
Simple Vs Vectorial: Exploiting Structural
Symmetry to Beat the ZeroSum Distinguisher

Applications to SHA3, Xoodyak and Bash

Sahiba Suryawanshi1*, Shibam Ghosh2, Dhiman Saha1,
Prathamesh Ram1

1de.ci.phe.red Lab, Department of Computer Science and Engineering,
Indian Institute of Technology Bhilai, Chhattisgarh, 491001, India.

2Department of Computer Science, University of Haifa, Haifa, Israel.

*Corresponding author(s). E-mail(s): sahibas@iitbhilai.ac.in;
Contributing authors: sghosh03@campus.haifa.ac.il;
dhiman@iitbhilai.ac.in; rprathamesh@iitbhilai.ac.in;

Abstract
Higher order differential properties constitute a very insightful tool at the hands
of a cryptanalyst allowing for probing a cryptographic primitive from an alge-
braic perspective. In FSE 2017, Saha et al. reported SymSum (referred to as
SymSumVec in this paper), a new distinguisher based on higher order vectorial
Boolean derivatives of SHA-3, constituting one of the best distinguishers on the
latest cryptographic hash standard. SymSumVec exploits the difference in the
algebraic degree of highest degree monomials in the algebraic normal form of
SHA-3 with regards to their dependence on round constants. Later in Africacrypt
2020, Suryawanshi et al. extended SymSumVec using linearization techniques and
in SSS 2023 also applied it to NIST-LWC finalist Xoodyak. However, a major
limitation of SymSumVec is the maximum attainable derivative (MAD) which is
less than half of the widely studied ZeroSum distinguisher. This is attributed
to SymSumVec being dependent on m−fold vectorial derivatives while ZeroSum
relies on m−fold simple derivatives. In this work we overcome this limitation
of SymSumVec by developing and validating the theory of computing SymSumVec
with simple derivatives. This gives us a close to 100% improvement in the MAD
that can be computed. The new distinguisher reported in this work can also be
combined with one/two-round linearization to penetrate more rounds. Moreover,
we identify an issue with the two-round linearization claim made by Suryawan-
shi et al. which renders it invalid and also furnish an algebraic fix at the cost of
some additional constraints.

1

Combining all results we report SymSumSim, a new variant of the SymSumVec
distinguisher based on m−fold simple derivatives that outperforms ZeroSum by
a factor of 2257, 2129 for 10-round SHA-3-384 and 9-round SHA-3-512 respec-
tively while enjoying the same MAD as ZeroSum. For every other SHA-3 variant,
SymSumSim maintains an advantage of factor 2. Combined with one/two-round
linearization, SymSumSim improves upon all existing ZeroSum and SymSumVec
distinguishers on both SHA-3 and Xoodyak. As regards Keccak-p, the internal
permutation of SHA-3, we report the best 15-round distinguisher with a complex-
ity of 2256 and the first better than birthday-bound 16-round distinguisher with
a complexity of 2512 (improving upon the 15/16-round results by Guo et al. in
Asiacrypt 2016). We also devise the best full-round distinguisher on the Xoodoo
internal permutation of Xoodyak with a practically verifiable complexity of 232

and furnish the first third-party distinguishers on the Belarushian hash function
Bash. All distinguishers furnished in this work have been verified through imple-
mentations whenever practically viable. Overall, with the MAD barrier broken,
SymSumSim emerges as a better distinguisher than ZeroSum on all fronts and
adds to the state-of-the-art of cryptanalytic tools investigating non-randomness
of crypto primitives.

Keywords: Boolean Derivative, SymSum Distinguisher, Hash Function, SHA-3,
Xoodyak, Bash.

1 Introduction
Differential Cryptanalysis represents one of the earliest systematic and mathemati-
cally sound efforts to analyze the strength of symmetric crypto primitives. Since its
introduction by Biham and Shamir to analyze DES [BS91], it has evolved to become
a defacto cryptanalytic litmus test for modern ciphers. The link between the classical
differential attack and first order Boolean derivative is well established. This was for-
malized by Ming et al. [DYS+14] and further used to connect the idea of higher order
differential cryptanalysis with computation of higher order Boolean derivatives. The
cryptanalytic tool-set had gained from this connection in various interesting ways.
The Integral attack [GS20], Cube Attack [LBDW17, SG18, BDL+19, ZCWW21], Divi-
sion property [YLW+19], ZeroSum [AM09a] and SymSumVec

∗ [SKC17] distinguishers
all belong to the family of higher order differential cryptanalysis and hence in-turn
are connected to computing higher order Boolean derivatives. These attacks primarily
try to exploit the algebraic structure of the cipher by trying to influence the highest
degree monomials (for instance finding superpoly in Cube attack [WHG+19], identi-
fying input division set for the bit based division property [GD21]). The implication
is in the form of a “Zero-Sum” which manifests as balancedness in almost all the above
attacks except SymSumVec. The SymSumVec distinguisher introduced in IACR ToSC
2017 is a one-of-a-kind attack on SPN constructions that leverages the difference in
algebraic degree of highest degree monomials that are dependent on round-constants
from the ones that are independent of them. It builds upon the fact that in certain

∗Reported originally as SymSum by Saha et al. in FSE 2017

2

classes of SPN, the round-constant addition follows a non-linear operation like an Sbox
and hence never affects the highest degree monomials. The difference in the degree of
monomials affected and unaffected by round-constants is dictated by the degree (say η)
of the non-linear operation. The property can be exploited by computing (d−η+1)th

order vectorial derivative of a d−degree function. In case of SHA-3, where η = 2, com-
puting (d− 1)th order vectorial derivative over special linear subspaces manifests as a
output-sum which is deterministically symmetric. It can be noted that the ZeroSum
property requires computation of (d+1)th order derivative to realize the distinguisher.
The SymSumVec distinguishers were extended in Africacrypt 2020 [SSS20] capitalizing
on the idea of linear structures introduced by Guo et al. in Asiacrypt 2016 [GLS16].
In SSS 2023 [SS23], the idea was further generalized to newer classes of SPN with new
distinguishers reported on NIST-LWC finalist Xoodyak and its internal permutation
Xoodoo.

SymSumVec and ZeroSum are both based on higher order Boolean derivatives and
are close competitors. While raw SymSumVec enjoys a factor 4 improvement ((d− 1)th

vs (d+ 1)th order derivative for Keccak) in complexity over ZeroSum, Suryawanshi et
al. demonstrated that linearization reduces the advantage to a factor of 2 (dth vs (d+
1)th). One crucial aspect that separates SymSumVec and ZeroSum is the nature of the
Boolean derivative. ZeroSum relies on simple derivatives while SymSumVec leverages the
vectorial counterpart. The primary difference is in the order of the maximum attainable
derivative (MAD) that can be computed. For an n-variate function this amounts to
computing n−fold derivative implying MAD = n. For ZeroSum we have MAD = n,
while for SymSumVec as defined by Saha et al., MAD ≤ n

2 and this is attributed to the
partition-size = 2 of each vectorial derivative used in SymSumVec. So for an m−fold
vectorial derivative, SymSumVec consumes 2m variables. This constitutes the biggest
limitation of SymSumVec despite its factor 4 advantage over ZeroSum as it reduces
the MAD twice as fast. The limitation is amplified when we augment SymSumVec
with linearization since that imposes additional constraints on the system. Here too
SymSumVec needs twice as many constraints as compared to ZeroSum. Owing to this
SymSumVec fails to penetrate higher number of rounds, a limitation that constitutes
the primary motivation behind the current work.

Our Contribution
SymSumVec with simple order derivatives. The current work overcomes all the above
limitations of SymSumVec. We propose a new distinguisher called SymSumSim which
enjoys almost all benefits of SymSumVec but uses simple Boolean derivatives instead
of vectorial ones. This brings SymSumSim at par with ZeroSum in terms of MAD
allowing to penetrate rounds previously unreachable by SymSumVec. To understand
this, one needs to acknowledge that the SymSumVec property proposed by Saha et
al. has two aspects. The first aspect is the degree difference that emerges due to the
ordering of operations in the SPN round function. Secondly, the usage of vectorial
derivatives with fully self-symmetric† inputs to exploit the degree difference resulting
in a deterministically-symmetric output-sum for SHA-3. In this work, we target the

†The idea of symmetry is to make two-halves of a SHA-3 internal state equal in the z−axis.

3

second aspect of Saha et al.’s work. We argue that the requirement of a fully self-
symmetric state is an overkill. We prove that the necessary and sufficient condition is to
keep the state symmetric, barring the variables across which the derivative is computed.
We call the variables with respect to which the derivative is computed as independent
variables while the remaining variables are referred to as fixed variables. The main line
of argument stems from the fact that for an n−variate function, the m−fold simple
derivative is essentially a function that does not depend on the m variables across which
the derivatives have been taken. From the perspective of SymSumVec, this implies that
these m variables need not maintain a symmetric relation in values but only in position.
This is the crux of the new distinguisher SymSumSim proposed in this work. Since
symmetry is not required for the m variables we can compute simple derivatives instead
of vectorial ones. Hence, we are constrained to select m/2 variables in one half of the
state and remaining m/2 variables in the corresponding symmetric positions. This
adds the restriction that 2|m, and hence the idea of SymSumSim only applies to even
order derivatives (this restriction is eventually fixed). So, for an n−variate (assuming
2|n) function, SymSumSim allows computing (2, 4, · · · , n)−fold simple derivatives while
SymSumVec allows computing (1, 2, · · · , n/2)−fold vectorial derivatives. Hence, this
implies that MAD-SymSumSim = 2×MAD-SymSumVec = MAD-ZeroSum, which makes
SymSumSim equivalent to ZeroSum in terms of MAD, thereby constituting the primary
contribution of this work. We next show that the limitation of even order derivative
can be easily handled by combining the even order simple derivative with an additional
vectorial derivative reaching what we refer to as a hybrid derivative of odd order.
We additionally show that SymSumSim can be augmented by one round using linear
structures due to Guo et al.. Interestingly, two rounds augmentation via linearization
is not possible since the first aspect of degree difference due to Saha et al.’s work
will not hold anymore and leads to fundamental observation that constitutes our next
result.

Impossibility of SymSumVec with 2-round linearization and its fix. Our second con-
tribution is the proof of invalidity and eventual fix of a claim by Suryawanshi et al. in
Africacrypt 2020 on extending the SymSumVec property. The authors reported three
extension techniques for augmenting SymSumVec: one and two-round linearizations
and χ−1 trick on the hash digest. Our research reveals that all results reported with
two-round linearization are invalid. We prove that after making two rounds linear,
the highest degree monomials become dependent on the round-constants and hence
Lemma 1 given by Saha et al. [SKC17] no longer holds. The proof idea is based on
the observation that though the two rounds become linear, certain constants and lin-
ear terms get multiplied in the second round non-linear operation. We further show
that though straight forward two-round linearization fails, some carefully chosen addi-
tional constraints (essentially making the linear subspace associated with constant
terms null) can be added which will restore the independence of the highest degree
monomials from constants, thereby making SymSumVec effective again. The same can
be achieved with SymSumSim while doubling the MAD.

4

Table 1: Summary of the results using SymSumSim distinguisher. As evident SymSumSim improves (for
SHA-3) and matches (for Xoodyak) all SymSumVec distinguishers. SymSumSim outperforms ZeroSum in all
cases.

Variants Rounds ZeroSum SymSumVec SymSumSim
Augmentation

Strategy†

SHAKE-128
11 21025

∗

XXXMAD
21023

∗⋆
χ−1

10 2257 2256 1R Lin. + χ−1

9 265 264 2R Lin. + χ−1

SHAKE-256

11 21025
∗

XXXMAD
21023

∗⋆
χ−1

10 2257 2256 1R Lin. + χ−1

9 2129 2128 2128 1R Lin. + χ−1

8 233 XXXMAD 232 2R Lin. + χ−1

SHA-3-224
10 21025

∗

XXXMAD
21023

∗⋆ Unaugmented

9 2257 2256 1R Lin.

8 265 264 2R Lin.

SHA-3-256

10 21025
∗

XXXMAD
21023

∗⋆ Unaugmented

9 2257 2256 1R Lin.

8 2129 2128 2128 1R Lin.

7 233 XXXMAD 232 2R Lin.

SHA-3-384
10 XXXMAD 2256 1R Lin. + χ−1

9 2129 2128 2128 1R Lin. + χ−1

8 233 XXXMAD 232 2R Lin. + χ−1

SHA-3-512
10 2513 XXXMAD 2511

⋆
χ−1

9 XXXMAD 2128 1R Lin. + χ−1

Xoodyak-Hash 6 265 264 264 Unaugmented

Bash-512 8 2257 XXXMAD
2256 Unaugmented

Bash-265 9 2513 2512 Unaugmented

Permutation

Keccak
16 XXXMAD 2512 6 + 10 (1B 1F)

15 2257 2256 2256 6 + 9 (1B 1F)

Xoodoo 12 233 XXXMAD 232 6 + 6 (1B 1F)

Bash-f
20 21025

∗
XXXMAD

21024
∗ 10 + 10

19 21025
∗

21024
∗ 9 + 10

18 2513 2512 2512 9 + 9

∗exceed complexity from birthday bound † 1R: 1-round linearization

† 2R: 2-round linearization † 1F: 1-round forward linearization

⋆: SymSumHyb (hybrid mode) † 1B: 1-round backward linearization
XXMAD denotes the inapplicability of the distinguisher as the required order of derivative exceeds the MAD for that distinguisher.

5

Best distinguisher on all SHA-3 variants, Keccak-p, Xoodyak-Hash, Xoodoo, Bash and
Bash-f . Leveraging the doubling of MAD computable due to simple order deriva-
tives, we mount SymSumSim distinguishers across all variants of fixed-length hash and
extensible-output functions (XOFs). In the context of fixed-length hash functions,
specifically in a 9-round scenario involving SHA-3-512, SymSumSim outperforms Zero-
Sum by a significant factor of 2129. When applied to 10-round SHA-3-384, SymSumSim
again outperforms ZeroSum by a substantial margin of 2257. Moreover, in the same
10-round setting, for the remaining fixed-length SHA-3 variants SHA-3-224, SHA-3-
256, and SHA-3-512, SymSumSim maintains an advantage of factor 2 over ZeroSum.
For the XOFs, SHAKE-128 and SHAKE-256, we successfully penetrate 11 rounds with
the same advantage. It is worth mentioning that achieving 10 and 11 rounds for fixed-
length hash functions and XOFs was previously unreachable with SymSumVec due to
the MAD barrier. SymSumSim successfully overcomes the MAD barrier leading to an
array of new distinguishers beating ZeroSum all along.

