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Abstract 

        In 2016, NIST announced an open competition with the goal of finding and standardizing a suitable quantum-resistant 

cryptographic algorithm, with the standard to be drafted in 2023. These algorithms aim to implement post-quantum secure key 

encapsulation mechanism (KEM) and digital signatures. However, the proposed algorithm does not consider authentication and 

is vulnerable to attacks such as man-in-the-middle. In this paper, we propose an authenticated key exchange algorithm to solve 

the above problems and improve its usability. The proposed algorithm combines learning with errors (LWE) and elliptic curve 

discrete logarithm problem to provide the required security goals. As forward security is a desirable property in a key exchange 

protocol, an ephemeral key pair is designed that a long-term secret compromise does not affect the security of past session keys.  

Moreover, the exchange steps required by the algorithm are very streamlined and can be completed with only two handshakes.  

We also use the random oracle model to prove the correctness and the security of proposed scheme. The performance analysis 

demonstrates the effectiveness of the proposed scheme. We believe that the novel approach introduced in this algorithm 

opens several doors for innovative applications of digital signatures in KEMs. 

Keywords: LWE, ECDLP, AKA, PQC, KEM 

1. Introduction 

In recent years, as government organizations and 

private enterprises around the world have devoted a lot 

of resources in researching quantum computers, 

significant progress in the research and construction of 

quantum computers has been made. A fully-fledged 

quantum computer will be able to efficiently solve a 

distinct set of mathematical problems, such as integer 

factorization and discrete logarithms, which are the 

basis for various cryptographic schemes. In 2016, 

NIST announced an open competition with the goal of 

finding and standardizing a suitable quantum-resistant 

cryptographic algorithm, with the standard to be 

drafted in 2023. These algorithms aim to implement 

post-quantum secure KEM and digital signatures. 

However, the proposed algorithm does not consider 

authentication and is vulnerable to attacks such as 

man-in-the-middle. Just like the first famous key 

agreement protocol, the Diffie-Hellman (DH) key 

agreement protocol [1] is the basic architecture of 

public key cryptography. It is simple yet elegant. After 

its invention, countless applications based on the DH 

key exchange protocol or DH problem have been 

proposed. Now CRYSTALS-Kyber [2] is specified as 

a Key Encapsulation Mechanism (KEM) standard, and 

its security is based on the difficulty of solving the 

learning with errors (LWE). Nonetheless, Kyber key 

exchange (Kyber.KE) protocol is not resistant to 

attacks originally suffered by the DH protocol, such as 

Man-In-The-Middle (MITM) attack, lack of Perfect 

Forward Secrecy (PFS), etc. Although in [2], Bos et al. 

further proposed the authentication key exchange 

protocol using Kyber (Kyber.AKE). However, full 

forward secrecy [3] is not achievable in Kyber.AKE. 

Based on the above background, we propose an 

authentication key agreement protocol based on two 
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difficulties: the error learning problem and the elliptic 

curve discrete logarithm problem. The new protocol 

uses a key encapsulation mechanism to encrypt the 

elliptic curve digital signature algorithm, realizing 

identity verification and key agreement in a succinct 

two-way handshake. 

2. Related works 

In 1976, Diffie and Hellman [1] opened the door to 

the concept of public key algorithms. Subsequently, 

Rivest, Shamir and Adleman [4] proposed a concrete 

public key encryption scheme in 1978. After N. 

Koblitz [5] proposed elliptic curve cryptography (ECC) 

in 1985, the application of ECC was further integrated 

into the Diffie-Hellman key exchange algorithm and 

became ECDH. In addition, Scott Vanstone [6] also 

proposed the Elliptic Curve Digital Signature 

Algorithm (ECDSA) in 1992, which is an elliptic 

curve analog of the Digital Signature Algorithm 

(DSA). These pioneering algorithms have led decades 

of research on key exchange protocols. The 

mathematical problems they are based on, such as the 

discrete logarithm problem and the integer 

factorization problem, are regarded as the basis for 

protocol security. However, in 1994 Peter Shor [7] 

proposed a quantum algorithm that posed a threat to 

modern cryptography. With the advancement of 

quantum computers, post-quantum cryptography 

(PQC) has also emerged in response. 

Among the early works on PQC focus on key 

encapsulation mechanisms such as Classic McEliece 

[8], HQC (Hamming Quasi-Cyclic) [9], BIKE (Bit 

Flipping Key Encapsulation) [10], NTRU Prime [11], 

etc. However, because the session key is dominated by 

one party and there is no authentication between the 

two parties, these mechanisms are vulnerable to many 

protocol attacks, such as man-in-the-middle attacks. 

Jintai Ding et al. [13] then proposed a key exchange 

scheme based on the learning with errors problems. 

Ding et al. introduced a randomized algorithm to 

generate the signal and a robust extractor to remove 

the bias of the distribution of the extracted key. 

Nonetheless, the proposed scheme is still susceptible 

to man-in-the-middle attacks. Guilhem et al. [14] 

presented an unauthenticated and thus CPA-secured 

secured key exchange protocol, which was selected by 

Hermelink et al. [15] to be instantiated as a quantum-

safe algorithm on the automotive microcontroller 

platform AURIXTM[16]. The proposed protocol 

generates an ephemeral key pair that is used to achieve 

forward. Completing this protocol requires a three-

way handshake and can only achieve weak perfect 

forward secrecy [3]. Joppe Bos et al. then gave Kyber-

AKE [2] which only required two handshakes to 

complete the protocol, but the proposed protocol also 

had weak perfect forward secrecy only. 

