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Abstract. Masking, an effective countermeasure against side-channel attacks, is com-
monly applied in modern cryptographic implementations. Considering cryptographic
algorithms that utilize both Boolean and arithmetic masking, the conversion algo-
rithm between arithmetic masking and Boolean masking is required. Conventional
high-order arithmetic masking to Boolean masking conversion algorithms based on
Boolean circuits suffer from performance overhead, especially in terms of hardware
implementation. In this work, we analyze high latency for the conversion and propose
an improved high-order A2B conversion algorithm. For the conversion of 16-bit
variables, the hardware latency can be reduced by 47% in the best scenario. For the
case study of second-order 32-bit conversion, the implementation results show that
the improved scheme reduces the clock cycle latency by 42% in hardware and achieves
a 30% speed performance improvement in software. Theoretically, a security proof of
arbitrary order is provided for the proposed high-order A2B conversion. Experimental
validations are performed to verify the second-order DPA resistance of second-order
implementation. The Test Vector Leakage Assessment does not observe side-channel
leakage for hardware and software implementations.
Keywords: Masking · Arithmetic masking to Boolean masking conversion algorithms
· Probe Isolating Non-Interference · Hardware Private Circuit · Test Vector Leakage
Assessment

1 Introduction
Side-channel attacks (SCA) can recover keys using side information leaked from the
physical interaction between cryptographic devices and the external environment during
the operation of cryptographic algorithms. These side information include execution
time [Koc96], consumed power [KJJ99] and electromagnetic radiation [QS01]. Among
them, the Differential Power Analysis (DPA) [KJJ99] based on the minimal assumptions
about the adversary [MME10] is a powerful attack method, even for devices with a low
signal-to-noise ratio.

A mainstream countermeasure against DPA is masking [QS01], which divides sensitive
variables and related intermediate states into independent and random shares to cut off
the direct dependence between sensitive variables (such as the key-dependent information)
and power consumption. According to the mathematical relationship between the original
sensitive variable and shares, it can be divided into Boolean masking, arithmetic masking,
and multiplicative masking [TDG03]. Boolean masking excels at logical operations like XOR
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and shifting, while arithmetic and multiplicative masking apply to addition/subtraction and
multiplication, respectively. This signifies that an efficient masking scheme necessitates the
use of corresponding masking for different types of operations. For algorithms that combine
arithmetic operations and Boolean operations, side-channel protection schemes need to use
both arithmetic masking, Boolean masking, and more importantly the conversion between
the two masking countermeasures.

The first conversion algorithm against side-channel attacks was proposed by Goubin
[Gou01], including converting from Boolean masking to arithmetic masking (B2A) and
arithmetic masking to Boolean masking (A2B). Goubin’s B2A with optimal computa-
tional complexity O(1) is efficient. Note that the complexity mentioned here aligns
with [CGMZ22], indicating the number of elementary operations. However, the A2B
algorithm with complexity O(k) for k-bit variables is less efficient, and the conversion in
both directions is limited to first-order security. The table-based A2B conversion algorithm
proposed in [CT03] can significantly improve the efficiency of A2B at a particular expense
of additional memory consumption. However, there is a flaw in their algorithm, which has
been continuously revised in [Deb12] and [VDV21].

The high-order A2B algorithm was first introduced by Coron in [CGV14], which based
on the secure addition over the Boolean circuit, has complexity O(n2 · k) for n shares and
k-bit variables. The complexity can be improved to O(n2 · log k) by applying the Kogge-
Stone carry look-ahead adder (KSA) instead of the ripple-carry adder (RCA), just like the
first-order case in [CGTV15]. Coron et al. generalized table-based A2B conversion to high-
order [CGMZ22], but only efficient in specific applications, which was further accelerated
by Jan-Pieter D’Anvers [D’A22]. For hardware implementation, Boolean circuit-based
A2B conversion is widely selected since it can share the underlying SCA-secure adder
module with B2A conversion and is more efficient in general applications [FBR+22].

For secure hardware implementations against side-channel attacks, the masked imple-
mentations of nonlinear functions need to insert registers to prevent potential leakage
caused by glitches. In conventional hardware circuit design, inserting registers to cut
critical paths in combinatorial circuits improves the frequency and overall performance.
However, in side-channel secure hardware implementations inserting these registers that
are not for performance purposes increases the delay in clock cycles and often degrades
the overall performance. Previous studies have focused on the delay issue in secure hard-
ware implementations and proposed solutions to reduce the latency of clock cycles. The
low-latency masking was first introduced by Moradi et al., who used asynchronous design
methods to decrease the delay of first-order threshold implementation [MS16]. The first
high-order general S-box low-latency masking scheme (GLM) was proposed by Gross et
al. [GIB18]. The essential idea of the GLM scheme is to skip the shares compression
stage after the nonlinear operation, thereby eliminating the need for a register stage
to increase the number of shared values. Arribas et al. later proposed a Low-Latency
Threshold Implementations (LLTI) technique [AZN22] using a divide-and-conquer strategy
for nonlinear functions with an algebraic degree greater than two to reduce area and delay.

In the widely studied low-latency masked implementation of lightweight ciphers, the
AND gate depth of low-degree S-boxes in the round function is only one to two. For A2B
conversion circuits, the number of nonlinear function layers far exceeds this number and
increases with the width of the variables. The additional cost of hardware latency due to
multi-layer nonlinear functions was not considered or evaluated at the outset of the A2B
conversion algorithm design. The first-order hardware implementation [GPM23] of Coron
et al.-A2B [CGV14] with 16-bit shares requires 34 cycles. The hardware latency issue in
A2B conversion is notably exacerbated in high-order scenarios. Using the secure threshold
implementations of adder in [SMG15] to build a second-order 32-bit A2B conversion
according to the general hardware implementation scheme of first-order A2B in [FBR+22],
the conversion takes 20 clock cycles for the A2B conversion based on secure KSA or 99
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clock cycles for that based on secure RCA. At the same time, we also observed that the
A2B module with the multi-register stage would not become the frequency bottleneck of
the entire system on the FPGA platform. The synthesis results of hardware acceleration
of Kyber and Saber nonlinear operations in [FBR+22] also illustrate this point, and the
maximum frequency of the secure adder is higher than other modules. Reducing the
number of register stages in the A2B conversion algorithm, thereby reducing the delay
in the number of clock cycles, helps to improve the system’s overall performance. In this
work, to the best of our knowledge, we are the first to address this issue and propose an
improved high-order A2B conversion algorithm that avoids performance loss in terms of
latency.

Our Contributions. Our contributions are summarized as follows:
1. We analyze the high latency problem of the existing A2B high-order conversion

algorithm in hardware implementation and find the cause is that the higher-degree nonlinear
function required for the carry calculation introduces multi-level registers in the SCA-secure
implementation to prevent glitch propagation.

2. To avoid the performance overhead caused by carry calculation, we propose a high-
order A2B conversion algorithm based on Carry-Save Adder (CSA), which implements
secure carry-free addition by redundantly expressing intermediate variables. In the best
scenario, hardware latency can be reduced by 50%.

3. We provide formal security proofs for the proposed A2B algorithm at arbitrary order.
The experimental validation is launched to prove the security of the proposed second-order
hardware and software implementations of improved A2B conversion.

4. Through a case study of 32-bit variables A2B conversion, we compare the performance
of the CSA-based A2B conversion and the conventional KSA-based scheme in terms of
hardware and software implementations. The results show that the second-order secure
hardware implementation based on CSA reduces clock cycle latency by 42% while improving
the time delay, area, and randomness consumption. The software implementation reduces
the number of clock cycles required to execute a conversion by 30%.

