
Limits on Authenticated Encryption Use in TLS

Atul Luykx and Kenneth G. Paterson

Abstract

This technical note presents limits on the security (as a function of the
number of plaintext bytes encrypted and the number of forgery attempts
made by an adversary) for the main Authenticated Encryption schemes
available in TLS 1.2 and the draft of TLS 1.3. These limits are derived
from security proofs for the considered schemes available in the litera-
ture. Our intention is to provide considered technical input to on-going
discussions in the TLS Working Group of the IETF concerning, amongst
other things, the necessity of adding a key update feature to the TLS 1.3
specification.

1 Summary

1.1 ChaCha20+Poly1305

The AE security of ChaCha20+Poly1305 degrades proportionally with the num-
ber of forgery attempts, assuming nonces are used properly and the block func-
tion underlying ChaCha20 is secure as a pseudorandom function. If only a
single forgery attempt is allowed, as is the case for TLS, then the 64-bit TLS
sequence number will wrap before any significant security loss is incurred. If
multiple forgery attempts are allowed, as is the case for DTLS, then adversaries
will have AE success probability bounded by v · 2−93, with v being the number
of forgery attempts. For example, adversaries making v = 260 forgery attempts
will succeed with probability at most 2−33.

1.2 AES-GCM

Limits on the amount of data that AES-GCM can process without needing a
key change can be found in Table 1. Here we assume that AES is secure as a
pseudorandom permutation and that nonces are used properly; in particular, we
assume that the 8 octet nonce_explicit part of the AES-GCM nonce is unique
for each encryption (for example, it is set to be the TLS sequence number).

1



Table 1: Lower bounds on the maximum amount of data that can be processed
under one key for AES-GCM, given a certain success probability for a confiden-
tiality attack. Integrity will not be breached with probability greater than 1/257

assuming the data limits are respected, and at most 260 verification attempts
are made. Equation (7) was used to calculate the maximum number of records
that can be processed, and the maximum amount of data was computed under
the assumption that all records are of length 214 Bytes.

Attack Success Probability Max Records Max Data (terabytes)

2−60 224.5 0.3887
2−50 229.5 12.44
2−40 234.5 398.1
2−30 239.5 12,738
2−20 244.5 407,619
2−10 249.5 1.304 ×107

In this table, the attack considered is one in which adversaries attempt to
determine which one of two equal length messages was encrypted by AES-GCM
(an IND-CPA attack); for the quoted figures, ciphertext integrity will not be
breached with probability greater than 1/257. Bounds on AE security can then
be derived by adding 1/257 to the bounds from Table 1. Section 2 provides
further rationale for considering these types of attack, and also explains what
the bounds mean, why there is a difference between ChaCha20+Poly1305 and
AES-GCM, and gives an overview of known vulnerabilities when the limits and
assumptions are not respected.

1.3 Security Degradation for Multiple Keys
The computations in this text focus on security degradation under a single key.
However, security also degrades proportional to the number of keys used, as
described by Bernstein [6] and Chatterjee, Menezes, and Sarkar [9, 10]. In
particular, if k keys are used, then attackers are able to improve brute force
key-recovery success by a factor of k. TLS 1.3 introduced mitigation against
such multi-key attacks by randomizing the nonce input to GCM. See Bellare
and Tackmann [5] for an analysis of the tweak.

Nevertheless, as discussed by Luykx, Mennink, and Paterson [15, 16], in the
case of GCM, such multi-key attacks only impact the security of the underlying
block cipher, AES, and not GCM’s security as a mode. Therefore the attack
success probabilities computed in the table above hold whether adversaries have
access to one instance of GCM or k instances. See the introduction of [15] for
further details.

2



2 Explanation

2.1 Primitives and Modes
Efficient symmetric-key cryptographic algorithms can roughly be divided into
two groups: primitives and modes of operation. Primitives, such as block ciphers
or pseudorandom functions, are relatively simple (though not simple to design!)
and can be regarded as attempting to approximate ideal mathematical objects,
such as random permutations or functions. Examples of primitives used in the
TLS record layer are AES and the block function underlying ChaCha20.

