
Adaptive Distributional Security
for Garbling Schemes

with O(|x|) Online Complexity

Estuardo Alṕırez Bock1, Chris Brzuska2, Pihla Karanko2, Sabine Oechsner3,
and Kirthivaasan Puniamurthy2

1 Xiphera, Finland, estuardo.alpirezbock@xiphera.com
2 Aalto University, Finland, [first name].[last name]@aalto.fi

3 University of Edinburgh, UK, s.oechsner@ed.ac.uk

Abstract. Garbling schemes allow to garble a circuit C and an input
x such that C(x) can be computed while hiding both C and x. In the
context of adaptive security, an adversary specifies the input to the circuit
after seeing the garbled circuit, so that one can pre-process the garbling
of C and later only garble the input x in the online phase. Since the
online phase may be time-critical, it is an interesting question how much
information needs to be transmitted in this phase and ideally, this should
be close to |x|. Unfortunately, Applebaum, Ishai, Kushilevitz, and Waters
(AIKW, CRYPTO 2013) show that for some circuits, specifically PRGs,
achieving online complexity close to |x| is impossible with simulation-
based security, and Hubáček and Wichs (HW, ITCS 2015) show that
online complexity of maliciously secure 2-party computation needs to
grow with the incompressibility entropy of the function. We thus seek
to understand under which circumstances optimal online complexity is
feasible despite these strong lower bounds.
Our starting point is the observation that lower bounds (only) concern
cryptographic circuits and that, when an embedded secret is not known
to the adversary (distinguisher), then the lower bound techniques do
not seem to apply. Our main contribution is distributional simulation-
based security (DSIM), a framework for capturing weaker, yet meaningful
simulation-based (adaptive) security which does not seem to suffer from
impossibility results akin to AIKW. We show that DSIM can be used
to prove security of a distributed symmetric encryption protocol built
around garbling. We also establish a bootstrapping result from DSIM-
security for NC0 circuits to DSIM-security for arbitrary polynomial-size
circuits while preserving their online complexity.

1 Introduction

The garbled circuits approach to secure two-party computation goes back to a
seminal work of Yao [Yao82a] and allows two parties to evaluate a circuit C
on their private inputs. Bellare, Hoang and Rogaway (BHR) [BHR12b] suggest
to abstract out the central building block behind this approach into a garbling

scheme. A garbling scheme allows a party (called garbler) to garble a circuit C
and input x into C̃ and x̃ such that another party (called evaluator) can derive
C(x) from C̃ and x̃. Selective (simulation-based) security of a garbling scheme
is defined as the comparison between real and simulated garbling: A garbling
scheme is secure if no efficient adversary can distinguish a real garbling from the
output of a simulator that is given only C(x) and some leakage Φ(C) on C.

BHR further point out [BHR12a] that in some settings, a stronger adaptive
security notion is needed, in which the adversary chooses the input x adaptively
after seeing the garbled circuit C̃. In particular, now the simulator works in two
stages and has to produce C̃ first given only Φ(C), and produces x̃ only after
seeing C(x). The second adaptive phase is often referred to as the online phase,
and |x̃| as the online complexity.

In the selective setting, |x̃| can be linear in the size of x and independent of
any other circuit dimension. For example, |x̃| = λ|x| in the case of Yao’s gar-
bling scheme and many of its variants, where λ denotes the security parameter.
Ideally, the online complexity of adaptively secure garbling schemes would also
match this bound. Unfortunately, Applebaum, Ishai, Kushilevitz and Waters
(AIKW [AIKW13]) show that adaptively secure garbling schemes for pseudo-
random generators (PRGs) require online complexity of at least the output size
|C(x)|, and indeed, adaptively secure constructions for general circuits match
this bound [BHR12a,AS16,HJO+16,JW16,GS18,JO20].

Circumventing the AIKW lower bound. Approaches to circumvent the
AIKW lower bound include complexity leveraging over all possible values of
x (with a superpolynomial-time simulator) and proving security in the pro-
grammable random oracle model [BHR12a]. Another line of work shows how
to construct adaptively secure garbling schemes with low online complexity
(|x̃| = O(|x|)) for restricted circuit classes [JSW17,KKP21,AS16] which is con-
tained in the class of all efficiently invertible circuits and, therefore, unfortunately
exclude garbling most cryptographic functions with adaptive simulation-security.

Relaxing garbling scheme security. In this work, we explore a new approach
which seems suitable for cryptographic circuits. Concretely, we identify a relaxed
(simulation-based) garbling scheme security notion that is not affected by the
same lower bound and ask which circuit classes can be securely garbled with
respect to it. When garbling cryptographic circuits, some inputs are typically
generated honestly and secretly, and hence, an (efficient) adversary does not
know them - an indication that the standard definition of adaptive simulation-
based security might be too strong.

1.1 Summary of contributions

Generalizing adaptive garbling scheme security. Our main contribution is
a security framework for garbling schemes, called distributional simulation-based
security (DSIM) which relaxes the existing simulation-based adaptive security

notion. The idea is to model realistic restrictions on the knowledge of adversary
and simulator such as partially hiding the circuit (or inputs) that is garbled
from the adversary. DSIM security bypasses the AIKW lower bound and our
generalization of it as they are specific to the adversary’s and simulator’s (lack
of) knowledge in the adaptive simulatability game.

We then show relations between DSIM and existing adaptive security notions,
in particular that adaptive simulatability implies DSIM when suitably restricting
DSIM parameters. We further show how use a DSIM-secure garbling scheme
to turn an authenticated encryption scheme (AE) into a two-party distributed
encryption protocol. The AE scheme needs to be additionally secure under linear
related-key (RK) attacks. PRFs secure under RK attacks can be achieved, e.g.,
based on key-homormorphic PRFs [BLMR13].

Bootstrapping distributional security. Moreover, we show a bootstrapping
result for circuits which are output indistinguishable, i.e. for which there exists
an efficient circuit sampler producing C such that C(x) and C(0|x|) are compu-
tationally indistinguishable for arbitrary adversarially chosen inputs x.

Theorem 1 (Informal). Assume that garbling scheme Gb is DSIM-secure for
garbling the class of output indistinguishable NC0 circuits with online complexity
α and assume IND-CPA secure symmetric encryption exists. Then, there exists
a garbling scheme that is DSIM-secure for garbling the class of all polynomial
size output indistinguishable circuits with online complexity α.

Note that the bootstrapping result preserves the online complexity of the gar-
bling scheme, and hence it suffices to construct a DSIM-secure garbling scheme
for the class of output indistinguishable NC0 circuits with online complexity
O(|x|) to obtain a DSIM-secure garbling scheme for the class all output indis-
tinguishable circuits with online complexity O(|x|). The construction of such a
garbling scheme remains a very interesting open problem.

Further results about standard simulation-based security To comple-
ment our main contribution, we also include two smaller results within the con-
text of the standard adaptive security notion. We generalize the AIKW lower
bound and provide small improvements regarding the online complexity for gar-
bling NC1 circuits.

Bounding online complexity in terms of (pseudo-)entropy. AIKW show that
garbling a pseudorandom generator (PRG) with adaptive security requires the
online complexity of the garbling scheme to grow with the output size |C(x)|.
Using a similar, more general idea, Hubáček and Wichs (HW [HW15]) show
that the online complexity of maliciously secure 2-party computation is lower
bounded by the (‘worst-case’) Yao incompressibility entropy [Yao82b,BSW03] of
the computed function. As a corollary, HW gives an analogous lower bound for
the online complexity of adaptively secure garbling schemes: Consider a special

case of 2PC protocol where one of the parties does not have any input, now we
can realize the maliciously secure two-party computation protocol as simply one
party first sending the garbled function (offline) and then sending the garbled
input (online). Now the online complexity equals the length of the garbled input,
so HW lower-bound tells that in an adaptively secure garbling scheme, the online
complexity is lower bounded by the (‘worst-case’) Yao incompressibility entropy
of the function output.

We (Section 7) prove the HW corollary for adaptively secure garbling schemes
directly and additionally we show how to extend the corollary to average case
Yao incompressibility entropy [TVZ05]. The lower bounds include cryptographic
functions such as PRGs, pseudorandom functions, and encryption schemes, all of
which (when using suitable parameters) have higher incompressibility entropy
than their input size. Note that the more standard notion of HILL pseudo-
entropy (indistinguishabililty from a distribution with k bits of Shannon en-
tropy [HILL99] or min-entropy [BSW03]), if high, also implies high (average case
or worst case, depending on the HILL pseudo-entropy version4) incompressibility
entropy, but the converse is not necessarily true [HLR07,HMS23], whence HW
and we state our results in terms of incompressibility entropy.

Theorem (Informal). Let C ←$ SamC(1
λ) be a distribution over circuits and

x←$ Samx(C, 1
λ) be a distribution over inputs, depending on C. Then if Gb is a

SIMΦ-secure garbling scheme, its online complexity |x̃| is greater or equal to the
worst case (average case) Yao incompressibility-entropy of C(x) (minus a small
constant) conditioned on Φ(C), where Φ is some function on the circuit.

Here Φ is a function that depends on the flavour of SIM security we want to
capture. Typically, Φ is just the topology of the circuit C, which would not
contribute to the entropy, but it can also be a less trivial function.

Garbling schemes with (almost) optimal online complexity. Our final result re-
visits the question of constructing garbling schemes with (almost) optimal on-
line complexity under existing security notions. To circumvent the AIKW lower
bound, various works considered the weaker notion of indistinguishability-based
adaptive security [BHR12a]. (For brevity, we will call this notion adaptive in-
distinguishability or adaptive IND security.) Table 1 summarizes the existing
results, the circuit class they apply to, their online complexity and security as-
sumptions. Note that any circuit with constant treewidth can be simulated in
NC1 [JS14], and that there exist NC1 circuits that do not have low treewidth,
e.g. Goldreich’s PRG [Gol11] is in NC0 ⊆ NC1 [App14] but has high expan-
sion and hence high treewidth. In fact, low treewidth already implies invertibil-
ity [Bod88,Fre90,BK08]5.

Concretely, we revisit the adaptively indistinguishable garbling scheme by
Jafargholi, Scafuro and Wichs (JSW) [JSW17] for garbling NC1 circuits. The

4 See [Kar23] for a survey on the different notions of HILL pseudo-entropy and Yao
incompressibility entropy and their implications.

5 See Appendix A for further discussion.

Circuit class online complexity assumption

Ananth & Sahai [AS16] Arbitrary poly(λ, |x|) iO + OWF
Kamath, Klein & Pietrzak [KKP21] Constant tw λ|x| OWF
Jafargholi, Scafuro & Wichs [JSW17] NC1 2λ|x|+ 2λ2d OWF

this work NC1 2λ|x| OWF

Table 1: Overview of adaptively indistinguishable garbling schemes with online
complexity linear in the input size |x|, by circuit class for which security is known.
d denotes the circuit depth and λ the security parameter.

JSW construction has an online complexity that includes a small linear overhead
in the circuit depth. We show how to modify the construction to remove this
overhead.

Theorem (Informal). Assuming the existence of one-way functions, there ex-
ists an adaptively indistinguishable garbling scheme for NC1 circuits with online
complexity 2λ|x|.

Jafargholi, Scafuro and Wichs further observed that an adaptively indistin-
guishable garbling scheme (IND) is also adaptively simulatable when restricting
the garbling scheme to efficiently invertible functions. Adaptive IND security
ensures that garblings of (C0, x0) and (C1, x1) are indistinguishable, even when
x0 and x1 are chosen adaptively, as long as C0(x0) = C1(x1). Since this equality
requirement is rather restrictive, it is not obvious how to use IND security for
cryptographic circuits in general. However, IND secure garbling should be useful
to use with all techniques that are compatible with indistinguishability obfusca-
tion (iO)as well, because iO requires that for all x, C0(x) = C1(x) which implies
the condition C0(x0) = C1(x1) for x = x0 = x1. Therefore, IND security should
be useful, e.g., for puncturable PRFs. We show the following:

Corollary (Informal). Assuming the existence of one-way functions, there ex-
ists an adaptively simulatable garbling scheme for efficiently invertible NC1 cir-
cuits with online complexity 2λ|x|.

1.2 Outline

In Section 2, we provide a technical overview over our main results. Section 3
provides background on garbling schemes and cryptographic primitives. Section 4
introduces our notion of distributional simulation-based security (DSIM). We
show how to use the notion in Section 5 on the example of distributed symmetric
encryption and prove a bootstrapping results for DSIM-secure garbling schemes
in Section 6. Our direct proof of the HW incompressibility-based lower bound
for garbling schemes is presented in Section 7. Finally, we show how to garble
efficiently invertible NC1 circuits with online complexity 2λ|x| based on one-way
functions in Sections 8.

Fig. 1: Simulation-based security games Sim0A,Gb and Sim1A,S for garbling scheme
Gb, adversary A and simulator S, and circuit leakage function Φ.

2 Technical overview

This section provides an overview of our core contribution, a relaxed simulation-
based security notion for garbling schemes.

2.1 Definining distributional simulation-based (DSIM) security

A quick recap of the existing adaptive simulation-based security notion [BHR12a]:
Figure 1 shows the real and ideal security games as interaction between adver-
sary A, the security game, and a simulator S. In the ideal game Sim1A,S , A
chooses (and hence knows) the circuit C and input x to be garbled, while the
simulator has to simulate given leakage Φ(C) and output C(x) only. Intuitively,
this simultaneously captures strong privacy guarantees on the circuit and input.

