clean samples. Let Min(·) return the
minimum value, PCA(·) represent component analysis, and
Sign(·) denote the symbol function. Figure 3 illustrates the
main concept of our robust algorithm. Algorithm 4 outlines
the specifics of our robust defense algorithm.

Algorithm 4 RobustAgg

Input: Global model θr, the compressed model update ag-
gregations of all clusters Q = {g̃r

M1
, g̃r

M2
, · · · , g̃r

Mc
},

root data set D0, local learning rate η, batch size b, local
iterations e

Output: Robustness aggregation g̃r

1: Initialization: Generate dis1 = dis2 = ∅,Q′
1 = Q′

2 = ∅,
the weight factor τ < 1, β > 1

2: Server S0 excutes:
3: Step 1: Trusted update calculation
4: θr0 ←ModelUpdate(D0, η, b, e, θr)
5: gr

0 ← θr0 − θr
6: g̃r

0 ← sec(gr
0)

7: Step 2: Norm-based Filtering
8: for each group Mk do
9: ndisrk ← |∥g̃r

Mi
∥ − ∥g̃r

0∥|
10: dis1 ← dis1 ∪ ndisrk
11: thr1 ←Min(dis1) · β
12: Choose the compressed model updates that satisfies

ndisrk < thr1 as Q′
1

13: Step 3: PCA-based Selection
14: {psi}i∈[0,c] ← PCA({g̃r

0} ∪ Q, components = 1)
15: for each group Mk do
16: if Sign(ps0) == Sign(psk)
17: pdisrk ← τ |psk − ps0|
18: else
19: pdisrk ← |psk − ps0|
20: dis2 ← dis2 ∪ pdisrk
21: thr2 ←Min(dis2) · β
22: Choose the compressed model updates that satisfies

pdisrk < thr2 as Q′
2

23: Step 4: Aggregation
24: Get trusted set: Q′ = Q′

1 ∩Q′
2

25: If Q′ = ∅, then g̃r is a full 0 tensor with the same
shape as the original compression model update, otherwise
calculate the aggregate value g̃r ← 1

|Q′|
∑
Q′.

26: return g̃r

F. Putting It All Together

The overall process algorithm of our scheme, termed
CPBFL, involves initializing parameters, keys, global model,
and projection matrix before training. During training, each
client locally trains with its dataset, compresses, encrypts, and

Fig. 3. Illustration of our robust algorithm: green, red and blue points denote
benign updates, malicious updates and the standard update by server S1 from
trusted root data D0 respectively. In our algorithm, we gauge update security
using feature distance from the standard. Feature distance is calculated from
update norm and PCA. The threshold radius is determined by the minimum
feature distance multiplied by expansion factor β. Updates within this radius
are considered benign.

uploads results to shuffle server S0. S0 performs clustering
aggregation and ciphertext conversion. Analysis server S1
decrypts ciphertexts with key sk1 and performs robust aggre-
gation to obtain the final global model update. This update is
then sent back to clients.

Algorithm 5 CPBFL

Input: Global model θr, n clients {u1, u2, ..., un} with local
training datasets D = {D1, D2, ..., Dn}, trusted root
dataset D0, local learing rate η, global iterations t, local
iterations e, batch size b, the compression ratio ρ.

1: Initialization: KGC distributes public key pk to clients,
repk to server S0 and (pk1, sk1) to server S1. Server S1
initialization global model θ0. S1 generate a projection
matrix P ← GetProjectMatrix(ℓ, ρℓ) according to the
dimension ℓ of the global model and the compression ratio
ρ and broadcast P to all clients.

2: for r = 1→ t do
3: Client ui excutes :
4: if r = 1
5: wr

i ← θ0
6: else
7: wr

i ← wr−1
i + desec(g̃r−1

i)
8: gr

i ← ModelUpdate(wr
i , Di, η, e, b)

9: g̃r
i ← sec(gr

i)
10: ui encrypt compressed model update [[g̃r

i]]pk using pk
11: Client ui send [[g̃r

i]]pk to Server S0
12: Server S0,S1 excutes :
13: Q ← SCAgg([[g̃r

1]]pk, [[g̃
r
2]]pk, · · · , [[g̃r

x]]pk)
14: g̃r ← RobustAgg(θr−1,Q, D0, η, b, e)
15: θr ← θr−1 + desec(g̃r)
16: S1 send g̃r to all clients

VI. SECURITY ANALYSIS AND DISCUSSION

A. Security Analysis

In this section, we present a security proof for the scheme.
Reflecting on our threat model, it encompasses two servers
S0 and S1, along with clients U in federated learning. Servers