Paper Organisation. We briefly introduce the Probe Isolating Non-Interference
theorems and the high-order Boolean circuit-based A2B conversion algorithm in Section 2.
In Section 3, an improved scheme is introduced to enhance the performance of high-order
A2B, especially in terms of latency. In Section 4, the security of the proposed scheme
is verified from both theoretical and experimental aspects. In Section 5, we conduct a
performance evaluation of the proposed A2B conversion method, comparing it with other
state-of-the-art implementations. Additionally, we explore the application of CSA-based
A2B conversion to prime modulus and B2A scenarios.

2 Preliminaries

2.1 Notion
For a k-bit variable x, the n-share arithmetic masking is represented as xA2k =

(
x

A2k

i

)
i=1,...,n

∈

F2k . The ith share is represented by x
A2k

i , and share index i ∈ [1, n]. The sum of n arith-
metic shares is expressed as

x =
n∑

i=1
x

A2k

i = x
A2k

1 + ... + x
A2k
n mod 2k. (1)

Similarly, the set of k-bit Boolean sharing of a secret variable x is xB,k. For n-share
Boolean masking xB,k =

(
xB,k

i

)
i=1,...,n

, the ith share is represented by xB,k
i . The XOR
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of n shares is denoted as

x =
n⊕

i=1
xB,k

i = xB,k
1 ⊕ ...⊕ xB,k

n . (2)

When describing bit-level operations, we denote the ith bit of x as x[i] and the ith bit
of xB,k is denoted as xB,k[i].

2.2 Composable Probing Security
The probing model proposed by [ISW03] is the most commonly used attack model in the
field of side-channel security. It assumes the adversary can place probes anywhere in the
circuit and obtain corresponding intermediate variables. For the t-probing secure circuit C
against t-order DPA, the tuple of any t probes in the circuit is independent of the sensitive
variables. The probing model is often used to analyze the overall security of the circuit.
The probing security cannot guarantee composable security, therefore the combination of
multiple probing secure circuits is not necessarily probing secure. With the increase of
circuit scale and security order t, the complexity of the overall probing security analysis
of the circuit increases sharply. Barthe et al. [BBD+16] subsequently proposed strong
security notions such as Non-Interfering (NI) and Strong-Non-Interfering (SNI), which
simplified the security analysis of large-scale circuits and increased the reusability of secure
gadgets.

Algorithm 1 SecAndn
k (bitwise AND of Boolean maskings) [CS20] [CGLS20a]

Input: n shares Boolean sharing xB,k, yB,k.
Output: n shares Boolean sharing zB,k such that z = x ∧ y.

1: for i = 1 to n do
2: for j = i + 1 to n do
3: rij = rji

$← F2k

4: for i = 1 to n do
5: for j = 1 to n, j ̸= i do
6: uij ← x̄B,k

i ∧ Reg[rij ]
7: vij ← yB,k

j ⊕ rij

8: for i = 1 to n do
9: zB,k

i ← Reg[xB,k
i ∧ Reg[yB,k

i ]]⊕
⊕n

j=1,j ̸=i(Reg[uij ]⊕ Reg[xB,k
i ∧ Reg[vij ]])

For trivial composition theorems, Cassiers and Standaert [CS20] further propose the
notion of Probe Isolating Non-Interference (PINI). Consistent with [CS20], the circuit
is PINI if an n-share circuit is (n− 1)-PINI. They also provide the PINI multiplication
gadgets PINI1 and PINI2. The SecAndn

k gadget computing the bitwise AND of k-
bit Boolean masking in Algorithm 1, is adapted from the parallelization of k PINI1
multiplication gadgets. By setting k = 1 and ignoring the registers needed in hardware
implementation, SecAndn

1 is the PINI1 gadget. For all share-isolating gadgets are PINI,
the trivial implementations of linear functions are directly PINI. Without the need for
refresh gadgets, the composition of PINI gadgets maintains the PINI property. Finally,
any t-PINI gadget is t-probing secure.

Definition 1. (t-PINI [CS20]) In the circuit G of d-share, P is a set of t1 probes inside
the circuit, and A is a set of t2 share indexes. G is t-PINI if and only if for all A and P
with t1 + t2 ≤ t, there is a share index set B with |B| ≤ t1 so that the P probe set and
outputs whose share index in A can be simulated by the corresponding input probes whose
share indexes in A ∪B.
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Algorithm 2 SecA2Bn
k based on Carry-Propagation adders [BC22]

Input: n shares arithmetic sharing xA2k , such that x ∈ F2k .
Output: n shares Boolean sharing zB,k, such that z = x.

1: if n = 1 then
2: zB,k ← xA2k

3: else
4: yB,k ← SecA2B

⌊n/2⌋
k ((xA2k

1 , ..., x
A2k

⌊n/2⌋))
5: y′B,k ← SecA2B

n−⌊n/2⌋
k ((xA2k

⌊n/2⌋+1, ..., x
A2k
n ))

6: sB,k ← (yB,k
1 , yB,k

2 , ..., yB,k
⌊n/2⌋, 0, ..., 0)

7: s′B,k ← (0, ..., 0, y′B,k
1 , ..., y′B,k

⌈n/2⌉)
8: zB,k ← SecAddn

k (sB,k, s′B,k) ▷ Algorithm 3 or Algorithm 4.

When considering hardware-oriented masking implementations, physical defeats are an
unavoidable threat, and formal security proof is necessary. Many mainstream masking
schemes have shown local or composability flaws for a lack of arbitrary-order proof in the
robust probing model [MMSS19].

The compositional strategy in the glitch-robust probing model is formalized and
proved in [CGLS20a]. Hardware Private Circuits (HPCs) were proposed for glitch-robust
PINI. The HPC1 and HPC2 in [CGLS20a] are arbitrary-order secure multiplication
gadgets in hardware. We employ the HPC2 gadget taking two cycles of latency and
optimized randomness demand, which is evolved from the PINI1 multiplication by adding
registers. Similarly, our SecAndn

k parallelizes k HPC2 gadgets by considering the registers
in Algorithm 1 and takes two clock cycles.

Subsequently, Cassiers and Standaert [CS21] studied the security under the transition-
robust and glitch-robust probing model, considering the possible leakage caused by the
transition of registered values and the glitches existing on the combinational circuit. They
prove that if the adjacent executions of the HPC2 are parallelized, it is still safe under the
model combining glitches and transitions. Therefore, the SecAndn

k constitutes the basic
building block of our A2B conversion under the glitch+transition-robust probing model.

2.3 High-Order Boolean Circuit-Based A2B Conversions

Assume n arithmetic masks for sensitive variable x in F2k are known, such that
∑n

i=1 x
A2k

i =
x. On the premise that the tth-order attack does not reveal x, the goal of the A2B conversion
algorithm is to obtain n Boolean masks of x as

n⊕
i=1

xB,k
i = x.

The basic idea of high-order Boolean circuit-based A2B conversions [CGV14] is to
re-share each arithmetic share xA,k

i into Boolean shares and then use the addition on
Boolean shares to obtain the Boolean masking representation of the arithmetic shares sum
(that is x). Here we denote the ith Boolean share of the jth arithmetic share by (xA2k

j )B,k
i

(1 ≤ i ≤ n, 1 ≤ j ≤ n), and n shares in all need to be converted. The original A2B scheme
directly transforms the addition circuit into a circuit of XOR and AND gates, applying
the ISW multiplication technique [ISW03] to ensure the side-channel security under the
ISW t-Probing framework. For tth-order security, the ISW framework requires n > 2t.

