
Succinct Verification of Compressed Sigma Protocols in the
Updatable SRS setting

Moumita Dutta, Chaya Ganesh, and Neha Jawalkar

Indian Institute of Science, Bangalore, India
{moumitadutta,chaya,jawalkarp}@iisc.ac.in

Abstract. We propose protocols in the Compressed Sigma Protocol framework that achieve a
succinct verifier. Towards this, we construct a new inner product argument and cast it in the
Compressed Sigma Protocol (CSP) framework as a protocol for opening a committed linear form,
achieving logarithmic verification.

We then use our succinct-verifier CSP to construct a zero-knowledge argument for circuit sat-
isfiability (under the discrete logarithm assumption in bilinear groups) in the updatable Struc-
tured Reference String (SRS) setting that achieves O(logn) proof size and O(logn) verification
complexity. Our circuit zero-knowledge protocol has concretely better proof/prover/verifier com-
plexity compared to the the state-of-the-art protocol in the updatable setting under the same
assumption. Our techniques of achieving verifier-succinctness in the compression framework is of
independent interest.

We then show a commitment scheme for committing to group elements using a structured com-
mitment key. We construct protocols to open a committed homomorphism on a committed vector
with verifier succinctness in the designated verifier setting. This has applications in making the
verifier in compressed sigma protocols for bilinear group arithmetic circuits, succinct.

1 Introduction

Zero-knowledge proof systems [GMR89] are an important primitive in theory of computation and
a fundamental building block in various cryptographic constructions. In real-world applications, the
proof size and efficiency of verification are crucial efficiency parameters. Succinct arguments, where
the proof size is logarithmic in the size of the statement were first constructed by Kilian [Kil92] based
on probabilistically checkable proofs (PCP). Micali’s construction [Mic94] made this non-interactive
in the random oracle model (ROM). Non-interactivity in the plain model is achieved by assum-
ing a Common Reference String (CRS) generated during a setup phase. There has been a series
of works on constructing (zero-knowledge) Succinct Non-interactive ARguments of Knowledge (zk-
SNARKs) [Gro10, Lip12, BCI+13, GGPR13, PHGR13, Lip13, BCTV14, Gro16], which have very
short proofs and admit efficient verification. The constructions with concretely better proof sizes are in
the Structured Reference String (SRS) model and require a one-time setup or preprocessing that needs
to be trusted. A line of work attempts to reduce the degree of trust in the setup phase by constructing
SNARKS in an updatable setting [GKM+18, MBKM19, GWC19, CHM+20] where the SRS is updat-
able, meaning parties can continuously contribute to the randomness of the SRS, and the assumption
is that at least one of the updates was honest. SNARKs that do not need a trusted setup and the
verifier randomness consists of only public coins are called transparent.

Bulletproofs [BBB+18], building on the work of [BCC+16] introduced techniques that achieve logarith-
mic communication complexity in discrete logarithm (DL) based zero-knowledge proofs. The beautiful
work of Attema and Cramer [AC20] introduced compressed sigma protocol theory by using a blackbox
compression technique, which also places Bulletproofs in the framework of Sigma protocol theory. The
idea of employing a compression mechanism on a pivot protocol has become a versatile tool leading to
compressed sigma protocol theory for lattices [ACK21], and compressed sigma protocols for bilinear
group arithmetic circuits [ACR21].

Compressed Sigma Protocols (CSP) are attractive in applications due to their reliance on weaker
assumptions (DL), conceptual simplicity, logarithmic proof size and transparent setup. One downside
of this class of protocols is that they are only proof-succinct but not verifier-succinct – the verification
is linear. In this paper we study succinct verification of compressed sigma protocols while retaining
most of their advantages.

1.1 Our Contributions

In this work, we present compressed sigma protocols that are both proof and verifier-succinct in the
updatable SRS model. CSP compresses a pivot Σ-protocol for proving knowledge of a long vector x
while revealing a public linear form L(x), given a Pedersen commitment, resulting in a protocol for
opening linear forms on committed vectors with proof size O(log n) and verification complexity O(n)
where n is the size of x.

Protocol for opening a committed linear form. A core building block of our succinct verifier
constructions is a protocol to open a committed linear form on a committed vector. It is an inner
product argument, but in the spirit of CSP, one of the vectors – the linear form, is public and not
a witness. This vector is committed to only for the sake of succinctness, and looking ahead, this
commitment encodes the structure of the circuit and is computed during preprocessing. We use a
commitment scheme with a structured key introduced by [DRZ20]. This protocol with logarithmic
proof size and logarithmic verification complexity is secure under the DL assumption (same as CSP),
albeit in a bilinear group and at the cost of moving to an updatable SRS setting. We compare our
inner product protocol with [DRZ20] and [Lee21] in Table 1.

Succinct verifier protocol for circuit satisfiability. We construct a succinct argument of knowl-
edge for circuit satisfiability in the universal updatable SRS model. The proof size and verifier is
logarithmic in the size of the circuit. This is secure under DL and can be made non-interactive in
the ROM using the Fiat-Shamir transform. We compare the concrete costs of our protocol, with that
of [DRZ20] in Table 21. Since we use the same structure of SRS, the complexity of updating the SRS
and verifying the updates remain the same as in [DRZ20]. Dory’s [Lee21] polynomial commitment
can be used to obtain a protocol for circuit-satisfiability. The exact costs will depend on the under-
lying information-theoretic object (Polynomial interactive oracle proof) that is compiled using Dory.
For univariate polynomials of degree n, and opening one evaluation, Dory’s costs are: proof size of
(4 log n+ 10)G+ (log n+ 8)Zq , prover’s computation of (n+ log n)E + n1/2P , verifier’s computation
of 4 log nE + O(1)P . Note that Dory’s prover requires pairing operations and the security relies on a
decisional assumption.

Protocol Setup Assumption Proof size P complexity V complexity

[DRZ20] Updatable DL
8 logn G
2 logn Zq

(8n− 4) E∗ 2 logn P
4 logn E

[Lee21] Transparent SXDH
12 logn G
logn Zq

O(n1/2) P
9 logn E

1 P

This work
(Π1-R)

Updatable DL
4 logn G
3 logn Zq

(8n− 4) E∗

2 logn E
2 logn P
2 logn E

This work
(Π2-R)

Updatable DL
2 logn G
logn Zq

(4n− 2) E∗

logn E
logn P
logn E

Table 1. Comparison of our Linear Form opening (or equivalently inner product arguments) protocols for
vectors of length n. We compare in terms of most expensive operations, i.e. multi-exponentiations E, pairings
P and exponentiations E∗ (to provide aggregate values for non-constant multi-exponentiations).

Protocol Proof size P complexity V complexity

[DRZ20] 12 lognG + 4 lognZq (22 + 10M)n E∗ 12 logn E∗ + 8 logn P

[Lee21] (27/2) lognG + 3 lognZq O(n1/2) P ((27/2) logn + O(1)) E + O(1) P

This work (Πcsat) 2 lognG + lognZq (13 + 5M)n E∗ logn E + logn P

Table 2. Circuit SAT protocol for a preprocessed circuit of size n (which is roughly 3m for m multiplication
gates). Both protocols are updatable zkSNARKs that rely on the DL assumption. As in [DRZ20], we only
compare in terms of the most expensive operations (exponentiations E and pairings P), and omit constant
terms. M is a parameter that determines the processed circuit’s fan-in and fan-out upper bound, and can be
fine-tuned to balance the prover/verifier computations.

1 We note that other SNARKs in the universal, updatable setting that have better communication and/verifier
complexity (Oλ(1)) rely on the Algebraic Group Model or Knowledge Type assumptions in addition to the
Random Oracle Model. In this work, we are interested in constructions in the Random Oracle Model, and
relying on standard assumptions.

2

Protocol for opening a committed homomorphism. We then construct a protocol for opening a
homomorphism, where both the vector and the homomorphism are committed to. A homomorphism is
given by a vector of group elements. We extend commitment schemes to group elements from [LMR19,
ACR21] to one that uses a structured key and show binding based on SXDH. Succinct verifier protocols
for opening homomorphisms are useful in constructing proofs of partial knowledge with succinct verifier.
We then extend our protocol to general homomorphisms (on commitments to Zq,G1,G2,GT elements
simultaneously) motivated by applications to bilinear group arithmetic circuit zero-knowledge proto-
cols. Our constructions for opening homomorphisms are in the designated-verifier setting. In applica-
tions like verification of structure preserving signatures and attribute-based authentication, public veri-
fiability might not be necessary since there is a designated credential verifier, and indeed the homomor-
phism itself is given by the statement to prove (signature verification algorithm) that can be committed
to in a preprocessing phase. Therefore, our protocols can be used in similar applications as in [LMR19],
like proving knowledge of signature for complex access structures. While [LMR19] has proof that scales
logarithmically with the size of the statement, our protocol additionally yields logarithmic verification
(albeit for designated verifier, which we believe is not a limitation for credential verification).

1.2 Related Work

Daza et al [DRZ20] construct inner product arguments with logarithmic verifier by replacing the
unstructured CRS or commitment key with a structured one. This also yields a protocol for circuit
satisfiability with logarithmic verification in the updatable setting. Our construction and the protocols
of [DRZ20] achieve the same result asymptotically. However, while we crucially rely on a structured
commitment key to make the verifier logarithmic like in [DRZ20], our techniques are different. The
work of [DRZ20] extend the protocols of [BCC+16, BBB+18], while we take the approach of CSP. This
has the advantage of applying compression mechanism on standard protocols for linear relations (or
non-linear relations after linearization). The CSP approach also allows us to extend our techniques to
other applications where compression applies in a black-box way. Second, our protocols are concretely
better than [DRZ20] with smaller constants (See Table 2).

Dory [Lee21] presents a transparent protocol for inner products between committed vectors with loga-
rithmic proof size and logarithmic verification. Dory relies on a decisional assumption (SXDH) whereas
our inner product protocol relies on DL. Additionally, our prover work is only group operations as op-
posed to (O(n1/2)) pairing operations required by the prover in Dory, and our constants in the proof
size are better.

Other SNARKs in the updatable setting [MBKM19, GWC19, CHM+20, LSZ23] rely on knowledge-
type assumptions or Algebraic Group Model (AGM), and constructions in the transparent setting
with similar and better asymptotics [BFS20, AGL+23] require unknown order groups with concretely
expensive operations.

Lai et al. [LMR19] show a generalization of Bulletproof’s circuit zero-knowledge protocol to work
for bilinear group arithmetic circuits directly, without requiring these circuits to be translated into
arithmetic circuits. Attema et al. [ACR21] generalize compressed sigma protocols for bilinear group
arithmetic circuits. Both these constructions rely on a protocol for opening a group homomorphism
where the verifier is linear. Using our protocol for opening a committed homomorphism will yield a
succinct verifier at the expense of making it a designated verifier system. We provide the comparison
in Table 4. Note that for application like Threshold Signature Schemes (following Algorithm 4 of
[ACR21]), we retain the logarithmic size of the signature similar to prior works, however we improve
the verification complexity from linear to logarithmic.

Performace Comparison for MiMC and Poseidon Hash. We report the timing using a third party
implementation calculator https://zka.lc, where we estimate using BLS12-381 curve implemented
in arkworks-rs provided using Amazon Linux 2 8-core Intel(R) Xeon(R) Platinum 8259CL CPU @
2.50GHz, 32GB. In Table 3, we use the reported number of gates for MiMC in [AGR+16], having 1293
multiplication gates and 646 addition gates. We achieve 1.77× improvement in prover time and more
than 7× improvement in verification time as compared to Daza et al [DRZ20]. Similarly, we achieve
1.79× improvement in prover time and more than 7× improvement in verification time compared to
Daza et al. for Poseidon (assuming number of R1CS constraints is equal to the number of multiplication
gates, with 276 R1CS constraints [zkh]).

3

https://zka.lc

Similarly, we obtain 1.42× improvement in prover time as compared to Dory [Lee21] for MiMC hash
instantiation and 2.69× improvement in prover time for Poseidon hash instantiation, at a slight cost
of verifier time. Note that for circuits of smaller sizes, we do fairly better than Dory in prover time
complexity, while not losing much in verifier time complexity. Also, for both comparisons we assume
that Dory has atleast 6n1/2 pairings computation by prover, and 3 pairing checks performed by the
verifier. For statements that show up in practice, like proving knowledge of opening of a Merkle tree
leaf using MiMC/Poseidon Hash functions, the reported number for the prover increases by a factor
of depth d of the tree.

Hash Protocol Prover Time Verifier Time

[DRZ20] 729,272 151,831
MiMC [Lee21] 586,381 7,054

Us 411,809 19,319

[DRZ20] 181,058 123,610
Poseidon [Lee21] 270, 912 6, 769

Us 100,636 15,780
Table 3. Performance of MiMC and Poseidon Hash Instantiation using https://zka.lc and in µs.

Protocol Proof size P complexity V complexity

[LMR19]

O(n) GT

+ O(logn) G1

+ O(logn) G2

+ O(logn) Zq

O(n) E O(n) E

[ACR21]
O(logn) GT

+ O(logn) Zq
O(n) E O(n) E

Us

O(logn) GT

+ O(logn) G1

+ O(logn) G2

+ O(logn) Zq

O(n) E
O(logn) E

+ O(logn) P

Table 4. Comparison of protocols for opening homomorphism for vectors of length n. We compare in terms
of most expensive operations, i.e. pairings P and exponentiations E and dominant communication cost
with respect to elements of the field Zq and groups G1, G2 and GT . Note that our verifier complexity is
2 logn E + logn P .

1.3 Technical Overview

The high level idea behind the inner product argument of [BCC+16] and the compressed sigma protocol
of [AC20] is to compress a vector using a Pedersen commitment, and then in each round reduce the
instance and the commitment key to another one of half the size by using the verifier’s challenge. At a
high level, the source of the verifier’s linear complexity is in having to compute the new keys at every
step.

We use a structured commitment key proposed in [DRZ20] that consists of encodings of multilinear

monomials of a secret vector of logarithmic length, i.e., ȧ = (ȧ1, . . . , ȧℓ),a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

, for

n = 2ℓ, the commitment key is ga where gx = (gx1 , . . . , gxn) for a vector x = (x1, . . . , xn). The
commitment to a vector x under key ga is g⟨a,x⟩. This key is updatable, a party can sample new ℓ
secrets and update the encoding in a verifiable way. A compressed version of this key, gȧ ∈ Gℓ

1 allows
the verifier to be logarithmic.

Linear Form Opening with Succinct Verifier.We build on the inner product arguments of [BCC+16]
and [DRZ20]. The verifier’s work in [BCC+16] involves computing an updated key in each round, and
in [DRZ20], the verifier is only given a compressed key (logarithmic) and the prover convinces the ver-
ifier that the reduced statement in each round is with respect to a new key that is correctly updated.
New commitment keys with size half of the original one are created by splitting them in half and then
combining them based on the verifier’s challenge. A logarithmic verifier can check that a structured
key has been updated correctly using a pairing operation.

4

https://zka.lc

While our protocol uses the same structured key, we take a slightly different approach: we exploit the
fact that we can go from a commitment to a vector with respect to the second half of the original
basis to a commitment to the same vector with respect to the first half of the original basis. Now,
if a prover produces commitment to both halves of a vector with respect to the first half of the
basis, the verifier can perform one multiplication in the exponent to check the consistency. Consider,

ȧ = (ȧ1, . . . , ȧℓ),a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

, for n = 2ℓ, the commitment key is ga =
(
gaL∥gȧℓaL

)
, the

verification key is H ȧ, and P = COMa (x). In each step, for x = (xL∥xR), if the prover produces
A1 = COMaL

(xL), A2 = COMaL
(xR), the verifier can perform the check e(P

A1
, H) = e(A2, H

ȧℓ).
Thus, the commitment key updates are done implicitly by simply dropping off the last element ȧℓ,
and using the challenge only to fold the instance vectors x′ = xL + cxR. This observation allows us to
shave off about 4 group elements in each round from the Daza et al.’s inner product argument. Our
protocol also has the advantage of allowing efficient batching, i.e., for vectors of length n, the prover
can prove, for distinct L1, . . . , Lm and x1, . . . ,xm that L1(x1) = y1, . . . , Lm(xm) = ym while incurring
a cost that is O(m+ log n) as opposed to O(m log n).

Succinct ZK Argument for Circuit Satisfiability. We construct an improved protocol for arith-
metic circuit satisfiability in the universal updatable SRS setting. The CSP approach to handle mul-
tiplication gates by linearizing them renders the verifier linear. We propose a protocol for computing
a commitment to the linear form that captures the multiplication gates in the circuit in a verifiable
way while keeping the verifier succinct. We use the ideas from [DRZ20] to preprocess a circuit, and
obtain a commitment to the linear constraints. Now, all relations are linearized, we have commitments
to all linear forms, and we show how to batch all linear form openings into one protocol for opening a
committed linear form on a committed vector.

The following are two key new ideas to make a CSP-like proof have succinct verification. (i) The
first relates to how we handle multiplication gates. For linearizing multiplication constraints, CSP
uses a linear combination of polynomial evaluations at 1, . . . ,m to evaluate a polynomial at a new
random value z rendering the verifier linear. We handle multiplication in the same way as CSP, but
instead of computing the public linear form for multiplication, the verifier instead succinctly verifies
a commitment to it. We construct a succinct-verifier protocol for obtaining a commitment to the
linear form used for verifying multiplication constraints. In order to do this, impose some structure;
specifically, we use a linear combination of polynomial evaluations at 2, 22, . . . , 2m. This choice allows
us to compute the value of a polynomial at any point z while keeping the verifier succinct. This idea
gives a protocol where the prover computes a commitment to the linear form that the verifier can
efficiently check. The linearization is now via a committed linear form. (ii) The second idea relates
to how we handle linear gates. Here, we employ the ideas of Daza et al., by reducing the problem of
verifying linear gates to checking that two committed vectors are permutations of each other; and a
Hadamard product argument. We deviate from [DRZ20] by first reducing the permutation argument
to the CSP pivot of opening linear forms on committed vectors. We then use our techniques from (i)
to obtain commitments to these linear forms. Finally, we take advantage of our ability to batch the
openings of linear forms, which allows us to prove circuit constraints while paying the cost of essentially
a single invocation of our linear form protocol.

Homomorphism Opening with Succinct Verifier. Our ideas for succinct verifier in linear form
openings do not extend to opening homomorphism. First, we need to commit to a homomorphism,
and we extend the commitment scheme for group elements used in [LMR19, ACR21] to a commitment
scheme with a structured key in order to make the verifier logarithmic. We show that binding is implied
by SXDH (same assumption as the scheme with uniform key). Since we rely on SXDH, we cannot en-
code the commitment key randomness in the second group as the verification key. Thus a pairing check
to verify correct key updates is not possible anymore, making our constructions designated verifier.
A second hurdle is that the commitment itself lives in the target group. This means that our idea to
check correct updation of the key in each round of split-and-fold (which involved a pairing operation)
does not work anymore. We tackle this by having the commitment key in both G1 and GT . Now, the
prover updates the commitment key in G1 and proves that this has been done correctly. The verifier
can check this using a pairing, move this updated commitment key in G1 to GT , and then finally at
the end of the recursion verify the commitment with respect to the updated key in GT .

