
Too Hot To Be True:
Temperature Calibration for Higher Confidence in

NN-assisted Side-channel Analysis
Seyedmohammad Nouraniboosjin and Fatemeh Ganji

Worcester Polytechnic Institute, Worcester, USA

Abstract. The past years have witnessed a considerable increase in research efforts
put into neural network-assisted profiled side-channel analysis (SCA). Studies have
also identified challenges, e.g., closing the gap between metrics for machine learning
(ML) classification and side-channel attack evaluation. In fact, in the context of
NN-assisted SCA, the NN’s output distribution forms the basis for successful key
recovery. In this respect, related work has covered various aspects of integrating neural
networks (NNs) into SCA, including applying a diverse set of NN models, model
selection and training, hyperparameter tuning, etc. Nevertheless, one well-known fact
has been overlooked in the SCA-related literature, namely NNs’ tendency to become
“over-confident,” i.e., suffering from an overly high probability of correctness when
predicting the correct class (secret key in the sense of SCA). Temperature∗ scaling
is among the powerful and effective techniques that have been devised as a remedy
for this. Regarding the principles of deep learning, it is known that temperature
scaling does not affect the NN’s accuracy; however, its impact on metrics for secret
key recovery, mainly guessing entropy, is worth investigating. This paper reintroduces
temperature scaling into SCA and demonstrates that key recovery can become more
effective through that. Interestingly, temperature scaling can be easily integrated
into SCA, and no re-tuning of the network is needed. In doing so, temperature can
be seen as a metric to assess the NN’s performance before launching the attack. In
this regard, the impact of hyperparameter tuning, network variance, and capacity
have been studied. This leads to recommendations on how network miscalibration
and overconfidence can be prevented.
Keywords: Profiled Side-channel Analysis · Neural Network · Tempertature Cali-
bration · Confidence · Metrics

1 Introduction
Side-channel analysis (SCA) refers to methods that exploit vulnerabilities in the imple-
mentation of cryptographic algorithms rather than the underlying protocols [MOP08].
When executing the algorithm, such vulnerabilities are caused by the secret-key leak-
ages, observable in the form of power consumption, timing, and electromagnetic emis-
sions [Koc96, KJJ99, GMO01, QS01]. Profiling SCA, which is more common thanks to
their effectiveness [BPS+18], refers to a stronger attacker with access to an open copy of
the targeted device. This copy is utilized by the attacker to construct a device profile, facil-
itating attacks on another device of the same type [CRR02, HGDM+11, LBM15, MHM13].
Profiling attacks, involving a profiling phase followed by an attack phase, are thus known
as two-stage attacks.

E-mail: snouraniboosjin@wpi.edu (Seyedmohammad Nouraniboosjin), fganji@wpi.edu (Fatemeh
Ganji)

∗The term “temperature” should not be confused with the degree of heat present in a substance or
object. Throughout this paper, temperature is a scalar parameter defined in the field of deep learning.

https://orcid.org/0000-0003-0151-1307
mailto:snouraniboosjin@wpi.edu
mailto:fganji@wpi.edu

2 Too Hot To Be True

In recent years, the focus has been on profiling attacks leveraging machine learning
(ML) [LPB+15, HZ12, HGDM+11], particularly deep learning [PPM+21]. These attacks
are notably capable of breaking implementations equipped with countermeasures against
SCA [LBM15, GHO15, CDP17, PHJ+19, KPH+19, WPP22a]. However, numerous ques-
tions have remained unresolved. As a prime example, related work has highlighted that
performance evaluation in NN-assisted SCA is still an open problem [IUH22]. On the one
hand, when testing/validating an NN, its performance is evaluated by employing classifica-
tion metrics for ML, such as accuracy, loss, and recall. SCA, on the other hand, has often
been assessed by considering the guessing entropy (GE) and success rate (SR) [SMY09],
which have been observed to be in conflict with classification metrics [PHJ+19]. To
narrow this gap, studies have come up with new metrics [ZZN+20, IUH22] or followed a
more systematic approach to understand the root cause of this discrepancy. In the latter
category, [PCP20a] has visually shown how output class probabilities are ranked for both
successful and unsuccessful attacks under the condition where accuracy is not enough to
make a decision about the attack’s success. In fact, the accuracy can be low or close to a
random guessing value, whereas expected classes are among the first ones. In this case, in
accordance with the definition of GE, the summation of the probabilities of those expected
classes (based on the label’s guessing for the correct key) explains the success of attacks
cf. [PPM+21].

What can be understood from this discussion is that, obviously, the attack’s performance
relies heavily on the output class probabilities. These probabilities depend on the network
configuration, parameters (weights and biases), hyperparameters, loss functions, and the
output function. First, determining NN configurations and hyperparameters to break
the target is a challenging task tackled in the literature [ZBHV20, WAGP20, AGF23,
WPP22a, RWPP21]. Besides the importance of hyperparameter tuning, choosing the
output function needs to be better advised in the literature than others. Softmax output
function, as the last layer of an NN, is the most common choice since it supports multi-class
classification mimicking the profiled SCA. In order to prevent overflow (i.e., exploding
gradient problem) as observed in ML- and SCA-related studies [GBC16, KWPP21], the
log-softmax is usually preferred cf. [Cag18], whereas [AGF23] has suggested numerically
stable softmax [GBC16].

The selection of the output layer is closely related to the choice of the loss function.
Regarding principles of deep learning, NNs for classification that use a softmax function in
the output layer learn faster and more robustly using the negative log-likelihood function
(NLL) [GBC16]. This aspect is well explored in SCA-related literature. It has been
proven that minimizing the NLL function (similarly, cross-entropy) during training is
asymptotically equivalent to maximizing the estimation of mutual information between
the side-channel traces and the leakage profiling model (i.e., the ML trained on the
traces) [MDP20]. This has also been empirically verified in [KWPP21].

Temperature calibration. Setting all the configuration details aside, it is known that
the NNs tend to be “too confident” when predicting the classes [GPSW17, MDR+21].
Here, confidence means the probability of the correctness of the prediction (e.g., softmax
probability for the predicted class). In deep learning-related literature, methods have
been developed to calibrate the confidence, i.e., going closer to the true probability. One
simplest and common calibration factor is called the temperature, T , which “softens” the
softmax in a way that T → 1 indicates the estimated output probability is close to its true
probability cf. [GPSW17].

It is well known that the NN’s accuracy is invariant to the temperature, but what about
GE? GE is the average position of the correct key in a key guessing vector built upon the
output of softmax. In fact, temperature calibration improves confidence and scales the
class prediction up/down; hence, it is expected to observe an improvement in GE. The
extent of this and the conditions for such improvements are studied in this paper.

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 3

Contributions. This paper focuses on applying temperature calibration in NNs trained
for profiling SCA†.

• We investigate the influence of temperature calibration on the attack performance
of the models in terms of GE. For this purpose, we consider three temperature
calibration methods, namely Platt’s multi-class calibration [GPSW17], non-optimized
vector scaling (stable softmax), as well as its combination with Platt’s multi-class
calibration, see Section 3. We stress that our paper aims to reintroduce the concept
of confidence and temperature calibration into SCA. By so doing, we have selected
several publicly available NN models trained on various benchmark datasets, whose
results are presented in recent studies. Those models are either already trained, or
the codes for training them have been published by the authors. The ultimate goal
of our work is to understand how miscalibrated these models are and if it is possible
to calibrate their output distributions to improve the attack effectiveness evaluated
through GE. Therefore, we do not claim that these calibrated models would generate
competitive results, but we demonstrate that their results could have been improved
if their out distributions had been calibrated. In this respect, our observation is that
calibrated NNs can break the target with fewer traces.