A straightforward way to convert masking is adding n arithmetic shares sequentially
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Algorithm 3 SecRCAn
k [BC22]

Input: n shares Boolean sharing xB,k, yB,k ∈ F2k .
Output: n shares Boolean sharing zB,k ∈ F2k , such that z = x + y mod 2k.

1: cB,1 ← (0, 0, ..., 0)
2: for j = 0 to k − 2 do
3: aB,1 ← xB,k[j]⊕ yB,k[j]
4: zB,k[j]← cB,1 ⊕ aB,1

5: cB,1 ← xB,k[j]⊕ SecAndn
1 (aB,1, xB,k[j]⊕ cB,1)

6: zB,k[k − 1]← xB,k[k − 1]⊕ yB,k[k − 1]⊕ cB,1

one by one:

n⊕
i=1

xB,k
i = ((xA2k

1 )B,k
1 ⊕ ...⊕ (xA2k

1 )B,k
n ) + ... + (xA2k

n )B,k
1 ⊕ ...⊕ (xA2k

n )B,k
n ). (3)

In this way, secure addition on n Boolean shares is the underlying element with complexity
O(n2 · k), and n calls to secure addition result in complexity O(n3 · k). In the improved
version [CGV14], the algorithm with complexity O(n2 · k) divides n arithmetic shares into
two parts: the first ⌊n/2⌋ and the last ⌈n/2⌉. Applying this conversion recursively results
in

n⊕
i=1

xB,k
i = (xA2k

1 + ... + x
A2k

⌊n/2⌋) + (xA2k

⌊n/2⌋+1 + ... + x
A2k
n )

= (xB,k
1 ⊕ ...⊕ xB,k

⌊n/2⌋) + (yB,k
1 ⊕ ...⊕ yB,k

⌈n/2⌉)

= x′B,k
1 ⊕ ...⊕ x′B,k

n + y′B,k
1 ⊕ ...⊕ y′B,k

n .

(4)

Boolean shares xB,k
i (1 ≤ i ≤ ⌊n/2⌋) and yB,k

i (1 ≤ i ≤ ⌈n/2⌉) are converted from the
sum of the first ⌊n/2⌋ arithmetic shares and the sum of the last ⌈n/2⌉ arithmetic shares
respectively. Then n-sharing x′B,k and y′B,k are obtained by refreshing xB,k and yB,k.
A tree structure can be established by recursive layer by layer as shown in Figure 1, where
the number of additive terms is divided by two at each layer. For A2B conversion hardware
implementation, n arithmetic input shares require the addition of ⌈log2 n⌉ layers.

On the basis of Coron’s recursive A2B conversion, Bronchain and Cassiers [BC22]
introduced the provable PINI A2B conversion shown in Algorithm 2, which applies PINI
multiplication to construct secure adder and removes the refresh gadget based on the PINI
combinatorial theorem. The SecAddn

k in [BC22] uses a chain of full adders with complexity
O(k) depicted as SecRCAn

k in Algorithm 3.
Using the more efficient Kogge-Stone carry look-ahead algorithm instead of the ripple-

carry adder in the original scheme, the secure adder complexity can be improved to
O(n2 · log k), leading to A2B conversion with complexity O(n2 · log k).

3 An Improved High-Order Conversion Based on Carry-
Save Adder

In this section, we first analyze and explain that carry propagation is the root cause of high
hardware implementation delay. Then we introduce an improved A2B conversion algorithm,
which further reduces hardware latency and improves software speed performance by using
carry-free addition.
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Algorithm 4 SecKSAn
k , built from the SecAdd of [BBE+18] with PINI gadgets

Input: n shares Boolean sharing xB,k, yB,k ∈ F2k .
Output: n shares Boolean sharing zB,k ∈ F2k , such that z = x + y mod 2k.

1: pB,k ← xB,k ⊕ yB,k

2: gB,k ← SecAndn
k (xB,k, yB,k)

3: for j = 0 to ⌈log2(k − 1)⌉ − 2 do
4: gB,k ← pB,k ⊕ SecAndn

k (pB,k, gB,k ≪ 2j)
5: pB,k ← SecAndn

k (pB,k, pB,k ≪ 2j)
6: gB,k ← pB,k ⊕ SecAndn

k (pB,k, gB,k ≪ 2⌈log2(k−1)⌉−1)
7: zB,k ← xB,k ⊕ yB,k ⊕ (gB,k ≪ 1)

3.1 High Latency Caused by Carry Propagation
The underlying module of the high-order A2B conversion algorithm is a side-channel
secure adder that uses Boolean masked bit-level operations, which makes the algorithm
complexity and circuit performance directly affected by the internal carry propagation in
the adder. Coron et al. proposed the first Boolean circuit-based A2B conversion algorithm
based on RCA [CGV14] and then described an improved A2B algorithm based on KSA
with O(log k) operations where k is the addition bit width [CGTV15]. We first recall the
secure ripple-carry adder and Kogge-Stone carry look-ahead adder to illustrate the effect
of carry propagation on the latency of a secure hardware implementation.

Given two k-bit addends x and y, let z = x+y mod 2k. For RCA, the bitwise operation
can be expressed recursively by the following equation,

z[i] = x[i]⊕ y[i]⊕ c[i]. (5)

For 0 ≤ i < k, {
c[0] = 0
c[i + 1] = x[i]⊕ ((x[i]⊕ y[i]) ∧ (x[i]⊕ c[i]))

(6)

where c[i + 1] denotes the carry resulting from the ith bit addition. The above equation
calculates the sum value after k−1 iterations. For side-channel protection, the Algorithm 3
reviews SecRCAn

k , a secure RCA implementation of k-bit width and n shares. The
SecAndn

1 gadget is an HPC2 gadget and requires two cycles as mentioned in Subsection 2.2.
The RCA is composed of a chain of k secure Full-Adders (FAs) and the carry input of the
highest-bit FA is calculated after (k − 1)-level AND gates. Therefore, the secure hardware
implementation of RCA needs at least 2 · (k − 1) stage registers. However, introducing
multilevel registers will cause the latency of the secure adder to increase linearly with the
bit width of variables, resulting in a significant delay in the A2B conversion with a loss of
performance and increased hardware complexity.

The Kogge-Stone carry look-ahead adder requires only O(log k) iterations, as shown in
Algorithm 4. In the preprocessing stage, k-bit carry generation g0 and carry propagation
p0 are generated:

g0 = x ∧ y, p0 = x⊕ y. (7)

During the processing stage, ⌈log2(k − 1)⌉ stages of calculations as follows are required:

gi+1 = gi ⊕ ((gi ≪ 2i) ∧ pi), pi+1 = pi ∧ (pi ≪ 2i), (8)

for 0 ≤ i < ⌈log2(k − 1)⌉. In [BBE+18], Gilles Barthe et al. proposed an arbitrary-order
Boolean masked KSA based on SNI multiplication and refresh gadget. On this basis,
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we adopt the SecAndn
k in Algorithm 1 for PINI composability and therefore omit the

refresh gadgets. The SecKSAn
k takes ⌈log2(k − 1)⌉+ 1 stages of SecAndn

k and requires
2(⌈log2(k − 1)⌉+ 1) stages of registers. Therefore, the clock cycle delay of the secure KSA
is proportional to log k.

Carry propagation in both of the above adder structures introduces a performance
loss. Based on these two carry propagation adders, the structure of the A2B conversion
circuit consistent with Coron’s scheme described in Subsection 2.3 is shown in Figure 1.
It can be seen that when n arithmetic shares are converted for the high-order masking,
the ⌈log2 n⌉-layer addition serial structure in the A2B conversion algorithm will further
amplify the delay problem of secure addition.

... ...

...

...
...