This security notion gives the adversary the power to choose and learn the
full circuit C and the input x to be garbled. The AIKW lower bound and our
generalization effectively exploit an attack vector that is specific to this security
notion: Since the adversary knows both C and x, they can compute the output
C(x) themselves and then compare it to the result of the garbled circuit evalua-
tion. A simulator on the other hand is asked to simulate the garbled input given
only C(x). As AIKW and HW show, this simulation can simply not succeed
if C(x)|Φ(C) produces too much (pseudo-)entropy. However, the main purpose
of using a garbling scheme is to hide at least some information about either C
or x, else one could evaluate C(x) in the clear. For example when garbling a
cryptographic function such as an encryption function enc(k, ·) for secret key k,
the key is typically sampled as part of the outer protocol. Hence only the garbler
knows k. Thus when defining and proving security against a malicious evaluator,
it suffices to prove security against an adversary (i.e. the evaluator) who does not
know k and thus does not know the entire circuit C. As it suffices to consider a
weaker adversary, we introduce two modifications to games Sim0A,Gb and Sim1A,S :

Modification 1: Partially hiding the circuit from A. Instead of A choosing C, the
game is parameterized by a sampler Sam whose description is known to the ad-
versary, leading to a distributional definition style. The sampler outputs a circuit
C and circuit leakage lkgC . The latter is given to both adversary and simulator

Fig. 2: Distributional simulation-based security games DSim0Sam,A,Gb,Λ and

DSim1Sam,A,S,Λ for garbling scheme Gb, sampler Sam, adversary A, simulator S,
and simulator leakage Λ.

and captures the partial information that A receives about C. An adversary may
for instance be allowed to choose and learn which class of functions is garbled,
e.g. the particular encryption scheme, but not the random choice of key. If on
the other hand Sam samples from a distribution containing a single fixed circuit,
then the adversary’s knowledge is the same as in the existing security notion. We
further augment the leakage so that it outputs a PPT oracle O which depends
on the (secret) state of Sam. Oracle O models, e.g., encryption queries which
depend on a secret key k that is also used in a circuit. Allowing such oracles
supports composability, as we will see in Section 5, and it is similar to the inter-
face which the ideal functionality exposes to the simulator in Canetti’s universal
composability framework [Can01]. For example, in our case this allows us to
prove meaningful security of garbling an $-RK-AE secure encryption scheme;
here the $-RK-AE security allows the adversary to make multiple queries to the
encryption oracle, which would be impossible to model without our “free-form”
oracle O that can contain the encryption oracle in this example use-case.

Modification 2: Relaxing the consistency requirement on S. The relaxation to
partial adversarial knowledge of C then makes it also natural to relax simulation
requirements: If the partial knowledge an adversary gains about C and x does
not allow to infer C(x) but only some distribution of a possible output, then
simulation may be with respect to this distribution instead of a particular output.
We capture this observation through a new leakage function Λ(C, x) which as
before, is applied to obtain the simulator’s input in the game’s online phase. This
leakage could be C(x) (as in SIM), or empty (the other extreme) or anything in
between, depending on what models the situation best (the less information we
give to the simulator, the stronger the security guarantee by DSIM). In our $-RK-
AE encryption example Λ(C, x) = ∅, since as long as the key remains unknown
to the adversary, a uniformly random output is indistinguishable from enc(k, x)
for any x. So, the simulator can model the output as a uniformly random string,
without knowing the actual output. Interestingly, this gives the security notion
a semi-adaptive flavour as the simulator does not depend on the input x at all.

DSIM security games. Figure 2 shows a slightly simplified version of our
new security games as interaction between adversary A, the security game, and
a simulator S. Note that, while consistency is relaxed in the security definition,
the garbling scheme is still expected to provide the usual correctness guarantees.

Related work Our distributional security notion for garbling schemes is in-
spired by some existing techniques for sampling inputs in security games.

Distributional security notions. A distributional approach is the standard way
to define security of deterministic public-key encryption schemes [BBO07]. In
this context, an adversary that is allowed to choose the message m to be en-
crypted could simply re-encrypt m under the public key and compare with the
challenge ciphertext, leading to a trivial attack. As discussed above, the AIKW
lower bound is derived from a similar attack where the adversary can compare
C(x) to the output of the simulation. In both cases, the solution is to limit the
adversary’s knowledge, and define and prove security only for the scenario where
the adversary knows the input distribution.

Another context where distributional security notions have been used before
is zero knowledge [Gol93,DNRS99,JKKR17,Khu21]. Distributional zero knowl-
edge and related notions relax the zero knowledge property by choosing the
statement, i.e. the verifier’s input to the computation, from an efficiently sam-
plable distribution instead of universally quantifying over it. In the context of
garbling schemes on the other hand, existing notions give the adversary the
power to choose all inputs to the computation, and our relaxation to distri-
butional security allows to hide some of the inputs from the adversary while
maintaining a relaxed form of adversarial control over them.

Circuits samplers. Our definitional style uses a circuit sampler which is reminis-
cent of the treatment of Universal Computational Extractors (UCE) as abstrac-
tion of keyed hash functions by Bellare, Hoang and Keelveedhi [BHK13]. When
using the DSIM definition with respect to the class of output indistinguishable
circuits, one can view the DSIM notion as a notion of garbling schemes for prob-
abilistic functionalities which is somewhat similar to the concept of probabilistic
indistinguishability obfuscation (piO), a notion put forward by Canetti, Lin, Tes-
saro and Vaikuntanathan [CLTV15], where one should not be able to distinguish
obfuscations of two computationally indistinguishable distributions D0 and D1.
Our DSIM variant is different from piO in that DSIM is simulation-based and,
since we study garbling schemes, the adversary only gets to see a single sample
of the distribution.

2.2 Application: Distributed symmetric encryption

A distributed symmetric encryption protocol (DSE) allows multiple servers to
jointly perform symmetric encryption of a message, such that each server holds

only a share of the key. The notion was formally introduced by Agrawal, Mo-
hassel, Mukherjee and Rindal (AMMR [AMMR18]) and a construction for an
arbitrary number of parties based on distributed PRFs was proposed.

Distributed symmetric encryption for arbitrary encryption schemes. For effi-
ciency reasons, existing constructions have focused on distributed version of
special-purpose encryption schemes [Muk20,ADL+22]. AMMR point out that
while DSE can in principle be achieved from general-purpose MPC (which would
allow to distribute any existing encryption scheme), this approach would be pro-
hibitively expensive. Nevertheless, such a construction would be preferable when
the encryption scheme to be used in an application is already fixed. In this case,
efficiency can be improved in other ways, e.g. through a message-independent
preprocessing phase.

In Section 5, we show a construction for the two-server case based on a
garbling scheme. The idea is to split encryption into two phases: First (and
possibly in advance), the encryption circuit is garbled. Then in the online phase,
only the message needs to be garbled. This preprocessing strategy means that
the garbling scheme needs some flavour of adaptive security and we show that
our new distributional simulation-based security notion suffices.

Remark. Encryption is typically length-preserving, so one could use a garbling
scheme whose online complexity is proportional to its output length also. How-
ever, if the same message was, say, encrypted under t keys into t ciphertexts,
then we would have a length-expanding circuit whose pseudo-entropy grows with
t. For simplicity of exposition, we will focus on the single-key version.

We show security in a simplified and more restricted model in comparison to
AMMR: We assume a two-server setting where only server S2 makes encryption
queries. Server S2 acts as evaluator in the garbling scheme, and we focus on
showing security against a corrupt S2 as this is the more difficult case. Decryption
is assumed to be performed by a trusted party. Finally, we restrict the adversary
to multiple indirect encryption queries but only a single direct encryption query
in the terminology of AMMR.

Protocol overview. For two servers S1 and S2, the construction works as follows.
Assume a symmetric authenticated encryption scheme se, a garbling scheme Gb
with DSIM security with respect to output indistinguishable samplers such as
authenticated encryption, and ideal oblivious transfer. In the basic construction,
each server Si holds an additive share ki of the symmetric encryption key k =
k1⊕k2. To encrypt a message m under se and k and randomness r = r1⊕r2, the
servers act as follows: Server S1 samples r1 and garbles enc(k1⊕·, ·; r1⊕·). Both
servers then run an OT protocol to garble the missing inputs k2, m, and r2.
We show that the AE security of the symmetric encryption scheme se still holds
against a malicious server S2. We need to assume related-key security of the AE
against linear functions since the malicious server can choose an arbitrary key
k1 to be xored on k2.

For the case of encrypting the message under t different keys k1, . . . , kt, the
output of the circuit would consist of t ciphertexts. To compress the size of S2’s
input, the key shares kj2 can be computed by a PRG as kj2 = PRG(sj), and
similarly for S2’s randomness. Then in the online phase, we only need to garble
the two PRG seeds and the message, both of which are independent in size of t
and hence the output size. See Section 5 for details on the single-key version of
the protocol.

2.3 Bootstrapping NC0 to polynomial-size circuits

In the realm of obfuscation, bootstrapping is an established technique to turn
positive results for a limited class of circuits into a positive result for arbitrary
polynomial-size circuits. The bootstrapping techniques in the context of obfus-
cation follow the randomized encoding approach by Applebaum, Ishai, Kushile-
vitz [AIK04], see e.g. [GGH+13,Agr19] for examples. Assume we can obfuscate
low-depth circuits. Instead of directly obfuscating a given high-depth circuit C(x)
for inputs x, a randomized encoding function is applied to the circuit. The result
C̃(x; r) is a new circuit that outputs a randomized encoding of C(x). C̃(x; r) uses
additional randomness r and is chosen such that for random r, C̃(x; r) does not
leak more information than y = C(x). If the encoding function itself has low
depth, then C̃(x; r) can now be obfuscated, and y can be recovered from C̃(x; r)
via a (high-depth, public) decoding function Dec.

Since randomized encodings and garbling schemes are different abstractions
of the same underlying idea, it is natural to ask if the randomized encodings
bootstrapping technique can be used to bootstrap adaptive security of garbling
schemes from low-depth circuits to arbitrary polynomial-size circuits. That is,
instead of directly garbling a circuit C(x), we could try to (outer) garble the
(inner) garbling function C̃(x; r) := [GCircuit(C(·); r),GInput(x)] with explicit
hardcoded randomness r. Now, if the inner garbling scheme produces a low
depth circuit C̃, the outer garbling scheme only needs to be secure for low-depth
circuits, and, the inner garbling scheme only needs to be selectively secure, not
adaptively. Now, the inner garbling scheme C̃ can be simply, e.g., Yao’s garbling
scheme, which is useful for two reasons: (1) Yao can be proven selectively secure
assuming it uses $-IND-CPA symmetric encryption [LP09,BHR12b,BO23] and
(2) Yao’s garbling can be implemented in constant depth (see Lemma 1 for
details).

However, proving SIM security in this setting is infeasible for the following
reason. When we try to reduce the SIM security of the combined (garbling of
garbling) garbling scheme to the SIM security of the outer garbling scheme, the
adversarial evaluator chooses the circuit to be garbled, in this case, the inner
garbling function C̃(.; r) with the hardcoded randomness r. Adversary knowing
r trivially compromises the security of the inner garbling.

Luckily, our DSIM security notion precisely allows to circumvent the ran-
domness issue by dividing the adversary into two parts that do not share a
state: first part samples the circuit from a suitable output indistinguishable dis-
tribution (e.g. $-IND-CPA secure encryption with a uniformly random key, see

Definition 8 for how exactly we define the natural property of output indistin-
guishability) and the second adversary interacts with the garbler. Hence, we can
prove Theorem 1.

3 Preliminaries

All algorithms take as input the security parameter 1λ. We write it explicitly for
some algorithms, but leave it implicit for most algorithms. a← A(x) assigns the
result of an execution of the deterministic algorithm A on input x to variable
a. a←$ A(x) denotes the execution of a randomized algorithm. a||b denotes the
concatenation of two bit strings a and b. A2 ◦A1 denotes the composition of two
algorithms in the form A2(A1(.)). We often write AO1,O2 for an adversary access-
ing oracle O1 and O2 and sometimes writeAO1

O2
for conciseness. We sometimes use

the notation A O1,..,Ot→ Gb inspired from state-separating proofs [BDF+18] to say
that the adversary A is the main procedure who has access to oracles O1, ..,Ot

of a distinguishing game Gb. Pr
[
1 = A O1,..,Ot→ Gb

]
then refers to the probability

that the adversary A, after interacting with the oracles O1, ..,Ot of Gb returns
1. We like this notation, because it makes both the name of the game and the
adversary’s oracle explicit, while the standard oracle subscript notation AO1,..,Ot

only contains the oracles (but not the name of the game), and the experiment
notation GbA only contains the name of the game (but not the oracles).

3.1 Cryptographic primitives

$-IND-CPA
b
se(1

λ)

ENC(m)

if k = ⊥

k ←$ {0, 1}λ

c←$ enc(k,m)

if b = 1

c←$ {0, 1}|c|

return c

$-RK-AE
b
se(1

λ)

ENC(m,∆)

if k = ⊥

k ←$ {0, 1}λ

c←$ enc(k ⊕∆,m)

S ← S ∪ {c}
if b = 1

c←$ {0, 1}|c|

return c

DEC(c,∆)

if b = 1

return ⊥
if k = ⊥

k ←$ {0, 1}λ

assert c /∈ S

m← dec(k ⊕∆, c)

return m

Fig. 3: Games $-IND-CPAbse(1
λ) and $-RK-AEbse(1

λ).