5

2 Preliminaries

Notation. A finite field is denoted by F. Let G be a group of order q. We denote by λ a security
parameter, by negl a negligible function. For any integer c > 0, there exists n ∈ N, such that ∀ x > n,
negl(x) ≤ 1/nc. We denote vectors by boldface letters, and inner product between a and b by ⟨a,b⟩.
We define L(Zn

q) as L(Zn
q) = {L : L is a linear map from Zn

q to Zq}. A linear map L ∈ L(Zn
q) is given

by a vector: L(x1, . . . , xn) = a1x1 + · · · + anxn (for (x1, . . . , xn) ∈ Zn
q) is given by L = (a1, . . . , an)

where a1, . . . , an ∈ Zq. For x = (x1, . . . , xn) ∈ Zn
q , its reversal is defined as rev(x) = (xn, . . . , x1). A

vector a = (a1, . . . , an) naturally defines a (n−1)-degree polynomial by considering the vector a as the
vector of coefficients, which gives us the polynomial a(X) = a1 + a2X + a3X

2 + · · ·+ anX
n−1. Also, a

commitment to a polynomial a(X) = a1 + a2X + a3X
2 + · · ·+ anX

n−1 is provided by a commitment
to the vector of coefficient also denoted by a = (a1, . . . , an). Hence, for ease of notation, we use the
vector and polynomial notation interchangeably throughout the paper.

For g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Zn
q , the multi-exponentiation gx is defined by

gx = gx1
1 · · · gxn

n . Also, for g ∈ G and x = (x1, . . . , xn) ∈ Zn
q , g

x is defined by gx = (gx1 , · · · , gxn).
The inner product between elements of Zn

q , a = (a1, . . . , an) and b = (b1, . . . , bn) is denoted by
⟨a,b⟩ = a1b1 + · · · + anbn. For a ∈ Zm

q , b ∈ Zn
q , a∥b ∈ Zm+n

q denotes concatenation of a and b in the
respective order, similarly the notation is used for the vectors in a group G to denote concatenation
of two vectors. For a = (a1, . . . , an) ∈ Gn and b = (b1, . . . , bn) ∈ Gn, the hadamard product a ◦ b is
defined by a ◦ b = (a1b1, . . . , anbn). Also, for v, n ∈ Zq, v

n denotes the vector vn = (1, . . . , vn).

A bilinear group is denoted by the tuple (q,G1,G2,GT , e,G,H)←−R G(1λ), where G1, G2 and GT are
groups of prime order q, G and H are generators of G1 and G2, and e : G1 ×G2 → GT is a efficiently
computable bilinear map.

We defineML2ℓ ∈ Zn
q to be the set of all n-length multilinear vectors of the form (1, ȧ1, ȧ2, . . . , ȧ1 · · · ȧℓ),

determined by ℓ-mutually independent scalars ȧ1, . . . , ȧℓ. We denote the set of ℓ scalars by ȧ =
(ȧ1, . . . , ȧℓ) and the n-length vector by a = (1, ȧ1, ȧ2, . . . , ȧ1 · · · ȧℓ). More formally, MLn = {a :

ȧ = (ȧ1, . . . , ȧℓ)←−R Zℓ
q, a = (

∏ℓ
i=1 ȧ

xi
i)xi∈{0,1}}.

2.1 Interactive Arguments

We consider interactive arguments for relations, where a prover P convinces the verifier that it knows a
witness w such that for a public statement x, (x,w) ∈ R. For a pair of PPT interactive algorithms P, V ,
we denote by ⟨P (w), V ⟩(x), the output of V on its interaction with P , where w is P ’s private input and
x is a common input. Let R = {(x,w)} be a relation and L be the corresponding NP language.

Definition 1 (Argument of knowledge) An interactive argument of knowledge(AoK) for a rela-
tion R consists of a PPT algorithm setup(1λ) that takes a security parameter λ and outputs public
parameters srs, and a pair of PPT interactive algorithms ⟨P,V⟩. The triple (setup,P,V) satisfy the
following properties.

1. Completeness. For all λ ∈ N, (x,w) ∈ R,

Pr
(
⟨P(w)V⟩(srs, x) = 1 : srs← setup(1λ)

)
= 1.

2. Knowledge Soundness. An argument system (P,V) for a relation R is knowledge sound with error
κ if there exists an expected polynomial time extractor Ext such that for every efficient adversary

P̃, for every x ∈ {0, 1}∗, whenever P̃ makes V accept with probability ϵ > κ, ExtP̃(x) outputs w∗

such that (x,w∗) ∈ R with probability at least ϵ−κ
q for some polynomial q.

Definition 2 (Honest verifier zero-knowledge (HVZK)) An argument system (P,V) for a rela-
tion R is HVZK if there exists an efficient simulator S such that for every (x,w) ∈ R, the distribution
S(x) is identical to View⟨P(x,w),V(x)⟩, where View⟨P(x,w),V(x)⟩ is the distribution of the view of the
verifier in the protocol on common input x and prover’s witness w.

We now recall the special soundness property which is typically simpler than knowledge sound-
ness.

6

Definition 3 (Tree of transcripts) A set of k =
∏ℓ

i=1 ki accepting transcripts for an argument
system (P,V) is a (k1, . . . , kℓ)-tree of accepting transcripts if they are in the following tree structure:
The nodes of the tree are formed by P’s messages, and the edges correspond to V’s messages. Each
node at depth i has exactly ki children corresponding to ki distinct messages from the verifier. Each
transcript is given by a path from a leaf node to the root.

Definition 4 (Special Soundness) A (2ℓ+ 1) move protocol is said to be (k1, . . . , kℓ) special sound
if there exists an extractor Ext that takes as input a (k1, . . . , kℓ)-tree of accepting transcripts for an
instance x, and outputs w such that (x,w) ∈ R.

Definition 5 (Succinct Argument of knowledge) An argument system is proof-succinct if the
communication complexity between prover and verifier is bounded by poly(λ), and verifier-succinct if
the running time of V is bounded by poly(λ+ |x|) and independent of the size of the circuit computing
R.

Fiat-Shamir and Non-interactive AoK. An argument system is said to be public coin if the verifier’s
messages are uniformly random strings. Public coin interactive protocols can be heuristically compiled
into non-interactive arguments by applying the Fiat-Shamir [FS87] transform (FS) in the Random Or-
acle Model (ROM). Since our protocols are all public coin, we show special soundness of the interactive
version and then rely on FS.

Updatable SRS SNARK. Introduced by Groth et al. [GKM+18], the updatable universal structured
reference string (SRS) enables parties to update the parameters, while retaining computational sound-
ness against any probabilistic-polynomial time adversary, as long as at least one honest update is
performed. We follow the model used in Daza et al. [DRZ20] based on [GKM+18], where anyone
can deterministically compute the circuit-specific preprocessing material given the (updated) universal
SRS, which ensures that the circuit-specific preprocessing is performed publicly without any involve-
ment of secrets.

2.2 Assumptions

Definition 6 (DLOG Assumption) The discrete logarithm (DLOG) assumption for a group G
states that, given a generator g of the group G, for all PPT adversaries A we have

Pr (r = r′ | r ←−R Zq ∧ r′ ← A(gr)) ≤ negl(λ)

When the commitment key is structured, we need the following Find-rep assumption to hold in bilinear
groups, which is known to follow from DLOG, as shown in [DRZ20].

Definition 7 (Find-rep Assumption) Find-rep assumption holds with respct to a a bilinear group
generator G for all PPT adversaries A we have

Pr

 g⟨a,x⟩ = 1G ∧ x ̸= 0
(q,G1,G2,GT , e, g, h)←−R G(1λ)

a←−RMLn,x← A(ga, ha)

 ≤ negl(λ)

Definition 8 (DDH Assumption) For a group G, decisional Diffie-Hellman (DDH) problem is to
determine, when given a tuple (g, ga, gb, gc) for some g ∈ G, whether c = ab. Decisional Diffie-Hellman
(DDH) assumption in a group G states that DDH problem is hard in that group.

Definition 9 (SXDH Assumption) For (q,G1,G2,GT , e,G,H) ←−R G(1λ), the Symmetric Exter-
nal Diffie-Hellman (SXDH) assumption states that the decisional Diffie-Hellman (DDH) assumption
holds for both G1 and G2.

3 CSP for Committed Linear Forms

We construct a protocol to reveal L(x) for a committed vector x, and committed linear form L. The
idea is to honestly generate a commitment to the (public) linear form in a preprocesing phase. Once
generated, a commitment to a linear form L can be used to open L on any committed vector. When
used as a subprotocol for arithmetic circuit SAT, we generate these commitments during a one-time
circuit-specific setup phase.

7

Definition 1 (Commitment to Zq-vectors [DRZ20]). Let (q,G1,G2,GT , e, g,H) be a bilinear
group and let n ≥ 0. We define a commitment scheme for vectors in Zn

q with the following setup and
commitment phase:

– Setup: Let ȧ := (ȧ1, . . . , ȧℓ) ← Zℓ
q where ℓ = log (n+ 1). Let a = (a1, . . . , an) ∈ Zn+1

q be defined

as aj =
∏ℓ

i=1 ȧ
bji
i ,where (bj1, . . . , bjℓ) is the binary representation of j. Output (ga, H ȧ), where

ga ∈ Gn+1
1 is the commitment key, and H ȧ ∈ Gℓ

2 is the verification key.

– Commit: COM : Zn+1
q → G1, γ ←−R Zq and define

– COMa (x; γ)→ g⟨a,(x∥γ)⟩

Lemma 1. The above scheme is perfectly hiding and computationally binding under the DLOG as-
sumption [DRZ20].

The proof is provided in Appendix A.1.

We start with a Σ-Protocol for opening a linear form which is similar to the initial protocol in [AC20]
but using structured keys instead of uniformly random keys for the commitments. We consider the
following relation

R = {(P ∈ G, L ∈ L(Zn
q), y ∈ Zq;x ∈ Zn

q , γ ∈ Zq) : P = COMa (x; γ) ∧ L(x) = y}}

which corresponds to showing opening of a public commitment P and a public value y, obtained by
operating a linear form L on a secret Zn

q vector x. This is the same relation as in [AC20] but using the

commitment COM with structured commitment key (ga, H ȧ) (Definition 1). We rely on the SXDH
assumption for providing the structured key (ga, H ȧ) while maintaining security.

Parameters

– Common parameters : (P ∈ G, L ∈ L(Zn
q), y ∈ Zq), P = COMa (x; γ), y = L(x)

– P’s input : (x ∈ Zn
q , γ ∈ Zq)

Protocol

1. P samples r←−R Zn
q , ρ←−R Zq, computes A = COMa (r; ρ), t = L(r) and sends A, t to V

2. V samples c←−R Zq and sends c to P
3. P computes z = cx + r and ϕ = cγ + ρ and sends z, ϕ to V
4. V checks if COMa (z;ϕ) = AP c and L(z) = cy + t, outputs 1 if it holds, outputs 0 otherwise.

Fig. 1: Protocol Π0 for relation R

Theorem 1. Π0 is a 3-move protocol for relation R. It is perfectly complete, special honest-verifier
zero-knowledge and computationally special sound.

Proof. Completeness. If protocol steps by the prover is executed correctly, then we have z = cx+ r,
and it satisfies the final two checks by the verifier

COMa (z;ϕ) = g⟨a,(z∥ϕ)⟩, L(z) = L(cx+ r)

= g⟨a,(cx+r∥cγ+ρ)⟩ = cL(x) + L(r)

= gc⟨a,(x∥γ)⟩g⟨a,(r∥ρ)⟩ = cy + t

= P cA

Special Honest-Verifier Zero-Knowledge. We construct a simulator S, which produces a tran-
script indistinguishable from the transcript of the real execution of the protocol, provided a challenge

c ∈ Zq. (i) S samples z, ϕ (ii) S computes COMa (z;ϕ) and sets A = COMa (z;ϕ)
P c and t = L(z)− cy.

The transcript produced by the simulator S is indistinguishable from the transcript of the real execution
of the protocol due to the hiding property of the commitment scheme COM(.) (.), which ensures that a

8

commitment sampled uniformly at random from the set of all possible commitments is indistinguishable
from a commitment computed from a message chosen uniformly at random.

Special Soundness. We consider 2 accepting transcripts (A, t, c1, z1, ϕ1) and (A, t, c2, z2, ϕ2), such
that c1 ̸= c2. Then we have,

COMa (z1;ϕ1) = AP c1 , L(z1) = c1y + t, and

COMa (z2;ϕ2) = AP c2 , L(z2) = c2y + t

=⇒ g⟨a,(z1∥ϕ1)⟩ = AP c1 , L(z1) = c1y + t, and

g⟨a,(z2∥ϕ2)⟩ = AP c2 , L(z2) = c2y + t

Dividing the first two equations, and subtracting the second equations, we get

g⟨a,(z1−z2∥ϕ1−ϕ2)⟩ = P c1−c2 , L(z1 − z2) = (c1 − c2)y

We define x = (z1 − z2)/(c1 − c2) and γ = (ϕ1 − ϕ2)/(c1 − c2), and this gives us g⟨a,(x,γ)⟩ =
COMa (x, γ) = P , and L(x) = y.

3.1 Opening a Committed Linear Form

In Π0, the communication complexity as well as the verifier complexity is linear due to the last mes-
sage sent by the prover and the last check performed by the verifier. To improve both complexities,
we replace the message sent in the last step of Π0 with a proof of knowledge. We define a relation
that captures this and reduce the verifier’s work by committing to the linear form and compressing
the check using split-and-fold technique used in [AC20]. The protocol Π1 is in Fig 2. We compress
recursively until the size of instance is constant and can be sent in the clear.

We now consider the new relation RCLF with respect to an updated linear form, where the new linear
form L is defined as L(z, ϕ) := L(z) and hence, the check performed by the verifier in step 5 of Π0

(Fig 1) corresponds to the new relation, where the message sent by the prover P to the verifier V in
step 4 corresponds to a witness in the new relation.

RCLF = {(P ∈ G, Q ∈ G, y ∈ Zq;x ∈ Zn
q , L ∈ L(Zn

q)) :

P = COMa (x) ∧ Q = COMa (L) ∧ L(x) = y}}

This corresponds to showing opening of a public commitment P and a public value y, which is the
output of a linear form L on a secret Zn

q vector x, given a commitment to the linear form L. We present
the Σ-Protocol Π1 for RCLF in Fig 2, and use this protocol instead of step 5 of Π0 to improve the
communication and verifier complexity.

Finally, we define Π1-R as Π1-R = Π1 ◦Π0 for relation R, whose communication and computational
complexity are dominated by that of Π1. The concatenation of the protocols Π1 and Π0 proceeds by
replacing the last message sent in clear by the prover in Π0 with a proof of knowledge using Π1.

Theorem 2. Π1 is a (k1, . . . , kℓ)-move protocol for relation RCLF, where ki = 3, ∀i ∈ [ℓ], ℓ = log n. It
is perfectly complete and computationally special sound. It incurs total communication of 4 log n group
elements and 4 + 3 log n field elements.

Proof Sketch. Here we present the proof sketch for the special soundness of Π1. Given 3 accepting
transcripts (A1, A2, B1, B2, y1, y2, ci,x

′
i, L

′
i) for one iteration of Π1 (where one iteration consists of

steps 1-5, and step 6 follows by sending x′, L′ instead of providing a PoK) for three distinct challenges
c1, c2 and c3, extractor proceeds as follows. It computes a1, a2, a3 as (a1, a2, a3)

T = V −1(0, 1, 0)T ,
where V is the Vandermonde matrix defined by the the challenges, and sets w =

∑
i ai(cix

′
i∥x′

i) to be
the extracted value. We show that COMa (w) = P ; and similarly we extract a valid opening m of the
commitment Q.

We then show that the extracted w,m satisfy x′
i = wL+ ciwR and L′

i = mL+ cimR for all i = 1, 2, 3,
which when substituted in the verification equation ⟨L′

i,x
′
i⟩ = y′i (Step 7(b)) gives us ⟨mR,wL⟩ +

ci⟨m,w⟩+ c2i ⟨mL,wR⟩ = y1 + ciy + c2i y2, for the distinct challenges c1, c2 and c3. Hence, ⟨m,w⟩ = y
holds, which shows that (w,m) is a valid witness for (P,Q, y) ∈ RCLF. We present the full proof in
Appendix B.1.

9

Parameters

– Common parameters : (P ∈ G, Q ∈ G, y ∈ Zq, H
ȧ ∈ Gℓ

2),
• P = COMa (x), Q = COMa (L), y = L(x),

• n = 2ℓ, ȧ = (ȧ1, . . . , ȧℓ),a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

• A bilinear group description (q,G,G2,GT , e, g,H), where e : G×G2 7→ GT is an efficient bilinear map
and g,H and e(g,H) are generators of groups G,G2 and GT , respectively, each of order q.

– P’s input : (ga ∈ Gn,x ∈ Zn
q , L ∈ L(Zn

q))

Protocol

1. P parses x = (xL∥xR), L = (LL∥LR) and ga =
(
gaL∥gȧℓaL

)
, and computes and sends the following to V:

(a) A1 = COMaL (xL), A2 = COMaL (xR)
(b) B1 = COMaL (LL), B2 = COMaL (LR)
(c) y1 = ⟨LR,xL⟩, y2 = ⟨LL,xR⟩

2. V checks the following, proceeds to step 3 if it holds, and aborts otherwise

e

(
P

A1
, H

)
= e

(
A2, H

ȧℓ

)
∧ e

(
Q

B1
, H

)
= e

(
B2, H

ȧℓ

)
3. V samples c←−R Zq and sends c to P
4. P sets x′ = xL + cxR, L

′ = cLL + LR and implicitly sets ȧ′ = (ȧ1, . . . , ȧℓ−1) and a′ = aL.
5. P and V both compute the following :

P ′ = A1A
c
2, Q′ = Bc

1B2, y′ = y1 + cy + c2y2

6. If x′ /∈ Z2
q : P runs PoK Π1 to prove knowledge of x′, L′ such that COMa′ (x′) = P ′, COMa′ (L′) = Q′

and ⟨L′,x′⟩ = y′.

Hence, P and V runs the protocol Π1 with updated common parameters (P ′, Q′, y′, gȧ
′
) and prover’s input

(ga
′
,x′, L′), for (P ′, Q′, y′;x′) ∈ RCLF

7. If x′ ∈ Z2
q :

(a) P sends x′, L′ to V
(b) V outputs 1 if the following checks hold, and 0 otherwise:

COMa′ (x′) = P ′ ∧ COMa′ (L′) = Q′ ∧ ⟨L′,x′⟩ = y′

Fig. 2: Protocol Π1 for relation RCLF

3.2 Improved Protocol for Opening a Committed Linear Form

We recall that for x = (x1, . . . , xn) ∈ Zn
q , rev(x) is defined as rev(x) = (xn, . . . , x1). We present an

alternative protocol that achieves better communication complexity at the cost of degrading soundness;
it needs 2n transcripts to extract. Consider a modified version of the relation RCLF defined earlier,
where instead of committing to the linear form we now commit to the reverse of the linear form, and
define the new relation RCLF-rev as follows :

RCLF-rev = {(P ∈ G, Q ∈ G, y ∈ Zq;x ∈ Zn
q , L ∈ L(Zn

q)) :

P = COMa (x) ∧ Q = COMa (rev(L)) ∧ L(x) = y}}

where the relation RCLF-rev corresponds to showing opening of a public commitment P and a public
value y, obtained by operating a linear form L on a secret Zn

q vector x, where we also have a commitment
to the reverse of linear form L which is represented as a vector. We note that the randomness used for
the commitments are implicitly assumed from here onwards. We have the following protocol for the
relation RCLF-rev (Fig 3).