⌈log2n⌉ Layers

,0)(x k2
A
1

)x(0, k2
A
2

,0)(x k2
A

1‐n

)x(0, k2
A
n

 n/2
kSecKSA

 n/2‐n
kSecKSA

n
kSecKSA

2
kSecKSA

2
kSecKSA

Figure 1: High-order A2B conversion based on Carry-Propagation adder.

3.2 An Improved High-Order A2B Conversion Based on CSA
The improvement from RCA to KSA reduces the complexity of the A2B algorithm from k
to log k, and the latency of the hardware implementation is also greatly improved. The
main reason for the improved performance is the shortening of the carry chain. Under the
glitch-extended model, each level of carry calculation corresponds to a layer of nonlinear
functions, resulting in inserting two levels of registers to assure security. We thus consider
adopting a redundant number representation with a carry-propagation-free addition to
avoid the performance loss from computing carry of intermediate results.

The most commonly used redundancy representations are Carry-Save (C-S) and Re-
dundant Signed Digit (RSD) representations. A number N is expressed as the sum of two
numbers Ns and Nc in the C-S representation and is expressed as the difference between
two numbers N+ and N− in the RSD representation. The C-S representation is more
suitable for unsigned Boolean shares in F2k . Thus, we choose to use the carry-save adder.

The k-bit CSA can be regarded as a 3:2 compressor with three k-bit operands x, y, and
cin as inputs and two k-bit operands c and s as outputs. c and s are C-S representations
of the sum of three input operands. The CSA consists of k FAs. FA is also the basic unit
of RCA. An FA output carry c[i] is the input cin[i + 1] of the next FA in RCA, forming a
serial structure of k levels. In CSA, k FAs are parallel, and the carriers are preserved,

s[i] = x[i]⊕ y[i]⊕ cin[i] (9)

c[i] = x[i]⊕ ((x[i]⊕ y[i]) ∧ (x[i]⊕ cin[i])). (10)

In the modulo 2k, c shifts left for one bit, and the carry generated by the highest bit is
discarded as in Figure 2. According to the above Equation 10, there is only a nonlinear
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cin[31] cin[30] cin[0]

FA FA ...
FA

s[31]

x[31]

c[30]

y[31] x[30] y[30] x[0] y[0]

s[30] c[0] s[0]

Figure 2: 32-bit Carry-Save adder.

Algorithm 5 SecCSAn
k

Input: n shares Boolean sharing xB,k, yB,k, cB,k
in ∈ F2k .

Output: n shares Boolean sharing sB,k, cB,k, such that s + c = x + y + cin mod 2k.
1: aB,k ← xB,k ⊕ yB,k

2: sB,k ← cB,k
in ⊕ aB,k

3: cB,k ← (xB,k ⊕ SecAndn
k (aB,k, xB,k ⊕ cB,k

in ))≪ 1

function in FA with a degree of only two. For k-bit and n-sharing CSA, the masked
implementation is depicted in the Algorithm 5. The SecCSAn

k consumes two clock cycles
for only one level of SecAndn

k gadget.

Algorithm 6 SecA2B_CSn
k : secure conversion from arithmetic masking to Boolean

masking of the C-S representation
Input: n shares arithmetic sharing xA2k , such that x =

∑n
i=1 x

A2k

i ∈ F2k and n > 2.

Output: n shares Boolean sharing sB,k, cB,k, such that x =
n⊕

i=1
sB,k

i +
n⊕

i=1
cB,k

i .

1: if n = 3 then
2: (y1)B,k ← (xA2k

1 , 0, 0)
3: (y2)B,k ← (0, x

A2k

2 , 0)
4: (y3)B,k ← (0, 0, x

A2k

3 )
5: (sB,k, cB,k)← SecCSA3

k((y1)B,k, (y2)B,k, (y3)B,k)
6: else
7: (sB,k, cB,k)← SecA2B_CSn−1

k ((xA2k

1 , x
A2k

2 , ...x
A2k

n−1))
8: (y1)B,k ← (sB,k

1 , .., sB,k
n−1, 0)

9: (y2)B,k ← (cB,k
1 , .., cB,k

n−1, 0)
10: (y3)B,k ← (0, ..., 0, x

A2k
n )

11: (sB,k, cB,k)← SecCSAn
k ((y1)B,k, (y2)B,k, (y3)B,k)

By applying secure carry-free adders based on redundant number representation, the
improved higher-order A2B is depicted in Algorithm 7 and Figure 5. The input is n

arithmetic shares of the k-bit variable xA2k , where
∑n

i=1 x
A2k

i = x. In the new conversion
algorithm SecA2Bn

k , the SecA2B_CSn
k first converts xA2k into sB,k and cB,k, which

is the n-share redundant number representation of x. The SecA2B_CSn
k shown in

Algorithm 6 follows the basic framework of Algorithm 2 [BC22]. Namely, the secure CSA
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Algorithm 7 SecA2Bn
k based on Carry-Save adders

Input: n shares arithmetic sharing xA2k , such that x =
∑n

i=1 x
A2k

i and x ∈ F2k .

Output: n shares Boolean sharing zB,k, such that z = x =
n⊕

i=1
zB,k

i .

1: if n = 1 then
2: zB,k ← xA2k

3: else
4: if n = 2 then
5: sB,k ← (xA2k

1 , 0)
6: cB,k ← (0, x

A2k

2 )
7: else
8: (sB,k, cB,k)← SecA2B_CSn

k ((xA2k

1 , x
A2k

2 , ...x
A2k
n ))

9: zB,k ← SecKSAn
k (sB,k, cB,k)

of three Boolean shares is taken at the first layer. Then, the Boolean shares are expanded
layer by layer until it is equal to the input arithmetic share. The last level of CSA output
is the C-S representation of x, and both c and s are represented as n Boolean shares. In
order to convert to a normal binary Boolean masking, carry-propagation addition only
needs to be done once, and the SecKSAn

k is selected here.

The expand method also follows the [BC22], adding zeros before or after the Boolean
shares output by the previous layer to form a gadget embedding structure in Definition 2
and Figure 4. As for the choice of padding zeros in front or behind the Boolean share,
follow the principle of mapping arithmetic shares to Boolean shares with the same index.
This ensures that both linear operations and PINI gadgets cause variables to propagate
only in isolated share index domains.

The advantage of the improved architecture in terms of latency in hardware imple-
mentation is evident. The A2B conversion based on a carry-propagation adder needs
⌈log2 n⌉-layer additions for n shares. As mentioned above, the SecRCAn

k takes at least
2(k − 1) cycles. Shown in Algorithm 2, the PINI SecA2Bn

k based on SecRCAn
k needs

2(k − 1)⌈log2 n⌉ cycles. In later improved versions, SecRCAn
k in SecA2Bn

k is replaced by
SecKSAn

k . The SecKSAn
k takes 2(⌈log2(k − 1)⌉+ 1) cycles, and on the basis SecA2Bn

k

needs 2(⌈log2(k− 1)⌉+ 1)⌈log2 n⌉ clock cycles. The latency of the masked implementation
of the CSA is consistent with an FA and requires two clock cycles since there is only one
layer of nonlinear function. For the SecA2Bn

k based on CSA, a total of n − 2 levels of
CSA are required, and the total latency in terms of clock cycles is 2(⌈log2(k− 1)⌉+ n− 1).
Generally, the larger the variable bit width, the better the improvement effect of the
CSA-based A2B conversion.

For the common high-order case with 2 < n ≤ 10 and 9 < k ≤ 33, our estimated
latency results are shown in Figure 3. It can be seen that the best improvement occurs
in five arithmetic shares with 17 < k ≤ 33, and the latency is reduced by 50%. At
the same time, the carry calculation not only increases the additional register stage
in the hardware implementation but also increases the number of instructions in the
software implementation. Therefore, CSA-based A2B conversion will also improve software
performance, which we will evaluate later through software implementation.
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Figure 3: Latency comparison of A2B conversion.