S0 and S1 are semi-honest, permitting active malicious ad-
versaries in all clients. The underlying cryptographic building
blocks are instantiated with the security parameter λ. Let
XP represent the inputs of any subset of all participants
P ⊆ U ∪ {S0,S1}. Furthermore, servers S0 and S1 do
not collude. In the ensuing proof, the view of each party
comprises its internal state (including input and randomness)
and all messages received from other parties. For any subset
P ⊆ U ∪ {S0,S1}, considering any adversary denoted by
AP let REALU,λ

P (AP , XU∪{S0,S1}\P) be a random variable
representing the joint views of participants in P during
the actual execution of our scheme in the real world, and
SIMU,λ

P (AP , XP) be another combined view of participants
in P simulating the scheme in the ideal world, with the
inputs of honest participants randomly and uniformly se-
lected and denoted as XP . To satisfy security requirements,
SIMU,λ

P (AP , XP) and REALU,λ
P (AP , XU∪{S0,S1}\P) must be

indistinguishable.

Theorem 1 (Privacy against actively adversarial users, with
semi-honest server). Considering all U , λ and P where P ⊆
U ∪{S0,S1}, for every non-uniform probabilistic polynomial-
time (PPT) adversary AP (malicious adversary AU ′ or semi-
honest adversary AS0 ,AS1)), where U ′ ⊂ U and |U ′| < x−1,
there exists a probabilistic polynomial-time (PPT) simulator
SIM such that

REALU,λ
P (AP , XU∪{S0,S1}\P) ≈c SIMU,λ

P (AP , XP)

where ≈c denotes that the outputs are computationally
indistinguishable.

Proof. In this case, we prove the security of our scheme
without collusion between the clients and the server. We will
use standard hybrid argument to prove our theory. We use the
simulator SIMU,λ

P to simulate the behavior of the adversary
AP . Starting from the random variable REALU,λ

P , we define
our simulator SIMU,λ

P through a series of (polynomially many)
subsequent modifications so that any two subsequent random
variables are computationally indistinguishable.

Hyb0 We initialize a series of random variables that are
indistinguishable from REALU,λ

P in the real execution of our
scheme.

Hyb1 In the process of uploading the model updates, we
use the simulator SIMU,λ

ui
(ui ∈ U \ P) to simulate the

above operation. Each simulator of user ui will generate a
random vector Xi instead of gr

i and apply the compression
and encryption algorithm to abtain the ciphertext [[X̃i]]pk using
a uniformly random public key pk. The views of AS0

include
all the ciphertexts. This hybrid is indistinguishable from the
previous one, since the encryption scheme CKKS satisfies
IND-CPA security and only the contents of the ciphertexts
have changed.

Hyb2: In this hybrid, we alter the input of the SCAgg
algorithm with encryptions of uniformly random vectors (of
appropriate length) [[Ri]]pk instead of [[g̃r

i]]pk (i ∈ [1, x]).
SIMU,λ

S0
randomly shuffles and aggregates these ciphertexts

within clusters, yielding [[RMk
]]pk(k ∈ [1, c]). Subsequently,

it calculates [[RMk
]]pk1

using the re-encryption algorithm.
Given that both proxy re-encryption and CKKS homomorphic
encryption adhere to the IND-CPA security property, the
ideal views of AS0

are computationally indistinguishable from
REALU,λ

S0
.

Hyb3 In this hybrid, SIMU,λ
S1

simulates the preparation for
robustness algorithm. For server S1, all cluster aggregations
Q = {g̃rMk

} are exposed, where k ∈ [1, c]. As S0 and S1 are
non-colluding servers, since the inputs {[[g̃r

i]]pk} (i ∈ [1, x])
are encrypted and the intermediate results are protected by
noise in CKKS, cluster aggregations cannot leak any user’s
data privacy without knowing any information about the input
and intermediate calculations. We can modify the inputs to
be a set of uniformly random vectors instead of {g̃rMk

}, the
real view of the interactive scheme and ideal view by AS1

are
simulatable and computationally distinguishable.

Hyb4 In this hybrid, after S1 receives all cluster aggregations
from S0, SIMU,λ

S1
simulates the robustness aggregation algo-

rithm. The view of AS1 encompasses all intermediate results
of the robustness algorithm, specifically referring to the norms
and PCA’s dimension reduction values of all cluster aggre-
gations. These intermediate values, derived from aggregated
values of each cluster, do not leak individual model update
information from any users. The final aggregated model update
sum =

∑
Mk∈Q′ g̃rMk

is calculated, where Q′ is the set
of aggregations of compressed model updates within clusters
after S1 completes the robust algorithm. The views of AS0 and
AU include the final aggregation. The final aggregate value in
real views remains indistinguishable from that of an equivalent
set of random vectors sum′ =

∑
Mk∈Q′ Rk in ideal views of

AS1
and AU .

