
A provably masked implementation of BIKE Key
Encapsulation Mechanism

Loïc Demange1,2∗ and Mélissa Rossi3

1 Thales, Gennevilliers, France
2 Inria, Paris, France loic.demange@inria.fr

3 ANSSI, Paris, France melissa.rossi@ssi.gouv.fr

Abstract. BIKE is a post-quantum key encapsulation mechanism (KEM) selected for the 4th round of
the NIST’s standardization campaign. It relies on the hardness of the syndrome decoding problem for
quasi-cyclic codes and on the indistinguishability of the public key from a random element, and provides the
most competitive performance among round 4 candidates, which makes it relevant for future real-world use
cases. Analyzing its side-channel resistance has been highly encouraged by the community and several works
have already outlined various side-channel weaknesses and proposed ad-hoc countermeasures. However,
in contrast to the well-documented research line on masking lattice-based algorithms, the possibility of
generically protecting code-based algorithms by masking has only been marginally studied in a 2016 paper
by Cong Chen et al. At this stage of the standardization campaign, it is important to assess the possibility
of fully masking BIKE scheme and the resulting cost in terms of performances.
In this work, we provide the first high-order masked implementation of a code-based algorithm. We
had to tackle many issues such as finding proper ways to handle large sparse polynomials, masking the
key-generation algorithm or keeping the benefit of the bitslicing. In this paper, we present all the gadgets
necessary to provide a fully masked implementation of BIKE, we discuss our different implementation choices
and we propose a full proof of masking in the Ishai Sahai and Wagner (Crypto 2003) model.
More practically, we also provide an open C-code masked implementation of the key-generation, encapsulation
and decapsulation algorithms with extensive benchmarks. While the obtained performance is slower than
existing masked lattice-based algorithms, the scaling in the masking order is still encouraging and no
Boolean to Arithmetic conversion has been used.
We hope that this work can be a starting point for future analysis and optimization.
Keywords: BIKE · PQC · Side-Channel countermeasure · Provable high-order masking · d-probing
model

1 Introduction
In response to the potential quantum threat, the NIST has initiated a standardization campaign in 2017
for defining new post-quantum algorithms. Different families of mathematical problems have received a lot
of attention. Particularly, lattices and error-correcting codes stood out as interesting building blocks for
post-quantum schemes. Six years after the first round of the campaign, three lattice-based schemes have been
selected as future NIST post-quantum standards. But in parallel, the standardization campaign continues
for other key-encapsulation schemes like code-based ones, because it is important to be able to have diverse
schemes based on other structures.

BIKE [ABB+22], a round 4 candidate for the NIST standardization process, is still under analysis by the
research community. It relies on the hardness of the syndrome decoding problem for quasi-cyclic codes and on
the indistinguishability of the public key from a random element. It is the most efficient and offers the lowest
key sizes of all round 4 candidates. BIKE belongs to a line of research on QC-MDPC code-based schemes started
by [MTSB13]. The advantage of QC-MDPC-based algorithms is the sparse structure of the underlying variables.
Such codes allow for the use of iterative bit-flipping decoding algorithms (detailed later in the paper) as part of
the decapsulation. The first implementations of QC-MDPC codes [vMG14, MOG15, vMHG16] were not constant

∗This work has been partially supported by the French Agence Nationale de la Recherche through the France 2030 program
under grant agreement No. ANR-22-PETQ-0008 PQ-TLS.

mailto:loic.demange@inria.fr
mailto:melissa.rossi@ssi.gouv.fr

2 A provably masked implementation of BIKE Key Encapsulation Mechanism

time and vulnerable to time attacks. In 2016, Chou proposed a portable constant-time C implementation [Cho16].
Some implementation proposals have been made over the years [DG17, GAB19, BOG20], and another constant-
time C implementation was introduced in 2020 [DGK20], especially improving the decoding part, and which is
claimed protected against timing and cache attacks. Cortex-M4 optimized implementations of BIKE have been
introduced later in [CCK21]. Subsequently, optimizations have been proposed in [CGKT22].

Existing side-channel attacks Timing vulnerabilities have been handled with priority in the previously stated
implementations. However, the authors of [GHJ+21] have highlighted the possibility of using timing information
of the constant weight word sampler in the decapsulation in order to apply [GJS16]’s reaction attack. Such a
vulnerability has been thwarted by redesigning the word sampler in [Sen21].

On the power-consumption attacks side, several works have outlined various side-channel weaknesses and
proposed ad-hoc countermeasures. Indeed, while BIKE’s sparse and structured private keys are essential for
providing good performances and compactness, this exact structure and redundancy can be exploited by
side-channel attacks in order to lower down the difficulty of the underlying decoding problem. For instance,
Chou’s implementation has been targeted by a differential power analysis attack on the syndrome computation
in [RHHM17]. Later, an improvement of the previous attack and a single-trace analysis exploiting leakage in
the syndrome computation were provided in [SKC+19]. Very recently, [CARG23] introduced a new single-trace
attack on the most recent implementation of BIKE. The authors use unsupervised clustering techniques on the
trace during the cyclic shifts computation to recover some bits of the positions of the ones in the private key.
Next, they combine such knowledge with classical information set decoding techniques to recover the full key.

Existing generic side-channel protections The current implementations of code-based schemes are claimed to
be protected against timing and cache attacks, but they are never fully masked, i.e. masked from key generation
to decapsulation. Masking is known as the most deployed countermeasure against physical attackers and is
widely applied in embedded systems. Masking consists in randomizing any secret-dependent intermediate
variable. Each of these secret-dependent intermediate variables, say x, is split into d + 1 variables (xi)0≤i≤d

called "shares". The integer d is referred to as the masking order. In this paper, the only necessary type of
masking is Boolean masking. In other words, a sensitive variable x is shared in (xi)0≤i≤d such that

x = x0 ⊕ · · · ⊕ xd. (1)

While F2-linear operations can straightforwardly be applied share-wise, non-linear operations are more
complex and require additional randomness, as shown in [ISW03]. Proving the security of a masked design
consists in showing that the joint distribution of any set of at most d intermediate variables is independent of
the secrets. But, the bigger the algorithm is, the more dependencies to be considered in the proof. Fortunately,
several works have defined intermediate security properties that simplify the security proofs [RP10, CPRR14,
BBD+16]: one can focus on proving the properties on small parts of the algorithms, denoted gadgets, and it is
possible to securely compose the pieces together.

Much effort has been performed on provably masking lattice-based primitives in the past five years and many
challenges have been overcome. For example, [BBE+18] introduced a new security notion to justify unmasking
certain intermediate steps. In [GR19], the authors proposed a masked implementation of the qTesla signature
scheme [BAA+19]. In [KDV+22], a masked Fuijsaki-Okamoto transform is introduced for a fully masked
Saber KEM implementation [DKR+20]. The NIST post-quantum finalists Crystals-Dilithium [LDK+22] and
Crystals-Kyber [SAB+22] have also been masked in [ABC+22] and [BGR+21].

The picture is less abundant when it comes to code-based schemes. One explanation could come from the
large sparse polynomials leading to potential prohibitive performances or the complex counter-based decoder.
The authors of [KLRBG22a] propose a first-order masked inversion in multiplicative masking. Another recent
work [KLRBG22b] presents a way to mask BIKE’s key generation with a fixed weight polynomial sampling
technique and arithmetic to Boolean conversions.

Our contribution In this paper, we provide the first provable high-order masked implementation of a code-
based algorithm. We detail every masked gadget that is necessary for masking BIKE’s key generation and
decapsulation. The proofs are given in the d-probing model. Let us detail some aspects of our design.

• No mask conversion Mask-conversion gadgets consist in modifying the underlying masking operation,
e.g. going from ⊕ to an addition in Zq. Even if the unmasked functionality is the identity function, these

Loïc Demange and Mélissa Rossi 3

gadgets are known to be heavy in terms of computation time. Despite efficiency improvements since their
introduction e.g. in [CGV14, Cor17, CGTV15], current secure mask conversion algorithms run in time at
least O(d2). Contrary to lattices, BIKE is fundamentally relying on binary operations. While the authors
of [KLRBG22b] have included mask conversion in their design, we believe that keeping only Boolean
masking would be more natural and efficient. In this work, we give the first evidence that it is possible to
completely mask BIKE without any mask conversion.

• Sparse versus dense representation. BIKE’s intermediate variables are sparse polynomials with
coefficients in F2. An important question arose rapidly when designing a masked BIKE: Should we
represent the masked polynomials in dense form or keep the sparse structure and mask the indices of
the non-zero coefficient instead? On the one hand, the number of non-zero coefficients is protected but
the multiplication requires a masked Karatsuba-based multiplication algorithm. On the other hand, the
number of non-zero coefficients is accessible by timing attacks but a lighter multiplication algorithm based
on cyclic shifts is possible. The sparse representation intuitively seems lighter but some parts necessarily
required the dense form for security. For completeness, we decided to analyze both following approaches:

1. A fully-dense implementation where the polynomials are masked in dense form.
2. A hybrid sparse-dense implementation where the polynomials are represented in sparse form whenever

the number of non-zero coefficient is independent from any secret data.

Interestingly, our experiments showed that a fully-dense approach seems more relevant, especially for high
orders. While (2) and (1) seem equivalent for one or two shares, (1) looks indeed more relevant for higher
orders. This difference might shrink with more optimizations of the cyclic shift, as it will be discussed in
the future work section.

• Many new gadgets. A lot of new gadgets needed to be introduced for masking BIKE. Although BIKE’s
bitslice addition technique turned out to operate well with Boolean masking, some other parts of the key
generation were more challenging to mask. For example the Fisher-Yates sampling algorithm/technique
and the polynomial inversion required many loops and subroutines. More generally, we provide in this
paper all elementary gadgets that are necessary to mask BIKE even if their design did not pose any
particular issue. We believe that they can be of independent interest for masking future code-based
schemes.

We provide an open C-code implementation of the key-generation, encapsulation and decapsulation algorithms
with detailed benchmarks. Although theoretically quadratic [ISW03], several post quantum masked designs can
lead to an experimental scale in the masking order that tends to be exponential [BBE+18, Table 1]. The scaling
we’ve obtained is very encouraging, as our experiments seem to indicate a quadratic scaling. We believe that it
is even possible to further improve and optimize our code and maybe reach quasi-linearity in the masking order.
We hope that this work can be a first building block towards masked code-based cryptography and could lead
to future analysis and new optimization.

Organization of the paper In Section 2, we introduce all the necessary background on masking, QC-MDPC
codes and BIKE. In Section 3, we present our general masked construction along with its composition security
proof. In Section 4, we detail the gadgets. For brevity, we only detail a few main gadgets and refer to
Appendix A for the description of the remaining gadgets. Finally, in Section 5, we present our implementation
and its benchmarks. We conclude with the future work in Section 6.

2 Preliminaries
2.1 Masking
A shared variable (xi)0≤i≤d according to Eq. (1) will be denoted by JxK for readability. Note that for a masking
order d, there are d + 1 shares.