While SymSumSim augmented with linearization improves or matches all existing
results, for SHA-3-384, with one-round linearization and χ−1 trick, both SymSumVec
and ZeroSum fail to reach the MAD needed to distinguish. Interestingly, due to one
order advantage over ZeroSum for the required MAD, SymSumSim remains as the only
working distinguisher with a complexity of 2256. The same applies for SHA-3-512 with
2128. Further, SymSumSim is applied to Xoodyak-Hash giving the best result on 6 rounds
with a distinguishing complexity of 264. Using the inside-out technique introduced by
Aumasson and Meier on Keccak-f permutation [AM09a] and using one-round forward
and one-round backward linearization, we mount SymSumSim on full-round Xoodoo,
giving us the lowest complexity distinguisher reported in literature with a complex-
ity of 232. Following the same idea, we are able to distinguish 15 rounds of Keccak-p
with a (6 + 9) split for the inside-out technique. Combining Guo et al.’s [GLS16]
linear structures with SymSumSim, we devise one-round forward and one-round back-
ward linearization leading to a distinguisher with a complexity of 2256 that gives a
symmetric-sum in the forward direction and a zero-sum in the backward direction.
Moreover, we extend our analysis to 16 rounds of Keccak-p with a (6 + 10) split,
achieving a 2512 complexity distinguisher with similar properties. We also analyse the
Bash hashing algorithms [AMMS16], which operate based on the sponge construction.
The core of Bash is the Bash-f sponge function, representing the Logical-Rotation-Xor
(LRX) symmetric cryptography schemes. Notably, this function has gained recogni-
tion as a standard in Belarusian cryptography. To the best of our knowledge, this is
the first analysis conducted on the Bash cryptographic primitive. Using the inside-out
technique, we have applied SymSumSim up to 20 (out of 24) rounds with a complex-
ity of 21024, though this complexity exceeds the birthday bound. It is worth noting
that for 18 rounds, SymSumSim exhibits a lower complexity than the birthday bound,
specifically 2512. Furthermore, the SymSumSim strategy has been applied to the Bash-
256 and Bash-512 algorithms for up to 9 and 8 rounds, respectively. All the results
are summarized in Table 1. All provided distinguishers in this work have been veri-
fied through practical implementations whenever practically viable. Verification code
is publicly available at the following link.

6

https://github.com/ShibamCrS/SymSumsimSumSHA3Xoodyak.git

Organization
The remaining sections of the paper are organized as follows. In Section 2, we rede-
fine the well-known definitions and Lemmas to ensure a clearer understanding of the
concepts discussed in the paper. We also introduce and define the concept of MAD
and the notion of symmetric states. Section 3 briefly describes cryptographic primi-
tives. We then describe the SymSumVec distinguisher in Section 4. Also, exhibits its
advantages over SymSumVec, particularly in terms of the MAD. Section 5 explores
the applicability of SymSumSim to the cryptographic primitives: SHA-3/Keccak-p,
Xoodyak-Hash/Xoodoo and Bash/Bash-f , discussing the potential benefits and limi-
tations in each case. Section 6 explores inapplicability of 2 round linearization with
SymSumVec and provide a solution. Later in Section 7 we discussed the applicabil-
ity and the advantage of SymSumSim/SymSumHyb over ZeroSum and SymSumSim. To
validate our claims, Section 8 presents experimental verification and results. Finally,
Section 9 concludes the paper by summarizing our findings and contributions.

2 Preliminaries
In this section, we begin by introducing the notations to be utilized. Subsequently,
we provide a redefined version of some key definitions and lemmas that are widely
recognized. The intention is to enhance the overall clarity and comprehension of the
content. We also introduce additional definitions that are essential for achieving an
improved comprehension of our proposed approach.

2.1 Notations
We use bold lowercase letters to represent vectors in a binary field. For any n-bit
vector x ∈ Fn

2 , its i-th coordinate is denoted by xi, thus we have x = (xn−1, ..., x0).
The Algebraic Normal Form (ANF) of a Boolean function f : Fn

2 → F2 can be
defined as f(x) =

⊕
u∈Fn

2
afux

u where afu ∈ F2. Using ANF, we can represent any
Boolean function. The degree of a Boolean function f : Fn

2 → F2, denoted by d◦f , is
the degree of the largest monomial in the ANF of f , i.e., d◦f = maxu∈Fn

2 ,a
f
u ̸=0 wt(u).

2.2 Derivative Operations on Boolean Functions
Boolean Differential Calculus [BP81, Tha81] allows us to capture the settings when
changes of the values of Boolean variables forms an integral part in analysis of
Boolean or vectorial functions. Consider an n−variate Boolean function, denoted as
f(x0, x1, ..., xn−1). The simple derivative of this Boolean function, with respect to a
particular variable xi, is denoted as (δf

δxi
) and represents the change in the function’s

output when the value of xi is changed and is formally captured as below.
Definition 1 (Simple Derivative [PS19]). Let f(x0, x1, x2, . . . , xn−1) be a Boolean
function. Then the Boolean derivative of f with respect to xi is defined as:

δf

δxi
= f(x0, x1, . . . , xi, . . . , xn−1)⊕ f(x0, x1, . . . , xi, . . . , xn−1)

7

Calculating a sequence of m simple derivatives with respect to m variables of a
Boolean function is an m-fold simple derivative operation. The definition is given
below.
Definition 2 (m−fold Simple Derivative [PS04]). Let f(x0,x1) be an n−variate
Boolean function. Then the m−fold simple derivative of f with respect to x0 =
{xi1 , . . . , xim} is defined as:

δmf

δx0
=

δf

δxim

(
. . .

(
δf

δxi2

(
δf

δxi1

))
. . .

)
=
⊕

x0∈Fm
2

f(x0,x1 = const ∈ Fn−m
2)

Remark 1. Due to the commutativity property, the order in which the variables are
processed does not affect the result. Therefore, when computing a derivative of order m,
we consider a subset x0 of input variables, where |x0| = m, from the set {x0, ..., xn−1}.
The main concept is to let variable ∈ x0 take values from Fm

2 while the remaining
variables have a constant (const) value. The following lemma is well-known and forms
the basis of the distinguisher that is devised in this work.
Lemma 1 ([PS19]). The result of m−fold simple derivative operations of
f(x1, x2, · · · , xk, xk+1, · · · , xn) with regard to x0 = (x1, x2, · · · , xk) depends only on
(n−k) variables x1 = (xk+1, · · · , xn). Therefore, m−fold simple derivative operations
describe properties of whole subspaces specified by x1 = const.

ZeroSum as Higher Order Simple Derivatives
A concept closely related to the m-fold simple derivative is the concept of ZeroSum
Distinguishers [AM09b, BC10, BCC11]. For a given function F , the underlying idea
of ZeroSum is to show the existence of a set of input states whose XOR-sum leads to
zero and whose images under F also sum up to zero. If the same can be achieved with
a complexity that beats the generic effort, we have a distinguisher for F . It is easy to
note that for an n−variate Boolean function (B) with algebraic degree d, the m−fold
simple derivative (input-sum is zero, since it is computed over Fm

2) for any m > d
will lead to an output-sum of zero because the derivative-order is greater than the
algebraic degree giving us a ZeroSum distinguisher. For an unknown B, the research
challenge lies in tightly estimating the value of d which directly impacts the complexity
of computing the ZeroSum.

Vectorial Derivatives
Vectorial derivatives capture the value change between pairs of function values due to
simultaneous value change of an arbitrary but fixed subset of variables x1 ⊆ x. Simple
derivatives may be considered as a special case of the vectorial derivatives where the
vector x1 contains only the single variable xi.
Definition 3 (Vectorial Derivative [PS04]). Let x1 = {x0, x1, . . . , xk−1}, x2 =
x \ x1 be two disjoint sets of n variables, x = {x0, x1, . . . , xn−1} and f(x) =
f(x0, x1, . . . , xn−1) = f(x1,x2) be a Boolean function over n variables, then the

8

vectorial derivative of f with respect to x1 is defined as:

δf

δx1
= f(x1,x2)⊕ f(x1,x2)

Analogous to higher order simple derivatives, an m-fold vectorial derivative
operation is formally defined as below.
Definition 4 (m-fold Vectorial Derivative [PS04, SKC17]). Suppose the input
variables of a Boolean function f(x0, x1, . . . , xn−1)) has (m + 1) partitions and
f(x1,x2, · · · ,xm,xm+1) = f(x0, x1, · · · , xn−1). Then,

δmf

δxm · · · δx2δx1

∣∣∣∣∣ (x1,x2,··· ,xm)
=(c1,c2,··· ,cm)

=
δ

δxm

(
· · ·

(
δ

δx2

(
δf

δx1

∣∣∣∣∣
x1=c1

)∣∣∣∣∣
x2=c2

)
· · ·

)∣∣∣∣∣
xm=cm

is the m−fold vectorial derivative of the Boolean function f(x1,x2, · · · ,xm,xm+1)
with regards to the m partitions {x1,x2, · · · ,xm}.

Again, due to commutativity, the sequence in which the variables are processed
does not affect the result. Thus, the partitioning of the variables corresponds to the
selection of special subspaces ν of size 2m, where

ν =

c1 c2 · · · cm−1 cm
c1 c2 · · · cm−1 cm
c1 c2 · · · cm−1 cm
c1 c2 · · · cm−1 cm
...

... · · ·
...

...
c1 c2 · · · cm−1 cm

.

Consequently, we have the following expression for computing such a derivative:

δmf

δxm · · · δx2δx1

∣∣∣∣∣ (x1,x2,··· ,xm)
=(c1,c2,··· ,cm)

=
⊕

(x1,...,xm)∈ν

f(x)

Example 1. To clarify the idea of m-fold vectorial derivative, we consider the follow-
ing example. Let us consider the 6 variable Boolean function f(x0, x1, x2, x3, x4, x5) =
x0x1x2x3 + x1x2x3x4 + x2x3 + x0x5. We take 2-fold vectorial derivative where x1 =
{x0, x3}, x2 = {x1, x4}. We take derivative in the direction of x1 = c1 and x2 = c2
where c1 = 01, c2 = 11. Thus, we have

ν =

0 1 1 1
0 1 0 0
1 0 1 1
1 0 0 0

 .

9

Finally, we compute 2-fold vectorial derivative as follows:

δ2f

δx2x1

∣∣∣∣∣ (x1,x2)
=(c1,c2)

=
⊕

(x1,x2)∈ν

f(x) = x2.

Lemma 2 ([PS19]). The vectorial derivative δf(x1,x2)
δx1

is a Boolean function that
depends generally on all variables of x = (x1,x2).

Lemma 2 given above is a well-known result that has been extensively studied and
proven in various references. Therefore, it is a fundamental concept in the field and its
proof is readily available in [PS04]. It is worth noting the sharp contrast that lemma 2
has with lemma 1 in terms of dependence of the derivative on the constituent variables
of the original function.

SymSumVec as Higher Order Vectorial Derivatives
In FSE 2017 Saha et al. introduced the SymSumVec distinguisher and applied it to
SHA-3 to achieve a factor 4 improvement over ZeroSum. For SymSumVec over a function
f ,
∑

x = 0 like ZeroSum but
∑

f(x) admits a deterministic symmetry. Saha et al.
established the equivalence of SymSumVec with m−fold vectorial derivatives taken over
special symmetric subspaces with partition-size = 2.

Maximum Attainable Derivative
Lemma 1 and 2 provide valuable insights into the behavior of derivatives (both simple
and vectorial) in relation to the variables they are dependent on. In this context, it
is crucial to understand an important parameter: the maximum attainable derivative
(MAD). This forms an important observation in this study and is formally defined
below. Our main contribution is the doubling of MAD-SymSumVec for MAD-SymSumSim
making it equal to MAD-ZeroSum.
Definition 5 (Maximum Attainable Derivative (MAD)). The maximum attainable
derivative refers to the highest value of m for an m−fold derivative such that the
dimension of the subspace spanned by fixed variables‡ |becomes zero.

2.3 Notion of Partial/Full Self-Symmetric State
To formally define the SymSumSim distinguisher, it is necessary to revisit and introduce
some basic definitions of symmetric states. We define symmetric states with respect
to the Keccak, Xoodoo and Bash-f states. A brief description of these functions along
with their states are given in the next section.
Definition 6 (Substate). Let us consider a state S with n slices. A Substate (σ) is a
collection of either the first or the last n/2 slices of a state. The value of n is 64 for

‡Recall, that fixed variables are the ones that remain fixed across the derivative computation.

10

Keccak and Bash-f while the value of n is 32 for Xoodoo. Thus we have

σ ∈

{0, 1}25×32 for Keccak
{0, 1}12×16 for Xoodoo
{0, 1}24×32 for Bash-f

We can now define a self-symmetric state as follows
Definition 7 (Self-Symmetric State [SKC17]). Let S = σ1||σ2 be a state with two
substates σ1 and σ2. Then S is called Self-Symmetric if the following condition holds
for its substates

S = σ1||σ2 where σ1 = σ2 ∈ {0, 1}|σ1|=|σ2|

A visual representation of self-symmetric state is shown in the left half of Fig. 1.

Symmetric

Symmetric

Symmetric

Symmetric

Symmetric Symmetric

Don't CareDon't Care

Fig. 1: Comparative view of m−fold vectorial and simple derivatives in terms of the
nature of self-symmetry induced while computing SymSumVec (left) and SymSumSim
(right)

We now define a relaxed version of the self-symmetric state known as a structurally
symmetric state
Definition 8 (Structurally Symmetric State). Let S = σ1||σ2 be a state with two
substates σ1 and σ2. Then S is called Structurally Symmetric if the following conditions
hold for its substates. Note that the symmetric and asymmetric parts of the substates
are always in respective symmetric positions.

S = σ1||σ2 = (σs
1, σ

a
1)||(σs

2, σ
a
2) where

{
σs
1 = σs

2 ∈ {0, 1}|σ
s
1|=|σs

2|

(σa
1 ||σa

2) ∈ {0, 1}|σ
a
1 |+|σa

2 |=2×|σa
1 |

It is evident from the given definition that a Structurally Symmetric State is par-
tially symmetric in terms of its values. For example, σs

1 and σs
2 represent the symmetric

11

part, which have the same size and same values. On the other hand, σa
1 and σa

2 main-
tain only symmetric positions§ and the same size, but they do not necessarily have
the same values. A visual representation of this is provided in the right half of Fig. 1.

3 Background Details
We apply our proposed distinguisher on SHA-3 [BDPA11], Xoodoo permutation
[DHAK18], and Xoodyak-Hash [DHP+20], which are well-known SPN functions that
have attracted much interest and are frequently used in various applications. Fur-
thermore, we extend our analysis to include the application of SymSumSim on Bash,
a standardized Belarusian hash function [AMMS16]. This section provides concise
descriptions of these SPN functions. A thorough introduction to the SymSumVec dis-
tinguisher and its extension are also given. It is important to comprehend these
components to fully appreciate how our method addresses the problem, specifically
low MAD.

3.1 Secure Hash Algorithm (SHA-3) [BDPA11]
SHA-3 is a cryptographic hash function standardized by NIST in 2015. The SHA-3
family of algorithms is based on the Keccak-p permutation [BDPA13]. The Keccak
structure is based on the Sponge construction [BDPA08], which produces an element
of length Fn

2 from an element of length Fm
2 with arbitrary lengths n and m. The

permutation is applied on a finite-state of b = r + c bits, where r is rate and c is
capacity. Each round of Keccak-p permutation has 5 mappings, R = ι ◦ χ ◦ π ◦ ρ ◦ θ.