Therefore, we can define a PPT simulator, denoted as
SIMU,λ

P , which samples from the distribution in the last
hybrid. The preceding argument conclusively demonstrates
that the output of the simulator is computationally indistin-
guishable from the output of REALU,λ

P , thereby completing
the proof.

Theorem 2 (Security against a server colluding with clients).
Considering all U , λ and P where P ⊆ U∪{S0,S1}, for every
non-uniform probabilistic polynomial-time (PPT) adversary
AP controlling a set of malicious clients and having access
to the view of at most one (semi-honest) server, there exists a
probabilistic polynomial-time (PPT) simulator SIM such that

REALU,λ
P (AP , XU∪{S0,S1}\P) ≈c SIMU,λ

P (AP , XP)
where ≈c denotes that the outputs are computationally

indistinguishable.

Proof. We assumed in the threat model that there is no collude
between servers, but we do not rule out the possibility of
clients colluding with one of the servers. We will analyze
the above situation. We assume κ malicious clients UM =
{u1′ , u2′ · · · , uκ′}(|UM | = κ), we allow these malicious
clients to conspire to achieve the attack target.

Case 1: UM collude with shuffle server S0
We assume that these clients UM and S0 are simultane-

ously corrupted by the adversary A(UM ,S0). The views of

A(UM ,S0) contains the ciphertext of local model updates for
all clients, the ciphertexts of model updates for each cluster
collected by random clusters, as well as the total public
key and proxy re encryption key. However, because there
are no secret keys in the views, the adversary A(UM ,S0)

is unable to decrypt and obtain model updates from other
honest clients. Due to the fact that homomorphic encryp-
tion CKKS and proxy re encryption algorithms satisfy the
security properties of IND-CPA, the joint view of adversary
A(UM ,S0) in ideal and real worlds are computationally indis-
tinguishable, so REALU,λ

(UM ,S0)
(A(UM ,S0), XU∪{S0,S1}\P) ≈c

SIMU,λ
P (A(UM ,S0), X(UM ,S0)).

Case 2: UM collude with analysis server S1
We assume that these clients UM and S1 are simultaneously

corrupted by the adversary A(UM ,S1). The views of A(UM ,S1)

contains all cluster aggregations Q = {g̃rMk
} and model

updates of clients in the set UM . Due to the random shuffling
and combination of S0, the plaintexts still have a random
distribution in the joint view of A(UM ,S1). So the behavior
of the adversary A(UM ,S1) remains indistinguishable in both
the real and ideal worlds.

Theorem 3. Shuffle server S0, analysis server S1 and mali-
cious clients can get nothing about the sensitive information
of honest clients theoretically.

Proof. For the server S0, throughout the entire process, only
the ciphertexts of all model updates [[g̃r

i]]pk and [[g̃r
i]]pk1

are
visible, and the exact value of the model update gr

i for any
client ui cannot be obtained, where i ∈ [1, x]. For server
S1, all cluster aggregations Q = {g̃rMk

} are exposed, where
k ∈ [1, c]. As S0 and S1 are non-colluding servers, S1 is also
unable to acquire the exact value of any client’s model update.
For κ malicious clients {u1′ , u2′ · · · , uκ′}(|{1′, 2′ · · · , κ′}| =
κ), we allow these malicious clients to conspire to achieve
the attack target, they can get the final cluster aggregation
sum =

∑
Mk∈Q′ g̃rMk

, where Q′ is the set of aggregations
of the compressed model updates within clusters after S1
complete the robust algorithm. Assume that Q′ contains the
compression model update of users u′ =

⋃
k∈c′Mk =

{u1′′ , · · · , uκ′′} ∪ Up, where c′ denotes the clusters selected
by the robust algorithm, {u1′′ , · · · , uκ′′} and Up denote the set
of malicious clients and honest clients selected respectively.
For malicious clients, the privacy data of any client cannot be
obtained. The analysis is as follows: (1) Random clustering
is performed on the S0 side, and robust filtering is performed
on the S1 side. The malicious client cannot obtain the user
list u′ of the final aggregation, and cannot perform effective
collusion attacks to obtain the model update of the honest
client, when {u1′′ , · · · , uκ′′} ≠ {u1′ , · · · , u′

κ}. (2) When
|Up| > 1, malicious clients can theoretically only obtain the
sum of model updates of multiple honest clients rather than
model updates of any single client ui ∈ Up. For the case of
|Up| = 1, it is unrealistic when the number of clients reaches
a certain scale.

B. Discussion

Our method involves cluster aggregation, where one or
more malicious model updates in the cluster are considered
malicious. Also, we need a trusted root as a guide because
malicious updates will exceed half of the number of clusters,
and we also require one less cluster to include all benign model
updates. In addition, if the proportion of malicious updates
is theoretically less than 50% without clustering aggregation,
norm and PCA dimensionality reduction can be directly used
for malicious update filtering, without the need for trusted
roots as guidance.