In order to conquer the above issues, we propose a 

more secure and practical key agreement protocol that 

is called Double-Difficulty Authenticated Key 

Agreement (D2AKA) protocol. The focus of this 

research is to implement an authentication key 

agreement protocol that integrates the error learning 

problem and the elliptic curve discrete logarithm 

problem and resists the attacks suffered by 

Kyber.KE/AKE. The main contributions of this article 

are summarized as follows: 

(1) We propose a hybrid authenticated 

authentication protocol based on two different 

types of difficulties, namely the error learning 

problem and the elliptic curve discrete 

logarithm problem. Even if a problem is solved, 

there is no advantage to the adversary. 

(2) We use digital signatures to further provide 

identity authentication to achieve mutual 

authentication, implicitly utilizing zero-

knowledge proof. Moreover, the proposed 

protocol is simple and requires only two 

handshakes. The proposed protocol achieves 

perfect forward secrecy that cannot be achieved 

by 2-message protocols [30]. 

(3) We conduct security and performance analyses 

of our approach to validate its resilience to 

security attacks and its computational 

effectiveness. Furthermore, we compare the 

performance of our protocol with various 

existing methods and the results show that our 

approach is practical in terms of storage, 

communication, and computation costs. 

The rest of this paper is structured as follows. 

Related works are reviewed in Section 2. In Section 3, 

we present preliminaries. In Section 4, we give a 

detailed description of our proposed authentication 

protocol. Section 5 presents the security analysis and 
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section 6 gives a performance comparison. Finally, we 

conclude our work in Section 7. 

3. Preliminary 

Definition 1.  Let n ≥ 1 and q ≥ 2 be integers, let 

α ∈ (0, 1). For s ∈ 𝑍𝑞
𝑛, let 𝐴𝑠,𝛼 be the distribution on 

𝑍𝑞
𝑛 × 𝑍𝑞  obtained by selecting a vector 𝑎  ∈  𝑍𝑞

𝑛 

uniformly at random, 𝑒 ← 𝐷𝑍,𝛼𝑞 , and outputting (𝑎, 

〈𝑎, 𝑠〉 + 𝑒). 

The Learning with errors (LWE) problem is：for 

uniformly random s ← 𝑍𝑞
𝑛 , given poly(n) number of 

samples that are either from 𝐴𝑠,𝛼 or uniformly random 

in 𝑍𝑞
𝑛 × 𝑍𝑞 , output 0 if the former holds and 1 if the 

latter holds.[4] 

Definition 2.  Let E be an elliptic curve defined 

over a finite filed Fq, and let 𝑃 ∈ E(Fq) be a point of 

order n. Given Q ∈ 〈𝑃〉. 

The  elliptic curve discrete logarithm problem 

(ECDLP) is：Find the integer 𝑎, 0 ≤ 𝑎 ≤ n−1, such 

that 𝑄 = 𝑎𝑃.[5] 

3.1. LWE – Learning With Errors 

The learning with errors (LWE) problem was 

introduced by Regev [17] as a generalization of the 

well-known ‘learning parity with noise’ problem, to 

larger moduli. The details can refer to M. Ruckert et al. 

[18] and V. Lyubashevsky et al. [19]. 

First we define a few parameters used in the 

cryptosystem: integer dimensions n1, n2 ≥ 1 and an 

integer modulus q ≥ 2, which relate to the underlying 

LWE problems; Gaussian parameters sk and se for key 

generation and encryption, respectively; and a 

message alphabet Σ (for example, Σ = {0, 1}) with 

length l  ≥ 1; a discrete Gaussian error distributions χ 

= 𝐷𝑍,𝑆𝑘
 over the integers with the (relative) error rate  

α := s/q ∈ (0, 1), where s > 0. 

A simple error-tolerant encoder and decoder is 

designed as follows, an encode function: Σ → Zq and 

a decode function: Zq → Σ, such that for some large 

enough threshold t ≥ 1, decode(encode(m) + e mod q) 

= m for any integer e ∈ [−t, t). For example, if Σ = {0, 

1}, then we can define encode(m) ∶= m·｢𝑞/2｣, and 

decode( 𝑚̅ )  ∶=  0 if 𝑚̅  ∈ [⌊−𝑞/4⌋, ⌊𝑞/4⌋) , which is 

contained in Zq, and 1 otherwise. This algorithm has 

error tolerance t = ⌊𝑞/4⌋. The output of encode and 

decode are extended to vectors, component-wise. 

 Gen(1l): With security parameter 1l,  we generate 

a uniformly random public matrix 𝐴̃ ∈  𝑍𝑞
𝑛1×𝑛2 . 

Choose R1 ← 𝐷𝑍,𝑆𝑘

𝑛1×𝑙
 and R2 ← 𝐷𝑍,𝑆𝑘

𝑛2×𝑙
. Let 𝑃̃ = R1 

− 𝐴̃ · R2 ∈  𝑍𝑞
𝑛1×𝑙

. The public key is 𝑃̃ (and 𝐴̃  , if 

needed), and the secret key is R2. 

