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Abstract. Zero-Knowledge Proofs (ZKPs), a cryptographic tool known for decades, have
gained significant attention in recent years due to advancements that have made them practi-
cally applicable in real-world scenarios. ZKPs can provide unique attributes, such as succinct-
ness, non-interactivity, and the ability to prove knowledge without revealing the information
itself, making them an attractive solution for a range of applications.
This paper aims to critically analyze the applicability of ZKPs in various scenarios. We catego-
rize ZKPs into distinct types: SNARKs (Succinct Non-Interactive Arguments of Knowledge),
Commit-then-Prove ZKPs, MPC-in-the-Head, and Sigma Protocols, each offering different
trade-offs and benefits. We introduce a flowchart methodology to assist in determining the
most suitable ZKP system, given a set of technical application requirements. Next, we conduct
an in-depth investigation of three major use cases: Outsourcing Computation, Digital Self-
Sovereign Identity, and ZKPs in networking. Additionally, we provide a high-level overview
of other applications of ZKPs, exploring their broader implications and opportunities. This
paper aims to demystify the decision-making process involved in choosing the right ZKP
system, providing clarity on when and how these cryptographic tools can be effectively utilized
in various domains — and when they are better to be avoided.

1 Introduction

In recent years, Zero Knowledge Proofs (ZKPs) emerged as a pivotal tool, commanding the
attention of both academia and industry. Initially perceived as a theoretical idea,1 ZKPs have
undergone advancements, rendering them feasible in real-world applications.2 This paper aims
to provide a methodology to analyze which applications should, or maybe should not use ZKPs.

The purpose of this paper is twofold: First, it seeks to aid in the critical thinking process
surrounding the application of ZKPs, providing insight for both academic research and industry
implementation. Second, it endeavors to bridge the gap between theoretical understanding
and practical application of ZKPs. By demystifying the nuanced trade-offs and considerations
inherent in choosing a ZKP system, this paper provides a structured approach to determine the
most suitable ZKP variant for specific technical requirements and application scenarios.

In doing so, we critically analyze various use-cases where ZKPs hold potential. We introduce

∗ Jens Ernstberger (jens.ernstberger@tum.de)
† Stefanos Chaliasos (s.chaliasos21@imperial.ac.uk)

‡ Liyi Zhou, (liyi.zhou@imperial.ac.uk)
§ Philipp Jovanovic, (p.jovanovic@ucl.ac.uk)

¶ Arthur Gervais, (arthur@gervais.cc)



a structured methodology, serving as a decision-making tool to guide users in selecting the
ZKPs — or a recommendation of not using any ZKP solution. Utilizing this methodology, we
conduct an in-depth investigation of three major use cases: Outsourcing Computation, Digital
Self-Sovereign Identity, and ZKPs in networking. Additionally, we explore other potential
applications of ZKPs, highlighting their broader implications and opportunities in different
domains. Our approach is grounded in the recognition that while ZKPs offer robust privacy and
verifiability, they may not be a necessity in every application scenario. This paper examines
situations where less computationally intensive alternatives might suffice, and contexts where
the unique attributes of ZKPs are indeed indispensable. Ultimately, this paper aims to provide
clarity and direction in the rapidly developing field of ZKPs, enabling informed decisions in the
application of ZKPs in both academia and industry settings.

2 On Argument Systems, SNARKs and Zero-Knowledge

Numerous applications highlight ZKPs as a groundbreaking technology. However, we observe
that recent applications misuse the term zero-knowledge, such that some applications do not
demand zero knowledge at all, but rather rely on other properties, such as non-interactivity and
succinctness to facilitate the use-case in question. To clarify the predominating misconception,
in majority only identifiable by domain experts, we briefly introduce the notion of proofs
(Section 2.1), outline the properties that are to be achieved by a proof system (Section 2.2) and
introduce common constructions of proof and argument systems applied in practice (Section 2.3).

2.1 What is a Proof?
In the realm of computational theory, a “proof” constitutes a foundational mechanism through
which one can assert the veracity of a proposition within a mathematical or computational
framework. Conceptually, a proof is a sequence of logical deductions derived from axioms and
previously established statements, which culminates in the demonstration of a theorem or claim.
Interactive Proofs. Diverging from this classical view, interactive proofs introduce a dynamic
discourse between a prover and a verifier; an iterative exchange that permits the verifier to pose
random queries and the prover to furnish responses.3, 4 Hence, an interactive proof allows for
interaction between the prover and the verifier, as well as a negligible, but non-zero, probability
that an invalid proof is correctly verified.