Certainly, the cluster size is linked to the resistible number
of malicious clients. The relationship between the proportion
of malicious clients with maximum tolerance (Att denoted)
and the cluster size (y denoted) is expressed as Att =

⌊ x
y ⌋−1

x ,
where x is the number of clients.

Moreover, multiple rounds of random clusters can introduce
additional privacy risks, as the server can clearly see multiple
averages of clients. We introduce a variable R, which denotes
the number of rounds of random cluster. In our experimental
setting, we conduct random cluster in every round, thus
R = t. At least R ≥ y = ⌊xc ⌋ is required for the server to
recognize all client updates. Consider a scenario with 4 clients
{u1, u2, u3, u4}, the cluster size is 2. We assume that the
global Federated Learning (FL) model is nearing convergence,
and the locally trained models exhibit minimal changes across
different rounds, so we can get wt0

i ≈ wt0+1
i , i ∈ [1, 4].

In round t0, the server obtains the model aggregation zt00 =
wt0

1 + wt0
2 and zt01 = wt0

3 + wt0
4 , while in round t0 + 1, it

obtains zt0+1
0 = wt0+1

1 +wt0+1
3 and zt0+1

1 = wt0+1
2 +wt0+1

4 .
The server may attempt to consolidate all client models by
combining these aggregation equations. However, in practice,
overlapping clusters may occur for different rounds. So R ≥
y = ⌊xc ⌋ also cannot serve as an assurance that the server can
compromise the models of clients.

VII. EXPERIMNET

We evaluate the effectiveness of our scheme in compressing
and resisting poisoning attacks and show our experimental
results.

A. Experimental Setup

a) Datasets: We use multiple datasets from different
domains in our experiments, including two image classification
datasets.

• MNIST: 10-class handwritten digit image classification
dataset consisting of 60000 training images and 10000
testing images.

• CIFAR-10: The CIFAR-10 dataset has a total of 60000
samples, each of which is a 32 × 32 pixel RGB image
(color image). These 60000 samples were divided into
50000 training samples and 10000 testing samples.
b) Models: We train various global models on the above

two datasets to show the generality of. we train a LeNet-5
and a CNN as global model. The parameters of the model are
shown in TABLE III.

TABLE III
MODEL SUMMARY

Network Layer
Conv1 Conv2 Conv3 FC1 FC2 FC3

LeNet-5 156 2416 - 48120 10164 850
CNN 896 18496 73856 524544 21588 850

c) FL Settings: We set the number of clients as N = 20,
we train the global models for 40 communication round. In
each round, each client locally trains R = 5 rounds via
mini-batch SGD with a batch size of b = 32, the number
of clusters is 5. The training datasets are independent identi-
cally distributed (iid) and Dirichlet distributed (non-iid) with
parameter alpha = 0.5. Additionally, it should be noted that
the model updates aggregation method in our experiment is
average aggregation rather than weighted average aggregation.

d) Adversary Parameters: We set the proportion of ma-
licious clients to 0.05 to 0.2.

e) Evaluated Poisoning Attacks: We implement both
untargeted poisoning attacks and targeted poisoning attacks.
The above includes:

• Label Flipping Attack: Label Flipping (LF) attack simply
flips the label of each training sample. we flip its initial
Label l to l+1 mod L, where L is the total number of
classes and l = 0, 1, ..., L − 1. It is a classic targeted
attack.

• Gaussian Attack: Malicious clients add Gaussian noise to
the updated local model parameters. For simplicity sake,
the mean and variance of the noise are 0 and 0.5 in our
experiment.

• Scaling Attack: Scaling attack is a untargeted local model
poisoning attack. Specifically, we consider the attacker
uploading the inverse value of the benign model update
and scaling it. Usually, the scaling factor γ satisfies γ ≫
1. In the experiment, we set it to 10.
f) Experimental Configuration: We conduct federated

learning simulation experiments on a laptop, which is config-
ured with AMD Ryzen 9 5900HX and RTX3080 independent
graphics. Also we use OpenFHE library to deploy CKKS and
Proxy Re-Encryption [41]. Finally, we use Intel Math Kernel
Library (MKL) to support and accelerate matrix operations in
the CSR format for sparse matrixs.

B. Experimental Results
We compare the performance of Top-K [12], FetchSGD

[37], Guassi RP (Guassi Random Projection) [42] and SuperFL
when the communication round reaches the preset final round.
We use the LeNet-5 model and CNN model to train 40 rounds
on the MNIST dataset and CIFAR-10 dataset respectively.
Also, the data distribution is the Dirichlet distribution. Besides,
Our compression ratio is calculated by dividing the number
of model parameters by the number of compressed model
parameters. We observe the accuracy of the model test and
give the performance comparison between SuperFL and other
compression methods in Figure 4 and in Figure 5.