θ is a linear mapping where the parity (P [x, ∗, z]) of the neighboring two columns
are XORed with every bit A[x, y, z] of the state. ρ is another linear mapping which
rotates (≪) each lane by predefined offset values. π is the third linear mapping which
permutes the positions of the lanes. χ is the only non-linear mapping and operates on
rows as shown below. Finally, ι adds a unique round-constant (RC) to lane A[0, 0, ∗].

θ :

A[x, y, z] = A[x, y, z]⊕ P [(x− 1) mod 5, ∗, z]

⊕P [(x+ 1) mod 5, ∗, (z − 1) mod 64]

where P [x, ∗, z] = ⊕4
j=0 A[x, j, z]

ρ : A[x, y, z] = A[x, y, z ≪ t] ∀ x, y ∈ {0, . . . , 4}
π : A[y, (2x+ 3y) mod 5, ∗] = A[x, y, ∗] ∀ x, y ∈ {0, · · · , 4}
χ : A[x, y, z] = A[x, y, z]⊕ (∼ A[x+ 1, y, z]) ∧A[x+ 2, y, z]

ι : A[0, 0, ∗] = A[0, 0, ∗]⊕RC

The standard defines four hash functions: SHA-3-224, SHA-3-256, SHA-3-384 and
SHA-3-512. The ability of SHA-3 to produce variable-length hash values utilizing the
SHAKE-128/SHAKE-256 method is an intriguing feature. In contrast to the other SHA-
3 variations, SHAKE-128/SHAKE-256 allows for producing hash outputs of any length.

§The positions may be selected in any random order while maintaining the symmetric position
constraint.

12

They use the same underlying construction as SHA-3 but with a different padding rule
i.e. "0110*1" for SHA-3 and "11110*1" for SHAKE.

3.2 Xoodyak-Hash [DHP+20]
Xoodyak was one of the ten NIST-LWC finalists, a versatile cryptographic primitive
combining sponge construction and Xoodoo [DHAK18] permutation based on an oper-
ational mode termed Cyclist. Xoodoo is a 48-byte permutation introduced by Daemen
et al. at ToSC 2018. It operates on a 3-dimensional array of size 4× 3× 32 = 384 bits,
where row, column, and lane are acronyms that refer to the 1-dimensional array in
the x, y, and z directions. Slices, sheets, and planes refer to the 2-dimensional arrays
in the (x, y), (y, z), and (x, z) directions. Each round of the Xoodoo permutation has
five mappings X = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ.
θ is a linear mapping that provides diffusion. The column parity of 2 near-by columns
are XORed with each bit of the column. ρwest is another linear mapping that rotates
the bits of a plane in the x and z directions. ι adds a unique round constant to lane 0
of plane A0. χ is the only non-linear mapping and operates on each column indepen-
dently. ρeast is another linear mapping like ρwest with different rotations to each plane.
The notation A ≪ (t, v) used below rotates the bits of plane A, such that a bit at
position (x, z) goes to the position (x+ t, z + v) in a cyclic manner.

θ :

Ay = Ay ⊕ E where y ∈ {0, 1, 2}
E = P ≪ (1, 5)⊕ P ≪ (1, 14)

P = A0 ⊕A1 ⊕A2

ρwest :

{
A1 = A1 ≪ (1, 0)

A2 = A2 ≪ (0, 11)

ι : A0 = A0 ⊕RCi

χ :

{
Ay = Ay ⊕By where y ∈ {0, 1, 2}
By =∼ Ay+1 mod 3 ·Ay+2 mod 3

ρeast :

{
A1 = A1 ≪ (0, 1)

A2 = A2 ≪ (2, 8)

Xoodyak can be initialized in either hash or keyed mode. The number of rounds
in Xoodyak-Hash is 12, which provides the designed primitive with a sufficient safety
margin against all potential attacks. Xoodyak-Hash generates 256-bits (32 bytes) of
digest and as a result, offers 128-bit security. The rate part of the Xoodyak state consists
of 130 bits which includes the maximum input string size of 16 bytes along with 2 bits
from the padding. In our analysis, we only consider input strings whose size equals 16
bytes. The input string is appended by padding of the type ’01’||’00’∗||’01’ where ’xx’
depicts 1 byte of the state. The final byte ’01’ is known as the domain separator.

13

3.3 Bash [AMMS16]
Bash is a family of hashing algorithms standardized in Belarus. It implements the
sponge construction over the underlying LRX permutation Bash-f . Bash-f maintains
a state size of 1536 bits maintained as a 3-dimensional array of size 3 × 8 × 64. The
Bash-f permutation consists of 24 rounds, where each round is a composition of the
transformations L3, S3, P applied on each of the 8 vertical planes and a round constant
addition. L3 is a linear mapping which uses rotations and XORs to overwrite the
initial state. S3 is a non-linear mapping that uses the ¬,∧,∨ and ⊕ operations in
decreasing order of precedence. P shuffles the 24 words present in the state by rotating
the horizontal planes across the vertical axis and simultaneously permuting the words
in each plane. The round constants added are updated based on a linear feedback shift
register with a primitive characteristic polynomial.

L3 :

W0 ← w0 ⊕ w1 ⊕ w2

W1 ← w1 ⊕ RotHim1(w0)⊕ RotHin1(W0)

W2 ← w2 ⊕ RotHim2(w2)⊕ RotHin2(w1 ⊕ RotHin1(W0))

S3 :
{
(W0,W1,W2) ← (W0 ⊕W1 ∨ ¬W2,W1 ⊕W0 ∨W2,W2 ⊕W0 ∧W1)

P (u) :

π0(u) + 8, 0 ≤ u < 8

π1(u− 8) + 16, 8 ≤ u < 16

π2(u− 16), 16 ≤ u < 24

π0(v) = (v + 2(v mod 2) + 7) mod 8,

π1(v) = v + 1− 2(v mod 2),

π2(v) = (5v + 6) mod 8

The different Bash algorithms differ by their security level l ∈ {16, 32, 48, . . . , 256}.
For the Bash algorithm with security level l, the first 1536− 4l bits form the rate and
the remaining 4l bits form the capacity. The length of the returned hash digest is 2l.
The input is padded with the padding rule "010*" such that the padded message is
a multiple of r = 1536− 4l. The initial state of Bash is initialized to all zeros except
the last lane which is initialized with the binary representation of the integer l/4.
The input is then split into blocks of length r and absorbed according to the sponge
construction and then, the output of size 2l is squeezed out.

3.4 SymSum Distinguisher [SKC17]
The SymSumVec distinguisher [SKC17], introduced by Saha et al., was designed to
analyze the round function of SHA-3/Keccak. This distinguisher takes advantage of
the algebraic properties of the Keccak round function. It is well-known that all the
components of the Keccak round function, except for the round-constant addition are
translation invariant in the z−axis. One implication of this observation is that they
map self-symmetric (Refer Definition 7) input states to self-symmetric output states,
a property that was exploited in the SymSumVec distinguisher. Thus, to observe the
self-symmetry property at the output, it is necessary to eliminate the influence of the
round constants. The key insight of the SymSumVec distinguisher is that the round
constants used in the SPN round function of Keccak do not affect the highest degree
monomials. In order to remove the impact of the round constants, Saha et al. used

14

the concept of the m−fold vectorial derivative (Refer Definition 4) which allows for
differentiation over a specific subspace while attempting to replicate the creation of
self-symmetric input states. Through the computation of the m−fold vectorial deriva-
tive, a function that is independent of round constants can be generated. This function
is specifically designed to maintain self-symmetry. Saha et al. observed that when SHA-
3 was applied to these states, the XOR-sum of the resulting outputs over all hash values
was also symmetric. In contrast to the ZeroSum distinguisher, which calculates the m-
fold simple derivatives, the SymSumVec distinguisher makes use of the m-fold vectorial
derivative achieving a factor of 22 improvement over the ZeroSum distinguisher.

Extension and Generalization of SymSumVec

Suryawanshi et al. [SSS20] enhanced the SymSumVec distinguisher by combining
the SymSumVec property with linear structures proposed in [DMP+15, GLS16].
Although the combination of linear structures reduced the advantage of SymSumVec,
the SymSumVec distinguisher still maintained a factor of 2 advantage compared to the
ZeroSum distinguisher. The SymSumVec distinguisher is not only limited to the analy-
sis of Keccak/SHA-3 alone but its versatility was shown by Suryawanshi et al. [SS23]
by applying it to other SPN functions such as Xoodoo and Xoodyak-Hash. Overall, the
SymSumVec distinguisher always outperforms the ZeroSum distinguisher with a mini-
mum improvement factor of 2 for those SPN functions. In the next section we introduce
the idea of computing symmetric-sum using simple derivatives while making it orders
of magnitude more effective than ZeroSum.

4 Introducing SymSumSim: Symmetric-Sum with
Simple Derivatives

In this section, we present a new observation that redefines the entire body of work
inspired by Saha et al.’s research on the SymSumVec distinguisher in FSE 2017 [SKC17].
Upon a closer examination it becomes clear that the authors aimed to explain why
applying Keccak on self-symmetric input states leads to self-symmetry in the output-
sum. The entire theory was developed with the purpose of explaining this result.
Consequently, it is evident that there is an affinity for self-symmetric states when
generating inputs for the computation of higher order derivatives. The concept of self-
symmetry is illustrated in the left portion of Fig. 1. The authors of [SKC17] noted
that in order to differentiate functions across specific subspaces and reproduce self-
symmetric input states in the SymSumVec distinguisher, an m-fold vectorial derivative
with a partition-size of 2 is essential. However, this partition-size implies that 2m
variables will be consumed, resulting in a doubling of the rate of exhaustion in the
number of variables that can be used for the derivative. Conversely, this restriction
does not apply to the ZeroSum distinguisher as it utilizes m-fold simple derivatives.
It is worth noting that simple derivatives can be viewed as a special case of vectorial
derivatives with a partition-size of 1. As a result, the MAD for SymSumVec is half that
of the MAD for ZeroSum. Hence, while SymSumVec outperforms traditional ZeroSum
distinguishers for smaller rounds, the application of vectorial derivatives imposes a
significant limitation on the applicability of SymSumVec in higher rounds.

15

Structurally Symmetric States. To address this limitation, we have introduced a
novel distinguisher named SymSumSim, leveraging an interesting property of the sim-
ple order derivative (given in Lemma 1), which states that the resultant of a simple
order derivative is independent of the derivative variables. SymSumSim deliberately
uses structurally symmetric input states which permit asymmetry in the variables
used for the derivative computation while maintaining symmetry in the remaining
state. The visual representation of this structural configuration is depicted on the
right side of Fig. 1, accompanied by a formal definition of SymSumSim outlined below.

Definition 9 (SymSumSim). Let us consider an SPN function, F : fn
2 → fm

2 . If
{X1, X2, . . . , Xl} be the structurally-symmetric input set of F such that the input-sum⊕l

i=1 Xi = 0, then the output-sum
⊕l

i=1 F (Xi) will exhibit a symmetry referred to as
SymSumSim. Here, we compute the kth order derivative, where l = 2k. Additionally,
any state Xi exhibits symmetry for n− k positions owing to structural-symmetry.

SymSumSim necessitates a structurally symmetric state, indicating that the derivative
variables are placed symmetrically without a strict requirement for identical values.
Similar to the SymSumVec distinguisher, SymSumSim takes advantage of the insight
that round constants do not affect the highest-degree monomials. However, unlike
SymSumVec, the SymSumSim distinguisher leverages simple derivatives to overcome the
aforementioned limitation. This increases the effective MAD, enabling penetration into
higher rounds of SPN functions.

Although the requirement of symmetry in the derivative variables can be relaxed,
the requirement for the rest of the state to exhibit symmetry dictates the derivative
variables to assume symmetric positions. Thus, as demonstrated in Fig. 1, each half
of the state will need m/2 derivative variables in symmetric positions for an m-fold
simple derivative. This state acts as a representative state based upon which our
input states will be generated. The following proposition can now be expressed based
on the insights from the observation.

Proposition 1. The (d◦SHA-3− 1) and (d◦Xoodoo)−fold simple derivative of SHA-
3 and Xoodoo respectively evaluated using only structurally symmetric input states
will preserve the symmetric property.

It is evident that the symmetric part of the structurally symmetric state constitutes
the fixed variables while the asymmetric part constitutes the independent variables.
By definition, the symmetric part of both the substates are identical, which means
that the overall size of the symmetric part must be even. Hence, computing an even
order derivative is straightforward as the size of the remaining state is even. However,
the size of the remaining state when computing an odd order derivative will be odd,
thereby making symmetry in the fixed variables impossible. The complete process for
the even order and the odd order derivative is described here.

SymSumSim and the Even Order Derivative
The SymSumSim distinguisher offers the significant advantage of doubling the MAD
compared to the SymSumVec distinguisher, thereby increasing its effectiveness in
penetrating more rounds. For an n-variate (assuming 2|n) function, SymSumSim

16

allows for computing (2, 4, · · · , n)-fold simple derivatives, while SymSumVec
allows for computing (1, 2, · · · , n/2)-fold vectorial derivatives. This implies that
MAD-SymSumSim = 2 × MAD-SymSumVec = MAD-ZeroSum, making SymSumSim
equivalent to ZeroSum in terms of MAD. For the even order derivative we prove the
following result.

Theorem 1. The symmetry property is preserved when the (d◦f)−fold simple deriva-
tive of a function f is calculated at symmetric positions using structurally-symmetric
input states where (d◦f) is even.

Proof. Let f be a Boolean function over variables (x0, x1, . . . , xn−1) and d = d◦f . The
core idea lies in the fact that the output of a simple derivative is determined by the
fixed variables only (Recall Lemma 1).

Let us consider d−fold simple derivative of f on symmetric state X, where the
derivative is taken at symmetric positions and 2|d. Let the derivative variables be
denoted by vector xi and the d−fold simple derivative as δdf

δxi
such that

δdf

δxi
=

δf

δxi1δxi2 . . . δxid

=
δf

δxid

(
. . .

(
δf

δxi2

(
δf

δxi1

))
. . .

)
= f(X

′
) such that X

′
= X \ xi

It is evident that X
′
consists of the symmetric part of the state, thus f(X

′
) will also be

symmetric. From Lemma 1, we know that the result of a d−fold simple derivative of a
function only depends on the fixed variables (symmetric part of the state). Therefore,
the resultant output δdf

δxi
will also be symmetric. Hence, the symmetry property is

preserved.

Beyond Conventions: SymSumSim and the Odd Order Derivative
The primary limitation of SymSumSim lies in its applicability being restricted solely to
even-order derivatives due to its structural constraints. When applied to structurally
symmetric states, computing odd-order derivatives disrupts the symmetry of the fixed
variables, rendering the use of odd-order derivatives impractical in the SymSumSim
distinguisher. We propose a novel approach called SymSumHyb to address this issue.
In SymSumHyb, odd-order derivatives are computed in a hybrid mode, while even-
order derivatives are calculated using simple-order derivatives. This hybrid approach
allows us to overcome the limitations associated with odd-order derivatives in the
SymSumSim distinguisher. Now, we present a formal definition of SymSumHyb.