4 Security Analysis of the Proposed A2B Conversion
This section first theoretically proves the formal security of the new SecA2Bn

k based on
CSA under the transition-robust and glitch-robust probing model. Then, we further analyze
the safety of second-order A2B conversion through side-channel evaluation experiments.

4.1 Theoretical Security Proof
We first prove that the algorithm SecA2Bn

k is PINI under the ideal probing model. Then
it is explained that the PINI gadget evolves into an HPC gadget by adding registers and
SecA2Bn

k is guaranteed to be PINI under the probing model considering glitches and
transitions in the hardware.

Lemma 1. (PINI composability [CS20]). Any composite gadget made of t-PINI composing
gadgets is t-PINI.

Lemma 2. Without considering physical defeats and registers Reg[.] marked in gray in
Algorithm 1, the SecKSAn

k in Algorithm 4 and SecCSAn
k in Algorithm 5 are t-PINI, for

t = n− 1.

Proof. The SecAndn
k gadget shown in Algorithm 1, which computes the bitwise AND of

k-bit Boolean maskings, is the parallelization of k PINI1 gadgets. The PINI1 gadget is
PINI multiplication gadget for F2 in [CS20], therefore according to the composability rule
in Lemma 1 the SecAndn

k gadget is (n− 1)-PINI.
In accordance with [CGLS20b] Proposition 4, the trivial masking implementation of a

linear function is shares-isolating and PINI. The two gadgets SecCSAn
k and SecKSAn

k are
the composition of PINI SecAndn

k and linear gadget, therefore they are (n− 1)-PINI.

G

(x1)
B,k

(x2)
B,k

(s1)
B,k

(s2)
B,k tB,k

yB,k
0
0
0

Figure 4: Example of 3-share to 6-share gadget embedding.

To illustrate the security of the algorithm SecA2Bn
k , we review here the gadget embed-

ding technique proposed in [BC22] for combining PINI gadgets with various numbers of
shares. The gadgets embedding maps the embedded gadget with a lower number to the
embedding gadgets that use more shares. Unused input shares of the embedding gadget
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Figure 5: High-order A2B conversion based on Carry-Save adder.

are discarded, while output shares not generated from the embedded gadget are assessed
to a value of zero. The example of 3-share to 6-share gadget embedding is depicted in
Figure 4. For EG

6,(4,5,6), the embedded gadget G maps 3-share inputs and outputs into the
last three shares of the embedding gadget, padding the first three shares with zero. Here
we recall the PINI embedding as a lemma.

Definition 2. (Gadget embedding [BC22]) Let G be a n′-share gadget, and let mapping
m ∈ [1, n]n′ (with n′ ≤ n) have unique components (mi ̸= mj for all i, j). The embedding
of the n′-share gadget G to n shares with mapping m denotes EG

n,m.

Lemma 3. (PINI embedding [BC22]). If G is (n′ − 1)-PINI gadget, its embedding EG
n,m

is (n− 1)-PINI for any shares n and mapping m.

Theorem 1. The SecA2B_CSn
k in Algorithm 6 is t-PINI, for t = n− 1.

Proof. In the case of n = 3, the three arithmetic shares are expanded to (xA2k

1 , 0, 0),
(0, x

A2k

2 , 0) and (0, 0, x
A2k

3 ) as circuit C3 in Figure 5. Then the 3-sharing variables are input
into SecCSA3

k, which is a 2-PINI gadget in Lemma 2. According to the probe propagation
rules of the PINI gadgets as in Definition 1, t1 internal probes and t2 output probes with
t1 + t2 ≤ t can be simulated by input shares with up to t different index values. The share
index value remains unchanged during the process of mapping the arithmetic shares to
the Boolean shares. This share-isolating property similar to linear operation ensures that
t1 internal probes and t2 output probes can be also simulated by input arithmetic shares
with up to t index. Therefore, the SecA2B_CS3

k is 2-PINI.
In the case n > 3, we prove security by induction on the number of shares n. The

Cn circuit in Figure 5 represents SecA2B_CSn
k . Assuming that Cn−1 is (n − 2)-PINI

, we prove that the Cn is also (n − 1)-PINI. The condition is satisfied for the case of
n = 3, and the C3 is 2-PINI. The circuit Cn can be divided into three parts: embedded
gate E

Cn−1
n,(1,...,n−1), expanded arithmetic share (0, ..., 0, x

A2k
n ) and SecCSAn

k . Since Cn−1 is
(n− 2)-PINI, the embedding gadget E

Cn−1
n,(1,...,n−1) is (n− 1)-PINI according to Lemma 3.

The expansion of arithmetic share is share-isolating as described above, so it is PINI.
Finally, since SecCSAn

k is (n− 1)−PINI, SecA2B_CSn
k a combination of PINI gadgets

is (n − 1)-PINI. The above proves that SecA2B_CSn
k is PINI for arbitrary order with

n > 2.
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Theorem 2. The SecA2Bn
k in Algorithm 7 is t-PINI, for t = n− 1.

Proof. In the case n=1, this is a non-masked implementation and trivial to prove. In the
case n=2, the arithmetic shares are expanded to (xA2k

1 , 0) and (0, x
A2k

2 ) and input to the
gadget SecKSA2

k. The expansion is share-isolating, and the SecKSA2
k is 1-PINI as proved

in Lemma 2. The SecA2B2
k is 1-PINI.

In the case n > 2, the gadget is composed of the SecA2B_CSn
k and SecKSAn

k two
parts. The SecA2B_CSn

k is PINI by Theorem 1, and SecKSAn
k is PINI by Lemma 2.

Therefore, Algorithm 7 is a composition of PINI gadgets and is PINI.

When considered under the probing model with glitches and transitions, the registers
Reg[.] marked in gray of Algorithm 1 are used in the hardware implementation. Here we
prove the SecA2Bn

k with registers still secure under this condition. Transitions in iterative
circuits can weaken the security level [MKSM22], so the hardware implementations of
the algorithms are fully pipelined and have no dependencies between successive inputs.
For using the concept of glitch+transition-robust PINI in [CS21], we review the relevant
theorems in it here.

Lemma 4. (O-PINI share-isolating gadgets [CS21]). Share-isolating structural gadgets
are iterated glitch+transition-robust O-PINI.

Lemma 5. (glitch+transition-robust PINI composition [CS21]). Let S be a structural gad-
get composition of iterated glitch+transition-robust t-O-PINI gadgets and glitch+transition-
robust t-PINI gadgets. If every PINI gadget in S has no adjacent executions, then S is
glitch+transition-robust t-PINI.

Theorem 3. The SecA2Bn
k with registers in Algorithm 7 is glitch+transition-robust

t-PINI, for t = n− 1.

Proof. According to [CGLS20b] Section 4.4, the PINI1 multiplication is adjusted to HPC2
by adding the registers Reg[.] of Algorithm 1. The HPC2 multiplication gadget in fully
pipelined circuit is glitch+transition-robust (n− 1)-PINI with n shares [CS21]. According
to the Lemma 5, the SecAndn

k gadget parallel of HPC2 is glitch+transition-robust t-PINI.
The trivial parallel n-sharing implementation of the linear function is a share-isolating

gadget, which is iterated glitch+transition-robust (n− 1)-O-PINI according to Lemma 4.
Thanks to Lemma 5, the SecCSAn

k and SecKSAn
k combining the parallel implementation

for linear gadget and SecAndn
k are glitch+transition-robust t-PINI.