Interactive Proofs’ notable power largely stems from two key results in complexity theory.
• IP = PSPACE indicates that Interactive Proofs, involving message exchanges between

a prover and verifier, match PSPACE’s power—the class of problems solvable with
polynomial memory.5 Notably, PSPACE is believed to exceed NP, making IP more potent
than static NP proofs (NP equals deterministic IP, i.e., the verifier holds no randomness).

• The Probabilistically Checkable Proof (PCP) theorem states that any problem that can
be verified by a traditional proof can also be verified by only looking at a few bits of a
specially constructed proof, randomly chosen.6

Interactive Oracle Proofs (IOPs) are a generalization of PCPs and IPs, where the verifier has
oracle access to the prover’s message.7
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Arguments of Knowledge. Many academic papers refer to proofs of knowledge,8 where
the extension of knowledge denotes a requirement that the protocol cryptographically ensures
that the prover is in actual possession of the (potentially secret) input to the statement that is
proven. An argument of knowledge, as opposed to a proof of knowledge, relies on assumptions
of computational hardness; it relaxes the inflexibility of proofs by stipulating that certain compu-
tational tasks are infeasible for the prover, hence ensuring that the verifier cannot be misled by a
computationally bounded prover. This nuanced distinction amplifies the practical relevance of
arguments of knowledge, particularly in cryptographic applications where verification efficiency
and security against adversaries with bounded computational resources are paramount.

All the above-mentioned classes of proof systems (IP, PCP, IOP) can be compiled to a succinct
and non-interactive argument of knowledge, by utilizing polynomial commitments and further
applying the Fiat-Shamir heuristic.9

2.2 Properties
Formally, the condition of an interactive proof to be resistant to a computationally restricted,
malicious prover is denoted as computational soundness. Further, if every satisfying and cor-
rectly computed proof leads to an accepting verification, the interactive proof satisfies perfect
completeness. We informally summarize the essential security properties of an interactive proof:
Completeness: An honest prover can always convince the verifier of the truth of a valid statement.
Soundness: A dishonest prover cannot convince the verifier of the validity of a false statement,
except with a negligible probability.

In addition, common zero-knowledge proofs also strive for the following attributes that are
essential for their effectiveness and deployment in real-world scenarios:
Succinctness: Proofs should be short when compared to the size of the statement to be proven,
and efficient to verify.
Non-Interactivity: The proofs are designed to be non-interactive, allowing them to be sent and
verified without ongoing communication between the prover and verifier.
Zero Knowledge: The proofs convey no additional information other than the veracity of the
assertion, preserving the confidentiality of the underlying data.