Definition 10 (SymSumHyb). Let us consider an SPN function, F : fn
2 → fm

2 . If
{X1, X2, . . . Xl} be the structurally-symmetric input set of F such that the input-sum⊕l

i=1 Xi = 0, then the output-sum
⊕l

i=1 F (Xi) will exhibit a symmetry referred to

17

as the SymSumHyb. Here, we compute the kth order derivative, where l = 2k. Addi-
tionally, the state Xi exhibits symmetry for n − k (if 2|k) and n − (k + 1) (if 2̸ |k)
positions respectively owing to structural-symmetry.

Suppose we want to compute the k-th order derivative of an n-bit function where
k is odd, then we will take n− (k+ 1) size structurally symmetric state and compute
the derivative on the remaining k + 1 variables. In order to compute the k-th order
derivative using k + 1 variables, we use a hybrid method where we compute k − 1th

order simple derivative and a single order vectorial derivative, thereby consuming
(k−1)+2 = k+1 variables. We also ensure that the positions of the vectorial derivative
are symmetric, thereby satisfying all symmetry requirements.

5 SymSumSim on Different SPN Hash Constructions
In this section, the practical application of the SymSumSim distinguisher is explored.
The proposed SymSumSim distinguisher is applied to the SPN functions Xoodyak-
Hash [DHP+20]/Xoodoo [DHAK18] and SHA-3 [BDPA11]/Keccak-f [BDPA11]. Addi-
tionally, we showcase the practical implementation of the SymSumSim distinguisher
on the Belarusian hash function Bash/Bash-f [AMMS16], which to the best of our
knowledge, has not been previously analyzed. Through this exploration, we highlight
the specific advantages of the SymSumSim distinguisher compared to the ZeroSum and
SymSumVec.

5.1 SymSumSim Distinguisher on Keccak-p
We start the application of SymSumSim distinguisher to analyze symmetric behaviour
of Keccak-p and use it for distinguishing attack. Our main objective is to gain insight
into how the symmetry property is preserved when computing the d-fold simple
derivative of Keccak-p using structurally symmetric input states as stated below.
Corollary 1. By using structurally symmetric input states, (d◦Keccak−p)−fold simple
derivative of Keccak-p is symmetric.

This corollary can be derived from Corollary 2 of [SKC17] and Theorem 1. While
Corollary 2 of [SKC17] states the need for a self-symmetric state, Theorem 1 suggests
that a structurally symmetric state is sufficient. To visually illustrate this process,
Fig. 2a presents the input structure of Keccak-p, highlighting the symmetric part in
yellow and white , while the green parts signify symmetric positions for the
simple derivative. It is important to emphasize that the state is only structurally
symmetric, meaning that only the positions (and not necessarily values) of the green
part need to be symmetric while computing the derivative. Consequently, we can
consider all the variables in the green part as derivative variables, achieving the same
MAD as ZeroSum. On the other hand, for SymSumVec, we can only utilize one part of
the green variables as we require a self-symmetric state. A more detailed comparison
of MAD is discussed below.

MAD. As mentioned earlier, for SymSumSim, a structurally symmetric state is suffi-
cient. This means that we have up to 21600 possible ways to generate Keccak-p states

18

(a) Without Linearization (b) 1-Round Linearization

Fig. 2: Keccak-p state for m−fold simple derivatives

while maintaining the symmetric structure. Based on this observation, we can success-
fully apply the SymSumSim distinguisher to round-reduced Keccak-p up to 10 rounds,
with a complexity of 21024. In comparison, the complexity of the ZeroSum distinguisher
is 21025. On the other hand, the SymSumVec distinguisher has an effective MAD of 800.
This enables us to penetrate up to only 9 rounds with the SymSumVec distinguisher.

5.1.1 Extending SimSum Distinguisher on Keccak-p using
Linearization

In this section, we employ the concept of 1-round linearization of Keccak-p with
SymSumSim. The linearization technique was first introduced by Dinur et al. in
[DMP+15] and subsequently formalized by Guo et al. in [GLS16]. For the sake of
completeness, the idea of linearization is described in Appendix A. Here we proceed
to discuss SymSumSim distinguisher along with linearization technique. Suryawanshi
et al. improved SymSumVec with a 1-round linearization in [SSS20]. In the case of
SymSumVec, the linearization process needs additional constraints to maintain self-
symmetric state. Specifically, the first 32 slices must be identical to the other 32
slices. However, for SymSumSim, no further constraints are needed in addition to the
linearization requirements.

Fig. 2b depicts an input state to achieve linearization in Keccak-p with the
SymSumSim distinguisher. The yellow and white colors symbolize symmetry, while
the green cells indicate variables capable of assuming all possible values. In other
words, these green cells represent the variables on which derivatives are computed.
The purple cells, on the other hand, are responsible for handling the θ operation
and maintaining column parity for achieving linearization.

MAD. When employing a 1-round linearization technique, the effective MAD for Kec-
cak-p is 512, as stated in [GLS16]. In the case of SymSumSim, we are able to utilize all
512 derivative variables, while SymSumVec restricts us to a maximum of 256 variables.

19

By utilizing the available MAD, we can distinguish up to 10 rounds in the forward
direction with a complexity of 2512. The ZeroSum distinguisher penetrates an equiva-
lent number of rounds with a complexity of 2513, which is greater than MAD. Therefore,
using 1-round linearization, ZeroSum can only distinguish up to 9 rounds. Without lin-
earization, ZeroSum can distinguish 10 rounds at a complexity of 21025, which exceeds
the birthday bound. Therefore, SymSumSim holds an advantage over ZeroSum by a
factor of 2513. On the other hand, the SymSumVec distinguisher distinguishes up to 9
rounds with the complexity 2512.

5.1.2 Inside-out Approach

The inside-out technique was first introduced by Aumasson and Meier for the Keccak-
p permutation in the context of a ZeroSum distinguisher [AM09a]. This technique can
also be applied to the SymSumSim distinguisher. In our approach, we utilize the inside-
out technique with linearization of one forward round and one backward round. In the
forward direction of the Keccak-p permutation, we employ SymSumSim, while in the
backward direction, we compute ZeroSum (for details, see section 5 in [GLS16]).

Utilizing the available MAD, we can successfully differentiate up to (m + n + 2)
rounds. Here, m and n represent the maximum rounds we can distinguish in the
forward and backward directions respectively. The algebraic degrees of Keccak-p and
its inverse are 2 and 3, respectively. Consequently, we can distinguish up to 6 rounds
(n = 5) in the backward direction and up to 10 rounds (m = 9) in the forward
direction. Therefore, employing a complexity of 2512, we can distinguish up to 16
rounds giving us the first better than birthday-bound distinguisher for 16-rounds.

5.1.3 SymSumSim Distinguisher on SHA-3

The SymSumSim distinguishers discussed for the Keccak-p construction can also be
applied in the context of SHA-3. However, when considering the MAD, we need to
account for the constraint imposed by the capacity part of the hash function. Since
the adversary only has access to the rate part, not all available variables can be used
for derivative computation. To visualize this process refer Fig. 3a, which illustrates a
representative state of SHA-3-512. The capacity part is depicted in grey , indicating
that we cannot access it.

To provide a comparison in terms of the MAD, complexity, and the maximum num-
ber of rounds that can be reached, one can refer Table 1, which summarizes the results
for SymSumSim, SymSumVec, and ZeroSum. Additionally, we can apply SymSumSim with
a 1-round linearization approach to SHA-3. Table 2 provides the necessary constraints
and the MAD for this scenario.

Exponential Advantage Over ZeroSum. It is important to highlight that for some
variants of SHA-3, the ZeroSum distinguisher is not applicable using linearization for
certain rounds due to limited MAD. Taking SHA-3-384 as an example, SymSumSim
distinguishes with a complexity of 2256 for 10 rounds using 1-round linearization and
the χ−1 technique. On the other hand, ZeroSum requires 2257, which is more than
the MAD. As a result, ZeroSum only applies when utilizing the χ−1 technique, which
leads to a complexity of 2513. Consequently, SymSumSim clearly has an advantage over

20

Table 2: We present one potential slice configuration along with its associated conditions for 1-
round linearization and the corresponding MAD for various SHA-3 variants. In the diagram, the
colors represent specific elements: green for variables, gray for capacity, and yellow for
fixed lane [SSS20].

Variant Slice Configuration Restrictions on variables MAD

SHAKE-128

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

A[0, 4] = α1 ⊕
3∑

i=0

A[0, i]

A[2, 3] = α2 ⊕
2∑

i=0

A[2, i]

2448

SHAKE-256

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

A[0, 3] = α1 ⊕
2∑

i=0

A[0, i]

A[2, 2] = α2 ⊕
1∑

i=0

A[2, i]

2320

SHA-3-224

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

A[0, 3] = α1 ⊕
2∑

i=0

A[0, i]

A[2, 3] = α2 ⊕
2∑

i=0

A[2, i]

2384

SHA-3-256

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

A[0, 3] = α1 ⊕
2∑

i=0

A[0, i]

A[2, 3] = α2 ⊕
2∑

i=0

A[2, i]

2320

SHA-3-384

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

A[0, 2] = α1 ⊕
1∑

i=0

A[0, i]

A[2, 2] = α2 ⊕
1∑

i=0

A[2, i]

2256

SHA-3-512

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

A[0, 1] = α1 ⊕A[0, 0]
A[2, 1] = α2 ⊕A[2, 0]

2128

21

(a) Without Linearization (b) With Linearisation

Fig. 3: SHA-3-512 state for 16th−fold Simple Derivative

ZeroSum by a factor of 2257. Similarly, for SHA-3-512, SymSumSim holds an advantage
over ZeroSum by a factor of 2129.

5.2 SymSumSim Distinguisher on Xoodoo
Xoodoo has a different ordering of sub-functions in the SPN round structure, specifi-
cally the round constant for Xoodoo is added before the non-linear operation. Its effect
on SymSumVec in the form of a factor two improvement over ZeroSum has already
been discussed in Proposition 1 in [SS23]. Note that the same improvement applies to
SymSumSim and hence the complexity of the distinguisher is same for both SymSumVec
and SymSumSim. However, for SymSumSim we are able to double the MAD thereby
reaching previously unreachable rounds making it a more powerful tool in analyzing
the security of Xoodoo. Fig. 4a visually illustrates a representative state for applying
SymSumSim on Xoodoo.

MAD. The state-size of Xoodoo is 384. Thus in the case of SymSumSim distinguisher
we can utilize the full state and get effective MAD up to 384. This implies that the
SymSumSim distinguisher can be effectively applied to round-reduced Xoodoo up to
8 rounds, with complexity of 2256. On the other hand, the SymSumVec distinguisher,
which maintains symmetry on both values and structure, can be employed on round-
reduced Xoodoo up to 7 rounds only.

5.2.1 Extending SymSumSim Distinguisher on Xoodoo using
Linearization

The application of the linearization technique with SymSumVec was initially introduced
for Xoodoo in [SS23]. In the case of the SymSumSim distinguisher, the main result is

22

(a) Xoodoo state without linearisa-
tion)

(b) Xoodoo state with linearisation (c) Xoodyak-Hash state without lin-
earisation

Fig. 4: State with 16th−fold simple derivative

similar to the linearization technique used for Keccak-p. To illustrate this, refer to
Fig. 4b, which provides a visual representation of the input state for the linearization
of Xoodoo for the SymSumSim distinguisher. The forward linearization structure can
also be applied for backward linearization while maintaining the structural symmetry.
The degree of the forward and backward round functions for Xoodoo are both two.
Consequently, symmetry can be preserved by employing the same structure when
calculating the d-fold simple derivative in both the forward and backward directions.

MAD. With linearized Xoodoo, 232 potential states are possible, aligning with the
SymSumSim count. This enables us to analyze 6 rounds in the forward direction with
complexity 232. Similarly, for inverse, we are able to distinguish up to 6 rounds. For
SymSumVec, MAD is limited to 16 and SymSumVec can target only up to 5 rounds using
a complexity of 216.

5.3 Extending to Full Rounds Using Inside-out Approach
We extend the above SymSumSim distinguishers to the best full-round distinguisher
on Xoodoo using the inside-out approach. We start in the middle of the Xoodoo per-
mutation and compute the degree outwards. There are 12 rounds in Xoodoo and we
use 1 round linearization in the forward and the backward directions. Hence, with a
complexity of 232, we get a full-round distinguisher of Xoodoo. We consider an affine
subspace ν of dimension 32 and for all 232 possible intermediate states we compute
the outputs. Suppose that we consider the state after r1 rounds for an r-round Xoodoo
permutation where r1+r2 = r. For all these 232, we compute Xoodoor2 and Xoodoo−r1

and we get SymSumSim on both outputs. The idea is depicted below:

SymSumSim
Xoodoo−r1

←−−−−−−− ν
Xoodoor2−−−−−−→ SymSumSim

It is important to note a significant difference between the inside-out approach
applied to Keccak-p and Xoodoo. For Keccak-p, we obtain ZeroSum in the backward
direction and SymSumSim in the forward direction. However, for Xoodoo, we obtain
the SymSumSim distinguisher in both the forward and backward directions.

23

5.4 SymSumSim Distinguisher on Xoodyak-Hash
In this section, we will demonstrate the usage of the SymSumSim distinguisher for
Xoodoo on Xoodyak-Hash. The initial state for SymSumSim of Xoodyak-Hash is shown
in Fig. 4c. In the capacity portion of Xoodyak-Hash, there is a domain separator, which
we have no control over. However, this does not pose a problem for us. Assuming that
the state begins with a structurally symmetric state, the constant is introduced to
create the actual input for Xoodyak-Hash. Therefore, the symmetry property remains
preserved when computing the dth-fold simple derivative of Xoodyak-Hash, especially
with structurally symmetric input states.

MAD. The rate part of Xoodyak-Hash is 128 bits. Thus, we have up to 2128 possible
ways to generate Xoodyak-Hash states while preserving the symmetric structure. As a
result, the highest order derivative that can be computed is the 128th order. However,
due to birthday bound, we can distinguish 128 bit hash value with 264 complexity with
high probability. Hence, we restrict the comparisons of our attack to the complexity
of this generic attack. With 264 complexity we can distinguish upto 6 rounds which
is same for the SymSumVec distinguisher. While, with ZeroSum distinguisher we can
distinguish 6 rounds with complexity 265.

5.5 SymSumSim Distinguisher on Bash-f
Our final application of SymSumSim distinguisher is on the Bash-f permutation. Corol-
lary 2 clarifies how the symmetry property is maintained for the d−fold simple
derivative of Bash-f when computed with structurally symmetric input states. How-
ever, before we delve into the specifics, let us understand how the Bash-f function
is structured. The Bash-f function’s structure can be expressed as C ◦ L ◦ N ◦ L,
where round constants are added after the non-linear and linear operations. The fol-
lowing theorem examines the maximum degree of a monomial influenced by the round
constant.
Theorem 2. In a Bash-f permutation consisting of nr rounds, the highest degree of
a monomial that includes a round constant is d◦Fnr − 2.