For a symmetric en-
cryption scheme se,
$-IND-CPA-security
captures that cipher-
texts are indistin-
guishable from ran-
dom strings of the
same length. The
related-key authen-
ticated encryption se-
curity game $-RK-
AE provides decryp-
tion queries in addi-
tion and allows adversarially chosen linear offsets on the key. Related-key security
has been introduced by Bellare and Kohno [BK03].

Definition 1 ($-IND-CPA and $-RK-AE Security). A symmetric encryp-
tion scheme se = (enc, dec) is indistinguishable under chosen plaintext attacks

($-IND-CPA) if for all PPT adversaries A, the advantage Adv$-IND-CPAse,A (1λ) :=∣∣∣Pr[1 = A(1λ) ENC−→ $-IND-CPA0(1λ)
]
− Pr

[
1 = A(1λ) ENC−→ $-IND-CPA1(1λ)

]∣∣∣

is negligible in λ. se is authenticated encryption under linear related key attacks
if for all PPT adversaries A, the advantage Adv$-RK-AEse,A (1λ) :=∣∣∣Pr[1 = A(1λ) ENC,DEC−→ $-RK-AE0(1λ)

]
− Pr

[
1 = A(1λ) ENC,DEC−→ $-RK-AE1(1λ)

]∣∣∣
is negligible in λ.

3.2 Garbling schemes

Definition 2 (Garbling scheme). A Garbling scheme Gb consists of three
PPT algorithms (GCircuit,GInput,GEval) with the following syntax:

– (C̃,K, d) ←$ GCircuit(C) : the garbling algorithm takes as input a circuit
C : {0, 1}n → {0, 1}m, and outputs a garbled circuit C̃, keys K and output
decoding information d. m and n are polynomials in λ.

– x̃ ←$ GInput(K,x) : the input garbling algorithm takes an input x ∈ {0, 1}n
and the keys K and outputs an encoding of the input x̃.

– y ← GEval(C̃, x̃, d) : the evaluation algorithm takes as input the garbled
circuit, a garbled input, the output encoding information d and returns a
value y ∈ {0, 1}m , where m is the output length of C.

Correctness. of the garbling scheme holds if for any λ, any circuit C and any
input x ∈ {0, 1}n we have

Pr
[
C(x) = GEval(C̃, x̃, d)

]
= 1− negl(λ),

where (C̃,K, d)←$ GCircuit(C), x̃←$ GInput(K,x).

SelSim0A,Gb(1
λ)

(C, x, st)←$A(1λ)

(C̃,K, d)←$ GCircuit(C)

x̃←$ GInput(K,x)

b′ ←$A(C̃, x̃, d, st)

return b′

SelSim1A,S(1
λ)

(C, x, st)←$A(1λ)

(C̃, x̃, d)←$ S(Φ(C), C(x))

b′ ←$A(C̃, x̃, d, st)

return b′

Fig. 4: Experiments SelSim0A,Gb and SelSim1A,S .

We first define selective
simulation security, where
the adversary chooses cir-
cuit C and input x at
the same time. We define
adaptive garbling scheme
security in Section 4, where
we compare it to the DSIM
definition, which we pro-
pose.

Definition 3 (SelSim security). Let Φ be a leakage function. We say that Gb
is selectively simulation secure (SelSim) if for any PPT adversary A there
exists a PPT simulator S such that

AdvSelSimA,S,Gb(1
λ) :=

∣∣Pr[1 = SelSim0A,S,Gb
]
− Pr

[
1 = SelSim1A,S

]∣∣ = negl(λ),

where experiments SelSim0A,Gb and SelSim1A,S are specified in Figure 4.

4 Distributional simulation-based security (DSIM)

In this section, we first define the simulation-based and indistinguishability fla-
vours of adaptive security and then present our new definition of adaptive dis-
tributional simulation-based security (DSIM) for garbling schemes.

Sim0A,Gb(1
λ)

(C, st)←$A(1λ)

(C̃,K, d)←$ GCircuit(C)

(x, st′)←$A(C̃, d, st)

x̃←$ GInput(K,x)

b′ ←$A(x̃, st′)
return b′

Sim1A,S(1
λ)

(C, st)←$A(1λ)

(C̃, d, stS)←$ S(Φ(C))

(x, st′)←$A(C̃, d, st)

x̃←$ S(C(x), stS)

b′ ←$A(x̃, st′)
return b′

IndbA,Gb(1
λ)

(C0, C1, st)←$A(1λ)

(C̃,K, d)←$ GCircuit(Cb)

(x0, x1, st
′)←$A(C̃, d, st)

x̃←$ GInput(K,xb)

b′ ←$A(x̃, st′)
return b′

DSim0Sam,A,Gb,Λ,Filter(1
λ)

(C, lkgC ,O)←$ Sam(1λ)

(C̃,K, d)←$ GCircuit(C)

(x, stA)←$AO(C̃, d, lkgC)

x̃←$ GInput(K,x)

b′ ←$AOC(x)(x̃, stA)

return b′

DSim1Sam,A,S,Λ,Filter(1
λ)

(C, lkgC ,O)←$ Sam(1λ)

(C̃, d, stS)←$ SO(Filter(lkgC))

(x, stA)←$AO(C̃, d, lkgC)

x̃←$ SO(Λ(stA),stS)

b′ ←$AO
C̃(x̃)(x̃, stA)

return b′

Fig. 5: Experiments IndbA,Gb, Sim0A,Gb, Sim1A,S , DSim0Sam,A,Gb,Λ,Filter(1
λ) and

DSim1Sam,A,S,Λ,Filter(1
λ).

Definition 4 (Adaptive SIM security). Let Φ be a leakage function. We
say that Gb is adaptively SIMΦ-secure if for any PPT adversary A there exists
a PPT simulator S such that

AdvSimA,S,Gb(1
λ) :=

∣∣Pr[1 = Sim0A,S,Gb
]
− Pr

[
1 = Sim1A,S

]∣∣ = negl(λ),

where experiments Sim0A,Gb and Sim1A,S are specified in Figure 5.

Definition 5 (Adaptive IND security). We say that Gb is adaptively
IND-secure if for any PPT adversary A which queries circuits C0 and C1

with equal input length and inputs x0 and x1 such that C0(x0) = C1(x1) and
Φ(C0) = Φ(C1), there exists a negligible function negl(λ) such that:

AdvIndA,Gb(1
λ) :=

∣∣Pr[1 = Ind0A,Gb

]
− Pr

[
1 = Ind1A,Gb

]∣∣ = negl(λ),

where the experiment IndbA,Gb is specified in Figure 5.

Definition 6 (Sampler classes). A class of samplers C is a set of PPT ad-
versaries Sam such that (C, lkgC ,O)←$ Sam(1λ).

Definition 7 (Adaptive distributional SIM security (DSIM)). Let C be a
sampler class and Λ be a leakage-function. Garbling scheme Gb is DSimΛ,Filter[C]-
secure if for any PPT Sam ∈ C and any PPT A, there exists a PPT simulator
S such that AdvDSim

Sam,A,S,Gb(1
λ) :=∣∣Pr[1 = DSim0Sam,A,Gb,Λ,Filter(1

λ)
]
− Pr

[
1 = DSim1Sam,A,S,Λ,Filter(1

λ)
]∣∣

is negligible, where Figure 5 defines the experiments DSim0Sam,A,Gb,Λ,Filter(1
λ) and

DSim1Sam,A,S,Λ,Filter(1
λ).

In the above DSIM definition lkgC could be e.g. the topology of the circuit
C (to match the SIM definition). Alternatively, if we are garbling e.g. an en-
cryption scheme with the key hardcoded in the circuit C, then lkgC could be
the circuit C without the hardcoded random key. O is a (possibly stateful) PPT
oracle which might be, for example, an encryption oracle which depends on the
key k embedded into C, OC(x) might additionally depend on C(x), e.g., when
forbidding to send C(x) to a decryption oracle, see Section 5 for an example.
See Section 2.1 for more intuition behind the different parameters.

In the DSIM definition, the grey parameters (Λ,Filter) are optional and can be
ignored (i.e. Filter can be thought of as identity and Λ as empty) when reading
this paper, that is, they are not needed for understanding the bootstrapping
proof or DENC example. They are included just as an example on how to extend
the definition and to draw connection to SIM definition.

Remark on the optional parameters. W.l.o.g. we consider that stA contains vari-
ables for lkgC and x, and, if lkgC allows to compute C, then we also assume that
w.l.o.g., lkgC and stA contain a variable for C which contains the correct value.
This will later allow us to discuss specific leakage functions.

In the special case when the sampler leaks lkgC := C and Λ(stA) = C(x),
SIM implies DSIM, because the adversary has slightly less information in DSIM
than in SIM (since it does not know the randomness used for sampling), and
additionally, the simulator S is stronger in DSIM.

Theorem 2 (SIM implies DSIM). Let Φ be a polynomial-time computable
leakage function. If a garbling scheme Gb is SIMΦ-secure, then Gb is DSimΛ,Filter[C]-
secure, where C = {PPT Sam : (C, lkgC := C) ←$ Sam}, Λ(stA) = C(x) and
Filter(lkgC) is such that Φ(lkgC) can be computed given Filter(lkgC).

Proof. Let Gb be a SIMΦ-secure garbling scheme. Assume towards contradiction
that there is Sam ∈ C and PPT A s.t. for all PPT S AdvDSim

Sam,A,S,Gb(1
λ) is non-

negligible. Define the first stage of the SIM-adversary as A′(1λ) := Sam(1λ) and
A′ is A for all further stages. Let S ′ be the simulator ensured by SIM-security
such that AdvSimA′,S′,Gb(1

λ) is negligible.
Now, define the first stage simulator as S(Filter(lkgC)) = S ′(Φ(lkgC)) and

the second stage simulator as S(·, ·) := S ′(·, ·) and A′ is A for all other inputs.
Now AdvSimA′,S′,Gb(1

λ) = AdvDSim
Sam,A,S,Gb(1

λ), and we reached a contradiction.

We can also recover the other direction, DSIM implies SIM, if we choose lkgC
to be the sampler’s full state and choose Filter(lkgC) = Φ(C) and Λ(stA) = C(x).

Note however, that the core difference between SIM and DSIM is the idea of
sampler classes which restrict the information lkg which is passed from Sam to
A6. Recall that this restriction models that in garbling scheme application such
as private function evaluation, the party choosing the input might have some in-
formation about the function to be evaluated, but not all information—otherwise
one party could simply send its function to the other party. Of particular inter-
est to us are circuits with embedded cryptographic keys which make the output
of the evaluated circuit indistinguishable from a distribution which could have
been chosen independently of the input to the circuit, as, e.g., in IND-CPA-secure
encryption where an encryption of a message m is indistinguishable from

Sam(1λ)

r ←$ {0, 1}p(λ)

Cr ← Cλ(., r)

(lkgCr
,O)← Samleak(r)

return Cr, lkgCr
,O

OutbSam,D(1
λ)

Cr, lkgCr
,O ←$ Sam(1λ)

(x0, st)←$ DO(1λ, lkgCr
)

x1 ← 0|x0|

b∗ ←$ DOCr(xb)(Cr(xb), st)

return b∗

Fig. 6: Output indistinguishability

an encryption of 0|m|. To
be useful for garbling secu-
rity, we need the indistin-
guishable distribution to
be generated by a circuit
of the same size. There-
fore, we demand that the
function distribution con-
sists of a fixed circuit C
for which only the ran-
domness is sampled, i.e.,
C := C(· ; r) is a circuit with randomness r hardcoded into it.

Definition 8 (Output Indistinguishable Sampler). We define the class
Cout of output indistinguishable samplers as the set of PPT Sam such that

Fixed circuit there exists a circuit C = (Cλ)λ, polynomial p and PPT Samleak

such that Sam can be written as in Fig. 6 (left), and
Output indistinguishability for all PPT distinguishers D, the advantage

AdvOut
Sam,D(1

λ) :=
∣∣Pr[1 = Out0Sam,D(1

λ)
]
− Pr

[
1 = Out1Sam,D(1

λ)
]∣∣ = negl(λ),

where Fig. 6 defines Out0Sam,D(1
λ) and Out1Sam,D(1

λ).

Remark. Note that D does not need to receive any leakage about C since the
circuit is fixed. We use the notation lkgCr

just to be consistent with definition
of DSIM.

5 Distributed Symmetric Encryption (DSE)

This section shows that DSIM security with respect to admissible samplers im-
plies useful security properties on the example of distributed encryption that

6 hence, in most cases where DSIM is a meaningful notion, Filter should just be identity.

was introduced in Section 2. For simplicity of exposition, we focus on the case
of two servers and a single message. See Section 2 for further introduction to
our example and a discussion on extending the example into a length-expanding
case while maintaining the same online complexity.

Remember that we are in a setting with two servers who hold secret shares
k1, k2 of a symmetric key k = k1 ⊕ k2, and who wish to perform distributed
encryptions under k. One way to implement such a protocol is by combining
a garbling scheme with an oblivious transfer protocol to obtain a two-party
computation protocol for evaluating enc(k1 ⊕ k2, x) for message x ∈ {0, 1}λ.

Below, we describe the protocol between two stateful servers. We refer to
the protocol below as distributed symmetric encryption protocol (DSE), using
a symmetric encryption scheme se and a garbling scheme Gb. We keep state
implicit for conciseness and abstract away the OT protocol. DSE uses a trusted
party in the setup phase who generates and secret-shares a symmetric key k.

