
1/0 Shades of UC: Photonic Side-Channel
Analysis of Universal Circuits

Dev M. Mehta1, Mohammad Hashemi1, Domenic Forte2 Shahin Tajik1 and
Fatemeh Ganji1

1 Worcester Polytechnic Institute, Worcester, USA,
dmmehta2@wpi.edu,mhashemi@wpi.edu,stajik@wpi.edu,fganji@wpi.edu

2 University of Florida, Gainesville, USA, dforte@ece.ufl.edu

Abstract. A universal circuit (UC) can be thought of as a programmable circuit that
can simulate any circuit up to a certain size by specifying its secret configuration
bits. UCs have been incorporated into various applications, such as private function
evaluation (PFE). Recently, studies have attempted to formalize the concept of
semiconductor intellectual property (IP) protection in the context of UCs. This is
despite the observations made in theory and practice that, in reality, the adversary
may obtain additional information about the secret when executing cryptographic
protocols. This paper aims to answer the question of whether UCs leak information
unintentionally, which can be leveraged by the adversary to disclose the configuration
bits. In this regard, we propose the first photon emission analysis against UCs relying
on computer vision-based approaches. We demonstrate that the adversary can utilize
a cost-effective solution to take images to be processed by off-the-shelf algorithms to
extract configuration bits. We examine the efficacy of our method in two scenarios:
(1) the design is small enough to be captured in a single image during the attack
phase, and (2) multiple images should be captured to launch the attack by deploying
a divide-and-conquer strategy. To evaluate the effectiveness of our attack, we use
metrics commonly applied in side-channel analysis, namely rank and success rate. By
doing so, we show that our profiled photon emission analysis achieves a success rate of
1 by employing a few templates (concretely, only 18 images were used as templates).
Keywords: Side-channel Analysis · Photon emission microscopy · Universal circuits
· FPGA.

1 Introduction
A universal circuit (UC) is a circuit, which upon giving its description as input (so-
called configurations bits), can simulate any circuit of a maximum size [LMS16, AGKS20,
ZYZL19, LYZ+21, CSR+20]. When first introduced, UCs have been thought of as a
solution to share hardware for performing a set of distinct functions, all represented by
a single circuitry [Val76]. Soon after their introduction, studies have been devoted to
implementing the asymptotically optimal UC as proposed by Valiant [Val76]; nevertheless,
it took more than four decades until modular and scalable implementations have been
proposed [AGKS20, LYZ+21, DGS+22]. In addition to efforts put into improving the
scalability and practicality of UCs, various works have discussed applications of UCs in
multiple sub-fields of cryptography, for instance, software obfuscation [Zim15, GGH+16],
batch execution of secure two-party computation [HKK+14, LR15], attribute-based en-
cryption [GGHZ14], actively secure non-interactive secure computation [AMPR14], and
private function evaluation (PFE), transforming any result in multiparty computation
(MPC) to PFE [KS08, MS13, MSS14].

mailto:dmmehta2@wpi.edu,mhashemi@wpi.edu,stajik@wpi.edu,fganji@wpi.edu
mailto:dforte@ece.ufl.edu

2 1/0 Shades of UC

In fact, a UC can be seen as a keyed program for any circuit family [Zim15, LMS16].
Therefore, it could be tempting to apply UCs in the context of intellectual property (IP)
protection, where less formal and trial-and-error methods such as logic locking have been
practiced for years. In this regard, one of the closest notions to the loosely defined logic
locking is PFE [CS22]. When it comes to PFE, the function embedded in the device is a
private input of one party, whereas the input to the function is private to the other party.
Given that the IC design is the private input of the IP owner, one could see the relationship
between these notions. Nevertheless, logic locking and PFE follow two parallel tracks as
explained in [CS22]. This can become evident as the insider adversary at the foundry
observes “a lot of side information about the concealed IC design due to its unrestricted
access to the opaque circuit and oracle access to an honestly-restored chip,” cf. [CS22].
This fact reflects the definition of the adversary model in PFE, where only the output of
the private function to a secret input can be revealed. Based on this, [CS22] has concluded
that the locking mechanism should not be formalized in the PFE setting.

Despite this fact, [MGM+22] has attempted to formalize logic locking through formal
simulation-based security. It has been further suggested that UC-based schemes can
provably satisfy the simulation-based security definition of logic locking. [MGM+22] has
also taken another step to implement UCs on field programmable gate arrays (FPGAs). In
line with the objectives of [CS22, MGM+22], [BGH+22] (TCHES Volume 2022, Issue 2)
has identified the issue with the gap between practice and formalism. Alongside this, flaws
with previous formalization attempts, e.g., [DCSSY20], have been identified. Moreover, to
establish a rigorous methodology for understanding the security of logic locking, new security
definitions and syntax have been proposed. It has also been suggested that UCs are aligned
with those new definitions. [BGH+22] has argued that formal definitions of logic locking
need not model the leakage of side information. This argument overlooks not only practical
probing attacks [EHP22, RTR+20], but also the rich field of cryptography, where it is known
that “privacy is rarely absolute” [BHR12b]. This means that, interestingly enough, in the
context of PFE, leakage of some information is acceptable; for instance, the size of the circuit
or its topology can be revealed [BHR12b, BHR12a, CT16, CT19]. In addition, to capture
the extent of the risks imposed by revealing further information about secure/private
schemes, “auxiliary information” has been defined in the literature [BGJ+13, DKL09].
Therefore, albeit in different ways, the information leakage has been acknowledged in
the relevant literature, [BGH+22] has suggested that the “goal of protecting a chip from
side channel attacks seems to us orthogonal to the goal of logic locking—and indeed,
these approaches could be layered,” (see Section 5.4 in [BGH+22]). On the contrary,
in line with observations in the literature [EHP22, RTR+20], we suggest that UC-based
IP protection schemes must not be treated as a black box. In fact, UCs disclose more
information than expected, which can be leveraged to extract their secret configuration
bits and, consequently, the IP under IP protection scenarios. In this respect, to evaluate
this in practice, our contributions are as follows.
Contributions.

• This paper presents the first-ever side-channel attack against UCs, where the ad-
versary uses side-channels in the form of photon emission to reveal the secret con-
figuration bits (see section 2.3 for more details). We emphasize that the potential
risk posed by this attack is not limited to logic-locking approaches [BGH+22]; in
contrast, any PFE scheme used to protect semiconductor IPs must be rethought to
protect the function that is supposed to remain private during protocol execution.

• The proposed attack itself has several novel aspects thanks to methods derived from
computer vision. These simple and off-the-shelf methods effectively reduce the cost of
the attack compared to an attack that requires a more expensive setup. Furthermore,
the combination of image processing and computer vision techniques allows us to

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 3

Figure 1: X-, Y-, and U-blocks are building blocks of UCs. The figure shows the possible
routing configuration of each block. The X- and Y-block have 2 possible routing options
based on the configuration bit. The implementation of the U-block is based on that of the
Y-block. Three Y-blocks are used to create 1 U-block. The unique feature of the U-block
is that the configuration bits C0-C3 are inputs of the Y-block and the selector bits in the
Y-block are the inputs from the user (A & B).

reduce the cost of the attack in terms of the number of images used for profiling.

• For demonstration purposes, we present an attack against benchmark functions
commonly used in the IP protection literature. These functions are converted to
their associated UCs by an existing modular and scalable UC compiler [AGKS20]
and implemented on FPGAs. It is noteworthy that from the point of view of our
attack, any other circuit can be similarly targeted (see Section 6.4 for a discussion
on this). We evaluate the cost of such attacks regarding the number of images taken
from the target device during the attack phase. Depending on the specifications of
the imaging setup, if the design can be captured in one image, that image is sufficient
to launch the attack; otherwise, multiple images would be needed. Nevertheless, the
number of images required for the attack is bounded by the square of the circuit size.

2 Background

2.1 Universal Circuits (UCs)
UCs, i.e., Valiant’s UCs [Val76] are used in various applications, including secure multi-
party computation protocols for private function evaluation. This is closely related to
the concept of IP protection, as the idea behind these protocols is to enable two or more
parties to compute a private function on their private inputs without revealing their inputs
to each other. In other words, the circuit can be set up so that each party observes only
its own input and the output of the circuit, not the actual function being computed or the
inputs of the other parties.