Proof. The basic idea of this proof is similar to Keccak. We provide the proof in
Appendix C for the sake of completeness.

The theorem establishes that the higher degree terms of the Bash-f remain unaf-
fected by the subsequent round constant addition. This insight leads to the following
corollary for Bash-f :
Corollary 2. When the (d◦Bash−f)−fold simple derivative of Bash-f is evaluated
using exclusively structurally-symmetric input structures and the derivative is taken
at a symmetric point, the property of symmetry will remain preserved.

MAD. With 21536 possible ways to generate Bash-f states while maintaining their
symmetric structure, the highest order derivative that can be computed is the 1536th

order. Consequently, the SymSumSim distinguisher can be applied to analyze round-
reduced Bash-f up to 10 rounds with a complexity of 21024.

24

SymSumSim Distinguisher on Bash-f using Inside-Out technique
The structure of the inverse function of Bash-f is L◦N ◦L◦C, which can be represented
as N ′ ◦ L ◦ C, where N ′

= L ◦ N . Suryawanshi et al. analyzed different types of SPN
functions and studied their behavior in the context of SymSumVec in [SS23]. The Bash-
f belongs to Type-CLN of their classification. Notably, since the algebraic degree of
the inverse Bash-f function is the same as that of Bash-f , using Lemma 2 of [SS23],
Corollary 2 is also applicable to the inverse function of Bash-f .

The SymSumSim distinguisher can effectively analyze the inverse Bash-f function in
the backward direction for up to 10 rounds, with a complexity of 21024. Additionally,
with the same complexity, SymSumSim can be applied in the 10 rounds in the forward
direction. Consequently, using the inside-out technique, with a complexity of 21024,
the SymSumSim can be effectively employed for analyzing up to 20 (out of 24) rounds.

5.6 SymSumSim Distinguisher on Bash
The SymSumSim distinguisher of Bash-f can be applied to Bash. In this case we have
to take the rate part into account and the effective MAD will be decided based on the
rate part. In the capacity part of Bash state we have the encoding of a fixed constant
value l/4 and the size of this capacity part is 4l bits where l is the security level and
l ∈ {16, 32, 48, ..., 256}. Thus the rate is 1536−4l. Fig. 5 provides a pictorial depiction
of how the SymSumSim technique was applied to Bash. The green positions represent
variables that can take all possible values. Even though the variables’ values may not
be symmetrical, their positions in the state show symmetry. The yellow and white

positions represent symmetry. The red lane represents the encoding of the fixed
constant value.

(a) l = 128 (b) l = 256Fig. 5: Structurally symmetric states pertaining to Bash for different values of l: (left)
l = 128, (right) l = 256.

25

MAD. As the rate of the hash function varies based on the value of l, the MAD for
SymSumSim also varies. l is the security level of Bash where the hash output is 2l bits.
Considering security concerns, hash sizes smaller than 160 are not deemed secure.
Therefore, our attention is directed toward hash sizes 256 and 512, corresponding to
rate sizes 1022 and 510, respectively with minimum padding (2-bits).

In the case of Bash-256, the MAD is 1022 and consequently the SymSumSim distin-
guisher can effectively analyze up to 9 rounds with complexity 2512. Note that in this
case SymSumVec can also reach the same number of rounds with the same complexity.
While ZeroSum can reach the same number of rounds, it requires a complexity of 2513.

Similarly, for Bash-512, the MAD is 2510. Thus, the SymSumSim distinguisher can
reach 8 rounds with a complexity of 2256. Again a similar number of rounds can be
reached by SymSumVec and ZeroSum with complexity 2256 and 2257 respectively.

6 Addressing Challenges in Two-Round Linearization
in SymSumVec/SymSumSim

In this section, we will revisit the concept of 2-round linearization and its compati-
bility with SymSumVec/SymSumSim on SHA-3(Keccak). Previously in section 5.1.1, we
discussed the basic idea of linearization, which is to choose the input state in a way
that retains linearity after one round of the Keccak round function. The technique of
2-round linearization was originally proposed by Guo et al. in [GLS16]. When aiming
to maintain linearity for two rounds, it is vital to consider the θ, ρ, π, and χ mappings
of the Keccak function. To achieve linearity in the first round, we rearrange the input
variables such that, in the state before the first round’s χ operation, there are no adja-
cent variables in each row, as already discussed in the case of 1-round linearization.
Additionally, it is crucial to manage the second round’s θ operation effectively to pre-
vent propagation of variables. A pictorial representation of one such arrangement is
given in Fig. 6, where constant values are set to either 0 or 1 based on specific rules.

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

0,0 1,1 2,2 3,3

3,0 4,1 0,2 1,3

1,0 2,1 3,2 4,3

4,0 0,1 1,2 2,3

4,4

2,4

0,4

3,4

2,0 3,1 4,2 0,3 1,4

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

4,3

0,4 1,4 2,4 3,4 4,4

0,0 1,1 2,2 3,3

3,0 4,1 0,2 1,3

1,0 2,1 3,2 4,3

4,0 0,1 1,2 2,3

4,4

2,4

0,4

3,4

2,0 3,1 4,2 0,3 1,4

0,0

1,1

2,2

3,3

3,0

4,1

0,2

1,3

1,0

2,1

3,2

4,3

4,0

0,1

1,2

2,3

4,4

2,4

0,4

3,4 2,0

3,1

4,2

0,3

1,4 0,0

1,1

2,2

3,3

3,0

4,1

0,2

1,3

1,0

2,1

3,2

4,3

4,0

0,1

1,2

2,3

4,4

2,4

0,4

3,4 2,0

3,1

4,2

0,3

1,4

0,0 1,1 2,2 3,3

3,0 4,1 0,2 1,3

1,0 2,1 3,2 4,3

4,0 0,1 1,2 2,3

4,4

2,4

0,4

3,4

2,0 3,1 4,2 0,3 1,4

Fig. 6: 2-round linearization with MAD up to 54. Green : degree is 1, Yellow :
degree is 0 (value can be either 0 or 1), White : all 0 lane, light gray : all 1 lane

For the arrangement given in Fig. 6, the variables must meet the following conditions

26

to handle the first round’s θ operation.

A[0, 0]⊕A[0, 1]⊕A[0, 2] = 0xff · · · f
A[2, 0]⊕A[2, 1]⊕A[2, 2] = 0x00 · · · 0

(1)

Similarly, the management of the second round’s θ operation is necessary in order to
achieve linearization in the second round. This involves careful handling of the vari-
ables’ locations at the input of the second round, as the ρ and π operations can cause
potential changes. The linearity after the second round is ensured by the following
conditions.

A[2, 0]≪62 = A[0, 0]⊕A[2, 2]≪43

A[2, 1]≪6 = A[0, 1]≪36

A[2, 2]≪43 = A[0, 2]≪3

(2)

Therefore, for the given arrangement in Fig. 6, there are a total of 6 × 64 variables
and 5 × 64 linearly independent equations. As a result, the number of free variables
comes down to 64. It is possible to rearrange the equations in a manner that allows
all the variables in lane (0, 0) to become free variables.

Suryawanshi et al. [SSS20] proposed SymSumVec with 2-round linearization. We
present evidence to disprove the claim made in Corollary 1 of [SSS20]. The fundamen-
tal concept behind SymSumVec/SymSumSim is the differentiation between two types of
monomial categories: those that are unaffected by round constants (Type-I) and those
that depend on round constants (Type-II). However, our findings indicate that it is not
possible to achieve both 2-round linearization and SymSumVec (SymSumSim) simulta-
neously. By applying the condition of 2-round linearization, we observe that the state
attains a maximum algebraic degree of 1 after 2 rounds. Nevertheless, we provide evi-
dence that certain bits of the state, after undergoing 2 rounds, still contain monomials
of Type-II nature in their polynomial representation. The symmetry property is not
maintained in those specific bit positions, preventing us from achieving SymSumVec
(SymSumSim). Suppose that c1 is one non-zero bit of the round constant of first round.
To demonstrate the interaction between c1 and the variables through multiplication,
we examine the state before the second round’s χ operation. We note that c1 is added
to lane (0, 0) after the first round’s χ operation. As a result, in the subsequent oper-
ation, namely second round’s θ operation, it affects two columns. Thus, before the
second round’s χ operation, there are at least two consecutive positions that contain
both c1 and a variable. Consequently, after the χ operation, they multiply with each
other and form a Type-II monomial. To validate this, we have performed two rounds of
Keccak using SageMath and have confirmed that there are 6 bits in the output of the
second round that contain Type-II monomials for the initial state provided in Fig. 6.
In the following, we propose a novel approach to handle this problem.

SymSumSim meets 2-round linearization. To address this challenge, it becomes essen-
tial to effectively handle the round constant introduced in the first round. Upon
thorough analysis of the algebraic structure resulting from two rounds, we have identi-
fied 6 bits that are affected by the round constant of the first round and subsequently

27

multiply with variables in the second round. As a result, the polynomial representa-
tion of these six output bits after the second round can be expressed as c1fi + gi,
where fi and gi are linear polynomials over the variables A[0, 0].

To eliminate the influence of these constants, we introduce an additional set of six
equations in the form of fi = 0, in addition to the existing 5 × 64 equations given
above. The complete set of equations can be found in Table B1 (equations 1-6). It is
important to note that the first equation is linearly dependent on the other 5 equations,
so adding these last 5 equations is sufficient to address the issue. Moreover, these
additional equations do not affect the 2-round linearization process. By incorporating
these constraints, we can still achieve the desired 2-round linearization while effectively
canceling out the influence of the round constant at the output of second round.

However, adding these equations has a crucial side effect: it reduces the number
of free variables to 64 − 5 = 59, and the free variables are no longer in symmetric
positions. To maintain symmetry, an additional set of 6 constraints is required. These
constraints ensure that the symmetric positions remain unchanged. To construct the
symmetric polynomial f ′

i corresponding to fi, we follow these steps: we initially set
f ′
i = 0. For each variable A[0, 0, j] that is present in the ANF of fi, we update f ′

i by
adding A[0, 0, (j + 32)%64].

Thus, we add total of 12 additional equations, as specified in Table B1. However, it
is worth noting that only 10 of these equations (equations 2-6 and 8-12) are necessary
to achieve the desired outcome, given their dependencies. As a result, we obtain the
number of free variables as 64 − 10 = 54, with all the free variables located in the
lane (0, 0) at positions 5, 6, ..., 31 and 37, 38, ..., 63 maintaining the desired symmetry.
This gives us reachable MAD upto 54 with 2-round linearization. We describe a similar
linear structure with MAD increased up to 114 in next subsection.

6.1 Increase MAD upto 114 in 2-round Linear Structure
Let us consider an initial state arrangement that increases the MAD up to 114 along
with a 2-round linearization. To illustrate this, we can examine the arrangement shown
in Fig. 7.

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

4,3

0,4 1,4 2,4 3,4 4,4

0,0 1,1 2,2 3,3

3,0 4,1 0,2 1,3

1,0 2,1 3,2 4,3

4,0 0,1 1,2 2,3

4,4

2,4

0,4

3,4

2,0 3,1 4,2 0,3 1,4

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

4,3

0,4 1,4 2,4 3,4 4,4

0,0 1,1 2,2 3,3

3,0 4,1 0,2 1,3

1,0 2,1 3,2 4,3

4,0 0,1 1,2 2,3

4,4

2,4

0,4

3,4

2,0 3,1 4,2 0,3 1,4

0,0

1,1

2,2

3,3

3,0

4,1

0,2

1,3

1,0

2,1

3,2

4,3

4,0

0,1

1,2

2,3

4,4

2,4

0,4

3,4 2,0

3,1

4,2

0,3

1,4 0,0

1,1

2,2

3,3

3,0

4,1

0,2

1,3

1,0

2,1

3,2

4,3

4,0

0,1

1,2

2,3

4,4

2,4

0,4

3,4 2,0

3,1

4,2

0,3

1,4

0,0 1,1 2,2 3,3

3,0 4,1 0,2 1,3

1,0 2,1 3,2 4,3

4,0 0,1 1,2 2,3

4,4

2,4

0,4

3,4

2,0 3,1 4,2 0,3 1,4

Fig. 7: 2-round linearization with MAD up to 114

28

Table 3: We present one potential slice configuration along with its associated conditions
for 2-round linearization and the corresponding MAD for various SHA-3 variants. We also
present number of equations needed to handle the round constant. The colors represent specific
elements: green for variables, white for all 0 lane, light gray for all 1 lane and dark
gray for the capacity part. Note that this strategy is not applicable for SHA-3-512

Variant Slice Configuration Restrictions on variables
#Restrictions

to handle
constant

MAD

SHAKE-
128

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

A[0, 0]⊕A[0, 1]⊕A[0, 2] = 0xff · · · f
A[2, 0]⊕A[2, 1]⊕A[2, 2] = 0x00 · · · 0
A[2, 0]≪62 = A[0, 0]⊕A[2, 2]≪43

A[2, 1]≪6 = A[0, 1]≪36 ⊕A[2, 3]≪15

A[2, 2]≪43 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪41 ⊕A[2, 0]≪62

14 2114

SHAKE-
256

0,0 1,0

0,1 1,1

0,2 1,2

0,3 1,3

2,0 3,0

2,1 3,1

2,2 3,2

2,3 3,3

4,0

4,1

4,2

4,3

0,4 1,4 2,4 3,4 4,4

A[0, 0]⊕A[0, 1]⊕A[0, 2] = 0xff · · · f
A[2, 0]⊕A[2, 1]⊕A[2, 2] = 0x00 · · · 0
A[2, 0]≪62 = A[0, 0]⊕A[2, 2]≪43

A[2, 1]≪6 = A[0, 1]≪36 ⊕A[2, 3]≪15

A[2, 2]≪43 = A[0, 2]≪3

10 254

SHA-3-
224

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

A[0, 0]⊕A[0, 1]⊕A[0, 2] = 0xff · · · f
A[2, 0]⊕A[2, 1]⊕A[2, 2] = 0x00 · · · 0
A[2, 0]≪62 = A[0, 0]⊕A[2, 2]≪43

A[2, 1]≪6 = A[0, 1]≪36 ⊕A[2, 3]≪15

A[2, 2]≪43 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪41 ⊕A[2, 0]≪62

10 2114

SHA-3-
256

0,0 1,0

0,1 1,1

0,2 1,2

0,3 1,3

2,0 3,0

2,1 3,1

2,2 3,2

2,3 3,3

4,0

4,1

4,2

4,3

0,4 1,4 2,4 3,4 4,4

A[0, 0]⊕A[0, 1]⊕A[0, 2] = 0xff · · · f
A[2, 0]⊕A[2, 1]⊕A[2, 2] = 0x00 · · · 0
A[2, 0]≪62 = A[0, 0]⊕A[2, 2]≪43

A[2, 1]≪6 = A[0, 1]≪36 ⊕A[2, 3]≪15

A[2, 2]≪43 = A[0, 2]≪3

10 254

SHA-3-
384

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

A[0, 0]⊕A[0, 1]⊕A[0, 2] = 0xff · · · f
A[2, 0]⊕A[2, 1]⊕A[2, 2] = 0x00 · · · 0
A[2, 0]≪62 = A[0, 0]⊕A[2, 2]≪43

A[2, 1]≪6 = A[0, 1]≪36 ⊕A[2, 3]≪15

A[2, 2]≪43 = A[0, 2]≪3

10 254

29

To keep the first round linear, the variables must meet these conditions

A[0, 0]⊕A[0, 1]⊕A[0, 2]⊕A[0, 3] = 0xff...f

A[2, 0]⊕A[2, 1]⊕A[2, 2]⊕A[2, 3] = 0xff...f
(3)

Similarly, the following conditions guarantee that the function maintains its linearity
after the second round.