Phase I

Server 1

Input: k1, 1
λ

r1 ←$ {0, 1}λ

C ← se.enc(k1 ⊕ ·, ·; r1 ⊕ ·)

(C̃,K, d)←$ Gb.GCircuit(C)

return (C̃, d)

Phase II

Server 2

Input: k2,msg, C̃, d, 1λ

r2 ←$ {0, 1}λ

x← k2||msg||r2
return x

Server 2

Input: x̃, C̃, d, 1λ

x′ ← Gb.GEval(C̃, x̃, d)

return x′

Security. The protocol shall provide security in a setting where the adversary
obtains the key of one of the two servers. We here focus on corruption of the key
of Server 2 and model security in this case. The security notion we consider is
$-AE security in the presence of the above distributed protocol under the same
key. In this toy example, we consider only a single corrupted execution of the
protocol.

Security is defined as indistinguishability of Denc0A(1
λ) and Denc1A(1

λ) in
Fig. 7. The game starts by sampling key shares k1 and k2 and computing a
garbled circuit C̃ and d, either honestly or via simulator S. The adversary A,
acting as corrupted Server 2, is then given C̃, d and k2 and outputs a message
msg to be encrypted. The game proceeds by garbling this message together
with encryption randomness r2 and providing this x̃ to A. At every step, A
has access to encryption and decryption oracles, modeling honest executions run
concurrently. Finally, A outputs a guess b′.

Definition 9 (Distributed Encryption Security (DENC)). Let se be a
symmetric encryption scheme where ciphertexts are twice as long as the plain-
texts. Let Gb be a garbling scheme. Then, the DSE protocol using se and Gb is
DENC-secure if for all PPT adversaries A, there exists a PPT simulator S such
that ∣∣Pr[1 = Denc0A(1

λ)
]
− Pr

[
1 = Denc1A,S(1

λ)
]∣∣

is negligible, where Fig. 7 defines Denc0A(1
λ) and Denc1A(1

λ).

Denc0A(1λ)

k1 ←$ {0, 1}λ

k2 ←$ {0, 1}λ

k ← k1 ⊕ k2

r1 ←$ {0, 1}λ

C ← enc(k1 ⊕ ·, ·; r1 ⊕ ·)

(C̃,K, d)←$ GCircuit(C)

msg←$AENC
DEC(1

λ, k2, C̃, d)

r2 ←$ {0, 1}λ

x← k2||msg||r2
x̃←$ GInput(K,x)

S ← S ∪ {C̃(x̃)}

b′ ←$AENC
DEC(1

λ, x̃)

return b′

ENC(m)

assert |m| = λ

c←$ enc(k,m)

S ← S ∪ {c}
return c

DEC(c)

assert c /∈ S

m← dec(k, c)

return m

Denc1A,S(1
λ)

k1 ←$ {0, 1}λ

k2 ←$ {0, 1}λ

k ← k1 ⊕ k2

(C̃, d)←$ S(1λ)

msg←$AENC
DEC(1

λ, k2, C̃, d)

x̃←$ S(1λ)

b′ ←$AENC
DEC(1

λ, x̃)

return b′

ENC(m)

assert |m| = λ

c←$ {0, 1}2λ

return c

DEC(c)

return ⊥

HybridA(1λ)

k1 ←$ {0, 1}λ

k2 ←$ {0, 1}λ

k ← k1 ⊕ k2

(C̃, d)←$ SENC,DEC
hybrid (1λ)

msg←$AENC
DEC(1

λ, k2, C̃, d)

x̃←$ SENC,DEC
hybrid (1λ)

S ← S ∪ {C̃(x̃)}

b′ ←$AENC
DEC(1

λ, x̃)

return b′

ENC(m)

assert |m| = λ

c←$ enc(k,m)

S ← S ∪ {c}
return c

DEC(c)

assert c /∈ S

m← dec(k, c)

return m

Fig. 7: Security games (left and middle) for DENC-security and hybrid game
(right) for Theorem 3. The adversary A and simulators S and Shybrid are stateful.
We leave their state implicit for conciseness of notation.

Remark. The purpose of the ENC oracle is to model a weaker form of concur-
rent security. To closely model the real-life scenario of distributed encryption, it
might seem useful to replace the ENC oracle also by a circuit garbling oracle. We
remark that this would require studying concurrent composition of DSIM which
is a non-trivial question. Concretely, when composing the same garbled circuit

Sam(1λ)

k1 ←$ {0, 1}λ

k2 ←$ {0, 1}λ

k ← k1 ⊕ k2

r1 ←$ {0, 1}λ

C ← enc(k1 ⊕ ·, ·; r1 ⊕ ·)
lkgC ← k2

O ← ENC,DEC

return (C, lkgC ,O)

OC(x)

ENC(m)

assert |m| = λ

c←$ enc(k,m)

S ← S ∪ {c}
return c

DEC(c)

assert |m| = λ

assert c /∈ S ∪{C(x)}
m←$ dec(k, c)

return m

CO(C̃, d, lkgC)

k2 ← lkgC

msg, st←$AO(1λ, k2, C̃, d)

x← msg

return (x, st)

COC(x)(x̃, st)

b′ ←$AOC(x)(x̃, st)

return b′

Fig. 8: Sampler Sam that emulates the sampling of Denc0(1λ) and a distinguisher
C which just runs A.

multiple times in parallel (with different, adversarially chosen inputs), we need
to prove a hybrid argument which replaces real garbled circuits by simulated
garbled circuits successively. When reducing one step in the hybrid argument
to DSIM security, the other garbled circuits become leakage in the DSIM game.
However, we need to prove that this additional leakage does not jeopardize se-
curity. Unfortunately, proving this property about the leakage requires another
reduction to DSIM security. In order to avoid circular reasoning, new techniques
are necessary to establish self-composability results for DSIM.

Theorem 3. If se is an authenticated encryption scheme in the presence of
linear related-key attacks ($-RK-AE-secure) and Gb is DSim[COut]-secure, then
DSE is DENC-secure.

Remark. We write DSim[COut] to denote DSimΛ,Filter[COut] where Λ is empty
and Filter is identity. That is, the parameters Λ and Filter are not needed for this
section.

Proof. The proof of Theorem 3 proceeds via two high-level game-hops, see Fig. 7
(right) for the hybrid game between DENC0A(1

λ) and DENC1A,S(1
λ). The first game

hop from DENC0A(1
λ) to HybridA(1

λ) reduces t to DSim[COut]-security, and the
second game-hop from HybridA(1

λ) to DENC1A,S(1
λ) reduces to RK-AE security.

We first provide the reduction for the 2nd game-hop, since it is easier than the
first game-hop.

HybridA(1
λ) to DENC1A,S(1

λ): For any PPT simulator Shybrid, we define a PPT
simulator S as follows: The simulator S runs Shybrid, but answers its ENC queries
with random strings of length 2λ and its DEC queries with ⊥. Now, to reduce the

indistinguishability of HybridA(1
λ) and DENC1A,S(1

λ) to $-RK-AE, observe that
k1 is not used and thus, k1 is perfectly random as required. Now, assume toward
contradiction that there exists a pair of PPT algorithms (A,Shybrid) such that
the difference between Pr

[
1 = HybridA(1

λ)
]
and Pr

[
1 = DENC1A,S(1

λ)
]
is non-

negligible, where S is derived from Shybrid as previously described. Then, we can
construct the following adversary B against $-RK-AE: B emulates HybridA(1

λ),
except for all ENC and DEC queries which it forwards to its $-RK-AE-game (with
∆ being the all-zeroes string). B outputs whatever A outputs. By construction,
we have that

Pr
[
1 = A(1λ) ENC,DEC−→ $-RK-AE0(1λ)

]
= Pr

[
1 = HybridA(1

λ)
]
.

Additionally, we claim that

Pr
[
1 = A(1λ) ENC,DEC−→ $-RK-AE1(1λ)

]
= Pr

[
1 = DENC1A,S(1

λ)
]
.

Namely, in both cases, the ENC queries of A are answered by random strings of
length 2λ, and the DEC queries are answered by ⊥, and the game is stateless,
as there is no set S of previously obtained ciphertexts. Therefore, it does not
matter whether queries to ENC and DEC are forwarded to the $-RK-AE1 game
(as done by B) or simulated as random answers and ⊥ answers, respectively,

without forwarding (as done by S). Thus, we can conclude Adv$-RK-AEse,A (1λ) is
non-negligible and reach a contradiction.

DENC0A(1
λ) to HybridA(1

λ): Assume towards contradiction that A is a PPT ad-
versary which has non-negligible advantage in distinguishing between DENC0A(1

λ)
and HybridA,Shybrid

(1λ), regardless of how we instantiate Shybrid. Now, we con-

struct an adversary (Sam(1λ), C) against DSim[COut]-security. (Sam(1λ), C) is
shown in Fig. 8. We first prove that Sam is output indistinguishable.

Claim 1. If se is an $-RK-AE, then Sam ∈ COut.

Sam(1λ)

r ←$ {0, 1}p(λ)

Cr ← Cλ(., r)

(lkgCr
,O)← Samleak(r)

return Cr, lkgCr
,O

OutbSam,D(1
λ)

Cr, lkgCr
,O ←$ Sam(1λ)

(x0, st)←$ DO(1λ, lkgCr
)

x1 ← 0|x0|

b∗ ←$ DOCr(xb)(Cr(xb), st)

return b∗

Fig. 9: Rewritten version of Sam.

Written with explicit random-
ness r := k1||k2||r1 of length
p(λ) := 3λ, circuit Cλ(., r) :=
enc(k1⊕·, ·; r1⊕·) and Samleak(r)
which returns lkgC ← k2 and
O ← ENC,DEC, we can re-write
Sam as in Fig. 9, as required to
prove output indistinguishabil-
ity. We now prove that for all
PPT D, ∣∣Pr[1 = Out0Sam,D(1

λ)
]
− Pr

[
1 = Out1Sam,D(1

λ)
]∣∣

is negligible, via a sequence of game hops shown in Fig. 10.
We inline the code of Sam, move computations downwards when variables are

not used before, and inline the code of the circuit Cr. We also write S ← S∪{c∗}

OutbSam,D(1λ)

k1 ←$ {0, 1}λ

k2 ←$ {0, 1}λ

k ← k1 ⊕ k2

r1 ←$ {0, 1}λ

C ← enc(k1 ⊕ ·, ·; r1 ⊕ ·)

(x0, st)←$ DENC,DEC(1λ, k2)

x1 ← 0|x0|

c∗ ← C(xb)

S ← S ∪ {c∗}

b∗ ←$ DENC,DEC(c, st)

return b∗

OutbSam,D(1λ)

k1 ←$ {0, 1}λ

k2 ←$ {0, 1}λ

k ←$ {0, 1}λ

(x0, st)←$ DENC,DEC(1λ, k2)

x1 ← 0|x0|

msg||∆||r′ ← xb

c∗ ←$ enc(k1 ⊕∆,msg)

S ← S ∪ {c∗}

b∗ ←$ DENC,DEC(c, st)

return b∗

ENC(m)

assert |m| = λ

c←$ enc(k,m)

S ← S ∪ {c}
return c

DEC(c)

assert |m| = λ

assert c /∈ S

m←$ dec(k, c)

return m

Fig. 10: Game hops to show Claim 1.

as an explicit state update instead of writing c∗ = C(xb) as oracle subscript. The
encryption process in the grey line uses fresh and uniform randomness since r1
is uniformly random and so is r1 xored with an adversarially chosen value.

We now reduce to $-RK-AE security (Definition 1) in order to replace the
ENC oracle by one that returns random strings of length 2λ, the string c∗ by a
random string of length 2λ and the DEC oracle by an oracle that always returns
⊥. After the reduction to $-RK-AE security, since c∗ does not depend on b
anymore, we have that Pr[b = b∗] = 1

2 .

The reduction B to $-RK-AE security can answer all ENC queries m by
a query (m,∆ = 0λ) to its own encryption oracle, and it can compute the
ciphertext c by choosing ∆′ := ∆⊕ k2, since then,

k ⊕∆′ = (k1 ⊕ k2)⊕ (∆⊕ k2) = k1 ⊕∆,

which B expects. Analogously, the reduction proceeds with decryption queries.
This concludes the proof of Claim 1 that Sam ∈ COut.

Hence, by DSim[COut]-security, there exists a simulator SDSIM for (Sam,B)
such that∣∣Pr[1 = DSim0Sam,B,Gb,Λ(1

λ)
]
− Pr

[
1 = DSim1Sam,B,SDSIM,Λ(1

λ)
]∣∣

is negligible. Given SDSIM, the simulator Shybrid with oracle access to ENC and
DEC runs

(C̃, d, stS)←$ SENC,DEC
DSIM (lkgC) and x̃←$ SENC,DEC

DSIM ([], stS)

and returns (C̃, d, x̃).

Since
∣∣Pr[1 = DSim0Sam,C,Gb(1

λ)
]
− Pr

[
1 = DSim1Sam,C,SDSIM

(1λ)
]∣∣

=
∣∣∣1 = Pr

[
DENC0A(1

λ)
]
− Pr

[
1 = HybridA,Shybrid(1λ)

]∣∣∣
and the former is negligible and the latter non-negligible, we reached a contra-
diction.