• In line with the contribution above, we investigate the impact of hyperparameter
tuning on the performance of the models in terms of temperature. If the search
space is large or the search mechanism is not designed well, the model would not
be able to break the target, even if proper objective functions are chosen for this
phase. On the other hand, for the same given search space and mechanism, the
tuned hyperparameters obtained for two objective functions may produce similar
results. When it comes to the attack performance in terms of GE, these have been
studied in the literature without giving an insight into how one can judge how well
the model is configured and trained before launching the attack. We demonstrate
that temperature can be thought of as a metric for this purpose. Thereby, we show
that if proper hyperparameters are not selected, the model’s temperature would be
high.

• Another critical factor in calibrating the NNs is the NN’s variance, i.e., the model’s
sensitivity to the specifics of the training data. As training NNs aims to reduce
the variance, regularization techniques or simply using more training data are
recommended. To examine this for NNs trained on side-channel traces, we evaluate the
impact of the number of traces used in training/validation on the calibration process.
Our results demonstrate that more calibrated models with lower temperatures can
be achieved if more traces are used for training.

• Last but not least, with regard to the lessons learned and concepts like temperature
scaling borrowed from ML, this work gives recommendations related to why accuracy
may not be the right metric to assess the effectiveness of SCA, in agreement with what
has been reported in the literature before. Moreover, we highlight the importance of
keeping the NNs’ capacity reasonably low. These recommendations help NNs used
in SCA with miscalibration, resulting in more effective attacks.

1.1 Related work
This section gives a brief overview of the literature devoted to specific topics in NN-
assisted SCA that are relevant to the scope of our paper, namely metrics in SCA and
hyperparameter tuning.

†The codes and models are available here: https://github.com/vernamlab/CoolSCA

4 Too Hot To Be True

Metrics in SCA. Compared to the template attacks, known to be optimal from an
information-theoretic perspective given a large enough number of traces, NN-assisted
profiled SCA employing multi-layer perceptron (MLPs), convolutional neural networks
(CNNs), and stacked autoencoders could exhibit similar or superior performance [PPM+21].
Clearly, to draw any comparison like this, a proper metric should be taken into account.
The differences between the ML and side-channel metrics have been investigated in several
studies from different angles. Picek et al. have reported that an imbalanced class problem
could be a possible reason for the inconsistency between, e.g., accuracy and the SCA
attack performance [PHJ+19]. This difference can be more pronounced for highly noisy
traces and ones collected from protected implementations. To answer whether GE is an
appropriate metric for attack evaluation, [PCP20a] has visually investigated the output
class probabilities. Their observation was that the accuracy is low or close to a random
guess since expected classes are not always predicted as first, but rather among the
first ones. Hence, the summation of these probabilities for each key byte candidate is a
valid distinguisher in line with the definition of GE. Following this line of thought cross
Entropy ratio (CER) metric has been introduced, closely related to GE and Success Rate
(SR) [ZZN+20]. They found CER helpful in improving the attack performance, especially
when dealing with imbalanced training and test datasets. It is noteworthy that here our
focus is on common attack performance metric; therefore, other SCA-related metrics,
e.g., perceived information (PI) and its extension [RSVC+11, BHM+19, IUH22] are not
discussed in this work.

Hyperparameter tuning. A critical importance in the profiling process is attributed to
selecting the most effective model configuration and its hyperparameters, so-called hyperpa-
rameter tuning. In this regard, Benadjila et al. explored the significance of hyperparameter
tuning in their study and provided proposals to help researchers choose an appropriate
set of hyperparameters [Ben13]. Zaid et al. [ZBHV20] introduced a visualization-based
approach for selecting hyperparameters concerning the convolutional part (e.g., the number
of filters) in CNNs. In doing so, an architecture with a minimized complexity can be
figured out, cf. [ZBHV20]. Building on Zaid’s research, Wouters et al. demonstrated
achieving comparable attack performance using smaller neural network designs [WAGP20].
Hyperparameter tuning has been made more automated in [WPP22a], where different
objectives and search methods can be selected to find the best hyperparameter. More
specifically, they examined the application of layer-level network morphism and Bayesian
optimization integrated into Auto-Keras [JSH19], their algorithm’s core. The layer-level
network morphism modifies a trained neural network to make a new architecture by employ-
ing different operations, e.g., inserting a layer or adding a skip-connection between layers,
although at the cost of possible overfitting [WPP22a]. As another example, [RWPP21]
has applied reinforcement learning to determine CNNs that are small (in terms of the
number of trainable parameters), but exhibit good attack performance. Nevertheless, the
configuration is still (to some extent) guided by the expert through providing a random
range of the hyperparameters’ values. Recently, [AGF23] has introduced InfoNEAT, a
framework to not only select the configuration of an MLP-like model, but also tune its hy-
perparameters, including the number of epochs. Thanks to the irregular NN configuration
automatically evolved by InfoNEAT, the networks are shift-invariant, i.e., training on a
device and testing on a similar one protected by desynchronization.

Summary. As reviewed above, GE is one of the most commonly applied metrics when
evaluating the performance of NN-assisted SCA. To compute GE, the output of the NN in
terms of output probabilities is used. Apparently, tuning the hyperparameters and training
the network directly impact the distribution of these probabilities and, consequently, GE.
In deep learning-related literature, another parameter has been devised to assess how
confident an NN is when outputting the probabilities, namely confidence. The higher
the confidence, the better the NN approximated the true probability of labels, i.e., secret

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 5

key. Temperature scaling is a method developed to improve the confidence of an NN after
training, which means enhancing the attack performance in the context of SCA. This paper
addressed the need for such a mechanism, currently lacking in the SCA-related literature.

2 Background
2.1 Notations
In this paper, sets are represented using calligraphic letters such as X , while random
variables are denoted by the corresponding upper-case letter X. Realizations of X
are indicated by the corresponding lower-case letter x. Moreover, bold letters (e.g., y)
correspond to matrices and vectors. We use the standard notations for mathematical
operators defined in the respective sections.

2.2 Profiled Side-channel Analysis
A profiled SCA is characterized by two phases: profiling and attack [CRR02]. During
the profiling phase, the adversary utilizes an open device that she can control to build
a profiling model to extract the encryption key from similar devices. These two phases
match the training and testing steps in the ML domain.

In order to build the profiling model, the adversary has access to guessable or public
inputs: a chunk of plaintext P , as well as a part of the cryptographic algorithm’s secret
key S that the attacker aims to recover. Giving these inputs to the device, the adversary
observes an estimation φ̂s of the conditional probability distribution function for every
possible s ∈ S as follows. [BPS+18].

φs : (x, s) 7→ Pr[X = x | (P, S) = (p, s)].

This means that the side-channel traces can be used to estimate φ̂s. In doing so, for a
given profiling set of {pi, si}n

i=1, the adversary collects n traces {xi
1, xi

2, · · · , xi
k}n

i=1, where
each trace contains k features (k ≥ 2). The adversary constructs an ML model (i.e., a
leakage model) using the profiling set, which can estimate the probability of inputs for
every s ∈ S as:

φ̂X,P : (x, p) 7→ Pr[(P, S) = (p, s)|X = x].

To launch the attack, the adversary aims to classify a set of Ntest traces, the so-called
test set corresponding to an unknown s, based on the profiling model. Similar to testing in
an ML classification task, the adversary should derive the label for a trace: y = φ̂X,P (x, p),
for ŝ ∈ S so that ŝ = arg maxs∈S yk, where yk is the kth entry in the vector y.