Definition 1 (d-probing Security or ISW security [ISW03]). An algorithm is d-probing secure iff the joint
distribution of any set of at most d internal intermediate values is independent of the secrets.

4 A provably masked implementation of BIKE Key Encapsulation Mechanism

Even if d-probing security seems far from realistic side-channel protection, it is actually backed-up by
theoretical model reductions that relate the d-probing security to side-channel security up to a certain level of
noise [DDF14]. Moreover, [CJRR99] showed that the number of measurements required to mount a successful
side-channel attack usually increases exponentially in the masking order.

In addition to Definition 1, other intermediate security properties were introduced to ease the security
proofs [RP10, CPRR14, BBD+16]. The focus can be placed on proving these properties on small parts of the
algorithms, denoted gadgets.

Definition 2 (Gadget). A gadget is a probabilistic algorithm that takes shared and unshared inputs values
and returns shared and un-shared values.

These new security properties open the door for securely composing gadgets.

Definition 3 (Non interference [BBD+16]). A gadget is:

• d-non-interfering (d-NI) iff any set of at most d observations can be perfectly simulated from at most d
shares of each input.

• d-strong non-interfering (d-SNI) iff any set of at most d observations whose dint observations on the
internal data and dout observations on the outputs can be perfectly simulated from at most dint shares of
each input.

One can check that d-SNI implies d-NI, which itself implies d-probing security. Also note that any linear
gadget for ⊕ is immediately d-NI.

2.2 Codes
In this paper, we will only introduce the relevant information for masking BIKE. Not many aspects of coding
theory are needed for understanding our work.

Definition 4 (Binary linear codes). A binary linear code C of length n and dimension r is a r-dimensional
vector subspace of Fn

2 . Is it possible to represent it in two equivalent ways:

• either using a generator matrix G ∈ Fr×n
2 such that each row of G is an element of a basis of C,

C = {m ·G, m ∈ Fr
2}.

• or using a parity-check matrix H ∈ F(n−r)×n
2 such that for any c ∈ C,

c ·HT = 0.

Definition 5 (Circulant matrix). An r × r matrix A is circulant if each row is a cyclic shift of the previous
row. More precisely, A is of the form

a0 a1 · · · ar−1
ar−1 a0 · · · ar−2

...
...

a1 a2 . . . a0

 .

We say that A is generated by the vector (a0, · · · , ar−1).

Remark 1. It is possible to define an isomorphism between the ring of polynomials F2[X]/(Xr − 1) and the set
of circulant matrices of order r. To a vector (a0, · · · , ar−1) generating a circulant matrix, one can associate the
polynomial

∑r−1
i=0 aiX

i. Multiplication and inversion can then be performed either with matrix multiplication
or polynomial multiplication.

Definition 6 (Quasi-circulant matrix). A matrix is quasi-circulant if it is composed of circulant blocks.

Loïc Demange and Mélissa Rossi 5

For example, let

A =

a1 a2 a3
a3 a1 a2
a2 a3 a1

 and B =

b1 b2 b3
b3 b1 b2
b2 b3 b1

be two circulant matrices. The matrix C = [A|B] defined as the concatenation of A and B is a quasi-circulant
matrix.
Remark 2. Similarly to Remark 1, it is possible to represent quasi-circulant matrices as sets of polynomials.
Definition 7 (Quasi-cyclic code). A binary code C is quasi-cyclic iff it admits a quasi-circulant generating
matrix.
Definition 8 (QC-MDPC code). Let n, r, w be integer parameters for length, dimension and minimum code
weight. A [n, r, w] QC-MDPC code C is a quasi-cyclic code that admits a parity-check matrix H such that H
has a constant row weight w = O(

√
n).

2.3 BIKE scheme
BIKE (Bit Flipping Key Encapsulation) [ABB+22] is a key encapsulation scheme based on QC-MDPC (Quasi-
Cyclic Moderate Density Parity-Check) codes as introduced in Definition 8.

More precisely, let r and w be integer parameters. BIKE relies on [2r, r, w] QC-MDPC codes. Its private
key corresponds to the parity check matrix. The security of the scheme reduces to quasi-cyclic variants of hard
problems from coding theory [Ale03, BMvT78]. We refer to [ABB+22] for more information about the security
and design rationale.

BIKE’s first building block is a public key encryption scheme (PKE) based on a variant of the Niederreiter
framework [Nie86]. The plaintext is represented by the sparse vector (e0, e1), and the ciphertext by its syndrome.
The decryption is performed with a decoding procedure that will be presented below in Section 2.4. Next, this
PKE is converted into an IND-CCA KEM with the application of the Fujisaki-Okamoto transformation [HHK17].
This transformation requires several hash functions: H, L and K.

Let us detail the key generation (KeyGen), Encapsulation (Encaps) and Decapsulation (Decaps) algo-
rithms in more details. In addition to the parameters r and w, let us define t and ℓ as integer parameters. We
denote R = F2[X]/(Xr − 1) the underlying cyclic polynomial ring. Let us define

Hw = {(h0, h1) ∈ R2 | |h0| = |h1| = w/2},
Et = {(e0, e1) ∈ R2 | |e0|+ |e1| = t},
M = {0, 1}ℓ,
K = {0, 1}ℓ,

as respectively the private key space, the error space, the message space and the shared key space. In the
above, we denote by |h| the Hamming weight of the polynomial h, i.e. the number of non-zero coefficients of h.

In the following, we denote a
$←− B when a is sampled uniformly at random from B, and ← is an assigment

of value.

Algorithm 1 Keygen
Ensure: ((h0, h1), σ) ∈ Hw ×M, h ∈ R

1: (h0, h1) $←− Hw

2: h← h1h−1
0

3: σ
$←−M

4: return ((h0, h1, σ), h)

Algorithm 2 Encaps
Require: h ∈ R
Ensure: K ∈ K, c ∈ R×M

1: m
$←−M

2: (e0, e1)←H(m)
3: c← (e0 + e1h, m⊕L(e0, e1))
4: K ←K(m, c)
5: return (K, c)

6 A provably masked implementation of BIKE Key Encapsulation Mechanism

Algorithm 3 Decaps
Require: (h0, h1, σ) ∈ Hw ×M, c = (c0, c1) ∈ R×M
Ensure: K ∈ K

1: e′ ← decoder(c0h0, h0, h1)
2: m′ ← c1⊕L(e′)
3: if e′ = H(m′) then
4: K ← K(m′, c)
5: else
6: K ← K(σ, c)
7: end if
8: return K

Table 1: BIKE’s proposed parameters [ABB+22]

Level 1 Level 3 Level 5
r 12323 24659 40973
w 142 206 274
t 134 199 264
ℓ 256 256 256

Parameter setting As defined in the specifications, the parameters should satisfy several constraints. The
block length r should be a prime number, and 2 should be primitive modulo r. The parameter w should be
such that w = 2d ≈

√
n with d being odd. In addition, the error weight should be such that t ≈

√
n. We

present the instantiated parameters in Table 1.

2.4 Decoding QC-MDPC codes
The choice of the decoder has a crucial impact on the security and the performances of the scheme. As
QC-MDPC codes have sparse parity matrices, decoding techniques usually rely on Bit-Flipping techniques
originally introduced in [Gal62] for low density parity-check matrices.

Technically, the Bit Flipping algorithm is presented in Algorithm 4 and works as follows: over several
iterations, we compute the syndrome cHT where c is the ciphertext and HT is the transposed parity matrix of
the code. Next, we count the number of unsatisfied parity-check equations for each position. If the counter
for a position exceeds T , a pre-computed threshold (on the fly according to the weight of the syndrome), the
position is flipped and the syndrome is recomputed. Let syndrome be the syndrome computation, counter the
counter computation, and threshold the threshold computation function. We refer to [ABB+22] for details.

Algorithm 4 Bit Flipping algorithm
Require: HT the sparse parity matrix of a [2r, r, w] MDPC code

c ∈ Fn
2 a noisy codeword

Ensure: A codeword c, cHT = 0
1: s← syndrome(c, H)
2: while |s| ≠ 0 do
3: T ← threshold(|s|)
4: for j ∈ {1, ..., n} do
5: if counter(s, j, H) ≥ T then
6: cj ← cj⊕1
7: end if
8: end for
9: s← syndrome(c, H)

10: end while
11: return c

Loïc Demange and Mélissa Rossi 7

The authors of BIKE chose a refined Black-Gray-Flip (BGF) technique introduced in [DGK20]. This
refinement classifies the error in a black zone or a gray zone using two different thresholds. Two additional
iterations are performed to verify the choices made during the classification. The BFG decoding algorithm is
presented in Algorithm 5. This decoder also has a fixed number of iterations (set at 5), to avoid timing attacks.

Algorithm 5 Black-Gray-Flip (BGF)
Parameters: r, w, t, d = w/2, n = 2r ; Nbr_Iter, τ , threshold (see text for details)
Require: s ∈ Fr

2, H ∈ Fr×n
2

1: e← 0n

2: for i = 1, . . . ,Nbr_Iter do
3: T ← threshold(|s + eHT |, i)
4: e, black, grey ← BFIter(s + eHT , e, T, H)
5: if i = 1 then
6: e← BFMaskedIter(s + eHT , e, black, (d + 1)/2 + 1, H)
7: e← BFMaskedIter(s + eHT , e, grey, (d + 1)/2 + 1, H)
8: end if
9: end for

10: if s = eHT then
11: return e
12: else
13: return ⊥
14: end if

15: procedure BFIter(s, e, T, H)
16: for j = 0, . . . , n− 1 do
17: if ctr(H, s, j) ≥ T then
18: ej ← ej ⊕ 1
19: blackj ← 1
20: else if ctr(H, s, j) ≥ T − τ then
21: greyj ← 1
22: end if
23: end for
24: return e, black, grey

25: procedure BFMaskedIter(s, e, mask, T, H)
26: for j = 0, . . . , n− 1 do
27: if ctr(H, s, j) ≥ T then
28: ej ← ej ⊕maskj

29: end if
30: end for
31: return e

3 Masked BIKE
We present here the core contribution of this paper: a fully masked encapsulation, decapsulation and key
generation for BIKE. While the encapsulation uses public data, most of it had to be masked anyway as part of
the decapsulation process due to the IND-CCA transform. Thus, for a perfectly complete masked design, the
masked encapsulation is also included in our code. The masked decapsulation is obviously the most important
part as it is the primary target of side-channel attacks. A masked key generation can also be relevant to prevent
single-trace key recovery attacks when the private key is generated. A masked encapsulation might be relevant
in advanced attack models to prevent single-trace message-recovery attacks.

In this section, we present the salient ideas of our masking design. Details on some selected underlying
gadgets will be presented later in Section 4. Some gadgets were already introduced in the literature but many
new gadgets have been introduced to achieve our design. The complete list of gadgets is summed-up in Tables 2

8 A provably masked implementation of BIKE Key Encapsulation Mechanism

Table 2: Security properties of the known gadgets.