2.3 Proof Systems Applied in Practice
Generally, ZKPs can be constructed for any language, with some optimized for specific languages
(e.g., algebraic statements) or certain properties. We discuss high-level trade-offs between differ-
ent constructions and their applicability scenarios. Note that this overview is non-exhaustive, we
focus on proof systems that, to the best of our knowledge, are feasible for practical applications.
SNARKs. Recently, Succinct Non-interactive Arguments of Knowledge (SNARKs) gained in
popularity due to theoretical and practical breakthroughs in the past decade. Initially derived from
linear PCPs,10–12 SNARKs enjoy widespread practical support through a variety of development
frameworks.13–21 SNARKs from linear PCPs yield the shortest proofs, which renders the protocol
of Groth12 especially interesting for on-chain proof verification due to the shortest overall proof
size. More recent SNARKs are based on IOPs, where the general recipe combines an IOP
with a polynomial commitment scheme to obtain a SNARK.22 SNARKs built with this recipe
commonly rely on either polynomial commitment schemes based on the hardness of the Discrete
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Logarithm (DL) assumption, or the KZG23 polynomial commitment scheme. The downside of
the above protocols is that they necessitate either a trusted, per-circuit setup12 or a universal
setup.24 SNARKs based on the IOP-based FRI polynomial commitment scheme enjoy the benefit
of a transparent setup that is untrusted, at the cost of larger non-constant proof size. The primary
goal of a SNARK is to obtain proof sizes and verification time that are succinct, i.e., (at most)
polylogarithmic in the size of the computation at hand.25 The bottleneck of SNARKs is the
prover algorithm, as it necessitates a number of public key operations that are linear in the size
of the computation.26 Further, SNARKs perform well for statements formulated as circuits.
However, algebraic statements incur a significant overhead.27 SNARKs’ cost-efficiency makes
them suitable when multiple verifications of proofs are required by one or several parties.
Commit-then-Prove ZKPs. Commit-then-prove ZKPs differ in the conceptual approach taken
in the protocol. Assuming that the computation is represented as an arithmetic circuit, the
commit-then-prove approach to designing a ZKP lets the prover commit to all input values, as
well as all intermediate wires in the circuit, with a hiding and binding cryptographic commitment.
Successively, the prover proves to the verifier that the committed values satisfy the relationship
described by the arithmetic circuit, consisting of addition and multiplication gates. Recent
works instantiate the commitment scheme with information-theoretic MACs (also referred to as
VOLE),28–30 and establish protocols with a computationally efficient prover and low memory
overhead. Communication complexity and proof size of a protocol following the commit-then-
prove design paradigm is linear in the number of multiplication gates present in the circuit. A
common drawback of commit-then-prove protocols is that they introduce an interactive offline
phase that can not be made non-interactive as the protocol is a private coin, i.e., the verifier holds
randomness that is not disclosed to the prover.31 Hence, the applicability of commit-then-prove
protocols is, thus far, limited with regard to blockchains. An interesting avenue of research is
the establishment of threshold designated-verifier ZKPs from commit-then-prove protocols.29 A
threshold set of verifiers can allow, e.g., verification of proofs by validator nodes, and represents
a trade-off between public verifiability and prover performance.
MPC-in-the-Head. The idea of the MPC-in-the-Head (MPCitH) paradigm is to leverage Multi
Party Computation (MPC) to build efficient ZK proof systems.32, 33 Conceptually, the prover
emulates an MPC protocol ”in its head”, i.e., the prover simulates a set of virtual servers. Then,
the prover commits to the views of the individual simulated servers running the emulated MPC
protocol, and the verifier challenges the prover to open the commitment to a random subset of the
views. The verifier verifies the consistency of individual views of the MPC protocol. The privacy
guarantee of the emulated MPC protocol ensures the zero-knowledge property, given that the
verifier is only allowed to open a small subset of commitments. The cost profile of ZKP protocols
designed with the MPC-in-the-head paradigm is similar to the cost profile of commit-then-prove
ZKPs.26 However, the main advantage is that the protocol is entirely public-coin, i.e., it can be
made non-interactive by applying the Fiat-Shamir transform. Recent work explores the benefit of
combining the commit-then-prove approach with MPCitH by proposing VOLE-in-the-Head to
establish public verifiability of a commit-then-prove style protocol.31

Sigma Protocols. Sigma protocols embody a trio of sequential steps to prove algebraic
statements: Commitment, Challenge, and Response. Sigma Protocols are considered a standard
ZK technique, and perform especially well when aiming to prove knowledge of an algebraic
statement.34 Common Sigma protocols are known for multiple alebraic statements, such as
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Fig. 1: A flow chart to determine which proof system is the appropriate technical solution to establishing cryptographic
verifiability of outsourced computations. We assume that the computation is executed between a prover and a verifier.

proving possession of a discrete logarithm,35 and are mostly used in applications that require
rather simple statements. The downside of Sigma protocols is that they do not perform well when
aiming to prove a computation represented as a boolean or arithmetic circuit, as the complexity
of the prover and verifier scales linearly with the size of the circuit.34

In addition to differing properties concerning the size of the proof, communication as well as
prover and verifier runtime, the above protocols differ in the underlying security assumption. We
consider detailed considerations with regard to security out of scope for this high-level survey.

3 Do you need a Zero Knowledge Proof?

Zero-knowledge is pertinent in applications handling sensitive data. However, many future
applications might need just cryptographic verifiability to outsource intensive computations or
authenticate non-sensitive data. Different applications may require varied proof systems with
specific trade-offs, as outlined in Section 2.3. To ease the high-level decision-making process
when choosing a proof system for an application, we provide a decision tree in Figure 1. In the
following, we describe proof systems as ZKPs, even when they do not fulfill the ZK property.