Afterward, a score based on the maximum-likelihood of each hypothetical key can be
obtained for Ntest traces, as dk =

∏Ntest

i=1 yi
k, where yi

k is the kth entry in the vector yi

corresponding to the ith trace. With regard to this score, the key hypotheses are ranked
in a decreasing order based on the rank function (Equation (1)), from which the adversary
selects the key that is ranked first. The rank function is defined as [BPS+18]:

Rank(φ̂, Ntest) = |{k | dk > dk∗}|, (1)

where k∗ represents the key used to acquire the profiling traces. The rank is calculated for
a collection of Ntest traces from the test dataset, where Ntest is increased gradually until
the rank is minimized (the lower the rank, the higher the score). It is common to compute
the rank over different chunks of datasets. The average rank, also called the GE [MPP16],
is calculated as the mean of rank over different chunks. This paper also reports TGE0
denoting the least number of attack traces required to break the target [RWPP21, AGF23].
Leakage models. To disclose the secret key, SCA typically considers a divide-and-
conquer approach, e.g., focusing on the recovery of sub-key bytes in the case of AES. In other
words, k∗ in Equation 1 can represent a sub-key, and the process can be repeated for each

6 Too Hot To Be True

sub-key until the (full) key is recovered. In the literature, recovering one sub-key is assumed
sufficient to argue about the implementation’s vulnerability to the attack [PPM+21].

For each sub-key, to mimic the physical leakage of the device, a leakage model can
be defined to map the hypothetical data value to the (approximation of) leakage. The
leakage can be modeled in the form of an intermediate value of the cipher leading to 256
classes, where the identity (ID) model is assumed. On the other hand, by considering the
Hamming weight of the hypothetical data, it is assumed that the leakage is proportional
to the number of ones in the intermediate value.

2.3 Some Relevant Concepts in ML
Negative log-likelihood (NLL) loss. NNs employ the categorical cross-entropy loss
function in many applications, including SCA. NLL computes the loss L fas

L = −
n∑

k=1
yk log ŷk,

where yk and ŷk are the kth entries in y and ŷ, respectively. For ML classification tasks,
the terms “cross-entropy” and “negative log-likelihood” are used interchangeably [Mur12].
Numerically stable softmax. In practice, NLL is often coupled with the softmax
output layer. Softmax function σSM : RM 7→ {0, 1}M is formulated as

σSM (zi)(m) = exp (z(m)
i)∑M

j=1 exp (z(j)
i)

.

Softmax may suffer from overflow issues (i.e., exploding gradient problem) as observed
in ML- and SCA-related studies [GBC16, KWPP21]. As a remedy, a numerically stable
softmax (hereafter called stable softmax) has been proposed in [GBC16], where w(m)

i =
z(m)

i − maxm z(m)
i substitutes for z(m)

i in the softmax formula.
Validation. Before testing the trained model, it is essential to ensure that it is effectively
generalized to new, unseen data. Therefore, cross-validation methods are frequently used.
Cross-validation is a statistical method for evaluating the effectiveness of ML models. It
involves training the model on a portion of the dataset and using a different, disjoint
part of the training dataset to evaluate its performance. In ML and SCA, the hold-out
validation technique is usually applied. The hold-out validation technique (hereafter called
validation) involves partitioning the dataset into training, validation, and test datasets.
The model is trained using the training dataset, and its performance is evaluated using
the validation dataset, holding out of the training dataset. The most effective model is
then applied to the test dataset.

2.4 Datasets
This paper focuses on datasets serving as benchmarks for evaluating the performance of
NN-based SCA, namely CHES-CTF and two versions of the ASCAD dataset [BPS+17c].
The latter targets an 8-bit AVR microcontroller with a masked AES-128 implementation,
where electromagnetic emanation is the observed side-channel [BPS+20]. The first dataset
comprises 50,000 traces for profiling or training and 10,000 for testing (attack). In this
dataset, the focus is on attacking the third key byte, which is the first masked byte. For
this dataset, a specific window of 700 features is utilized, and the same key is used for
training and test sets. We refer to this dataset as ASCAD-f [BPS+17a].

The second dataset of the family of ASCAD datasets that we used has 200,000 traces
with random keys for profiling and 100,000 with a fixed key for testing. In this dataset,
the target byte is the same, and the selected window has 1400 features. We denote this
dataset as ASCAD-r [BPS+17b].

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 7

We have also used the CHES-CTF dataset [Ris18]. Released in 2018 for the Conference
on Cryptographic Hardware and Embedded Systems (CHES), this dataset is associated
with the CHES capture-the-flag (CTF) event. This dataset consists of 45000 traces for
profiling and 5000 traces for the attack phase. All the profiling traces use a fixed key, and
the attack traces also use a different fixed key. Each of the traces has 2200 features, and
they are captured running a masked AES-128 encryption on a 32-bit STM microcontroller.

3 Temperature Scaling for SCA
In systems where decisions are critical, it is not enough for classification networks to
be precise; they also need to indicate potential inaccuracies. For example, consider an
autonomous vehicle that utilizes an NN to identify pedestrians and obstacles[BDTD+16]. If
the network is confident about obstructions, the vehicle should depend more on additional
sensor data to decide whether to brake. Similarly, in the context of SCA, other factors
should be considered to evaluate the performance of an attack, indicating that the confidence
of the model is high enough. Specifically, a network must give us a confidence estimate
demonstrating how close its prediction distribution is to the true distribution of (sub-)keys.

Definition 1. (cf. [GPSW17]) Let X ∈ X and S ∈ S = {1, . . . , 256} be random variables
following a ground truth joint distribution π(X, S) = π(S|X)π(X). Consider as NN
represented by h(·), where h(X) = (Ŝ, Ĉ). Here, Ŝ is the class prediction, and Ĉ is its
associated confidence, which is the probability of correctness.

Comparing this definition with the description of profiled SCA in Section 2.2, φ̂X,P (·, ·)
is equivalent to h(·). Based on the Definition 1, methods have been devised to calibrate the
predicting probability estimates Ĉ to better approximate the true correctness likelihood.
For this, calibration techniques require a hold-out validation set. Using that, such methods
take post-processing steps to produce calibrated probabilities. Guo et al. analyzed different
calibration methods for binary and multi-class setups [GPSW17], and they concluded
that temperature scaling has the best performance for deep learning applications. Their
method, so-called temperature scaling, is an extension of Platt scaling[P+99].
Temperature scaling. For a multi-class problem, similar to SCA with 256 classes, the
NN outputs a class prediction ŝi and confidence score ĉi for a given input xi. In this
respect, for each class m (1 ≤ m ≤ 256) the network logits zi are typically given to a
softmax function:

σSM (zi)(m) = exp (z(m)
i)∑256

j=1 exp (z(j)
i)

. (2)

The confidence corresponds to the input xi is calculated based on Equation (2) as
ci = maxm σSM (zi)(m). Temperature calibration aims to output a calibrated probability
q̂i. In that sense, Platt scaling [P+99] is performed by training a logistic regression model
on the validation set to learn a scaler T > 0, using the logits as features:

q̂i = max
m

σSM (zi/T)(m). (3)

By doing so, T is optimized concerning NLL on the validation set. Note that in this
process, model parameters and hyperparameters are not changed.
Integration into SCA. After introducing the temperature calibration concept, we
describe how it can be integrated into the profiling-attack pipeline. The only requirement
for such an integration is a hold-out validation set, usually considered for other purposes
(e.g., hyperparameter tuning) in any ML task. As explained above, the validation set is
taken randomly from the profiling set to learn the parameter T . After obtaining T , during
the attack phase, the logits are calibrated using the temperature learned in the evaluation

8 Too Hot To Be True

step, i.e., T . Afterward, the probabilities generated by softmax are fed to the rank function
as usual. During this process, no parameter or hyperparameter of the NN is changed.
Softmax vs. stable softmax. It might be thought that to generate output probabilities
from the calibrated logits, it is also possible to use stable softmax as suggested in [AGF23].
It is possible to feed the temperature-calibrated logits into stable softmax. We argue that
this could not be beneficial as the logits are calibrated using T , optimized by applying
logistic regression on a softmax function. This suggests that the probability distribution
of logits would better follow a softmax distribution than the stable softmax with an
altered softmax distribution 2.3. In fact, applying stable softmax itself can be seen as a
non-optimized vector scaling; therefore, it may or may not calibrate the logits effectively.
Consequently, it is not surprising that in some experiments, stable softmax outperforms
temperature-calibrated softmax or temperature-calibrated stable softmax. Generally
speaking, Guo et al. have reported that (even) optimized vector scaling cannot surpass
temperature calibration [GPSW17]. We empirically examine if using stable softmax or
coupling temperature calibration with non-optimized vector scaling would be useful in
Section 4.
Interpretation of temperature scaling. By calibrating the q̂i, σSM (zi/T)(m) is
essentially calibrated. As a result, the output entropy is increased if T > 1, which is
referred to as “softening” the softmax [GPSW17]. When T = 1, q̂i = ĉi, no scaling is
applied. This implies that as T → 1, the output probabilities are fairly well approximated.
The probability q̂i → 1/256 indicates that the model is “confused,” corresponding to GE
close to random.