Gadget Security Property Reference

sec& d− SNI [CGTV15, BBE+18].
refresh d− SNI [Cor14]
sec+ d− NI [Cor14]

and 3.

3.1 Sparse and dense notation

BIKE’s private key H is a sparse polynomial (see Remark 2). For masking such polynomials, both approaches
are valid: either we represent in its dense form or we keep the sparse structure and mask the indices of the
non-zero coefficients instead. Since the number of non-zero coefficient is a public parameter, two approaches are
potentially valid. The sparse representation intuitively seems lighter but some part (such as error generation)
will require the dense form for security reasons. For completeness, we analyze both approaches: (1) an
implementation where H is masked in dense form and (2) a hybrid-sparse-dense implementation where both
dense and sparse forms of H are stored.

The masked private key will then be denoted by Jhsparse
0 K, Jhsparse

1 K when it is masked in sparse form (i.e.
the indices of the non-zero coefficients are masked) and it will be denoted by Jhdense

0 K, Jhdense
1 K when the full

polynomial is masked. The same convention is applied for other intermediate variables that can be masked in
dense or sparse form.

Let sparse_to_dense be an algorithm that converts the sparse notation into a dense notation by multiplying
the sparse polynomial by a dense polynomial equal to 1. This procedure is straightforwardly d-NI.

3.2 Key generation

The masked key generation is introduced below in Algorithm 6. We use a masked version of the Fisher-Yates
algorithm. It consists in drawing a vector of n random elements, where each position i contains a value between
0 and n− i. Since it is important to avoid any duplicates, we go through the array backwards and we replace
the value by the index i in case of duplicates. Despite a bias in the distribution, this does not affect the security
of the scheme as proved in [Sen21]. This will allow us to generate our private keys h0 and h1, to then compute
the public key h. Provided that all the gadgets enjoy the d-NI property, their sequential combination leads to a

Algorithm 6 Masked key generation

Ensure: Jhsparse
0 K ∈ F

w
2

2 , Jhsparse
1 K ∈ F

w
2

2 , Jhdense
0 K ∈ Fr

2, Jhdense
1 K ∈ Fr

2, JhK ∈ Fr
2

1: Jhsparse
0 K← SecFisherYates(w

2 , r) ▷ Algorithm 17
2: Jhsparse

1 K← SecFisherYates(w
2 , r)

3: Jhdense
0 K← sparse_to_dense(Jhsparse

0 K) ▷ see Section 3.1
4: Jhdense

1 K← sparse_to_dense(Jhsparse
1 K)

5: Jh−1
0 K← SecInversion(Jhdense

0 K, r) ▷ Algorithm 18
6: JhK← SecKaratsuba(Jh−1

0 K, Jhdense
1 K) ▷ Algorithm 13

7: return sk =
(
Jhsparse

0 K, Jhsparse
1 K, Jhdense

0 K, Jhdense
1 K

)
, pk = JhK

d-NI algorithm. Thus we have the following result.

Theorem 1. The masked key generation algorithm is d− NI.

Loïc Demange and Mélissa Rossi 9

Table 3: Security properties of the introduced gadgets.
Non-Specific Gadgets

Gadget d-NI Theorem Function

SecAdder (Alg. 23 & 24) Th. 16 & 17 Addition in Z
sec= (Alg. 25) Th. 18 Equality check
SecBitslice (Alg. 11 & 12) Th. 6 Bitsliced addition

SecMultpartlymasked (Alg. 26) Th. 19 Multiplication between masked and un-
masked

secrand (Alg. 27) Th. 20 Modular random number
SecPolymul (Alg. 28) Th. 21 Polynomial multiplication
SecKaratsuba (Alg.13) Th. 7 Karatsuba multiplication
sec≫ (Alg. 29) Th. 22 Cyclic shift
SecMultsparsedense (Alg. 14) Th. 8 Multiplication between sparse and dense
sechw (Alg. 15) Th. 9 Hamming weight computation
secif (Alg. 30) Th. 23 Conditional if
secmax (Alg. 31) Th. 24 Maximum function
secfill (Alg. 32) Th. 25 Matrix filling

BIKE-adapted Gadgets

Gadget d− NI Theorem Function

SecBGF (Alg. 9) Th. 4 BGF Decoder (Alg. 5)
SecKeyGen (Alg. 6) Th. 1 Key Generation (Alg. 1)
SecErrorGen (Alg. 7) Th. 5 Generation of (e0, e1) in Decaps
SecGreyZone (Alg. 22) Th. 15 Grey Zone technique ([DGK20])

SecFisherYates (Alg. 17) Th. 11 Fisher-Yates generation of sparse polynomi-
als ([Sen21])

SecInversion (Alg. 18) Th. 12 Polynomial inversion
SecSyndrome (Alg. 16) Th. 10 Syndrome computation
SecThreshold (Alg. 19) Th. 13 BIKE’s Threshold computation
SecCounter (Alg. 21) Th. 14 BIKE’s counter computation

10 A provably masked implementation of BIKE Key Encapsulation Mechanism

3.3 Encapsulation
IND-CCA masked implementation The IND-CCA security of the scheme is achieved thanks to the Fujisaki-
Okamoto transformation. This transformation consists in XORing the seed used to generate the secret with
the hashed secret. This will allow, during the decryption, to recover the seed and thus to check if the secret has
been honestly generated. This transformation prevents active chosen ciphertext attack. In BIKE [ABB+22], the
K, L and H hash functions (see Algorithm 3) are instantiated with SHAKE256 and SHA384. These functions
have already been protected in the masked implementation of Saber (see [DKR+20] for more information about
Saber) in [KDV+22]. This framework is easily adaptable for BIKE without major modification.

3.3.1 Error generation

The error generation algorithm is necessary for both encapsulation and decapsulation. Its masked version is
introduced below in Algorithm 7. It consists in generating a masked error vector Jedense

0 K, Jedense
1 K.

It uses two d-NI sub-gadgets:

• sec+ corresponds to the logical addition of two integers [Cor14]. We introduce sec+partlymasked which is
almost identical to sec+ but where the first operation (sec& between the two masked parameters) has
been modified to take an unmasked element (& between all parts of the masked value and the public one).

• secif represents a conditional branch, it outputs either the first input or the second one depending on the
Boolean value of the last input. It is detailed in Algorithm 30 in Appendix A.6.

The error cannot be represented in sparse representation, as the weights of Jedense
0 K, Jedense

1 K are not constant.
This would leak sensitive information.

In this algorithm, the intermediate values are used only once within d-NI gadgets, the only exception being

Algorithm 7 Masked Error generation SecErrorGen
Require: JsK ∈ F256

2 the seed for SecFisherYates
Ensure: Jedense

0 K ∈ Fr
2, Jedense

1 K ∈ Fr
2

1: JesparseK← SecFisherYates(t, 2× r) ▷ Algorithm 17
2: for i← 0 to t− 1 do
3: JvK← sec+partlymasked(Jesparse

i K,−r) ▷ see Section 3.3.1
4: Jesparse

i K← refresh(Jesparse
i K)

5: JsK← secif(Jesparse
i K, JvK, sign_bit(JvK)) ▷ see Section 3.3.1

6: JtK← sparse_to_dense(JsK) ▷ see Section 3.1, polynomial with only one coefficient
7: Jedense

0 K← Jedense
0 K⊕secif(JtK, vector_zero_masking(), sign_bit(JvK)) ▷ Coefficient-wise secif and XOR

8: Jedense
1 K← Jedense

1 K⊕secif(vector_zero_masking(), JtK, sign_bit(JvK))
9: end for

10: return Jedense
0 K, Jedense

1 K

Jesparse
i K, which is refreshed (d-SNI) before its new use. We can therefore conclude with the following theorem.

Theorem 2. The error generation algorithm is d− NI.

3.3.2 Encapsulation algorithm

All the functions used are d− NI.
Since the only variable that has been reused is the seed m and the generated error e, we have to refresh them.
We can conclude that the algorithm is itself d− NI.

Theorem 3. The encapsulation algorithm is d− NI.

3.4 Decapsulation
Decapsulation consists of first decoding the ciphertext and secondly checking that it is correct. While the most
challenging masking work was on the decoding algorithm, we propose below a fully masked version of the
decapsulation for completeness in Algorithm 10.

Loïc Demange and Mélissa Rossi 11

Algorithm 8 Encapsulation
Require: JhK ∈ Fr

2
Ensure: JcK ∈ Fr+32

2

1: JmK $←− F32
2

2: JeK = (Je0K, Je1K)← SecErrorGen(JmK) ▷ Algorithm 7
3: JmK← refresh(JmK)
4: JcK← SecKaratsuba(Je1K, JhK)
5: JcK← JcK⊕Je0K ▷ Coefficient-wise XOR
6: JeK← refresh(JeK)
7: JcrK← L(JeK)⊕JmK ▷ see Section 3.3, Coefficient-wise XOR

3.4.1 BGF decoder

We now describe the most important part of the decapsulation: the masked BGF decoder. The unmasked
version of the BGF decoder has been presented in Section 2.4. The masked version of Algorithm 5 is detailed
in Algorithm 9. Recall that all the sub-gadgets are detailed in Section 4 and Appendix A (see Tables 2 and 3).

Where SecThreshold and SecSyndrome are fairly simple gadgets (based on additions, multiplications or
shifts), SecCounter was quite challenging to mask as it relies on bitslicing. The SecGreyZone optimization allows
for a much performant decoder but it also adds a layer of complexity in the decoding. This complexity is also
transferred when masking is involved as several sensitive data are used inside the computations.

We denote by vector_zero_masking a subroutine that initializes a d sharing of an r-dimensional zero vector.
Let C be a pair of matrices represented as table of dimension 2× r× (|w2 |+ 1), that can be decomposed into two
matrices C0 and C1 of dimension r × |(w

2 |+ 1). The notation C0,∗,| w
2 | represents the entire row of height |w2 |.