The SecA2B_CSn
k in case of n = 3 consists of arithmetic share expansion and SecCSA3

k.
Expansion is a share-isolating linear operation and is O-PINI. Furthermore, SecCSA3

k

is glitch+transition-robust 2-PINI, so SecA2B_CS3
k is glitch+transition-robust 2-PINI.

For the other cases, circuit Cn in Figure 5 consists of embedding gates, arithmetic
share expansion, and SecCSAn

k . The embedding gadget mapping with share indexes
unchanged by wires is share-isolating and O-PINI, so the Lemma 3 still holds under
the probing model with glitches and transitions. Expansion is O-PINI, and SecCSAn

k

is glitch+transition-robust t-PINI. Therefore, the recurrence relationship in proof of
Theorem 2 still holds that assuming Cn−1 is glitch+transition-robust (n− 2)-PINI, the
Cn is also glitch+transition-robust (n − 1)-PINI. Consequently the SecA2B_CSn

k is
glitch+transition-robust (n− 1)-PINI. The composition of SecA2B_CSn

k and SecKSAn
k ,

that is SecA2Bn
k , is glitch+transition-robust (n− 1)-PINI.

4.2 Experimental Leakage Evaluation
A widely used side-channel leakage evaluation method is Test Vector Leakage Assessment
(TVLA) [GGJR+11], and we use the non-specific statistical t-test (also called fixed vs.
random t-test) to evaluate our A2B implementations. The basic principle is to set two sets
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of inputs. One set is the shared input of random variables, and the other is the shared
input of fixed variables. These two sets of variables are randomly interleaved and input
into the design under test, and the corresponding two sets of power traces are recorded.
Under the independent leakage assumption, the statistical distributions of these two sets
of power traces should not be significantly different. Thus we assumed that the two sets
had an indistinguishable statistical distribution and used the Welch t-statistic to calculate
the credibility of this assumption:

t = µfixed − µrandom√
σ2

fixed

Nfixed
+

√
σ2

random

Nrandom

, (11)

where µfixed, σfixed, and Nfixed (resp. µrandom, σrandom, and Nrandom) represent the
mean, variance, and number of measurements of the power traces of the fixed input
group (resp. random input group). A widely adopted empirical value for |t| is 4.5
[DAP+22] [MBFC23], and |t| > 4.5 means that the null hypothesis is rejected with
99.999% confidence. In Figure 6, Figure 7, and Figure 8, ±4.5 is represented by dotted
lines.

The Equation 11 is applied directly to each sample point on the power traces for the
first-order t-test. For high-order univariate tests, Equation 11 is also used to calculate the t
value after power trace preprocessing [SM15]. The mean-free squared traces are calculated
for the second-order univariate t-test. To conduct the multivariate second-order t-test,
we need to perform individual t-tests for every pair of sample points by multiplying their
respective mean-free power values. We conduct TVLA on second-order CSA-based A2B
hardware and software implementations.

1) Hardware Implementation: The experimental platform used for side channel evalua-
tion is the SAKURA-G development board, which mainly includes two Xilinx Spartan-6
FPGAs. The design under test is instantiated on the target FPGA (XC6SLX75-2CSG484C),
and the control FPGA (XC6SLX9-2CSG225C) is employed for communication with the
host and randomness generation. The development board operates at 2MHz and is powered
by KEYSIGHT B2961A with a 5V supply voltage. To avoid the noise caused by randomness
generation, we pre-generate random numbers and store them in BRAM before testing. The
voltage drop across a 1 Ω shunt resistor, which is amplified by the AD8000YRDZ amplifier
on the target FPGA, is used for measuring the design’s power consumption. The Teledyne
LeCroy WaveRunner 8404M digital oscilloscope is used to sample the instantaneous power
consumption of the design under test at a sampling frequency of 100MHz.

Under the above experimental environment and evaluation method, we conduct a side-
channel security evaluation of the CSA-based A2B conversion hardware implementation.
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(b) PRNG ON (2nd-order t-test).

Figure 6: t-test results of 1st-order KSA hardware implementation.

First, to illustrate that the platform can detect second-order leaks, we collect ten
million power traces for first-order A2B conversion and conduct first-order and second-
order t-test. The experimental results shown in Figure 6 are consistent with the theory,
with no first-order leakage in Figure 6(a) but second-order leakage in Figure 6(b).
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Figure 7: t-test results of 2nd-order CSA-based A2B conversion hardware implementation.

For the second-order CSA-based A2B, 100,000 power traces were collected with the
PRNG turned off for comparison. Figure 7(a) and Figure 7(b) illustrate that this imple-
mentation has first-order and second-order leakage without PRNG masking. The PRNG is
then opened, and 30 million power traces are collected. The results are shown in Figure 7(c)
and Figure 7(d). The t-values of the first-order t-test and the second-order t-test are within
±4.5, indicating no second-order univariate leakage. For the bivariate t-test, we calculated
one million energy traces. Points in Figure 7(e) are red if their absolute t-value is greater
than 4.5, and blue otherwise. It can be seen that there is no multivariate leakage.

2) Software Implementation: The software evaluation platform is CW308 UFO board
with STM32F415 target board. The power consumption of the design under test is obtained
by measuring the voltage drop on the 12 Ω shunt resistor on the board. The operating
frequency of the target board is 8MHz, and the oscilloscope used to collect power traces is
a Teledyne LeCroy WaveRunner 8404M with a sampling rate set to 25MHz.

We performed a fixed vs. random TVLA for software implementation of second-order
CSA-based A2B conversion. We first turned off the PRNG and collected 200,000 energy
traces. The first-order and second-order t-test results are shown in Figure 8(a) and
Figure 8(b), and there is noticeable energy leakage. The PRNG is then turned on, and
the t-test results for ten million power traces are shown in Figure 8(c) and Figure 8(d),
with no second-order univariate leakage. Each power trace contains 18,000 sample points,
and the total number of bivariate t-tests between all points amounts to 324 million for one
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traces. The computations required for such tests are time-consuming even with 32 cores.
The maximum distance of multivariate analysis is set at 3,000 points since we continuously
introduce fresh randomness through PINI multiplications [ZSS+21]. The results of the one
million bivariate t-test analysis are shown in Figure 8(e), and no leakage was observed.
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Figure 8: t-test results of 2nd-order CSA-based A2B conversion software implementation.

5 Implementation Results and Extensions
In this section, we will analyze the performance parameters of CSA-based A2B designs
and compare them with other state-of-the-art solutions. Subsequently, we will explore
A2B conversion based on CSA to expand the applications of prime modulus and B2A.

5.1 Performance Evaluation
In this paper, we have evaluated and compared the hardware and software performance of
our new A2B implementation based on CSA with bit width k = 32, which is chosen for
supporting A2B conversion for both Saber and Kyber in [FBR+22] and is the common
width of ARX cipher implementations like SHA-256 [Lan19] or ChaCha [B+08].

1) Hardware Implementation: We performed performance evaluations under ASIC
standard cell technology and FPGA for the hardware implementation. On the one hand,
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our design was evaluated at the TSMC 28nm (ssg0p81v125c) process node with ss corner
and 0.9v power supply by the Design Compiler, providing the performance under the
worst timing. We use the set_dont_touch during synthesis to prevent optimizations that
might compromise the security requirements. Table 1 compares the performance of CSA-
based A2B conversion with other state-of-the-art designs in terms of clock cycle latency,
maximum frequency, time delay, area, and randomness consumption. To the best of our
knowledge, no literature gives detailed hardware performance data for individual A2B
conversion. For a fair comparison, we implement the RCA-based A2B conversion in [BC22]
using our glitch+transition-robust PINI SecAndn

k gadget as shown in Algorithm 2 and
Algorithm 3. Also referring to [BBE+18], we adopt SecKSAn

k in Algorithm 4, and use the
high-order implementation of A2B based on KSA in [CGTV15] as our comparison. All of
the above hardware implementations are available at https://github.com/ybhphoenix/
A_Low_latency_A2B.