More precisely, consider a (computable) Boolean function f(x) that is represented as a
Boolean circuit Cg

u,v(x) with u input wires (in1, · · · , inu) feeding input x to the circuit,
and v output wires (out1, · · · , outv, and g gates for some u, v, and g cf. [AGKS20]. The
size of this Boolean circuit is n = u + v + g. The UC built upon this Boolean function
is a programmable circuit that can simulate any Boolean function up to a given size
n. In order to program the UC to compute f(x), configuration bits are specified as
another input cf = {c1, · · · , cm}. Upon receiving cf and x, the UC computes the result
as UC(x, cf) = f(x). In this respect, without cf provided by one of the parties, the
computation cannot be performed; hence, from the IP protection perspective, cf serves as
the key to the keyed program UC(x, cf). Valiant’s proposal for constructing UCs [Val76]
exhibits an asymptotically size-optimal UC with size Θ(n log n) and depth O(n) [Weg87].
Valiant’s constructions include so-called 2-way and 4-way UCs relying on the edge-universal
graphs (EUGs) that utilize recursive constructions with either 2 and 4 sub-structures (for

4 1/0 Shades of UC

Figure 2: Schematic of a UC corresponding to a 1-bit summation. The blocks represent
different UC components used to implement the summation.

more details, see, [AGKS20].
A UC consists of 3 types of switching blocks, X, Y, and U blocks; see Figure 1. An

X-switching block consists of two inputs and two outputs, where the input signals are
forwarded to outputs switched or not switched, depending on a configuration bit. A Y-
switching block consists of two inputs and one output, where, depending on a configuration
bit, one of the input signals will be forwarded to the output. On the other hand, the U
block consists of three Y-switching blocks to realize a lookup table; see Figure 1. While
the X and Y blocks are used for routing the inputs, the U block implements the standard
2 input gates.

To better understand how a UC works, we provide an example of a 1-bit summation
design as shown in Figure 2. Each of the blocks present in the summation design has a
specific function. For example, in the summation UC, the U-block configuration bits are
“0110,” which is the truth table of an XOR gate. The X and Y blocks have inputs from the
circuit ports, while the configuration of the blocks is decided using the configuration bits.
This configuration bits of X, Y, and U blocks are stored on the FPGA and can not be
changed. The routing is used to output different functions depending on the configuration
bits. In this way, the design can act as different circuits based on the routing, and to
get the correct functionality of the summation, the correct configuration bits need to be
programmed. U-block is different as the input is configuration, whereas the selector is the
input bits. The U-block is made up of 3 Y-blocks, which each act as 2-to-1 MUX to form
4-to-1 MUX. This can be seen in Figure 1 where the configuration bits (C0-C3) are used
as input to the Y-block and the user inputs (A & B) are used as the selector bits of the
Y-blocks.

2.2 Photon Emission Microscopy
Photon Emission Microscopy (PEM) is a popular failure analysis tool for fault localization
in complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) [BB03].
In static states of CMOS gate, where no transistor devices are switching, the current
consumption of the transistor gates are minimal. However, during a switching event, a
substantial current passes through the circuit, causing the transistors to enter the saturation
region for a brief period. In this state, the kinetic energy of accelerated hot carriers can be
released via photon emission, with n-type transistors emitting more photons than p-type
transistors due to the higher mobility of electrons. The emission rate is proportional to the
switching frequency of the circuit, and raising the supply voltage exponentially increases
the emitted photons.

For PEM analysis, capturing the emitted photons from the front side is challenging
due to the existence of multiple interconnect layers on modern IC designs, obstructing the
optical path [BB03]. However, there are no obstacles on the IC backside, facilitating the
photon emission analysis. Since the silicon substrate on the IC backside is only transparent

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 5

Figure 3: Flow of implementing UCs on FPGAs.

to photons with wavelengths above 1 µm, photons with the near-infrared (NIR) spectrum
range can escape the silicon. To observe these photons NIR cameras, such as CCD and
InGaAs, are deployed. Photon(ic) emission analysis have already been utilized as both
offensive [FH08, SNK+12, KNSS13, TNH+14, TDF+14] and defensive [SSA14, SSW+14]
side-channel tool in the literature.

2.3 Threat Model
For our adversary model, we consider an adversary interested in IP piracy. In the case
of application-specific integrated circuits (ASICs), the adversary could be an untrusted
foundry with access to all IP design details. In the case of the FPGAs, an attacker could
be the IP integrator during the system design. We assume that the adversary has access
to all design details of the UC circuit (e.g., its netlist, placement, and routing) except
for the configuration bits. After fielding the FPGA, the configuration bits will be loaded
securely into the FPGA. Otherwise, they could have been pre-programmed into user fuses
or other available NVMs (e.g., in the case of Flash-based FPGAs) to configure the UC
circuit. Note that stored configuration bits could be distributed all over the chip, which
makes their direct readout challenging and expensive. We further assume that the fielded
FPGA has proper (i.e., side-channel resistant) bitstream protection such that the adversary
cannot access the plaintext bitstream for reverse engineering and IP extraction. Finally,
we assume that our adversary can access a photon emission microscope and feed inputs to
the UC circuit.

3 UC Implementation Flow for FPGAs
We used the compiler proposed by Alhassan et al. [AGKS20], which delivers one of the
most efficient implementations of UCs. Their modular open-source implementation [Enc16]
is highly scalable thanks to the hybrid UC construction combining Valiant’s 2-way and
4-way constructions. Here, we briefly explain the mechanism underlying their method and
how we adapt that to implement UCs on FPGAs. Figure 3 shows the high-level schematic

6 1/0 Shades of UC

of our FPGA implementation flow of UCs. This flow consists of two main steps: (1) the
generation of cf and UCV aliant

n from the target circuit using Alhassan et al. [AGKS20]
compiler, and (2) conversion of UCV aliant

n into a Verilog file using our UCV aliant
n to Verilog

converter.
Generating cf and UCV aliant

n from the target circuit.Given a fanin-2 circuit C g̃
u,v

delivered by the circuit compiler, the configuration bits cf , and the universal circuit
description UCV aliant

n are generated for the high-level description of the targeted circuit
f(x). The steps taken in this respect are as follows.

• Graph translation: Involves converting a circuit into a directed acyclic graph
(DAG), where each node represents a logic gate and edges represent connections
between these gates. This graph formulation is important for the next steps, as it
allows for the application of graph-theoretic algorithms.

• Edge-embedding algorithm: This step mathematically maps the edges of the
original circuit’s graph into a larger, pre-defined universal graph. The key here is to
ensure that the mapping preserves the circuit’s logical structure and connectivity.

• UC generation: Here, the UC is constructed based on the edge-embedded graph.
This involves calculating the layout and configuration of the UC’s gates and switches
to make it capable of emulating any circuit of a specified size. The output of this
process is UCV aliant

n .

• Programming the UC: The final step involves setting the configuration bits
within the UC. These bits determine the state of the UC’s switches, effectively
“programming” it to mimic the functionality of the original circuit. This results in
obtaining the configuration bits cf .

Our UCV aliant
n to Verilog converter. The generated cf and UCV aliant

n cannot be
implemented on FPGAs as the UCV aliant

n is just a representation of the circuit, which does
not have a suitable Verilog or VHDL functionality to be implemented on FPGA. Therefore,
we have developed our UCV aliant

n to Verilog converter, which parses the UCV aliant
n and

generates the corresponding Verilog representation of UC. For this, it first parses UCV aliant
n

and finds every X−, Y −, U− blocks, and their connections. Then, it constructs those
blocks using XOR and AND gates following their definitions in Alhassan et al. [AGKS20]
approach. In the next step, our UCV aliant

n to Verilog converter makes all the connections
between the XOR and AND gates generated based on UC X, Y , and U gate corresponding
to the UCV aliant

n . Finally, our UCV aliant
n to Verilog converter parses cf and inserts the

corresponding configuration bit in each XOR and AND gate and generates a ready-to-be-
implemented UC Verilog file from cf and UCV aliant

n .

4 Experimental Setup

4.1 Device Under Test
We used a Genesys 2 development kit for all the experiments. This kit has an AMD/Xilinx
Kintex 7 (XC7K325T-2FFG900C) FPGA manufactured with 28 nm technology. The
FPGA die is packaged in a flip-chip package. Hence, by removing the fan and the heat
spreader, we were able to get access to the backside silicon of the FPGA, see Fig 4(a). We
did not perform any other modifications (e.g., silicon polishing or thinning) to the package
or board. For all the experiments, the FPGA core is supplied by 1.0 V and the global clock
operates at 555 MHz. Increasing the clock frequency could cause more frequent switching
of the logic gates, leading to a higher photon emission rate.

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 7

(a) (b)

Figure 4: (a) The heatsink has been removed to get access the backside silicon of the
FPGA. (b) The ALPhANOV InGaAs camera and microscope have been utilized for PEM.