Algorithm 9 BGF decoder

Require: sk =
(
Jhdense

0 K ∈ Fr
2, Jhdense

1 K ∈ Fr
2, Jhsparse

0 K ∈ F
w
2

2 , Jhsparse
1 K ∈ F

w
2

2

)
, Jc0K ∈ Fr

2

Ensure: Je0K ∈ Fr
2, Je1K ∈ Fr

2 such that (c0 + e0) · h0 = 0
1: Je0K← vector_zero_masking()
2: Je1K← vector_zero_masking()
3: JsK← SecKaratsuba(Jc0K, Jhdense

0 K) ▷ Algorithm 13
4: Jhdense

0 K← refresh(Jhdense
0 K)

5: for i← 0 to Nbr_Iter −1 do
6: Js1K← SecSyndrome(Jhdense

0 K, Jhdense
1 K, Je0K, Je1K, JsK) ▷ Algorithm 16

7: JT K← SecThreshold(Js1K) ▷ Algorithm 19
8: Js1K← refresh(Js1K)
9: JCK← SecCounter(Js1K, JT K, Jhsparse

0 K, Jhsparse
1 K) ▷ Algorithm 21

10: Je0K← refresh(Je0K); Je1K← refresh(Je1K)
11: ▷ JC0,∗,| w

2 |K and JC1,∗,| w
2 |K are the sign bit of the counters minus the threshold

12: Je0K← ¬((Je0K)⊕(JC0,∗,| w
2 |K)) ▷ Coefficient-wise XOR

13: Je1K← ¬((Je1K)⊕(JC1,∗,| w
2 |K)) ▷ Coefficient-wise XOR

14: if i = 0 then
15: JsK← refresh(JsK)
16: Je0K, Je1K← SecGreyZone(JCK, Jhdense

0 K, Jhdense
1 K, Jhsparse

0 K, Jhsparse
1 K, Je0K, Je1K, JsK) ▷ Algorithm 22

17: end if
18: JskK← refresh(JskK)
19: JsK← refresh(JsK)
20: end for
21: return (Je0K, Je1K)

Theorem 4. The BGF decoder algorithm is d− NI.

Proof. We represent the whole decoding algorithm in Figs. 1 and 2. To avoid complex graphs, the content of

12 A provably masked implementation of BIKE Key Encapsulation Mechanism

an iteration for i ̸= 0 can be proved separately (if i ̸= 0, there is no application of the SecGreyZone algorithm,
in Lines 14 to 16).

Je0K, Je1K Je0K, Je1K

JsK Jhdense
0 KJhdense

1 K Jhsparse
0 KJhsparse

1 K

SecSyndrome SecThreshold SecCounter l. 12,13

refresh

refresh

Iteration (i ̸= 0)

Figure 1: Structure of an iteration

SecKaratsubaJc0K

Jhdense
0 K

Jhdense
1 K

Jhsparse
0 K

Jhsparse
1 K

vector_zero_masking iteration SecGreyZone iteration iteration iteration iteration

refresh
refresh refresh refresh refresh refreshJsk, sK

Je0K, Je1K
Je0K, Je1K

JsK

Jhdense
0 K

Figure 2: Structure of the BGF decoder

Let us first look at one iteration with i ̸= 0. Let us assume that it is a gadget with inputs Je0K, Je1K, JskK
and JsK. And we assume that this iteration’s output is a modified version of Je0K, Je1K. Let us assume that
an attacker has access to δ ≤ d observations on this sub-gadget. Thus, we want to prove that all these δ
observations can be perfectly simulated with at most δ shares of JskK, JsK, Je0K and Je1K. To fix notations, let us
consider the following distribution of the attacker’s δ observations:

• δ6 on Lines 12 and 13,
• δ5 during the SecCounter computation,
• δ4 during the SecThreshold computation,
• δ3 during the SecSyndrome computation,
• δ2 when Js1K si refreshed,
• δ1 when Je0K and Je1K are refreshed.

By definition of the d-probing model, we have
∑6

j=1 δi ≤ δ ≤ d.
Since Lines 12 and 13 are F2-linear operations performed share by share, this computation verifies the d-NI
property. In addition, all the gadgets are either d − NI or d − SNI as specified in Table 3. The proofs will
be provided later in the paper. Finally, all the observations performed during this iteration can be perfectly
simulated with at most

∑6
j=1 δi shares of Je0K, the same amount for Je1K, δ6 + δ5 shares of hsparse

0 , the same
for hsparse

0 ,
∑6

j=2 δi shares of hdense
0 and finally the same for hdense

1 .
In the end, we have proved that all the probes can be perfectly simulated with at most δ ≤ d shares of

JskK, JsK, Je0K and Je1K.
Now let us analyze the complete construction in Fig. 2. The same reasoning applies. Let us assume that

an attacker has access to δ ≤ d observations on this algorithm. We consider the following distribution of the
attacker’s δ observations:

• δiter,i on each i− th iteration,
• δSecGreyZone on the SecGreyZone computation,
• δref,i on the i− th refresh of the secret key and the syndrome,

Loïc Demange and Mélissa Rossi 13

• δvector_zero_masking on the vector_zero_masking computation,
• δSecKaratsuba on the computation of the syndrome,
• δref on the very first refresh.

By definition,
∑Nbr_Iter−1

i=0 (δiter,i + δref,i) + δSecGreyZone + δvector_zero_masking + δSecKaratsuba + δref ≤ δ ≤ d.
All the gadgets are proved d-NI and the refresh gadgets are d-SNI. All the probes performed after the first
iteration (including the grey zone, the key refresh and the other following iterations), can be perfectly simulated
with at most

∑Nbr_Iter−1
i=0 (δiter,i + δref,i)+δSecGreyZone shares of JskK, JsK, Je0K and Je1K. Next, we use the probing

security of the refresh, SecKaratsuba and vector_zero_masking. All the probes performed during the full decoding
algorithm can be perfectly simulated with at most

∑Nbr_Iter−1
i=0 (δiter,i + δref,i) + δSecGreyZone + δSecKaratsuba + δref

shares of Jc0K, the same for Jhdense
0 K and

∑Nbr_Iter−1
i=0 (δiter,i + δref,i) + δSecGreyZone for the rest of the secret key.

All these numbers are smaller than to δ ≤ d which concludes the proof.

3.4.2 Decapsulation algorithm

For the needs of the decapsulation algorithm, we will introduce subvector fonction, an algorithm which returns
the subvector starting and ending with the bounds given as parameters.

Algorithm 10 Decapsulation
Require: JcK ∈ Fr+32

2 , Jσ⃗K ∈ F32
2

Ensure: JkK ∈ F32
2

1: Je′K← SecBGF(Jhdense
0 K, Jhdense

1 K, Jhsparse
0 K, Jhsparse

1 K, JcK) ▷ Algorithm 9
2: Jm′K← L(Je′K) ▷ see Section 3.3
3: Jm′K← Jm′K⊕subvector(JcK, r, r + 32) ▷ see Section 3.4.2, coefficient-wise XOR
4: (Je0K, Je1K)← SecErrorGen(Jm′K) ▷ Algorithm 7
5: Jm′K← refresh(Jm′K)
6: JvK← 1 ▷ Masked value of 1
7: for i← 0 to 1 do
8: for j ← 0 to r − 1 do
9: JtK← sec=(Jei,jK, Je′

i,jK) ▷ see Appendix A.2
10: JtK0 ← JtK0⊕1
11: JvK← sec&(JvK, JtK)
12: end for
13: end for
14: JtK← K(Jm′K, JcK) ▷ Section 3.4.2
15: Jt1K← K(Jσ⃗K, JcK)
16: JkK← secif(JtK, Jt1K, JvK) ▷ Coefficient-wise secif

Algorithm 10 uses d − NI gadgets, and the only variable that is used twice without modification is m′.
However, the dependancy loop is broken by the d− SNI refresh. Thus, we introduce the following theorem.

Theorem 5. The decapsulation algorithm is d− NI.

4 Details on selected gadgets
In this section, we provide some details about selected gadgets.

4.1 Bitslicing
Bitslicing was introduced in [Cho16] for the QcBits implementation, with many similarities to BIKE. These
techniques allow computations to be performed very efficiently and in constant time by focusing on the binary
representation. In Algorithms 11 and 12, we present two versions of this BitSlice procedure depending on the
type of the input. Both versions will be used in our implementation.

In Algorithms 11 and 12, we denote by SecHalf_Adder the procedure that computes the addition in Z of
the inputs while outputing the carry as a second output. The SecAdder performs the same operation but is

14 A provably masked implementation of BIKE Key Encapsulation Mechanism

given an extra carry. These simple gadgets are detailed and proved d-NI in Appendix A.1 for completeness. We
also denote by zero_masking an initialization of a d-sharing of zero.

Algorithm 11 SecHalf_Bitslice

Require: JX := (X0, · · · , Xℓ)K ∈ Zk×ℓ
2 , JyK ∈ Zℓ

2
Ensure: JXK ∈ Zℓ×k

2 the result of the bitsliced addition between JXK and y
1: for i := 0 to ℓ− 1 do
2: JrK := JyiK
3: for j := 0 to k − 1 do
4: (JXijK, JrK)← SecHalf_Adder(JXijK, JrK)
5: end for
6: end for
7: return JXK

Algorithm 12 SecBitslice

Require: JX := (X0, · · · , Xk)K ∈ Zℓ×k
2 , JY := (Y0, · · · , Yk)K ∈ Zℓ×k

2
Ensure: JXK ∈ Zℓ×k

2 the result of the bitsliced addition between JXK and JYK
1: for i := 0 to ℓ− 1 do
2: JrK← zero_masking()
3: for j := 0 to k − 1 do
4: (JXijK, JrK)← SecAdder(JXijK, JYijK, JrK)
5: end for
6: end for
7: return JXK

Since both SecHalf_Adder and SecAdder are d-NI and all loop iterations use different or updated variables,
their sequential combination leads to a d-NI algorithm. Hence the following theorem.
Theorem 6. The SecHalf_Bitslice and SecBitslice algorithms are d− NI.

4.2 Multiplications
Several multiplication algorithms are necessary for masking BIKE. Indeed, as opposed to many other masked
designs, the multiplication often takes two masked inputs instead of only one. In addition, the underlying F2
structure makes NTT-based multiplications irrelevant in BIKE’s context. Thus, one valid solution is to fully
mask the classical Karatsuba algorithm, as presented below. We denote by SecPolymul the naive schoolbook
polynomial multiplication (detailed in Algorithm 28 in Appendix A.3 for completeness). Let B be a parameter
denoting the recursion depth. It is fixed experimentally to allow performance optimization. In our experiments,
we have fixed B = 64. We also set a parameter s ∈ N as a power of two corresponding to the size of the inputs.
Let split be a subroutine that splits the s/2 high order and s/2 low order bits into two variables.
Theorem 7. The Karatsuba algorithm is d− NI for any power of two s and any bound B ≤ s.

Proof. Let us prove this theorem by induction on the parameter s. If s ≤ B, the d− NI property is directly
inherited from the d − NI property of SecPolymul (Theorem 21 in Appendix A.3). Let us assume that the
Karatsuba algorithm is d− NI for s > B and let us sketch a proof that is it d− NI for the next power of two:
2 · s. The algorithm first computes Jz1K, Jz2K with d− NI gadgets. Then, the dependencies are broken by the
d-SNI refresh before computing Jz3K. Finally, the recombination of Jz1K, Jz2K and Jz3K uses only coefficient-wise
F2-linear operations. Thus, Karatsuba algorithm is d− NI for 2 · s which concludes the proof.

Remark 3 (Generalization to arbitrary s). Note that it is possible to generalize Karatsuba for multiplying
two polynomials of any degree s. This generalization can be obtained with an extra padding before the
multiplication and a modulo application afterwards. Since the size of polynomials and padding is public and
the padding will itself be masked, this does not raise any security concerns. In this paper, we use the same
notation "SecKaratsuba" even when the multiplication is applied in the context of polynomials.