A[2, 0]≪62 = A[0, 0]⊕A[2, 2]≪43

A[2, 1]≪6 = A[0, 1]≪36 ⊕A[2, 3]≪15

A[2, 2]≪43 = A[0, 2]≪3

A[2, 3]≪15 = A[0, 3]≪41 ⊕A[2, 0]≪62

(4)

Considering the arrangement shown in Fig. 7, we observe a total of 8×64 variables
and 6×64 linearly independent equations, resulting in 128 free variables. By organizing
the equations appropriately, we can have the free variables in lanes (0, 1) and (0, 2).

Analyzing the algebraic structure after 2 rounds, we find that 8 bits are influenced
by the round constant of the first round. To eliminate the effect of constants, we intro-
duce an additional set of 8 equations. Additionally, to maintain symmetry, we require
8 more equations. The detailed equations can be found in the Appendix (Table B3).
Out of the 16 equations, equations 2− 7 and 9− 14 are sufficient due to their depen-
dencies. Consequently, we achieve a MAD up to 128− 14 = 114. Among the 114 free
variables, 64 variables are located in lane (0, 1), while the remaining 50 free variables
are symmetrically positioned in lane (0, 2). Specifically, the free variables in lane (0, 2)
correspond to symmetric locations as follows:

4, 5, 6, 7, 9, 11..., 23, 25, ..., 31, 36, 37, 38, 39, 41, 43..., 55, 56, ..., 63.

6.2 Application on SHA-3
We apply SymSumSim with 2-round linearization on SHA-3. To apply two round linear
structures on SHA-3, we need to consider the equations along with the condition that
we can access only the rate part. The detailed equations and MAD are given in Table 3.
Applying SymSumSim with 2-round linearization we distinguish 8 rounds of SHAKE-
128 and SHA-3-224 with complexity 264. Also, we distinguish 7 rounds of SHAKE-256,
SHA-3-256 and SHA-3-384 with complexity 232.

7 Discussion
In this work, we introduce SymSumSim, an innovative distinguisher that addresses
and surpasses the limitations of SymSumVec offering comparable advantages to Zero-
Sum while utilizing simpler order derivatives rather than vectorial order derivatives.
SymSumSim achieves equivalence to ZeroSum regarding MAD enabling penetration into
rounds previously unreachable by SymSumVec. SymSumSim, in contrast to SymSumVec,
eliminates the need for fully self-symmetric inputs by relaxing the requirement for
symmetry among the variables across which derivatives are computed. We illus-
trate SymSumSim’s effectiveness across various SHA-3 variants, Keccak, Xoodyak-Hash,

30

Xoodoo, Bash, and Bash-f showing a significant advantage over ZeroSum in MAD.
Furthermore, we solve the challenge of even-order derivatives by combining them with
vectorial derivatives, resulting in a hybrid derivative of odd order, which we denote as
SymSumHyb. Furthermore, we assert the impracticality of the two-round linearization
of SymSumVec as proposed by Suryawanshi et al. We propose a solution to address this
by introducing additional constraints. SymSumSim showcases significant performance
advantages over ZeroSum in various scenarios, as illustrated in Fig. 8. Here, ZeroSum

0

50

100

150

200

250

300

350

400

450

500

550 7 Rounds 8 Rounds 9 Rounds

2
R 2
R 1
R

2
R 1
R

U
n
a
u
g
m
en

te
d

2
R 2
R 1
R

33

65

257

32

128

511

32

64

256

C
o
m
p
le
x
it
ie
s
(l
o
g
2
)

(a) SHA-3-224

0

50

100

150

200

250

300

350

400

450

500

550 7 Rounds 8 Rounds 9 Rounds

2
R

1
R 1
R

1
R 1
R

U
n
a
u
g
m
en

te
d

2
R 1
R 1
R

33

129

257

64

128

511

32

128

256

C
o
m
p
le
x
it
ie
s
(l
o
g
2
)

(b) SHA-3-256

0

50

100

150

200

250

300

350

400

450

500

550
8 Rounds 9 Rounds 10 Rounds

2
R
C

1
R
C

1
R
C

1
R
C

1
R
C

C2
R
C

1
R
C

1
R
C

33

129

257

64

128

512

32

128

256

C
o
m
p
le
x
it
ie
s
(l
o
g
2
)

(c) SHAKE-256

0

50

100

150

200

250

300

350

400

450

500

550 8 Rounds 9 Rounds 10 Rounds

2
R
C

1
R
C

C1
R
C

1
R
C

2
R
C

1
R
C

1
R
C

33

129

513

64

128

32

128

256

C
om

p
le
x
it
ie
s
(l
og

2
)

(d) SHA-3-384

0

50

100

150

200

250

300

350

400

450

500

550 8 Rounds 9 Rounds 10 Rounds

1
R
C

C C1
R
C

C1
R
C

1
R
C

C

65

257

513

64

256

64

128

511

C
om

p
le
x
it
ie
s
(l
og

2
)

(e) SHA-3-512

0

50

100

150

200

250

300

350

400

450

500

550 8 Rounds 9 Rounds 10 Rounds

2
R
C

2
R
C

1
R
C

2
R
C

1
R
C

C2
R
C

2
R
C

1
R
C

33

65

257

32

128

511

32

64

256

C
om

p
le
x
it
ie
s
(l
og

2
)

(f) SHAKE-128
0

50

100

150

200

250

300

350

400

450

500

550 7 Rounds 8 Rounds 9 Rounds

2
R 2
R 1
R

2
R 1
R

U
n
a
u
g
m
en

te
d

2
R 2
R 1
R

33

65

257

32

128

511

32

64

256

C
om

p
le
x
it
ie
s
(l
og

2
)

ZeroSum SymSumVec SymSumSim/Hyb

Fig. 8: Comparing the complexities (less than birthday bound) of
SymSumSim/SymSumHyb with ZeroSum and SymSumVec for all variants of fixed-length
hash and XOFs of SHA-3. The captions inside the histogram captures the distinguish-
ing strategies, 1RC: 1-round linearization with χ−1, 2RC: 2-round linearization with
χ−1, C: only χ−1, 1R: only 1-round linearization, 2R: only 2-round linearization.

31

is illustrated in blue, SymSumVec in red and both SymSumSim and SymSumHyb are
illustrated in green. The abbreviations 1RC, 2RC, C, 1R and 2R stand for augmenta-
tion of 1-round linearization with χ−1, 2-round linearization with χ−1, only χ−1, only
1-round linearization and only 2-round linearization respectively.

Fig. 8d and Fig. 8e illustrates that SymSumVec is not applicable on 10 rounds
of SHA-3-384 and SHA-3-512, whereas our technique SymSumSim not only keeps its
applicability, but also outperforms ZeroSum by factors of 2257 and 4. It can be noted
that SymSumSim beats ZeroSum by a factor of 2129 for a lower round of the SHA-3-
512, specifically for 9 rounds. For SHA-3-224, SymSumSim outperforms SymSumVec over
8 and 9 rounds with almost 100% improvement. Similar improvements can be seen
across various rounds of SHA-3-256, SHAKE-128 and SHAKE-256 Also, SymSumSim
outperforms ZeroSum with at least a factor of 2 and at most factor of 2257.

8 Experimental Verification
To validate the presence of the distinguishers discussed in the paper, we performed
a series of experiments. We experimentally confirmed the SymSumSim distinguisher
for up to 7 rounds of SHA-3-224, SHA-3-256, SHA-3-384, SHAKE-128, and SHAKE-
256. Additionally, we also verified the SymSumSim distinguisher for up to 12 rounds
(6 rounds forward + 6 rounds backward) of Xoodoo. Verification code is publicly
available at the following link.

In this section, we first present a demonstration of a distinguisher on a 7-round
Keccak using the 2-round linearization and SymSumSim techniques. To initiate the
attack, we begin with the following state, as shown in Table 4.

Table 4: Initial Symmetric input state of Keccak
C491E2A0C491E2A0 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000000 0000000000000000

0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000000 0000000000000000

0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

By employing the 2-round linearization, each bit at the output after 7 rounds
exhibits a degree of 32. Hence, it suffices to consider simple derivatives with respect
to 32 variables located in symmetric positions. In practice, we have the flexibility to
select these variables from any symmetric positions from the set of 54 free variables
ranging from 5, ..., 31 and 37, ..., 63 of lane (0, 0). This differs from the constraints
imposed by SymSumVec, where all 32 variables must be chosen from one of the two
symmetric parts. For our analysis, we have selected the following bit positions as the
derivative variables.

8, 9, .., 23, 40, 41, ..., 55.

The derivative variables are denoted with * in Table 5. By altering the val-
ues of the derivative variables, we generate 232 distinct values for lane (0, 0). In
order to achieve 2-round linearization, the dependent variables located in lanes

32

https://github.com/ShibamCrS/SymSumsimSumSHA3Xoodyak.git

Table 5: Derivative state of Keccak
C4****A!C4****A! 0000000000000000 !!!!!!!!!!!!!!!! 0000000000000000 0000000000000000

!!!!!!!!!!!!!!!! FFFFFFFFFFFFFFFF !!!!!!!!!!!!!!!! 0000000000000000 0000000000000000

!!!!!!!!!!!!!!!! FFFFFFFFFFFFFFFF !!!!!!!!!!!!!!!! 0000000000000000 0000000000000000

0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

In first row A is actually 101! instead of "1010"

(0, 1), (0, 2), (2, 0), (2, 1), (2, 2), as well as at the bits 0, ..., 4 and 32, ..., 36 in lane (0, 0),
are calculated based on the equations presented in equations (1) and (2) above, and
in the Table B1 from the free variables. The dependent variables are marked with an !
in Table 5. By modifying the ∗ values of the input base message, we generate 232 indi-
vidual inputs and compute the XOR-sum of the outputs after 7 rounds of the Keccak
function. The symmetric output sum is provided in Table 6. The source codes of the
verification is given in supplementary material.

Table 6: The XOR-sum of the outputs from 232 iterations of a 7-round Keccak
631E8F2C631E8F2C 5423691E5423691E 1997B8E11997B8E1 7514167B7514167B 4D1174B24D1174B2

33BAD16533BAD165 429B50D9429B50D9 17AD101617AD1016 EF1686C3EF1686C3 9F14CF929F14CF92

C217B830C217B830 8C13A20B8C13A20B 6E8638706E863870 5750B4755750B475 3881C3ED3881C3ED

813E31CA813E31CA DC30F993DC30F993 11D0F2E411D0F2E4 5758F72E5758F72E 5C8865535C886553

C5F02DFFC5F02DFF CC3015AECC3015AE 4ABCCE1F4ABCCE1F 320D0293320D0293 70B28FF370B28FF3

Practical verification of full-round distinguisher on Xoodoo. We conducted a simi-
lar experiment for 12 rounds of Xoodoo using inside-out technique. To do this, we
use 1-round forward and 1-round backward linearization. When employing 1-round
linearization in both the directions for Xoodoo, the degree after 6 rounds in both
directions will become 32. The starting middle state is presented in Table 7.

Table 7: Initial state of Xoodoo
Symmetric input state Derivative state

62446244 75DA75DA F90DF90D DFB5DFB5 62446244 75DA75DA F90DF90D DFB5DFB5

4C9C4C9C 1D851D85 E40FE40F B95BB95B 4C9C4C9C ******** E40FE40F B95BB95B

C963C963 5F015F01 E065E065 754F754F C963C963 !!!!!!!! E065E065 754F754F

We select the 32 variables located at lane (1, 1) as the derivative variables for our
analysis. The derivative variables and the dependent variables are denoted with ∗
and ! respectively in Table 7. By modifying the ∗ values of the base input state, we
generate 232 individual inputs where the value of ! will be same as ∗ to maintain the
constraint required for linearization. The resultant XOR-sum after 6 forward and 6

33

backward rounds are given in Table 8. The source code of the verification is given in
supplementary material.

Table 8: The XOR-sum of the outputs from 232 iterations of a 6-round Xoodoo
Forward direction Backward direction

13AE13AE 65646564 57315731 93AD93AD F6DFF6DF 5E725E72 57A057A0 20CE20CE

91E791E7 3C623C62 26212621 75E175E1 8F1A8F1A 23C823C8 3E433E43 ADBAADBA

DC88DC88 EE6DEE6D B217B217 363C363C 0EC00EC0 7B417B41 0AB30AB3 8E578E57

9 Conclusion
This paper introduces a new variant of the SymSumVec distinguisher, called
SymSumSim, which overcomes the limitations of SymSumVec by utilizing simple deriva-
tives instead of vectorial derivatives. Furthermore, by utilizing simple order derivatives,
SymSumSim significantly improves distinguishing power while maintaining a com-
parable MAD to ZeroSum. Thus, by leveraging the doubling of MAD, SymSumSim
outperforms the conventional ZeroSum distinguisher. The feasibility of SymSumSim is
demonstrated through its successful application to various cryptographic primitives,
including SHA-3, Xoodyak-Hash, Bash and their corresponding internal permutations.
Furthermore, it combines the benefits of SymSumSim with one-round linearization
to penetrate more rounds in cryptographic primitives such as SHA-3 and Xoodyak-
Hash. Additionally, the work highlights the impossibility of applying SymSumVec or
SymSumSim to more than 1 round linearization, providing insights into the funda-
mental constraints of these techniques. We also provide an algebraic fix to regain
2-round linearization capability while augmenting both SymSumSim and its predecessor
SymSumVec. Finally, experimental verification of the proposed methods is presented
to validate their effectiveness and versatility. SymSumSim outperforms ZeroSum by a
factor of 2257 and 2129 for 10-round SHA-3-384 and 9-round SHA-3-512 respectively
while enjoying the same MAD as ZeroSum. SymSumSim also reaches 16 rounds (which
was previously not reachable) of Keccak with a better than birthday bound complex-
ity of 2512. Our distinguisher also gives the best result for full-round Xoodoo with a
complexity of 232. As SymSumSim overcomes the barrier of the maximum attainable
derivative, it overcomes the limitation of SymSumVec and thus gets almost a deter-
ministic edge over ZeroSum on all fronts leading to a 100% improvement in almost
all distinguishers while penetrating higher rounds, thereby reaching a place where no
distinguisher has gone before.