The decision tree assumes that a computation is carried out between a prover and a verifier.
The tree bifurcates into multiple decision paths based on the requirements of the application at
hand, such as the necessity for a constant proof size or non-interactivity. SNARKs are pinpointed
as the go-to for applications demanding brief proof sizes. We highlight that there is currently no
known Zero Knowledge Proof (ZKP) that provides both constant proof sizes and sublinear proof
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computation for generic circuits. A commit-then-prove style protocol is recommended when the
statement in question is not algebraic and does not require non-interactivity.

3.1 When are ZKPs futile?
While ZKPs provide strong privacy and verifiability, less expensive solutions can suffice for many
applications. In the following, we discuss in which cases ZKPs, or specific instances thereof, are
futile or not the adequate solution for a specific problem.

High Trust Environments. In scenarios with high mutual trust among parties, the necessity for
a proof of correct computation becomes less critical. Consider the case of a proprietary trading
firm where access to sensitive financial algorithms is restricted to trusted developers and analysts.
In such a scenario, the emphasis is on protecting intellectual property, rather than safeguarding
against internal actors. Lightweight cryptographic mechanisms, such as hash-based verifications
or even simple access logs, can provide assurance that the computations are untampered with,
without incurring the computational costs associated with ZKPs.

Single Verifier Scenarios. SNARKs have garnered widespread attention, particularly for
enhancing blockchain privacy and scalability. However, their original purpose of outsourcing
generic computation to untrusted servers is often impractical due to high prover costs and
memory requirements (cf. Appendix 1).36 For example, using SNARKs for Deep Neural
Network inference demonstrates significant prover overhead even for simple tasks.37 However,
in most scenarios, succinctness is not strictly demanded. Succinctness is only beneficial if the
verifier has to verify many proofs, or when the proof is evaluated by many verifiers. The challenge
with SNARKs lies in balancing their overhead with benefits; they are justifiable when the privacy
gain or verification by numerous parties offsets the prover’s computational load. This is evident in
cases like ZCash,2 where transaction privacy is paramount, or in scaling networks like Ethereum
with high transaction demand. However, applications without these needs, like single-client
neural network queries, might find alternatives with lower computational demands more suitable.

Applications with Sufficient Alternative Incentives. Certain applications rely on ZKPs to
only ensure the correct execution of a computation with strong cryptographic verifiability. An
example is the use of a SNARK in a scenario, where a prover computes a succinct proof to
only demonstrate execution correctness to a verifier. Alternatively, optimistic protocols rely on
economic incentives and a challenge period. In this setup, an operator performs an execution,
publishing the resultant state and necessary data for replication.38–41 Challengers can issue a
fraud proof against any detected malicious behavior by the operator, potentially profiting from
successful challenges. This approach rely on the assumption that strong economic incentives
discourage operator misbehavior. While optimistic protocols may be more cost-effective due to
this reliance on incentives, they require a challenge period for security assurance. In contrast,
ZKPs, though costlier due to proving expenses, offer quicker resolution times (bounded to
proving time) and necessitate less data disclosure. This optimistic mechanism parallels that in
credit networks, where misconduct directly impacts reputation. Opting for incentive-aligned
protocols over ZKPs can be advantageous in contexts where security-performance trade-offs are
acceptable, but they also necessitate more rigorous game-theoretic analysis.

When is the Sole Usage of ZKPs insufficient? A critical, yet often-ignored aspect across
applications is the underlying trust assumptions. The intricacies of enabling operation within a
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Table 1: Overview of Selected Zero-Knowledge Proof Applications.

Properties

Application Group On-Chain Verification Succinctness Non-Interactivity Zero-Knowledge Proof System Reference