6 Bootstrapping for output indistinguishable samplers

In this section, we bootstrap DSIM security for output indistinguishable sam-
plers returning NC0 circuits to output indistinguishable samplers returning ar-
bitrary polynomial-size circuits. Let us denote the class of output indistinguish-
able samplers by COut and output indistinguishable samplers which only return
circuits in NC0 by COut,NC0 ⊆ COut. Based on a DSimΛ,Filter[COut,NC0

]-secure
garbling scheme (for NC0 circuits), we construct a DSimΛ,Filter[COut]-secure gar-
bling scheme (for arbitrary poly-size circuits): The new garbling scheme Gbcomb =
(GCircuitcomb,GInputcomb,GEvalcomb) which we construct (cf. Fig. 11) combines
two garbling schemes, the inner SelSim-secure garbling scheme Gbin = (GCircuitin,
GInputin,GEvalin) for arbitrary polynomial-size circuits and an outer garbling
scheme Gbouter = (GCircuitouter,GInputouter,GEvalouter) for NC0 circuits which is

DSimΛ,Filter[COut,NC0

]-secure, to obtain a combined garbling scheme Gbcomb which
is DSimΛ,Filter[COut]-secure. Gbcomb garbles a circuit C(·) and input x as depicted
in Figure 11, where Cin is a circuit that takes as input x and produces as output
the (selectively secure) garbling of C, i.e., C̃in, a garbling of x and the decoding
information din. Gbin could be any SelSim-secure, projective7 garbling scheme,
e.g., Gbin = (GCircuitin,GInputin,GEvalin) := (GCircuityao,GInputyao,GEvalyao) is
a valid choice (Yao’s garbling is provably SelSim secure, assuming only the ex-
istence of $-IND-CPA secure symmetric encryption scheme). We need to show
that the circuit Cin is indeed in NC0 and that Gbcomb is DSimΛ,Filter[COut]-secure.

Section 6.1 shows the (easy) statement that the circuit Cin is in NC0. In a
nutshell, this follows from Gbin being a projective garbling scheme and C̃in and
the decoding information din being just some constant bitstring in Cin.

Section 6.2 proves that if the sampler for circuit C(x) is in COut, then the

sampler for circuit C̃(x; r) is in COut,NC0

. Section 6.3 then states and proves our
main bootstrapping theorem.

6.1 Cin is low-depth

Recall that Cin is defined as Cin(·) := [C̃in,GInputin(· ,Kin), din] where C̃in, din
and Kin are constant values (constant bitstrings). Hence, in order to show that

7 A garbling scheme is projective, if for each input bit xi, the input garbling is one
out of two possible strings K0(i) and K1(i). For example, Yao’s garbling scheme is
projective.

GCircuitcomb(C)

rin ←$ {0, 1}12λ|C|

C̃in,Kin, din ← GCircuitin(C(·); rin)

Cin(·)← [C̃in,GInputin(· ,Kin), din]

C̃,K, d←$ GCircuitouter(Cin)

return C̃,K, d

GInputcomb(K,x)

x̃← GInputouter(K,x)

return x̃

GEvalcomb(C̃, x̃, d)

C̃in, x̃in, din ← GEvalouter(C̃, x̃, d)

y ← GEvalin(C̃in, x̃in, din)

return y

Fig. 11: Garbling scheme Gbcomb. Length of rin is chosen s.t. it is compatible
with Yao’s garbling scheme, however, the same results apply to any projective
garbling scheme, just |rin| might need to be adjusted.

the function Cin can be implemented as a constant depth circuit, it is enough to
show the following lemma.

Lemma 1 (Low-depth Projective Input Garbling). If Gbin is a projective
garbling scheme, then GInputin(·;Kin) : x 7→ GInputin(x;Kin) can be described by
a constant-depth circuit.

Proof. Denote by xi the ith bit of the input x. Now Kin consists of key pairs
ki0, k

i
1 for each bit of x. W.l.o.g., we can assume that Kin is a concatenation of

all the key pairs in order. The input garbling of x, i.e. GInputin(x;Kin), outputs
k1x1
||...||kλxλ

. This can clearly be done in constant depth by a circuit that just
checks each bit of x one by one (in parallel) and outputs the corresponding key
kxi for each bit.

6.2 Output Indistinguishable Sampling

We now prove that the above circuit transformation, when applied to a circuit
sampler Samcomb(1

λ) in COut yields a circuit sampler Samouter(1
λ) in COut,NC0

.
Since Samcomb is output indistinguishable, there exists a polynomial p(λ) and
a circuit C = (Cλ)λ∈N such that Samcomb(1

λ) can be written as below (left).
Then, we define the circuit sampler Samouter(1

λ) (with randomness r||rin) as
follows (right):

Samcomb(1
λ)

r ←$ {0, 1}p(λ)

Cr(.)← C(·, r)
return Cr, lkgCr

,O

Samouter(1
λ)

r ←$ {0, 1}p(λ)

rin ←$ {0, 1}12λ|Cr|

C̃in,Kin, din ← GCircuitin(Cr(·); rin)

Cin(·)← [C̃in,GInputin(· ,Kin), din]

return Cin, lkgCr
,O

Lemma 2 (Output indististinguishability). Let Samcomb ∈ COut. If Yao’s

garbling scheme is selectively secure, then Samouter(1
λ) ∈ COut,NC0

.

Proof. Firstly, by Lemma 1, Samouter produces circuits in NC0. Hence remains
to show that Samouter is output indistinguishable, i.e., we prove that for all PPT
adversaries Douter,∣∣Pr[1 = Out0Samouter,Douter

(1λ)
]
− Pr

[
1 = Out1Samouter,Douter

(1λ)
]∣∣ = negl(λ).

OutbSamouter,Douter
(1λ)

Cin, lkgCr
,O ←$ Samouter

(x0, st)←$ Douter
O(1λ, lkgCr

)

x1 ← 0|x0|

b∗ ←$ Douter
OCr(xb)(Cin(xb), st)

return b∗

We prove indistinguishability of Out0Douter
(1λ)

and Out1Douter
(1λ) via several hybrids. The games

OutbDouter
(1λ) and Hb are perfectly equivalent; we

only inline the definition of circuit Samouter and
reorder lines whose order does not affect the
functionality.

From Hb(1λ) to Hb+2
S , we reduce to the selec-

tive simulation-based security of Gbin. The high-
lighted lines in Hb refer to the SelSim adversary
(who first chooses the circuit, the input and its
own state Cr, xb, st, then receives a garbled circuit and garbled input and returns
its guess). Note that the SelSim adversary knows r and can hence compute the
algorithm O and pass it in st, so Douter

O can be replaced by a code equivalent
and efficient algorithm that does not make oracle queries to O (but simply runs
the algorithm O).

From H0+2
S to H1+2

S , we reduce to the output indistinguishability of Samcomb,

note that the two first lines of Hb+2
S are code equivalent to Samcomb and the

highlighted lines refer to the output indistinguishability adversary (note that
the topology Φ(Cr) can be computed when you know C and C is constant). For
this game hop we switch back to O being an oracle algorithm (as opposed to
emulating Douter

O by running the actual algorithm O).

Hb

r ←$ {0, 1}p(λ)

Cr, lkgCr
← C(·, r), lkgCr

(x0, st)←$ Douter
O(1λ, lkgCr

)

x1 ← 0|x0|

rin ←$ {0, 1}12λ|Cr|

C̃in,Kin, din ← GCircuitin(Cr(·); rin)

Cin(·)← [C̃in,GInputin(· ,Kin), din]

(C̃, x̃, d)← Cin(xb)

b∗ ←$ Douter
OCr(xb)((C̃, x̃, d), st)

return b∗

Hb+2
S

r ←$ {0, 1}p(λ)

Cr, lkgCr
← C(·, r), lkgCr

(x0, st)←$ Douter
O(1λ, lkgCr

)

x1 ← 0|x0|

(C̃, x̃, d)← S(Φ(Cr), Cr(xb))

b∗ ←$ Douter
OCr(xb)((C̃, x̃, d), st)

return b∗

6.3 Main theorem

Our main bootstrapping theorem now follows from the above lemmas.

Theorem 4 (Bootstrapping RIND from NC0 to poly). If the garbling

scheme Gbouter = (GCircuitouter,GInputouter,GEvalouter) is DSimΛ,Filter[COut,NC0

]-
secure and if Gbin = (GCircuitin,GInputin,GEvalin) is a projective SelSim-secure
garbling scheme, then the garbling scheme Gbcomb = (GCircuitcomb,GInputcomb,
GEvalcomb) achieves DSimΛ,Filter[COut] security.

Proof. For all PPT Samcomb ∈ DSimΛ,Filter[COut] and for all PPT A, we want to
construct a simulator Scomb such that the following advantage∣∣Pr[1 = DSim0Samcomb,A,Gbcomb,Λ

(1λ)
]
− Pr

[
1 = DSim1Samcomb,A,Scomb,Λ

(1λ)
]∣∣ (1)

is negligible.

DSim0Samcomb,A,Gbcomb,Λ
(1λ)

Cr, lkgCr
,O ←$ Samcomb(1

λ)

(C̃,K, d)←$ GCircuitcomb(Cr)

(x, stA)←$AO(C̃, d, lkgCr
)

x̃←$ GInputcomb(K,x)

b′ ←$AOCr(x)(x̃, stA)

return b′

H0

r ←$ {0, 1}p(λ)

Cr(.)← C(·, r)

rin ←$ {0, 1}12λ|C|

C̃in,Kin, din ← GCircuitin(Cr(·); rin)

Cin(·)← [C̃in,GInputin(· ,Kin), din]

C̃,K, d←$ GCircuitouter(Cin)

(x, stA)←$AO(C̃, d, lkgCr
)

x̃←$ GInputouter(K,x)

b′ ←$AO
C̃r(x̃)(x̃, stA)

return b′

DSim1Samcomb,A,Scomb,Λ
(1λ)

Cr, lkgCr
,O ←$ Samcomb(1

λ)

(C̃, d, stS)←$ SO(Filter(lkgCr
))

(x, stA)←$AO(C̃, d, lkgCr
)

x̃←$ SO(Λ(stA), stS)

b′ ←$AO
C̃r(x̃)(x̃, stA)

return b′

H1

r ←$ {0, 1}p(λ)

Cr(.)← C(·, r)

rin ←$ {0, 1}12λ|C|

C̃in,Kin, din ← GCircuitin(Cr(·); rin)

Cin(·)← [C̃in,GInputin(· ,Kin), din]

C̃, d, stS ←$ SouterO(Filter(lkgCr
))

(x, stA)←$AO(C̃, d, lkgCr
)

x̃←$ SouterO(Λ(stA), stS)

b′ ←$AO
C̃r(x̃)(x̃, stA)

return b′

The experiments DSim0Samcomb,A,Gbcomb,Λ
(1λ) and the hybrid game H0 are code

equivalent by inlining the code of Samcomb, GCircuitcomb and GInputcomb. Now,
observe that the lines highlighted in grey in H0 describe Samouter(1

λ) and thus,
H0 is also equivalent to DSim0Samouter,A,Gbouter,Λ

(1λ), as required for the reduction.

Analogously, the hybrid game H1 is equivalent to DSim1Samouter,A,Gbouter,Λ
(1λ)

with Samouter ∈ COut,NC0

(Lemma 2) and thus, by DSimΛ,Filter[COut,NC0

]-security
of Gbouter (assumption), there is a simulator Souter s.t. H0 is indistinguishable
from H1. If we define simulator S according to grey lines in H1, we notice
that H1 is also code equivalent to DSim1Samcomb,A,Gbcomb,Λ

(1λ), which concludes the
proof.

7 Large Yao-Incompressibility Entropy Implies Large
Online Complexity

Conceptually, the AIKW lower bounds uses that f(x) has real entropy (at most)
|x|, but if f is a PRG, then f(x) has (HILL) pseudo-entropy |f(x)|, since f(x) is
indistinguishable from a uniformly random string of length |f(x)|. AIKW con-
clude that the input garbling size must be proportional to |f(x)| rather than to
|x|. Using an analogous argument, HW directly formulate their lower bound for
online complexity of maliciously secure 2PC in terms of pseudo-entropy, but rely
on (Yao) incompressibility instead which is measured by the shortest efficient
encoding of f(x). High HILL pseudoentropy of f(x) implies high incompressibil-
ity entropy of f(x), since real entropy distribution D cannot be compressed, but
the converse is not necessarily true [HLR07,HMS23], so the use of incompress-
ibility, conceptually, yields a more general result. HW imply lower bounds also
on SIM-secure garbling. In this section, we use the HW incompressibility en-
tropy approach to bound the online complexity of a SIM-secure garbling scheme
directly to obtain a self-contained proof, cf. Section 1.1.

Remark. Yao incompressibility has been defined in different variations, e.g.,
whether the definition considers expected ([TVZ05]) or worst-case (HW, [BSW03])
compression length and whether it uses perfect correctness ([TVZ05]) or im-
perfect correctness (HW, [BSW03]). We now state the Yao incompressibilitiy
definitions of [TVZ05] and HW, the latter of which simplifies the definition by
[BSW03] as is enough in this context.

Definition 10 (Yao Incompressibility Entropy by TVZ [TVZ05]). Let
Φ be a leakage function and (C, x) ←$ D(1λ) be an efficiently sampleable dis-
tribution. The distribution D is kλ-incompressible, if for every (non-uniform)
polynomial-size circuit family pair of a compression algorithm Cmprλ(·, ·) and a
decompression function Decmprλ(·, ·) s.t. for all x: Decmpr

(
Cmpr(C(x), Φ(C)), Φ(C)

)
=

C(x) it holds that

E(C,x)←$D(1λ)[|Cmpr(C(x), Φ(C))|] ≥ kλ,

where |.| is the output length of Cmpr.