                [𝐴̃   𝑃̃][
𝑅2

𝐼
] = 𝑅1 mod 𝑞      (1) 

 Enc( 𝐴̃ , 𝑃̃ , 𝑚 ∈  Σ𝑙  ): Choose error vectors 𝑒  = 

(𝑒1, 𝑒2, 𝑒3) ∈  𝑍𝑛1  ×  𝑍𝑛2  ×  𝑍𝑙 with each entry 

drawn independently from 𝐷𝑍,𝑆𝑒
.  Let 𝑚̃  = 

encode(m) ∈  𝑍𝑞
𝑙 , and compute the ciphertext. 

𝑐𝑡 = [𝑐1
𝑡   𝑐2

𝑡]= [𝑒1
𝑡𝑒2

𝑡  𝑒3
𝑡+𝑚̃𝑡] ∙ [

𝐴̃ 𝑃̃  
𝐼

𝐼

]   (2) 

, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑡 ∈ 𝑍𝑞
1×(𝑛2×𝑙)

. 

 Dec(𝑐𝑡 , 𝑅2): output decode (𝑐1
𝑡 ∙ 𝑅2 + 𝑐2

𝑡)𝑡 ∈ Σ𝑙.  

Using Equation (2) followed by Equation (1), we 

can apply decode to  

 [𝑐1
𝑡   𝑐2

𝑡][
𝑅2

𝐼
] = (𝑒𝑡 + [0  0  𝑚̃𝑡]) [

𝑅1

𝑅2

𝐼
] 

=  𝑒𝑡
𝑅 + 𝑚̃𝑡 

  where 𝑅  = [
𝑅1

𝑅2

𝐼
]. Therefore, decryption will be 

correct as long as each | 〈𝑒, 𝑟𝑗〉 | < t, the error 

threshold of decode. 𝑟𝑗 ∈ 𝑍𝑛1+𝑛2+𝑙  is the jth 

column of 𝑅. 

3.2. ECDSA – Elliptic Curve Digital Signature Algorithm 

We give a quick review to the theory of elliptic 

curves. In 1987, Koblitz [5] provides an introduction 

to elliptic curves and elliptic curve systems. For more 

detailed information, consult Blake et al. [20] or 

Menezes [21]. Some advanced books on elliptic 

curves are Silverman [22] and Enge [23]. 

Let p > 3 be an odd prime. An elliptic curve E over 

Fp is defined by an equation of the form 

  y2 = x3 + a + b      (3) 

where a, b ∈ Fp, and 4a3 + 27b2 ≠ 0 ( mod p).The 

set E(Fp) consists of all points (x, y), x ∈ Fp, y ∈ Fp, 

which satisfies the defined equation (3). A special 

point O is called the point at infinity. The sum of two 
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points and the double of a point are defined in the 

follow algebraic formula. 

(1) P + O = O + P = P for all P ∈ E(Fp) 

(2) If P = (x, y) ∈ E(Fp), then (x, y) + (x, -y) = O. 

(3) Let P = (x1, y1) ∈ E(Fp) and Q = (x2, y2) ∈ E(Fp), 

where P ≠ ±Q. Then P + Q = (x3, y3), where 

       𝑥3 =  (
𝑦2−𝑦1

𝑥2−𝑥1
)

2

− 𝑥1 −  𝑥2, and 

       𝑦3 = (
𝑦2−𝑦1

𝑥2−𝑥1
)(𝑥1 −  𝑥3) − 𝑦1 

(4) Let P = (x1, y1) ∈ E(Fp) , where P ≠ −P. Then 

2P = (x3, y3), where 

        𝑦3 = (
3𝑥1

2−𝑦1

2𝑦1
)2(𝑥1 −  𝑥3) − 2𝑥1 

        𝑦3 = (
3𝑥1

2−𝑦1

2𝑦1
)(𝑥1 −  𝑥3) − 𝑦1 

Then ECDSA is summarized as follows: 

Domain parameters are comprised of, 

(1) a field size q, where either q = p, an odd prime, 

or q = 2m; 

(2) an equation of the elliptic curve E over Fq is 

defined with two field elements a and b in 

Fq(i.e., y2 = x3 + ax +b in the case p >3); 

(3) a finite point G = (xG, yG) of prime order in E(Fq) 

is defined with two field elements xG and yG in 

Fq; 

(4) the order of the point G with n > 2160 and n > 

√𝑞4 ; 

(5) the cofactor h = #E(Fq)/n. 

The procedure for generating and verifying 

signature using the ECDSA is described as below, 

Key generation. To sign a message m, an entity 

with domain parameters D = (q, a, b, G, n, h) and a key 

pair (d, Q) where d is a private key and Q is public key. 

The entity does the following operations: 

(1) Select a random or pseudo random integer k, 1 

≤ k ≤ n – 1. 

(2) Compute kG = (x1, y1) and convert x1 to an 

integer 𝑥̂1. 

(3) Compute r = 𝑥̂1 mod n. If r = 0 then goto step1. 

(4) Compute k-1 mod n. 

(5) Compute SHA(m) and convert the bit string to 

an integer e. 

(6) Compute s = k-1(e + dr) mod n. If s = 0 then 

goto step 1.  