4.2 Photon Emission Setup

We used an ALPhANOV S-LMS [Alp23] for NIR and emission microscopy. The microscope
consists of a camera system for capturing images and a lens on an XYZ stage to focus
on a region. The lens in the setup is 20x Ultra High Resolution (NA=0.6) with a typical
field of 480x380 µm. The camera system consists of an InGaAs camera to detect the
photon emission from the DUT. The camera is cooled down thermoelectrically to −25 ◦C
to minimize the noise caused by the dark current. The resolution of our InGaAs camera
is 640 × 512 px2 where the size of each pixel is 15 × 15 µm2. The combined setup is
controlled using the software and hardware switches to control the XYZ stage and camera
options. The software provides 2 views, an IR view of the die which is used for navigation,
and a photon emission view which shows the captured photons. The software also has
image processing capabilities such as overlap and dark image subtractions in addition to
fine controls of the camera capture parameters, such as integration time, gain, and frame
rates. The dark image subtraction is a major feature in removing the dark current noise.
The integration time of the capture is kept high to get a long capture time per image. The
integration time for the image was kept at 5000ms with a frame rate of 0.1Hz and a gain
of 400. This allows to capture high amount of photon emission.

4.3 Hardware Implementation

The FPGA and the emission microscope with controlling devices form our experimental
setup as shown in Figure 5. First, the FPGA needs to be configured by a bitstream.
The placement of the designs for all the bitstreams is known apriori. The bitstream is
programmed using Vivado 2021 [Xil21] from a computer. An Arduino kit is connected to
the FPGA for changing inputs to the design using PMOD pins. The signals from PMOD
pins activate routing circuits to either connect ring oscillators (flipping input generator) or
constant input drivers to the UC design input. We send control messages to the Arduino
using the computer over UART for this purpose. The DUT is now ready for capture.
The microscope is moved and focused on the region of interest for capturing using the
XYZ controls. Once focused, the software is used to capture images. These images are
post-processed using MATLAB. To achieve consistency in the images, the microscope is not
moved in XY dimension for a UC design once the experiment starts. However, refocusing
might be needed from time to time due to the vibration present in the environment.

The process for the identification of the configuration bits is accomplished using the
emission from LUT and routing. To make it efficient and accurate, an image processing
pipeline for the captured raw images has been implemented. A detailed explanation of the
capturing process and image processing pipeline is provided in the next section.

8 1/0 Shades of UC

Figure 5: The experimental setup. This includes the PC used to program the bitstream,
Arduino board to control the inputs, microscope to capture photons, and another PC to
post-process the images.

Table 1: The input patterns used for the photon emission analysis and their impact on
the output of the blocks. Each block has 2 inputs A and B and hidden configuration bits.
The “F” denotes the flipping pattern. For U-blocks, the outputs are configuration bits
that alternate every clock cycle. Hereafter, we refer to these patterns by their numbers,
e.g., input pattern 1 means that the input B is set to “0”, whereas input A is flipping.

Input Pattern A B X output Y output U outputc = 0 c = 1 c = 0 c = 1
1 F 0 (F,0) (0,F) F 0 C0 & C2
2 F 1 (F,1) (1,F) F 1 C1 & C3
3 0 F (0,F) (0,F) 0 F C0 & C1
4 1 F (1,F) (F,1) 1 F C2 & C3
5 F F (F,F) (F,F) F F C0 & C3
6 F F̄ (F,F̄) (F̄ ,F) F F̄ C1 & C2

5 Attack Approach
The process of bits extraction has two main components. First, we need to acquire images
from the chip backside and then process the images through approaches borrowed from
image processing. The processed images are then employed to extract the configuration
bits through computer vision.

5.1 Capturing Images
For PEM, we first start with capturing the images, followed by post-processing those
images to find the configuration bits. We begin with programming the FPGA with the
desired design. There are two types of design, namely, profiling and attack designs. The
profiling set consists of designs used to form a dataset of the emission fingerprint of each
block. The attack designs are the UC designs under attack by our approach.

The PEM captures the activity of switching transistors. To perform our attack, we
force the transistors to switch on the FPGA by toggling the inputs of the UC. We consider
2-input patterns as all the blocks used in the UC are 2-input blocks. The X and Y blocks
are used for routing, i.e., the output values will be connected to specific input-based
configuration bits. For example, for a Y block, if input A is connected to the flipping
bit and the output also shows flipping values, the configuration bit is 0. Otherwise, the
configuration bit is 1 as seen in Table 1.

Similar methods can also be used for X-block to predict its behavior, as illustrated in
Table 1. This leads to patterns where both inputs are flipped alternatively and the other
input is kept constant, making up for 2 patterns.

However, U-block configuration bits are not that easy to identify. A U-block acts as a
universal gate where the 4 configuration bits act as the input of the MUX, and the 2 inputs
act as the selector. This behavior is very similar to LUTs in an FPGA. Therefore, flipping

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 9

the input does not translate to a flipping behavior at the output, and thus, emission is
not guaranteed in contrast to the case of X and Y blocks. Thus, more input patterns
need to be added for the identification of the configuration bits in a U-block. Hence, we
add 4 more patterns to the 2 existing patterns, making a total of 6 input patterns for our
experiments, as shown in Table 1. In the table, the last column shows all the configuration
bits that would alternate for a particular input pattern. All 6 input patterns give unique
configuration bits switching at the output of the U-block. Therefore, we have unique
emission patterns for each case, which provides better profiling for all the cases of U-block.
There is no guarantee of an emission for the U-block in each input pattern case. For
example, if the configuration bits are ’1010’ then pattern 1 would not show any emission
at the output, the output is alternating between 1 (C0) and 1 (C2), while input pattern 3
would show emission at the output. In some cases, it is also possible that the output might
not have flipping values, but the intermediate Y-blocks might have flipping values. In this
case, the LUT corresponding to that Y-block shows emissions in the LUT and their local
output. With the added input patterns, repetition is observed for the X and Y blocks.

The Xilinx implementation floor plan is used as a guide in finding the point of interest
on the FPGA using the XYZ stage of the microscope. The navigation view of the NIR
camera is used to achieve precise focus and navigation. This process can be assisted by
placing ring oscillators (RO) around the design, as the ROs are very bright and easier to
spot. This could be done on an extra FPGA with the same die as the victim FPGA. Once
the design is located, we use the input patterns discussed above to get 6 different images
for the design. The inputs are controlled through the Arduino board using a PC. These
photon emission prints are dependent on the type of LUT used for the implementation.
For all the experiments, we used the same type of LUTs to form the profiling set of
photon emission fingerprints. These LUTs are the same as the ones used in the attack
designs, too. Note that while the emission patterns do not depend on LUT locations, they
depend on the orientation of the LUTs. For example, some LUTs could be fabricated
and placed mirrored to others (as previously observed on Intel/Altera FPGAs [TNH+14]),
and thus in the post-processing rotation has to be applied to get the images in the same
orientation. For the profiling phase, we change the configuration bits and get 6 images
for each configuration bit. However, for the attack phase, we only need 6 images for the
whole design. Now that we have all the images we require, we explain the post-processing
steps required to extract the configuration bits.

5.2 Image Processing
The workflow of our computer vision-based algorithm includes cropping, filtering, contrast
enhancement, feature extraction, and a bag of feature-based image retrieval, as shown
in Figure 7. Each step is taken by applying off-the-shelf algorithms to emphasize how
straightforward the attack is. For this purpose, in each step, we also provide an example
of the command given in Matlab [Mat23]. Here, we briefly explain what each of the steps
is used for.

Registration. Registration is an image processing technique to align figures and find the
region of interest. This is used to crop each block to be processed to find the configuration
bit. Specifically, registration is done to select LUTs for each block present in the design.
To decide the region of interest and identify LUTs corresponding to the block, we use the
implementation view in the Vivado. The relative placement of the LUTs is consistent with
the flow, so one LUT location leads to the rest. In order to crop images and extract the
region of interest, it is necessary to crop it out of solely one image (i.e., an image taken
with one input pattern). This cropped image is used to find coordinates for cropping the
rest of the images in the set using registration of the image. In MATLAB [Mat23], it is
achieved using the normalized 2-D cross-correlation (normxcorr2) [Lew95]. The normalized

10 1/0 Shades of UC

Figure 6: Each sub-figure illustrates the effect of giving one input pattern to the U-block.
The orange lines represent alternate values for every clock cycle. “F” shows a flipping
input of 0/1s. Y-blocks act as 2-to-1 MUX in a U-block which are controlled by the circuit
inputs. C0-C3 denotes the configuration bits of the U-block.