Loïc Demange and Mélissa Rossi 15

Algorithm 13 Karatsuba multiplication on vectors
Require: Jp1K ∈ Fs

2, Jp2K ∈ Fs
2

Ensure: JzK = Jp1K · Jp2K ∈ F2s
2

1: if s = B then
2: return SecPolymul(Jp1K, Jp2K)▷ Naive polynomial multiplication, see Algorithm 28 in Appendix A.3
3: end if
4: (Jleft1K, Jright1K)← split(Jp1K) ▷ Splitting the s/2 high order and s/2 low order bits
5: (Jleft2K, Jright2K)← split(Jp2K) ▷ Splitting the s/2 high order and s/2 low order bits
6: Jz1K← SecKaratsuba(Jright1K, Jright2K)
7: Jz2K← SecKaratsuba(Jleft1K, Jleft2K)
8: Jleft1K← refresh(Jleft1K)
9: Jright1K← refresh(Jright1K)

10: Jleft2K← refresh(Jleft2K)
11: Jright2K← refresh(Jright2K)
12: Jt1K← Jleft1K⊕Jright1K ▷ Coefficient-wise XOR
13: Jt2K← Jleft2K⊕Jright2K ▷ Coefficient-wise XOR
14: Jz3K← SecKaratsuba(Jt1K, Jt2K)
15: return JzK← Jz1K⊕(Jz2K≪ s/4)⊕(Jz3K≪ s/2) ▷ Coefficient-wise

In parallel, we also introduce a multiplication algorithm that takes only one masked input, the other input
being a public value, as this algorithm is also necessary for our design. We denote it SecMultpartlymasked and its
design is detailed in Appendix A.3. It is directly inspired from the Montgomery ladder technique.

Leveraging sparse polynomials In BIKE, it is often possible to leverage the fact that some masked polynomials
are stored in sparse notation. We then introduce an extra gadget that takes one masked dense input and one
masked sparse input. The multiplication technique uses a cyclic shift, denoted sec≫. The idea is to shift a
masked dense polynomial by a masked value. It is described and proved in Appendix A.5.

Algorithm 14 Sparse-dense multiplication (SecMultsparsedense)
Require: JxK ∈ Fn

2 , JyK ∈ Fc
2

Ensure: JzK = JxK · JyK ∈ Fn
2

1: for i← 0 to c− 1 do
2: JtK← sec≫(JxK, JyiK) ▷ See Algorithm 29 in Appendix A.5
3: JxK← refresh(JxK)
4: JzK← JzK⊕JtK ▷ Coefficient-wise XOR
5: end for
6: return JzK

Theorem 8. The SecMultsparsedense algorithm is d− NI.

Proof. Since the gadgets sec≫ and ⊕ are d-NI. And even if x is reused in each loop, x is refreshed (d-SNI).

4.3 Hamming weight

We introduce a masked Hamming weight computation. It has been optimized and involves the masked bitslice
algorithm presented in Algorithm 12. Similarly to Karatsuba, we denote by right and left the cut in length of
the matrix. For example, if JTK ∈ Fl×k

2 , right(JTK) and left(JTK) ∈ F
l
2 ×k
2 .

JTK is a matrix that starts with one row, and will gain one more row per loop turn (call to bitslice). So we
initialize JT0K as a vector, then at each iteration, JTK will gain a row.

16 A provably masked implementation of BIKE Key Encapsulation Mechanism

Algorithm 15 Hamming weight (sechw)
Require: JxK ∈ Fn

2
Ensure: JyK ∈ F2 the hamming weight of JxK

1: JT0K← JxK ▷ We initialize the first line of the JTK matrix with JxK vector
2: j ← 1
3: for i← n

2 to 1 step i
2 do

4: JTK← SecBitslice(left(JTK), right(JTK)) ▷ Cut in length
5: j ← j + 1
6: end for
7: JyK← zero_masking()
8: for i← 0 to j − 1 do
9: JyK← JyK⊕ (JT0,iK≪ i)

10: end for
11: return JyK

Theorem 9. The hamming weight algorithm is d− NI.

Proof. Since as SecBitslice has been proved d-NI in Theorem 6 and all loops use updated variables, their
composition leads to a d-NI algorithm.

In this part we will introduce the main gadgets necessary for the realization of masked BIKE.

4.4 Computing the syndrome

Algorithm 16 compute_syndrome
Require: Jhdense

0 K ∈ FR
2 , Jhdense

1 K ∈ FR
2 , Je0K ∈ FR

2 , Je1K ∈ FR
2 , JsK = c0h0

Ensure: Js1K = c0h0 + e0h0 + e1h1 ∈ Fr
2

1: Js2K← SecKaratsuba(Je0K, Jhdense
0 K)

2: Js3K← SecKaratsuba(Je1K, Jhdense
1 K)

3: Js1K← JsK⊕Js2K⊕Js3K ▷ Coefficient-wise XOR
4: return Js1K

Since different variables are used in each of the function calls (all d− NI), we get the following theorem.

Theorem 10. The syndrome computing algorithm is d− NI.

4.5 Generation of random polynomials

The generation of sparse polynomials is performed using the Fisher-Yates technique. It was already introduced
in Section 3.2. This procedure can be masked as presented in Algorithm 17. It uses secrand, presented in
Appendix A.4.

Loïc Demange and Mélissa Rossi 17

Algorithm 17 Fisher-Yates (SecFisherYates)
Require: s ∈ N, n ∈ N
Ensure: JrK ∈ Zs

n a randomly generated vector without repeated values
1: for i← s− 1 to 0 do
2: JriK← secrand(n− i)
3: Initialize JiK as a Boolean sharing of i
4: JriK← sec+partlymasked(JriK, i)
5: for j ← i + 1 to s− 1 do
6: JrjK← refresh(JrjK)
7: JbK← sec=(JriK, JrjK)
8: JriK← refresh(JriK)
9: JiK← refresh(JiK)

10: JriK← secif(JiK, JriK, JbK))
11: end for
12: end for
13: return JrK

Theorem 11. The Fisher-Yates algorithm is d− NI.

Proof. The Fisher-Yates algorithm involves many dependency loops. Indeed, each random JriK is compared to
all the previously derived ones. However, each value is refreshed before being used. Thus, the loop in lines 6 to
10 can be seen itself as a d-SNI gadget outputting JriK. Besides, the operations in lines 2 to 4 are d-NI. Hence,
the outer loop can be seen as a sequential combination of NI gadgets and a d-SNI gadget for lines 6 to 10. In
consequence, the algorithm is d− NI.

4.6 Masked polynomial inversion
A masked polynomial inversion is needed for inverting h0 inside the key generation. The masked polynomial
inversion is presented in Algorithm 18.

We note secpow a d-NI gadget allowing to raise a polynomial to the given (known) power. Since we only
perform elevations of powers of 2, it boils down to permutations as the underlying ring is F2.

Algorithm 18 SecInversion
Require: JxK ∈ Fn

2
Ensure: JyK = JxK−1 ∈ Fn

2
1: JfK← JxK
2: JyK← JxK
3: JyK← refresh(JyK)
4: for i← 0 to |n| − 1 do
5: JgK← secpow(JfK, 22i)
6: JfK← refresh(JfK)
7: JfK← SecKaratsuba(JfK, JgK)
8: if the (i + 1)th bit of n− 2 is 1 then
9: JtK← secpow(JfK, 2(n−2) (mod 2(i+1)))

10: JyK← SecKaratsuba(JyK, JtK)
11: end if
12: end for
13: JyK← secpow(JyK, 2)
14: return JyK

Theorem 12. The masked inversion algorithm is d− NI.

Proof. The first iteration of the algorithm is presented in Fig. 3. One can graphically conclude that each
iteration is d-NI as all the observations can be simulated with at most d shares of (JfK, JyK). Thus, the full loop

18 A provably masked implementation of BIKE Key Encapsulation Mechanism

JxK

JfK

JyK

secpow SecKaratsuba

refresh

secpow

refresh SecKaratsuba

JfK

JyK

if the first bit of n− 2 is 1

one iteration

Figure 3: Sub-structure of the polynomial inversion algorithm

is d-NI. In addition, the final operation is d-NI. And, since both JfK and JyK are initialized with the same input
JxK, one of them should be refreshed to end up with a full d-NI gadget.

4.7 Threshold and counters
The decoder needs the computation of a threshold and counters, as presented in Algorithms 19 and 20. The
threshold is an integer value that needs to be recomputed several times during decoding. Initially, the calculation
of the threshold is done with floats, which is a concern for the masking. We have therefore reduced this to
simple operations on integers such as threshold is equal to max(⌊T0·S+T1

2T2 ⌋, T3).
The procedure to mask it involves gadgets previously introduced apart from secmax, a gadget that, given two
masked values, computes the greatest. The secmax gadget is detailed in Algorithm 31 in Appendix A.7.

Algorithm 19 SecThreshold
Require: JsK ∈ Fr

2
Ensure: JT K ∈ Zr the threshold calculated from

the syndrome
1: JSK← sechw(JsK) ▷ Algorithm 15
2: JT K← secT(JSK) ▷ Algorithm 20
3: return JT K

Algorithm 20 T computing (secT)
Require: JSK ∈ Zr, T0, T1, T2, T3 fixed parameters of

the scheme
Ensure: JT K = max(⌊T0·S+T1

2T2 ⌋, T3) ∈ Zr

1: JtK← SecMultpartlymasked(JSK, T0) ▷ Algorithm 26
2: JT K← sec+partlymasked(JtK, T1)
3: JT K← JT K≫ T2
4: JT K← secmax(JT K, JT3K) ▷ Algorithm 31
5: return JT K

Since we perform a sequence of operations that are d-NI themselves, we can establish the following theorem.

Theorem 13. The computation of the threshold is d− NI.

During decoding, it is necessary to compute the number of unsatisfied parity check equations. We present
in Algorithm 21 a masked version of this routine. Let denote by JCK ∈ F2×r×(| w

2 |+1)
2 the matrix containing the

binary representations of the counters of each coefficient. We manipulate this matrix as two double dimensional
matrices, JC0K and JC1K. Let matrix_zero_masking be the initialization of a d-sharing of a 2-dimensional zero
matrix. This algorithm uses a gadget that consists in filling a matrix with a value. This technical gadget does
not present any difficulties and is detailed in Algorithm 32 in Appendix A.8.

Theorem 14. The counter computing algorithm is d− NI.

Proof. The procedure in lines 7 to 9 of Algorithm 21 is depicted in Fig. 4. One can see that all the loops are
broken with a d-SNI refresh gadget. Thus lines 7 to 9 can be seen as a d-NI gadget.

The rest of the algorithm is a sequence of d-NI gadgets (SecMultpartlymasked, secfill, SecBitslice), thus the full
algorith is d− NI.