Blockchain Applications

zk-Rollups (zkEVMs) ✔ ✔ ✔ ✗ SNARK 46, 51–53

Privacy-Oriented Blockchains ✔ ✔ ✔ ✔ SNARK 2, 54–56

ZK Coprocessors ✔ ✔ ✔ ✗ SNARK 57

ZK Bridges ✔ ✔ ✔ ✗ SNARK 45

On-Chain ZK Dapps ✔ ✔ ✔ ✔ SNARK 58, 59

Proof-of-Storage ✔ ✔ ✔ ✗ SNARK 60

Other Applications

ZK Virtual Machines and Compilers ✗ ✔ ✔ ✗ SNARK 61, 62

TLS Oracles
✗ ✔ ✔ ✔ SNARK 63–65

✗ ✗ ✗ ✔ CTP 66, 67

Networking Applications ✗ ✔ ✔ ✔ SNARK 68

Proving Software Exploits
✔ ✔ ✔ ✔ SNARK 69

✗ ✗ ✗ ✔ CTP 70

✗ ✗ ✔ ✔ MPCitH 71

zkML
✗ ✔ ✔ ✔ SNARK 37

✗ ✗ ✗ ✔ CTP 72

zkIdentity
✔ ✔ ✔ ✔ SNARK 73, 74

✗ ✗ ✔ ✔ Sigma 34, 75

✔ ✗ ✔ ✔ Sigma 76

Document Editing for Fighting Disinformation and Privacy ✗ ✔ ✔ ✔ SNARK 77–79

trustless framework necessitate a distributed trust model, which standalone ZKPs are incapable
of establishing. ZKPs can either ensure input data confidentiality and cryptographic verifia-
bility of computations, or solely the latter. Where privacy of input data is paramount over
public cryptographic verifiability of correct computation execution, alternative secure computing
techniques like MPC,42 Fully Homomorphic Encryption (FHE),43 or Trusted Execution Envi-
ronment (TEE)44 may be more suitable. ZKPs can further augment these methods, for instance,
by assuring correct execution of MPC computations.42 When it comes to minimizing trust
in computing and verifying the proof, solutions include threshold proof generation,45–48 and
threshold proof verification.49, 50 Yet, some applications even offer services, where the untrusted
prover is hosted by the same company developing the implementation of smart contract based
verifiers. In the future, we expect that practical implementations of ZKP enabled applications
will put additional consideration in separation of trust domains, especially in combination with
additional techniques for secure computing, like TEE, MPC and FHE.

4 ZKP Use Cases

This section explores various ZKP use cases, focusing on three key applications: scaling legacy
blockchains, enhancing digital self-sovereign identity, and improving common networking
protocols. An extended review of ZKP applications is available in the Appendix. Our analysis
spans both academic and industrial perspectives, assessing whether a ZKP is necessary, exploring
available alternatives, and determining the most suitable ZKP based on system constraints.

Outsourcing Computation. One of the primary uses of ZKPs is the outsourcing of computation
from a constrained environment to a computationally powerful, untrusted server. For example, a
blockchain is a primary example of a slow, global computing environment that is replicated on
many machines. Rollups have emerged as the most prominent solution to addressing the limited
transaction throughput in a blockchain, boasting over $12.5 billion in Total Value Locked (TVL).
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They execute and batch transactions on a Layer 2 (L2) chain and successively submit them to
the main Layer 1 (L1) chain. A zk-rollup processes transactions off-chain and subsequently
submits a validity proof and the resultant state change to the L1, substantially reducing costs.
Rollups relying on ZKPs employ specialized circuits to generate proofs for EVM-based transac-
tions.51–53 Similarly, generic ZK virtual machines (zkVMs) allow provable execution of generic
programs based on modeling a differing instruction set, such as RISC-V.62 Generally, systems
for outsourcing computation utilize SNARKs due to their non-interactive and succinctness (i.e.,
for verification on Ethereum). The constrained device outsources the task of executing the
computation, whereas the constrained device simply obtains the result and succinctly verifies the
correct execution. Recent efforts mainly rely on recursive aggregation of proofs to emulate the
step-wise computation of a virtual machine and further minimize the prover overhead.80

Digital Self-Sovereign Identity. The proposal for verifiable credentials,75 which forms a
cornerstone on upcoming solutions for decentralized identity, relies on signatures of knowledge
in their credential specification to facilitate selective disclosure of attributes with zero-knowledge.
Practical anonymous credential systems are generally built around sigma-protocol ZKPs. Com-
monly, the credential is a signature on the holders’ personal attributes. The attributes themselves
are committed, and the holder of the credential proves with a Sigma protocol knowledge of a
signature on the committed attributes. The committed attributes are commonly algebraic relations,
and hence Sigma protocols perform exceptionally well in this case. Constructions for this purpose
demand application-specific properties. For example, they additionally necessitate unlinkability
of the proofs created.81 Verification of this type of verifiable credential in an on-chain environ-
ment is expensive, and hence alternative constructions based on SNARKs with succinct proof
and verification serve as an alternative for on-chain KYC.73, 74 Zero-knowledge is ultimately
necessary, as personal data is considered sensitive and is only disclosed at the discretion of the
credential holder. For this use case, alternatives to ZKPs are sparse, as the privacy requirement is
strong and not trivially replaceable. Given our decision tree, decentralized identity with on-chain
verification would necessitate zk-SNARKs, whereas proving personal attributes with ZKPs yields
Sigma protocols due to expressing them as algebraic relations.