cross-correlation compares the cropped base image to the original image from which the
cropped image is derived to provide us with the exact coordinates that can crop the same
portion from the rest of the image set.
Noise removal. The raw images exhibit a high noise level, interfering with the feature
extraction algorithm. Therefore, the next step is to remove the noise using filtering
techniques. The noise in the images is salt and pepper, i.e., randomly occurring white
and black pixels, in nature (see Figure 7). So, we use median filtering in combination
with bilateral filtering to take care of it. Median filtering is a non-linear digital filtering
technique [Lim90]. It uses a window-based algorithm, where the median of neighboring
pixel values is used as the new value for each pixel in an image. The window size could
be changed to achieve different intensity of filtering. This is an adequate filter, especially
when the salt and pepper noise should be removed, but the edges need to be preserved. On
the other hand, bilateral filtering is a non-linear filter that is mainly used to smooth the
images [TM98]. This filter also preserves the edges while smoothing the points in the image
using Gaussian-based filtering. MATLAB uses a degree of smoothing parameter to change
the intensity of smoothing. This parameter is based on the variance of noise calculated
from a noisy patch of the image selected by the user. It is useful in our case as it preserves
the emission spots while merging the noisier white dots with the black background. It also
has other parameters related to the intensity threshold, such as spatial sigma, which can be
used to further eliminate those smaller white dots in a controlled manner. This helps tailor
the smoothing effect of the filter to our needs. We have implemented a pipeline with weak
bilateral filtering, median filter, and then again, more robust bilateral filtering. We also
tried the Weiner filter [Lim90], a linear time-invariant filter, and watershed segmentation
algorithm [Mey94]. However, the results produced by those techniques were not satisfactory
in terms of enhancing the features.
Contrast adjustment. Once the image is cleaned from noise, enhancing the intensity
of LUTs before employing feature extraction is helpful. There are two reasons for this:
the original contrast is not that high, and the filters will dull it even more. For this, the
intensity parameter can be adjusted. The available command in Matlab [Mat23] sets the
contrast limits for the grayscale image to enhance the contrast. The limits are set manually
based on the filtering outputs. This will also improve the image’s dynamic range, making
it easy to distinguish between the remaining small amount of noise and the actual emission.

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 11

Now, the image is ready to perform feature extraction.

Feature extraction. The features are extracted from the pre-processed images. These
features mainly include white dots of a specific size, representing the emissions points. For
this purpose, the scale-invariant feature transform (SIFT) algorithm is purposefully chosen
as it can extract features for spot detection, whereas popular algorithms like speeded-
up robust feature (SURF) algorithm [BTVG06] work better with edge detection. SIFT
first identifies the key points using the local intensity extrema and descriptors calculated
using local image information around those key points. It is also invariant to the image
scale and rotation. This is of utmost importance as the LUT emission is usually seen
as circle-like light spots on a black background. The extracted features can be seen in
Figure 7 marked with green circles. The settings for the SIFT extractor need to account
for several parameters like contrast threshold settings and a maximum number of features.
The algorithm mainly selects all the spots above a certain threshold, and the contrast
enhancement in the previous step plays a vital role in avoiding noise or outliers.

Image retrieval using a customized bag of features. During profiling, the features
extracted by the SIFT algorithm from the images are used to form a bag of features for
each of the X/Y/U blocks with all possible input and configuration bit combinations (see
Table 1). The profiling bag of features is captured once and can be applied to all the
image sets with different settings. A bag of features is a set of visual words that makes
a dataset for features of each image [CDF+04, NS06]. It is inspired by the document
retrieval system using the bag of words. It is a common technique for implementing a
content-based image retrieval system. Instead of the words used in documents, a bag of
feature implementation uses the features extracted from the images. This bag is a dataset
for identifying the target image (image from the circuit under attack) and its configuration
bit using the image retrieval function during the attack [PCI+07].

The target image used to disclose the configuration bit also undergoes the same
processing pipeline to obtain a processed clean image; however, the bag of features is not
created for target images as that is part of the profiling step. The image retrieval process
finds 2 similar images, one from the bag of features dataset (profiling set) and the other
is a block cropped from the UC under attack. In doing so, the features extracted from
each image are utilized to return scores, sorted from best to worst. Each image in the
bag of feature datasets has a configuration bit label assigned to it. Based on the match,
we disclose the configuration bits of that particular block in the attack image. This is
repeated for each block of the UC in the attack image automatically.

Next, we look at a detailed understanding of the ranks and the metrics used to show
the results.

5.3 Metrics
The metric used to measure the effectiveness of our experiment is the success rate (SR),
which is in line with studies on SCA. To perform profiled SCA, the adversary utilizes a set
of profiling and attack images of sizes NP or NA, respectively. In doing so, she computes a
score vector per secret that depends on NP or NA. In our scenario, NP refers to how many
images with different input patterns are taken into account as a template. NA corresponds
to how many images are taken from the design to extract the configuration bit, which
is NA = 1 in our attacks. Suppose that following the divide-and-conquer approach, the
configuration bits cf = {c1, · · · , cm} are divided into m single configuration bits to be
guessed after launching the attack. After the attack, a bit guessing vector b = [bi, bj , · · · , bt]
that has a decreasing order of probability, i.e., bi corresponds to the ith image template
with the highest probability of correctness. Here, | b | equals the number of templates.
The rank Ri (1 ≤ i ≤ m) of the correct configuration bit is defined as its position in b. For

12 1/0 Shades of UC

Figure 7: Steps taken by applying image processing and computer vision-based techniques
to extract configuration bits.

each configuration bit, the success rate (SR) of order ORD is denoted by SRORD
i and

defined as

SRORD
i (NP) = Pr[Ri ≤ ORD], (1 ≤ i ≤ m). (1)

In other words, SRORD
i is the probability that the ith correct configuration bit is ranked

among the Ord first most probable configuration bits. If all the correct configuration bits
are ranked first, the full key is trivially recovered. Otherwise, in order to determine the
success rate of the attack for all configuration bits, following the methodology in SCA,
different approaches can be taken [CPS16]. A straightforward method is a key enumeration
algorithm to output all configuration bit strings (possible combination of configuration
bits) from the most probable to the least probable one [LMM+16]. As the number of
templates | b | is small, key enumeration can be performed fast and with a much-reduced
memory cost. An example, as provided below, can clarify this.

Suppose that after conducting image retrieval, when guessing the ith configuration
bit, the correct configuration bit is at 1st position in b; hence, Ri = 1. If for all other
configuration bits j ̸= i (1 ≤ j ≤ m), Rj = 1, clearly SR1 = 1. Now, if Ri ̸= 1 (1 ≤ i ≤ m),
image scores delivered by the image retrieval algorithm can be mapped to integer weights
required by the key enumeration in [LMM+16]. Given those weights (image scores), the
rank R is defined as the number of configuration bits with a weight less than or equal to
m multiplied by ORD. With this, SRORD(NP) = Pr[R ≤ ORD]. Obviously, SR1 = 1 if
the scores (weights) of the correct images are 1.

It is noteworthy that to improve the efficiency of our attack further, we restrict the
number of indices (i.e., matches) retrieved by the image retrieval algorithm to 5. This
is due to the fact that the other matches sorted below 5 have low scores, thus being not
useful. As a result, if the algorithm cannot find the correct configuration bits within the
top 5 guesses, no match will be reported (denoted by “–” in Section 6).

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 13

6 Experimental Results
This section covers the results for two different cases: summation and c17 circuit from
the ISCAS85 circuit benchmark set to test our approach [HYH99]. ISCAS85 is composed
of netlists associated with industrial designs. As their high-level design is unknown, they
are good candidates for random logic circuits. While the summation circuit represents a
small design with a limited number of X/Y/U blocks, the second example, C17 from the
ISCAS85 set, demonstrates how, for a large circuit, a divide-and-conquer strategy can be
deployed to extract secret configuration bits. Before looking at the results for the attack
phase, we discuss the emission results for the individual blocks used in the profiling phase
and their important features.

6.1 Profiling
There are 3 types of blocks in a UC, as mentioned in Section 2. We started by capturing
the images from each block individually to understand the elements of the implementations
present in the images as part of profiling. This helps understand their behavior in terms of
LUT emissions. The raw images from the X-block and Y-block are shown in Figure 8(a).
As seen in this figure, we have one instance of each block to analyze the components that
emit photons. The difference in the color is because, for the sake of demonstration, the
image on the left is taken with the overlay of the die image, whereas the image on the
right is a raw photon image. For both blocks, we can observe the LUT and buffers of
input/output of the LUT with some routing emission on the right-hand side of the LUT.
The image on the left is of a Y-block with the input pattern 5 as listed in Table 1 and
configuration bit of ‘0”. Therefore, both inputs of the block are flipping, and the output is
also flipping as the Y-block routes the input A to the output. This can be seen in the image
with a “Y” looking shape with 2 lines on the top marked as the input and output marked
at the bottom. The central horizontal illuminating bar represents the LUT containing the
logic for the Y-block. We also see a few other emission points around the LUT: routing
points and buffers for the LUT input/output. On the right side, we have an X-block
emission image, where we can identify the LUT emissions and the buffer. Compared to
the Y-block, the inputs and outputs are not that clearly distinguishable. This is due to
the noise and changes in LUT logic for the X-block. For an X-block, both input and
output are flipping with input pattern 6 (see Table 1) irrespective of the configuration bits.
Therefore, the emission pattern can be differentiated from the Y-block.