Definition 11 (Yao Incompressibility Entropy by HW [HW15]). Let
Φ be a leakage function and (C, x) ←$ D(1λ) be an efficiently sampleable dis-
tribution. The distribution D is kλ-incompressible, if for every (non-uniform)
polynomial-size circuit family pair of a compression algorithm Cmprλ(·, ·) and a
decompression function Decmprλ(·, ·) it holds that if output length l(λ) of Cmpr
is < kλ then there exists a negligible function ϵ s.t.

Pr(C,x)←$D
[
Decmpr

(
Cmpr(C(x), Φ(C)), Φ(C)

)
= C(x)

]
≤ 1/2 + ϵ(λ)

For completeness, we prove our theorems both for Yao incompressibility en-
tropy as defined by HW and by Trevisan, Vadhan and Zuckermann (TVZ [TVZ05])
and refer to Karanko [Kar23] for a more comprehensive overview over different
notions of incompressibility entropy and pseudo-entropy and clarifying of their
relations—especially, high expected incompressibility entropy is implied by high
pseudo Shannon entropy, while high worst-case incompressibility entropy is only
implied by high pseudo min entropy.

Outline. For concreteness, we now revisit the AIKW lower bound which considers
C := PRG. Correctness of the garbling scheme implies that C̃(x̃) = PRG(x).
Therefore, the simulator who first creates a garbled circuit C̃ and then gets
y = PRG(x) also needs to create x̃ such that C̃(x̃) = y. Now, the check that
C̃(x̃) evaluates to y can be performed only knowing y, and since the simulator
gets only y, we can run the simulator on a random y instead of a PRG output—
by PRG security, the simulator should be as successful in creating a simulated
input x̃ such that C̃(x̃) = y. However, if |x̃| < |y| the simulator has an impossible
task, because y has more entropy than x̃. Therefore, |x̃| should be proportional to
the computational entropy of C(x). We now prove that both high TVZ and HW
incompressibility entropy of C(x) imply high online complexity of a SIM-secure
scheme Gb which garbles C and x.

Theorem 5 (TVZ Incompressibility ⇒ High Online Complexity). Let
Gb be a SIM-secure garbling scheme with leakage function Φ, and let (C, x) ←$

D(1λ) be an efficiently samplable distribution with incompressibility-entropy ≥
kλ. If the online complexity |x̃| is uniquely determined by Φ(C), then the expected
online complexity is

E(C,x)←$D(1λ),x̃←$Gb.GInput[|x̃|] ≥ kλ − 2.

Proof. Assume towards contradiction that

E(C,x)←$D(1λ),x̃←$Gb.GInput[|x̃|] < kλ − 2, (2)

Since the garbling scheme Gb is SIM-secure, there exists a PPT simulator S, s.t.

Pr

Gb.GEval(C̃, x̃, d) = C(x)

|x̃| = |Gb.GInput(x)|

∣∣∣∣∣∣∣∣
(C, x)←$D(1λ)
C̃, d, st←$S(1λ, Φ(C))

x̃←$S(1λ, C(x), st)

 ≥ 1− µ(λ),

where µ is negligible. The garbled input that the simulator returns must (al-
most always) have the correct online complexity, since otherwise we can use the
length of the garbled input to distinguish real garbling from simulated garbling.
We now use the simulator S to build a pair of efficient algorithms compressor
Cmpr and decompressor Decmpr. Let Sdetλ be a deterministic version of the sim-
ulator, i.e., Sdetλ is equal to the simulator S(1λ, ·; rλ), where rλ is the internal
randomness that maximizes the above probability. We here use that [TVZ05]
allow Cmpr and decompressor Decmpr to be a non-uniform circuit family. Then,
we define compressor Cmpr and decompressor Decmpr as follows, writing lkgΦ
for a supposed output of Φ(C).

Cmpr(y, lkgΦ)

C̃, d, st← Sdet
λ (lkgΦ) // 1st stage of simulator

x̃← Sdet
λ (y, st) // 2nd stage of simulator

if GEval(C̃, x̃, d) = y AND |x̃| = |Gb.GInput(x)|
return 0||x̃

return 1||y
return x̃1,...,k−2

Decmpr(b||z, lkgΦ)
if b = 1

return z

C̃, d, st← Sdet
λ (lkgΦ)

// 1st stage of simulator

return GEval(C̃, z, d)

The if-clause in the compressor is false only with negligible probability, be-
cause by averaging argument, we can show that there is simulator’s randomness
rλ that achieves at least success probability 1− 2µ(λ). Hence,

ED[|Cmpr(C(x), Φ(C))|] =
∑

C,x∈D,if true

PrD[C, x] |Cmpr(C(x), Φ(C))|︸ ︷︷ ︸
=|Gb.GInput(x)|+1

+
∑

C,x∈D,if false

PrD[C, x]︸ ︷︷ ︸
negl(λ)

|Cmpr(C(x), Φ(C))|︸ ︷︷ ︸
polynomial (WLOG)

︸ ︷︷ ︸
negl(λ)

≤ ED[|Gb.GInput(x)|+ 1] + negl(λ)

= ED[|Gb.GInput(x)|]︸ ︷︷ ︸
≤k−2 by (2)

+1 + negl(λ) < k − 1 + negl(λ)

which is a contradiction with incompressibility.

Remark. Note that as opposed to Theorem 5, in Theorem 6, the online com-
plexity is k instead of k − 2, but, in turn, we only obtain this lower bound on
the online complexity for some (C, x) pair rather than in expectation.

Theorem 6 (HW Incompressibility ⇒ High Online Complexity). Let
Gb be a SIM-secure garbling scheme with leakage function Φ, and let (C, x) ←$

D(1λ) be an efficiently samplable distribution with HW incompressibility-entropy

≥ kλ. Then, there exists (at least) one pair in the support of D whose online com-
plexity is |x̃| ≥ kλ. Again, we assume that the online complexity |x̃| is uniquely
determined by Φ(C).

Proof. The part in gray here is copied in verbatim from proof of Theorem 5.
Assume towards contradiction that for all (x,C) pairs in D

|x̃| < kλ, (3)

Since the garbling scheme Gb is SIM-secure, there exists a PPT simulator S, s.t.

Pr

Gb.GEval(C̃, x̃, d) = C(x)

|x̃| = |Gb.GInput(x)|

∣∣∣∣∣∣∣∣
(C, x)←$D(1λ)
C̃, d, st←$S(1λ, Φ(C))

x̃←$S(1λ, C(x), st)

 ≥ 1− µ(λ),

where µ is negligible. The garbled input that the simulator returns must (al-
most always) have the correct online complexity, since otherwise we can use the
length of the garbled input to distinguish real garbling from simulated garbling.
We now use the simulator S to build a pair of efficient algorithms compressor
Cmpr and decompressor Decmpr. Let Sdetλ be a deterministic version of the sim-
ulator, i.e., Sdetλ is equal to the simulator S(1λ, ·; rλ), where rλ is the internal
randomness that maximizes the above probability. We here use that HW allow
Cmpr and decompressor Decmpr to be a non-uniform circuit family. Then, we
define compressor Cmpr and decompressor Decmpr as follows, writing lkgΦ for a
supposed output of Φ(C).

Cmpr(y, lkg)

C̃, d, st← Sdet
λ (lkg)

x̃← Sdet
λ (y, st)

return x̃1,...,k−1

Decmpr(z, lkg)

C̃, d, st← Sdet
λ (lkg)

return GEval(C̃, z, d)

Now

PrC,x←$D
[
Decmpr

(
Cmpr(C(x), Φ(C)), Φ(C)

)
= C(x)

]
= Pr

[
Sdetλ correct

]︸ ︷︷ ︸
≥1−2µ by avg. arg.

Pr
[
|x̃| ≤ k − 1

∣∣Sdetλ correct
]︸ ︷︷ ︸

=1 by (3)

≥ 1− negl(λ)

which is a contradiction with HW incompressibility.

GCircuityao(C)

for g ∈ Gates(C)

Kg(0)←$ {0, 1}λ

Kg(1)←$ {0, 1}λ

for g ∈ Gates(C) :

Kleft ← KLeftPred(g, C)

Kright ← KRightPred(g, C)

Koutput ← Kg

for (bleft, bright) ∈ {0, 1}2 :

d← (op(g))(bleft, bright)

cin ←$ enc(Kleft(bleft),Kout(d))

cout ←$ enc(Kright(bright), cin)

g̃ ← g̃ ∪ {cout}

C̃[g]← g̃

K ← {(Kg, g), g ∈ InputGates(C)}
Kout ← {(sort(Kg(0),Kg(1)), g),

g ∈ OutputGates(C)}
for g ∈ OutputGates(C) :

if Kout(g) = (Kg(0),Kg(1))

then outg ← 0

else outg ← 1

d← {(outg, g) : g ∈ OutputGates(C)}

return ((C̃,Kout),K, d)

GInputyao(K,x)

for g ∈ InputGates(C) :

dg ← g-th pos. of x

x̃[g]← Kg(dg)

return x̃

GEvalyao(C̃
′, x̃, d)

(C̃,Kout)← C̃′

for g ∈ InputGates(C) : kg ← x̃[g]

for g ∈ Gates(C) \ InputGates(C) :

kleft ← kLeftPred(g, Φ(C))

kright ← kRightPred(g, Φ(C))

for c ∈ C̃[g] :

mout ← dec(kright, c)

min ← dec(klef,mout)

if min ̸= ⊥ then kg ← min

for g ∈ OutputGates(C) :

mapg ← d(g)

if kg = Kout(g)(mapg)

then y[g] = 0

if kg = Kout(g)(1−mapg)

then y[g] = 1

return y

Fig. 12: Yao’s garbling scheme Gbyao with split output map.

8 Garbling NC1 Circuits with Online Complexity O(|x|)

In this section we construct a garbling scheme with online complexity 2nλ and
prove that it is adaptively indistinguishable for NC1 circuits. Our construction
can thus be seen as JSW [JSW17] instantiated just with Yao’s garbling scheme
and without the somewhere equivocal encryption layer. In a nutshell, the JSW
construction garbles a circuit C by first constructing a new circuit C ′ consisting
of two copies of C connected through selector gates that each forward the output
of one of the copies of C. The circuit C ′ is then garbled using Yao’s garbling
scheme and the resulting garbled circuit is encrypted with a somewhere equivo-
cal encryption scheme [HJO+16]. The somewhere equivocal encryption scheme
contributes to the online complexity as decryption keys need to be transmitted
in the online phase. We show through a new security analysis that the final
encryption step can actually be omitted, thus reducing the online complexity

to 2λ|x|. We now present the construction and then discuss how our proof (cf.
Appendix B) differs from JSW.

8.1 Yao’s garbling scheme

Let se = (enc, dec) be a symmetric encryption scheme with key space {0, 1}λ.
Yao’s garbling scheme Gbyao [Yao82a,Yao86] consists of algorithms GCircuityao,
GInputyao and GEvalyao that are shown in Fig. 12. For each wire, two uniformly
random keys are sampled and assigned values 0 and 1, respectively. To garble a
gate g, its left and right predecessor and the corresponding wire keys are deter-
mined, and four ciphertexts are computed according to gate operation op(g).

(Sel0 ◦ C||C) (x)

y0 ← C(x)

y1 ← C(x)

y ← y0

return y

Fig. 13: Circuit C ′.

Our description differs slightly from the literature in the
split between garbled circuit and output decoding informa-
tion: Instead of the more traditional view that treats the
whole output map (consisting of wire keys and their map-
ping to bits) as part of the output decoding information,
we separate the wire keys Kout (sorted lexicographically
to hide their association with bits) from the actual map
d (pointing now to entries in the key list). The wire keys
then become part of the garbled circuit. This is in line with
what JSW called output-key security in their construction:
Yao’s garbling scheme is actually adaptively simulatable
even when the output wire keys (without the mapping to bits) are sent with the
garbled gates in the offline phase. We refer to this version as weak online Yao.
Interestingly, this is reminiscent of the point-and-permute technique [Rog91] ap-
plied only to the output wires, and reduces the online complexity to nλ + m
(assuming a suitable encoding of gate indices). Note that this change does not
affect the combined information contained in the garbled circuit and output
decoding information, we simply redistribute it.

8.2 Our construction

For b ∈ {0, 1}, a selector gate Selb takes as input two bits u0 and u1 and outputs
ub. We define our garbling scheme Gb = (GCircuit,GInput,GEval) as

– GCircuit(C) := GCircuityao(C
′), where C ′ := Sel0 ◦C||C (Fig. 13) is a circuit

consisting of two copies of C connected by m selector gates Sel0.
– GInput(K,x) := GInputyao(K,x||x).
– GEval(C̃, x̃, d) := GEvalyao(C̃, x̃, d)

The input size of C ′ is twice that of C, and hence the input encoding size is
twice that of Yao’s garbling scheme.

Comparison to JSW Construction. JSW additionally encrypt the garbled circuit
with a layer of somewhere equivocal encryption (SEE) where the simulator can
revoke at pebbling complexity many ciphertexts. The overall construction has

an online complexity independent of the output size of the circuit. However,
the online complexity of JSW is affected by the SEE decryption key, which is
sent together with the garbled input. The decryption key removes the layer of
somewhere equivocal encryption and then the garbled circuit can be evaluated
on the garbled input. By the formula in [HJO+16] (Table 1), the size of the
decryption key is t · s · λ · log n, where for JSW, t is the number of gates to be
revoked and s is the size of a garbled gate, which is effectively linear in λ. Since
the number of gates to revoked is either the width w or the depth d of the circuit,
the size of the decryption key is either O

(
dλ2

)
or O

(
wλ2

)
.