It is a known fact that since the scalar parameter T does not change the maximum
of the softmax function, the class prediction ŝi remains unchanged. Nevertheless, as
σSM (zi/T)(m) is calibrated, yi, and consequently, the ranks are scaled (see Equation (1).

4 Results
This section details our experimental results of the temperature calibration method. After
introducing the experimental setup, the results for the impact of temperature calibration on
the GE are presented in Section 4.2, whereas the effects of the number of validation/training
traces, selecting the hyperparameters and its objective function are analyzed in Sections 4.3-
4.4.

4.1 Experimental Setup
All the experiments presented in this section are run on a high-computing cluster with a
total of 10 CPUs allocated per task and a total memory of 50 GB with Scalable Gold 6248
and AMD Epyc 7543 processors. We focused on three primary datasets for our analysis as
described in Section 2.4. These datasets were used with both ID and HW leakage models,
except for the CHES-CTF dataset, whose leakage model is identified as HW [GJS19].
For each dataset, we employed two NN models: a multi-layer perceptron (MLP) and a
convolutional neural network (CNN), each adapted to the specifics of the leakage model in
terms of the number of output nodes. We stress that we do not propose any new MLP or
CNN architecture, but study the existing models to answer this question: how confident
are those models when extracting the secret key? For this purpose, we have considered
the models used in [WPP22a, PCP20a, WAGP20, ZBHV20]. Among the models used in
our paper, some trained models have been available [COS20], whereas in other cases, we
trained the model by using the available codes in [LW22, PCP20b]. In those cases, we
carefully compared our results with what has been reported in their respective papers to
match them as closely as possible.
Architecture of the models. The architectures of the MLP models that we used
are presented in Table 1, and the CNN models are presented in Table 2. In the models

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 9

Table 1: MLP Models. Here FC(#neurons) denotes a fully-connected layer with the
number of neurons is given in parentheses. SM(#classes) shows the number of classes at
the softmax layer.

Data set Leakage model Architecture

ASCADf
ID [WPP22a] FC(300),FC(300),FC(100), FC(100),FC(100),FC(100),

SM(256)

HW [WPP22a]
FC(200),FC(200),FC(100),FC(100),FC(100),FC(100),
FC(100),FC(100),FC(100),FC(100),FC(100),
SM(9)

ASCADr
ID [WPP22a] FC(400),FC(400),FC(100),FC(100),FC(100),FC(100),

Softmax(256)

HW [WPP22a] FC(200),FC(200),FC(100),FC(100),FC(100),FC(100),
FC(100),FC(100), SM(9)

CHES-CTF HW [WPP22a] FC(400),FC(400),FC(100),FC(100),FC(100), SM(9)

Table 2: CNN Models used in our experiments. Here C(filters, kernel size, strides), P(size,
stride), and M(size, stride) show the hyperparameters for a convolutional layer, average
pooling, and max pooling. FLAT denotes a flatten layer, whereas FC(#neurons) denotes
a fully connected layer with the number of neurons given in parentheses. SM(#classes)
shows the number of classes at the softmax layer.

Data set Leakage model Architecture

ASCADf ID [WAGP20] P(2,2), C(64,50), P(50,50), C(128,3,1), P(2,2), FLAT,
FC(20), FC(20), FC(20), SM(256)

HW [PCP20a] C(16,18,1), FLATT, FC(600), FC(600), SM(9)

ASCADr
ID [WPP22a] C(120,3,1), P(32,2), C(8,1,1), P(32,2), FLAT, FC(30),

FC(5), FC(5), SM(256)

HW [WPP22a] C(4,3,1), P(30,2), FLAT, FC(30), FC(20), FC(20),
SM(9)

CHES-CTF HW [WPP22a] C(216,10,1), P(2,2), C(200,12,1), M(2,2), C(8,2,1),
P(2,2), FLAT, FC(300), FC(100), SM(9)

considered in our study, NLL has been used as the loss function.

Training and testing sub-dataset preparation. In this study, the datasets employed,
as detailed in Section 2.4, consist of two parts: profiling and attack traces. Validation sets
are randomly taken from profiling traces. The Validation 1 set is then used for temperature
calibration, i.e., learning the scalar parameter T , as detailed in Section 3. Subsequently,
in the attack phase, we apply the calibrated model to the attack traces. During this
phase, we use the temperature learned in the evaluation step to calibrate the logits. The
“Validation2” set is used to calculate the calibrated model’s temperature to assess the
calibration’s performance. This process is illustrated in Figure 1. Next, softmaxfunction
generates probabilities from logits. These probabilities are then fed to the rank functions.
As can be understood from this workflow, neither the parameters nor the hyperparameters
of NNs were changed throughout the calibration process.

Furthermore, to examine whether stable softmax (non-optimized vector scaling, see
Section 3) could outperform temperature calibration, we also implement the stable softmax
function as the activation function for the models. The results for this setting are marked as
“stable softmax” throughout this section. We also consider the combination of temperature
scaling and stable softmax, whose related results are marked as “calibrated stable softmax.”
The GE curves of our implementations will be presented in the subsequent subsections.

4.2 Temperature Calibration: Impact on GE
This section covers the results obtained by applying temperature calibration of the models
introduced in Section 4.1. For the results presented in this subsection, the number of
traces in the Validation 1 and 2 datasets is half that of the training traces. This is in
accordance with the recommendation in the relevant literature [MDR+21].

10 Too Hot To Be True

Figure 1: Experimental setup. The validation sets are taken randomly from the profiling
set to perform temperature calibration by using the Validation 1 dataset, as explained in
Section 3. During the attack phase, the logits are calibrated using the temperature learned
in the evaluation step, and then the probabilities generated by softmax/stable softmax are
fed to the rank function as usual. During this process, no parameter or hyperparameter of
the NN is changed. The dataset “Validation 2” is solely used to measure the temperature
of the calibrated model to assess the performance of the temperature scaling.

Table 3: TGE0 and temperature of the trained models before and after temperature
calibration. T indicates the temperature with T ≈ 1 showing that the model is well
calibrated. It is worth mentioning that these results are obtained by calibrating the model
on a portion of the profiling dataset that contains (approximately) one-fourth of the
number of profiling traces in each dataset (see Section 4.3 for results with 2000 validation
traces that better match the results in respective studies). Note that as we are interested
in investigating the impact of temperature calibration, the relative reduction in TGE0 is
important rather than reproducing/improving the results in the respective papers.