The protocol aims to reduce the verification of the statement (P,Q, y;x) ∈ RCLF-rev by prover P and
verifier V, to a polynomial check where we have the equation

x(U) · rev(L)(U) = pL(U) · U−1 + y · Un−1 + pR(U) · Un

10

Parameters

– Common parameters : (P ∈ G, Q ∈ G, y ∈ Zq, H
ȧ ∈ Gℓ),

• P = COMa (x), Q = COMa (rev(L)), y = L(x),

• n = 2ℓ, ȧ = (ȧ1, . . . , ȧn),a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

– P’s input : (ga ∈ Gn,x ∈ Zn
q , L ∈ L(Zn

q))

Protocol

1. Let us define B ∈ Zn
q as B = rev(L). Let x(U) be a polynomial of degree (n − 1) defined with coefficient

vector x = (x1, . . . , xn), such that x(U) =
∑n−1

i=0 xi+1U
i. Similarly, we define the polynomial B(U) of

degree (n− 1) for the vector B.
2. P defines a (2n− 2) degree polynomial p by

p(U) = x(U) ·B(U) =
∑
i,j

xi+1Bj+1U
i+j ,

and parses the computed polynomial as

p(U) = pL(U) · U−1 + y · Un−1 + pR(U) · Un,

where pL is a polynomial of degree (n − 1) and pL is a polynomial of degree (n − 2) (which is trivially
extended to a vector of length n by appending 0 appropriately).

3. P computes A1 = COMa (pL) and A2 = COMa (pR), and sends A1, A2 to V
4. V samples c←−R Zq and sends c to P
5. P computes the evaluations of the polynomials on the random challenge c as follows, and then sends

z1, z2, z3 and z4 to V: z1 = x(c), z2 = B(c), z3 = pL(c), z4 = pR(c).
6. V checks if the following relation holds, aborts if the check fails and continues to the next step otherwise.

z3 · c−1 + y · cn−1 + z4 · cn = z1 · z2

7. V samples t←−R Zq and sends t to P
8. P sets w = x + t ·B + t2 · pL + t3 · pR and sends w to V
9. P and V both compute the following :

R = P ·Qt ·At2

1 ·At3

2 and z = z1 + t · z2 + t2 · z3 + t3 · z4

10. V outputs 1 if for cn−1 = (1, . . . , cn−1) ∈ PWn the following relation holds, and outputs 0 otherwise:

COMa (w) = R ∧ ⟨w, cn−1⟩ = z

Fig. 3: Protocol Π2 for relation RCLF-rev

and we have commitment to each polynomial. The polynomials are then evaluated at the random
challenge sent by the verifier V, and the consistency of the evaluations with the equation satisfied by
the polynomial is checked.

Theorem 3. Π2 is a protocol for relation RCLF-rev. It is perfectly complete and computationally special
sound.

The proof is given in Appendix B.2.

Now we note that the last message w sent by the prover to the verifier in Π2 (Fig 3) is a witness for
the relation R, where R = {(P ∈ G, L ∈ L(Zn

q), y ∈ Zq;x ∈ Zn
q) : P = COMa (x) ∧ L(x) = y}}, and

the check computed by the verifier in step 10 of Π2 corresponds to ensuring that (R, cn−1, z;w) ∈ R.

We state the following protocol for relation R which is the compressed proof of knowledge protocol
stated in [AC20] with the following key differences: the linear form evaluation is checked in clear,
commitment uses structured commitment key and commitment to the left and right half of the witness
sent in the protocol being used to establish consistency with the commitment to the whole key which is

11

only possible due to the usage of structure in commitment key with keys being hidden in the exponent.

We note that even with the same protocol technique as [AC20] which inherently incurs linear computa-
tional complexity for verifier, we manage to retain a logarithmic computational complexity. This is due
to the usage of structured commitment key, which does not require the verifier to compute a challenge
dependent commitment key for the next iteration, and having a nicely-structured linear form which
ensures that verifier can compute the challenge dependent linear form required for the next iteration
efficiently. This suffices for our cause as we aim to use this protocol for providing proof of knowledge
of the last message sent in step 8 of Π2 such that it satisfies the verifier check in the step 10, which
provides us a witness of the relation R.

Parameters

– Common parameters : (R ∈ G, Lc ∈ Zn
q , z ∈ Zq, H

ȧ ∈ Gℓ)
• R = COMa (w), Lc = cn−1 = (1, c, . . . , cn−1), z = Lc(w),

• n = 2ℓ, ȧ = (ȧ1, . . . , ȧn),a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

– P’s input : (ga ∈ Gn,w ∈ Zn
q , Lc = cn−1 ∈ Zn

q)

Protocol

1. P computes and sends A1, A2, z
′ to V

(a) A1 = COMaL (wL)
(b) A2 = COMaL (wR)

(c) z′ = ⟨wL, (Lc)L⟩ = ⟨wL, c
n−1
2 ⟩

2. V checks if

e

(
R

A1
, g

)
= e

(
A2, g

ȧℓ

)
If the check fails, V aborts, otherwise V continues.

3. V samples s←−R Zq and sends s to P
4. P sets w′ = wL + s ·wR, L

′
c = s(Lc)L + (Lc)R = (s + cn/2)cn/2−1 and implicitly sets ȧ′ = (ȧ1, . . . , ȧℓ−1)

and a′ = aL

5. P and V both compute the following :

R′ = A1A
s
2 and d = cn/2 · z′ + s · z + s2 · c−n/2 · (z − z′)

6. If w′ /∈ Z2
q : P runs PoK Π ′

2 to prove knowledge of w′, L′
c such that COMa′ (w′) = P ′ and ⟨L′

c,x
′⟩ = d.

Hence, P and V runs the protocol Π ′
2 with updated common parameters (P ′, L′

c, d, g
ȧ′

) and prover’s input

(ga
′
,w′), for (P ′, L′

c, d;w′) ∈ R
7. If w′ ∈ Z2

q :
(a) P sends w′, L′

c to V
(b) V outputs 1 if the following holds, and outputs 0 otherwise:

COMa′ (w′) = R′ ∧ ⟨L′
c,w

′⟩ = d

Fig. 4: Protocol Π ′
2 for (R,Lc, z;w) ∈ R

We note that the last message vector (polynomial) sent by the prover to the verifier of Π2 is aimed to
convince the verifier that the vector is consistent with opening of a group element computed by the
verifier and evaluation of the polynomial at a random field element is consistent with a public field
element computed by the verifier. We provide protocol Π ′

2 for this.

We treat the evaluation of the polynomial w at a fixed point, denoted by w(c) as an inner-product
relation with a univariate polynomial, denoted by ⟨w, cn−1⟩, where cn−1 = (1, c, . . . , cn−1). Now,
provided that the evaluation point is fixed at c ∈ Zq, this inner product relation can be thought of as
a linear form evaluation, where the public linear form cn−1 evaluation at a secret vector w is equal to
the public value z ∈ Zq. Now, we note that, the claim in step 10 is equivalent to providing a Proof of
Knowledge of witness w in the following relation :

R = {(P ∈ G, L ∈ L(Zn
q), y ∈ Zq;x ∈ Zn

q) : P = COMa (x) ∧ L(x) = y}}

12

where we have that (R, cn−1, z;w) ∈ R.

Theorem 4. Π ′
2 is a (k1, . . . , kℓ)-move protocol for relation (R, cn−1, z;w) ∈ R, where ki = 3, ∀i ∈

[ℓ]. It is perfectly complete and computationally special sound.

The proof is in Appendix B.3.

Theorem 5. (Π2)c = Π ′
2 ◦Π2 is a (2n, 4, k1, . . . , kℓ)-move protocol for relation RCLF-rev, where ki =

3, ∀i ∈ [ℓ]. It is perfectly complete and computationally special sound. It incurs total communication
of (2 + 2 log n) group elements and 6 + 2 log n field elements.

We note that (Π2)c performs better than Π1 for the relation RCLF-rev, however the pre-processing
step needs a commitment to reverse of the linear forms. This is fine in our application to construct
proofs for circuit satisfiability, since the commitments to the reverse of these linear forms is computed
in the preprocessing phase. In case we only a commitment to the linear form, we can still use our
protocol by having the prover send the commitment to the reversed linear form, together with a proof
that it is indeed correct. This can be achieved by the observation that for L ∈ L(Zn

q) considered as a
polynomial, being evaluated at c has equal value as that of its reverse being evaluated at c−1 and the
result being multiplied with cn−1.

L(c) = cn−1 · (rev(L))
(
c−1

)
⇐⇒ ⟨L, cn−1⟩ = cn−1 · ⟨rev(L), (c−1)

n−1⟩

Hence, if P = COMa (L) is computed in the pre-processing phase, then the prover can compute Q =
COMa (rev(L)) and send Q along with the proof that opening of P evaluated at a random challenge
c is cn−1 times Q evaluated at c−1, at the onset of the protocol and proceed with (Π2)c. This gives us
an overhead of 1 group element and 2 field elements. Finally, we define Π2-R = (Π2)c ◦Π0 for relation
R, whose communication and computational complexity are dominated by that of (Π2)c.

4 Updatable SRS zkSNARK for Circuit Satisfiability

In this section we construct a zkSNARK with updatable SRS for circuit satisfiability by reducing a
statement about a circuit with respect to a public input to opening a linear form.

We take the approach of Attema et al. [AC20] to handle multiplication gates by linearizing them, but
we need to employ some new ideas to keep the verifier succinct. We recall the technique for handling
multiplication gates in the Attema et al. [AC20], where we have the left input wire values wa, the
right input wire values wb and the output wire values wo, secret shared via packed secret sharing,
where the randomness is embedded in the constant term. Let f, g and h be the polynomials with the
packed secret sharing of wa, wb and wo respectively,such that f(X) · g(X) = h(X). Attema et al.
[AC20] handles it by sending a commitment to the wire values in a long vector and opening them at
a random point c, and then using Schwartz Zippel lemma to argue that the polynomials are identical
if f(c) · g(c) = h(c) holds. However, the protocol to check f(c) · g(c) = h(c) renders the verifier linear,
since the linear form for opening the polynomials at the random value is linear in the size of the
witness. We circumvent this drawback of linear verification complexity from having to read the linear
form, by obtaining commitments to the linear form. The goal is to commit to linear forms required for
openings of f, g and h, and then invoke our succinct-verifier linear form protocol. We then proceed to
prove that, given A,B and C as commitment to some secret vectors a,b and c respectively from Zn

q ,
the committed vectors satisfies the hadamard relation a ◦ b = c, i.e. aibi = ci for all i ∈ [n].

Following that, we show how to prove that given commitments A,B to two vectors s, r ∈ Zn
q , they

are some committed permutation of each other. Concretely, s, r ∈ Zn
q are such that s = σ(r) for

some known permutation σ. Finally, we show how to put together these building blocks to construct
a protocol for circuit satisfiability with logarithmic proof size and verification complexity.

4.1 Committing to a Linear Form for Multiplication Gates

Let ρc = V −1(1 c c2 · · · cn−1)T for a random challenge c chosen by the verifier, where V is the
Vandermonde matrix of the public evaluation points αi, i ∈ [n]. This enables us to compute f(c) =

13

Parameters

– Parameters from preprocessing:
• X := COMa (x) where x := (2, . . . , 2n) ∈ Zn

q ,
• 1com := COMa (1) where 1 = (1, . . . , 1) ∈ Zn

q

– Common input:
• V is the Vandermonde matrix defined in equation 1.

Protocol

1. V samples c←−R Zq and sends it to P.
2. P sets ρc, where ρc = (ρc1, · · · , ρcn) = V −1(1 c c2 · · · cn−1)T and ρc

′ = (0, ρc1, · · · , ρcn), and computes
A = COMa (rev(ρc)), A

′ = COMa (rev(ρc
′)).

3. P sends A,A′ to V.
4. V samples t←−R Zq \ {2−1, · · · , 2−i, · · · , 2−n} and sends t to P.
5. P sets the jth row of V as Vj , i.e. Vj := (2j−1, 22(j−1), · · · , 2i(j−1), · · · , 2n(j−1)) ∀j ∈ {1, · · · , n}, and

computes B := COMa (V (t)), where V (t) := (tn−1)TV =
∑n

j=0 t
n−1Vj .

6. P sends B to V.
7. The verifier samples y ←−R Zq \ {1, 2−1}, d←−R Zq and sends y, d to P.
8. P sets z = (2it− 1)i∈[n], γ = ⟨ρc,dn−1⟩ and sends γ to V.

9. P and V independently computes Z = COMa (yn−1 ◦ z) = Xt · (1com)−1, α = 2ntn (2ny)n−1
2ny−1

− yn−1
y−1

and

β = (ct)n−1
ct−1

.
10. P and V interact to prove the following relation:

(a) runs (Π2)c for (B,A, β; (V (t))T , ρc) ∈ RCLF-rev

(b) runs Π2-R for (A,dn−1, γ; ρc), (A
′,dn−1, dγ; ρc

′) ∈ R
(c) runs Π2-R for (B,yn−1 ◦ z, α;V (t)) ∈ R

Fig. 5: Protocol Πcom-mult for obtaining commitment to linear form for multiplication gates.

f · V · ρc = (f(α1) . . . f(αn)) · ρc for a polynomial f ∈ Zq≤n
[X]. Now, instead of having the verifier

compute a commitment to ρc (which would render it linear), we instead offload the computation of ρc
to the prover and have the verifier check this computation in logarithmic time.

To check if a group element is indeed a commitment to ρc in logarithmic time, our key idea is to
instantiate V as follows

V =


1 · · · 1 · · · 1
2 · · · 2i · · · 2n

22 · · · 22i · · · 22n

...
...

...
2(n−1) · · · 2(n−1)i · · · 2(n−1)n

 (1)

This enables us to reduce the verification of ρc to a series of n linear form checks, where the linear forms
correspond to the rows of V . We then use the structure of V to express a random linear combination
of the rows of V in a way that is easily checkable.

Let us define the relation Rcom-mult as follows:

Rcom-mult = { (A1 ∈ G, A2 ∈ G, V ∈ Zn×n
q , cn−1 ∈ Zn

q ; ρc, ρc
′) :

cn−1 = (1 c . . . cn−1), ρc = V −1cn−1, ρc
′ = 0∥ρc,

A1 = COMa (ρc), A2 = COMa (ρc
′)} (2)

This relation captures obtaining commitment to a linear form consisting of public linear combination
coefficients to obtain evaluation of an n-degree polynomial at a randomly chosen point c by the verifier.
We note that ρc

′ here denotes the vector (linear form) ρc shifted to the right by one, which is used
in the protocols in subsequent sections to open polynomials defined by evaluations at the vector
(1, c1, . . . , cn) as (1, c1, . . . , cn−1) and (c1, . . . , cn) with the same vector description. That is, given a
vector (1, c1, . . . , cn), we can use our relation to capture linear forms to evaluate polynomials defined
by both (1, c1, . . . , cn−1) and (c1, . . . , cn) simultaneously. Figure 5 presents the protocol Πcom-mult for
the relation Rcom-mult.

14

Note that it is easy to add zero checks to the protocol in Figure 5 to get a commitment to ρn∥0 ∈ Zn′

q .
Let n′ > n be the length of the commitment key. The verifier samples a challenge t←−R Zq and checks

that the commitment Pn claimed to be to ρn ∈ Zn
q satisfies (Pn,0

n∥tn
′−n, 0; ρn∥0) ∈ R. Moreover, it

is also easy to get a commitment to the reverse of ρn. For this, the verifier samples a challenge u and
asks the prover to make a claim of the form ⟨ρn,un⟩ = v. It then checks if the commitments Pn, Qn

claimed to be to be to ρn and its reverse satisfy (Pn,u
n, v), (Qn, rev(u

n), v) ∈ RCLF-rev.

Theorem 6. Πcom-mult is a (7, 4, k1, . . . , kℓ)-move protocol for relation Rcom-mult (equation 2). It is
perfectly complete and computationally special sound.

Proof. Completeness. The prover P computes V (t) = tn−1V =
∑n

j=1 t
j−1Vj andB = COMa (V (t)),

where Vj is the jth row of V (equation 1) and t ̸= 1, . . . , 2−i, . . . , 2−(n−1). Then,

V (t) =
(

(2t)n−1
2t−1 , · · · , (2it)n−1

2it−1 , · · · , (2nt)n−1
2nt−1

)
Let us define z = (2t − 1, . . . , 2it − 1, . . . , 2nt − 1), then we have V (t) ◦ z = ((2t)n − 1, . . . , (2it)n −
1, . . . , (2nt)n − 1), which ensures that, for any y ∈ Zq, we have ⟨yn−1 ◦ z, V (t)⟩ = ⟨yn−1, V (t) ◦ z⟩ =
2ntn (2ny)n−1

2ny−1 −
yn−1
y−1 = α. This ensures that (B,yn−1◦z, α;V (t)) ∈ R. Also, ⟨(V (t))T , ρc⟩ = ⟨V T tn−1, V −1cn−1⟩ =

⟨tn−1, cn−1⟩ = (ct)n−1
ct−1 = β, ensures that (B,A, β; (V (t))T , ρc) ∈ RCLF-rev.

Since ⟨ρc′,dn−1⟩ = d⟨ρc,dn−1⟩, we have that (A,dn−1, γ; ρc) ∈ R, and (A′,dn−1, dγ; ρc
′) ∈ R for

γ = ⟨ρc,dn−1⟩ ∈ Zq.

Special Soundness. Our extractor uses the extractor for (Π2)c and Π2-R, invoked in step 10 of
Πcom-mult, as a subroutine. Given (2n, 4, 3, . . . , 3) tree of accepting transcripts for (Π2)c invoked for
relation (B,A, β;V (t), ρc) ∈ RCLF-rev, we run the extractor for (Π2)c to obtain openings of B,A and
the binding of the commitments and soundness of the protocol ensures that the extracted openings are
V (t) and ρc such that ⟨ρc, (V (t))T ⟩ = β. Similarly, given (2, 2n, 4, 3, . . . , 3) tree of accepting transcripts
for Π2-R invoked for relations (A,dn−1, γ; ρc), (A′,dn−1, dγ; ρc

′), and (B,yn−1 ◦ z, α;V (t)) ∈ R,
we run the extractor for (Π2)c to obtain openings of A,A′, B and the binding of the commitments
and soundness of the protocol ensures that the extracted openings are ρc, ρc

′ and V (t) such that
⟨dn−1, ρc⟩ = γ, ⟨dn−1, ρc

′⟩ = dγ and ⟨yn−1 ◦ z, V (t)⟩ = α. Hence, we get that the following relations
holds:

1. ⟨yn−1, V (t) ◦ z⟩ = ⟨yn−1 ◦ z, V (t)⟩ = α = 2ntn (2ny)n−1
2ny−1 −

yn−1
y−1

=⇒ ⟨yn−1, V (t) ◦ z⟩ = 2ntn (2ny)n−1
2ny−1 −

yn−1
y−1 .

2. ⟨V ρc, t
n−1⟩ = (V ρc)

T tn−1 = ρc
T (V T tn−1) = ρc

TV (t)T = ⟨ρc, V (t)T ⟩ = (ct)n−1
ct−1 =⇒ V ρc = cn−1

3. ⟨ρc′,dn−1⟩ = dγ = d⟨ρc,dn−1⟩
=⇒ ⟨ρc′,dn−1⟩ = d⟨ρc,dn−1⟩

The last relation provides us, that given two polynomials ρc and ρc
′ defined by their vector of coeffi-

cients, we have ρc(d) = d·ρc′(d) for some d ∈ Zq sampled completely at random. Hence, given accepting
transcripts with n-different challenges y, d and t each, following relations hold from Schwartz Zippel
Lemma:

1. V (t) ◦ z = ((2t)n − 1, . . . , (2it)n − 1, . . . , (2nt)n − 1), where z = (2it− 1)i∈[n]

=⇒ V (t) =
∑n

j=0 t
n−1Vj , where Vj = (2j−1, 22(j−1), · · · , 2i(j−1), · · · , 2n(j−1))

2. V ρc = cn−1

3. ρc
′ = 0∥ρc = (0, ρc1, . . . , ρcn) when ρc = (ρc1, . . . , ρcn)

which ensures that our extracted vectors are such that ρc is a linear form whose commitment is
provided, and ρc contains the coefficient linear combinations for obtaining evaluation at c. Also, ρc

′ is
a linear form which is ρc shifted by one place to the right.