Primitives on their own do not provide sufficient security for TLS’s needs.
They must be used in modes of operation, which in turn enable secure communi-
cation. For example, AES-GCM is a mode of operation for AES; ChaCha20+Poly1305
can be viewed as a mode of operation for a certain pseudorandom function
(PRF). Both modes enable authenticated encryption, which the underlying
primitives on their own do not.

The quality of the primitives is determined through extensive cryptanalysis,
and confidence in how well they approximate the ideal mathematical object
only increases as a function of how much the primitives have been studied.
In contrast, modes of operation do not rely so much on maturity to create
confidence in the security they provide; rather, one can formally reduce the
security of modes of operation to that of the underlying primitive. This means
that any attack against the mode with a given complexity can be converted into
an attack against the primitive with a related complexity, and so any confidence
in the primitive can be translated to confidence in the mode.

For well-designed primitives, the best attacks do not improve significantly
when adversaries have access to more plaintext-ciphertext pairs: it matters little
if you have twenty or 220 plaintext-ciphertext pairs, you will not improve your
attack against AES. However, the security of modes of operation could start
to degrade with extended use, particularly when the security reduction from
modes to primitives is not “tight”.

If we look at ChaCha20+Poly1305 for example, then its security proof in [21]
establishes a fairly tight reduction from the mode to the underlying primitive,
a PRF. This means there is no essential loss of security when going from mode
to primitive. However, the same is not true for AES-GCM because of particular
characteristics of this mode’s construction.

2.2 Analytic Approach
In our analysis, to simplify matters, we will assume that AES with a random key
is a uniform random permutation and that the PRF underlying ChaCha20+Poly1305
with a random key is a uniform random function. This means that neither prim-
itive can be distinguished from its “ideal” version, when keyed with a uniformly
random value.

Making this assumption enables us to focus on the quality of the reductions
from the modes to the underlying primitives without becoming entangled in

3



too many details. In particular, the assumptions rule out attacks based on key
recovery for the underlying primitives, and remove the dependence of success
probabilities on running times of adversaries. This allows us to examine the
relationship between attack success probability and the amount of encrypted
records available to the adversary.

The assumptions can be relaxed at the cost of a more involved analysis. This
analysis would introduce additional parameters relating to the distinguishing
advantage of adversaries against the underlying primitives and their running
times.

2.3 Security Notions
Here we are concerned with the security of ChaCha20+Poly1305 and AES-GCM
in the Authenticated Encryption (AE) sense. This is a strong and very con-
servative notion of security that covers a broad range of attacks that we wish
to protect against in TLS. The AE security notion can be subdivided into two
other notions: IND-CPA security and INT-CTXT security; their combination
is equivalent to AE security.

The first, IND-CPA security, is a confidentiality notion, which measures how
well an adversary can distinguish encryptions of different messages of the same
lengths. In particular, IND-CPA captures the intuition that whatever properties
adversaries can determine about the messages given the ciphertext, they could
have determined without the ciphertext.

The second, INT-CTXT, is an integrity notion which measures the success
of an adversary in creating fresh ciphertexts which are accepted as genuine
upon decryption. In this notion, we measure the adversary’s success in terms
of the number of verification queries (trial decryptions) it is permitted to make,
denoted v.

Note that in TLS, we can in fact set v = 1, since a failed verification query
leads to the termination of the TLS connection and the disposal of the con-
nection keys. However the same is not true in DTLS, and many verification
attempts would be tolerated in a typical attack scenario.

Bounds on success probability for IND-CPA security and for INT-CTXT
security (for a given v) can be added to produce bounds on AE security (for a
given v).

2.4 Attacks
If the limits and assumptions in this text are not respected, then attacks are
possible. Repeating a nonce with either GCM or ChaCha20+Poly1305 means
attackers can determine the XOR of two messages using only the ciphertext, and,
in the case of GCM, partial key recovery is possible [14]. Successful forgeries also
allow for partial key recovery attacks on GCM [11]; see Abdelraheem et al. [1, 2] for
an overview of forgery attacks on GCM. Outputting multiple decryption errors [7,
8] or decrypting the ciphertext before the integrity check is complete [3, 4] could
also result in vulnerabilities.