Dataset Model Leakage model Uncalibrated Calibrated
T TGE0 T TGE0

ASCADf
MLP ID [WPP22a] 4.110 733 1.042 662

HW [WPP22a] 6.470 3368 0.950 2736

CNN
ID [WAGP20] 3.677 508 0.910 442
ID [ZBHV20] 2.534 587 0.927 511
HW [PCP20a] 1.601 1922 1.015 1895

ASCADr
MLP ID [WPP22a] 3.05 1575 1.026 1025

HW [WPP22a] 7.976 3443 0.977 2686
CNN ID [WPP22a] 1.165 324 1.014 281

HW [WPP22a] 1.670 1851 0.983 1615

CHES-CTF MLP HW [WPP22a] 15.194 4403 1.028 3381
CNN HW [WPP22a] 24.707 4706 0.956 4550

4.2.1 ASCAD with the fixed key
We begin with ASCAD with the fixed key (ASCAD-f) dataset that is relatively easier to
break [WPP22a].
ID leakage model. In Figure 2, we show the results for ASCAD-f dataset with ID
leakage model. The rank curves drawn for both MLP and CNN models indicate that
the models are well-trained. When comparing the results for uncalibrated models with
what has been presented in [WPP22a, WAGP20, ZBHV20], the trend of the curves are
similar in terms of achieving a lower rank and the number of traces to break the target.
Note that as we are interested in investigating the impact of temperature calibration, the
relative reduction in TGE0 is important rather than reproducing/improving the results in
the respective papers.

The attack results for the calibrated model have improved for both MLP and CNN
models, reaching GE = 0 with 662 for the MLP model, 442 for Wouters’ model, and 511 for
Zaid’s model. The MLP model [WPP22a] had a temperature of 4.11. For the CNN models
that we considered in this subsection, the temperature of the Wouters’ model [WAGP20]
was 3.677, and the temperature of the Zaid’s model [ZBHV20] was 2.534. This comparison
is indeed interesting as Wouters’ CNN has a smaller capacity than Zaid’s model. If the

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 11

(a) MLP [WPP22a] (b) CNN [WAGP20]

(c) CNN [ZBHV20]

Figure 2: GE of ASCAD-f with the ID leakage model.

models were overparameterized, it was expected that the temperature of Zaid’s CNN would
have been higher, which is not the case. Hence, one can draw the conclusion that both
models exhibit a reasonable size.

ID leakage model with stable softmax vs. calibrated stable softmax. In the
MLP model, compared to the results for temperature scaling presented in Table 4.2,
the stable softmax demonstrated a good performance in reaching GE = 0, both before
calibration with 458 traces and after calibration with 595 traces. In the case of the Wouters’
model [WAGP20], the stable softmax achieved GE = 0 by utilizing 462 traces before
calibration, and this number decreased to 409 traces after calibration. For Zaid’s model,
the number of traces needed for GE = 0 were 477 and 386, before and after calibration
in stable softmax. Therefore, we cannot conclude that coupling temperature scaling and
stable softmax (non-optimized vector scaling) is useful for this dataset as the calibrated
MLP model does not show a significant improvement over the uncalibrated one. However,
for CNNs, a promising trend is observed.

HW leakage model. Figure 3 depicts GE for both MLP model [WPP22a], and the
CNN model [PCP20a], where the HW leakage model is considered. For the MLP model,
the uncalibrated temperature was 6.470, which notably decreased to 0.950 after calibration,
see Table 3. The CNN model started with a lower initial temperature of 1.601, which
calibration further reduced to 1.015. Notably, calibration enhanced the GE of the CNN
model, with the calibrated model achieving better TGE0, see Table 3.

12 Too Hot To Be True

(a) MLP [WPP22a] (b) CNN [PCP20a]

Figure 3: GE of ASCAD-f with the HW leakage model.

HW leakage model with stable softmax vs. calibrated stable softmax. In this
context, the stable softmax showed superior performance compared to the softmax in the
CNN model, with a TGE0 of 1845 before calibration and 1757 after calibration. Similarly,
for the MLP model, calibration improved the TGE0 of the stable softmax from 2539 to
2199, and the TGE0 of softmax from 3368 to 2736. Hence, for this setting, the combination
of temperature scaling and stable softmax was useful.
4.2.2 ASCAD with the random key
ID leakage model. GE results of the models for the ASCAD dataset with the ran-
dom key (ASCAD-r) and ID leakage model are presented in Figure 4. Here, the CNN
model [WPP22a] was well trained, and the temperature was 1.165. The calibrated model
performed better in terms of GE, for the softmax TGE0 reduced to 281 from 324, See
Table 3. In MLP model [WPP22a], we saw a temperature of 3.05. For this model, the
number of the traces needed for GE = 0 was 1575 that reduced to 1025 after calibration3.
ID leakage model with stable softmax vs. calibrated stable softmax. For
CNNs, when applying the stable softmax, TGE0 = 296 that reduces to TGE0 = 223 after
calibration. For MLPs, The TGE0 = 875 for the stable softmax, and unlike the trend
that we saw for CNNs after calibration, this number increased to 1290. Hence, again, no
conclusion can be made about the usefulness of the combination of temperature calibration
and stable softmax.
HW leakage model. Figure 5 shows the rank curves of the HW leakage model for
the ASCAD-r dataset. Like other models in this section, here again, the results of
the CNN [WPP22a] model were better, resulting in a lower temperature and better
calibration. The temperature before calibration was 1.670 for the CNN model, whereas for
the MLP [WPP22a], this number was 7.976 3. For the MLP, After calibration the rank
curves improved so that TGE0 was 2686 for the calibrated model, while before calibration,
the model needed 3443 traces to reach GE = 0, see Table 3.
HW leakage model with stable softmax vs. calibrated stable softmax. For
the MLP, the results obtained for stable softmax also improved by calibration, reducing
the TGE0 from 3447 to 2510. The same holds for the CNN models: the calibrated model
required 1615 traces to reach the GE = 0 compared to 1851 traces for the uncalibrated
model. For the CNN, TGE0 was 1597 before calibration and 1575 after calibration for
the stable softmax, which were lower than the softmax in both cases. Overall, we could
observe that temperature calibration combined with the stable softmax could enhance the
attack performance.

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 13

(a) MLP [WPP22a] (b) CNN [WPP22a]

Figure 4: GE of ASCAD-r with the ID leakage model.

(a) MLP [WPP22a] (b) CNN [WPP22a]

Figure 5: GE of ASCAD-r with the HW leakage model.

4.2.3 CHES-CTF

HW leakage model. Next, we discuss the results of the CHES-CTF dataset. For this
dataset, the temperature of both the MLP and CNN models [WPP22a] were high. MLP
model’s temperature was 15.194; following calibration, the model used fewer traces for
GE = 0. The TGE0 was 4403 for the uncalibrated model and 3381 after calibration3. The
same results were observed for the CNN model with a temperature of 24.707, and the
model used 150 fewer traces to reach GE = 0 after calibration, see Figure 3.

HW leakage model with stable softmax vs. calibrated stable softmax. The
models incorporating the stable softmax performed significantly better than softmax, as
shown in Figure 6. TGE0 for the MLP model was 2374 and 328 for the CNN. As shown in
Figure 6, calibration of models with stable softmax output layer was not beneficial.

Summary. Based on the results shown in Table 3 for all the trained models, after
calibration, the temperature decreases to a number close to 1, which indicates that the
output probabilities are fairly well approximated. Our results shown in Figures 2-6
demonstrated that temperature scaling and non-optimized vector scaling (stable softmax)
are both effective when launching an attack under various scenarios (different datasets,
leakage models, NN models). Nevertheless, we did not conclude that combining temperature

14 Too Hot To Be True

(a) MLP [WPP22a] (b) CNN [WPP22a]

Figure 6: GE of CHES-CTF with the HW leakage model.

Table 4: TGE0 and temperature of the trained models before temperature calibration as
well as TGE0 after calibration. T indicates the temperature with T ≈ 1 showing that
the model is well calibrated. 2000 traces taken from the profiling dataset are used for
calibrating the trained model.

Dataset Model Leakage model Uncalibrated Calibrated
T TGE0 TGE0

ASCADf
MLP ID [WPP22a] 2.953 449 295

HW [WPP22a] 1.604 432 246

CNN
ID [WAGP20] 1.513 226 190
ID [ZBHV20] 1.435 162 120
HW [PCP20a] 1.605 1922 1895

ASCADr
MLP ID [WPP22a] 3.08 1492 1137

HW [WPP22a] 7.216 1152 1164
CNN ID [WPP22a] 1.120 347 269

HW [WPP22a] 1.794 1376 1038

CHES-CTF MLP HW [WPP22a] 15.263 2198 768
CNN HW [WPP22a] 25.17 5000 4913

scaling and stable softmax (marked as calibrated stable softmax) would always be helpful.