Information on Supplementary Material:
We provide the verification codes for practically verifying the distingushers. Our code
can be compiled on Linux or on Windows with Visual Studio.

34

References
[AM09a] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for

reduced keccak-f and for the core functions of luffa and hamsi. rump ses-
sion of Cryptographic Hardware and Embedded Systems-CHES, 2009:67,
2009.

[AM09b] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for
reduced Keccak-f and for the core functions of Luffa and Hamsi. rump ses-
sion of Cryptographic Hardware and Embedded Systems-CHES, 2009:67,
2009.

[AMMS16] Sergey Agievich, Vadim Marchuk, Alexander Maslau, and Vlad Semenov.
Bash-f: another LRX sponge function. IACR Cryptol. ePrint Arch., page
587, 2016.

[BC10] Christina Boura and Anne Canteaut. Zero-sum distinguishers for iterated
permutations and application to Keccak-f and Hamsi-256. In Selected
Areas in Cryptography, volume 6544 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2010.

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-
order differential properties of Keccak and Luffa. In FSE, volume 6733
of Lecture Notes in Computer Science, pages 252–269. Springer, 2011.

[BDL+19] Wenquan Bi, Xiaoyang Dong, Zheng Li, Rui Zong, and Xiaoyun Wang.
Milp-aided cube-attack-like cryptanalysis on keccak keyed modes. Des.
Codes Cryptogr., 87(6):1271–1296, 2019.

[BDPA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
On the indifferentiability of the sponge construction. In Nigel P. Smart,
editor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, volume
4965 of Lecture Notes in Computer Science, pages 181–197. Springer,
2008.

[BDPA11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak
SHA-3 submission. Submission to NIST (Round 3), 2011. http://keccak.
noekeon.org/Keccak-submission-3.pdf.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in
Computer Science, pages 313–314. Springer, 2013.

35

http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf

[BP81] D. Bochmann and C Posthoff. Binäre dynamische Systeme (German
Edition). Oldenbourg, 1981.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryp-
tosystems. J. Cryptol., 4(1):3–72, 1991.

[DHAK18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of xoodoo and xoofff. IACR Trans. Symmetric Cryptol., 2018(4):1–
38, 2018.

[DHP+20] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Xoodyak, a lightweight cryptographic scheme. IACR
Trans. Symmetric Cryptol., 2020(S1):60–87, 2020.

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube attacks and cube-attack-like cryptanalysis on the round-
reduced keccak sponge function. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part
I, volume 9056 of Lecture Notes in Computer Science, pages 733–761.
Springer, 2015.

[DYS+14] Ming Duan, Mohan Yang, Xiaorui Sun, Bo Zhu, and Xuejia Lai. Distin-
guishing properties and applications of higher order derivatives of boolean
functions. Inf. Sci., 271:224–235, 2014.

[GD21] Shibam Ghosh and Orr Dunkelman. Automatic search for bit-based
division property. In Patrick Longa and Carla Ràfols, editors, Progress
in Cryptology - LATINCRYPT 2021 - 7th International Conference on
Cryptology and Information Security in Latin America, Bogotá, Colom-
bia, October 6-8, 2021, Proceedings, volume 12912 of Lecture Notes in
Computer Science, pages 254–274. Springer, 2021.

[GLS16] Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applica-
tions to cryptanalysis of round-reduced keccak. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, volume 10031 of Lecture Notes in Computer Science,
pages 249–274, 2016.

[GS20] Lorenzo Grassi and Markus Schofnegger. Mixture integral attacks on
reduced-round AES with a known/secret s-box. In Karthikeyan Bhar-
gavan, Elisabeth Oswald, and Manoj Prabhakaran, editors, Progress in
Cryptology - INDOCRYPT 2020 - 21st International Conference on Cryp-
tology in India, Bangalore, India, December 13-16, 2020, Proceedings,

36

volume 12578 of Lecture Notes in Computer Science, pages 312–331.
Springer, 2020.

[LBDW17] Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved
conditional cube attacks on keccak keyed modes with MILP method. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes
in Computer Science, pages 99–127. Springer, 2017.

[PS04] Christian Posthoff and Bernd Steinbach. Logic functions and equations.
Binary models for computer science. Springer Publishing Company,
Incorporated., 2004.

[PS19] Christian Posthoff and Bernd Steinbach. Logic functions and equations.
Binary models for computer science. Springer Publishing Company,
Incorporated., 2019.

[SG18] Ling Song and Jian Guo. Cube-attack-like cryptanalysis of round-reduced
keccak using MILP. IACR Trans. Symmetric Cryptol., 2018(3):182–214,
2018.

[SKC17] Dhiman Saha, Sukhendu Kuila, and Dipanwita Roy Chowdhury. Symsum:
Symmetric-sum distinguishers against round reduced SHA3. IACR Trans.
Symmetric Cryptol., 2017(1):240–258, 2017.

[SS23] Sahiba Suryawanshi and Dhiman Saha. Where are the constants?
new insights on the role of round constant addition in the symsum
distinguisher. In (SSS 2023): The 25th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems, Lecture Notes in
Computer Science, 2023. https://eprint.iacr.org/2023/789.

[SSS20] Sahiba Suryawanshi, Dhiman Saha, and Satyam Sachan. New results
on the symsum distinguisher on round-reduced SHA3. In Abderrah-
mane Nitaj and Amr M. Youssef, editors, Progress in Cryptology -
AFRICACRYPT 2020 - 12th International Conference on Cryptology in
Africa, Cairo, Egypt, July 20-22, 2020, Proceedings, volume 12174 of
Lecture Notes in Computer Science, pages 132–151. Springer, 2020.

[Tha81] André Thayse. Boolean calculus of differences. Springer, 1981.

[WHG+19] SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. A prac-
tical method to recover exact superpoly in cube attack. IACR Cryptol.
ePrint Arch., page 259, 2019.

37

https://eprint.iacr.org/2023/789

[YLW+19] Hailun Yan, Xuejia Lai, Lei Wang, Yu Yu, and Yiran Xing. New zero-
sum distinguishers on full 24-round keccak-f using the division property.
IET Inf. Secur., 13(5):469–478, 2019.

[ZCWW21] Zishen Zhao, Shiyao Chen, Meiqin Wang, and Wei Wang. Improved cube-
attack-like cryptanalysis of reduced-round ketje-jr and keccak-mac. Inf.
Process. Lett., 171:106124, 2021.

Appendix A 1-round Linear Structure
The core idea of 1-round linearization is to consider restricted input state in order
to handle the linear (θ) and non-linear (χ) operations within Keccak-p. This involves
analyzing the Boolean expression of the χ function. The function χ : F5

2 → F5
2 is

defined as{
(y0, y1, y2, y3, y4) = χ(x0, x1, x2, x3, x4)

yi = xi ⊕ (x(i+1) mod 5 ⊕ 1)x(i+2) mod 5, for i ∈ {0, 1, 2, 3, 4}
(A1)

Therefore, the only way for χ to increase the algebraic degree is through two
neighboring bits, as indicated by the term (x(i+1) mod 5⊕1)x(i+2) mod 5. Consequently,
if we ensure that for any two consecutive bits in the input, one is constant, the algebraic
degree of the state bits will remain at most 1 after the χ operation. With this in
mind, we set the initial state such that, just before the χ operation of the first round,
there are no consecutive variables in each row of the state. To illustrate this, consider
the following example shown in Fig. A1. In this example, the green cells have an
algebraic degree of exactly 1, while the orange cells have a degree of at most 1. The
yellow cells represent constant values.

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

0,0 1,1 2,2 3,3

3,0 4,1 0,2 1,3

1,0 2,1 3,2 4,3

4,0 0,1 1,2 2,3

4,4

2,4

0,4

3,4

2,0 3,1 4,2 0,3 1,4

0,0 1,1 2,2 3,3

3,0 4,1 0,2 1,3

1,0 2,1 3,2 4,3

4,0 0,1 1,2 2,3

4,4

2,4

0,4

3,4

2,0 3,1 4,2 0,3 1,4

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

4,0

4,1

4,2

3,4

0,4 1,4 2,4 3,4 4,4

Fig. A1: Keccak State Linearization with 512 Degrees of Freedom [GLS16, SSS20]

In Fig. A1, the initial state contains variables in columns 0 and 2. At first, to
prevent the spread of variables to other columns we need the column parity to be
constant. We consider the equation given below to ensure constant column parity:

A[i, 4] =

3⊕
j=0

A[i, j]⊕ αi

where i = 0, 2 , j = 0, 1, 2, 3 and αi is arbitary constant. As a result, after the
θ operation, the variables remain in columns 0 and 2, and do not spread to other

38

columns. The subsequent operation, ρ, does not spread the variables to other lanes.
Finally, due to the absence of variables in two consecutive columns, the π operation
ensures that there are no consecutive variables in each row of the state, as intended.
The complete propagation of variables is illustrated in Fig. A1.

Appendix B State Configuration for 1 and 2 Round
Linearization

It is important to note that for the SHA-3-512 variant, 2-round linearization is not
feasible due to restrictions in the lower rate part, which limit the formulation of the
necessary constraints. The detailed constraints are given in the Table B1, B2, B3 and
B4 for MAD 56 and 114 respectively.

Table B1: This table illustrates the additional set of expressions (set to zero) to handle
the effect of round constants to ensure 2 round linearisation for SymSumVec/SymSumSim.
The constraints are represented as Lj . Here ith variable of lane (0,0) is represented by x0,i

Equations

L1

x0,3 + x0,6 + x0,8 + x0,9 + x0,12 + x0,15 + x0,16 + x0,19 + x0,22 + x0,23 + x0,24 + x0,25 +
x0,29 + x0,30 + x0,33 + x0,34 + x0,35 + x0,36 + x0,37 + x0,39 + x0,42 + x0,43 + x0,44 + x0,45 +

x0,47 + x0,51 + x0,53 + x0,54 + x0,55 + x0,57 + x0,58 + x0,62 + x0,63

L2

x0,0 + x0,1 + x0,2 + x0,4 + x0,7 + x0,8 + x0,9 + x0,10 + x0,12 + x0,16 + x0,18 + x0,19 + x0,20 +
x0,22 + x0,23 + x0,27 + x0,28 + x0,32 + x0,35 + x0,37 + x0,38 + x0,41 + x0,44 + x0,45 + x0,48 +

x0,51 + x0,52 + x0,53 + x0,54 + x0,58 + x0,59 + x0,62 + x0,63

L3

x0,0 + x0,1 + x0,5 + x0,6 + x0,9 + x0,10 + x0,11 + x0,12 + x0,13 + x0,15 + x0,18 + x0,19 +
x0,20 + x0,21 + x0,23 + x0,27 + x0,29 + x0,30 + x0,31 + x0,33 + x0,34 + x0,38 + x0,39 + x0,43 +

x0,46 + x0,48 + x0,49 + x0,52 + x0,55 + x0,56 + x0,59 + x0,62 + x0,63

L4

x0,1 + x0,2 + x0,3 + x0,4 + x0,5 + x0,7 + x0,10 + x0,11 + x0,12 + x0,13 + x0,15 + x0,19 +
x0,21 + x0,22 + x0,23 + x0,25 + x0,26 + x0,30 + x0,31 + x0,35 + x0,38 + x0,40 + x0,41 + x0,44 +

x0,47 + x0,48 + x0,51 + x0,54 + x0,55 + x0,56 + x0,57 + x0,61 + x0,62

L5

x0,2 + x0,3 + x0,4 + x0,5 + x0,9 + x0,10 + x0,13 + x0,14 + x0,15 + x0,16 + x0,17 + x0,19 +
x0,22 + x0,23 + x0,24 + x0,25 + x0,27 + x0,31 + x0,33 + x0,34 + x0,35 + x0,37 + x0,38 + x0,42 +

x0,43 + x0,47 + x0,50 + x0,52 + x0,53 + x0,56 + x0,60 + x0,63

L6

x0,1 + x0,5 + x0,8 + x0,11 + x0,12 + x0,13 + x0,14 + x0,18 + x0,19 + x0,22 + x0,23 + x0,24 +
x0,25 + x0,26 + x0,28 + x0,31 + x0,32 + x0,33 + x0,34 + x0,36 + x0,40 + x0,42 + x0,43 + x0,44 +

x0,46 + x0,47 + x0,51 + x0,52 + x0,56 + x0,59 + x0,61 + x0,62

39

Table B2: The constraints given in Table B1 handle the round constants but not the
symmetry, thus this table illustrates the additional set of expressions (set to zero) to handle
the effect of round constant and maintain the symmetry to ensure 2 round linearisation for
SymSumVec/SymSumSim. The constraints are represented as L′

j .

Equations

L′
1

x0,2 + x0,3 + x0,4 + x0,5 + x0,6 + x0,8 + x0,11 + x0,12 + x0,13 + x0,14 + x0,16 + x0,20 +
x0,22 + x0,23 + x0,24 + x0,26 + x0,27 + x0,31 + x0,32 + x0,35 + x0,38 + x0,40 + x0,41 + x0,44 +

x0,47 + x0,48 + x0,51 + x0,54 + x0,55 + x0,56 + x0,57 + x0,61 + x0,62

L′
2

x0,1 + x0,4 + x0,6 + x0,7 + x0,10 + x0,13 + x0,14 + x0,17 + x0,20 + x0,21 + x0,22 + x0,23 +
x0,27 + x0,28 + x0,31 + x0,32 + x0,32 + x0,33 + x0,34 + x0,36 + x0,39 + x0,40 + x0,41 + x0,42 +

x0,44 + x0,48 + x0,50 + x0,51 + x0,52 + x0,54 + x0,55 + x0,59 + x0,60

L′
3

x0,0 + x0,2 + x0,3 + x0,7 + x0,8 + x0,12 + x0,15 + x0,17 + x0,18 + x0,21 + x0,24 + x0,25 +
x0,28 + x0,31 + x0,32 + x0,32 + x0,33 + x0,37 + x0,38 + x0,41 + x0,42 + x0,43 + x0,44 + x0,45 +

x0,47 + x0,50 + x0,51 + x0,52 + x0,53 + x0,55 + x0,59 + x0,61 + x0,62

L′
4

x0,0 + x0,4 + x0,7 + x0,9 + x0,10 + x0,13 + x0,16 + x0,17 + x0,20 + x0,23 + x0,24 + x0,25 +
x0,26 + x0,30 + x0,31 + x0,33 + x0,34 + x0,35 + x0,36 + x0,37 + x0,39 + x0,42 + x0,43 + x0,44 +

x0,45 + x0,47 + x0,51 + x0,53 + x0,54 + x0,55 + x0,57 + x0,58 + x0,62

L′
5

x0,0 + x0,2 + x0,3 + x0,4 + x0,6 + x0,7 + x0,11 + x0,12 + x0,16 + x0,19 + x0,21 + x0,22 +
x0,25 + x0,29 + x0,32 + x0,34 + x0,35 + x0,36 + x0,37 + x0,41 + x0,42 + x0,45 + x0,46 + x0,47 +

x0,48 + x0,49 + x0,51 + x0,54 + x0,55 + x0,56 + x0,57 + x0,59

L′
6

x0,0 + x0,1 + x0,2 + x0,3 + x0,5 + x0,9 + x0,11 + x0,12 + x0,13 + x0,15 + x0,16 + x0,20 +
x0,21 + x0,25 + x0,28 + x0,30 + x0,31 + x0,33 + x0,37 + x0,40 + x0,43 + x0,44 + x0,45 + x0,46 +

x0,50 + x0,51 + x0,54 + x0,55 + x0,56 + x0,57 + x0,58 + x0,60

40

Table B3: This table illustrates the additional set of expressions (set to zero) to handle the
effect of round constants to ensure 2 round linearisation for SymSumVec/SymSumSim with
increased MAD upto 114. The constraints are represented as Lj . Here, the ith variable of
the lane (0,0) is denoted as x0,i, while the variable of the lane (0,2) is represented as x2,i.