8.3 Security

Theorem 7. Assuming IND-CPA security of symmetric encryption scheme se,
the garbling scheme Gb is IND-secure (Def. 5) for NC1 circuits and has an online
complexity of 2nλ.

Our proof of Theorem 7 follows JSW and HJOSW [HJO+16], except for
the game-hop moving from left selectors to right selectors. Here, we show that
C0(x0) = C1(x1) implies that selector gates do not need to be garbled in an
input-dependent way. Namely, recall that Selb(u0, u1) returns ub, but C0(x0) =
C1(x1) implies that u0 = u1 and so the output of Selb(u0, u1) is independent of
bit b. Moreover, u0 = u1 implies that both input bits to Selb and the output bit
of Selb are all equal, so regardless of b, the output 0-key is encrypted under the
input left and right 0-keys and the output 1-key is encrypted under the input left
and right 1-keys. The “mixed” ciphertexts (encryptions under the left 1-key and
the right 0-key as well as encryptions under the left 0-key and the right 1-key)
will never be decrypted, since C0(x0) = C1(x1) implies that the input bit to
the selector gate from C0(x0) is equal to the input bit to the selector gate from
C1(x1), hence their content does not matter. We provide the proof of Theorem 7
in Appendix B.

Acknowledgments

We thank Christoph Egger, Pierre Meyer, the cryptography group at ENS Paris
and the anonymous reviewers of Asiacrypt 2023 for the interesting discussion,
and for pointing us towards the work of Hubáček and Wichs [HW15].

This work was supported by the Research Council of Finland, Blockchain
Technology Laboratory at the University of Edinburgh and Input Output Global.

References

ADL+22. Shashank Agrawal, Wei Dai, Atul Luykx, Pratyay Mukherjee, and Peter
Rindal. Paradise: Efficient threshold authenticated encryption in fully ma-
licious model. In Takanori Isobe and Santanu Sarkar, editors, Progress
in Cryptology – INDOCRYPT 2022, pages 26–51, Cham, 2022. Springer
International Publishing.

Agr19. Shweta Agrawal. Indistinguishability obfuscation without multilinear
maps: New methods for bootstrapping and instantiation. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
Part I, volume 11476 of Lecture Notes in Computer Science, pages 191–
225. Springer, Heidelberg, May 2019.

AIK04. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
NC0. In 45th Annual Symposium on Foundations of Computer Science,
pages 166–175. IEEE Computer Society Press, October 2004.

AIKW13. Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. En-
coding functions with constant online rate or how to compress garbled
circuits keys. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in
Computer Science, pages 166–184. Springer, Heidelberg, August 2013.

AMMR18. Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter
Rindal. DiSE: Distributed symmetric-key encryption. In David Lie, Mo-
hammad Mannan, Michael Backes, and XiaoFengWang, editors, ACM CCS
2018: 25th Conference on Computer and Communications Security, pages
1993–2010. ACM Press, October 2018.

App14. Benny Applebaum. Cryptography in Constant Parallel Time. Information
Security and Cryptography. Springer, Heidelberg, 2014.

AS16. Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for
turing machines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-
A: 13th Theory of Cryptography Conference, Part I, volume 9562 of Lecture
Notes in Computer Science, pages 125–153. Springer, Heidelberg, January
2016.

BBO07. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and
efficiently searchable encryption. In Alfred Menezes, editor, Advances in
Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer
Science, pages 535–552. Springer, Heidelberg, August 2007.

BDF+18. Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Ko-
hbrok, and Markulf Kohlweiss. State separation for code-based game-
playing proofs. In Thomas Peyrin and Steven Galbraith, editors, Advances
in Cryptology – ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes
in Computer Science, pages 222–249. Springer, Heidelberg, December 2018.

BHK13. Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating
random oracles via UCEs. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture
Notes in Computer Science, pages 398–415. Springer, Heidelberg, August
2013.

BHR12a. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure
garbling with applications to one-time programs and secure outsourcing.
In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASI-
ACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages
134–153. Springer, Heidelberg, December 2012.

BHR12b. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, edi-
tors, ACM CCS 2012: 19th Conference on Computer and Communications
Security, pages 784–796. ACM Press, October 2012.

BK03. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-
key attacks: RKA-PRPs, RKA-PRFs, and applications. In Eli Biham,

editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lec-
ture Notes in Computer Science, pages 491–506. Springer, Heidelberg, May
2003.

BK08. Hans L Bodlaender and Arie MCA Koster. Combinatorial optimization on
graphs of bounded treewidth. The Computer Journal, 51(3):255–269, 2008.

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic PRFs and their applications. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
Part I, volume 8042 of Lecture Notes in Computer Science, pages 410–428.
Springer, Heidelberg, August 2013.

BO23. Chris Brzuska and Sabine Oechsner. A state-separating proof for Yao’s
garbling scheme. In 36th IEEE Computer Security Foundations Symposium
- CSF 2023, pages 137–152. IEEE, 2023.

Bod88. Hans L Bodlaender. Dynamic programming on graphs with bounded
treewidth. In Automata, Languages and Programming: 15th International
Colloquium, pages 105–118. Springer, 1988.

Bod98. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209(1):1–45, 1998.

BSW03. Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues
of entropy. In APPROX 2003 and 7th International Workshop on Random-
ization and Approximation Techniques in Computer Science, RANDOM
2003, volume 2764 of Lecture Notes in Computer Science, pages 200–215.
Springer, 2003.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd Annual Symposium on Foundations of Computer
Science, pages 136–145. IEEE Computer Society Press, October 2001.

CLTV15. Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Ob-
fuscation of probabilistic circuits and applications. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptography Con-
ference, Part II, volume 9015 of Lecture Notes in Computer Science, pages
468–497. Springer, Heidelberg, March 2015.

DNRS99. Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer.
Magic functions. In 40th Annual Symposium on Foundations of Computer
Science, pages 523–534. IEEE Computer Society Press, October 1999.

Fre90. Eugene C. Freuder. Complexity of k-tree structured constraint satisfaction
problems. In Proceedings of the Eighth National Conference on Artificial
Intelligence - Volume 1, AAAI’90, pages 4–9. AAAI Press, 1990.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th Annual Symposium on Founda-
tions of Computer Science, pages 40–49. IEEE Computer Society Press,
October 2013.

GM09. Martin Grohe and Dániel Marx. On tree width, bramble size, and expan-
sion. Journal of Combinatorial Theory, Series B, 99(1):218–228, 2009.

Gol93. Oded Goldreich. A uniform-complexity treatment of encryption and zero-
knowledge. Journal of Cryptology, 6(1):21–53, March 1993.

Gol11. Oded Goldreich. Candidate one-way functions based on expander graphs.
In Oded Goldreich, editor, Studies in Complexity and Cryptography. Mis-
cellanea on the Interplay between Randomness and Computation, volume
6650 of Lecture Notes in Computer Science, pages 76–87. Springer, 2011.

GS18. Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with
near optimal online complexity. In Jesper Buus Nielsen and Vincent Rij-
men, editors, Advances in Cryptology – EUROCRYPT 2018, Part II, vol-
ume 10821 of Lecture Notes in Computer Science, pages 535–565. Springer,
Heidelberg, April / May 2018.

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999.

HJO+16. Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro,
and Daniel Wichs. Adaptively secure garbled circuits from one-way func-
tions. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology – CRYPTO 2016, Part III, volume 9816 of Lecture Notes in
Computer Science, pages 149–178. Springer, Heidelberg, August 2016.

HLR07. Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computa-
tional entropy, or toward separating pseudoentropy from compressibility.
In Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, vol-
ume 4515 of Lecture Notes in Computer Science, pages 169–186. Springer,
Heidelberg, May 2007.

HMS23. Iftach Haitner, Noam Mazor, and Jad Silbak. Incompressiblity and next-
block pseudoentropy. In Yael Tauman Kalai, editor, 14th Innovations
in Theoretical Computer Science Conference, ITCS 2023, volume 251 of
LIPIcs, pages 66:1–66:18. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2023.

HW15. Pavel Hubacek and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In Tim Roughgarden, editor,
ITCS 2015: 6th Conference on Innovations in Theoretical Computer Sci-
ence, pages 163–172. Association for Computing Machinery, January 2015.

JKKR17. Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum.
Distinguisher-dependent simulation in two rounds and its applications. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Sci-
ence, pages 158–189. Springer, Heidelberg, August 2017.

JO20. Zahra Jafargholi and Sabine Oechsner. Adaptive security of practical gar-
bling schemes. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj
Prabhakaran, editors, Progress in Cryptology - INDOCRYPT 2020: 21st
International Conference in Cryptology in India, volume 12578 of Lecture
Notes in Computer Science, pages 741–762. Springer, Heidelberg, Decem-
ber 2020.

JS14. Maurice J. Jansen and Jayalal Sarma. Balancing bounded treewidth cir-
cuits. Theory Comput. Syst., 54(2):318–336, 2014.

JSW17. Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs. Adaptively in-
distinguishable garbled circuits. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017: 15th Theory of Cryptography Conference, Part II, volume 10678
of Lecture Notes in Computer Science, pages 40–71. Springer, Heidelberg,
November 2017.

JW16. Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled cir-
cuits. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th The-
ory of Cryptography Conference, Part I, volume 9985 of Lecture Notes in
Computer Science, pages 433–458. Springer, Heidelberg, October / Novem-
ber 2016.

Kar23. Pihla Karanko. Different flavours of HILL pseudoentropy and Yao incom-
pressibility entropy. Cryptology ePrint Archive, Paper 2023/1867, 2023.
https://eprint.iacr.org/2023/1867.

Khu21. Dakshita Khurana. Non-interactive distributional indistinguishability
(NIDI) and non-malleable commitments. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
Part III, volume 12698 of Lecture Notes in Computer Science, pages 186–
215. Springer, Heidelberg, October 2021.

KKP21. Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. On treewidth,
separators and Yao’s garbling. In Kobbi Nissim and Brent Waters, edi-
tors, Theory of Cryptography - 19th International Conference, TCC 2021,
Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part II, volume
13043 of Lecture Notes in Computer Science, pages 486–517. Springer, 2021.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, April 2009.

Muk20. Pratyay Mukherjee. Adaptively secure threshold symmetric-key encryp-
tion. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prab-
hakaran, editors, Progress in Cryptology - INDOCRYPT 2020: 21st Inter-
national Conference in Cryptology in India, volume 12578 of Lecture Notes
in Computer Science, pages 465–487. Springer, Heidelberg, December 2020.

Rog91. Phillip Rogaway. The round complexity of secure protocols. PhD thesis,
MIT, 1991.

RS86. Neil Robertson and P.D Seymour. Graph minors. ii. algorithmic aspects of
tree-width. Journal of Algorithms, 7(3):309–322, 1986.

TVZ05. Luca Trevisan, Salil Vadhan, and David Zuckerman. Compression of sam-
plable sources. Comput. Complex., 14(3):186–227, December 2005.

Yao82a. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science,
pages 160–164. IEEE Computer Society Press, November 1982.

Yao82b. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In 23rd Annual Symposium on Foundations of Computer
Science, pages 80–91. IEEE Computer Society Press, November 1982.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th Annual Symposium on Foundations of Computer Science,
pages 162–167. IEEE Computer Society Press, October 1986.

https://eprint.iacr.org/2023/1867

A Invertibility of low treewidth functions

Recall that Kamath, Klein and Pietrzak (KKP [KKP21]) show indistinguishability-
based security of Yao’s garbling scheme for garbling circuits of constant treewidth.
Existing results show that many NP-complete problems become efficiently solv-
able when restricted to instances with bounded treewidth [Bod88,Fre90,BK08]
which implies that circuits of low treewidth are efficiently invertible. On the one
hand, invertibility of low-treewidth circuits means that the KPP result is sig-
nificantly stronger than orginally stated and shows that low-treewidth circuits
can be garbled by Yao’s garbling scheme with simulation-based security. On the
other hand, invertibility of low-treewidth circuits also means that the KPP result
is not useful for garbling cryptographic functions and especially not for garbling
PRGs and circumventing the AIKW impossibility result.

For self-containedness, we now provide an explicit algorithm which inverts
any circuit with constant treewidth in polynomial time, and any circuit with
polylogarithmic treewidth in quasipolynomial time.

A.1 The inversion algorithm

The inversion algorithm InverterSep we describe below is an adaptation of Goldre-
ich’s inverter for circuits with low expansion [Gol11]. Expansion and treewidth
of a graph both measure how well-connected a graph is, see Section A.4 for their
formal relation. Goldreich’s strategy is a divide-and-conquer approach: Split the
graph of the circuit into two roughly equally sized halves, guess the values at
the merging points, and then invert both halves individually, using the strategy
recursively.

The algorithm InverterSep uses the same strategy and relies on separators
as the merging points. A separator is a subset of vertices that, when removed,
separates the graph into at least two components of roughly equal size, and we
take advantage of the existence of separators whose size is at most the treewidth
[RS86,Bod98]. The recursive inversion subroutine Rec-InverterSep of InverterSep
takes as input a set Y of sinks together with their values and tries to invert
these. This is useful because the output nodes of the main circuit become sinks
of the sub-circuit and thus outputs of the sub-circuit which need to be inverted.