15

4.2 Hadamard Product Argument

Let a,b ∈ Zn
q , recall that the hadamard product is defined as a ◦ b = (a1b1, . . . , anbn) ∈ Zn

q . Our
goal is to prove knowledge of three vectors that satisfy the hadamard product relation, given succinct
commitment to the vectors.

Concretely, given three vectors a,b, c ∈ Zn
q such that a ◦ b = c, we define pa(X), pb(X), pc(X) ∈

Zn
q [X] such that pa(2

i) = ai, pb(2
i) = bi for all i ∈ [n] and pc(X) := pa(X) · pb(X). We define

h(c) = (pc(2
n+1), . . . , pc(2

2n−1)). The protocol proceeds as follows. The prover computes commitments
A,B,C to the vectors a,b and c′ := c∥h(c) respectively. The verifier then samples a challenge z, and
the prover responds with commitments Pn, P2n to the reverse of ρn and ρ2n, where ρn and ρ2n are
defined as ρn = V −1(1 z z2 · · · zn−1)T , ρ2n = V −1(1 z z2 · · · z2n−2)T . Then the prover opens the
polynomial evaluations of pa(X), pb(X), pc(X) at a random point chosen by the verifier, using the
commitments to the vectors and the linear forms.

The hadamard relation Rhad with suitable modification to incorporate the commitments to the vec-
tors is defined below, and the protocol Πhad presents the protocol for relation Rhad. Note that to
ensure zero-knowledge property of the protocol Πhad, to prove a ◦ b = c, we invoke the protocol for
(A,B,C;a∥d,b∥e, c∥de) ∈ Rhad where d, e←−R Zq.

Rhad = {(A ∈ G, B ∈ G, C ∈ G;a ∈ Zn
q ,b ∈ Zn

q , c ∈ Zn
q) :

A = COMa (a), B = COMa (b), c′ = c∥h(c), C = COMa (c′)}

Parameters

– Common input:
• V is the Vandermonde matrix defined in equation 1.
• A = COMa (a), B = COMa (b), C = COMa (c′), such that c′ = c∥h(a◦b)

– P’s input: a = a∗∥d,b = b∗∥e, c = c∗∥de such that a∗ ◦ b∗ = c∗ and d, e←−R Zq

Protocol

1. P computes the polynomials pa, pb ∈ Zn
q [X] as pa(2i) := ai, pb(2i) := bi ∀i ∈ [n]. It defines pc(X) :=

pa(X) · pb(X).
2. P samples u←−R Zn

q ,u
′ ←−R Z2n−1

q and defines pu ∈ Zn
q [X], pu′Z2n

q [X] as pu(2i) := ui ∀i ∈ [n], pu′(2i) :=
u′
i ∀i ∈ [2n]. P computes U = COMa (u), U ′ = COMa (u′) and sends U,U ′ to V.

3. V samples z ←−R Zq and sends z to P.
4. Define ρn = V −1(1 z z2 · · · zn)T and ρ2n = V −1(1 z z2 · · · z2n−2)T . P and V run Πcom-mult to obtain

commitments Pn, P2n to the reverse of ρn, ρ2n.
5. P sets w1, w2 as w1 = pa(z), and w2 = pb(z). P also sets v1, v2 as v1 = pu(z), v2 = pu′(z).
6. P sends w1, w2, v1, v2 to V.
7. V samples r ←−R Zq and sends r to P.

8. P and V independently computes Y = UArBr2 , Y ′ = U ′Cr, y = u + ra + r2b, y′ = u′ + rc, q =
v1 + rw1 + r2w2 and q′ = v2 + rw1w2.

9. P and V runs (Π2)c for
(a) (Y, Pn, q; y, ρn) ∈ RCLF-rev.
(b) (Y ′, P2n, q

′; y′, ρ2n) ∈ RCLF-rev.

Fig. 6: Protocol Πhad for Rhad

Theorem 7. Πhad is a protocol for Rhad. It is perfectly complete, special honest-verifier zero-knowledge
and computationally special sound.

The proof is in Appendix C.1.

4.3 Permutation Argument

Our starting point is the Bayer-Groth protocol [BG12] for the permutation argument. Let PERMn =
{f : f : [n] −→ [n] such that f is a permutation} and σ ∈ PERMn. For two vectors r = (r1, . . . , rn) ∈ Zn

q

16

and s = (s1, . . . , sn) ∈ Zn
q , we aim to prove that σ(r) = s for some publicly known σ. To prove

the same, we leverage the technique introduced by Bayer and Groth of proving
∏n

i=1(ri + iβ + γ) =∏n
i=1(si + σ(i)β + γ) for verifier’s choice of β, γ ∈ Zq sampled uniformly at random.

The proof is instantiated by having the verifier choose two challenges β, γ ∈ Zq and the prover
constructing two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) defined as ai = ri + iβ + γ and
bi = si + σ(i)β + γ for all i = 1, . . . , n, and providing a proof that

∏n
i=1 ai =

∏n
i=1 bi holds. The proof

for
∏n

i=1 ai =
∏n

i=1 bi proceeds by constructing two vectors c′,d′ ∈ Zn+1
q such that c′0 = 1, d′0 = 1

and c′j :=
∏j

i=1(ri + iβ + γ), d′j :=
∏j

i=1(si + σ(i)β + γ), for all j ∈ [n]. Now we consider two circuits

consisting of n multiplication gates, first circuit with vector of left inputs a = (a1, . . . , an), vector of
right inputs e = (e1, . . . , en) = (1, c1, . . . , cn−1) and vector of outputs c = (c1, . . . , cn), and second
circuit with left input b = (b1, . . . , bn), vector of right inputs f = (f1, . . . , fn) = (1, d1, . . . , dn−1) and
vector of outputs d = (d1, . . . , dn). Our idea now is to check the hadamard product relations a ◦ e = c
and b ◦ f = d by leveraging the shifted structure of the vectors in the hadamard products; and using
protocol Πcom-mult yielding a succinct verifier permutation argument.

We consider the following relation Rperm for the permutation argument.

Rperm = { (R,S, P ; r, s, σ) : R = COMa (r), S = COMa (s), P = COMa (σ(I)),

I = (1, . . . , n), s = σ(r)}

We present the protocolΠperm for the same in Fig 7. We define ρn, ρ2n, δn and δ2n as ρn = V −1(1 z z2 . . . zn−1),
ρ2n = V −1(1 z z2 . . . z2n−1), δn = V −1(1 w w2 . . . wn−1) and δ2n = V −1(1 w w2 . . . w2n−1) where V is a
Vandermonde matrix defined by the public evaluation points. We recall that the linear forms ρn, ρ2n are
for computing evaluation at a random point z, and the linear forms δn, δ2n are for computing evaluation
at a random point w. We note that we can batch the invocations of (Π2)c for RCLF-rev in each of the
steps (a),(b) and (c) in Step 11 of Πperm using the techniques of Attema et al. [AC20].

Theorem 8. Πperm is a protocol for Rperm. It is perfectly complete, special honest-verifier zero-knowledge
and computationally special sound.

We defer the proof to Appendix C.2.

4.4 Putting Things Together – zkSNARK for Circuit SAT

Given an upper bound on the circuit size n, the universal updatable SRS is generated by running
COM .Setup to commit to 2n+2-length vectors to obtain the commitment key (ga, H ȧ). Here ga is the
proving key andH ȧ is the verification key. Since the SRS is universal, we need a circuit dependent setup
phase so the verifier will read the circuit only once. We omit the description of algorithms for updating
and verifying the SRS since this corresponds to updating and verifying the commitment key, and are the
same as in Daza et al [DRZ20]. We note that the circuit-specific preprocessing material can be deter-
ministically computed from the universal SRS and the circuit description, without any secrets.

We describe the protocol as an interactive public coin argument. The final zkSNARK construction is
in the Random Oracle model using the Fiat-Shamir heuristic.

Preprocessing. We use the preprocessing phase used by Daza et al. [DRZ20] to obtain a commitment
to the linear gates. They establish the existence of a circuit preprocessing methodology that effectively
imposes constraints on the fan-in and fan-out of each gate in the circuit to a maximum value of M ,
which only incurs a linear expansion in the size of the circuit.

Let χ1, . . . , χν be the public inputs of the circuit. Let m be the number of multiplication gates in the
circuit. We then require a commitment key of size n = 2m+2. Let xL

i , x
R
i , x

O
i denote the left input, right

input and output of the ith multiplication gate. Let xL = (xL
i)i∈[m],x

R = (xR
i)i∈[m],x

O = (xO
i)i∈[m].

Then xL ◦ xR = xO. Additionally, there exist vectors wL
i ,w

R
i ∈ Zm

q with at most M non-zero entries

such that ⟨wL
i ,x

O⟩+xL
i = χi,∀i ∈ [ν], ⟨wL

i ,x
O⟩ = xL

i ,∀i ∈ {ν+1, . . . ,m} and ⟨wR
i ,x

O⟩ = xR
i ∀i ∈ [m].

Let WL,WR ∈ Zm×m
q be matrices with their ith rows equal to wL

i and wR
i respectively. Then WL

and WR have ≤M entries in each row and each column. The following applies to W k for k ∈ {L,R}.

17

Parameters

– Parameters from preprocessing:
• P = COMa (σ(I)), P ′ = COMa (I) for I = (1, . . . , n)
• left = COMa (rev(1∥0∥0)) and right = COMa (rev(0∥1∥0)) for linear forms (1∥0∥0) and (0∥1∥0),

where 0 = (0, . . . , 0) ∈ Zn
q

• T = COMa (1), 1 = (1, . . . , 1) ∈ Zn
q

– Common Input:
• R = COMa (r), S = COMa (s)

– P’s input : (r, s, σ, ga)

Protocol

1. V samples β, γ ←−R Zq and sends β, γ to P.
2. P computes x :=

∏n
i=1(ri + iβ + γ) and sends x to V.

3. P computes the vectors a,b ∈ Zn
q such that ai = ri + iβ + γ and bi = si + σ(i)β + γ for all i ∈ [n]. P

additionally computes c′,d′ ∈ Zn+1
q such that c′1 = 1, d′1 = 1 and c′j :=

∏j−1
i=1 ai, d

′
j :=

∏j−1
i=1 bi, for all

j ∈ [n + 1] \ {1}, and defines c,d, e, f ∈ Zn
q such that ci = c′i+1, di = d′i+1, ei = c′i, fi = d′i for all i ∈ [n],

i.e. cj :=
∏j

i=1 ai, dj :=
∏j

i=1 bi, for all j ∈ [n], and e1 = 1, f1 = 1 and ej :=
∏j−1

i=1 ai, dj :=
∏j−1

i=1 bi, for all
j ∈ [n].

4. P computes the polynomials pa, pe and pc as pa(2i) := ai, pe(2i) := ei and pc := pa · pe, and similarly
computes pb, pf and pd as pb(2i) := bi, pf (2i) := fi and pd := pb · pf .

5. P and V independently computes A = R(P ′)βT γ and B = SP βT γ .
6. P computes c′′ = c′∥(pc(2n+1), . . . , pc(22n)) and d′′ = d′∥(pd(2n+1), . . . , pd(22n)), C = COMa (c′′) and

D = COMa (d′′) and sends C,D to V.
7. V samples z, w ←−R Zq and sends z, w to P.
8. P computes ρn = V −1(1 z z2 . . . zn−1), ρ2n = V −1(1 z z2 . . . z2n−2), δn = V −1(1 w w2 . . . wn−1) and

δ2n = V −1(1 w w2 . . . w2n−2).
9. P and V runs Πcom-mult to obtain commitments Pn, P2n, Qn and Q2n to the reverse of ρn,ρ

′
2n,δn and δ′2n

where ρ′2n = 0∥ρ2n and δ′2n = 0∥δ2n.
10. P sets z1, z2, w1, and w2 as z1 = pa(z), z2 = pe(z), w1 = pb(w), and w2 = pf (w).
11. P and V run (Π2)c to prove the following:

(a) (C, left, 1; c′′, (1∥0∥0)), (C, right, x; c′′, (0∥1∥0)), (D, left, 1;d′′, (1∥0∥0)),
(D, right, x;d′′, (0∥1∥0)) ∈ RCLF-rev

(b) (A,Pn, z1;a, ρn),(C,Pn, z2; c′′, ρn), (B,Qn, w1;b, δn),
(D,Qn, w2;d′′, δn) ∈ RCLF-rev

(c) (C,P2n, z1z2; c′′, ρ′2n), (D,Q2n, w1w2;d′′, δ′2n) ∈ RCLF-rev.

Fig. 7: Protocol Πperm for Permutation Argument

W k can be written as the sum of M permutation matrices, i.e. W k =
∑M

i=1 W
k
i , where each W k

i is a
permutation matrix.

In addition to the preprocessing of [DRZ20], additional preprocessing material is generated that is
required by our sub-protocols, Πcom-mult Πhad, and Πperm. The verifier obtains commitments to W k

i , I
and σ(I), where I = (1, . . . , n), W k

i and σk
i : [n] → [n] are as defined above. The verifier also obtains

commitments to 1, 2[n], (0∥1∥0), (0∥0∥1) where 0 = (0, . . . , 0) ∈ Zn
q , 1 = (1, . . . , 1) ∈ Zn

q , 2[n] =
(2, . . . , 2n) ∈ Zn

q .

Protocol Overview. Post circuit preprocessing, our circuit is now fully defined by w̃k
i , σ

k
i , where w̃k

i

is the vector containing the non-zero entry (if there is one) in each column of W k
i and σk

i : [n]→ [n] is
the permutation that takes as input a column number j and outputs the row to which the jth entry of
wi belongs. Our goal is to get a commitment to a random linear combination of the rows of W k, i.e.
a commitment to W k(c) =

∑M
i=1 w̃

k
i ◦ σk

i (c
m). To do this, we first demand commitments to σk

i (c
m)

from the prover, for a random challenge c chosen by the verifier. We can check that these commitments
are honestly generated using Πperm. We additionally ask the prover to provide us with commitments to

w̃k
i ◦ σk

i (c
m) and a proof h(w̃k

i ◦ σi(cm)) that attests to the correct computation of a Hadamard product.

To check this Hadamard product, we deploy our Πhad protocol. Since w̃k
i , σ

k
i are public, Πhad can be

invoked without requiring zero knowledge.

18

The above protocol allows us to get commitments to WL(c) and WR(c), but to show that the con-
straints of the circuit are satisfied, we need to prove that ⟨WL(c) + uWR(c),xO⟩ = ⟨cm,xL⟩ −∑ν

i=1 c
i−1χi + u⟨cm,xR⟩ = ⟨cm,xL + uxR⟩ −

∑ν
i=1 c

i−1χi for u ←−R Zq. We cannot test for equality
directly since that would require the prover to send out linear combinations of xL,xR and xO, violating
zero knowledge. Set K =

∑ν
i=1 c

i−1χi, L1 = WL(c) + uWR(c), L2 = cm,y1 = xO and y2 = xL + uxR.

Let L̃2 be the m−1 vector comprising of the first m−1 elements of L2. Let (L2)m be the last element of
L2. The above constraint can then be written as ⟨L1,y1⟩ = ⟨L2,y2⟩ −K. To prove this in zero knowl-
edge, we have the prover sample r1 ← Zm

q , r̃2 ← Zm−1
q and set r2 = r̃2||(⟨L1, r1⟩ − ⟨L̃2, r̃2⟩)(L2)

−1
m .

This ensures that ⟨L1, r1⟩ = ⟨L2, r2⟩. The protocol now proceeds as follows: the verifier samples a
challenge z and the prover proves that ⟨L1, zy1 + r1⟩ = ⟨L2, zy2 + r2⟩ − zK. We can directly test for
equality here since the prover now needs to reveal ⟨L1, zy1 + r1⟩, which is a random value that reveals
nothing about the input.

This allows us to conclude that the commitments to xL,xR and xO satisfy the linear combination
constraints imposed by the circuit. Testing for multiplication, i.e. checking if xL ◦ xR = xO can be
done by invoking our protocol Πhad by adding randomness to the input vectors in order to preserve
zero-knowledge.

Since we reduce circuit satisfiability to opening a series of committed linear forms on committed vectors,
we can optimize by batching the opening of several linear forms together. Consider two instances
(P1, Q1, y1) and (P2, Q2, y2) claimed by the prover to belong to RCLF-rev. To prove this, we modify
the protocol in Figure 3 as follows: let x1,x2 be the vectors to which P1 and P2 are commitments. Let
B1, B2 be the linear forms to which Q1 and Q2 are commitments. We first demand that the prover
send us commitments to pL,1, pR,1, pL,2 and pR,2 as it would in the original protocol. We then ask
the prover to make claims about x1(c),B1(c),pL,1(c),pR,1(c) and x2(c),B2(c),pL,2(c),pR,2(c) with
respect to the same challenge c. This allows us to combine the prover’s claims to open cn-1 on a single
vector given by x1+tB1+t2pL,1+t3pR,1+t4x2+t5B2+t6pL,2+t7pR,2 for a random challenge t. Thus,
we can open O(M) linear forms while incurring the communication overhead of opening a single linear
form. We present the complete protocol Πcsat in Fig. 8, and prove security in Appendix C.3.

Theorem 9. Πcsat is a Public Coin, Honest Verifier Zero Knowledge Argument of Knowledge for
CSAT with O(logm) round complexity, Oλ(m) prover complexity, and Oλ(logm) communication and
verification complexity, where m is the number of multiplication gates in the preprocessed circuit.

5 CSP for Committed Homomorphism

A bilinear group arithmetic circuit is a circuit in which the wire values are from G1,G2,GT or Zq,
and the gates are group operations, Zq-scalar multiplication, or bilinear pairings. Bilinear circuits
are of interest since they directly capture relations arising in identity-based and attribute-based en-
cryption [SW05, GPSW06], structure preserving signatures [AFG+10] etc. Handling bilinear circuits
directly in a ZK system avoids expensive NP reductions or arithmetizations to represent group oper-
ations as an arithmetic circuit. The work of Attema et al. [ACR21], building on the work of Lai et al.
[LMR19], gives a succinct argument system for bilinear group arithmetic circuits, by generalizing the
compressed sigma protocol framework. A key building block is a protocol for opening a homomorphism
on a committed vector. However, as in the case of arithmetic circuits, the verifier remains linear.

We construct a designated-verifier succinct argument for opening a committed homomorphism on a
committed vector, where the verifier is logarithmic.

5.1 Commitment Scheme

In this section, we use additive notation for groups in line with prior works for bilinear circuits. We begin
by generalizing the homomorphic commitment scheme of [LMR19], to work with logarithmic amount
of randomness. We note that ȧ denotes ȧ = (a1, . . . , aℓ) and for g ∈ G and x = (x1, . . . , xn) ∈ Zn

q , gx
denotes gx = (gx1, . . . , gxn) for g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Zn

q , inner product with
scalar ⟨g,x⟩ denotes ⟨g,x⟩ = g1x1 + . . . gnxn ; for g = (g1, . . . , gn) ∈ Gn

1 and h = (h1, . . . , hn) ∈ Gn
2 ,

inner product e(g,h) denotes e(g,h) = e(g1, h1)+e(g2, h2)+ . . .+e(gn, hn). Recall the key distribution

19

Universal updatable SRS: (ga, H ȧ)
Preprocessing Compute commitments to the following circuit-dependent vectors:

– Sk
i = COMa (w̃k

i ∥0) ∀i ∈ [M] k ∈ {L,R}
– P k

i = COMa (σk
i ∥0) ∀i ∈ [M] k ∈ {L,R}

– ones = COMa (1m∥0), P0 = COMa (m∥0), where m = (1, 2, · · · ,m).