4



3 Computing the Bounds
The analysis by Procter [21] gives a security reduction for ChaCha20+Poly1305
which tightly relates confidentiality to security of the underlying PRF, and
shows an integrity degradation of v · 2−93 where v is the number of verification
queries permitted, assuming all messages have length 214 Bytes.

Our focus henceforth is on AES-GCM. In the analysis that follows, we set
v = 260 to cater for DTLS as well as TLS, though the results would be materially
the same with v = 1.

RFC 5288 specifies that AES-GCM use a 12-octet nonce, with 4 octets being
a salt that is set from either the client_write_IV (when the client is sending)
or the server_write_IV (when the server is sending), and the remaining 8
octets, called nonce_explicit, being required to be distinct for each distinct
invocation of the GCM encrypt function for any fixed key. The nonce_explicit
field may be set to the 64-bit TLS sequence number, but this is not required by
RFC 5288.

In our further analysis, we assume that all the nonces are unique. Note that
this is unlikely to be the case when the number of encryptions exceeds 232 if
nonce_explicit is selected at random for each encryption.

For AES-GCM we use the currently best known bounds provided by Iwata
et al. [12, 13]. These bounds correct those in the original proof of security
for AES-GCM by McGrew and Viega [17, 18]. Note that the security bound
improvement proposed by Niwa et al. [19, 20] does not apply to the way AES-GCM
is used in TLS, since it only holds when the construction is used with nonce-
length not equal to 96 bits, which is not an option in TLS.

Table 2: Notation

Parameter Description

n Block size, 128 bits
τ Tag size, 128 bits
ℓ input length in blocks, 210 blocks = 214 Bytes
σ total plaintext length in blocks
q number of encryption queries
v number of verification attempts

Starting with INT-CTXT (integrity), the best bound for AES-GCM can be
found in equation (22) from Iwata et al.’s extended paper [13]:

v(ℓ+ 1)

2τ
· δn(σ + q + v + 1) , (1)

with the notation explained in Table 2, and

δn(x) :=
1(

1− x−1
2n

)x/2 . (2)

5



Assuming that σ+ q+ v+1 ≤ 264, then as pointed out by Iwata et al., we have
that δn(σ + q + v + 1) ≤ 2, and we get an upper bound of

2
v(ℓ+ 1)

2τ
. (3)

So if σ, q, and v are not greater than 260, we have that the success probability
of any attacker in breaking the integrity of AES-GCM is at most

2
260(210 + 1)

2128
=

1

257
+

1

267
. (4)

Corollary 3 from Iwata et al.’s papers establishes the following IND-CPA
(confidentiality) bound for AES-GCM:

(σ + q + 1)2

2n+1
. (5)

Since σ ≤ qℓ, we get

(σ + q + 1)2

2n+1
≤ (q(ℓ+ 1) + 1)2

2n+1
, (6)

hence if we want to bound attack success probability by ϵ, we get

(q(ℓ+ 1) + 1)2

2n+1
≤ ϵ or q ≤

√
2n+1ϵ− 1

ℓ+ 1
. (7)

Plugging in the numbers, we get the bounds shown in Table 1 for AES-GCM.

References
[1] Mohamed Ahmed Abdelraheem, Peter Beelen, Andrey Bogdanov, and El-

mar Tischhauser. Twisted Polynomials and Forgery Attacks on GCM. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Com-
puter Science, pages 762–786. Springer, 2015.

[2] Mohamed Ahmed Abdelraheem, Peter Beelen, Andrey Bogdanov, and El-
mar Tischhauser. Twisted Polynomials and Forgery Attacks on GCM.
IACR Cryptology ePrint Archive, 2015:1224, 2015.

[3] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky
Mouha, and Kan Yasuda. How to Securely Release Unverified Plaintext in
Authenticated Encryption. In Palash Sarkar and Tetsu Iwata, editors, Ad-
vances in Cryptology - ASIACRYPT 2014 - 20th International Conference
on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, vol-
ume 8873 of Lecture Notes in Computer Science, pages 105–125. Springer,
2014.