4.3 Temperature Calibration: Impact of the Number of Validation
Traces

The main objective of this section is to observe the effect of the number of training/validation
traces on the model’s temperature. In this subsection, we used 2000 traces as the validation
set and trained the models with the rest of the traces in the profiling traces. This means
that the models had the luxury of using a significantly higher number of training traces in
comparison to the cases studied in Section 4.2. This reduces the model’s variance, and
therefore, it is expected that the temperature of uncalibrated models will be reduced.
4.3.1 ASCAD with the fixed key
This dataset contains 50,000 profiling traces. To achieve the results presented in Section 4.2,
a fourth of these traces were used for validation. Here, only 2,000 traces are taken from
the profiling dataset for this purpose, allowing more traces for training. Consequently, the
models exhibit improved performance.
ID leakage model. Figure 7 shows the results for the ID leakage model. Using a larger
number of traces for training CNNs resulted in obtaining models with a good performance.
The temperature was reduced to 1.513 for the Wouters’ model[WAGP20] and 1.435 for
Zaid’s model [ZBHV20] (see Table 3 and Table 4). Compared to the results in Table 3,
Wouters’ model [WAGP20] reached lower ranks with fewer traces: TGE0 = 190 for the

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 15

(a) MLP [WPP22a] (b) CNN [WAGP20]

(c) CNN [ZBHV20]

Figure 7: GE of ASCAD-f with the ID leakage model and 2000 traces in the validation set.

calibrated softmax, while it was 226 before calibration. Similarly, TGE0 for the model
with stable softmax was also improved after calibration from 280 to 226. Considering
Zaid’s model, TGE0 was 162 for the model with softmax and 156 for the one with stable
softmax, and after calibration, these numbers reduced to 120 and 149, respectively. The
MLP model [WPP22a] had an initial temperature of 2.953, and TGE0 reduced from 449 to
295 for softmax and from 3360 to 989 for stable softmax.

HW leakage model. The GE curves depicted in Figure 8 present the results obtained
for models with the HW leakage model. For the CNN model [PCP20a], an increase in
the number of validation traces slightly changed the temperature. The temperature was
1.605 for the CNN model, whereas it was 1.604 for the MLP model [WPP22a](see table 4).
Calibration improved the results in both models, reducing TGE0 from 432 to 346 in the
MLP model and from 1922 to 1895 in the CNN model. We can also see improvements in
the results when taking stable softmax into account. Before calibration, TGE0 was 540
and 1845, which were reduced to 501 and 1757 for the MLP model and CNN model with
stable softmax, respectively.

4.3.2 ASCAD with the random key
This dataset is larger than the ASCAD-f dataset, therefore, it is expected that the change
in the training/validation split does not influence the model variance, and consequently,
temperature.

ID leakage model. For the ASCAD-r dataset, using the ID leakage model, the MLP
model [WPP22a] temperature was 3.08, slightly higher than the previous 3.05, see Table 3,

16 Too Hot To Be True

(a) MLP [WPP22a] (b) CNN [PCP20a]

Figure 8: GE of ASCAD-f with the HW leakage model and 2000 traces in the validation
set.

(a) MLP [WPP22a] (b) CNN [WPP22a]

Figure 9: GE of ASCAD-r with the ID leakage model and 2000 traces in the validation set.

which is not statistically significant. Similarly, the CNN model [WPP22a] temperature
did not change significantly, and it was 1.120. The MLP model with the calibrated stable
softmax achieved TGE0 = 815, while the result for the CNN model with calibrated softmax
was TGE0 = 269 (see Figure 9).

HW leakage model. Next, as shown in Figure 10, the calibrated model performed
well in terms of reaching GE = 0 with fewer attack traces. The CNN model had a low
temperature, but compared to the results in Section 4.2, we observed that the temperature
was slightly increased to 1.794. The TGE0 was obtained for 1038 and 1376 traces before
and after calibration. The temperature of the MLP model was 7.216. It took 1164 traces
to achieve GE = 0 for this model after calibration and 1152 before it. CNNs with stable
softmax and calibrated softmax could also achieve competitive results, while for MLP ones,
calibrated softmax was advantageous.

4.3.3 CHES-CTF dataset

Finally, we can see the GE curves of the models trained on the CHES-CTF dataset in
Figure 11. Here, the temperature of the CNN and MLP was 25.17 and 15.263, respectively.
High temperature and poor performance indicate that the models suffer from overfitting.
Interestingly enough, stable softmax outperformed other calibration methods and the

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 17

(a) MLP [WPP22a] (b) CNN [WPP22a]

Figure 10: GE of ASCAD-r with the HW leakage model and 2000 traces in the validation
set.

(a) MLP [WPP22a] (b) CNN [WPP22a]

Figure 11: GE of CHES-CTF with the HW leakage model and 2000 traces in the validation
set.

softmax itself.

Summary. The take-home message from the experiments, whose results are presented
in this section, is as follows. In the context of SCA, where the profiling datasets are not
as large as what can be found in other deep learning applications, it is recommended not
to limit the number of training traces to allocate more traces for validation. Both stable
softmax (non-optimized vector scaling) and temperature scaling effectively improve the
attack performance. Increasing the number of profiling traces may result in overfitting, as
observed for the CHES-CTF dataset. Therefore, monitoring the NLL and accuracy during
training is, therefore recommended.

4.4 Temperature Calibration: Impact of Hyperparameters
In this section, we aim to present the results for the models that have undergone hyperpa-
rameter tuning, although it has performed improperly. When the search space is large,
too few hyperparameters are chosen to be tuned simultaneously, an unfit range of values is
chosen, or wrong objective function (tuning metrics) are selected, hyperparameter tuning
may fail. If the hyperparameters are not optimized, temperature calibration does not help
much. As an example, Figure 12 shows the results for the models whose hyperparameters

18 Too Hot To Be True

Table 5: Models with improper hyperparameters (notations are similar to Tables 1-2).

Model Architecture

MLP [WPP22a] FC(200), FC(200), FC(100), FC(100), FC(100),
FC(100), FC(100), SM(256)

CNN [WPP22a]
C(152,7,1), M(2,2), C(24,8,1), M(2,2), C(8,2,1),
P(2,2), FLAT, FC(500), FC(100), FC(100),
SM(256)

(a) MLP with key rank [WPP22a] (b) CNN with accuracy [WPP22a]

Figure 12: GE of the models with improper hyperparameters for ASCAD-r and ID leakage
model.

were attempted to tune. In these cases, the range of hyperparameters was unfit, leading to
a failure in tuning. Table 5 lists the hyperparameters of these models (see Tables 1-2 for
the differences between proper and improper hyperparameters). As we expected, using
improper hyperparameters increases the temperature of the models. For the CNN and
the MLP models [WPP22a], the temperature was 14.84 and 13.58, respectively. The GE
curves either converge to a high value or exhibit random behavior. What can be concluded
is that the temperature can serve as a metric to verify if the hyperparameters are tuned
well before launching the attack.
4.4.1 Impact of improper objective function
In order to tune the hyperparameters, it is necessary to define an objective function. There
are three common objective functions that Wu et al. [WPP22a] utilized in their research:
accuracy, key rank, and Lm [WPP22b]. The first two objective functions are commonly
used in ML tasks, whereas Lm represents the correlation between the leakage distribution
variation observed for different key candidates and the key guessing vector. Hence, Lm gives
insight into the profiling model’s generalizability [WPP22b]. Wu et al. have demonstrated
that choosing these objective functions has impacted the attack performances for different
models and datasets [WPP22a]. In our experiments, we aimed to understand the effect
of these objective functions on the temperature of the models. In doing so, we focused
on two experiments performed on the ASCAD-r to train MLP and CNN models with ID
leakage models. Figure 13a illustrates the results for a model trained with Lm objective,
while the best results for the MLP model were obtained by incorporating the key rank
objective function. Comparing this with the results in Figure 9, it is evident that the
attack performance is degraded. The temperature of this model was 6.981, twice as large
as the temperature of the model with the key rank objective.