We verify the model accuracy of the four compression
methods under different compression ratios. The compression

ratio of 1 is our Fedavg accuracy. In Figure 4(a) and in
Figure 5(a), it can be seen that SuperFL has similar model
accuracy with Gaussin RP under a certain compression ratio.
In additon, our SuperFL has higher model accuracy than
FetchSGD under the same compression ratio. In Figure 4(b)
and in Figure 5(b), we fix different compression ratios for the
four compression methods to verify the accuracy of the model.

In TABLE IV, we set target accuracy 95% for MNIST +
LeNet-5 and target accuracy 64% for CIFAR-10 + CNN learn-
ing task respectively. It can be seen that our scheme achieves
the target accuracy in fewer rounds at same compression ratio
than the Guassin RP. Figure 6(a) shows the execution time
of model compression using different projection compression
methods. It can be seen that our model compression is more
efficient than other model compression algorithms, due to the
use of sparse matrix multiplication optimization techniques.

1 20 40 60 80 100 120 140 160
Compression Ratio

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
Gaussian RP
SuperFL
FetchSGD
Top-K

(a)

0 10 20 30 40
Communication Round

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Gaussian RP, Ratio=80
SuperFL, Ratio=80
FetchSGD, Ratio=20
Top-K, Ratio=200

(b)

Fig. 4. Test accuracy on MNIST: (a) Test accuracy on MNIST in different
upload compression ratio, (b) Test accuracy on MNIST in different rounds

1 3 5 7 9
Compression Ratio

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Te
st

 A
cc

ur
ac

y

Gaussian RP
SuperFL
FetchSGD
Top-K

(a)

0 10 20 30 40
Communication Round

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Gaussian RP, Ratio=5
SuperFL, Ratio=5
FetchSGD, Ratio=3
Top-K, Ratio=9

(b)

Fig. 5. Test accuracy on CIFAR-10: (a) Test accuracy on CIFAR-10 in
different upload compression ratio, (b) Test accuracy on CIFAR-10 in different
rounds.

TABLE IV
UPLOAD COMPRESSION RATIO OF EACH METHOD ON MNIST DATASET

WITH THE TARGET TEST ACCURACY 95%, UPLOAD COMPRESSION RATIO
OF EACH METHOD ON CIFAR-10 DATASET WITH THE TARGET TEST

ACCURACY 64%

Dataset Method Round Compression ratio

MNIST

Gaussian RP 16 80
SuperFL 11 80

FetchSGD 10 20
Top-K 7 160

CIFAR-10

Gaussian RP 26 5
SuperFL 24 5

FetchSGD 40 3
Top-K 29 9

0.2 0.4 0.6 0.8 1.0
Model Size 1e6

0

10

20

30

40

50

60

Co
m

pr
es

sio
n

Ti
m

e
(m

s)

Gaussian RP
SuperFL
FetchSGD

(a) Time performance

LeNet5 CNN
Model

0
10
20
30
40
50
60
70
80

Ov
er

he
ad

 (M
B)

Uncompression
Compression

(b) Overhead performance

Fig. 6. (a) Comparison of execution time of compression algorithms for mod-
els of different sizes (Fixed compression ratio of 100), (b) The communication
overhead of ciphertexts for uncompressed models and compressed models in
a single round of upload.

Before embarking on our robust defense experiments, we
initially assessed the model test error rate of our defense
algorithm under attack-free conditions, as shown in TABLE V.
The compression ratios for training models on the MNIST
and CIFAR-10 datasets are set to 40 and 5, respectively. The
findings show that our defense algorithm exhibits comparable
model performance to FedAvg in the absence of attacks. Then

TABLE V
TEST ERROR RATE OF SUPERFL AND OTHER DEFENSE ALGORITHMS

UNDER THE ABSENCE OF ATTACK ON DIFFERENT DATASETS

Dataset Scheme Data Distribution
IID Non-IID

MNIST

FedAvg 0.01 0.01
SuperFL 0.02 0.02

Krum 0.01 0.01
Median 0.01 0.01

CIFAR-10

FedAvg 0.27 0.29
SuperFL 0.28 0.34

Krum 0.28 0.36
Median 0.27 0.30

we evaluate the robustness of our scheme against poisoning
attacks. Figure 7 shows the comparison of the training re-
sults of our robustness scheme under 40 rounds with other
schemes under the MNIST data set. TABLE VI shows the
comparison of model accuracy with other schemes under
different number of malicious clients. The results indicate that
our approach consistently preserves accuracy across various
types of poisoning attacks, even when subjected to different
numbers of malicious clients. This performance surpasses
that of other algorithms. Note that our robustness test is
performed at a compression ratio of 40, which also indicates
that our robustness algorithm can be well adapted to our
model compression algorithm. Figure 8 and TABLE VII show
the robustness of superFL on CIFAR-10, where we set the
compression ratio of our scheme to 5. It can be seen that
our scheme still has a comprehensive defense effect in the
case of IID and Non-IID. In particular, when the proportion
of malicious clients exceeds or equals 15%, a scenario where
over half of the groups potentially harbor malicious nodes,
conventional defense mechanisms such as Krum and Median
falter. In contrast, our algorithm continues to exhibit robust
performance under such circumstances.