Loïc Demange and Mélissa Rossi 19

Algorithm 21 Counter computing (SecCounter)

Require: JsK ∈ Fr
2, JT K ∈ Zr, Jhsparse

0 K ∈ F
w
2

2 , Jhsparse
1 K ∈ F

w
2

2

Ensure: JCK ∈ F2×r×(| w
2 |+1)

2 two matrices containing the binary representations of the counters for each
coefficient

1: J−T K← SecMultpartlymasked(JT K,−1) ▷ Algorithm 26
2: JC0K← matrix_zero_masking()
3: JC1K← matrix_zero_masking()
4: JPK← [Jhsparse

0 K, Jhsparse
1 K]

5: for i← 0 to 1 do
6: for j ← 0 to w

2 − 1 do
7: JsK← refresh(JsK)
8: JzK← sec≫(JsK, JPi,jK) ▷ Algorithm 29
9: JCiK← SecHalf_Bitslice(JCiK, JzK) ▷ Algorithm 11

10: end for
11: end for
12: JT0K← sec_fill(J−T K) ▷ Algorithm 32
13: JT1K← sec_fill(refresh(J−T K)) ▷ Algorithm 32
14: JC0K← SecBitslice(JC0K, JT0K) ▷ Algorithm 12
15: JC1K← SecBitslice(JC1K, JT1K) ▷ Algorithm 12
16: returnJCK = [JC0K, JC1K]

SecHalf_BitsliceJCiK

sec≫JPi,0K

refreshJsK

SecHalf_Bitslice

sec≫JPi,1K

refresh

SecHalf_Bitslice

sec≫JPi,2K

refresh

SecHalf_Bitslice

sec≫JPi,3K

refresh

· · ·

JCiK

Figure 4: Sub-structure of the counter algorithm

4.8 Grey Zone
The grey zone is an additional iteration of the decoder that is only realized at the first loop of the decoder.
We will carry out the same operations as the classic decoder, but with an additional step with another thresh-
old in order to detect more false positions and to be able to catch the possible errors of some ambiguous positions.

It takes as input the black zone T0, which is the matrix containing the counters minus the threshold. With, we
can calculate the grey zone T1, which contains the counters minus the threshold plus τ .

Theorem 15. The grey zone algorithm is d− NI.

Proof. We define a particular gadget called "block" for lines 11 to 17.

Je0K, Je1K Je0K, Je1K

JsK Jhdense
0 KJhdense

1 K Jhsparse
0 KJhsparse

1 K

SecSyndrome SecCounter sec&

JTK1,ℓ,∗,| W
2 |

⊕

refresh

Block for ℓ ∈ {0, 1}

Figure 5: Structure of one block

20 A provably masked implementation of BIKE Key Encapsulation Mechanism

Algorithm 22 SecGreyZone

Require: sk =
(
Jhdense

0 K ∈ Fr
2, Jhdense

1 K ∈ Fr
2, Jhsparse

0 K ∈ F
w
2

2 , Jhsparse
1 K ∈ F

w
2

2

)
, JT0K ∈ F2×r×(| w

2 |+1)
2 , Je0K ∈ Fr

2,
Je1K ∈ Fr

2, JsK ∈ Fr
2

Ensure: Je0K ∈ Fr
2, Je1K ∈ Fr

2
1: Initialize JτK as a Boolean sharing of 3 ▷ 3 is a fixed parameter
2: JVK← secfill(JτK) ▷ Algorithm 32
3: JT1,0K← SecBitslice(JT0,0K, JVK) ▷ Algorithm 12
4: JVK← refresh(JVK)
5: JT1,1K← SecBitslice(JT0,1K, JVK) ▷ Algorithm 12
6: JT0K← refresh(JT0K)
7: JT1,0,∗,| w

2 |K← JT0,0,∗,| w
2 |K⊕JT1,0,∗,| w

2 |K ▷ Coefficient-wise XOR
8: JT1,1,∗,| w

2 |K← JT0,1,∗,| w
2 |K⊕JT1,1,∗,| w

2 |K ▷ Coefficient-wise XOR
9: for l← 0 to 1 do

10: JskK← refresh(JskK)
11: Js1K← SecSyndrome(Jhdense

0 K, Jhdense
1 K, Je0K, Je1K, JsK) ▷ Algorithm 16

12: JCK← SecCounter(Js1K,
w
2 +1

2 , Jhsparse
0 K, Jhsparse

1 K) ▷ Algorithm 21
13: Jv0K← sec&(¬JC0,∗,| w

2 |K, JTl,0,∗,| w
2 |K) ▷ Coefficient-wise sec&

14: Jv1K← sec&(¬JC1,∗,| w
2 |K, JTl,1,∗,| w

2 |K) ▷ Coefficient-wise sec&
15: Je0K, Je1K← refresh(Je0K, Je1K)
16: Je0K← Je0K⊕Jv0K ▷ Coefficient-wise XOR
17: Je1K← Je1K⊕Jv1K ▷ Coefficient-wise XOR
18: end for
19: return Je0K, Je1K

block ℓ = 0 block ℓ = 1

refresh

⊕refresh

SecBitslice

⊕refresh

SecBitslice

refresh

Je0K, Je1K Je0K, Je1K

JsK, JskK

JT0,0K

JVK

JT0,1K

Figure 6: Structure of the grey zone gadget

The overall details of the dependencies are presented in Figs. 5 and 6. As illustrated in Fig. 5, the block
gadget is d-NI. Indeed, the only dependency loop is broken by a d-SNI refresh algorithm. Let us consider the full
algorithm. Let us assume that an attacker has access to δ ≤ d observations on this gadget. Then, we want to
prove that all these δ observations can be perfectly simulated with at most δ shares of JskK, JT0K, Je0K, Je1K, JsK
and JVK (note that the last one can be omitted as it is derived from a public parameter). To fix notations, let
us consider the following distribution of the attacker’s δ observations:

• δ1 during the bitslice of Line 3
• δ2 during the refreshing of V
• δ3 during the bitslice of Line 5
• δ4 during the refresh of T0 (splitted in two sub-gadgets in the figure)
• δ5 during the ⊕ in Line 8,
• δ6 during the ⊕ in Line 7,
• δ7 during the refreshing of sk and s,
• δ8 in the block with ℓ = 0,

Loïc Demange and Mélissa Rossi 21

0 1 2 3 4 50

500

1,000

1,500

2,000

2,500

3,000

Order

N
um

be
r

of
cy

cl
es

(in
10

6)

SecBGF (sparse)
SecBGF (dense)

SecKeyGen (sparse)
SecKeyGen (dense)

Figure 7: Sparse vs dense, SecBGF and SecKeyGen

• δ9 in the block with ℓ = 1

By definition of the d-probing model, we have
∑9

j=1 δi ≤ δ ≤ d. All the gadgets are proved d-NI and the refresh
gadgets are d-SNI. We skip the progressive part of the proof and directly claim that all the observations that
are made during the execution of the gadget can be perfectly simulated with

• δ2 + δ9 + δ8 + δ5 + δ1 + δ7 shares of JVK
• δ9 + δ8 + δ7 shares of JskK and JsK (each)
• δ9 + δ8 + δ5 + δ4 + δ1 shares of T0,0,
• δ9 + δ6 + δ3 + δ4 shares of T0,1,
• δ9 + δ8 shares of Je0K and Je1K (each).

This can be verified with the help of the figure. All these numbers of shares are smaller to δ ≤ d which concludes
the proof.

5 Performance and experiments
5.1 Implementation
All the gadgets introduced in this paper have been implemented in large and complete C-code. Side-channel
attacks are highly dependent on the chip on which the algorithm is executed and it is true that assembly codes
are always the best pratical solution. However, C-code seems the best option to provide a multi-platform proof
of concept. This code could be reused for future analysis and optimizations. The full code will be publicly
available for code-checking and reproducibility. You can find it on Github1.

Sparse vs dense representation Since most of the computations are polynomial operations performed on
sparse objects, let us recall that we had two available options: the fully-dense implementation and the hybrid-
sparse-dense one. In the first case, we see the polynomials as dense (with a conversion of the keys during the
SecKeyGen) and we use Karatsuba for the majority of the calculations. In the other case, since we can represent
a number of polynomials in sparse representation, we use SecMultsparsedense as much as possible.
As presented in Fig. 7, our benchmarks show that while both approaches seem equivalent for one or two shares,
a fully dense approach is indeed more relevant for higher orders.

One can conclude from our work that for the moment (except with potentially upcoming new optimizations),
the dense representation seems more relevant. We will therefore keep the dense representation for the rest of
the benchmarks, as it scales better when the order exceeds or equals 2.

1https://github.com/loicdemange/masked_BIKE_code

https://github.com/loicdemange/masked_BIKE_code

22 A provably masked implementation of BIKE Key Encapsulation Mechanism

Table 4: Scaling benchmarks on particular gadgets, i7-4710MQ 2.5Ghz gcc 12.2.0 -03, NIST Level 1, median
results on 200 executions

Order 0 1 2 3 4 5
SecBGF(Alg. 9) (sparse) 1 ×9 ×22.8 ×43 ×67.9 ×100.2
SecBGF(Alg. 9) (dense) 1 ×4.9 ×11.4 ×19 ×30 ×42.4

SecKeyGen (Alg. 6) (dense) 1 ×3.5 ×7.7 ×12.1 ×18 ×25.6
SecErrorGen (Alg. 7) 1 ×8.6 ×22.3 ×40.8 ×66 ×96.2

SecGreyZone(Alg. 22) (sparse) 1 ×9 ×23.9 ×41.9 ×67.4 ×98.3
SecGreyZone(Alg. 22) (dense) 1 ×4.8 ×11.2 ×18.8 ×29.2 ×42

SecFisherYates(Alg. 17) 1 ×9.5 ×18.5 ×29.7 ×45.7 ×66
SecInversion(Alg. 18) 1 ×3.5 ×7.2 ×11 ×16.4 ×23.6

SecSyndrome(Alg. 16) (sparse) 1 ×8 ×21.3 ×42.3 ×63.7 ×93
SecSyndrome(Alg. 16) (dense) 1 ×3.3 ×7.3 ×10.8 ×15.7 ×22.2

SecThreshold(Alg. 19) 1 ×8.6 ×12.9 ×19.1 ×30.5 ×43.1
SecCounter(Alg. 21) 1 ×9.4 ×23.1 ×42.1 ×67.3 ×97

SecKaratsuba(Alg. 13) 1 ×3.4 ×7.4 ×11.1 ×16.7 ×23.4
SecMultsparsedense(Alg. 14) 1 ×8.2 ×21.3 ×40 ×64.8 ×95.6

5.2 Detailed benchmarks

The code was benchmarked on an i7-4710MQ running at 2.5Ghz, 8GB of RAM, and compiling with gcc 12.2.0
-O3 flag. The given performances are obtained for NIST security level 1 (r = 12323). Identical experiments can
provide data for the other security levels. Multiple benchmarks were performed and the results are listed in
Table 4. We can notice that the performance of the gadgets depends on the performance of the multiplicative
gadgets.