The U-block is formed out of three Y-block, so it exhibits a similar emission pattern,
but with 3 LUTs making up a block with a slight difference in buffers and routing as seen
in Figure 8(b) on the left side. Figure 8(b) (right) shows the placement of the 3 Y-blocks
building a complete U-block in the Vivado implementation view. All the 3 Y-blocks are
captured in a single image for the profiling set, as seen in Figure 8(b) (left). We can see
the difference in the routing and the buffers for the U-block, as the block only has a single
output for 3 LUTs. As explained in Section 5, these images taken from the basic blocks
with all possible combinations of input and configuration bits form our profiling image set.
Next, we look at how the attack is carried out using the profiling set.

6.2 Example 1: Summation Circuit
The summation design includes a 1-bit summation using an XOR gate. The design, when
given to the UC compiler, is converted to a 6-block design including 2 X-block, 1 U-block,
and 3 Y-block as seen in Figure 2. As illustrated in the schematic, the inputs can be used
to provide switching activity to all of the blocks in the design. The X_0 and X_1 blocks
are directly connected to inputs, whereas the U_2 block is indirectly connected to both
inputs based on the configuration bits; however, Y-blocks are not directly connected to

14 1/0 Shades of UC

(a) (b)

Figure 8: (a) Y-block (left) and X-block (right) are building blocks of UCs. The figure shows
raw images taken by the microscope to compare the emission from different components like
LUT and buffer in blocks. (b) Raw image showing the photon emission from the U-block
(left) and U-block implementation and placement from Vivado (right). The relationship
between the placement of LUTs on the FPGA and the actual emission on the die can
be observed here. The image is rotated when put under the microscope because of the
physical placement of the device in a different position.

both inputs. Y_3 and Y_4 each have one connection to inputs and one to the output of
the U-block. Lastly, Y_5 is connected to the Y_3 and Y_4.

A top module is developed to grant control of the 2 inputs using the Arduino connection
on the PMOD. Then, place and route are performed to know the location of the LUTs,
and the design is ready to be put under the microscope. In a real-world scenario, one could
reach this stage when the netlist and the placement are known or by reverse engineering
the bitstream [KEL22] to gather this information (see Section 2.3).

After capturing the images, to disclose the configuration bits of block, e.g., X_0, we
perform registering on the X_0 LUT images taken from all possible input combinations (6
images in the image set). The registered images are given to the image retrieval algorithm,
which matches each image to an image in the dataset (see Section 5.2). We can extract
the configuration bit from the matches based on the image scores delivered by the image
retrieval algorithm (see Section 5.3. This process is repeated for the X_1. For X_0, we
get rank 1 in 4 of the images corresponding to different input patterns, while for X_1, the
best rank is 2 as seen in Table 2. This is due to the image set quality.

The inputs are routed to the U-block through X_0 and X_1 blocks. Thus, the flipping
input given to the UC reaches the U-block. Hence, we can repeat the process for disclosing
the configuration bit of the next layer’s U-block (U_2), i.e., employing a bag of features
for image retrieval. The output of the U-block is routed to two Y-blocks. The other inputs
to the Y-blocks are the outputs of the X-block. We repeat the image retrieval process for
this layer using the bag created for the Y-blocks. Y_3 and Y_4 configuration bits reveal
that the Y_3 routes the U-block output, and the Y_4 routes the X_1 output to the last
block. Lastly, Y_5 routes the U-block output as the output of the UC with the summation
functionality. The ranks for each block can be found in Table 2 with the SR of disclosing
the configuration bits of the circuit. According to our results, SR1(1) and SR2(1) are at
most 0.66, indicating that with only one input pattern, the SR is not satisfactory, even if
the guesses ranked second are taken into account. Increasing the number of input patterns
and the number of templates to 6 helps boost the success rate and achieve SR2(6) = 1.
Interestingly, SR1(6) has not improved much, indicating that the quality of images was
not good enough. We will see in the next experiment that different sets with different
contrast and image quality result in different results.

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 15

(a) (b)

(c) (d)

Figure 9: Configuration of the summation UC circuit for Kintex 7 FPGA board. (a) The
LUTs used by each block are shown in orange. (b) The routing between the blocks. (c)
and (d) show the corresponding emission of the LUTs with routing and mainly the routing
nodes themselves, respectively.

Figure 10: ISCAS85 - C17 schematic. The circuit consists of 6 NAND gates interconnected
to each other to give 2 outputs.

6.3 Example 2: C17 in ISCAS85
First, we should stress that this circuit solely serves as an example of a large circuit whose
UC-based implementation is targeted to extract the configuration bits. The core idea
underlying our attack is that the adversary is capable of taking images from multiple
portions of the design, regardless of its size, to achieve her goal. Therefore, any other
benchmark circuit could have been considered.

The C17 consists of 6 NAND gates, as Figure 10 illustrates. It has 5 inputs and 2
outputs. The 6-gate circuit is converted into an 81-block design using the UC compiler.
We have looked at 16 blocks connected to the first U-block in the circuit. This is done
due to the camera’s limitations, namely, the camera’s aperture and focal length, resulting
in the impossibility of capturing all the LUTs into one frame. In this part of the circuit,
we are only interested in two inputs connected to the first U-block. This sub-circuit is

16 1/0 Shades of UC

Table 2: The SR of disclosing the configuration bits of the UC constructed for a summation
circuit. Each row represents results for an image corresponding to an input pattern. Here,
“–” indicates that there was no correct guess of the configuration bit within the top 5
guesses.

All Blocks
Input pattern u_2 x_0 x_1 y_3 y_4 y_5 SR1(1) SR2(1) SR1(6) SR2(6)

1 – 1 3 1 2 2 0.33 0.66

0.66 1
2 3 – 3 1 – 3 0.18 0.18
3 1 3 3 1 2 2 0.33 0.66
4 – 1 2 1 2 4 0.33 0.66
5 3 1 2 1 4 1 0.5 0.66
6 – 1 4 1 3 1 0.5 0.5

shown in the Figure 11(a). In this sub-circuit, 6 Y-blocks, 9 X-blocks, and 1 U-block are
used. These connections are shown using the brown and yellow wires, whereas the purple
wire is connected to a constant “0” to have activity in the sub-circuit we are interested
in. The U-block of interest is highlighted in blue at the top right corner of the schematic;
see Figure 11(a). The placement of the circuit is shown in Figure 11(b), and the resulting
photon emission for input pattern 6 is shown in Figure 11(c). As can be seen in the
placement, the LUTs connected to the U_24 block are placed in sequence. To determine
the configuration bits of each block, we employ the same flow for post-processing and
image retrieval.

To examine how the quality of templates can lead to different results, we took 3 sets
of images with each input pattern, a total of 18 images (templates). We calculate the
success rate for each image individually and for each set. Interestingly enough, in our
experiments, not all LUTs emit photons when flipping the inputs, thanks to the routing.
This is noticed in the Figure 11(a) and (c). The schematic shows that LUTs such as Y_1
are not directly connected to the inputs that the adversary can flip. Because of this reason,
some of the LUTs do not light up in the photon emission images. Moreover, in input
patterns where only one of the inputs is flipping, the photon emission would not be present
for some LUTs. These cases and the cases where a match could not be found are marked
by “–” in Table 3. Nevertheless, as can be seen in this table, other input patterns can
make LUTs emit photons in all blocks and image sets. Here, for the second and third
image sets (second and third rows in the table), we get SR1 of 1. These sets consist of
images taken with various dynamic ranges (the ratio between the brightest and darkest
parts of an image, adjustable for the microscope), where image set 1 and 3 exhibit the
lowest and highest ratio, respectively. When considering the first image set, SR1 = 0.9.
We observed that one of the LUTs, corresponding to x_3, can not be recognized with
a high score. The SR increases as the dynamic range increases for the sets, leading to
SR1(6) = 1. This shows that all the blocks can be correctly identified with proper imaging,
even in a complex circuit. The next section will discuss the efficiency and complexity of
successfully recovering configuration bits in different circuits.

6.4 Efficiency and Complexity
We have seen that the photon emission-based SCA can break the security of the universal
circuits. In this section, we will discuss the efficiency of the attack. The attack’s efficiency
can be mainly attributed to the circuit size, setup, and, consequently, the image quality.
The image quality can depend on both the setup and the skills of subject matter experts.
Nonetheless, for a given setup, the effect of image quality on efficiency can, to some extent,
be reduced through proper post-processing. As discussed in Section 6.3, our algorithm
can become agnostic about the circuit size by deploying a divide-and-conquered strategy.
Hence, its impact can be understood as the number of images to take. Here, we consider
the number of images needed to find all the configuration bits as the metric for discussing

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 17

Ta
bl

e
3:

T
he

su
cc

es
s

ra
te

of
di

sc
lo

sin
g

th
e

co
nfi

gu
ra

tio
n

bi
ts

of
th

e
U

C
-b

as
ed

im
pl

an
ta

tio
n

of
C

17
su

b-
ci

rc
ui

t.
Ea

ch
ro

w
pr

es
en

ts
re

su
lts

fo
r

an
im

ag
e

ta
ke

n
w

ith
an

in
pu

t
pa

tt
er

n
as

in
tr

od
uc

ed
in

Ta
bl

e
1.