ZK for Networking. A very nascent application of ZKPs is their use to enhance and augment
networking protocols. For example, recent work utilizes SNARKs for proving data provenance,64

whereas an orthogonal avenue of research utilizes SNARKs to confidentially filter network
traffic.68 Whereas industrial efforts for proving data provenance are already implemented in
practice, both with SNARKs63 and commit-then-prove style protocols,66 filtering network traffic
with ZKPs is yet to be deployed. Interestingly, although the system design is conceptually similar,
commit-then-prove style protocols are yet to be applied for filtering network traffic — even though
in both cases, a single verifier can evaluate the proof’s correctness, such that our methodology
suggests a designated verifier protocol. In both cases, maintaining confidentiality introduces a
significant overhead, as encryption needs to be executed in-circuit in order to establish ciphertext
integrity. When plaintexts are disclosed, however, encryption can be performed out of the circuit.
This highlights a strict trade-off between maintaining the zero-knowledge property or giving it
up depending on the application requirements at hand.
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5 Conclusion

Deciding whether a ZKP enhances the utility of an application is a non-trivial endeavor. To the
best of our knowledge, this work provides the first methodology to decide whether and which
type of ZKP is appropriate in different scenarios. Our methodology includes trust assumptions,
confidentiality measures, and performance traits pertinent to both blockchain and non-blockchain
applications. We elaborate our methodology at the example of three popular use cases in differing
states of practical development. We conclude that there is a valid class of applications that do not
demand for ZKPs, and the choice of ZKP should be tailored to the application context.
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Appendix A: Comparison — CPU Execution vs SNARK Proving

Setup. The experiments were conducted on a system equipped with an M1 max chip and 64
GB of RAM. For SNARK proving, we utilized the GNARK and Bellman libraries using groth16.
These were compared against standard CPU execution using Go (with crypto/sha256) and Rust
(sha2) to gauge the efficiency and resource usage. As inputs we provide preimages of sizes 32,
256, and 1024 bytes.
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Table 2: Multiplicative Overhead of SHA-256 Execution in SNARK vs. CPU Environment

Input Size (Byte) Performance Ratio
(Bellman/Rust)

RAM Ratio
(Bellman/Rust)

Performance Ratio
(Gnark/Go)

RAM Ratio
(Gnark/Go)

32 514523.9 14.7 2649.6 152.5
256 382408.1 49.4 979.9 233.7

1024 389473.7 187.9 606.4 462.0

Goal. The primary objective of these experiments was to evaluate the computational overhead
of using SNARKs for proving, as compared to normal CPU execution. This involves assessing
not just the execution time but also the RAM requirements.

Results. As shown in Figure 2, we observe significant disparities in both performance and RAM
usage. Specifically, when using Bellman and Rust, SNARK proving requires 3,445,283,941
nanoseconds, compared to just 8,846 nanoseconds for plain CPU execution, making the former
approximately 389,473 times slower. For the same input, GNARK, a more optimized library,
exhibits a slowdown of 606 times (4,132,991 nanoseconds vs 6,816 nanoseconds for Go). In
terms of memory consumption, Bellman performs better in comparison to GNARK but still
demonstrates significantly higher resource usage. For example, plain Rust execution requires
only 3 MB of memory, whereas Bellman consumes about 553 MB. Similarly, Go requires 4 MB,
in stark contrast to GNARK, which consumes around 2 GB.

Concluding Remarks. These preliminary findings, indicate that while SNARK proving is
powerful, it comes with considerable resource demands. Further experiments are required to
obtain a more comprehensive understanding. Initial results, however, clearly demonstrate the
substantial cost associated with SNARK proving, both in terms of wall time and RAM require-
ments. Therefore, it is essential to thoroughly assess and consider more efficient alternatives,
whenever possible, before opting to to use ZKPs.