Input

– Public input χ1, . . . , χn

– P’s input is the satisfying assignment xL,xR,xO ∈ Zm
q . P samples d, e ←−R Zq and defines x̃L = xL∥d,

x̃R = xR∥e, x̃O = xO∥de∥h(x̃L◦x̃R) ∈ Z2m+1
q

– V ’s inputs are the commitments Xk = COMa (x̃k; rk) for k ∈ {L,R}, XO = COMa (x̃O; rO) with
rL, rR, rO ←−R Zq

Protocol

1. V sends c←−R Zq to P.
2. P computes for k ∈ {L,R}:

(a) Σ0 = COMa (cm∥0)
(b) Σk

i = COMa (σk
i (cm)∥0) ∀i ∈ [M]

(c) W k
i = COMa (wk

i ◦ σk
i (cm)∥h(wk

i ◦σ
k
i (cm))) ∀i ∈ [M]

P sends all the computed commitments to V.
3. V sends u←−R Zq to P.
4. P samples r, r̃←−R Zm

q , s, s̃←−R Zq such that ⟨WL(c) + uWR(c), r⟩ = ⟨cm, r̃⟩ and sends R = COMa (r; s)

and R̃ = COMa (r̃; s̃) to V.
5. V sends z ←−R Zq to P.
6. P sets L1 = WL(c) + uWR(c), L2 = cm,K =

∑ν
i=1 c

i−1χi and sends v1 = ⟨L1, zx
O + r⟩ = ⟨L2, zx

L +
zuxR + r̃⟩ − zK and Lrev

1 = COMa (rev(L1)) to V.
7. V sends t ̸= c−1, t′, th, tperm ←−R Zq to P.
8. P and V invoke Πcom-mult to obtain commitments to the reverse of ρm+1, ρ2m+2 with respect to the challenge

th and to ρm, ρ2m with respect to the challenge tperm.
9. P sends w = ⟨L1, t

′m⟩ to V, where t′m = (1 t′ t′2 . . . t′m−1∥0).
10. V sets L′

1 = (
∏M

i=1 W
L
i)(

∏M
i=1 W

R
i)u. Eventually, we need a commitment to the reverse of the first m

elements of the vector underlying L′
1. This is accomplished in steps 11(d) and 11(e).

11. Set V = (XO)zR, Ṽ = (XL)z(XR)zuR̃. V checks if

(a) (Σ0, t
2m+2, (ct)m−1

ct−1
) ∈ RCLF-rev

(b) (Σ0, Σ
k
i , S

k
i) ∈ Rperm ∀i ∈ [M] ∀k ∈ {L,R}

(c) (Sk
i , Σ

k
i ,W

k
i) ∈ Rhad∀i ∈ [M] ∀k ∈ {L,R}

(d) (L′
1, t

′m∥0, w) ∈ RCLF-rev

(e) (Lrev
1 , rev(t′2m+2), w) ∈ RCLF-rev

(f) (V,Lrev
1 , v1) ∈ R

(g) (Ṽ , cm, v1 + zK) ∈ R
(h) (XL, XR, XO) ∈ Rhad

The checks in steps (c) and (h) use the commitments to ρm+1, ρ2m+2 obtained in Step 8, while the checks
in step (b) use the commitments to ρm, ρ2m. We don’t need commitments to t2m+2, t′m, cm in steps (a),
(e) and (g) because the verifier can compute a random linear combination of these vectors without help
from the prover. Moreover, all the claims about the openings of linear forms made by the prover in Steps
8 and 11 can be aggregated using our protocol for batched linear form openings.

Fig. 8: Protocol Πcsat for Circuit Satisfiability

20

MLn, for n = 2ℓ,

MLn = {a : ȧ = (ȧ1, . . . , ȧℓ)←−R Zℓ
q,a = (

ℓ∏
i=1

ȧxi
i)xi∈{0,1}}

We now consider a similar distribution over group elements,

MLn(G) =ML2ℓ(G) := {ga : g ←−R G, ȧ = (ȧ1, . . . , ȧℓ)←−R Zℓ
q,a = (

ℓ∏
i=1

ȧxi
i)xi∈{0,1}}

We define a new commitment scheme which differs from the one proposed in [LMR19] (and subsequently
used in [ACR21]) only in that we sample the commitment key fromMLn(G).

Definition 2 (Commitment to (Zq,G1,G2)-vectors). Let (q,G1,G2,GT , e,G,H) be a bilinear

group and n0, n1, n2 ≥ 0. We define a commitment scheme COMG for vectors in Zn0
q × Gn1

1 × Gn2
2 ,

given by the following setup and commitment phase:

– Setup : (h,g)←−RML2
n0+1(GT),H←−RML2

n1
(G2),G←−RML2

n2
(G1)

Here, (h,g,H,G) = (ah, bg, cH,dG) for some structured Zq vectors a, b, c,d, where h, g is sampled
to be h = e(h1, H), g = e(g1, H) for some h1, g1 ←−R G1.

2 Then, (ck0 = ((ah1,ah), (bg1, bg)), ck1 =
cH, ck2 = dG) are the commitment keys and (ċk0 = (aH, bH), ċk1 = cG, ċk2 = dH) is the
verification key.

– Commit : COMG : Zn0
q ×Gn1

1 ×Gn2
2 × Zq → G2

T ,

– (x,y, z; γ)→ hγ + ⟨g,x⟩+ e(y,H) + e(G, z),

– where hγ + ⟨g,x⟩+ e(y,H) + e(G, z) =

(
h1γ + ⟨g1,x⟩+ e(y,H1) + e(G1, z)
h2γ + ⟨g2,x⟩+ e(y,H2) + e(G2, z)

)
The verification key is used to check that the commitment key has been updated by the prover, by
having the prover send the first element of the commitment key ck to the verifier, and the verifier
using the pairing check to ensure that the split-and-fold technique has been used correctly to update
the commitment key and check that the updated commitment (sent by the prover) with respect to the
updated commitment key is consistent.

We define an assumption called eGDLR assumption along the lines of GDLR assumption in [LMR19],
show that it is implied by SXDH (Lemma 6) and prove binding of COMG under eGDLR.

Lemma 2. COMG is computationally hiding under DDH in GT , and computationally binding under
SXDH.

The proof is presented in Lemma 4 and 5 of Appendix A.2.

5.2 Succinct Verifier Σ-Protocol for Opening Committed Homomorphism

Notation. Let (q,G1,G2,GT , e,G,H) be a bilinear group. Let ga ∈ G1 be the commitment key used to
commit to a vector of Zq elements in COMa (x) = ⟨a,x⟩g ∈ G1, where x ∈ Zn

q ,a ∈ Zn
q . We consider

the group homomorphism f : Zn
q −→ G2, and define HOM(Zn

q ,G2) = {f : f is a homomorphism from

Zn
q to G2}. We use COMG given in definition 2 and use a modified version to commit to element of

only one source group of bilinear pairing as follows : COMG : Gn
2 −→ GT , where COMG(x) = e(G,x),

for n = 2ℓ, h ←−R GT , ȧ = (ȧ1, . . . , ȧℓ) ←−R Zℓ
q,a =

(∏ℓ
i=1 ȧ

bi
i

)
bi∈{0,1}

,G = aG, and we use the

notation to COMG
a to explicitly specify the commitment key for ease of exposition, and define it as

COMG
a (x) = COMG(x) = e(G,x), where G = aG.

2 We note that the distribution remains the same even when ag1 is sampled from MLn0(G1) and g is then
set to g = e(g1, H), making the final commitment key for Zq-vector to be g = ag, as opposed to when g is
directly sampled from MLn0(GT).

21

Opening group homomorphism. We aim to prove that a committed vector x ∈ Zn
q is opening of an

element y ∈ G with respect to group homomorphism defined by f : Zn
q −→ G2, i.e. the opening of

a given commitment COMa (x), x ∈ Zn
q is such that f(x) = y for some y ∈ G2. We note that the

homomorphism f : Zn
q −→ G can be defined as f ∈ Gn

2 , and we extend the techniques discussed in

Section 3. We use the commitment scheme from Definition 2 COMG : Zq × Gn1
1 × Gn2

2 −→ G2
T to

succinctly commit to f = (f1, . . . , fn) ∈ Gn
2 and rev(f) = (fn, . . . , f1) ∈ Gn

2 using the structured
commitment key ga ∈ G1 used to commit to the vector.

We note that while techniques of Section 3.2 for committed linear forms can extend to a committed
homomorphism, there are some differences that we need to handle. First, the representation of a group
homomorphism is given by group elements as opposed to field elements in linear forms, and this requires
a commitment to group elements. Since the commitment scheme relies on SXDH, we cannot encode
the commitment randomness in the second group anymore. This is however crucial to verify that the
commitment key is updated correctly in each step of split-and-fold. This makes our protocol designated
verifier since the encoding of the randomness is available only to the verifier and binding still holds
under SXDH. We define the relation R for opening a group homomorphism f below, and then present
the protocol Π0-hom for relation R.

R = {(P ∈ G1, f ∈ HOM(Zn
q ,G2), y ∈ G2;x ∈ Zn

q , γ ∈ Zq) : P = COMa (x; γ) ∧ f(x) = y}}

Parameters

– Common parameters : (P ∈ G1, f ∈ HOM(Zn
q ,G2), y ∈ G2), P = COMa (x; γ), y = f(x)

– P’s input : (x ∈ Zn
q , γ ∈ Zq)

Protocol

1. P samples r←−R G, ρ←−R Zq, computes A = COMa (r; ρ), t = f(r) and sends A, t to V.
2. V samples c←−R Zq and sends c to P
3. P computes z = cx + r and ϕ = cγ + ρ and sends z, ϕ to V
4. V checks if COMa (z;ϕ) = A + cP and f(z) = cy + t, outputs 1 if it holds, outputs 0 otherwise.

Fig. 9: Protocol Π0-hom for relation R

Theorem 10. Π0-hom (Fig 9) is a 3-move protocol for relation R. It is perfectly complete, special
honest-verifier zero-knowledge and computationally special sound.

Note that this theorem follows from the fact that this protocol is identical to the one introduced in
[ACR21], and the properties of the protocol relies on the hiding and binding of the commitment scheme
which are satisfied by our commitment scheme 2 used here.

Now, we note that the last message sent in step 5 of Π0-hom (Fig 9) along with the check computed by
the verifier can be captured by the relations defined below, and we provide a Proof of Knowledge of
the last message instead with the protocols for the following relation.

RCH = {(P ∈ G1, Q ∈ GT , y ∈ G2, g ∈ G1; f,x ∈ Zn
q) :

P = COMa (x) ∧ Q = COMG
a (f) ∧ f(x) = y}

Note that in the above, P = ⟨a,x⟩g ∧ Q = e(ga, f)

We provide the protocol Π1-hom for handling RCH in Fig 10. Note that the protocol starts with having
value of the common parameter intended as the first element of the commitment key as equal to the
generator of the group, i.e. g = G, and it is later updated accordingly to encompass the commitment
key updates in the protocol. We provide the proof of Theorem 11 in Appendix D.

Theorem 11. Π1-hom is a (k1, . . . , kℓ)-move protocol for relation RCH, where ki = 3, ∀i ∈ [ℓ], ℓ =
log n. It is perfectly complete and computationally special sound. It incurs total communication of
3 log n G1 elements, 2 log n+ 2 G2 elements, 2 log n GT elements, and log n+ 2 field elements.

22

Parameters

– Common parameters : (P ∈ G1, Q ∈ GT , y ∈ G2, g ∈ G1),
• P = COMa (x), Q = COMG

a (rev(f)), y = f(x)

• n = 2ℓ, ȧ = (ȧ1, . . . , ȧℓ),a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

• (q,G1,G2,GT , e, G,H) is a bilinear map.
– P’s input : (ag ∈ Gn

1 ,x ∈ Zn
q , f ∈ HOM(Zn

q ,G2))
– V’s input : ȧH ∈ Gℓ

2

Protocol

1. Let us define k as k = rev(f). P parses x = (xL∥xR), f = (fL∥fR) and ag = (aLg∥(ȧℓaL)g) and computes
and sends the following to V:
(a) A1 = COMaR (xL), A2 = COMaL (xR)
(b) B1 = COMG

aR
(kL), B2 = COMG

aL
(kR)

(c) y1 = fR(xL), y2 = fL(xR)
2. V samples c←−R Zq and sends c to P
3. P sets x′ = xL + cxR, f

′ = cfL ◦ fR, g′ = (c + ȧℓ)g and implicitly sets ȧ′ = (ȧ1, . . . , ȧℓ−1) and a = aL.
Note that this also implicity sets k′ = kL ◦ ckR.

4. P sends g′ to V and V checks the following, proceeds to step 5 if it holds, and aborts otherwise

e

(
g′

cg
,H

)
= e (g, ȧℓH)

5. P and V both compute the following :

P ′ = A1 + cP + c2A2, Q′ = B1 + cQ + c2B2, y′ = y1 + cy + c2y2

6. If x′ /∈ Z2
q : P runs PoK Π1 to prove knowledge of x′, f ′ such that COMa′ (x′) = P ′, COMG

a′(k′) = Q′

and f ′(x′) = y′.
Hence, P and V runs the protocol Π1 with updated common parameters (P ′, Q′, y′, g′), prover’s input
(a′(g′),x′, f ′), and verifier’s input (ȧ′H) for (P ′, Q′, y′;x′) ∈ RCH

7. If x′ ∈ Z2
q :

(a) P sends x′, f ′ to V
(b) V computes k′ = rev(f ′) and checks the following :

COMa′ (x′) = P ′ ∧ COMG
a′(k′) = Q′ ∧ f ′(x′) = y′

and outputs 1 if it holds, and outputs 0 otherwise.

Fig. 10: Protocol Π1-hom for relation RCH

We note that since we run the protocol Π1-hom as an alternative for steps 4 and 5 of Π0-hom to avoid
having to send a linear-sized vector, Π1-hom does not require zero-knowledge property as the final
message of the protocol Π0-hom is intended to be sent in clear. The compressed sigma protocol for
proving knowledge of homomorphism on a committed vector is given by the compressed protocol
Πc-hom, which is defined by Πc-hom = Π1-hom ◦Π0-hom. The compressed protocol for relation R is given
by Πc-hom, whose communication and computational complexities are dominated by that of Π1-hom,
and hence we obtain a designated verifier succinct argument of knowledge for the relation R.

Proof of Knowledge of k-out-of-n discrete logarithms. The fundamental contribution of [ACF21] of
proving Proof of Knowledge of k-out-of-n discrete logarithms (Protocol 3 of [ACF21]) relies on its ability
to provide a compressed sigma protocol for opening a general homomorphism as a building block in a
black box manner, and our techniques show how to do this with a succinct verifier. We expect that by
relying on their techniques to amortize the protocol for opening multiple homomorphisms (which is done
by using a challenge provided by the verifier to perform the check on a random linear combination of the
homomorphisms) which is then deployed as a black box for the protocol to obtain proof of knowledge of
k-out-of-n discrete logarithms, we can obtain a succinct verifier version of the proof in [ACF21].

23

5.3 Compressed Σ-Protocol for Opening General Homomorphisms

We now extend our protocol to opening homomorphisms on committed vectors with coefficients in
multiple groups. We believe that using our protocols in applications of CSP to Threshold Signature
Schemes and circuit zero-knowledge protocols with bilinear gates [ACR21] will result in analogs with
succinct verifier after an appropriate preprocessing phase.

We first describe the Σ-Protocol of [ACR21], while using our updated commitment scheme with loga-
rithmic verification, for proving knowledge of a witness x which opens a public homomorphism f to a
public element y and opens the known commitment COMG to a public element P , i.e. y = f(x) and
P = COMG(x, γ). Here, we assume x ∈ GS = Zn0

q ×Gn1
1 ×Gnk

k , and we have access to a homomorphic

commitment scheme COMG : GS×Zr
q 7→ GC , and a public homomorphism f : GS 7→ Zq×G1×· · ·×Gk.

The relation is given by R = {(P, f, y;x, γ) : P = COMG(x, γ), y = f(x)}, and the POK Π0-gen-hom
for R is in Fig 11).

Parameters

– Common parameters : P = COMG(x, γ), y = f(x)
– P’s input : (x, γ)

Protocol

1. P samples r←−R GS , ρ←−R Zq

2. P computes A = COMG(r, ρ), t = f(r) and sends it to V
3. V samples c←−R Zq and sends it to P
4. P computes z = cx + r and ϕ = cγ + ρ and sends it to V
5. V checks if COMG(z, ϕ) = A + cP and f(z) = cy + t, outputs 1 if it holds, outputs 0 otherwise.

Fig. 11: POK Π0-gen-hom for R [ACR21]

In protocol Π0-gen-hom, we note that step 4 renders the communication complexity linear, and that
along with step 5 makes the verifier’s complexity linear. We now reduce the complexities by running a
compressing protocol Π1-gen-hom where we compress while relying on the compatibility of compression
provided by the compactness of the commitment scheme for committing to the elements of the groups
Zq,G1, . . . ,Gk. In Π1-gen-hom, compress the part of co-domain of COMG which is compact, we parse

COMG as COM1 and COM2, where COM1 contains the compressible (compact) co-domain of the
commitment, and COM2 contains the incompressible (non-compact) co-domain of the commitment.
Hence, COM1 is a compact commitment scheme and COM2 is not (takes n-dimensional element to
n+ 1-dimensional element). Hence, for some r1 and r2 such that r1 + r2 = r, we have

COMG : Zn0
q ×Gn1

1 ×Gnk

k × Zr
q 7→ GC

COM1 : Zn0
q ×Gn1

1 ×Gnk−1

k−1 × Zr1
q 7→ GC1

COM2 : Gnk

k × Zr2
q 7→ GC2

where size of GC1 is independent of the input dimensions in the domain, and size of GC1 is dependent
on the input dimensions in the domain (increases by one with respect to the input dimensions in the
domain).

We now implement the aforementioned idea by parsing the the witness x as x = (xS ,xT) where
xS = (x0, . . . ,xk−1) contains the compressible co-domain of the commitment, and xT = xk contains
the incompressible co-domain of the commitment. Since we want the verifier complexity to be sublinear,
we also provide commitments to the homomorphism by treating the homomorphism description as a
vector containing elements of Zq,G1, . . . ,Gk. While we commit to the homomorphism f , we parse f
as f = (fS , fT), where fS contains the compressible co-domain of the commitment, and fT contains
the incompressible co-domain of the commitment.

Notation for Π1-gen-hom. We denote the commitment key for COM1 which commits to elements of
Zq,G1,G2,Gk by ck0, . . . , ckk−1. For example, for (x,y,xS ; γ) ∈ Zn0

q ×G
n1
1 ×G

n2
2 , we haveCOM1(x,y,xS) =

24

⟨g,x⟩+ e(y,H) + e(G,xS) ∈ G2
T , we set ck0 = g, ck1 = H, ck2 = G, and (ċk0, ċk1, ċk2) is the verifica-

tion key. For example, in Π1-hom described in section 5.2, ck denotes the commitment key held by the
prover ck = ga and ċk denotes the randomness encoded in the other group held by the verifier ċk = H ȧ

where n = 2ℓ, ȧ = (ȧ1, . . . , ȧℓ), a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

.