Ea
ch

im
ag

e
se

t
is

a
re

pe
tit

io
n

of
th

e
ex

pe
rim

en
t

w
ith

a
di

ffe
re

nt
dy

na
m

ic
ra

ng
e

of
th

e
im

ag
es

(t
he

ra
tio

be
tw

ee
n

th
e

br
ig

ht
es

t
an

d
da

rk
es

t
pa

rt
s

of
an

im
ag

e)
.

T
he

ra
tio

is
sm

al
le

st
in

th
e

im
ag

e
se

t
1,

so
it

is
ha

rd
er

to
di

st
in

gu
ish

be
tw

ee
n

no
ise

an
d

th
e

in
te

re
st

ed
LU

Ts
.

T
he

ra
tio

in
cr

ea
se

s
fr

om
se

t
1

to
3,

in
cr

ea
sin

g
th

e
in

te
ns

ity
of

th
e

LU
T

em
iss

io
n

an
d

co
nt

ra
st

ra
tio

of
th

e
im

ag
e.

H
er

e,
“–

”
in

di
ca

te
s

no
su

cc
es

sf
ul

gu
es

s
of

th
e

co
nfi

gu
ra

tio
n

bi
t

in
th

e
to

p
5

gu
es

se
s.

X
B

lo
ck

Y
B

lo
ck

A
ll

B
lo

ck
s

Im
ag

e
se

t
In

pu
t

P
at

te
rn

u_
24

x_
0

x_
3

x_
11

x_
12

x_
15

x_
16

x_
19

x_
23

y_
10

y_
22

S
R

1 (
1)

S
R

2 (
1)

S
R

1 (
1)

S
R

2 (
1)

S
R

1 (
1)

S
R

2 (
1)

S
R

1 (
6)

1

1
3

–
–

1
1

1
4

1
2

–
2

0.
50

0.
63

0
0.

50
0.

36
0.

55

0.
91

2
–

–
–

1
2

1
–

1
2

–
1

0.
38

0.
63

0.
50

0.
50

0.
36

0.
55

3
4

2
4

1
1

1
1

2
–

1
1

0.
50

0.
75

1.
00

1.
00

0.
55

0.
73

4
–

1
4

3
3

3
1

1
1

3
1

0.
50

0.
50

0.
50

0.
50

0.
45

0.
45

5
1

1
4

2
2

2
4

–
1

1
2

0.
25

0.
63

0.
50

1.
00

0.
36

0.
73

6
–

1
4

1
–

1
2

–
1

3
1

0.
50

0.
63

0.
50

0.
50

0.
45

0.
55

2

1
2

–
–

1
5

1
–

1
1

–
1

0.
50

0.
50

0.
50

0.
50

0.
45

0.
55

1

2
1

–
–

1
1

5
1

1
1

–
2

0.
63

0.
63

0
0.

50
0.

55
0.

64
3

5
–

2
1

1
2

1
2

3
–

1
0.

38
0.

75
0.

50
0.

50
0.

36
0.

64
4

2
1

4
1

1
1

2
2

2
2

–
0.

50
0.

88
0

0.
50

0.
36

0.
81

5
–

1
2

1
1

3
1

1
2

2
1

0.
63

0.
88

0.
50

1.
00

0.
55

0.
81

6
–

2
1

3
1

1
2

1
3

1
3

0.
50

0.
75

0.
50

0.
50

0.
45

0.
64

3

1
–

–
–

1
4

1
–

–
1

–
1

0.
38

0.
38

0.
50

0.
50

0.
36

0.
36

1

2
–

–
–

–
2

3
–

1
1

–
1

0.
25

0.
38

0.
50

0.
50

0.
27

0.
36

3
–

1
5

1
1

1
1

1
–

2
–

0.
75

0.
75

0
0.

50
0.

55
0.

64
4

1
1

4
2

2
2

1
–

–
2

2
0.

25
0.

63
0

1.
00

0.
27

0.
73

5
–

1
5

1
1

1
1

1
3

2
1

0.
75

0.
75

0.
50

1.
00

0.
64

0.
73

6
–

1
1

2
1

1
1

–
5

1
1

0.
63

0.
75

1.
00

1.
00

0.
64

0.
73

18 1/0 Shades of UC

(a)

(b) (c)

Figure 11: ISCAS85 - C17 placement of the sub-circuit connected to the first U-blocks
(marked in blue at the top right corner): (a) shows the paths for 2 inputs connected to the
U-block (orange and purple paths); (b) illustrates the placement of the circuit using the
Vivado design suite, implementation view; (c) depicts the photon emission results of the
LUTs in the circuit for the input pattern 6 (see Table 1).

the attack’s efficiency.
As said above, the increase in circuit size will generally increase the number of images

needed for the attack. More accurately, it depends on the actual placement of the LUTs
on the FPGA. For example, if blocks are concentrated within a single region on the FPGA
that the setup can capture, then a single image per input pattern is required, i.e., 6 images
in total. On the other hand, if a large number of blocks should be placed or they are spread
over the FPGA, then multiple images would be required per input pattern depending on
the camera’s sensor size with a particular lens.

Furthermore, for a given circuit size, the number of images can vary based on the
properties of the lens, e.g., zoom and focal length. The configuration of our setup has been
good enough to capture the images required to break the security of UCs studied in this
paper, namely the summation circuit and part of the C17 circuit. We would have needed
more than 6 images if not all the blocks had been captured in one image.

The differences in placement, circuit size, and image quality can be observed in Figure 12.
For examples given in this paper, all images could be captured in about an hour once
the bitstreams are ready. This is possible thanks to how we control the inputs using the
Arduino setup. This enabled us to find the region of interest, set up specific capturing
settings, and take 6 images with different inputs without changing the microscope settings.
This workflow makes it very efficient to capture images.

After the images are taken, post-processing efficiency is essential. In the current

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 19

Figure 12: Raw images without cropping with the 20x zoom lens using the ALPhANOV
microscope. The sub-figure on the left side shows the emission captured from the summation
circuit, while the one on the right side shows the emission from the C17 circuit. The
size and placement density of both circuits are visible clearly. The summation is sparsely
placed, while the c17 is densely packed.

workflow, we manually extract the location of each block. These locations are constant for
all images in each image set. Once this is prepared, the image retrieval algorithm can be
run through the image set and find the configuration bits. This process is time-efficient; for
instance, it took approximately 15 minutes for 16 blocks involved in the C17 circuit. The
time for both steps would increase linearly with the number of blocks [PCI+07]. It is worth
noting that for different image sets, the location might change, and location extraction
might have to be repeated.

There is one more factor based on which the requirements for collecting image sets per
circuit are decided. The examples considered in this paper have 2 inputs. Note that for
the C17 example, we have considered 2 out of 5 circuit inputs. We should consider each
possible pair of inputs to find configuration bits of other blocks present in the circuit. This
ensures that all blocks in a circuit are covered, as each block has 2 inputs. Therefore, the
total number of images needed will be given by the following equation:

NP = 6 × C(n, 2) = Θ(n2), (2)

where C(n, 2) refers to the total number of combinations for choosing 2 out of n, where n
is the total number of inputs to the circuit. Here, Θ(·) denotes the big-theta notation, i.e.,
NP is bounded both above and below by n2 asymptotically. The multiplication by 6 is
because, for each pair, we still need to capture images for 6 input patterns (see Table 1).
Using this equation as an example, if we need to find configuration bits for 81 blocks of
C17, we would need 10 image sets with 6 images each.

7 Discussion
Resoution and Measurement Time. While our current setup has some limitations
in terms of resolution and measurement time, both parameters could easily be improved
drastically. One could use a higher magnification objective lens with a higher numeric
aperture (NA) (e.g., 50X, NA=0.65) to improve the resolution for smaller technology
sizes. Moreover, solid immersion lenses (SILs) can be deployed to adapt the system for
sub-10 nm technology sizes. To reduce the measurement time, on the other hand, one
option would be to reduce the dark current of the NIR camera to reduce the noise and
increase sensitivity. While our camera can theoretically be cooled down only to -25◦C, more
sophisticated InGaAs cameras can be cooled down to -70◦C or even below this temperature

20 1/0 Shades of UC

Table 4: The table shows the comparison between the U-block implementation using 3 Y-
block from the UC compiler vs. a single LUT-based implementation proposed in [DGS+23].
Here, the U-block is used in the summations circuit as in Example 1. By applying input
patter 6, the configuration bit of the U-block proposed in [DGS+23] is extracted.