0 5 10 15 20 25 30 35 40
Communication Round

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(a) Label Flipping attack, IID, Att =
20%

0 5 10 15 20 25 30 35 40
Communication Round

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(b) Label Flipping attack, Non-IID,
Att = 20%

0 5 10 15 20 25 30 35 40
Communication Round

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(c) Gauss attack, IID, Att = 20%

0 5 10 15 20 25 30 35 40
Communication Round

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(d) Gauss attack, Non-IID, Att = 20%

0 5 10 15 20 25 30 35 40
Communication Round

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
SuperFL
Cluster-Krum
Cluster-Median
Baseline

(e) Scale attack, IID, Att = 20%

0 5 10 15 20 25 30 35 40
Communication Round

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(f) Scale attack, Non-IID, Att = 20%

Fig. 7. Test accuracy on MNIST, where Att denotes percentage of malicious
clients.

TABLE VI
TEST ERROR RATE OF SUPERFL AND OTHER DEFENSE ALGORITHMS

UNDER DIFFERENT NUMBER OF MALICIOUS ATTACKS ON MNIST

Attacks Scheme Proportion of malicious clients
5% 10% 15% 20%

LF attack
SuperFL 0.02/0.02 0.02/0.03 0.02/0.03 0.03/0.03

Krum 0.01/0.02 0.01/0.02 0.05/0.05 0.09/0.13
Median 0.01/0.01 0.01/0.02 0.02/0.02 0.03/0.07

Gauss attack
SuperFL 0.02/0.03 0.02/0.03 0.02/0.03 0.03/0.03

Krum 0.01/0.02 0.01/0.02 0.01/0.02 0.01/0.02
Median 0.01/0.01 0.02/0.02 0.06/0.11 0.12/0.24

Scaling attack
SuperFL 0.02/0.03 0.02/0.03 0.02/0.03 0.03/0.03

Krum 0.01/0.02 0.01/0.02 0.01/0.02 0.90/0.90
Median 0.01/0.02 0.01/0.02 0.90/0.90 0.91/0.90

TABLE VII
TEST ERROR RATE OF SUPERFL AND OTHER DEFENSE ALGORITHMS
UNDER DIFFERENT NUMBER OF MALICIOUS ATTACKS ON CIFAR-10

Attacks Scheme Proportion of malicious clients
5% 10% 15% 20%

LF attack
SuperFL 0.29/0.34 0.29/0.34 0.31/0.34 0.33/0.35

Krum 0.29/0.36 0.30/0.39 0.32/0.41 0.32/0.41
Median 0.28/0.32 0.28/0.32 0.29/0.33 0.30/0.35

Gauss attack
SuperFL 0.30/0.34 0.30/0.37 0.29/0.37 0.29/0.37

Krum 0.28/0.37 0.28/0.37 0.28/0.38 0.28/0.39
Median 0.27/0.31 0.27/0.32 0.68/0.78 0.83/0.90

Scaling attack
SuperFL 0.28/0.34 0.28/0.35 0.29/0.36 0.30/0.36

Krum 0.28/0.36 0.28/0.36 0.90/0.90 0.90/0.90
Median 0.29/0.33 0.29/0.40 0.90/0.90 0.90/0.90

we compare the communication overhead of ciphertexts
for uncompressed models and compressed models in a single

0 5 10 15 20 25 30 35 40
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Te

st
 A

cc
ur

ac
y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(a) LF attack, IID, Att = 20%

0 5 10 15 20 25 30 35 40
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(b) LF attack, Non-IID, Att = 20%

0 5 10 15 20 25 30 35 40
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(c) Gauss attack, IID, Att = 20%

0 5 10 15 20 25 30 35 40
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(d) Gauss attack, Non-IID, Att = 20%

0 5 10 15 20 25 30 35 40
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(e) Scaling attack, IID, Att = 20%

0 5 10 15 20 25 30 35 40
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

SuperFL
Cluster-Krum
Cluster-Median
Baseline

(f) Scaling attack, Non-IID, Att = 20%

Fig. 8. Test accuracy on CIFAR-10, where Att denotes percentage of
malicious clients.

round of upload as shown in Figure 6(b). It is evident that
compression can reduce transmission overhead.