The results show that under the ASIC application, our A2B conversion scheme improves
latency, area, and time delay. Compared with the second-order RCA-based A2B [BC22]
and KSA-based A2B [CGTV15], the clock cycle latency required for one conversion is
reduced by 89% and 42% respectively. The reduction in the maximum clock frequency is
within 3%, which results in a corresponding reduction in the time delay required for one
conversion by 88% and 41%. Our approach costs more randomness than the RCA-based
approach, primarily because of the last level of SecKSAn

k in Figure 5, but it uses 17% less
randomness than the KSA-base approach. The area of full pipelined second-order A2B
conversion is reduced by 20% and 25% under the TSMC 28nm process node.

Table 1: Resource utilization and performance for 32-bit conversions at TSMC 28nm.

Security order Design Latency Max. Freq. Delay Area Randomness
(CLK) (GHz) (ns) (kGE) (bits)

2
[BC22] 124 5.02 24.70 197.20 124

[CGTV15] 24 4.90 4.90 208.57 1,280
This work 14 4.87 2.87 157.42 1,056

3
[BC22] 124 4.44 27.93 294.85 248

[CGTV15] 24 4.31 5.57 371.34 2,560
This work 16 4.31 3.25 287.34 2,208

4
[BC22] 186 3.95 47.09 496.76 465

[CGTV15] 36 3.81 9.49 641.59 4,800
This work 18 3.84 4.69 456.32 3,808

For the maximum frequency, the CSA-based A2B conversion is slightly dropped within
3%. But it should be emphasized that these designs are inserted with multi-level registers
due to security requirements, making the frequency close to 5 GHz which far exceeds the fre-
quency of masked implementations for most cryptographic algorithms [FBR+22][LMRBG23].
Therefore, the improved A2B as a masking conversion module does not limit the maxi-
mum frequency of the cryptographic algorithm, making latency in terms of clock cycles a
much-needed aspect of improvement.

On the other hand, the resource utilization and performance of our design are evaluated
on Artix-7 FPGA (XC7A200TFFG1156-3). Table 2 compares the designs in terms of
latency, maximum frequency, time delay, resource utilization, and randomness. Among
these, the clock cycle latency and randomness consumption determined during design
align with ASIC performance. The evaluation results show that the improved CSA-based
second-order A2B conversion also greatly improves delay on the FPGA as well. The
second-order conversion using CSA has 84% and 45% smaller delay than RCA-based and
KSA-based implementations, respectively. Our second-order CSA-based solution also
results in the smallest number of Slices used among all three solutions. The maximum

https://github.com/ybhphoenix/A_Low_latency_A2B
https://github.com/ybhphoenix/A_Low_latency_A2B
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Table 2: Resource utilization and performance for 32-bit conversions on Artix-7.

Security order Design Latency Max. Freq. Delay LUTs FFs Slices Randomness
(CLK) (MHz) (ns) (bits)

2
[BC22] 124 512.82 241.80 2,234 20,423 4,352 124

[CGTV15] 24 350.87 68.40 13,064 17,952 4,450 1,280
This work 14 370.37 37.80 11,196 14,550 3,715 1,056

3
[BC22] 124 444.44 279.00 3,818 30,555 6,753 248

[CGTV15] 24 298.50 80.40 25,838 32,099 8,225 2,560
This work 16 300.30 53.28 22,189 26,093 7,275 2,208

4
[BC22] 186 370.37 502.20 6,642 51,567 10,852 465

[CGTV15] 36 232.55 154.81 47,000 56,308 14,895 4,800
This work 18 219.78 81.90 36,885 41,331 10,879 3,808

frequency on the FPGA of the improved A2B conversion is lower than that of RCA-
based conversion. But similar to the ASIC implementation, the maximum frequency
of the A2B conversion far exceeds that of many first-order masked cipher algorithm
implementations [AMD+21][KNAH22].

2) Software Implementation: In order to compare under the same platform and compila-
tion options, we also implemented Algorithm 2 based on SecRCAn

k [BC22] and KSA-based
A2B conversion [CGTV15] using our PINI SecAndn

k gadget. All code implementations used
for evaluation are available at https://github.com/ybhphoenix/A_Low_latency_A2B.
At the same time, we also added table-based A2B conversion commonly used in software
implementation for comparison, and [D’A22] has benchmarked the algorithms on an In-
tel(R) Core(TM) i5-6500 @ 3.20GHz CPU. For comparison, we conducted performance
evaluations on the Intel(R) Core(TM) i5-1135G7 @ 2.40GHz CPU. To ensure security
the compilation option -O0 is consistent with the TVLA experiment. For 32-bit variables
conversion, the results are shown in Table 3. The number of clock cycles of A2B conversion
based on CSA is about 30% less than that based on KSA. For the RCA-based A2B
conversion in [BC22], we consider individual non-bitsliced A2B implementations, which
can bitsliced acceleration in the masked implementation of Kyber to obtain 18.8 times
faster than KSA-based conversion. Compared with table-based A2B, our CSA-based A2B
is faster than [CGMZ22] at the same compilation optimization level. The third-order case
of the number of clock cycles for our A2B is similar to [D’A22], and the second-order case
is faster than [D’A22].

Table 3: Software performance of different 32-bit A2B conversions in cycles.

Design Compilation option Security order
2 3 4

Bool. circ. [BC22]* -O0 13,124 23,049 42,212
Bool. circ. [CGTV15]* -O0 3,914 6,944 12,788

Bool. circ. (This work)* -O0 2,725 4,950 8,593
Bool. circ. (This work)* -O2 986 1,895 2,947
Table-based [CGMZ22]† -O2 52,779 105,613 -

Table-based [D’A22]† -O2 1,337 1,814 -
*Evaluated on the Intel(R) Core(TM) i5-1135G7 @ 2.40GHz CPU.
†Data from [D’A22] evaluated on Intel(R) Core(TM) i5-6500 @ 3.20GHz CPU.

Analyzing the 32-bit conversions for second-order to fourth-order security, the A2B
conversion based on CSA improves performance in many aspects in both hardware and
software implementation. Since CSA is a 3:2 compressed adder applicable to the case of
n > 2, the first-order in Algorithm 7 is consistent with that based on KSA. For other

https://github.com/ybhphoenix/A_Low_latency_A2B
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Algorithm 8 SecAddModpn
k

Input: n shares Boolean sharing xB,k, yB,k, integer p < 2k and x, y ∈ [0, p).
Output: n shares Boolean sharing zB,k, such that z = x + y mod p.

1: pB,k+1 ← (2k − p, 0, ..., 0)
2: (sB,k+1, cB,k+1)← SecCSAn

k+1(pB,k+1, xB,k, yB,k)
3: uB,k+1 ← SecKSAn

k+1(sB,k+1, cB,k+1)
4: bB,1 ← ¬uB,k+1[k]
5: aB,k ← BitCopyMaskn

k (bB,1, p) ▷ Use algorithm 1 of [BC22].
6: zB,k ← SecKSAn

k (aB,k, uB,k+1)

cases referring to the theoretical estimation in Subsection 3.2, CSA-based high-order A2B
conversion can exhibit better performance for larger bit width, and the improvement in
latency is at least 27% under the parameters of 2 < n ≤ 10 and 9 < k ≤ 33.