R′
CH = {(P,Q, y;x, f) : x = (xS ,xT), y = (y1, y2, y3, y4), f = (fS , fT),

y1 = fS(xS), y2 = fS(xT), y3 = fT (xS), y4 = fT (xT),

Q = COM1(rev(fS)), P = (P1, P2), P1 = COM1(xS), P2 = COM2(xT)}

We present the PoK Π1-gen-hom for R′
CH in Fig 12. We provide the proof of Theorem 12 in Ap-

pendix D.

Theorem 12. Π1-hom is a (k1, . . . , kℓ)-move protocol for relation RCH, where ki = 3, ∀i ∈ [ℓ], ℓ =
logm, m = maxk−1

i=0 ni. It is perfectly complete and computationally special sound. It incurs total
communication of O(logm) source (compressible) group elements (including Zq), O(logm+nk) target
group elements.

Similar to earlier protocols, we aim to run the protocol Π1-gen-hom as an alternative for steps 4 and 5
of Π0-gen-hom to avoid having to send a linear-sized vector, Π1-gen-hom does not require zero-knowledge
property as the final message of the protocol Π0-gen-hom is intended to be sent in clear. The com-
pressed sigma protocol for proving knowledge of homomorphism on a committed vector is given by the
compressed protocol Πc-gen-hom, which is defined by :

Πc-gen-hom = Π1-gen-hom ◦Π0-gen-hom

Hence, the compressed protocol for relation R is given by Πc-gen-hom, whose communication and com-
putational complexities are dominated by that of Π1-gen-hom, hence we obtain a designated verifier
succinct argument of knowledge for the relation R.

25

Parameters

– Common parameters : P,Q, y, ck0,1, ck1,1, . . . , ckk−1,1 (where cki,1 is the first element of cki, i =
0, . . . , k − 1)
• x = (xS ,xT), y = (y1, y2, y3, y4), f = (fS , fT),
• y1 = fS(xS), y2 = fS(xT), y3 = fT (xS), y4 = fT (xT),
• Q = COM1(rev(fS)), P = (P1, P2), P1 = COM1(xS), P2 = COM2(xT)

– P’s input : ck0, ck1, . . . , ckk−1,x = (xS ,xT),xS = (x0,x1, . . . ,xk−1),xT = (xk), f = (fS , fT)
– V’s input : ċk0, ċk1, . . . , ċkk−1

Protocol

1. P parses xi = (xi,L∥xi,R), for i = 0, . . . , k, xS,α = (x0,α, . . . ,xk−1,α), and xT,α = (xk,α) for α = L,R, and
fS = (fS,L∥fS,R), fT = (fT,L∥fT,R).

2. Similarly, P parses the commitment keys for xS and fS as ckS = (ck0, . . . , ckk−1) and commitment keys
for xT and fT as ckT .

3. P sets k = rev(fS) and computes the following :
(a) A1 = COM1(0,xS,L), A2 = COM1(xS,R, 0)
(b) B1 = COM1(0, kL), B2 = COM1(kR, 0)
(c) a1 = fSR(xS,L), a2 = fSL(xS,R)
(d) b1 = fSR(xT,L), b2 = fSL(xT,R)
(e) d1 = fTR(xS,L), d2 = fTL(xS,R)

4. P sends the computed values a2, b2, A1, A2, B1 and B2 to V
5. V samples c←−R Zq and sends it to P
6. P sets the updated commitment key as ck′i = c · cki,L + cki,R for all i = 0, 1, . . . , k − 1
7. P sends the first element of all updated commitment keys ck′i,1 to V, and V checks the following for each

cki,1, proceeds to step 8 if it holds, and aborts otherwise

e

(
ck′i,1
ckci,1

, geni

)
= e

(
cki,1, ċki,ℓ

)
, i ∈ {0, 1, . . . , k − 1}

where geni is the generator of the group containing ċki.
8. P sets x′

S = xS,L + cxS,R, f
′
S = cfS,L + fS,R, and implicitly updates the randomness for each updated

commitment key ċk
′
i by dropping the last element ċki,ℓ from ċki.

9. P and V both compute the following :
(a) P ′

1 = A1 + cP1 + c2A2, Q′ = B1 + cQ + c2B2

(b) y′
1 = a1 + cy1 + c2a2, y

′
4 = y4,

(c) y′
2 = b1 + cy2 + c2b2, y′

3 = d1 + cy3 + c2d2
10. If x′

S contains more than 2 elements from any group : P and V runs the protocol Π1-gen-hom with updated
common parameters (P ′, Q′, y′), P ′ = (P ′

1, P2), y′ = (y′
1, y

′
2, y

′
3, y

′
4), prover’s input (ck′0, ck

′
1, . . . , ck

′
k−1,x

′ =

(x′
S ,xT), f ′ = (f ′

S , fT), and verifier’s input (ck0,1, ck1,1, . . . , ckk−1,1, ċk1, . . . , ċkk−1) for (P ′, Q′, y′;x′, f ′) ∈
R′

CH

11. Otherwise :
(a) P sends x′ = (x′

S ,xT), f ′ = (f ′
S , fT) to V

(b) V computes k′ = rev(f ′
S) and checks the following where COM′

1 is the commitment with updated
commitment keys ck′i, i = 0, . . . , k − 1

i. COM′
1(x′

S) = P ′
1, COM′

1(k′) = Q′, COM2(xT) = P2

ii. f ′
S(x′

S) = y′
1, fT (xT) = y4

iii. (f ′
S , cf

′
S)(xT) = y′

2, fT (cx′
S ,x

′
S) = y′

3

and outputs 1 if it holds, and outputs 0 otherwise.

Fig. 12: PoK of Π1-gen-hom for R′
CH

26

References

AC20. Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical application
to plug & play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 513–543. Springer, Heidelberg, August
2020.

ACF21. Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing proofs of k-out-of-n partial knowl-
edge. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,
pages 65–91, Virtual Event, August 2021. Springer, Heidelberg.

ACK21. Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ-protocol theory for lattices.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages
549–579, Virtual Event, August 2021. Springer, Heidelberg.

ACR21. Thomas Attema, Ronald Cramer, and Matthieu Rambaud. Compressed Σ-protocols for bilinear
group arithmetic circuits and application to logarithmic transparent threshold signatures. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages
526–556. Springer, Heidelberg, December 2021.

AFG+10. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 209–236. Springer, Heidelberg, August 2010.

AGL+23. Arasu Arun, Chaya Ganesh, Satya Lokam, Tushar Mopuri, and Sriram Sridhar. Dew: A transparent
constant-sized polynomial commitment scheme. In Public-Key Cryptography – PKC 2023: 26th
IACR International Conference on Practice and Theory of Public-Key Cryptography, Atlanta, GA,
USA, May 7–10, 2023, Proceedings, Part II, page 542–571, Berlin, Heidelberg, 2023. Springer-
Verlag.

AGR+16. Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC:
Efficient encryption and cryptographic hashing with minimal multiplicative complexity. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–
219. Springer, Heidelberg, December 2016.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE symposium on
security and privacy (SP), pages 315–334. IEEE, 2018.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357.
Springer, Heidelberg, May 2016.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-
interactive arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013, volume 7785
of LNCS, pages 315–333. Springer, Heidelberg, March 2013.

BCTV14. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero
knowledge for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014, pages 781–796. USENIX Association, August 2014.

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 677–706. Springer, Heidelberg, May 2020.

BG12. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a shuffle.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 263–280. Springer, Heidelberg, April 2012.

BLMW07. Emmanuel Bresson, Yassine Lakhnech, Laurent Mazaré, and Bogdan Warinschi. A generalization
of DDH with applications to protocol analysis and computational soundness. In Alfred Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 482–499. Springer, Heidelberg, August 2007.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020.

DRZ20. Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. Updateable inner product argument with
logarithmic verifier and applications. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 527–557. Springer,
Heidelberg, May 2020.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer, Heidelberg, August 1987.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

27

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and
universal common reference strings with applications to zk-SNARKs. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728.
Springer, Heidelberg, August 2018.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press, October / November
2006. Available as Cryptology ePrint Archive Report 2006/309.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, December
2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report
2019/953, 2019. https://ia.cr/2019/953.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing, pages 723–732, 1992.

Lee21. Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial
commitments. In Kobbi Nissim and Brent Waters, editors, Theory of Cryptography, pages 1–34,
Cham, 2021. Springer International Publishing.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189. Springer,
Heidelberg, March 2012.

Lip13. Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear
error-correcting codes. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I,
volume 8269 of LNCS, pages 41–60. Springer, Heidelberg, December 2013.

LMR19. Russell W. F. Lai, Giulio Malavolta, and Viktoria Ronge. Succinct arguments for bilinear group
arithmetic: Practical structure-preserving cryptography. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2057–2074. ACM Press,
November 2019.

LSZ23. Helger Lipmaa, Janno Siim, and Micha l Zaja̧c. Counting vampires: From univariate sumcheck to
updatable zk-snark. In Advances in Cryptology – ASIACRYPT 2022: 28th International Conference
on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, December
5–9, 2022, Proceedings, Part II, page 249–278, Berlin, Heidelberg, 2023. Springer-Verlag.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In Lorenzo Cav-
allaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
2111–2128. ACM Press, November 2019.

Mic94. Silvio Micali. Cs proofs. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 436–453. IEEE, 1994.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical ver-
ifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252. IEEE
Computer Society Press, May 2013.

SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

zkh. https://www.zellic.io/blog/zk-friendly-hash-functions.

28

https://ia.cr/2019/953
https://www.zellic.io/blog/zk-friendly-hash-functions

Appendix
A More Preliminaries

A.1 Proof of Lemma 1

Lemma 3. The commitment scheme in Definition 1 is perfectly hiding and computationally binding
under the DLOG assumption.

Proof. The prover is given the (public) commitment key ga where
a = {a1, . . . , an+1}, i.e. ga = (ga1 , . . . , gan+1).

Hiding. We note that, given a commitment P to any Zq vector, any vector of elements of Zq, x =
(x1, . . . , xn) ∈ Zn

q , could have been the element that is chosen to compute P , if the uniformly randomly

chosen randomness γ for obtaining the commitment is such that g⟨a,(x∥γ)⟩ = P i.e. γ satisfies :(
gan+1

)γ
=

P

(ga1)
x1 · · · (gan)

xn

Hence, the aforementioned scheme is perfectly hiding.

Binding. If the binding of this commitment scheme is broken, then we have x = (x1, . . . , xn), γ and
y = (y1, . . . , yn), δ such that x ̸= y and

COMa (x; γ) = COMa (y; δ)

=⇒ g⟨a,(x∥γ)⟩ = g⟨a,(y∥δ)⟩

=⇒ g⟨a,(x−y∥γ−δ)⟩ = 1G1

=⇒
(
ga1

)(x1−y1) · · ·
(
gan

)(xn−yn) ·
(
gan+1

)(γ−δ)
= 1G1

which breaks the (extended) discrete logarithm assumption.

A.2 Hardness Assumption

We recall the GDLR assumption from [LMR19].

Definition 3 (Generalized Discrete Logarithm Representation Assumption [LMR19]).

Let m ≥ 1 and n1, n2, nT ≥ 0 (not all zero). (m,nT , n1, n2)-GDLR assumption holds in (q,G1,G2,GT , e,G,H)
if for any PPT algorithm A, we have

Pr


e(a1,B2) + e(B1,a2) + ⟨BT ,aT ⟩ = 0T ∧ (a1,a2,aT) ̸= (0,0,0)

b1 ←−R Zm×n2
q , b2 ←−R Zm×n1

q , bT ←−R Zm×nT
q

B1 = Gb1,B2 = Hb2,BT = KbT
(a1,a2,aT)←− A(q,G1,G2,GT , e,G,H,B1,B2,BT)

 ≤ negl(λ)

where a1 ∈ Gn2
1 ,a2 ∈ Gn1

2 ,aT ∈ ZnT
q .

We now introduce the eGDLR assumption.

Definition 4 (extended Generalized Discrete Logarithm Representation Assumption). Let
m ≥ 1 and n1, n2, nT ≥ 0 (not all zero). (m,nT , n1, n2)−eGDLR assumption holds in (q,G1,G2,GT , e,G,H)
if for any PPT A, we have

Pr


e(a1,B2) + e(B1,a2) + ⟨BT ,aT ⟩ = 0T ∧ (a1,a2,aT) ̸= (0,0,0)

b1 ←−RMLm
n1
, b2 ←−RMLm

n2
, ḃT ←−RMLm

n0

B1 = Gb1,B2 = Hb2,BT = KbT
(a1,a2,aT)←− A(q,G1,G2,GT , e,G,H,B1,B2,BT)

 ≤ negl(λ)

where a1 ∈ Gn2
1 ,a2 ∈ Gn1

2 ,aT ∈ ZnT
q .

29

Lemma 4. COMG (Definition 2) is computationally binding under eGDLR assumption.

Proof. If binding of the aforementioned commitment scheme is broken, then we get x,y, z, γ and
x′,y′, z′, γ′ where x ̸= x′ or y ̸= y′ or z ̸= z′ or γ ̸= γ′, such thatCOMG(x,y, z; γ) = COMG(x′,y′, z′; γ′)

=⇒
(
h1γ + ⟨g1,x⟩+ e(y,H1) + e(G1, z)
h2γ + ⟨g2,x⟩+ e(y,H2) + e(G2, z)

)
=

(
h1γ

′ + ⟨g1,x
′⟩+ e(y′,H1) + e(G1, z

′)
h2γ

′ + ⟨g2,x
′⟩+ e(y′,H2) + e(G2, z

′)

)
=⇒

(
h1(γ − γ′) + ⟨g1, (x− x′)⟩+ e((y − y′),H1) + e(G1, (z− z′))
h2(γ − γ′) + ⟨g2, (x− x′)⟩+ e((y − y′),H2) + e(G2, (z− z′))

)
=

(
0T

0T

)
which breaks the (2, n0 + 1, n1, n2)-eGDLR assumption.

Lemma 5. COMG (Definition 2) is computationally hiding under DDH assumption in GT .

Proof. Hiding of COMG follows from the fact that (h1, h2, h
γ
1 , h

γ
2), where h1, h2 ∈ GT and γ ←−R Zq,

is computationally indistinguishable from (h1, h2, h
γ
1 , r), where h1, h2 ∈ GT and γ ←−R Zq, r ←−R GT ,

when DDH holds in GT .

We construct a DDH adversary A for GT given that we have a distinguisher B which distinguishes
(h1, h2, h

γ
1 , h

γ
2) from (h1, h2, h

γ
1 , r), where h1, h2 ∈ GT and γ ←−R Zq, r ←−R GT .

1. A receives a DDH challenge ch = (g, ga, gb, gc)

2. A sends the challenge vector ch to B

3. If B outputs that ch is of the form (h1, h2, h
γ
1 , h

γ
2), then A outputs c = ab; otherwise A outputs

c ̸= ab.

A succeeds with overwhelming probability, if B does, which follows from the following observation :

– if c = ab, then the challenge vector ch = (g, ga, gb, gc) = (h1, h2, h
γ
1 , h

γ
2) where h1 = g, h2 = ga, γ =

b, and

– if c ̸= ab and c ∈R Zq, then ch = (g, ga, gb, gc) = (h1, h2, h
γ
1 , r),

where h1 = g, h2 = ga, γ = b and r = gc.

Hence, we have that (h1, h2, h
γ
1 , h

γ
2) and (h1, h2, h

γ
1 , r) are computationally indistinguishable under

DDH in GT , where h1, h2 ∈ GT and γ ←−R Zq, r ←−R GT . From the above property, we note that use

of hγ
1 , h

γ
2 to re-randomize the two components of COMG is indistinguishable from using completely

random elements to re-randomize the same, and hence COMG is hiding under DDH in GT .

We now show that eGDLR is implied by SXDH.

Lemma 6. Let q be such that 1/q = negl. Let m = 2; ni ≥ 0, i = 0, 1, 2 are not all zero. Then, the
(m,n0, n1, n2)-eGDLR assumption holds if the SXDH assumption holds.

Proof. We know that, for q where 1/q = negl and m ≥ 2; ni ≥ 0, i = 0, 1, 2 are not all zero,
(m,n0, n1, n2)-GDLR assumption holds, if the SXDH assumption holds [LMR19]. From the previous
statement, we can infer that SXDH assumption implies that (2, 1, 1, 1)-GDLR assumption holds. Now,
we wish to prove that, for m = 2, (m,n0, n1, n2)-eGDLR assumption holds if (2, 1, 1, 1)-GDLR assump-
tion holds. We additionally note that the distributions {(q,G1,G2,GT , e,G,H, (g1r1, h1r2)) : r←−R Zn

q }
and {(q,G1,G2,GT , e,G,H, (g1r, h1r)) : r1, r2 ←−R Zn

q } are identical when SXDH assumption holds.

We construct an adversary A for (2, 1, 1, 1)-GDLR assumption, given an adversary B for (2, n0, n1, n2)-
eGDLR assumption, as follows :

1. A receives a challenge for (2, 1, 1, 1)-GDLR assumption,
(q,G1,G2,GT , e,G,H, (g1, h1), (g2, h2), (gT , hT))
such that gi, hi ∈ Gi, i ∈ {1, 2, T}

2. A samples the keys for obtaining challenges for B : r←−RMLn0 , s←−RMLn1 , and t←−RMLn2

3. A sends B the challenge (q,G1,G2,GT , e,G,H, (g1r, h1r), (g2s, h2s), (gT t, hT t))

4. B(q,G1,G2,GT , e,G,H, (g1r, h1r), (g2s, h2s), (gT t, hT t))→ (a1,a2,aT)

30

5. A computes x1 = ⟨a1, r⟩, x2 = ⟨a2, s⟩ and xT = ⟨t,aT ⟩ and outputs (x1, x2, xT), where the first
two operations are inner product with scalar for groups G2 and G1, and the third operation is
inner product of elements of Zq.

We claim that A succeeds with overwhelming probability, if B does.

We note that, if B succeeds, then its output (a1,a2,aT) is such that (a1,a2,aT) ̸= (0, 0, 0) and

gT ⟨t,aT ⟩+ e(g1r,a1) + e(a2, g2s) = 0 , and hT ⟨t,aT ⟩+ e(h1r,a1) + e(a2, h2s) = 0

hence we have, for x1 = ⟨a1, r⟩, x2 = ⟨a2, r⟩ and xT = ⟨t,aT ⟩ :

gTxT + e(g1, x1) + e(x2, g2) = 0 , and hTxT + e(h1, x1) + e(x2, h2) = 0

We analyse that,A’s breaks the assumption if B does, by showing that along with the satisfied equation,
(a1,a2,aT) ̸= (0, 0, 0) ensures (x1, x2, xT) ̸= (0, 0, 0), except with negligible probability.

If aT ̸= 0, then we have xT = ⟨t,aT ⟩ ≠ 0 w.h.p. as otherwise we have gT ⟨t,aT ⟩ = 0 which breaks dlog
in GT , hence it ensures (x1, x2, xT) ̸= (0, 0, 0).

If a1 ̸= 0, and if x1 = ⟨a1, r⟩ = e2, then we have e(⟨g1, r⟩,a1) = e(g1, ⟨a1, r⟩) = e(g1, e2) = e(g1, qe2) =
e(qg1, e2) = e(e1, e2) = eT , which breaks the (e)n-BP assumption that holds when SXDH holds, as
DDH is hard in G1.

Similarly, we can argue for x2 being non-zero, when a2 is non-zero.