(7) A signature for the message m is (r, s). 

Key verification. To verify the signature (r, s) on m. 

The receiver does the following: 

(1) Verify that r and s are integer in the interval [1, 

n-1]. 

(2) Compute SHA(m) and convert the bit string to 

an integer e. 

(3) Compute w = s-1 mod n. 

(4) Compute u1 = ew mod n and u2 = rw mod n. 

(5) Compute X = u1G + u2Q. 

(6) If X = O, the signature is rejected. Otherwise, 

the x-coordinate 𝑥1
′  of X is converted to an 

integer 𝑣 = 𝑥̂1
′  mod n. 

(7) If v = r, the signature is accepted. 

4. The proposed algorithm – Double-Difficulty 

Authenticated Key Agreement algorithm (D2AKA) 

In this section a LWE and ECDSA-based key 

agreement algorithm is proposed. The main security 

requirements of D2AKA are mutual authentication 

(MA) and authenticated key agreement (AKA). 

 MA security： D2AKA ensures that the session 

key is known only to both communication 

parties involved in establishing  
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a session key. It allows the participants to 

mutually authenticate each other on exchanging 

the key material. 

 AKA security：D2AKA guarantees that only 

communication parties participating in the 

execution of the algorithm can compute the same 

session key. It also ensures the semantic security 

of established session keys. 

For the definition of domain parameters, please 

refer to Sections 3.1.1 and 3.1.2. The detailed 

procedure of the proposed algorithm is depicted as 

following, 

 Entity A possesses 

(1) A uniformly random public matrix 𝐴̃𝑎 ∈  𝑍𝑞
𝑛1×𝑛2, 

(2) a secret key is Ra2, where Ra2 ← 𝐷𝑍,𝑆𝑘

𝑛2×𝑙
, which 

satisfy the following equation 

       [𝐴̃𝑎 𝑃̃𝑎][
𝑅𝑎2

𝐼
] = 𝑅𝑎1 mod 𝑞, Ra1 ← 𝐷𝑍,𝑆𝑘

𝑛1×𝑙
  

(3) a public key 𝑃̃𝑎 = Ra1 − 𝐴̃𝑎· Ra2 ∈  𝑍𝑞
𝑛1×𝑙

 

(4) An elliptic curve key pair (da, Qa) where da is  
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a private key, Qa is public key, and Qa = daG. 

 Entity B possesses 

(1) A uniformly random public matrix 𝐴̃𝑏 ∈  𝑍𝑞
𝑛1×𝑛2 , 

(2) a secret key is Rb2, where Rb2 ← 𝐷𝑍,𝑆𝑘

𝑛2×𝑙
, which 

satisfy the following equation 

       [𝐴̃𝑏 𝑃̃𝑏][
𝑅𝑏2

𝐼
] = 𝑅𝑏1 mod 𝑞, Rb1 ← 𝐷𝑍,𝑆𝑘

𝑛1×𝑙
  

(3) a public key 𝑃̃𝑏 = Rb1 − 𝐴̃𝑏· Rb2 ∈  𝑍𝑞
𝑛1×𝑙

 

(4) An elliptic curve key pair (db, Qb) where db is    

     a private key, Qb is public key, and Qb = dbG. 

Now suppose an entity A and an entity B want to 

negotiate a session key. The proposed authenticated 

key agreement algorithm is divided in the following 

steps,  

(1) Take entity’s identity as challenge message ma, 

i.e. Alisa. 

(2) Select a random integer ka, 1 ≤ ka ≤ n – 1. 

Note ka is an ephemeral private key (material). 

(3) Compute Pa = kaG = (xa, ya) and convert xa to 

an integer 𝑥̂𝑎. Note Pa is an ephemeral public 

key (material) and if ya is negative then goto 

step2.  

(4) Compute ra = xa mod n. If ra = 0 then goto step 2. 

(5) Compute ka
 -1 mod n. 

(6) Compute SHA(ma) and convert the bit string to 

an integer ea. 

(7) Compute sa = ka
-1(ea + dara) mod n. If sa = 0 

then goto step 2.  

(8) A signature for the challenge ma is (ra, sa). 

(9) Enc(𝐴̃𝑏 , 𝑃̃𝑏 , 𝑟𝑎 ∈  Σ𝑙  ): Choose error vectors 𝑒 

= (𝑒1 , 𝑒2, 𝑒3)  ∈  𝑍𝑛1  ×  𝑍𝑛2  ×  𝑍𝑙 . Let 𝑚̃  = 

encode(ra), and compute the ciphertext. 

𝑐𝑎
𝑡 = [𝑐1

𝑡   𝑐2
𝑡]= [𝑒1

𝑡𝑒2
𝑡  𝑒3

𝑡+𝑚̃𝑡] ∙ [
𝐴̃𝑏 𝑃̃𝑏

𝐼
𝐼

] 

(10) Then ma, 𝑐𝑎
𝑡  and sa are sent to entity B. 