6



[4] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky
Mouha, and Kan Yasuda. How to Securely Release Unverified Plaintext
in Authenticated Encryption. IACR Cryptology ePrint Archive, 2014:144,
2014.

[5] Mihir Bellare and Björn Tackmann. The multi-user security of authen-
ticated encryption: AES-GCM in TLS 1.3. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes in
Computer Science, pages 247–276. Springer, 2016.

[6] Daniel J. Bernstein. 2015.11.20: Break a dozen secret keys, get a mil-
lion more for free. The cr.yp.to blog, 2015. https://blog.cr.yp.to/
20151120-batchattacks.html.

[7] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and
Martijn Stam. On Symmetric Encryption with Distinguishable Decryption
Failures. In Shiho Moriai, editor, Fast Software Encryption - 20th In-
ternational Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised
Selected Papers, volume 8424 of Lecture Notes in Computer Science, pages
367–390. Springer, 2013.

[8] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and
Martijn Stam. On Symmetric Encryption with Distinguishable Decryption
Failures. IACR Cryptology ePrint Archive, 2013:433, 2013.

[9] Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another Look at
Tightness. In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryp-
tography - 18th International Workshop, SAC 2011, Toronto, ON, Canada,
August 11-12, 2011, Revised Selected Papers, volume 7118 of Lecture Notes
in Computer Science, pages 293–319. Springer, 2011.

[10] Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another Look at
Tightness. IACR Cryptology ePrint Archive, 2011:442, 2011.

[11] Helena Handschuh and Bart Preneel. Key-Recovery Attacks on Universal
Hash Function Based MAC Algorithms. In David Wagner, editor, Advances
in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, vol-
ume 5157 of Lecture Notes in Computer Science, pages 144–161. Springer,
2008.

[12] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and Re-
pairing GCM Security Proofs. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture
Notes in Computer Science, pages 31–49. Springer Berlin Heidelberg, 2012.

7

https://blog.cr.yp.to/20151120-batchattacks.html
https://blog.cr.yp.to/20151120-batchattacks.html


[13] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and Re-
pairing GCM Security Proofs. IACR Cryptology ePrint Archive, 2012:438,
2012.

[14] Antoine Joux. Authentication Failures in NIST Version of GCM.
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_
comments.pdf, 2006. Date accessed 2016.02.20.

[15] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing multi-key
security degradation. IACR Cryptology ePrint Archive, 2017:435, 2017.

[16] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing multi-key
security degradation. In Tsuyoshi Takagi and Thomas Peyrin, editors, Ad-
vances in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Application of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017., Lecture Notes in Computer Sci-
ence. Springer, 2017. To appear.

[17] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, 5th In-
ternational Conference on Cryptology in India, Chennai, India, December
20-22, 2004, Proceedings, volume 3348 of Lecture Notes in Computer Sci-
ence, pages 343–355. Springer, 2004.

[18] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode of Operation (Full Version). IACR Cryptology ePrint
Archive, 2004:193, 2004.

[19] Yuichi Niwa, Keisuke Ohashi, Kazuhiko Minematsu, and Tetsu Iwata.
GCM Security Bounds Reconsidered. In Gregor Leander, editor, Fast
Software Encryption - 22nd International Workshop, FSE 2015, Istanbul,
Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054 of Lecture
Notes in Computer Science, pages 385–407. Springer, 2015.

[20] Yuichi Niwa, Keisuke Ohashi, Kazuhiko Minematsu, and Tetsu Iwata.
GCM Security Bounds Reconsidered. IACR Cryptology ePrint Archive,
2015:214, 2015.

[21] Gordon Procter. A Security Analysis of the Composition of ChaCha20 and
Poly1305. IACR Cryptology ePrint Archive, 2014:613, 2014.

8

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf

	Summary
	ChaCha20+Poly1305
	 AES-GCM 
	Security Degradation for Multiple Keys

	Explanation
	Primitives and Modes
	Analytic Approach
	Security Notions
	Attacks

	Computing the Bounds