Definition 5 (n-BP Assumption). For all non-uniform PPT Adversary A,

Pr

 e(X,Y) = eT ,X ∈ Gn
1 ,Y ∈ Gn

2

x←−R Zn
q ,X = Gx,Y ̸= e2

Y← A(q,G1,G2,GT , e,G,H,X)

 = negl(λ)

Definition 6 ((e)n-BP Assumption). For all non-uniform PPT Adversary A,

Pr

 e(X,Y) = eT ,X ∈ Gn
1 ,Y ∈ Gn

2

x←−RMLn,X = Gx,Y ̸= e2
Y← A(q,G1,G2,GT , e,G,H,X)

 = negl(λ)

Lemma 7. Let q be such that 1/q = negl. n-BP Assumption, for n ∈ N, holds when DDH is hard in
G1.

Proof. We construct a DDH adversary A of G1, given a n-BP adversary B, as follows:

1. A receives a DDH-challenge (g, g · a, g · b, g · c) of G1

2. A samples j ←−R {0, . . . , n − 1} and r = (r1, . . . , rn−1) ←−R Zn−1
q , and sets x = (x0, . . . , xn−1),

where xj = c, xi = ari+1 for i = 0, . . . , j − 1 and xi = ari for i = j + 1, . . . , n− 1

3. A computes X = Gx and sends (q,G1,G2,GT , e,G,H,X) to B

4. A receives Y from B

5. A sets z = (z0, . . . , zn−1), where z0 = b and zi = ri, i = 1, . . . , n− 1, and sets Z = Gz

6. If e(X,Y) = eT and e(Z,Y) = eT , then A outputs 1, otherwise it outputs 0.

We claim that A succeeds with overwhelming probability, if B does.

We note that if B succeeds then we have e(X,Y) = eT , which implies, assuming Y = Hy, where
y = (y0, y1, . . . , yn−1) ∈ Zn

q

e(Gx, Hy) = eT =⇒ e(G·x1, H·y1) · · · e(G·xn−1, H·yn−1) = eT =⇒ e(G,H)⟨x,y⟩ = eT

which gives us ⟨x, y⟩ = 0.

31

If c = ab, then we have that ar1y0 + · · · + arjyj−1 + cyj + arj+1yj+1 + · · · + arn−1yn−1 = 0 =⇒
ar1y0 + · · · + arjyj−1 + abyj + arj+1yj+1 + · · · + arn−1yn−1 = 0 =⇒ r1y0 + · · · + rjyj−1 + byj +
rj+1yj+1 + · · ·+ rn−1yn−1 = 0 =⇒ e(Z,Y) = eT , then the adversary outputs 1.

If c ̸= ab, then the adversary outputs 0 with high probability, as c ̸= ab and output 1 by adversary
=⇒ ar1y0 + · · · + arjyj−1 + cyj + arj+1yj+1 + · · · + arn−1yn−1 = 0 and r1y0 + · · · + rjyj−1 + byj +
rj+1yj+1 + · · · + rn−1yn−1 = 0, both equations are independently satisfied by y, which happens with
probability O(1/q).

Additionally, since the position of embedding of the challenge is sampled at random, the probability
that the adversary guesses the position j of embedding of the challenge and sets its own response such
that yj = 0 to remove the dependency of the solution from the challenge is 1/n.

Definition 7 ((P,Q)-DDH Assumption [BLMW07]). Let q be a prime number. Let G be a group
of order q, g a generator of G, and (P,Q) ⊆ Zq[X1, . . . , Xn] two sets of polynomials. We define the
oracles Real(P,Q) and Fake(P,Q) as follows. Both oracles first select uniformly at random xi ←−R Zq, for
i ∈ [n]. Then they answer two types of queries. In input (info, i) for 1 ≤ i ≤ |P |, both Real(P,Q) and

Fake(P,Q) answer with gpi(x1,x2,...,xn) for pi ∈ P . On each new input (chal, j) for some 1 ≤ j ≤ |Q|,
oracle Real(P,Q) answers with gqj(x1,x2,...,xn) whereas oracle Fake(P,Q) selects rj ←−R Zq and answers
with grj . The adversary can intertwine the info and chal queries. The goal of the adversary is to
distinguish between these two oracles.

[BLMW07] proves that when the challenge (P,Q) is non-trivial, i.e. if span(P) ∩ span(Q) = {0} and
the polynomials in Q are linearly independent, that satisfies two conditions specified in Definition 3 of
[BLMW07], then the (P,Q)-DDH Assumption hold whenever DDH holds. Additionally, we note that

if we consider P = {X1, . . . , Xℓ} and Q = {
∏ℓ

i=1 X
bi
i }bi∈{0,1}, then it satisfies the above criteria and

hence, this particular variant of (P,Q)-DDH holds whenever DDH holds. Now, since DDH holds, we
prove that our (e)n-BP assumption holds whenever (P,Q)-DDH assumption holds, given that n-BP
assumption holds as well.

Lemma 8. Let q be such that 1/q = negl. (e)n-BP Assumption holds when (P,Q)-DDH Assumption
and n-BP Assumption holds, for all n ∈ N.

Proof. Let n = 2ℓ. Let us consider that, if possible, there exists an (e)n-BP adversary that breaks
the (e)n-BP assumption. We construct an adversary A for (P,Q)-DDH Assumption in G1, given an
adversary B for the (e)n-BP Assumption as follows, where we consider P = {X1, . . . , Xℓ} and Q =

{
∏ℓ

i=1 X
bi
i }bi∈{0,1}, such that |P | = ℓ and |Q| = n− ℓ.

– A queries the (P,Q)-DDH challenger with (info, i) for all i ∈ {1, . . . , ℓ} and receives response
w1, . . . , wℓ

– A then queries the (P,Q)-DDH challenger with (chal, i) for all i ∈ {1, . . . , n − ℓ} and receives
response z1, . . . , zn−ℓ

– A defines X = (x1, . . . , xn) as xi = wi for all i ∈ [ℓ] and xi = zi−ℓ for all i ∈ {ℓ + 1, . . . , n}, and
sends X along with the bilinear group (q,G1,G2,GT , e,G,H) to B

– B returns Y to A

– A checks if Y ̸= e2 and e(X,Y) = eT

– If the above are satisfied, A concludes that X is a Real(P,Q) challenge and outputs 1, and outputs
0 otherwise.

We claim that A succeeds with non-negligible advantage if B succeeds with non-negligible probability.
Now, let us consider the (P,Q)-DDH challenges when P = {X1, . . . , Xℓ} and Q = {

∏ℓ
i=1 X

bi
i }bi∈{0,1}.

Note that a Real(P,Q) challenge inherits theMLn distribution in the exponent, which is the required
distribution for a structured (e)n-BP challenge, whereas a Fake(P,Q) challenge inherits the random
distribution. Hence, we can denote a Real(P,Q) challenge vector X as X ←−R MLn(G) and we can
denote a Fake(P,Q) challenge vector X as X←−R Gn.

32

Let us assume that B succeeds with probability ϵ1 for a structured (e)n-BP challenge, i.e. Pr[B succeeds |X←−R

MLn(G)] = ϵ1. Note that B succeeds for a (e)n-BP challenge X if it outputs Y such that Y ̸= e2 and
e(X,Y) = eT . Let Additionally, we note that if n-BP holds and Pr[B succeeds | X←−R Gn] = ϵ2, since
the challenge X ←−R Gn follows the required distribution for a n-BP challenge ϵ2 must be negligible.
Then we compute the probability of success of A.

Pr[A guesses correctly]

= Pr[A outputs 1 | Real(P,Q)] Pr[Real(P,Q)] + Pr[A outputs 0 | Fake(P,Q)] Pr[Fake(P,Q)]

= Pr[A outputs 1 | Real(P,Q)]× 1/2 + Pr[A outputs 0 | Fake(P,Q)]× 1/2

= Pr[A outputs 1 | X←−RMLn(G)]× 1/2 + Pr[A outputs 0 | X←−R Gn]× 1/2

= Pr[B succeeds | X←−RMLn(G)]× 1/2 + Pr[B fails | X←−R Gn]× 1/2

= ϵ1/2 + Pr[B fails | X←−R Gn]× 1/2

= ϵ1/2 + (1− Pr[B succeeds | X←−R Gn])× 1/2

= ϵ1/2 + (1− ϵ2)/2 = 1/2 + (ϵ1 − ϵ2)/2

Now, since ϵ1 = Pr[B succeeds | X←−RMLn(G)] is non-negligible and ϵ2 = Pr[B succeeds | X←−R Gn]
is negligible, ϵ1 − ϵ2 is non-negligible. Hence, A succeeds with a non-negligible advantage, which is a
contradiction.

B Proofs from Section 3

B.1 Proof of Theorem 2

Completeness. If the protocol is correctly executed by the prover P, then we have

1. A1 = COMaL
(xL) = g⟨aL,xL⟩, A2 = COMaL

(xR) = g⟨aL,xR⟩

2. B1 = COMaL
(LL) = g⟨aL, LL⟩, B2 = COMaL

(LR) = g⟨aL, LR⟩

3. y1 = ⟨xL, LR⟩, y2 = ⟨xR, LL⟩

4. x′ = xL + cxR, L
′ = cLL + LR

Hence, the following verifier checks are satisfied as shown below :

e

(
P

A1
, H

)
= e

(
g⟨a,x⟩

g⟨aL,xL⟩ , H

)
= e(g⟨aR,xR⟩, H)

= e(g⟨ȧℓaL,xR⟩, H)

= e(g⟨aL,xR⟩, H ȧℓ)

= e(A2, ,H
ȧℓ)

e

(
Q

B1
, H

)
= e

(
g⟨a, L⟩

g⟨aL, LL⟩ , H

)
= e(g⟨aR, LR⟩, H)

= e(g⟨ȧℓaL, LR⟩, H)

= e(g⟨aL, LR⟩, H ȧℓ)

= e(B2, ,H
ȧℓ)

For each iteration of PoK Π1 (where one iteration consists of steps 1-5, and step 6 follows by sending
x′, L′ instead of providing a PoK), we have

COMa′ (x′) = g⟨a
′,x′⟩

= g⟨aL,xL+cxR⟩

= g⟨aL,xL⟩gc⟨aL,xR⟩

= A1A
c
2

COMa′ (L′) = g⟨a
′,L′⟩

= g⟨aL,cLL+LR⟩

= gc⟨aL,LL⟩g⟨aL,LR⟩

= Bc
1B2

33

⟨L′,x′⟩ = ⟨cLL + LR,xL + cxR⟩
= c⟨LL,xL⟩+ c2⟨LL,xR⟩+ ⟨LR,xL⟩+ c⟨LR,xR⟩
= ⟨LR,xL⟩+ c(⟨LL,xL⟩+ ⟨LR,xR⟩) + c2⟨LL,xR⟩
= ⟨LR,xL⟩+ c⟨L,x⟩+ c2⟨LL,xR⟩
= y1 + cy + c2y2

Special Soundness. We first illustrate the extraction of the witness, and thereafter proceed with the
argument of correctness of the extracted value. We begin with 3 accepting transcripts for one iteration
of PoK Π1 (where one iteration consists of steps 1-5, and step 6 follows by sending x′, L′ instead of
providing a PoK) as follows, where c1, c2, c3 are all distinct challenges:

(A1, A2, B1, B2, y1, y2, c1,x
′
1, L

′
1)

(A1, A2, B1, B2, y1, y2, c2,x
′
2, L

′
2)

(A1, A2, B1, B2, y1, y2, c3,x
′
3, L

′
3)

Extraction. The extraction proceeds as follows. We aim to find w,m such that ⟨m,w⟩ = y, and
w,m are openings of P and Q. We note that, as c1, c2 and c3 are such that ci ̸= cj for all (i ̸= j)
i, j ∈ {1, 2, 3}, the Vandermonde matrix V described below is invertible.

V =

 1 1 1
c1 c2 c3
c21 c22 c23


Hence, we can compute a1, a2, a3 as (a1, a2, a3)

T = V −1(0, 1, 0)T . The computed a1, a2, a3 satisfy∑
i ai = 0,

∑
i aici = 1 and

∑
i aic

2
i = 0. Define zi = (cix

′
i∥x′

i). Now let w = a1z1 + a2z2 + a3z3 be
the extracted value. Following a similar procedure, we extract m and output (w,m) as the witness for
RCLF.

Proof of correctness of extracted value. We first prove that the extracted w and m are openings
of commitments P and Q, respectively. Then we prove that w and m also satisfies the constraint
⟨m,w⟩ = y. This shows that the extracted (w,m) is a valid witness for (P,Q, y) ∈ RCLF.

We recall that w = a1z1+ a2z2+ a3z3 by definition, and COMa′ (x′
i) = A1A

ci
2 holds from verification

equation in step 6.

COMa (w) = g⟨a,w⟩

= g⟨a,a1z1+a2z2+a3z3⟩

= g⟨aL∥aR,a1(c1x
′
1∥x

′
1)+a2(c2x

′
2∥x

′
2)+a3(c3x

′
3∥x

′
3)⟩

= g⟨aL,a1c1x
′
1+a2c2x

′
2+a3c3x

′
3⟩g⟨aR,a1x

′
1+a2x

′
2+a3x

′
3⟩

= g⟨a
′,a1c1x

′
1+a2c2x

′
2+a3c3x

′
3⟩g⟨ȧℓa

′,a1x
′
1+a2x

′
2+a3x

′
3⟩

= (A1A
c1
2)a1c1(A1A

c2
2)a2c2(A1A

c3
2)a3c3(A1A

c1
2)a1ȧℓ(A1A

c2
2)a2ȧℓ(A1A

c3
2)a3ȧℓ (from step 6)

= A
(a1c1+a2c2+a3c3)+ȧℓ(a1+a2+a3)
1 A

(a1c
2
1+a2c

2
2+a3c

2
3)+ȧℓ(a1c1+a2c2+a3c3)

2

= A1A
ȧℓ
2

= P (since we have e

(
P

A1
, H

)
= e

(
A2, H

ȧℓ
)
which ensures P = A1A

ȧℓ
2)

Hence, the extracted w is an opening of the commitment P . Similarly we can prove that m is an
opening of the commitment Q. From the binding of the commitment scheme, we can ensure that
w = x and m = L except with negligible probability.

Let b ∈ Zn
q be such that x′

i = bL+cibR holds for all i = 1, 2, 3. Then our defined zi can be interpreted
as zi = (cix

′
i∥x′

i) = (0∥bL)+ ci(bL∥bR)+ c2i (bR∥0) for all i = 1, 2, 3. Now, given a1, a2, a3 that satisfy

34

∑
i ai = 0,

∑
i aici = 1 and

∑
i aic

2
i = 0, we have w =

∑
i aizi =

∑
i ai(0∥bL) +

∑
i aici(bL∥bR) +∑

i aic
2
i (bR∥0) = b. Hence, the extracted w satisfies x′

i = wL + ciwR. Similarly, the extracted value
m also satisfies L′

i = mL + cimR for all i = 1, 2, 3.

Since the transcripts are accepting, step 7(b) of the verification equation, ⟨L′
i,x

′
i⟩ = y′i holds; that

is ⟨L′
i,x

′
i⟩ = y1 + ciy + c2i y2, for all i = 1, 2, 3. Substituting the values of L′

i and x′
i, we get that

⟨mR,wL⟩ + ci⟨m,w⟩ + c2i ⟨mL,wR⟩ = y1 + ciy + c2i y2 holds for all i = 1, 2, 3. Hence, we obtain that
⟨m,w⟩ = y.

B.2 Proof of Theorem 3

Completeness follows directly.

Special Soundness. We consider 4 accepting transcripts for one iteration of PoK Π2 with different
challenges ti, i ∈ {1, 2, 3} as follows, where t1, t2, t3 are all distinct challenges:

(A1, A2, c, z1, z2, z3, z4, t1,w1)

(A1, A2, c, z1, z2, z3, z4, t2,w2)

(A1, A2, c, z1, z2, z3, z4, t3,w3)

(A1, A2, c, z1, z2, z3, z4, t4,w4)

We note that, as t1, t2, t3 and t4 are such that ti ̸= tj for all (i ̸= j) i, j ∈ {1, 2, 3, 4}, the matrix V
described below is invertible.

V =


1 1 1 1
t1 t2 t3 t4
t21 t22 t23 t24
t31 t32 t33 t34


Let us denote ei, i ∈ {1, 2, 3, 4} where jth entry of ei is 1 for j = i, and 0 otherwise. Let us consider
a vector ρj = (ρj1, ρ

j
2, ρ

j
3, ρ

j
4) for j = 1, 2, 3, 4. Hence, we can compute (ρj)T = V −1eTj . The computed

ρ11, ρ
1
2, ρ

1
3, ρ

1
4 satisfy

∑
i ρ

1
i = 1,

∑
i ρ

1
i ti = 0,

∑
i ρ

1
i t

2
i = 0 and

∑
i ρ

1
i t

3
i = 0. Similarly, it holds for

j = 2, 3, 4.

We define rx to be the extracted value of x and compute it as rx = ρ11w1+ρ12w2+ρ13w3+ρ14w4, given

that COMa (wi) = P ·Qti ·At2i
1 ·A

t3i
2 then we consider

COMa (rx) = g⟨a,rx⟩

= g⟨a,ρ
1
1w1+ρ1

2w2+ρ1
3w3+ρ1

4w4⟩

= (PQt1A
t21
1 A

t31
2)ρ1(PQt2A

t22
1 A

t32
2)ρ2(PQt3A

t23
1 A

t33
2)ρ3(PQt4A

t24
1 A

t34
2)ρ4

= P
∑

i ρ
1
iQ

∑
i ρ

1
i tiA

∑
i ρ

1
i t

2
i

1 A
∑

i ρ
1
i t

3
i

2

= P

Hence, the extracted rx is an opening of the commitment P .

Similarly, we define rB , rpL
and rpR

to be the extracted value of B,pL and pR ,and compute them as
rB = ρ21w1 + ρ22w2 + ρ23w3 + ρ24w4, rpL

= ρ31w1 + ρ32w2 + ρ33w3 + ρ34w4 and rpR
= ρ41w1 + ρ42w2 +

ρ43w3 + ρ44w4. We also know that w(c) = z1 + ti · z2 + t2i · z3 + t3i · z4 holds for all i = 1, 2, 3, 4, since the

35

transcripts are accepting transcripts.

rx(c) = ρ11w1(c) + ρ12w2(c) + ρ13w3(c) + ρ14w4(c)

=
∑
i

ρ1i z1 +
∑
i

ρ1i ti · z2 +
∑
i

ρ1i t
2
i · z3 +

∑
i

ρ1i t
3
i · z4 = z1

rB(c) = ρ21w1(c) + ρ22w2(c) + ρ23w3(c) + ρ24w4(c)

=
∑
i

ρ2i z1 +
∑
i

ρ2i ti · z2 +
∑
i

ρ2i t
2
i · z3 +

∑
i

ρ2i t
3
i · z4 = z2

rpL
(c) = ρ31w1(c) + ρ32w2(c) + ρ33w3(c) + ρ34w4(c)

=
∑
i

ρ3i z1 +
∑
i

ρ3i ti · z2 +
∑
i

ρ3i t
2
i · z3 +

∑
i

ρ3i t
3
i · z4 = z3

rpR
(c) = ρ41w1(c) + ρ42w2(c) + ρ43w3(c) + ρ44w4(c)

=
∑
i

ρ4i z1 +
∑
i

ρ4i ti · z2 +
∑
i

ρ4i t
2
i · z3 +

∑
i

ρ4i t
3
i · z4 = z4

Hence, we have that the extracted polynomials rx, rB , rpL
and rpR

satisfies the following constraint
:

z3 · c−1 + y · cn−1 + z4 · cn = z1 · z2 (from accepting transcripts)

=⇒ rpL
(c) · c−1 + y · cn−1 + rpR

(c) · cn = rx(c) · rB(c)

Now, we consider 2n such transcripts with different verifier challenges ci, i ∈ {1, . . . , 2n}, each with
4 different challenges tij , j ∈ {1, . . . , 4}, i ∈ {1, . . . , 2n}. Hence, the above constraint is satisfied by
2n − 1 random challenges, i.e. the polynomials evaluations are consistent with the constraint at 2n
evaluation points, where the highest degree of the polynomial is 2n−1. Hence, polynomials identically
satisfies the constraints at all points, which implies that ⟨rx, rev(rB)⟩ = y holds for the aforementioned
polynomials.