Equations

L1

x0,0 + x0,1 + x0,2 + x0,16 + x0,20 + x0,21 + x0,22 + x0,24 + x0,25 + x0,29 + x0,31 + x0,32 +
x0,46 + x0,47 + x0,48 + x0,49 + x0,51 + x0,52 + x0,53 + x0,54 + x0,56 + x0,57 + x0,60 + x0,62 +

x2,0 + x2,1 + x2,2 + x2,3 + x2,7 + x2,9 + x2,10 + x2,12 + x2,13 + x2,14 + x2,15 + x2,16 +
x2,21 + x2,22 + x2,23 + x2,25 + x2,26 + x2,27 + x2,29 + x2,32 + x2,33 + x2,35 + x2,38 + x2,39 +

x2,41 + x2,45 + x2,46 + x2,47 + x2,49 + x2,52 + x2,54 + x2,55 + x2,56 + x2,61 + x2,62

L2

x0,3+x0,5+x0,6+x0,11+x0,12+x0,13+x0,14+x0,16+x0,17+x0,18+x0,19+x0,20+x0,23+
x0,26 + x0,28 + x0,29 + x0,34 + x0,36 + x0,38 + x0,39 + x0,40 + x0,45 + x0,49 + x0,50 + x0,51 +
x0,53+x0,57+x0,59+x0,61+x0,62+x0,63+x2,1+x2,4+x2,7+x2,9+x2,10+x2,11+x2,13+
x2,14 + x2,15 + x2,17 + x2,23 + x2,27 + x2,28 + x2,31 + x2,32 + x2,35 + x2,40 + x2,42 + x2,43 +
x2,44 + x2,47 + x2,48 + x2,51 + x2,53 + x2,55 + x2,56 + x2,58 + x2,59 + x2,60 + x2,62 + x2,63

L3

x0,1+x0,3+x0,4+x0,5+x0,10+x0,14+x0,15+x0,16+x0,18+x0,22+x0,24+x0,26+x0,27+
x0,28 + x0,32 + x0,34 + x0,35 + x0,40 + x0,41 + x0,42 + x0,43 + x0,45 + x0,46 + x0,47 + x0,48 +
x0,49 +x0,52 +x0,55 +x0,57 +x0,58 +x0,63 +x2,0 +x2,5 +x2,7 +x2,8 +x2,9 +x2,12 +x2,13 +
x2,16 + x2,18 + x2,20 + x2,21 + x2,23 + x2,24 + x2,25 + x2,27 + x2,28 + x2,30 + x2,33 + x2,36 +
x2,38 + x2,39 + x2,40 + x2,42 + x2,43 + x2,44 + x2,46 + x2,52 + x2,56 + x2,57 + x2,60 + x2,61

L4

x0,2+x0,4+x0,5+x0,10+x0,12+x0,14+x0,15+x0,16+x0,21+x0,25+x0,26+x0,27+x0,29+
x0,33 + x0,35 + x0,37 + x0,38 + x0,39 + x0,43 + x0,45 + x0,46 + x0,51 + x0,52 + x0,53 + x0,54 +
x0,56+x0,57+x0,58+x0,59+x0,60+x0,63+x2,3+x2,4+x2,7+x2,8+x2,11+x2,16+x2,18+
x2,19 + x2,20 + x2,23 + x2,24 + x2,27 + x2,29 + x2,31 + x2,32 + x2,34 + x2,35 + x2,36 + x2,38 +
x2,39 + x2,41 + x2,44 + x2,47 + x2,49 + x2,50 + x2,51 + x2,53 + x2,54 + x2,55 + x2,57 + x2,63

L5

x0,2 +x0,4 +x0,6 +x0,7 +x0,8 +x0,13 +x0,17 +x0,18 +x0,19 +x0,21 +x0,25 +x0,27 +x0,29 +
x0,30 + x0,31 + x0,35 + x0,37 + x0,38 + x0,43 + x0,44 + x0,45 + x0,46 + x0,48 + x0,49 + x0,50 +
x0,51+x0,52+x0,55+x0,58+x0,60+x0,61+x2,0+x2,3+x2,8+x2,10+x2,11+x2,12+x2,15+
x2,16 + x2,19 + x2,21 + x2,23 + x2,24 + x2,26 + x2,27 + x2,28 + x2,30 + x2,31 + x2,33 + x2,36 +
x2,39 + x2,41 + x2,42 + x2,43 + x2,45 + x2,46 + x2,47 + x2,49 + x2,55 + x2,59 + x2,60 + x2,63

L6 x0,56

L7

x0,0 + x0,2 + x0,3 + x0,7 + x0,9 + x0,10 + x0,24 + x0,25 + x0,26 + x0,27 + x0,29 + x0,30 +
x0,31 + x0,32 + x0,34 + x0,35 + x0,38 + x0,40 + x0,42 + x0,43 + x0,44 + x0,58 + x0,62 + x0,63 +

x2,0 + x2,1 + x2,3 + x2,4 + x2,5 + x2,7 + x2,10 + x2,11 + x2,13 + x2,16 + x2,17 + x2,19 +
x2,23 + x2,24 + x2,25 + x2,27 + x2,30 + x2,32 + x2,33 + x2,34 + x2,39 + x2,40 + x2,42 + x2,43 +

x2,44 + x2,45 + x2,49 + x2,51 + x2,52 + x2,54 + x2,55 + x2,56 + x2,57 + x2,58 + x2,63

L8 x0,1

41

Table B4: Constraints given in Table B3 handles the round constant but disturbs sym-
metry, thus, this table illustrates the additional set of expressions (set to zero) to handle
the effect of round constant and maintain the symmetry. The constraints are represented
by L′

j to ensure 2 round linearisation for SymSumSim with increased MAD upto 114.

Equations

L′
1

x0,0 + x0,1 + x0,15 + x0,16 + x0,17 + x0,18 + x0,20 + x0,21 + x0,22 + x0,23 + x0,25 + x0,26 +
x0,29 + x0,31 + x0,32 + x0,33 + x0,34 + x0,48 + x0,52 + x0,53 + x0,54 + x0,56 + x0,57 + x0,61 +

x2,0 + x2,1 + x2,3 + x2,6 + x2,7 + x2,9 + x2,13 + x2,14 + x2,15 + x2,17 + x2,20 + x2,22 +
x2,23 + x2,24 + x2,29 + x2,30 + x2,32 + x2,33 + x2,34 + x2,35 + x2,39 + x2,41 + x2,42 + x2,44 +

x2,45 + x2,46 + x2,47 + x2,48 + x2,53 + x2,54 + x2,55 + x2,57 + x2,58 + x2,59 + x2,61

L′
2

x0,3 +x0,5 +x0,7 +x0,8 +x0,9 +x0,14 +x0,18 +x0,19 +x0,20 +x0,22 +x0,26 +x0,28 +x0,30 +
x0,31 + x0,32 + x0,35 + x0,37 + x0,38 + x0,43 + x0,44 + x0,45 + x0,46 + x0,48 + x0,49 + x0,50 +
x0,51+x0,52+x0,55+x0,58+x0,60+x0,61+x2,0+x2,3+x2,8+x2,10+x2,11+x2,12+x2,15+
x2,16 + x2,19 + x2,21 + x2,23 + x2,24 + x2,26 + x2,27 + x2,28 + x2,30 + x2,31 + x2,33 + x2,36 +
x2,39 + x2,41 + x2,42 + x2,43 + x2,45 + x2,46 + x2,47 + x2,49 + x2,55 + x2,59 + x2,60 + x2,63

L′
3

x0,1+x0,3+x0,4+x0,9+x0,10+x0,11+x0,12+x0,14+x0,15+x0,16+x0,17+x0,18+x0,21+
x0,24 + x0,26 + x0,27 + x0,32 + x0,33 + x0,35 + x0,36 + x0,37 + x0,42 + x0,46 + x0,47 + x0,48 +
x0,50 +x0,54 +x0,56 +x0,58 +x0,59 +x0,60 +x2,1 +x2,4 +x2,6 +x2,7 +x2,8 +x2,10 +x2,11 +
x2,12 + x2,14 + x2,20 + x2,24 + x2,25 + x2,28 + x2,29 + x2,32 + x2,37 + x2,39 + x2,40 + x2,41 +
x2,44 + x2,45 + x2,48 + x2,50 + x2,52 + x2,53 + x2,55 + x2,56 + x2,57 + x2,59 + x2,60 + x2,62

L′
4

x0,2 +x0,4 +x0,6 +x0,7 +x0,8 +x0,12 +x0,14 +x0,15 +x0,20 +x0,21 +x0,22 +x0,23 +x0,25 +
x0,26 + x0,27 + x0,28 + x0,29 + x0,32 + x0,34 + x0,36 + x0,37 + x0,42 + x0,44 + x0,46 + x0,47 +
x0,48 + x0,53 + x0,57 + x0,58 + x0,59 + x0,61 + x2,0 + x2,2 + x2,3 + x2,4 + x2,6 + x2,7 + x2,9 +
x2,12 + x2,15 + x2,17 + x2,18 + x2,19 + x2,21 + x2,22 + x2,23 + x2,25 + x2,31 + x2,35 + x2,36 +
x2,39 + x2,40 + x2,43 + x2,48 + x2,50 + x2,51 + x2,52 + x2,55 + x2,56 + x2,59 + x2,61 + x2,63

L′
5

x0,0+x0,4+x0,6+x0,7+x0,12+x0,13+x0,14+x0,15+x0,17+x0,18+x0,19+x0,20+x0,21+
x0,24 + x0,27 + x0,29 + x0,30 + x0,34 + x0,36 + x0,38 + x0,39 + x0,40 + x0,45 + x0,49 + x0,50 +
x0,51+x0,53+x0,57+x0,59+x0,61+x0,62+x2,1+x2,4+x2,7+x2,9+x2,10+x2,11+x2,13+
x2,14 + x2,15 + x2,17 + x2,23 + x2,27 + x2,28 + x2,31 + x2,32 + x2,35 + x2,40 + x2,42 + x2,43 +
x2,44 + x2,47 + x2,48 + x2,51 + x2,53 + x2,55 + x2,56 + x2,58 + x2,59 + x2,60 + x2,62 + x2,63

L′
6 x0,24

L′
7

x0,0 + x0,1 + x0,3 + x0,4 + x0,7 + x0,9 + x0,11 + x0,12 + x0,13 + x0,27 + x0,31 + x0,32 +
x0,32 + x0,34 + x0,35 + x0,39 + x0,41 + x0,42 + x0,56 + x0,57 + x0,58 + x0,59 + x0,61 + x0,62 +
x2,0 + x2,1 + x2,2 + x2,7 + x2,8 + x2,10 + x2,11 + x2,12 + x2,13 + x2,17 + x2,19 + x2,20 +

x2,22 + x2,23 + x2,24 + x2,25 + x2,26 + x2,31 + x2,32 + x2,33 + x2,35 + x2,36 + x2,37 + x2,39 +
x2,42 + x2,43 + x2,45 + x2,48 + x2,49 + x2,51 + x2,55 + x2,56 + x2,57 + x2,59 + x2,62

L′
8 x0,33

42

Appendix C Degree Difference in Bash-f
The following Theorem examines the maximum degree term which is influenced by
the round constant.
Theorem 3. In a Bash-f permutation consisting of nr rounds, the highest degree of
a monomial that includes a round constant is d◦Fnr − 2.

Proof. The basic idea of this proof is similar to Keccak. We provide the proof in for
the sake of completeness. Consider the following round function F : F2

n → F2
n and

F = C ◦ L1 ◦ N ◦ L, where C denotes round-constant addition, N is the non-linear
component, and L and L1 are the linear component. Without sacrificing generality, we
can think of the component operations in the following order: F = C ◦ N ′ ◦ L, where
N ′

= L1 ◦ N . The algebraic degree and arrangement of operations in bash closely
resemble the permutation in Keccak-p. Hence, by applying the principles presented
in [SKC17], we can prove this.

43

	Introduction
	Our Contribution
	SymSumVec with simple order derivatives
	Impossibility of SymSumVec with 2-round linearization and its fix
	Best distinguisher on all SHA-3 variants, Keccak-p, Xoodyak-Hash, Xoodoo, Bash and Bash-f

	Organization

	Preliminaries
	Notations
	Derivative Operations on Boolean Functions
	ZeroSum as Higher Order Simple Derivatives
	Vectorial Derivatives
	SymSumVec as Higher Order Vectorial Derivatives
	Maximum Attainable Derivative

	Notion of Partial/Full Self-Symmetric State

	Background Details
	Secure Hash Algorithm (SHA-3) KeccakSub3
	Xoodyak-Hash DaemenHPAK20
	Bash AgievichMMS16
	SymSum Distinguisher saha2017symsum
	Extension and Generalization of SymSumVec

	Introducing SymSumSim: Symmetric-Sum with Simple Derivatives
	Structurally Symmetric States
	SymSumSim and the Even Order Derivative
	Beyond Conventions: SymSumSim and the Odd Order Derivative

	SymSumSim on Different SPN Hash Constructions
	SymSumSim Distinguisher on Keccak-p
	MAD
	Extending SimSum Distinguisher on Keccak-p using Linearization
	MAD

	Inside-out Approach
	SymSumSim Distinguisher on SHA-3
	Exponential Advantage Over ZeroSum

	SymSumSim Distinguisher on Xoodoo
	MAD
	Extending SymSumSim Distinguisher on Xoodoo using Linearization
	MAD

	Extending to Full Rounds Using Inside-out Approach
	SymSumSim Distinguisher on Xoodyak-Hash
	MAD

	SymSumSim Distinguisher on Bash-f
	MAD
	SymSumSim Distinguisher on Bash-f using Inside-Out technique

	SymSumSim Distinguisher on Bash
	MAD

	Addressing Challenges in Two-Round Linearization in SymSumVec/SymSumSim
	SymSumSim meets 2-round linearization
	Increase MAD upto 114 in 2-round Linear Structure
	Application on SHA-3

	Discussion
	Experimental Verification
	Practical verification of full-round distinguisher on Xoodoo

	Conclusion
	Information on Supplementary Material:

	1-round Linear Structure
	State Configuration for 1 and 2 Round Linearization
	Degree Difference in Bash-f