TABLE VIII
TEST ERROR RATE OF SUPERFL ALGORITHMS UNDER DIFFERENT

NUMBER OF MALICIOUS LF ATTACKS AND DIFFERENT COMPRESSION
RATIO ON MNIST

Compression Ratio Proportion of malicious clients
5% 10% 15% 20%

40 2.66% 2.74% 3.23% 3.56%
80 4.79% 4.88% 5.55% 5.62%
120 14.37% 16.30% 18.30% 8.08%
160 15.49% 16.83% 23.73% 25.25%

TABLE VIII presents the testing error rate of our scheme
under various compression ratios in the presence of label-
flipping attacks. As evidenced by TABLE VIII, it is clear that
the testing error rate rises as the compression ratio increases.
Nevertheless, it is worth noting that our approach maintains
a satisfactory defensive performance when the compression
ratio ≤ 80.

VIII. CONCLUSION

In this paper, we propose SuperFL, a groundbreaking so-
lution that effectively addresses critical challenges in pri-
vacy preservation, robust aggregation, and protection against

poisoning attacks. By utilizing classic fully homomorphic
encryption techniques called CKKS and proxy re-encryption
techniques, we establish a secure framework that guarantees
byzantine robustness while safeguarding customer privacy.
This framework incorporates a unique two-server collaborative
aggregation model. To enhance communication efficiency, we
integrate efficient sketch compression methods and employ
a multiple-defense strategy based on trusted root datasets.
This approach not only enhances communication efficiency
but also effectively defends against poisoning attacks. Exten-
sive experiments and comparisons with cutting-edge solutions
demonstrate the outstanding performance of our method in
terms of robustness and efficiency.

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, pp. 1–19, 2019.

[2] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Pro. Int.
Conf. Adv. Neural Inf. Process. Syst. (NIPS), 2019, pp. 14 774–14 784.

[3] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning
attacks against federated learning systems,” in Proc. 25th Eur. Symp.
Res. Comput. Secur. (ESORICS), 2020, pp. 480–501.

[4] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to byzantine-robust federated learning,” in Proc. 29th USENIX Secur.
Symp. (USENIX Secur.), 2020, pp. 1605–1622.

[5] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic overhead,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2020, pp.
1253–1269.

[6] T. Stevens et al., “Efficient differentially private secure aggregation for
federated learning via hardness of learning with errors,” in Proc. 31th
USENIX Secur. Symp. (USENIX Secur.), 2022, pp. 1379–1395.

[7] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep lerning via additively homomorphic encryption,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1333–1345, 2018.

[8] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Pro.
Int. Conf. Adv. Neural Inf. Process. Syst. (NIPS), 2017, pp. 118–128.

[9] B. Zhao, P. Sun, T. Wang, and K. Jiang, “Fedinv: Byzantine-robust
federated learning by inversing local model updates,” in Proc. AAAI
Conf. Artif. Intell. (AAAI), 2022, pp. 9171–9179.

[10] J. Xu, S.-L. Huang, L. Song, and T. Lan, “Byzantine-robust federated
learning through collaborative malicious gradient filtering,” in Proc.
IEEE 42th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2022, pp. 1223–
1235.

[11] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with
memory,” in Pro. Int. Conf. Adv. Neural Inf. Process. Syst. (NIPS), 2018,
pp. 4452–4463.

[12] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proc. Conf. Empir. Methods Nat. Lang. Process.
(EMNLP), Sep. 2017, pp. 440–445.

[13] S. Lin, Y. Han, X. Li, and Z. Zhang, “Personalized federated learning
towards communication efficiency, robustness and fairness,” in Pro. Int.
Conf. Adv. Neural Inf. Process. Syst. (NIPS), 2022, pp. 30 471–30 485.

[14] Y. Miao et al., “Privacy-preserving byzantine-robust federated learning
via blockchain systems,” IEEE Trans. Inf. Forensics Security, vol. 17,
p. 2848–2861, 2022.

[15] R. Hu, Y. Gong, and Y. Guo, “Federated learning with sparsification-
amplified privacy and adaptive optimization,” in Proc. 30th Int. Joint
Conf. Artif. Intell. (IJCAI), 8 2021, pp. 1463–1469.

[16] H. Lycklama, L. Burkhalter, A. Viand, N. Küchler, and A. Hithnawi,
“Rofl: Robustness of secure federated learning,” in Proc. IEEE Symp.
Secur. Privacy (SP). IEEE, 2023, pp. 453–476.

[17] M. Rathee, C. Shen, S. Wagh, and R. A. Popa, “Elsa: Secure aggregation
for federated learning with malicious actors,” in Proc. IEEE Symp. Secur.
Privacy (SP). IEEE, 2023, pp. 1961–1979.