B.3 Proof of Theorem 4

Theorem 13. Π ′
2 is a (k1, . . . , kℓ)-move protocol for relation (R, cn−1, z;w) ∈ R, where ki = 3, ∀i ∈

[ℓ]. It is perfectly complete and computationally special sound.

Completeness follows directly.

Special Soundness. We consider 3 accepting transcripts for one iteration of PoK Π ′
2 (where one

iteration consists of steps 1-5, and step 6 follows by sending x′, L′ instead of providing a PoK) as
follows, where s1, s2, s3 are all distinct challenges. :

(A1, A2, z
′, s1,w

′
1)

(A1, A2, z
′, s2,w

′
2)

(A1, A2, z
′, s3,w

′
3)

Let us consider zi = (siw
′
i∥w′

i). We note that, as s1, s2 and s3 are such that si ̸= sj for all (i ̸= j)
i, j ∈ {1, 2, 3}, the matrix V described below is invertible.

V =

 1 1 1
s1 s2 s3
s21 s22 s23


Hence, we can compute (a1, a2, a3)

T = V −1(0, 1, 0)T . The computed a1, a2, a3 satisfy
∑

i ai = 0,
∑

i aici =
1 and

∑
i aic

2
i = 0.

36

Let us consider x = a1z1 + a2z2 + a3z3, given that COMa′ (w′
i) = A1A

si
2 then we consider

COMa (x) = g⟨a,x⟩

= g⟨a,a1z1+a2z2+a3z3⟩

= g⟨aL∥aR,a1(s1w
′
1∥w

′
1)+a2(s2w

′
2∥w

′
2)+a3(s3w

′
3∥w

′
3)⟩

= g⟨aL,a1s1w
′
1+a2s2w

′
2+ass3w

′
3⟩g⟨aR,a1w

′
1+a2w

′
2+a3w

′
3⟩

= g⟨a
′,a1s1w

′
1+a2s2w

′
2+a3s3w

′
3⟩g⟨ȧℓa

′,a1w
′
1+a2w

′
2+a3w

′
3⟩

= (A1A
s1
2)a1s1(A1A

s2
2)a2s2(A1A

s3
2)a3s3(A1A

s1
2)a1ȧℓ(A1A

s2
2)a2ȧℓ(A1A

s3
2)a3ȧℓ

= A
(a1s1+a2s2+a3s3)+ȧℓ(a1+a2+a3)
1 A

(a1s
2
1+a2s

2
2+a3s

2
3)+ȧℓ(a1s1+a2s2+a3s3)

2

= A1A
ȧℓ
2

= R (since we have e

(
R

A1
, H

)
= e

(
A2, H

ȧℓ
)
which ensures R = A1A

ȧℓ
2)

Hence, the extracted x is an opening of the commitment R. From the binding of the commitment
scheme, we can ensure that x = w except with negligible probability.

From the accepting transcripts, we have that ⟨(L′
c)i,x

′
i⟩ = y1 + siy + s2i y2 for i = 1, 2, 3 . Now, we

consider the following :

⟨(L′
c)i,w

′
i⟩ = ⟨si(Lc)L + (Lc)R,wL + siwR⟩ ∀i ∈ {1, 2, 3}

=⇒ y1 + siy + s2i y2 = ⟨(Lc)R,wL⟩+ si⟨(Lc),w⟩+ s2i ⟨(Lc)L,wR⟩ ∀i ∈ {1, 2, 3}
=⇒ y = ⟨Lc,w⟩

C Proofs from Section 4

C.1 Proof of Theorem 7

The proof of completeness is straightforward to argue.

Special Soundness. Let y,y′ be defined as y = u+ ra+ r2b, y′ = u′+ rc′, q = v1+ rw1+ r2w2 and
q′ = v2+rw1w2. Now we note that the we invoke (Π2)c for (UArBr2 , Pn, v1+rw1+r2w2;u+ra+r2b, ρn)
and (U ′Cr, P2n, v2 + rw1w2;u

′ + rc′, ρ2n) ∈ RCLF-rev. Our extractor invokes the extractor for (Π2)c
to extract y,y′, ρn and ρ2n such that ⟨ρn,y⟩ = q, ⟨ρ2n,y′⟩ = q′. Extracting y1,y

′
1,y2,y

′
2,y3,y

′
3 for

three distinct challenges e1, e2, e3, our extractor additionally computes u,u′,a,b, c′ such that ⟨ρn,u⟩ =
v1, ⟨ρ2n,u′⟩ = v2, ⟨ρn,a⟩ = w1, ⟨ρn,b⟩ = w2, ⟨ρ2n, c′⟩ = w1w2. Note that the binding of the commitment
ensures that the correct u,u′,a,b, c′, ρn and ρ2n have been extracted.

Our extractor again invokes the knowledge extractor of Πcom-mult to extract ρn, ρ2n such that ρn =
V −1(1 z z2 · · · zn)T and ρ2n = V −1(1 z z2 · · · z2n+1)T , and the binding of the commitment ensures
the consistency of the extracted openings. Hence, it follows that the extracted witnesses satisfies
pu(z) = v1, pu′(z) = v2, pa(z) = w1, pb(z) = w2, pc(z) = w1w2.

We can extract ai,bi, c
′
i for i ∈ [2n + 2] distinct challenges zi such that pc′

i
(zi) = pai

(zi)pbi
(zi). If

any of the extracted ai,bi, c
′
i differ, we will have broken binding and so we have that except with

negligible probability, all the extracted ai,bi, c
′
i are identical. Thus, we have extracted a,b, c′ that

satisfy pc′(z) = pa(z)pb(z) for 2n+2 distinct z. This allows us to conclude (from the Schwartz-Zippel
Lemma) that pc′(X) = pa(X)pb(X).

Zero-Knowledge. Given access to verifier’s randomness z, r, the simulator Shad proceeds as fol-
lows:

1. Shad samples w1, w2 ←−R Zq, y ←−R Zn+1
q ,y′ ←−R Z2n+1

q , and sends w1, w2, U = COMa (y)

ArBr2
, U ′ =

COMa (y′)
Cr , v1 = ⟨ρn,y⟩ − rw1 − r2w2, v2 = ⟨ρ2n,y′⟩ − rw1w2 to V.

2. Shad sets Y = COMa (y), Y ′ = COMa (y′), q = ⟨ρn,y⟩, q′ = ⟨ρ2n,y′⟩.

37

3. Shad then honestly executes (Π2)c to show that (Y, Pn, q;y, ρn),
(Y ′, P2n, q

′;y′, ρ2n) ∈ RCLF-rev in Step 9.

We now argue that the distribution of the simulated transcript is indistinguishable from the transcript
obtain from real protocol execution. Since the underlying vector y,y′, w1 and w2 are sampled uniformly
at random, the computed U,U ′, v1, v2 subject to the constraints COMa (y) = UArBr2 , COMa (y′) =
U ′Cr, q = v1 + rw1 + r2w2, and q′ = v2 + rw1w2 outlined in Step 9, where r ←−R Zq, are distributed
uniformly at random in the transcript. The remaining computations are performed honestly and are
thus indistinguishable from an actual protocol execution.

C.2 Proof of Theorem 8

The proof of completeness is straightforward to argue.

Special Soundness.We rely on the sub-routineΠ2-R invoked in step 10 to obtain openings of A,B,C
and D provided appropriate (2, 2n, 4, 3, . . . , 3) tree of accepting transcripts. We denote fa, fb, fc and
fd to denote the openings of A,B,C and D respectively which satisfies the following constraints,
⟨ρn, fa⟩ · ⟨ρn, fc⟩ = ⟨ρ′2n, fc⟩ and ⟨δn, fb⟩ · ⟨δn, fd⟩ = ⟨δ′2n, fd⟩.

The binding of the commitment scheme ensures that fa = a, fb = b, fc = c′′ and fd = d′′. The con-
straints of the linear forms from (A,Pn, z1;a, ρn),(C,Pn, z2; c

′′, ρn), (B,Qn, w1;b, δn), (D,Qn, w2;d
′′, δn),

(C,P2n, z1z2; c
′′, ρ′2n), (D,Q2n, w1w2;d

′′, δ′2n) ∈ RCLF and the verifier check in step 9 further ensure
that the polynomials satisfy pc = pa ·pe at a random point, i.e. the polynomials are identical with high
probability via Schwartz-Zippel Lemma. Hence, the evaluations at each point satisfy the relation with
high probability, which gives us ci = ai·ei = ai·ci−1 (considering c0 = 1). We get a(z)◦cleft(z) = cright(z)
and b(w) ◦ dleft(w) = dright(w) where cleft = (1, c, . . . , cn−1) = e, cright = (c, . . . , cn) = c, dleft =
(1, d, . . . , dn−1), and dright = (d, . . . , dn), that is ai · c′′i−1 = c′′i and bi · d′′i−1 = d′′i holds for all i ∈ [n].
Additionally, the constraints of the linear forms from (C, left, 1; c′′, (1∥0∥0)), (C, right, x; c′′, (0∥1∥0)),
(D, left, 1;d′′, (1∥0∥0)), (D, right, x;d′′, (0∥1∥0)) ∈ RCLF ensures that the c′′1 = 1 and d′′1 = 1. The
constraints of the linear forms from (C, right, x; c′′), (D, right, x;d′′) ∈ R ensures that the c′′n = d′′n = x
which provides us

∏n
i=1 ai = x =

∏n
i=1 bi.

We define r, s ∈ Zn
q as ri = ai−iβ−γ, si = bi−σ(i)β−γ for all i ∈ [n], for the public permutation σ. We

rely on the [BG12] to ensure that given
∏n

i=1 ai = x =
∏n

i=1 bi holds which implies
∏n

i=1(ri+ iβ+γ) =∏n
i=1(si + σ(i)β + γ) holds, we can ensure that the computed (extracted) vectors r, s are such that

σ(r) = s. The argument follows provided we have O(n) accepting transcripts of Πperm.

C.3 Proof of Theorem 9

Completeness follows directly.

Special soundness. We invoke the extractor of (Π2)c to extract witnesses for 2m + 2 distinct ts
in Step 10(a). Given these witnesses, we can either conclude that Σ0 is a commitment to cm∥0 or
break binding of the commitment scheme. Further, we can invoke the extractor of Πperm to extract
∀k ∈ {L,R} ∀i ∈ [M] vectors uk

i such that uk
i = σk

i (c
m). We invoke the extractor of Πhad to extract

∀k ∈ {L,R} ∀i ∈ [M] vectors tki = σk
i (c

m)◦wk
i ∥h(σk

i (c
m)◦wk

i)
. In steps 10(d) and 10(e), given witnesses

for 2m + 2 distinct challenges, we either extract vectors L′
1, L

′′
1 such that L′

1 =
∑M

i=1 t
L
i + utRi and

L′′
1 = (0∥((L′

1)m−i+1)i∈[M]) = rev(L1) or break binding.

In steps 10(f) and 10(g), given witnesses for distinct z1, z2 that satisfy the given constraints, we
can extract vectors y, x̃O, r, r̃ such that ∀i ∈ [2], ⟨L1, zix̃

O + r⟩ = ⟨cm, ziy + r̃⟩ − ziK. This im-
plies that ⟨L1, x̃

O⟩ = ⟨cm,y⟩ − K. Given accepting y for distinct challenges u1, u2, we can extract
WL(c),WR(c), x̃L, x̃R such that ⟨WL(c), x̃O⟩ = ⟨cm, x̃L⟩ − K and ⟨WR(c), x̃O⟩ = ⟨cm, x̃R⟩. If the
x̃L, x̃R, x̃O obtained in this way are different from the ones extracted by the extractor of Πhad in Step
(h), we will have broken binding of the commitment scheme.

Given x̃L, x̃R, x̃O for 2m+1 distinct c, we either break binding or conclude that x̃L, x̃R, x̃O satisfy the
linear constraints of the circuit as well as the multiplicative constraints, and so xO = (x̃O)i∈[m] must
be a satisfying assignment.

38

Special HVZK. We describe a simulator that given commitments to a satisfying assignment and
the randomness of the verifier, computes a transcript which is perfectly indistinguishable from the
transcript of a real execution. The simulator S acts as follows:

– It computes all commitments honestly in Step 2.

– In Step 4, it samples r, r̃ ←−R Zm
q , s, s̃ ←−R Zq such that ⟨WL(c) + uWR(c), r⟩ = ⟨cm, r̃⟩ − K. It

sets R = COMa (r,s)
(XO)z

, R̃ = COMa (r̃,s̃)
(XL)z(XR)zu

.

– In Step 6, it sets v1 = ⟨L1, r⟩.

– It honestly executes Step 8.

– It honestly executes Steps 10(a)-10(e), and invokes the simulator S, Shad of Π0 with the corre-
sponding verifier randomness in Steps 10(f)-(h).

We analyze the distribution of the transcript. In both executions, the elements R, R̃, v1 are distributed
uniformly at random. The indistinguishability of steps 10(f)-(h) follows from the simulators of Π0 and
Πhadamard. All other computations are honestly executed.

D Proofs from Section 5

D.1 Proof of Theorem 11

Proof. Special Soundness. We consider 3 accepting transcripts for one iteration of PoK Π1-hom
(where one iteration consists of steps 1-5, and step 6 follows by sending x′, L′ instead of providing a
PoK) as follows, where c1, c2, c3 are all distinct challenges. :

(A1, A2, B1, B2, y1, y2, c1, g
′
1,x

′
1, f

′
1)

(A1, A2, B1, B2, y1, y2, c2, g
′
2,x

′
2, f

′
2)

(A1, A2, B1, B2, y1, y2, c3, g
′
3,x

′
3, f

′
3)

Let us consider zi = (cix
′
i∥x′

i). We note that, as c1, c2 and c3 are such that ci ̸= cj for all (i ̸= j)
i, j ∈ {1, 2, 3}, the matrix V described below is invertible.

V =

 1 1 1
c1 c2 c3
c21 c22 c23


Hence, we can compute (a1, a2, a3)

T = V −1(0, 1, 0)T . The computed a1, a2, a3 satisfy
∑

i ai = 0,
∑

i aici =
1 and

∑
i aic

2
i = 0.

We define w to be the extracted value of x and compute it as w = a1z1 + a2z2 + a3z3, given that
COMa′ (x′

i) = A1 + ciP + c2iA2 then we consider

COMa (w) = (⟨a,w⟩)g
= (⟨a, a1z1 + a2z2 + a3z3⟩)g
= (⟨aL∥aR, a1(c1x′

1∥x′
1) + a2(c2x

′
2∥x′

2) + a3(c3x
′
3∥x′

3)⟩)g
= (⟨aL, a1c1x′

1 + a2c2x
′
2 + a3c3x

′
3⟩)g + (⟨aR, a1x′

1 + a2x
′
2 + a3x

′
3⟩)g

= (⟨a′, a1c1x′
1 + a2c2x

′
2 + a3c3x

′
3⟩)g(⟨ȧℓa′, a1x′

1 + a2x
′
2 + a3x

′
3⟩)g

= (a1⟨(c1 + ȧℓ)a
′,x′

1⟩+ a2⟨(c2 + ȧℓ)a
′,x′

2⟩+ a3⟨(c3 + ȧℓ)a
′,x′

3⟩)g
= (a1⟨a′,x′

1⟩)(g′1) + (a2⟨a′,x′
2⟩)(g′2) + (a3⟨a′,x′

3⟩)(g′3) (from Step 4)

= a1
(
A1 + c1P + c21A2

)
+ a2

(
A1 + c2P + c22A2

)
+ a3

(
A1 + c3P + c23A2

)
(from last check)

= (a1 + a2 + a3)A1 + (a1c1 + a2c2 + a3c3)P + (a1c
2
1 + a2c

2
2 + a3c

2
3)A2 = P

Hence, the extracted w is an opening of the commitment P . Similarly we can extract an opening m of
the commitment Q. From the binding of the commitment scheme, we have that w = x and m = rev(f)
except with negligible probability.

39

From the accepting transcripts, we have that f ′
i(x

′
i) = y1 + ciy + c2i y2 for i = 1, 2, 3. Now, we consider

the following :

f ′
i(x

′
i) = (cifL + fR) (xL + cixR) ∀i ∈ {1, 2, 3}

=⇒ y1 + ciy + c2i y2 = fR(xL) + cif(x) + c2i fL(xR) ∀i ∈ {1, 2, 3}
=⇒ y = f(x)

D.2 Proof of Theorem 12

Special Soundness. We consider 3 accepting transcripts for one iteration of PoK Π1-gen-hom (where
one iteration consists of steps 1-9, and step 10 follows by sending x′, L′ instead of providing a PoK) as
follows, where c1, c2, c3 are all distinct challenges. :

(A1, A2, B1, B2, a1, a2, b1, b2, d1, d2, c1, (ck
′(1)
i,1)i=0,...,k−1

,x′
1, f

′
1)

(A1, A2, B1, B2, a1, a2, b1, b2, d1, d2, c2, (ck
′(2)
i,1)i=0,...,k−1

,x′
2, f

′
2)

(A1, A2, B1, B2, a1, a2, b1, b2, d1, d2, c3, (ck
′(3)
i,1)i=0,...,k−1

,x′
3, f

′
3)

Let us consider zi = (cix
′
i,S∥x′

i,S). We note that, as c1, c2 and c3 are such that ci ̸= cj for all (i ̸= j)
i, j ∈ {1, 2, 3}, the matrix V described below is invertible.

V =

 1 1 1
c1 c2 c3
c21 c22 c23


Hence, we can compute (a1, a2, a3)

T = V −1(0, 1, 0)T . The computed a1, a2, a3 satisfy
∑

i ai = 0,
∑

i aici =
1 and

∑
i aic

2
i = 0.

We define w to be the extracted value of x and compute it as w = a1z1 + a2z2 + a3z3, given that
COM′

1(x
′
i,S) = A1+ ciP + c2A2 then we note that COM1(xi,S) = P analogous to the proof of Π1-hom.

Hence, the extracted w is an opening of the commitment P . Similarly we can extract an opening
m of the commitment Q. From the binding of the commitment scheme, we have that w = xS and
m = rev(fS) except with negligible probability.

From the accepting transcripts, we have that f ′
i,S(x

′
i,S) = a1+ciy1+c2a2, fT (xT) = y4, (f

′
i,S , cif

′
i,S)(xT) =

b1 + cy2 + c2b2, and fT (cx
′
i,S ,x

′
i,S) = d1 + cy3 + c2d2 for i = 1, 2, 3. Now, we consider the following

:

f ′
i,S(x

′
i,S) = (cifS,L + fS,R) (xS,L + cixS,R) ∀i ∈ {1, 2, 3}

=⇒ a1 + ciy1 + c2a2 = fS,R(xS,L) + cifS(xS) + c2i fS,L(xS,R) ∀i ∈ {1, 2, 3}
=⇒ y1 = fS(xS)

Similarly, we can ensure that y2 = fS(xT), y3 = fT (xS), y4 = fT (xT).

40

	Succinct Verification of Compressed Sigma Protocols in the Updatable SRS setting