5.2 Expansion Applications
The above A2B conversion based on the 2k modulus can be extended to the application of
the prime modulus and B2A conversion.

Prime modulus conversion. A simple A2B conversion based on prime modulus can
replace the adder of SecA2Bn

k in Algorithm 2 with a prime modulus adder. In order to
calculate z = x + y mod p, the prime modulus adder in [BC22] calls secure adder three
times sequentially to compute s′ = x + y + (2k − p) mod 2k+1 and z = s′ + p · ¬MSB(s′)
mod 2k. If SecRCAn

k is used, it takes 6 · k − 2 clock cycles. If SecKSAn
k is used, it

takes 4⌈log2k⌉ + 2⌈log2(k − 1)⌉ + 6 clock cycles. In Algorithm 8, We implement the
SecAddModpn

k based on SecCSAn
k , which only requires 2⌈log2k⌉ + 2⌈log2(k − 1)⌉ + 6.

Furthermore, we adopt the technique in [BC22] to optimize the conversion of n = 2 and
n = 3, reducing p in advance before expanding the Boolean shares. Finally, we propose a
CSA-based SecA2BModpn

k in Algorithm 9. The BitCopyMaskn
k in our SecAddModpn

k

and SecA2BModpn
k uses algorithm 1 of [BC22], which is a share-isolating gadget.

Theorem 4. The SecA2BModpn
k in Algorithm 9 is t-PINI, for t = n− 1.

Proof. The SecKSAn
k and SecCSAn

k are PINI as proved in Lemma 2, and the extension
and BitCopyMaskn

k are share isolating. In the case of n = 2, SecA2BModp2
k is 1-PINI by

Lemma 1. For n = 3, steps 9 to 13 are 1-PINI, and as Lemma 3 steps 9 to 16 are 2-PINI.
Therefore, the SecA2BModp3

k is 2-PINI.
For other cases, the divide-and-conquer structure is the same as that of origin A2B shown

in Figure 1. The gadget can be split into three parts: E
SecA2BModp

⌊n/2⌋
k

n,(1,...,⌊n/2⌋) , E
SecA2BModp

n−⌊n/2⌋
k

n,(⌊n/2⌋+1,...,n)

and SecAddModpn
k . By recursing n, SecA2BModp

⌊n/2⌋
k and SecA2BModp

n−⌊n/2⌋
k is

PINI, so the corresponding embedding gadgets is PINI according to Lemma 3. Moreover,
SecAddMopn

k consisting of SecCSAn
k , SecKSAn

k , and share isolating operations is PINI.
Finally, SecA2BModpn

k , a composition of PINI gadgets, is PINI.

Like SecA2Bn
k , SecA2BModpn

k can also use HPC multiplication gadgets by adding reg-
isters and guaranteed full pipeline in hardware implementation to achieve glitch+transition-
robust PINI.

Using Kyber’s prime modulus p = 3329, k = ⌈log2(p)⌉ = 12 in A2B conversion. We
compare the latency between our SecA2BModpn

k based CSA and that of [BC22] (algorithm
10, SecA2BModpn

k ) in hardware implementation. For a fairer comparison, SecAddn
k of

[BC22] use SecKSAn
k with lower latency as a secure adder instead of the original RCA.
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Algorithm 9 SecA2BModpn
k

Input: n shares arithmetic sharing xAp ,such that x ∈ [0, p).
Output: n shares Boolean sharing zB,k, such that z = x and p < 2k.

1: if n = 2 then
2: sB,k+1 ← (xAp

1 + 2k − p, 0)
3: s′B,k ← (0, x

Ap

2 )
4: uB,k+1 ← SecKSA2

k+1(sB,k+1, s′B,k)
5: bB,1 ← ¬uB,k+1[k]
6: aB,k ← BitCopyMask2

k(bB,1, p) ▷ Use algorithm 1 of [BC22].
7: zB,k ← SecKSA2

k(aB,k, uB,k+1)
8: else if n = 3 then
9: sB,k+1 ← (xAp

1 + 2k − p, 0)
10: s′B,k ← (0, x

Ap

2 )
11: uB,k+1 ← SecKSA2

k+1(sB,k+1, s′B,k)
12: bB,1 ← ¬uB,k+1[k]
13: aB,k ← BitCopyMask2

k(bB,1, p)
14: (y1)B,k ← (aB,k

1 , aB,k
2 , 0)

15: (y2)B,k+1 ← (uB,k+1
1 , uB,k+1

2 , 0)
16: (y3)B,k+1 ← (0, 0, x

Ap

3 − p)
17: (sB,k+1, cB,k+1)← SecCSA3

k+1((y1)B,k, (y2)B,k+1, (y3)B,k+1)
18: uB,k+1 ← SecKSA3

k+1(sB,k+1, cB,k+1)
19: bB,1 ← ¬uB,k+1[k]
20: aB,k ← BitCopyMask3

k(bB,1, p)
21: zB,k ← SecKSA3

k(aB,k, uB,k+1)
22: else
23: yB,k ← SecA2BModp

⌊n/2⌋
k ((xA2k

1 , ..., x
A2k

⌊n/2⌋))
24: y′B,k ← SecA2BModp

n−⌊n/2⌋
k ((xA2k

⌊n/2⌋+1, ..., x
A2k
n ))

25: sB,k ← (yB,k
1 , yB,k

2 , ..., yB,k
⌊n/2⌋, 0, ..., 0)

26: s′B,k ← (0, ..., 0, y′B,k
1 , ..., y′B,k

⌈n/2⌉)
27: zB,k ← SecAddModpn

k (sB,k, s′B,k)

As shown in Table 4, the latency is reduced by 16% to 22% under 2nd-order to 10th-order
security.

B2A conversion. The B2A algorithm based on Boolean circuits was first proposed
in [CGV14] and was extended to the case of prime modulus in [BBE+18]. The basic
idea is to first generate n − 1 random arithmetic shares under the 2k modulus (resp.
prime modulus), and then obtain the n-share Boolean masking of the negation of their
sum through SecA2Bn

k (resp. SecA2BModpn
k ), add it to the input Boolean masking by

SecKSAn
k (resp. SecAddModpn

k ). Lastly, the algorithm unmasks the Boolean masking of
the result as the last arithmetic share.

In B2A conversion, the SecA2Bn
k and SecA2BModpn

k , as well as SecAddModpn
k , can

leverage the low-latency algorithm introduced in this work. This can also reduce the clock
cycle delay required for a B2A conversion.
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Table 4: Number of cycles to perform an A2B conversion in hardware with p=3329.

Design Security order
2 3 4 5 6 7 8 9 10

[BC22] 40 50 80 80 80 80 110 110 110
This work 32 42 64 64 64 64 86 86 86

6 Conclusion
In this paper, we analyze the high-latency problem of the existing high-order A2B conversion
scheme. The root cause is believed to lie in the high degree nonlinear functions to compute
the carry in the secure adder. Based on this analysis, we propose a CSA-based high-order
A2B conversion algorithm, which expresses intermediate variables through redundant
numbers to avoid carry calculations in the process of arithmetic shares summation.

As a case study, we implemented an A2B conversion of 32-bit variables side-channel
protection for both hardware and software platforms. Compared with existing KSA-based
A2B conversion, our design reduces latency by 27% to 50% for parameters 9 < k ≤ 33
and 2 < n ≤ 10 under both ASIC standard cell technology and FPGA. Meanwhile, the
proposed A2B conversion has a speedup in software performance.

The security assessment is completed using side-channel evaluation experiments and
theoretical analysis. On the ChipWhisperer development board and SAKURA-G platform,
the software and hardware implementation carried out TVLA experiments, respectively,
demonstrating second-order side-channel security.
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