Bottlenecks The sparse-dense multiplication and the basic Karatsuba multiplication seem to be the bottleneck
of our implementation. An optimization of these gadgets could lead to big improvements of the complete
scheme’s performance. One idea to improve these gadgets could be to optimize the last recursion calculation of
Karatsuba. In the unmasked implementation, specific instructions are used, while in our masked implementation,
only a naive multiplication is applied. The problem is that most known optimized techniques require arithmetic
operations, thus, a masked form would require a mask conversion. Given the complexity of such conversions,
this approach may end up to be equivalent to our original naive technique. In the end, future work is still
necessary to innovate and find new optimizations on this instruction.

Similarly, the cyclic shift is performed here directly, while the reference implementation stores the polynomials
in duplicate (contiguously) and just has to change its "window" to perform the shift. We could not see any way
to keep this advantage in a masked form. This also explains why there is such a difference in performance
between the reference implementation and this implementation when the order equals 0.

General performances for masked BIKE (fully-dense) The performances and scaling for the scheme are
detailed in Table 5 and Fig. 8.

Remark 4. RNG off refers to returning 0 instead of drawing a random integer. This allows to measure the cost
of the number of calls to the RNG, relative to the performance of the implementation.

We can see that the performance of masked BIKE as a function of the order is slightly above quadratic.
This unoptimized implementation is still encouraging as it leaves the door open for many possible scaling
improvements.
In fact, there are still a lot of possible optimizations, in particular on the cyclic shift and on the naive polynomial
multiplication. Once optimized, the scaling will probably be improved, especially since there is no boolean
arithmetic conversion within the masked scheme.

Loïc Demange and Mélissa Rossi 23

Table 5: Scaling benchmarks on BIKE, i7-4710MQ 2.5Ghz gcc 12.2.0 -03, NIST Level 1, median results on 100
executions, in million of cycles

Order 0 1 2 3 4 5
SecKeyGen (RNG off) 55 162 351 477 640 853
SecKeyGen (RNG on) 55 188 409 635 980 1 330

Scaling SecKeyGen (RNG off) 1 ×3 ×6.4 ×8.7 ×11.7 ×15.5
Scaling SecKeyGen (RNG on) 1 ×3.4 ×7.4 ×11.5 ×17.9 ×24.2

Encaps (RNG off) 5 24 53 84 120 170
Encaps (RNG on) 5 29 71 122 190 278

Scaling Encaps (RNG off) 1 ×4.8 ×10.6 ×16.8 ×24 ×34
Scaling Encaps (RNG on) 1 ×5.8 ×14.2 ×24.4 ×38 ×55.6

Decaps (RNG off) 63 262 559 842 1 220 1 652
Decaps (RNG on) 63 329 723 1 211 1 873 2 693

Scaling Decaps (RNG off) 1 ×4.1 ×8.9 ×13.4 ×19.4 ×26.2
Scaling Decaps (RNG on) 1 ×5.2 ×11.5 ×19.2 ×29.7 ×42.7

0 1 2 3 4 50

10

20

30

40

50

Order

Sc
al

in
g

SecKeyGen + Encaps + Decaps
SecKeyGen

Encaps
Decaps

Figure 8: The scaling of masked BIKE (with RNG on)

24 A provably masked implementation of BIKE Key Encapsulation Mechanism

6 Future Work
TVLA The next step would be to use TVLA verification techniques on our code to check that there are no
apparent leaks.

More optimizations It is possible to highly optimize the performance of our implementation by simply
optimizing two important basic gadgets: the naive multiplication (in the last level of the Karatsuba recursion)
and the cyclic shift. As outlined above, these gadgets are the bottleneck of our implementation. Thus, the
impact on the performance to be very high. The relevance of avoiding mask conversions may also be questioned
if such conversions help to gain orders of magnitude in the performance; even though we do not currently
believe that conversions would significantly help here. In addition, we think that further optimization could
impact the difference between the sparse version and the dense version.

High-order attacks Attacking unprotected implementations with side-channel measurements is often not
the best choice to evaluate practical security. But, until now, no masked implementation of BIKE and other
code-based schemes were available. This masked implementation is openly accessible and can serve as target
for elaborate high-order side-channel attacks.

References
[ABB+22] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-Christophe

Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor, Rafael
Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Gilles Zémor, Valentin
Vasseur, Santosh Ghosh, and Jan Richter-Brokmann. BIKE. Technical report, National In-
stitute of Standards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-4-submissions.

[ABC+22] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann, Yulia Kuzovkova,
Joost Renes, Markus Schönauer, Tobias Schneider, François-Xavier Standaert, and Christine
van Vredendaal. Leveling dilithium against leakage: Revisited sensitivity analysis and improved
implementations. Cryptology ePrint Archive, Paper 2022/1406, 2022. https://eprint.iacr.
org/2022/1406.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. pages 298–307, 2003.

[BAA+19] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes Buchmann,
Edward Eaton, Gus Gutoski, Juliane Kramer, Patrick Longa, Harun Polat, Jefferson E. Ricardini,
and Gustavo Zanon. qTESLA. Technical report, National Institute of Standards and Tech-
nology, 2019. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-order
masking. pages 116–129, 2016.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire, Mélissa
Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based signature scheme at any order. pages
354–384, 2018.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine van Vredendaal.
Masking kyber: First- and higher-order implementations. 2021(4):173–214, 2021. https:
//tches.iacr.org/index.php/TCHES/article/view/9064.

[BMvT78] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain coding
problems (corresp.). IEEE Transactions on Information Theory, 24(3):384–386, 1978.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://eprint.iacr.org/2022/1406
https://eprint.iacr.org/2022/1406
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064

Loïc Demange and Mélissa Rossi 25

[BOG20] Mario Bischof, Tobias Oder, and Tim Güneysu. Efficient Microcontroller Implementation of
BIKE. In Emil Simion and Rémi Géraud-Stewart, editors, Innovative Security Solutions for
Information Technology and Communications, pages 34–49, Cham, 2020. Springer International
Publishing.

[CARG23] Agathe Cheriere, Nicolas Aragon, Tania Richmond, and Benoît Gérard. Bike key-recovery:
Combining power consumption analysis and information-set decoding, 2023.

[CCK21] Ming-Shing Chen, Tung Chou, and Markus Krausz. Optimizing BIKE for the intel haswell
and ARM cortex-M4. 2021(3):97–124, 2021. https://tches.iacr.org/index.php/TCHES/
article/view/8969.

[CGKT22] Ming-Shing Chen, Tim Güneysu, Markus Krausz, and Jan Philipp Thoma. Carry-less to BIKE
faster. pages 833–852, 2022.

[CGTV15] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Kumar Vadnala.
Conversion from arithmetic to Boolean masking with logarithmic complexity. pages 130–149,
2015.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. Secure conversion
between Boolean and arithmetic masking of any order. pages 188–205, 2014.

[Cho16] Tung Chou. QcBits: Constant-time small-key code-based cryptography. pages 280–300, 2016.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches
to counteract power-analysis attacks. pages 398–412, 1999.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. pages 441–458, 2014.

[Cor17] Jean-Sébastien Coron. High-order conversion from Boolean to arithmetic masking. pages 93–114,
2017.

[CPRR14] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Higher-order
side channel security and mask refreshing. pages 410–424, 2014.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From
probing attacks to noisy leakage. pages 423–440, 2014.

[DG17] Nir Drucker and Shay Gueron. A toolbox for software optimization of QC-MDPC code-based
cryptosystems. Cryptology ePrint Archive, Report 2017/1251, 2017. https://eprint.iacr.
org/2017/1251.

[DGK20] Nir Drucker, Shay Gueron, and Dusan Kostic. QC-MDPC decoders with several shades of gray.
pages 35–50, 2020.

[DHP+21] Jan-Pieter D’Anvers, Daniel Heinz, Peter Pessl, Michiel van Beirendonck, and Ingrid Verbauwhede.
Higher-order masked ciphertext comparison for lattice-based cryptography. Cryptology ePrint
Archive, Report 2021/1422, 2021. https://eprint.iacr.org/2021/1422.

[DKR+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, Jose
Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea Basso. SABER. Technical report,
National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[GAB19] Antonio Guimarães, Diego F. Aranha, and Edson Borin. Optimized implementation of QC-MDPC
code-based cryptography. Concurrency and Computation: Practice and Experience, 31(18):e5089,
2019.

[Gal62] R. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory, 8(1):21–
28, 1962.

https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://eprint.iacr.org/2017/1251
https://eprint.iacr.org/2017/1251
https://eprint.iacr.org/2021/1422
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

26 A provably masked implementation of BIKE Key Encapsulation Mechanism

[GHJ+21] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson, and
Robin Leander Schröder. Dont́ reject this: Key-recovery timing attacks due to rejection-sampling
in hqc and bike. Cryptology ePrint Archive, Paper 2021/1485, 2021. https://eprint.iacr.
org/2021/1485.

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on MDPC with CCA
security using decoding errors. pages 789–815, 2016.

[GR19] François Gérard and Mélissa Rossi. An efficient and provable masked implementation of qtesla.
Cryptology ePrint Archive, Report 2019/606, 2019. https://eprint.iacr.org/2019/606.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. pages 341–371, 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing
attacks. pages 463–481, 2003.

[KDV+22] Suparna Kundu, Jan-Pieter D’Anvers, Michiel Van Beirendonck, Angshuman Karmakar, and
Ingrid Verbauwhede. Higher-order masked Saber. Cryptology ePrint Archive, Report 2022/389,
2022. https://eprint.iacr.org/2022/389.

[KLRBG22a] Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Güneysu. Efficiently masking
polynomial inversion at arbitrary order. Cryptology ePrint Archive, Report 2022/707, 2022.
https://eprint.iacr.org/2022/707.

[KLRBG22b] Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Güneysu. A holistic approach
towards side-channel secure fixed-weight polynomial sampling. Cryptology ePrint Archive, Paper
2022/1740, 2022. https://eprint.iacr.org/2022/1740.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler,
Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Technical report, National Insti-
tute of Standards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[Lem19] Daniel Lemire. Fast random integer generation in an interval. ACM Transactions on Modeling
and Computer Simulation, 29(1):1–12, jan 2019.

[MOG15] Ingo Von Maurich, Tobias Oder, and Tim Güneysu. Implementing QC-MDPC McEliece Encryp-
tion. ACM Trans. Embed. Comput. Syst., 14(3), April 2015.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. Mdpc-mceliece:
New mceliece variants from moderate density parity-check codes. In 2013 IEEE International
Symposium on Information Theory, pages 2069–2073, 2013.

[Nie86] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of Control
and Information Theory, 15(2):159–166, 1986.