After receiving the key exchange materials (𝑐𝑎
𝑡 , sa) 

and entity B (i.e. Bryant) carries out the following 

operation: 

(1) Dec(𝑐𝑎
𝑡 , 𝑅𝑏2): Use B’s secret key 𝑅2 to decode 

𝑐𝑎
𝑡 , entity B will get 

[𝑐1
𝑡   𝑐2

𝑡][
𝑅𝑏2

𝐼
] = (𝑒𝑡 + [0  0  𝑚̃𝑡]) [

𝑅𝑏1

𝑅𝑏2

𝐼

]  

         =  𝑒𝑡
𝑅𝑏 +  𝑚̃𝑡 

         ,where 𝑅𝑏=[
𝑅𝑏1

𝑅𝑏2

𝐼

]. 

The decryption will be correct as long as each 

|〈𝑒, 𝑟𝑗〉| < t, , and then ra = decode(𝑚̃).  

(2) Next entity B computes SHA(ma) and convert 

the bit string to an integer ea.  

(3) Then compute wa = 𝑠𝑎
−1 mod n. 

(4) Compute u1 = eawa mod n and u2 = rawa mod n. 

(5) Compute Xa = u1G + u2Qa. 

(6) If Xa = O, the signature is rejected. Otherwise, 

the x-coordinate 𝑥𝑎
′  of Xa is converted to an 

integer 𝑣𝑎 = 𝑥̂𝑎
′  mod n. 

(7) If 𝑣𝑎 = ra, the signature is accepted, entity A is 

verified.  

(8) Bring the x-coordinate 𝑥𝑎
′ back to the curve 

equation (3) to find the non-negative y-

coordinate value 𝑦𝑎
′  to get Pa. 

(9) Select a random integer kb, 1 ≤ kb ≤ n – 1. 

Note kb is an ephemeral private key (material). 

(10) Compute Pb = kbG = (xb, yb) and convert xb to 

an integer 𝑥̂𝑎. Note Pb is an ephemeral public 

key (material) and if yb is negative then goto 

step8. 

(11) A session key K is generated by computing  

QK = kbPa = kbkaG 

𝑋𝑄𝐾  is x-coordinate of QK 

K =  H(𝑋𝑄𝐾
) 

Now that entity B gets the session key K. B 

implements the following steps in order to make A get 

the same session key: 

(1) Take his identity as response message mb to 

compute SHA(mb) and convert the bit string to 

an integer eb. 

(2) Entity B also generates his signature by 

computing rb = xb and sb = kb
-1(eb + dbrb) mod n. 

(3) Enc(𝐴̃𝑎, 𝑃̃𝑎, 𝑟𝑏 ∈  Σ𝑙  ): Choose error vectors e = 

( 𝑒1 , 𝑒2,  𝑒3)  ∈  𝑍𝑛1  ×  𝑍𝑛2  ×  𝑍𝑙 . Let 𝑚̃  = 

encode(rb), and compute the ciphertext. 

𝑐𝑏
𝑡 = [𝑐1

𝑡   𝑐2
𝑡]= [𝑒1

𝑡𝑒2
𝑡 𝑒3

𝑡+𝑚̃𝑡] ∙ [
𝐴̃𝑎 𝑃̃𝑎

𝐼
𝐼

] 

(4) Then mb, 𝑐𝑏
𝑡  and sb are sent to entity A. 

Finally, entity A receives (mb, 𝑐𝑏
𝑡 , sb) and carries out 

the following operations: 
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(1) Dec(𝑐𝑏
𝑡 , 𝑅𝑎2): Use A’s secret key 𝑅2 to decode 

𝑐𝑏
𝑡 , entity A will get 

[𝑐1
𝑡   𝑐2

𝑡][
𝑅𝑎2

𝐼
] = (𝑒𝑡 + [0  0  𝑚̃𝑡]) [

𝑅𝑎1

𝑅𝑎2

𝐼

] 

  =  𝑒𝑡
𝑅𝑎 +  𝑚̃𝑡 

         ,where 𝑅𝑎=[
𝑅𝑎1

𝑅𝑎2

𝐼

]. 

The decryption will be correct as long as each 

|〈𝑒, 𝑟𝑗〉| < t, , and then rb = decode(𝑚̃). 

(2) Entity A then computes SHA(mb) and convert 

the bit string to an integer eb. 

(3) Then compute wb = 𝑠𝑏
−1 mod n. 

(4) Compute u1 = ebwb mod n and u2 = rbwb mod n. 

(5) Compute Xb = u1G + u2Qb. 

(6) If Xb = O, the signature is rejected. Otherwise, 

the x-coordinate 𝑥𝑏
′  of Xb is converted to an 

integer 𝑣𝑏 = 𝑥̂𝑏
′  mod n. 

(7) If 𝑣𝑏 = rb, the signature is accepted, entity B is 

verified. 

(8) Bring the x-coordinate 𝑥𝑏
′ back to the curve 

equation (3) to find the non-negative y-

coordinate value 𝑦𝑏
′  to get Pb. 

(9) Entity A uses the ephemeral private key ka to 

get the session key by computing  

K = kaPb = kakbG 

𝑋𝑄𝐾  is x-coordinate of QK 

K =  H(𝑋𝑄𝐾
) 

5. Security analysis of D2AKA 

In security proofs by reduction, correctness means 

that if all participants follow the protocol honestly, the 

protocol will provide correct outputs, while security 

means that if all participants follow the protocol 

honestly, no one can forge a valid output. In this 

section, we first follow [24] to present the correctness 

and security of authentication and key agreement of 

the proposed algorithm. Then, additional security 

analysis of the D2AKA protocol is given at the rest of 

this section. 