In the case of CNNs, the best results were achieved by considering the accuracy as the
objective function. We trained another model using the Lm objective function to see the
differences in the temperatures and GE. Figure 13b shows the GE for this model, which is

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 19

(a) MLP with Lm [WPP22a] (b) CNN with Lm [WPP22a]

Figure 13: GE of the models with wrong objective functions for ASCAD-r and ID leakage
model.

not as good as the results in Figure 9. The temperature of this model was 20.41 which is
much higher than the model trained with the proper objective.

Summary. Factors that affect the quality of hyperparameter tuning directly influence the
temperature of the model. As an example, an improper objective function leads to a high
model temperature. Other factors, like the range of values, can similarly impact the tuned
model and, consequently, the model’s temperature. In such cases, the temperature of the
model is high. This could be beneficial in assessing the performance of the hyperparameter
tuning as well as attack performance, even before mounting that.

5 Discussion
5.1 Why SCA Should not Push for Higher Accuracy Levels
Besides improving the performance of the attack in terms of GE, temperature scaling can
give insight into issues concerning the evaluation metrics of SCA. As mentioned before in
Section 2.3, multi-class ML tasks are often tackled by incorporating the softmax output
layer along with the NLL loss function. NLL has also found application in NN-assisted
SCA since it has been proven that NLL is inversely related to “perceived information”
(PI) [RSVC+11, MDP20, BHM+19]. The PI refers to generalizing the mutual information
between the side-channel traces and the leakage profiling model (i.e., the ML trained on the
traces). This aligns with ML’s view: NLL is minimized if and only if the NN recovers the
ground truth conditional distribution π(S|X) [GPSW17]. Therefore, the PI can quantify
how well the ML model is trained. Specifically, minimizing the NLL loss function (similarly,
cross-entropy) during NN training is asymptotically equivalent to maximizing the perceived
information and improving the trained NN performance cf. [MDP20].

Consider a scenario where NLL reaches a minimum value. If the training is not stopped,
the model still can improve its accuracy, although the model is overfitting to NLL, i.e., NLL
starts increasing. This effect can also be formulated as overfitting to NLL without overfitting
the classification accuracy. In fact, overfitting to NLL helps improve classification accuracy,
where the network reaches better classification accuracy “at the expense of well-modeled
probabilities,” cf. [GPSW17]. In the context of SCA, if probabilities are not well modeled,
the attack performance in terms of GE degrades [PCP20a]. This clarifies what has been
empirically verified in SCA-related literature [PCP20a], i.e., accuracy might not reflect
the performance of the attacks as GE does.

To address overfitting to NLL, two major actions can be carried out.

20 Too Hot To Be True

• First, the training can be stopped before changing the training regime to NLL
overfitting. In this sense, NLL itself calibrates the NN’s output probability. This can
be performed by observing the NLL as a stopping criterion. Another possible approach
is to stop the model by encompassing criteria, which measure the information the
NN extracts from the input, indirectly minimizing PI [AGF23].

• It is also possible to apply temperature scaling as proposed in this paper to calibrate
the NN’s output probability and its confidence. This can be the most straightforward
to incorporate into a neural network training pipeline.

5.2 Why Compact NNs for SCA?
Another aspect of NN-assisted SCA that can benefit from this study is the configuration of
NNs, particularly their size. Several works have highlighted the importance of reducing the
NNs’ trainable parameters [ZBHV20, WAGP20, AGF23], mainly to reduce computational
complexity and memory footprint. On the other hand, studies, e.g., [WPP22a], have
argued that there might be no reason why the need for smaller NN should be emphasized,
as the size of NNs used for SCA is small compared to other ML tasks.

According to learning theory, large models with little or no regularization will not
generalize well [ZBH+17, ZBH+21]. In this regard, although increasing the NN’s capacity
(depth and width) may reduce classification error, such increases negatively affect model
confidence. The discussion on the disconnect between overfitting to NLL and accuracy,
provided in Section 5.1, is also relevant to this aspect. When the model capacity is high,
additional training epochs can be needed to converge and reach the desired performance.
During those additional epochs, the model’s classification error may be reduced; however,
it is possible that NLL will not be further minimized, and the model will start overfitting
to NLL. While this benefits classification accuracy, it is not helpful for SCA.

6 Conclusion and Future Work
In the context of SCA, the problem tackled in this paper is that NNs tend to be excessively
confident in their predictions. We demonstrate that the methods developed in deep learning
to address the issue with NNs’ overconfidence can be leveraged to improve the attack
performance in terms of GE. In this regard, our work focuses on temperature scaling, which
can be easily integrated into SCA without reconfiguring or retuning the NN. Another
problem identified in studies on NN-assisted SCA is that it is not straightforward to assess
the performance of the hyperparameter tuning before launching an attack. The concept of
temperature scaling is indeed useful in this matter.

To evaluate the effectiveness of our approach, we used publicly available NNs that were
trained on various benchmark datasets. The temperature of these models was calculated
to see how miscalibrated they are. The results of taking our approach indicate that the
number of attack traces needed to break the target is reduced (reaching GE = 0). We also
examined the impact of the number of training traces and hyperparameter tuning on the
performance of the attack and how the models’ temperature can reflect that.

The requirement for a hold-out validation dataset contributes to the cost of our approach.
Consequently, in scenarios where datasets have a limited number of profiling traces, there
are fewer validation traces available to perform temperature calibration. Nevertheless,
with respect to SCA, collecting profiling traces from the open copy of the device might not
be an issue.

We will shift our focus to a calibration method that relies on a divide-and-conquer
strategy in the future. In this work, we used a single scalar temperature for all the classes,
while using one temperature for each class can help calibrate the models more efficiently.
Moreover, examining other types of model calibration could also be a viable option for
future research.

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 21

7 Acknowledgments
This work has been supported by NSF under award number 2138420.

References
[AGF23] Rabin Y Acharya, Fatemeh Ganji, and Domenic Forte. Information theory-

based evolution of neural networks for side-channel analysis. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pages 401–437,
2023.

[BDTD+16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[Ben13] Yoshua Bengio. Deep learning of representations: Looking forward. In
International conference on statistical language and speech processing, pages
1–37. Springer, 2013.

[BHM+19] Olivier Bronchain, Julien M Hendrickx, Clément Massart, Alex Olshevsky,
and François-Xavier Standaert. Leakage certification revisited: Bounding
model errors in side-channel security evaluations. In Annual Intrl. Cryptol.
Conf., pages 713–737. Springer, 2019.

[BPS+17a] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and
Cécile Dumas. ASCAD: the ATMega8515 SCA traces databases (fixed
key). [Online]https://github.com/ANSSI-FR/ASCAD/tree/master/
ATMEGA_AES_v1/ATM_AES_v1_fixed_key [Accessed: Jan.8, 2024], 2017.

[BPS+17b] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and
Cécile Dumas. ASCAD: the ATMega8515 SCA traces databases (vari-
able key). [Online]https://github.com/ANSSI-FR/ASCAD/tree/master/
ATMEGA_AES_v1/ATM_AES_v1_variable_key [Accessed: Jan.8, 2024], 2017.

[BPS+17c] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. ASCADv1 Dataset: the atmega8515 sca campaigns. [Online]
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1 [Ac-
cessed: Jan.8, 2024], 2017.

[BPS+18] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Study of deep learning techniques for side-channel analysis and
introduction to ascad database. 2018.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ascad
database. Journal of Cryptographic Engineering, 10(2):163–188, 2020.