[RHHM17] Melissa Rossi, Mike Hamburg, Michael Hutter, and Mark E. Marson. A side-channel assisted
cryptanalytic attack against QcBits. pages 3–23, 2017.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. pages
413–427, 2010.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding.
CRYSTALS-KYBER. Technical report, National Institute of Standards and Technol-
ogy, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[Sen21] Nicolas Sendrier. Secure sampling of constant-weight words ? application to bike. Cryptology
ePrint Archive, Report 2021/1631, 2021. https://eprint.iacr.org/2021/1631.

https://eprint.iacr.org/2021/1485
https://eprint.iacr.org/2021/1485
https://eprint.iacr.org/2019/606
https://eprint.iacr.org/2022/389
https://eprint.iacr.org/2022/707
https://eprint.iacr.org/2022/1740
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2021/1631

Loïc Demange and Mélissa Rossi 27

[SKC+19] Bo-Yeon Sim, Jihoon Kwon, Kyu Young Choi, Jihoon Cho, Aesun Park, and Dong-Guk Han.
Novel side-channel attacks on quasi-cyclic code-based cryptography. 2019(4):180–212, 2019.
https://tches.iacr.org/index.php/TCHES/article/view/8349.

[vMG14] Ingo von Maurich and Tim Güneysu. Towards side-channel resistant implementations of QC-
MDPC McEliece encryption on constrained devices. pages 266–282, 2014.

[vMHG16] Ingo von Maurich, Lukas Heberle, and Tim Güneysu. IND-CCA secure hybrid encryption from
QC-MDPC niederreiter. pages 1–17, 2016.

A Extra small gadgets and proofs

This part is about extra small gadgets and their proofs.

A.1 Adders and carries

Algorithm 23 Half Adder
Require: JxK ∈ F2, JyK ∈ F2
Ensure: JzK = JxK + JyK ∈ F2, JcK ∈ F2 the

carry
1: JzK← JxK⊕JyK
2: JcK← sec&(JxK, JyK)
3: return JzK, JcK

Algorithm 24 Adder
Require: JxK ∈ F2, JyK ∈ F2, Jc0K ∈ F2
Ensure: JzK = JxK + JyK + Jc0K ∈ F2, JcK ∈ F2 the

carry
1: (JtK, JsK)← SecHalf_Adder(JxK, JyK)
2: (JzK, JuK)← SecHalf_Adder(JtK, Jc0K)
3: JcK← JsK⊕JuK
4: return JzK, JcK

Since the ⊕ enjoys the d-NI property and sec& takes the same variables as input but is d-SNI, their
combination leads to an d-NI algorithm. Thus, we introduce the following stating the probing security of the
half adder algorithm.

Theorem 16. The half adder algorithm is d− NI.

Since the adder uses only two calls to SecHalf_Adder (itself d− NI), handling different variables, we can
infer the following.

Theorem 17. The adder algorithm is d− NI.

A.2 Equality

The gadget sec= is a d-NI gadget that outputs a masked Boolean value corresponding to the equality. The
idea is to use Boolean algebra to check if the XOR between the two inputs is 0. For that, we perform a sec&
between the negation of each obtained bit. Such a procedure has been outlined in the literature e.g. in [DHP+21].

We decided to optimize it in such a way as to dichotomize the operations about the word binary, and
thus achieve better performance.

https://tches.iacr.org/index.php/TCHES/article/view/8349

28 A provably masked implementation of BIKE Key Encapsulation Mechanism

Algorithm 25 Masked equality (sec=)
Require: JxK ∈ Fn

2 , JyK ∈ Fn
2 , n a power of 2

Ensure: JzK ∈ F2 equals 0 if x = y and 1 if not
1: JzK← JxK⊕JyK
2: for i← n

2 to 1 step − i
2 do

3: JaK← left(JzK) ▷ Cut in length
4: JbK← right(JzK) ▷ Cut in length
5: JaK0 ← ¬JaK0 ▷ Coefficient-wise not
6: JbK0 ← ¬JbK0 ▷ Coefficient-wise not
7: JzK← sec&(JaK, JbK) ▷ Coefficient-wise sec&
8: JzK0 ← ¬JzK0 ▷ Coefficient-wise not
9: end for

10: return Jz0K

Given that the only operation manipulating the data is sec&, and that it is a d-SNI function, we can deduce
that the algorithm is d-NI.
In fact, as negation only manipulates the first share, it is not able to leak anything (given that values are
updated at each loop turn).

Theorem 18. The equality algorithm is d-NI.

A.3 Multiplications

Algorithm 26 Partly masked multiplication (SecMultpartlymasked)
Require: JxK, y, b = ⌊log2(y)⌋
Ensure: JzK = JxK · y

1: JzK← zero_masking()
2: JtK← JxK
3: for i← 0 to b do
4: if y[i] = 1 then ▷ y[i] = (y ≫ i) & 1
5: JzK← sec+(JzK, JtK)
6: JtK← refresh(JtK)
7: end if
8: JtK← JtK≪ 1
9: end for

10: return JzK

Theorem 19. The partly masked multiplication algorithm is d− NI.

Proof. There are two possible blocks in the for loop : if y[i] = 0, the only operation is the shift, which enjoys
the d-NI property. If y[i] = 1, we use the sec+ gadget which is also d-NI. Since we reuse the t in the shift, we
need to refresh it before.
So the two blocks are d-NI, and their sequential combination leads to a d-NI algorithm

A.4 Modular random number
To generate keys and errors, we need to be able to draw random numbers modulo n.
For this, we are using a method formalized by Lemire [Lem19], which allows us to draw an integer between 0
and n− 1 with the same distribution as a modulo without performing any division other than with a power of
2. We will only need the gadgets already introduced (masked multiplication see Algorithm 26) and the shift,
which is a linear operation.
Remark 5. It is assumed that the bits can be drawn safely, since the p bits can be drawn on each of the shares
of the shared value. In the context of an implementation, the choice of algorithm for effectively drawing these
bits is up to the developer.

Loïc Demange and Mélissa Rossi 29

Algorithm 27 Modular random number (secrand)
Require: n ∈ N∗, p ∈ N∗, 2p ≥ n

Ensure: JrK $←− Zn

1: JrK $←− F2p ▷ Draw p bits on each share
2: JrK← SecMultpartlymasked(JrK, n)
3: JrK← JrK≫ p ▷ Shift on each share
4: return JrK

Theorem 20. The modular random number Algorithm 27 is d-NI.

Proof. Since p and n are public values, we do not need to mask them.
Since it operates on each share individually, the shift operation is d-NI.
SecMultpartlymasked is d-NI, by the previous proof. Finally, the random draw is also d-NI since it operates on
each share.

The algorithm is d-NI.

Algorithm 28 SecPolymul: Naive Polynomial multiplication (parameterized by B, the size of its inputs)
Require: JxK ∈ FB

2 , JyK ∈ FB
2

Ensure: JzK = JxK · JyK ∈ F2B
2

1: for i← 0 to B − 1 do
2: for j ← 0 to B − 1 do
3: JuK← sec&(JxiK, JyjK)
4: Jz(i+j)K← Jz(i+j)K⊕JuK
5: end for
6: end for
7: return JzK

Since we only use a SNI gadget and we update the z vector on the other hand, the algorithm is d− NI.

Theorem 21. The polynomial multiplication SecPolymul parametered with B algorithm is d− NI.

A.5 Cyclic shift
This is a masked version of the barrel shifter algorithm.
We define SecCyclic_Shift the function that allows to shift a masked polynomial with a public value. As it is
only a linear operation, it is safe and not a concern.

Algorithm 29 Secure masked cyclic shift (sec≫)
Require: JxK ∈ Fn

2 , JsK ∈ N
Ensure: JyK = JxK≫ JsK ∈ Fn

2
1: JyK← JxK
2: for i← 0 to |n| do ▷ |n| = ⌊log2(n)⌋
3: JvK← JsK[i] ▷ JsK[i] = (JsK≫ i) & 1
4: JtK← SecCyclic_Shift(JyK, 2i)
5: for j ← 0 to n− 1 do
6: Js1K← sec&(JtjK, JvK)
7: Js2K← sec&(JyjK,¬JvK)
8: JyjK← Js1K⊕Js2K
9: end for

10: end for
11: return JyK

30 A provably masked implementation of BIKE Key Encapsulation Mechanism

Theorem 22. The secure cyclic shift algorithm is d− NI.

Proof. In the most imbricated for loop, we used two sec&, which are d-SNI. The ⊕ being d-NI, the block is d-NI.
Since the i loop is composed by d-NI gadgets, and the y vector is updated in the for j loop, all of this is d-NI.
So their sequential combination leads to a d-NI algorithm.

A.6 Masked conditional branch

Algorithm 30 Choose value (secif)
Require: JaK ∈ Fn, JbK ∈ Fn, JtK ∈ F2
Ensure: JaK if JtK = 1, JbK otherwise

1: JcK← secbitwise
& (JaK, JtK) ▷ Bitwise sec& between all bits of a and the single bit of t

2: JtK0 ← ¬JtK0
3: JdK← secbitwise

& (JbK, JtK) ▷ Bitwise sec& between all bits of b and the single bit of t
4: return JcK⊕JdK ▷ Coefficient-wise XOR

Since secbitwise
& is just a succession of sec& which is d-SNI, secbitwise

& is also d-SNI property. Since the last
⊕ is d-NI, we deduce the theorem below.

Theorem 23. The choose value algorithm is d− NI.

A.7 Masked maximum computation

Algorithm 31 Max (secmax)
Require: JaK ∈ Zn, JbK ∈ Zn

Ensure: JcK = secmax(JaK, JbK) ∈ Zn

1: JtK← sec+(JaK, J−bK)
2: return secif(refresh(JbK), refresh(JaK), sign_bit(JtK))

Since the variables a and b are used within the sec+ gadget, which is d-NI, we need to refresh them (d-SNI
gadget) before reusing them in the call to the secif function. This yields the following theorem.

Theorem 24. The max algorithm is d− NI.

A.8 Filling a matrix in masked form

Algorithm 32 Fill matrix (secfill)
Require: JvK ∈ Zn

Ensure: JXK ∈ Fk×(|n|+1)
2 a matrix filled with the binary representation of JvK

1: for i← 0 to k − 1 do
2: for j ← 0 to |n| do
3: JXi,jK← JvK[j]
4: end for
5: JvK← refresh(JvK)
6: end for
7: return JXK

Since we just initialize JXK with JvK binary, we just refresh JvK to avoid to get same mask in two different
lines.
We then get the following theorem.

Theorem 25. The fill algorithm is d− NI.

	Introduction
	Preliminaries
	Masking
	Codes
	BIKE scheme
	Decoding QC-MDPC codes

	Masked BIKE
	Sparse and dense notation
	Key generation
	Encapsulation
	Decapsulation

	Details on selected gadgets
	Bitslicing
	Multiplications
	Hamming weight
	Computing the syndrome
	Generation of random polynomials
	Masked polynomial inversion
	Threshold and counters
	Grey Zone

	Performance and experiments
	Implementation
	Detailed benchmarks

	Future Work
	Extra small gadgets and proofs
	Adders and carries
	Equality
	Multiplications
	Modular random number
	Cyclic shift
	Masked conditional branch
	Masked maximum computation
	Filling a matrix in masked form