Input pattern U [AGKS20] U [DGS+23]
1 - -
2 3 2
3 1 3
4 - 2
5 3 -
6 - 1

using water or nitrogen cooling in addition to thermoelectrical cooling. Moreover, one
could increase the supplied voltage and increase the switching frequency to increase the
photon emission rate. Finally, reducing the vibrations of the microscope stage, specifically
for higher magnification objective lenses, could significantly improve both the resolution
and measurement time, as it requires fewer iterations to capture images.
Vulnerability of a recent UC variant. Recently, [DGS+23] has proposed a more
efficient implementation of UCs specifically designed for FPGAs. They have used the
LUT structure directly as a U-block implementation instead of 3 Y-blocks to implement a
U-block. This reduces the number of LUTs used in a circuit in most cases. They have also
added support for multi-input and multi-output LUTs. We mounted our attack against
this implementation by replacing the U-block in the summation circuit with a single 2-to-1
LUT U-block as suggested in [DGS+23]. After profiling this U-block implementation, we
were able to achieve similar results for targeting this version of UCs as presented in Table 4.
Here, the ranks for the X- and Y-blocks have not been re-calculated as no changes have
been made to their implementations. This shows the susceptibility of the new version of
UCs to our attack.
Potential Countermeasures. As presented throughout the paper, the nature of photonic
side-channel leakage from UC circuits is directly caused by the physical placements
and configuration-dependent emission fingerprints of X, Y, and U blocks. Therefore, a
fundamental approach to resolving such leakage is real-time refreshing of block placements.
Hardware randomization schemes [GM11, Men17, KGFT22] present methods including
partial reconfiguration as hiding and moving target defenses, to secure FPGAs against
more conventional SCAs, such as power and EM. Similar approaches [HPG+19] could be
deployed during runtime to prevent photonic side-channel leakage. Countermeasures could
also be applied at the level of the package to protect the IC backside. Otherwise, package
protection schemes, such as active optical layers [AKH+20] and enclosures [VNK+15]
or capacitive enclosures [IOK+18] could hide the IC package and actively monitor any
attempt for removal of the enclosure.

8 Conclusion
This paper demonstrates SCA against UCs, where photon emission from the target device
leaks the secret configuration bits of the UC. To the best of our knowledge, we are the
first to uncover and exploit the vulnerability successfully. We take advantage of the
existing modular design of UCs and off-the-shelf algorithms in our attacks. For the sake of
demonstration, we recovered the configuration bits of summation and the ISCAS85-C17
designs, serving as benchmark functions, implemented in the UC format. We reported
that complex large circuits can be targeted by applying the same technique and deploying
a divide-and-conquer strategy. Another novel aspect of our attack is the application of
computer vision-based techniques alongside image processing, which allows us to disclose
the configuration bits with a minimum effort in terms of profiling.

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 21

9 Acknowledgments
This work has been supported partially by Semiconductor Research Corporation (SRC)
under Task IDs 2991.001 and 2992.001 and NSF under award numbers 2117349 and
2138420.

References
[AGKS20] Masaud Y Alhassan, Daniel Günther, Ágnes Kiss, and Thomas Schneider. Efficient

and scalable universal circuits. Journal of Cryptology, 33(3):1216–1271, 2020.
[AKH+20] Elham Amini, Tuba Kiyan, Norbert Herfurth, Anne Beyreuther, Christian Boit, and

Jean-Pierre Seifert. Second generation of optical ic-backside protection structure.
In 2020 IEEE International Symposium on the Physical and Failure Analysis of
Integrated Circuits (IPFA), pages 1–5. IEEE, 2020.

[Alp23] AlphaNOV. S-lms. [Online]https://www.alphanov.com/en/products-services/
single-laser-fault-injection [Accessed: Dec.1, 2023], 2023.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Advances in Cryptology–EUROCRYPT
2014: 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings 33,
pages 387–404. Springer, 2014.

[BB03] Michael R Bruce and Victoria J Bruce. Abcs of photon emission microscopy. Electronic
Device Failure Analysis, 5:13–22, 2003.

[BGH+22] Peter Beerel, Marios Georgiou, Ben Hamlin, Alex J Malozemoff, and Pierluigi Nuzzo.
Towards a formal treatment of logic locking. IACR Transactions on Cryptographic
Hardware and Embedded Systems, (2):92–114, 2022.

[BGJ+13] Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit Sahai.
Secure computation against adaptive auxiliary information. In Advances in Cryptology–
CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, pages 316–334. Springer, 2013.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Advances in
Cryptology–ASIACRYPT 2012: 18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, December 2-6,
2012. Proceedings 18, pages 134–153. Springer, 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Proc. of the 2012 ACM Conf. on Computer and communications security, pages
784–796, 2012.

[BTVG06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In Computer Vision–ECCV 2006: 9th European Conference on Computer Vision,
Graz, Austria, May 7-13, 2006. Proceedings, Part I 9, pages 404–417. Springer, 2006.

[CDF+04] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray.
Visual categorization with bags of keypoints. In Workshop on statistical learning in
computer vision, ECCV, volume 1, pages 1–2. Prague, 2004.

[CPS16] Marios O Choudary, Romain Poussier, and François-Xavier Standaert. Score-based
vs. probability-based enumeration–a cautionary note. In Progress in Cryptology–
INDOCRYPT 2016: 17th International Conference on Cryptology in India, Kolkata,
India, December 11-14, 2016, Proceedings 17, pages 137–152. Springer, 2016.

[CS22] Animesh Chhotaray and Thomas Shrimpton. Hardening circuit-design ip against
reverse-engineering attacks. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 1672–1689. IEEE, 2022.

[Online] https://www.alphanov.com/en/products-services/single-laser-fault-injection
[Online] https://www.alphanov.com/en/products-services/single-laser-fault-injection

22 1/0 Shades of UC

[CSR+20] Rosario Cammarota, Matthias Schunter, Anand Rajan, Fabian Boemer, Ágnes Kiss,
Amos Treiber, Christian Weinert, Thomas Schneider, Emmanuel Stapf, Ahmad-Reza
Sadeghi, et al. Trustworthy ai inference systems: An industry research view. arXiv
preprint arXiv:2008.04449, 2020.

[CT16] Henry Carter and Patrick Traynor. Opfe: Outsourcing computation for private
function evaluation. 2016. https://eprint.iacr.org/2016/067. doi:10.1504/
ijics.2019.103052.

[CT19] Henry Carter and Patrick Traynor. Outsourcing computation for private function
evaluation. International Journal of Information and Computer Security, 11(6):525–
561, 2019.

[DCSSY20] Giovanni Di Crescenzo, Abhrajit Sengupta, Ozgur Sinanoglu, and Muhammad Yasin.
Logic locking of boolean circuits: Provable hardware-based obfuscation from a tamper-
proof memory. In Innovative Security Solutions for Information Technology and
Communications: 12th International Conference, SecITC 2019, Bucharest, Romania,
November 14–15, 2019, Revised Selected Papers, pages 172–192. Springer, 2020.

[DGS+22] Yann Disser, Daniel Günther, Thomas Schneider, Maximilian Stillger, Arthur
Wigandt, and Hossein Yalame. Breaking the size barrier: Universal circuits
meet lookup tables. Cryptology ePrint Archive, Paper 2022/1652, 2022. https:
//eprint.iacr.org/2022/1652. URL: https://eprint.iacr.org/2022/1652.

[DGS+23] Yann Disser, Daniel Günther, Thomas Schneider, Maximilian Stillger, Arthur
Wigandt, and Hossein Yalame. Breaking the size barrier: Universal circuits meet
lookup tables. In International Conference on the Theory and Application of Cryptol-
ogy and Information Security, pages 3–37. Springer, 2023.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with
auxiliary input. In Proceedings of the forty-first annual ACM symposium on Theory
of computing, pages 621–630, 2009.

[EHP22] Susanne Engels, Max Hoffmann, and Christof Paar. A critical view on the real-world
security of logic locking. Journal of Cryptographic Engineering, 12(3):229–244, 2022.

[Enc16] Encryptogroup. v2021.1. [Online]https://github.com/encryptogroup/UC [Ac-
cessed: Oct.15, 2023], 2016.

[FH08] Julie Ferrigno and M Hlaváč. When aes blinks: introducing optical side channel. IET
Information Security, 2(3):94–98, 2008.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. SIAM Journal on Computing, 45(3):882–929, 2016.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure attribute
based encryption from multilinear maps. Cryptology ePrint Archive, 2014.

[GM11] Tim Güneysu and Amir Moradi. Generic side-channel countermeasures for reconfig-
urable devices. In Cryptographic Hardware and Embedded Systems–CHES 2011: 13th
International Workshop, Nara, Japan, September 28–October 1, 2011. Proceedings 13,
pages 33–48. Springer, 2011.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J.
Malozemof. Amortizing garbled circuits. In Annual Cryptology Conf., pages 458–475.
Springer, 2014.

[HPG+19] Benjamin Hettwer, Johannes Petersen, Stefan Gehrer, Heike Neumann, and Tim
Güneysu. Securing cryptographic circuits by exploiting implementation diversity
and partial reconfiguration on fpgas. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 260–263. IEEE, 2019.