5.1. Authentication 

The authentication algorithm takes as input a 

message-signature pair (mi, 𝜎𝑚= (ri, si)), the public key 

Qi with the system parameters SP. It returns “reject” if 

𝜎𝑚  is not a valid signature of mi signed with the 

corresponding private key di; otherwise, it returns 

“accept.” 

Correctness. Given any (di, Qi, mi, 𝜎𝑚), if 𝜎𝑚 is a 

valid signature of mi signed with di. The authentication 

algorithm will return “accept” on (Qi, mi, 𝜎𝑚). 

Security. Without the private key di, it is hard for 

any probabilistic polynomial time (PPT) adversary to 

forge a valid signature 𝜎𝑚
′  on a new message mi that 

can pass the authentication. 

5.2. Key agreement 

The key agreement algorithm takes the security 

parameter 1l as input and outputs a key pair (R2, 𝑃), 

where R2 is a private key and 𝑃̃ is a public key. An 

ephemeral key (material) pair (ki, Pi) is also generated. 

Pi is a scalar multiplication with a scalar ki, which 

means Pi equals kiG. The key (material) Pi is then 

exchanged to negotiate a session key. 

Correctness. The proof is as follows: 

 ∵ kbPa = kbkaG = kakbG = kaPb 

∴ H(kbPa) = H(kaPb) 

Security. A key material Pi is encrypted with the 

Learning With Errors (LWE) which is a quantum 

robust method of cryptography. Without the 

corresponding private key R2, it is hard for any 

probabilistic polynomial time (PPT) adversary to get 

the key material and compute the session key. 

5.3. Probable Security model 

This section discusses a formal security model 

based on ROM [25] which proves the probable 

security of the D2AKA protocol. More detailed 

derivation and proof can be found in [26-28]. 

    Let a PPT adversary A attempts to breach the 

semantic security of the D2AKA protocol. A 

challenge-response game is played between a 

challenger C and A , where C helps A  breach the 

semantic security of the D2AKA protocol. In this game, 
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A   poses the following queries and C in return answers 

the queries. 

 Setup(λ)：In this query, C is given a security 

parameter λ. With λ, C outputs a key pair (PK, 

SK) and a set of public parameters σ. C returns 

(PK, σ) to and keeps SK secret. 

 Query(ϵ𝑖)：In this query, a list Li is kept by C. Li 

is initially empty. A Query with input u and 

outputs v is inserted into Li as a tuple (u, v). In 

response to this query with the input u, C searches 

the list Li and returns v to A  if the tuple (u, v) is 

found. Otherwise, C selects v ∈ 𝑧𝑞
∗ randomly, and 

insert the new tuple (u, v) into Li. Then C returns 

v to A.   

 Execute( ϵ𝑖 ) ： In response to this query, C 

executes the D2AKA protocol for the entity ϵ𝑖. 

 Guess(ϵ𝑖𝑗 )：This query is allowed to ask only 

once in each session. C randomly chooses a bit b 

∈{0, 1}. If b = 1, the session key 𝑘𝑖𝑗 is returned to 

A  by C. Otherwise, a random value is returned as 

the session key. 

In an active session, A may ask any number of 

oracle queries to C except Guess query. After the 

completion of all queries, A outputs a bit 𝑏′ . If 𝑏′ 

equals to b, A  wins the game. 

Definition 3. The probability of breaching the 

semantic security of session key in the D2AKA 

protocol by an PPT adversary A with the polynomial 

time-bound t can be defined as  

 𝐴𝑑𝑣𝐴,𝐴𝐾𝐴
𝑃𝑄𝐴𝐾𝐴

(t) = |Pr[b =𝑏′] −
1

2
|                      (4) 

Definition 4. The D2AKA protocol ensures the 

AKA security of the session key if for a PPT adversary 

A,  

𝐴𝑑𝑣𝐴,𝐴𝐾𝐴
𝑃𝑄𝐴𝐾𝐴

(t) ≤ ε                                            (5) 

Definition 5. The probability of breaching the MA 

security of session key in the D2AKA protocol by a 

PPT adversary A  within the polynomial time-bound t 

can be defined by 𝐴𝑑𝑣𝐴,𝑀𝐴
𝑃𝑄𝐴𝐾𝐴

(t). 

Definition 6. The D2AKA protocol ensures the MA 

security of the session key if for a PPT adversary A, 

𝐴𝑑𝑣𝐴,𝑀𝐴
𝑃𝑄𝐴𝐾𝐴

(t) ≤ ε                                            (6) 

Theorem. For any PPT adversary, the D2AKA 

protocol demonstrates the MA and AKA security in 

ROM using the Learning from Errors (LWE) problem. 

Proof. To prove the formal security of the D2AKA 

protocol, ROM is used. We assume that an adversary 

A  run a PPT algorithm φto break the MA and AKA 

security of the proposed algorithm. A game is played 

between a challenger C and A in which C helps A break 

the semantic security of our proposal. To break the 

security of the D2AKA protocol, A motives to solve 

the Learning from Errors (LWE) problem on which the 

security of the proposed algorithm is based.  

A requests various queries to C. In response, C 

answers its query in the following ways. 