[Cag18] Eleonora Cagli. Feature extraction for side-channel attacks. PhD thesis,
Sorbonne université, 2018.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures. In
Intrl. Conf. on Cryptographic Hardware and Embedded Systems, pages 45–68.
Springer, 2017.

[Online] https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
[Online] https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
[Online] https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
[Online] https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
[Online] https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
[Online] https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1

22 Too Hot To Be True

[COS20] KU Leuven COSIC. TCHES20V3 CNN SCA Repository: cnn-based
side-channel analysis. [Online]https://github.com/KULeuven-COSIC/
TCHES20V3_CNN_SCA [Accessed: Jan. 8, 2024], 2020.

[CRR02] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In
Intrl. Workshop on Cryptographic Hardware and Embedded Systems, pages
13–28. Springer, 2002.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[GHO15] Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural network based
attack on a masked implementation of aes. In Intrl. Symposium on Hardware
Oriented Security and Trust (HOST), pages 106–111. IEEE, 2015.

[GJS19] Aron Gohr, Sven Jacob, and Werner Schindler. Ches 2018 side channel
contest ctf-solution of the aes challenges. Cryptology ePrint Archive, 2019.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Cryptographic Hardware and Embedded
Systems—CHES 2001, pages 251–261. Springer, 2001.

[GPSW17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration
of modern neural networks. In International conference on machine learning,
pages 1321–1330. PMLR, 2017.

[HGDM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
Journal of Cryptographic Engineering, 1(4):293, 2011.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent machine homicide. In Intrl.
Workshop on Constructive Side-Channel Analysis and Secure Design, pages
249–264. Springer, 2012.

[IUH22] Akira Ito, Rei Ueno, and Naofumi Homma. Perceived information revisited:
New metrics to evaluate success rate of side-channel attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pages 228–254,
2022.

[JSH19] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural
architecture search system. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 1946–
1956, 2019.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings
19, pages 388–397. Springer, 1999.

[Koc96] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Annual International Cryptology Conference,
pages 104–113. Springer, 1996.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan
Hanjalic. Make some noise. unleashing the power of convolutional neural
networks for profiled side-channel analysis. IACR Trans. on Cryptographic
Hardware and Embedded Systems, pages 148–179, 2019.

[Online] https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA
[Online] https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 23

[KWPP21] Maikel Kerkhof, Lichao Wu, Guilherme Perin, and Stjepan Picek. No (good)
loss no gain: Systematic evaluation of loss functions in deep learning-based
side-channel analysis. IACR Cryptol. ePrint Arch., 2021/1091, 2021.

[LBM15] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. A machine learn-
ing approach against a masked aes. Journal of Cryptographic Engineering,
5(2):123–139, 2015.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch,
and François-Xavier Standaert. Template attacks vs. machine learning
revisited (and the curse of dimensionality in side-channel analysis). In Intrl.
Workshop on Constructive Side-Channel Analysis and Secure Design, pages
20–33. Springer, 2015.

[LW22] Stjepan Picek Lichao Wu, Guilherme Perin. AutoSCA: automated hyper-
parameter tuning for deep learning-based side-channel analysis. [Online]
https://github.com/AISyLab/AutoSCA [Accessed: Jan. 8, 2024], 2022.

[MDP20] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study
of deep learning for side-channel analysis. IACR Trans. on Cryptographic
Hardware and Embedded Systems, pages 348–375, 2020.

[MDR+21] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua
Zhai, Neil Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration
of modern neural networks. Advances in Neural Information Processing
Systems, 34:15682–15694, 2021.

[MHM13] Zdenek Martinasek, Jan Hajny, and Lukas Malina. Optimization of power
analysis using neural network. In Intrl. Conf. on Smart Card Research and
Advanced Applications, pages 94–107. Springer, 2013.

[MOP08] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks: Revealing the secrets of smart cards, volume 31. Springer Science &
Business Media, 2008.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Intrl. Conf.
on Security, Privacy, and Applied Cryptography Engineering, pages 3–26.
Springer, 2016.

[Mur12] Kevin P Murphy. Machine Learning: A Probabilistic Perspective. MIT press,
2012.

[P+99] John Platt et al. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. Advances in large margin
classifiers, 10(3):61–74, 1999.

[PCP20a] Guilherme Perin, Łukasz Chmielewski, and Stjepan Picek. Strength in
numbers: Improving generalization with ensembles in machine learning-
based profiled side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 337–364, 2020.

[PCP20b] Guilherme Perin, Łukasz Chmielewski, and Stjepan Picek. Repository code
to support tches2020 paper "strength in numbers: Improving generalization
with ensembles in machine learning-based profiled side-channel analysis".
[Online]https://github.com/AISyLab/EnsembleSCA [Accessed: Jan. 4,
2024], 2020.

[Online] https://github.com/AISyLab/AutoSCA
[Online] https://github.com/AISyLab/AutoSCA
[Online] https://github.com/AISyLab/EnsembleSCA

24 Too Hot To Be True

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with ma-
chine learning for side-channel evaluations. IACR Trans. on Cryptographic
Hardware and Embedded Systems, 2019(1):1–29, 2019.

[PPM+21] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
SoK: Deep learning-based physical side-channel analysis. IACR Cryptol.
ePrint Arch., 2021/1092, 2021.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema):
Measures and counter-measures for smart cards. In Smart Card Programming
and Security: International Conference on Research in Smart Cards, E-smart
2001 Cannes, France, September 19–21, 2001 Proceedings, pages 200–210.
Springer, 2001.

[Ris18] Riscure. CHES_CTF: trace database. [Online]http://aisylabdatasets.
ewi.tudelft.nl [Accessed: Jan.8, 2024], 2018.

[RSVC+11] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon,
Dina Kamel, and Denis Flandre. A formal study of power variability issues
and side-channel attacks for nanoscale devices. In Annual Intrl. Conf. on
the Theory and Applications of Cryptographic Techniques, pages 109–128.
Springer, 2011.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforce-
ment learning for hyperparameter tuning in deep learning-based side-channel
analysis. Cryptol. ePrint Arch., Report 2021/071, 2021.

[SMY09] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Annual Intrl.
Conf. on the Theory and Applications of Cryptographic Techniques, pages
443–461. Springer, 2009.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel.
Revisiting a methodology for efficient cnn architectures in profiling attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
147–168, 2020.

[WPP22a] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis. IEEE
Transactions on Emerging Topics in Computing, 2022.

[WPP22b] Lichao Wu, Guilherme Perin, and Stjepan Picek. On the evaluation of
deep learning-based side-channel analysis. In International Workshop on
Constructive Side-Channel Analysis and Secure Design, pages 49–71. Springer,
2022.

[ZBH+17] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. iclr
2017. arXiv preprint arXiv:1611.03530, 2017.

[ZBH+21] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning (still) requires rethinking generalization.
Communications of the ACM, 64(3):107–115, 2021.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. IACR Trans.
on Cryptographic Hardware and Embedded Systems, 2020(1):1–36, 2020.

[Online] http://aisylabdatasets.ewi.tudelft.nl
[Online] http://aisylabdatasets.ewi.tudelft.nl

Seyedmohammad Nouraniboosjin, Fatemeh Ganji 25

[ZZN+20] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu.
A novel evaluation metric for deep learning-based side channel analysis
and its extended application to imbalanced data. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 73–96, 2020.

	Introduction
	Related work

	Background
	Notations
	Profiled Side-channel Analysis
	Some Relevant Concepts in ML
	Datasets

	Temperature Scaling for SCA
	Results
	Experimental Setup
	Temperature Calibration: Impact on GE
	Temperature Calibration: Impact of the Number of Validation Traces
	Temperature Calibration: Impact of Hyperparameters

	Discussion
	Why SCA Should not Push for Higher Accuracy Levels
	Why Compact NNs for SCA?

	Conclusion and Future Work
	Acknowledgments
	References