[HYH99] M. C. Hansen, H. Yalcin, and J. P. Hayes. Unveiling the ISCAS-85 benchmarks: a
case study in reverse engineering. IEEE Design Test of Computers, 16(3):72–80, 1999.
doi:10.1109/54.785838.

https://eprint.iacr.org/2016/067
https://doi.org/10.1504/ijics.2019.103052
https://doi.org/10.1504/ijics.2019.103052
https://eprint.iacr.org/2022/1652
https://eprint.iacr.org/2022/1652
https://eprint.iacr.org/2022/1652
[Online]https://github.com/encryptogroup/UC
https://doi.org/10.1109/54.785838

D.M. Mehta, M. Hashemi, D. Forte, S. Tajik, F. Ganji 23

[IOK+18] Vincent Immler, Johannes Obermaier, Martin König, Matthias Hiller, and Georg Sig.
B-trepid: Batteryless tamper-resistant envelope with a puf and integrity detection.
In 2018 ieee international symposium on hardware oriented security and trust (host),
pages 49–56. IEEE, 2018.

[KEL22] Sahand Kashani, Mahyar Emami, and James R Larus. Bitfiltrator: A general
approach for reverse-engineering xilinx bitstream formats. In 2022 32nd International
Conference on Field-Programmable Logic and Applications (FPL), pages 01–08. IEEE,
2022.

[KGFT22] David S Koblah, Fatemeh Ganji, Domenic Forte, and Shahin Tajik. Hardware moving
target defenses against physical attacks: Design challenges and opportunities. In
Proceedings of the 9th ACM Workshop on Moving Target Defense, pages 25–36, 2022.

[KNSS13] Juliane Krämer, Dmitry Nedospasov, Alexander Schlösser, and Jean-Pierre Seifert.
Differential photonic emission analysis. In Constructive Side-Channel Analysis and
Secure Design: 4th International Workshop, COSADE 2013, Paris, France, March
6-8, 2013, Revised Selected Papers 4, pages 1–16. Springer, 2013.

[KS08] Vladimir Kolesnikov and Thomas Schneider. A practical universal circuit construction
and secure evaluation of private functions. In Financial Cryptography and Data
Security: 12th International Conference, FC 2008, Cozumel, Mexico, January 28-31,
2008. Revised Selected Papers 12, pages 83–97. Springer, 2008.

[Lew95] John P Lewis. Fast normalized cross-correlation. Vision Interface, 1995, 95:120, 1995.
[Lim90] Jae S Lim. Two-dimensional signal and image processing. Englewood Cliffs, 1990.
[LMM+16] Jake Longo, Daniel P Martin, Luke Mather, Elisabeth Oswald, Benjamin Sach, and

Martijn Stam. How low can you go? using side-channel data to enhance brute-force
key recovery. Cryptology ePrint Archive, 2016.

[LMS16] Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant’s universal circuit:
Improvements, implementation, and applications. Cryptology ePrint Archive, 2016.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2pc in the offline/online setting with secu-
rity for malicious adversaries. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 579–590, 2015.

[LYZ+21] Hanlin Liu, Yu Yu, Shuoyao Zhao, Jiang Zhang, Wenling Liu, and Zhenkai Hu.
Pushing the limits of valiant’s universal circuits: simpler, tighter and more compact.
In Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part II
41, pages 365–394. Springer, 2021.

[Mat23] MathWorks. version 9.14.0.2239454 (r2023a). [Online]https://www.mathworks.
com/products/matlab.html [Accessed: Jan.15, 2024], 2023.

[Men17] Nele Mentens. Hiding side-channel leakage through hardware randomization: A
comprehensive overview. In 2017 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation, pages 269–272. IEEE, 2017.

[Mey94] Fernand Meyer. Topographic distance and watershed lines. Signal processing,
38(1):113–125, 1994.

[MGM+22] Elisaweta Masserova, Deepali Garg, Ken Mai, Lawrence Pileggi, Vipul Goyal, and
Bryan Parno. Logic locking - connecting theory and practice. Cryptology ePrint
Archive, Paper 2022/545, 2022. https://eprint.iacr.org/2022/545. URL: https:
//eprint.iacr.org/2022/545.

[MS13] Payman Mohassel and Saeed Sadeghian. How to hide circuits in mpc an efficient
framework for private function evaluation. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 557–574. Springer, 2013.

[MSS14] Payman Mohassel, Saeed Sadeghian, and Nigel P Smart. Actively secure private
function evaluation. In Advances in Cryptology–ASIACRYPT 2014: 20th International
Conference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, ROC, December 7-11, 2014, Proceedings, Part II 20, pages
486–505. Springer, 2014.

[Online] https://www.mathworks.com/products/matlab.html
[Online] https://www.mathworks.com/products/matlab.html
https://eprint.iacr.org/2022/545
https://eprint.iacr.org/2022/545
https://eprint.iacr.org/2022/545

24 1/0 Shades of UC

[NS06] David Nister and Henrik Stewenius. Scalable recognition with a vocabulary tree. In
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 2161–2168. Ieee, 2006.

[PCI+07] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman.
Object retrieval with large vocabularies and fast spatial matching. In 2007 IEEE
conference on computer vision and pattern recognition, pages 1–8. IEEE, 2007.

[RTR+20] M Tanjidur Rahman, Shahin Tajik, M Sazadur Rahman, Mark Tehranipoor, and
Navid Asadizanjani. The key is left under the mat: On the inappropriate security
assumption of logic locking schemes. In 2020 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 262–272. IEEE, 2020.

[SNK+12] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic, and Jean-
Pierre Seifert. Simple photonic emission analysis of aes: photonic side channel analysis
for the rest of us. In Cryptographic Hardware and Embedded Systems–CHES 2012:
14th International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings
14, pages 41–57. Springer, 2012.

[SSA14] Franco Stellari, Peilin Song, and Herschel A Ainspan. Functional block extraction
for hardware security detection using time-integrated and time-resolved emission
measurements. In 2014 IEEE 32nd VLSI Test Symposium (VTS), pages 1–6. IEEE,
2014.

[SSW+14] Franco Stellari, Peilin Song, Alan J Weger, Jim Culp, A Herbert, and Dirk Pfeiffer.
Verification of untrusted chips using trusted layout and emission measurements. In
2014 IEEE international symposium on hardware-oriented security and trust (HOST),
pages 19–24. IEEE, 2014.

[TDF+14] Shahin Tajik, Enrico Dietz, Sven Frohmann, Jean-Pierre Seifert, Dmitry Nedospasov,
Clemens Helfmeier, Christian Boit, and Helmar Dittrich. Physical characterization of
arbiter pufs. In Cryptographic Hardware and Embedded Systems–CHES 2014: 16th
International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings 16,
pages 493–509. Springer, 2014.

[TM98] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images.
In Sixth international conference on computer vision (IEEE Cat. No. 98CH36271),
pages 839–846. IEEE, 1998.

[TNH+14] Shahin Tajik, Dmitry Nedospasov, Clemens Helfmeier, Jean-Pierre Seifert, and
Christian Boit. Emission analysis of hardware implementations. In 2014 17th
Euromicro Conference on Digital System Design, pages 528–534. IEEE, 2014.

[Val76] Leslie G Valiant. Universal circuits (preliminary report). In Proceedings of the eighth
annual ACM symposium on Theory of computing, pages 196–203, 1976.

[VNK+15] Michael Vai, Ben Nahill, Josh Kramer, Michael Geis, Dan Utin, David Whelihan,
and Roger Khazan. Secure architecture for embedded systems. In 2015 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–5. IEEE, 2015.

[Weg87] Ingo Wegener. The complexity of Boolean functions. John Wiley & Sons, Inc., 1987.
[Xil21] Inc. Xilinx. v2021.1. [Online]https://www.xilinx.com/products/design-tools/

vivado.html [Accessed: Jan.11, 2023], 2021.
[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques, pages 439–
467. Springer, 2015.

[ZYZL19] Shuoyao Zhao, Yu Yu, Jiang Zhang, and Hanlin Liu. Valiant’s universal circuits
revisited: an overall improvement and a lower bound. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 401–425.
Springer, 2019.

[Online] https://www.xilinx.com/products/design-tools/vivado.html
[Online] https://www.xilinx.com/products/design-tools/vivado.html

	Introduction
	Background
	Universal Circuits (UCs)
	Photon Emission Microscopy
	Threat Model

	UC Implementation Flow for FPGAs
	Experimental Setup
	Device Under Test
	Photon Emission Setup
	Hardware Implementation

	Attack Approach
	Capturing Images
	Image Processing
	Metrics

	Experimental Results
	Profiling
	Example 1: Summation Circuit
	Example 2: C17 in ISCAS85
	Efficiency and Complexity

	Discussion
	Conclusion
	Acknowledgments