Setup(λ)： In response to this query asked by A, 

C runs the Setup algorithm of the proposed D2AKA 

protocol which outputs two key pairs (R2, 𝑃̃) and (d, Q) 

where R2 and d are private keys with 𝑃̃ and Q are the 

corresponding public keys. Global parameters σ= (n, 

q, 𝐴̃, H(‧)) are also generated. Public keys and global 

parameters are then transferred to A. 

Query(ϵ𝑖 )：To answer this query, C keeps a list 

called L  which is initially empty. The content of this 

list is in the form of tuples such as (mi, 𝑐𝑖
𝑡 , si).  An 

adversary A  requests this query with mi. C searches L 

for (mi, 𝑐𝑖
𝑡, si).  If search is successful, returns (mi, 𝑐𝑖

𝑡, 

si) as output. Otherwise, C selects a random integer ki 

and Pi = kiG. Then C generates a signature for mi, 

encrypts ri with  (𝐴̃𝑎, 𝑃̃𝑎), and outputs 𝑐𝑖
𝑡. Then (mi, 𝑐𝑖

𝑡, 

si) is inserted into the list L  and returned to A. 

Now A  runs the algorithm φto run the proposed 

D2AKA protocol for entities A and B. The result of φ 

is then returned to C. Next, C performs Query(ϵ𝐴) and 

Query( ϵ𝐵 ) as many times as she/he wants, using 

inputs ma and mb. gets C the value of 𝑐𝑐
𝑡 from the list L 

and she/he computes 𝑟𝑐  for all the queries. However, C 

still cannot find the 𝑟𝑎  and 𝑟𝑏  used in the key 

agreement between entities A and B. In order to get 𝑟𝑎 

and 𝑟𝑏 , C  must solve the LWE problem, which  is 

computationally difficult for any PPT algorithm. Thus, 

the proposed D2AKA protocol is secure against AKA 

security under the LWE assumption. 

Next, after execution of Guess(ϵ𝑖𝑗) query, A outputs 

a tuple (𝑐𝑖
𝑡, si) to C. Now C checks if 

       𝑒𝑡
𝑅𝑎 +  𝑚̃𝑡 = encode(𝑠𝑖

−1 (ei + diri)∙ G)     (6) 
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If equation (6) does not satisfy, C terminates the 

execution. Furthermore, A  may output another tuple 

(𝑐′𝑖
𝑡 , 𝑠𝑖

′). Again C verifies whether  

𝑒′𝑡
𝑅𝑎 +  𝑚̃′𝑡 = encode(𝑠′𝑖

−1 (ei + di𝑟𝑖
′)∙ G)     (7) 

   Subtracting (6) from (7), C has the following 

expressions 

 (𝑒𝑡
𝑅𝑎 − 𝑒′𝑡

𝑅𝑎) + (𝑚̃𝑡 −  𝑚̃′𝑡) = 

encode(𝑠𝑖
−1 (ei + diri)∙ G) − encode(𝑠′𝑖

−1 (ei + di𝑟𝑖
′)∙ G) 

Now, to help A, C  has to solve the LWE problem by 

computing   

𝑅𝑎 =  
δ − δ′ −  (𝑚̃𝑡 − 𝑚̃′𝑡)

(𝑒𝑡 −  𝑒′𝑡)
 

where δ = encode(𝑠𝑖
−1 (ei + diri)∙ G), and  

δ′  = encode( 𝑠′𝑖
−1  (ei + di 𝑟𝑖

′ ) ∙  G). Thus, there is a 

contradiction with the LWE assumption. Therefore, 

the D2AKA protocol attains MA security under the 

LWE assumption. 

5.4. Further security analysis 

This section describes other security features of the 

proposed D2AKA. 

(1) Man-in-the-middle (MITM) attack ： In the 

proposed D2AKA protocol, both entities A and 

B verify signatures for mutual authentication. 

Entities A and B share their messages (ri, si) 

with each other for verification. In addition, ri 

is encrypted with the key encapsulation 

mechanism based on the LWE problem. The 

transmitted messages are first decrypted and 

then verified by either party using the elliptic 

curve digital signature algorithm. The 

verification shows the generation of a correct 

session key among A and B.  Suppose an 

adversary A wants to perform a MITM attack 

on the D2AKA protocol. In order to forge a 

signature, A must solve the elliptic curve 

discrete logarithm problem to obtain the long-

term private key da. Therefore, the proposed 

D2AKA protocol can protect against MITM 

attacks. 

(2) Unknown key-share (UKS) attack ： In the 

proposed D2AKA protocol, the entities A and 

B computes the session key using their 

ephemeral private key ki and public key-related 

information ri. This public key-related 

information is verified with signature si.  In 

addition, ri is protected against A. Thus, the 

generated key cannot be known to A. The 

proposed D2AKA protocol defends the UKS 

attack. 

(3) Known-key security (KKS) attack ： In the 

proposed D2AKA protocol, entities A and B 

use the ephemeral key materials to calculate 

the session key as K = kakbG. It can be easy to 

notice that knowing the value of the current 

session key does not allow A to compute other 

session keys, since every session uses different 

ephemeral values. Therefore, the KKS attack is 

protected by the proposed D2AKA protocol.  