Appendix B: ZKP Blockchain-related Applications

The blockchain industry led the way in harnessing the power of Zero-Knowledge Proofs (ZKPs),
with Zcash2 being the first to implement and utilize ZKPs on a real-world application, setting
a precedent in the field. This initial use case primarily addressed on-chain privacy. Over
recent years, as ZKPs have become more practical and efficient, their application has spurred
extensive research and development in the blockchain domain. These applications span from
scalability solutions, like zkEVMs, to advanced privacy solutions (e.g., private smart contracts),
and interoperability solutions.

Privacy-Oriented Blockchains. In the realm of privacy-focused blockchain technologies,
Zcash2 stands as a significant pioneer. As the first blockchain platform deployed with Zero-
Knowledge Proofs (ZKPs) for enabling private transactions, Zcash’s development was influenced
by the foundational ideas in ZeroCoin.82 While Zcash made significant strides in private transac-
tions, it does not support programmable privacy. However, there are newer solutions that support
private smart contracts as a first-class citizen, including Mina,54 Aleo,55 and Aztec.56

ZK Coprocessors. ZK coprocessors facilitate the transfer of complex on-chain computations
off-chain, utilizing Zero-Knowledge proofs to ensure the validity of these computations. This
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approach significantly enhances the efficiency of smart contracts by offloading extensive tasks
and enabling the processing of historical on-chain data. Unlike zkRollups, which are integrated
at the chain protocol layer, ZK coprocessors are primarily used by smart contracts for accessing
and analyzing past on-chain states. Axiom57 and Bonsai83 are two notable examples. Axiom
specializes in processing historical on-chain data off-chain and creating zero-knowledge proofs
for its validation. Bonsai, on the other hand, extends the utility of ZK coprocessors by facilitating
the creation of proofs for various off-chain computations, which can then be verified on-chain.

ZK Bridges. ZK Bridges are a solution to the scalability and security challenges faced by
traditional cross-chain bridges, which suffer from the need for extensive computing power and
storage to track multiple chain states and are often vulnerable to attacks due the trust assumptions
they require. Leveraging Zero-Knowledge proofs, particularly SNARKs, ZK Bridges enable
the verification of a source blockchain’s state on a target blockchain efficiently and securely.84

They use on-chain light clients to confirm source chain consensus within the target chain’s
environment, integrating this information into the target chain’s consensus without additional
trust assumptions. This approach, akin to running a full node, provides robust verification of both
state transitions and consensus. Among the leading projects in this space are Telepathy,85 which
uses zkSNARKs for secure, trustless Ethereum interoperability without relying on less secure
multisigs or centralized entities, and zkBridge,45 a versatile framework that employs zk-SNARKs
for efficient communication and state transition verification between chains.

On-Chain ZK Dapps. A significant and growing category in the blockchain space is the use of
Zero-Knowledge Proofs (ZKPs) in decentralized applications (dApps), commonly referred to as
zkApps. These applications leverage the zero-knowledge property of ZKPs to implement various
functionalities, primarily focusing on enhancing privacy. Notable examples include privacy-
centric dApps such as smart contract mixers like TornadoCash,58 which facilitate anonymous
transactions. In the realm of on-chain gaming, Dark Forest86 stands out as an innovative use of
ZKPs, offering unique gameplay mechanics. In the decentralized finance (DeFi) sector, a notable
example is Renegade Finance,59 a novel type of decentralized exchange known as an on-chain
dark pool.

Proof-of-Storage. Proof-of-Storage schemes serve as a mechanism for clients to verify that a
storage provider is faithfully storing the outsourced data. This concept is prominently utilized in
Filecoin,60 a peer-to-peer network designed for file storage with integrated economic incentives
and cryptographic measures to ensure reliable long-term storage. In Filecoin’s ecosystem, users
pay storage providers to store their files. These providers are tasked with not only storing the
files but also consistently proving their correct storage over time. A critical feature of Filecoin
is its reliance on the efficiency of zk-SNARKs, which enables the platform to demonstrate the
validity of storage using significantly less data than traditional methods. This efficiency is vital
in enhancing the scalability and feasibility of the Proof-of-Storage system, making it a practical
and secure solution in the decentralized storage market.