[18] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur. (ASIACRYPT), 2017, pp. 409–437.

[19] Z. Song, Y. Wang, Z. Yu, and L. Zhang, “Sketching for first order
method: Efficient algorithm for low-bandwidth channel and vulnerabil-
ity,” in Proc. Int. Conf. Mach. Learn. (ICML), 2023, pp. 32 365–32 417.

[20] Z. Song and Z. Yu, “Oblivious sketching-based central path method for
linear programming,” in Proc. Int. Conf. Mach. Learn. (ICML), 2021,
pp. 9835–9847.

[21] J. Nelson et al., “Osnap: Faster numerical linear algebra algorithms via
sparser subspace embeddings,” in Proc. IEEE 54th Annu. Symp. Found.
Comput. Sci. (FOCS), 2013, pp. 117–126.

[22] Y. Aono et al., “Privacy-preserving deep learning via additively homo-
morphic encryption,” IEEE Trans. Inf. Forensics Security, pp. 1333–
1345, 2017.

[23] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2020, pp. 493–506.

[24] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Secur. Privacy (SP),
2017, pp. 19–38.

[25] P. Xu, M. Hu, T. Chen, W. Wang, and H. Jin, “Laf: Lattice-based and
communication-efficient federated learning,” IEEE Trans. Inf. Forensics
Security, vol. 17, pp. 2483–2496, 2022.

[26] Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong, “Dp-admm:
Admm-based distributed learning with differential privacy,” IEEE Trans.
Inf. Forensics Security, vol. 15, pp. 1002–1012, 2019.

[27] K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 3454–3469, 2020.

[28] O. Aramoon, P.-Y. Chen, G. Qu, and Y. Tian, “Meta federated learning,”
arXiv preprint arXiv:2102.05561, 2021.

[29] Y. Li, X. Wang, R. Sun, X. Xie, S. Ying, and S. Ren, “Trustiness-
based hierarchical decentralized federated learning,” Knowledge-Based
Systems, vol. 276, p. 110763, 2023.

[30] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), 2017, pp. 1273–
1282.

[31] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2018, pp. 5650–5659.

[32] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust
federated learning via trust bootstrapping,” in Proc. Netw. Distrib. Syst.
Secur. Symp. (NDSS), 2020.

[33] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” arXiv preprint arXiv:1911.07963, 2019.

[34] R. Guerraoui, S. Rouault et al., “The hidden vulnerability of distributed
learning in byzantium,” in Proc. Int. Conf. Mach. Learn. (ICML), 2018,
pp. 3521–3530.

[35] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
Proc. IEEE Symp. Secur. Privacy (SP), 2018, pp. 315–334.

[36] S. Lu, R. Li, W. Liu, C. Guan, and X. Yang, “Top-k sparsification with
secure aggregation for privacy-preserving federated learning,” Comput-
ers & Security, vol. 124, p. 102993, 2023.

[37] D. Rothchild et al., “Fetchsgd: Communication-efficient federated learn-
ing with sketching,” in Proc. Int. Conf. Mach. Learn. (ICML), 2020.

[38] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput, 2009, pp. 169–178.

[39] Y. Polyakov, K. Rohloff, G. Sahu, and V. Vaikuntanathan, “Fast proxy
re-encryption for publish/subscribe systems,” ACM Trans. Priv. Secur.
(TOPS), vol. 20, no. 4, pp. 1–31, 2017.

[40] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Int. Colloq. Automata Lang. Program. (ICALP).
Springer, 2002, pp. 693–703.

[41] A. Badawi et al., “Openfhe: Open-source fully homomorphic encryption
library,” in Proceedings of the 10th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, 2022, p. 53–63.

[42] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,”
in Proc. Int. Conf. Knowl. Discovery Data Mining (KDD), 2006, p.
287–296.

	Introduction
	Related work
	Secure Aggregation of Federated Learning
	Federated Learning Against Poisoning Attacks
	Model Compression of Federated Learning

	Preliminaries
	Federated Learning
	Fully Homomorphic Encryption
	Proxy Re-Encryption
	Sketching and Coordinate-wise Embedding

	PROBLEM FORMULATION
	System Model
	Threat Model
	Design Goals

	DESIGN OF OUR SCHEME
	Technical Overview
	Model Update Computation
	Client local model update computation
	Server trusted root model update computation

	Sparse Embedding Sketch Compression
	Initialize projection matrix
	Compression and decompression

	Secure Cluster Aggregation
	Robust Aggregation
	Putting It All Together

	SECURITY ANALYSIS AND DISCUSSION
	Security Analysis
	Discussion

	Experimnet
	Experimental Setup
	Experimental Results

	Conclusion
	References