(4) Perfect Forward Secrecy (PFS) ： In the 

proposed D2AKA protocol, it is assumed that 

an adversary A wants to recover the past 

session keys after obtaining the private keys of 

entities A and B. Since the ephemeral secret 

values ka and kb are known only to their owning 

entity, A fails to get previous secret keys. 

Additionally, ki and ri from Pi and 𝑐𝑖
𝑡  due to 

ECDLP and the LWE difficulties Therefore, 

the proposed D2AKA protocol exhibits PFS 

security property. 

(5) No key control (NKC) ： In the proposed 

D2AKA protocol, both entities A and B 

compute the session key as K = kakbG.  The 

ephemeral values are ka and kb chosen 

randomly by A and B respectively. Hence A (or 

B) cannot force another entity B (or A) for 

choosing K as a pre-selected key or a small 

value. The pre-selected K is available to the 

corresponding user only and small ki might be 

easily guessed. In both cases, the session key 

is being misused, by either the user or the 

adversary. In the proposed D2AKA protocol, 

the two communicating entities make equal 

contributions to the establishment of a shared 

session key, thereby satisfying the NKC 

security property. 

(6) Two different types of difficult problems：
The proposed D2AKA protocol utilizes two 

difficult problems of different nature to 

improve security. One is the LWE problem, 

and the other is the ECDLP. The key material 
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ri is encrypted with the LWE and the session 

key computation is based on ECDLP. Now 

assume that the adversary only has the ability 

to solve one problem at a time. Let the 

adversary crack the LWE to get ri first, then 

he/she still cannot compute the session key 

because he/she knows nothing about the 

ephemeral elliptical private key. Next, if the 

adversary has the ability to solve ECDLP, 

he/she still cannot calculate the session key 

because ri is protected by the LWE. Two types 

of puzzles improve the security of the proposed 

protocol and avoid the risk of a problem being 

solved. 

6. Performance analysis 

In this section, the performance of the proposed 

D2AKA is discussed by measuring the storage as well 

as communication and computation costs. A 

comparative analysis of the proposed D2AKA protocol 

with DH type protocols is shown. We also made some 

comparisons with directly using public key encryption 

schemes for key agreement. The basic main idea of 

using PKA is as follows: for two parties A and B, they 

have key pairs (pkA, skA) and (pkB, skB) respectively. A 

selects a bit a uniformly at random, encrypts it using 

B's public key to get cB = Enc(pkB, a), and sends cB to 

B. Similarly, B selects a uniform bit b and sends cA to 

A by computing cA = Enc(pkA, b). A and B use their 

own private keys to decrypt the ciphertext and 

calculate a⊕b.  

For simplicity, to analyze the performance of the 

proposed scheme, we choose n = n1 = n2, q, s = sk = se. 

The comparisons are given in  Table 1： 

Table 1 Complexity comparisons between LWE-based key agreement protocols 

protocol Pub. Param. Commun. Comp. Comput. Comp.   Assumption 

Regev [17] 4(n + 1)nlog2q ILIT 4n2logq SIVP 

R. Lindner et al. [29] 4n2logq 4(n2 + n)logq 6n2 SIVP 

Jintai Ding et al. [13] n2logq 2nlogq + 1 2n2 SIVP 

DH-type [1] logq 2logq 2n2 DHP 

Ours n2logq + logp 2(nlogq + logp + 1) 8n2 SIVP + ECDLP 

Pub. Param. Means the size of public parameter; Commun. Comp. means the communication complexity; Comput. Comp. means the 

computation complexity and is estimated by the number of multiplications in Zq. 

Fp is the field on which the elliptic curve is defined. 

The security comparison is presented in table 2. 

As mentioned at the beginning of this article, most 

post-quantum key exchange protocols do not 

consider mutual authentication, thereby being 

subject to various attacks such as man-in-the-middle. 

In terms of computational complexity analysis, we 

adopt more stringent cost considerations. In addition 

to the existing matrix operations, the proposed 

protocol adds point multiplication (actually scalar 

multiplication over the elliptic curve) and point 

addition operations to implement the digital 

signature algorithm. However, with many improved 

security properties, the computational cost under 

strict evaluation is not much higher than other 

protocols. These comparison analyses guarantee the 

betterment of the proposed D2AKA protocol that is 

more suitable for ensuring communication security. 
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Table 2 Security comparisons between LWE-based key agreement protocols 

protocol Man-in-the-middle Known-key security Perfect Forward Secrecy   Mutual Authentication No key control 

Regev [17]      

R. Lindner et al. [29]      

Jintai Ding et al. [13]      

Kyber.KE [2]      

Kyber.AKE [2]      

Ours      

7. Conclusion 

This paper proposed an authenticated key 

agreement protocol by combining the error learning 

problem and the elliptic curve discrete logarithm 

problem. The proposed D2AKA protocol not only 

provides mutual authentication but also defends 

against various attacks in communication protocols. 

Furthermore, two different types of mathematical 

puzzles make it more difficult for attackers to crack the 

proposed protocol. We also show that the proposed 

protocol is provably secure under the random oracle 

model based on the infeasibility of the LWE 

assumption. Performance assessment also proves that 

our protocol is acceptable, especially under Big O 

evaluation. In summary, the proposed D2AKA will be 

more suitable and secure for key agreement. In the 

future, we will propose a general model integrating 

KEM and key exchange signature algorithms. 
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