Appendix C: ZKP Other Applications

While blockchain technology has been a significant driving force in the evolution of Zero-
Knowledge Proofs (ZKPs), their potential extends far beyond this domain. ZKPs are proving
their versatility in a range of non-blockchain applications. This includes their integration into
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diverse fields like disinformation countermeasures and network security, offering novel solutions
to contemporary digital challenges. Moreover, ZKPs are finding synergy in hybrid applications
that intersect with blockchain technology, such as zkVMs (Zero-Knowledge Virtual Machines)
and zkML (Zero-Knowledge Machine Learning), showcasing their broad applicability and
transformative potential across various technological industries.

ZK Virtual Machines and Compilers. ZK Virtual Machines (zkVMs) are an innovative concept
where a virtual machine (VM) is implemented as a circuit within a ZKP system. This approach
shifts the focus from proving the execution of a specific program to proving the execution of
a VM itself, with the VM running as a zk circuit. Among the prominent zkVM projects is the
Miden VM,61 written in Rust and capable of automatically generating STARK-based proofs of
execution for any program it runs. These proofs enable verification of correct program execution
without needing to re-execute or know the program’s details. Another significant project is RISC
Zero,62 which features a zkVM functioning like an embedded RISC-V microprocessor, thereby
simplifying the development of powerful and verifiable zk applications. These zkVMs represent
a leap in computational verification, offering robust, efficient, and transparent ways to verify
complex computations. Adding to this innovation, zkLLVM presents another approach. It is an
LLVM-based circuit compiler capable of proving computations in languages supported by LLVM,
such as C++, Rust, JavaScript/TypeScript, among others. Unlike a traditional VM, zkLLVM
functions as a circuit compiler. It takes high-level code and transforms it into a circuit, which is
then utilized to prove computations.

Proving Software Exploits. The application of ZKPs in software security marks a signif-
icant advancement, enabling security reasearchers to prove the existence of vulnerabilities
without revealing sensitive details. Key initiatives in this domain include CHEESECLOTH,70

a proof-statement compiler that preprocesses programs and selectively reveals control segment
information while maintaining confidentiality. Further contributions come from Green et al.,71

who demonstrate the practicality of using ZK proofs for real-world exploits in processor archi-
tectures without needing source code. Complementing these efforts, Fang et al.87 introduce
zero-knowledge static analysis, a method that allows for the verification of program properties
via zero-knowledge proofs, avoiding the disclosure of the program’s source code.

Zero-Knowledge Machine Learning. The integration of zero-knowledge proofs with machine
learning is advancing rapidly, offering innovative solutions in various domains. Kang et al.37

present a method for verifying ML model execution on ImageNet-scale using ZK-SNARKs,
addressing challenges in ML-as-a-Service (MLaaS) by ensuring correct model predictions and
model accuracy in the face of unreliable service providers. Additionally, Xing et al.88 provide a
comprehensive survey on zero-knowledge proof-based verifiable machine learning (ZKP-VML),
highlighting its potential in addressing trustworthiness issues in outsourced learning and federated
learning scenarios. Further, Weng et al.’s development of the Mystique72system demonstrates
efficient ZK conversions in large-scale neural network inference, illustrating the significant
progress in interactive ZK proofs for complex computations like matrix multiplication, with
minimal accuracy loss in private inference.

Document Editing for Fighting Disinformation and Privacy. The innovative application
of Zero-Knowledge (ZK) proofs in verifying transformations of digital images marks a crucial
advancement in combating disinformation. This method facilitates the authentication of edited
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images’ authenticity and provenance, typically involving scaling down for serving images through
a website. Datta and Boneh78 have focused on validating the authenticity and integrity of these
image transformations. Their approach ensures that only permissible edits are applied to images
originally authenticated by signature-producing cameras, which digitally sign each photo along
with its metadata, such as location and timestamp. This process is vital for confirming that
images have not been misleadingly manipulated and that their origin and timestamp are verifiable.
Complementing this, the work of Daniel Kang et al. with ZK-IMG77 and that of Hankyung Ko et
al.79 on zk-SNARKs-based image redacting further enhances these capabilities. These projects
are pivotal in attesting to image transformations and authenticating redacted images, thereby
preserving the fidelity of the original images.
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