Both algorithms are parametrized with a partial function Sep which, given a
circuit, outputs a smallest balanced separator for it. We assume that Sep works
on C and all of its sub-components defined recursively by the separators provided
by Sep. Sep can either be considered non-uniform information, but can also be
computed without too much effort in some cases. Namely, for a circuit of size |C|
and treewidth tw, computing Sep takes time at most |C|tw which is polynomial
for constant treewidth and quasipolynomial for logarithmic treewidth.

A.2 Definitions and notation

For a circuit C, we use the notation C both for the circuit as well as the under-
lying directed acyclic graph (DAG). We denote the vertex set and directed edge

set of C by VC and EG, respectively. For any A,B ⊆ VC , the edges that have
sources in A and are incident on B are denoted by EC(A,B). For a subset of the
nodes S ⊆ VC , we call a map a : S → {0, 1} an assignment.

Definition 12 (Tree-decomposition [RS86,Bod98]). A tree decomposition
of a directed graph G = (V, E) is a tree, T , with nodes X1, ...,Xp , where each
Xi ⊆ V, satisfies the following properties:

1. Each graph vertex is contained in at least one tree node (i.e., ∪i∈[1,p]Xi = V).
2. For every edge (v, w) ∈ E, there exists a node Xi that contains both v and w.
3. The tree nodes containing a vertex v form a connected subtree of T .

The width of a tree decomposition is the size of its largest node Xi minus one.
Its treewidth tw is the minimum width amongst all tree decompositions of G.

Definition 13 (Separators [RS86]). For a graph G = (V, E), a set S ⊆ V is
said to be a (balanced) separator if the graph restricted to V \ S has at least two
components, and each of these components has size at most 2

3 |V|.

Theorem 8 ([RS86,Bod98]). A graph G with treewidth tw has a balanced
separator of size at most tw.

A.3 Inverting circuits with bounded treewidth

Theorem 9. Let C be a circuit of treewidth tw. Then, there exists a non-
uniform algorithm InverterSep with advice Sep that runs in time O

(
23tw ·log |C|

)
and inverts C with probability 1, i.e.,

Prx←${0,1}n,y←C(x)

[
InverterSep(y, C) ∈ C−1(x)

]
= 1

where n is the input length of C. In particular, if C is polynomial in the security
parameter, then InverterSep runs in polynomial time for constant treewidth and
in quasipolynomial time for polylogarithmic treewidth.

The inversion algorithm InverterSep for advice Sep is shown in Fig. 14.

Proof. We start by introducing some notation. Given a set of separators S for a
circuit C and an assignment a : S → {0, 1}, we denote by Partition(C, S, a) the
set of connected components CC emerging from splitting C at the separators. We
consider the separators neighboring a connected component CC to be part of it.
To make the splitting meaningful, we need to make the following modifications
to C before splitting:

A separator can only be placed on a gate with a single input. If a separator
were to be placed on a two-input node, then the two input wires and the single
output wire8 is replaced by an identity node, and instead of one separator, three
separators are placed on each of the three identity gates.

8 High fan-out can be placed below the new identity node.

InverterSep(C, y)

bound← log |C|
Y ← {(i, yi)|i ∈ sinks(C)}
X ← ∅
X ′ ← Rec-Inverter(C,X, Y)

x′ ← encodeAsg(X ′)

return x′

bruteforce(C,X, Y)

// iterate over all assignments to X

for a : X → {0, 1} :
if C(a(X)) = Y then

X ′ ← {(x, a(x)) : x ∈ X}
return X ′

X ′ ← {(x,⊥) : x ∈ X}
return X ′

Rec-InverterSep(C,X, Y)

if |C| ≤ bound then :

X ′ ← bruteforce(C,X, Y)

return X ′

else :

S ← Sep(C)

// iterate over all assignments to S

for a : S → {0, 1} :
X ′ ← ∅
for (CC,XCC , YCC) ∈ Partition(C, S, a) :

X ′′ ←$ Rec-InverterSep(CC,XCC , YCC)

X ′ ← X ′ ∪X ′′

if X \ S = {x : (x, 0) ∈ X ′ ∨ (x, 1) ∈ X ′}
then X ′ ← X ′ ∪ {(x, a(x)) : x ∈ S ∩X}
return X ′

X ′ ← {(x,⊥) : x ∈ X ′}
return X ′

Fig. 14: Inversion algorithm for low treewidth circuits.

Now, a separator node is either a constant value source or a sink of the con-
nected component CC (or disconnected from it in which case it is not included).
If it is a sink, then it provides an additional output value which needs to be
respected in the process of inversion.

Since the set of input values becomes smaller and the set of output nodes
changes in their process, we actually consider the triple

(CC,XCC , YCC) ∈ Partition(C, S, a)

to be specified by Partition(C, S, a), i.e., the set XCC of input nodes as well as
the set YCC of pairs (g, yg), where g is the index of the output node and yg is
its value.

If X is a set of input nodes and a : X → {0, 1} and Y is a set of pairs (g, yg),
then we use the notation

C(a(X)) = Y

to express that circuit C when evaluated on inputs X carrying values according
to a, the output gates g all carry the values yg as specified by Y .

Finally, note that when using |C|, we refer to the number of non-constant
gates in C.

Inverter runtime. We first turn to the runtime of inverting a circuit C when
|C| ≤ bound = log |C| (base case). In particular, the input size is at a subset
of |C| and hence is upper bounded by |C|. Note that bruteforce runs in time

exponential in the input size, since it enumerates over all possible assignments
to the input. Hence, inversion at the base case runs in time O

(
2log |C|

)
= O(|C|).

For the recursion, observe that by definition of a balanced separator (Def-
inition 13), each connected component is at most of size 2

3 of the size of the
previously largest connected component. Thus, the depth of the recursion is at
most logarithmic in |C|. Each recursion involves 23tw possible branches. Hence,
the overall runtime is (23tw)log |C|, which is is polynomial in the security param-
eter if tw is constant and quasipolynomial if tw is logarithmic.

Inverter correctness. We now prove that if an inverse exists, then the
inverter indeed finds an inverse.

Base Case. bruteforce(C,X, Y) tries out all possible inputs. Therefore, if a
pre-image exists, then bruteforce finds it.

Recursion. Given input (C,X, Y) which has (at least) solution X∗ and as-
suming that all recursion subroutines find pre-images if they exists are sound,
we need to show that RecInverter(C,X, Y) finds a pre-image of Y under C. To
show this, it suffices to argue that for some assignment a : S → {0, 1}, all sub-
routines return a pre-image. Since we know that solution X∗ exists, we can run
C on solution X∗ and see which values the separators S take to obtain assign-
ment a : S → {0, 1}. Since X∗ is a solution for Y under C and is consistent
with a, the corresponding restrictions of X∗ are solutions for the subroutines.
By the assumption that the subroutines find a pre-image if it exists, they all
return a pre-image. As the connected components form a partition, each input
is contained in exactly one partition or is a separator. Thus, indeed, all of X
is covered by the union of the separators and the connected components and
RecInverter(C,X, Y) returns a complete pre-image.

A.4 Connection to circuit expansion

Treewidth and expansion both capture how connected a graph is, and Grohe and
Marx [GM09] show that treewidth and expansion are indeed closely related, as
the treewidth of a graph is at least as high as its (vertex) expansion. We recall
(parameterized) vertex expansion and Proposition 1 of [GM09]:

Definition 14 (Vertex Expansion [GM09]). Let G be a graph. For a set X,
let S(X) denote the set of vertices in V (G)\X that are adjacent to X. For every
α ∈ [0, 1], the vertex expansion of G with parameter α is defined as

min
X⊆V (G)

0<|X|≤α·|V (G)|

|S(X)|
|X|

.

Theorem 10 (Grohe-Marx [GM09]). Let n ≥ 1 and 0 ≤ α ≤ 1. Then for
every n-vertex graph G we have

tw(G) ≥ ⌊vxα(G) · (α/2) · n⌋.

Note that when α = 1
2 , we recover the usual (un-parameterized) notion of

vertex expansion. We then obtain from Theorem 10 that

tw(G) ≥
⌊n
4
· vx(G)

⌋
.

Hence, as soon as n > 3 the treewidth of any n-vertex graph is at least that of
its vertex expansion.

B Proof of Theorem 7

Hyb
bL,bR,sel
A (1λ)

(C0, C1, st)←$A(1λ)
n ← InputLength(C0)

K ←$ Ksample(1n)

C′ ← Selsel ◦ CbL ||CbR

(C̃, d)←$ GCircuityao(C
′)

(x0, x1, st
′)←$A(C̃, d, st)

x← xbL ||xbR

x̃←$ GInputyao(K,x)

b′ ←$A(x̃, st’)
return b′

Fig. 15: Hybrid Hyb
bL,bR,sel
A .

In order to prove adaptive indistinguishability of
our construction, we define a number of hybrid
games that differ in which circuits the circuit
C ′ consists of. Each hybrid game Hyb

bL,bR,sel
A in

Fig. 15 garbles circuit C ′ = Selsel ◦ CbL ||CbR .
It is easy to see that Hyb

0,0,0
A is equivalent to

game Ind0A,Gb, and Hyb
1,1,0
A is equivalent to game

Ind1A,Gb. We then establish two statements about
the relation between hybrids that will allow us to
modify the circuit C ′ that is garbled by switching
the internal circuit and the selector gates.

Circuit switch. The following lemma allows us
to switch the circuit that is not selected by a cir-
cuit of equivalent topology as long as both cir-
cuit/input pairs lead to the same output:

Lemma 3 (Circuit switch). Assuming the IND-CPA security of the under-
lying encryption scheme, for any PPT adversary A which queries circuits C0,
C1 with equal input length and inputs x0 and x1 such that C0(x0) = C1(x1) and
Φ(C0) = Φ(C1), ∣∣∣Pr[1 = Hyb

0,0,0
A

]
− Pr

[
1 = Hyb

0,1,0
A

]∣∣∣ = negl(λ) (4)

and ∣∣∣Pr[1 = Hyb
0,1,1
A

]
− Pr

[
1 = Hyb

1,1,1
A

]∣∣∣ = negl(λ). (5)

Lemma 3 will be proved in Appendix C through a reduction to the adaptive
simulatability of Yao’s garbling scheme: Intuitively, simulatability guarantees
garbling circuit C0 on input x0 is indistinguishable from a simulation given
topology Φ(C0) and output C0(x0), which in turn is indistinguishable from gar-
bling C1 on input x1 as both circuits have the same topology and output.

(a) Hyb0,0,0A : Sel0 ◦ (C0||C0) (b) Hyb0,1,0A : Sel0 ◦ (C1||C1) (c) Hyb0,1,1A : Sel1 ◦ (C0||C1)

(d) Hyb1,1,1A : Sel1 ◦ (C1||C1) (e) Hyb1,1,0A : Sel0 ◦ (C0||C0)

Fig. 16: Overview of game hops in proof of Theorem 7.

Selector switch. The second lemma allows to switch the selector gates:

Lemma 4 (Selector switch). Assuming the IND-CPA security of the under-
lying encryption scheme, we have that for any PPT adversary A which queries
NC1 circuits C0, C1 with equal input length and inputs x0 and x1 such that
C0(x0) = C1(x1) and Φ(C0) = Φ(C1),∣∣∣Pr[1 = Hyb

0,1,0
A

]
− Pr

[
1 = Hyb

0,1,1
A

]∣∣∣ = negl(λ) (6)

and ∣∣∣Pr[1 = Hyb
1,1,1
A

]
− Pr

[
1 = Hyb

1,1,0
A

]∣∣∣ = negl(λ). (7)

Proof of Theorem 7. The proof proceeds as a sequence of game hops, where
indistinguishability of games for each hop was shown in Lemma 3 and 4, re-
spectively. Fig. 16 shows the circuit to be garbled in each game. Observing that
Hyb

0,0,0
A is equivalent to game Ind0A,Gb, and Hyb

1,1,0
A is equivalent to game Ind1A,Gb

then concludes our proof.

B.1 Pebbling Strategies

To prove Lemma 10, we now describe a pebbling strategy PebbleSelectors which
moves from the left to the right configuration for a selector circuit using G moves
and L-R moves. We analyze the complexity of the PebbleSelectors afterwards.

Pebbling Strategy. For every gate i in circuit C, we denote by LeftPred(C, i) and
RightPred(C, i) the two predecessor gates.

• PebbleSelectors(C):

1. For each selector gate i in C:

– Run RecPutGrey(C, LeftPred(C, i)) and RecPutGrey(C,RightPred(C, i))
– Replace the L pebble on gate i with a R pebble.
– Run RecRemoveGrey(C, LeftPred(C, i))
and RecRemoveGrey(C,RightPred(C, i))

• RecPutGrey(C, i):

1. If gate i an input gate, put a grey pebble on i and return.

2. Run RecPutGrey(C, LeftPred(C, i)),RecPutGrey(C,RightPred(C, i)).

3. Put a grey pebble on gate i.

– Run RecRemoveGrey(C, LeftPred(C, i))
and RecRemoveGrey(C,RightPred(C, i))

• RecRemoveGrey(C, i): This is the same as RecPutGrey, except instead of
putting a grey pebble on gate i, in steps 1 and 3 we remove it.

To prove Lemma 10, we establish the following sublemma.

Lemma 5 (Single Output Gate Pebbling Complexity). Let C be a selec-
tor circuit of depth d, with selector gates at the very bottom (on the outputs) and
m outputs. If we start with an arbitrary configurations of left and right pebbles
on the selector gates and white pebbles everywhere on C, then for every output
gate i, there is a (G,LR)-pebbling strategy using at most 2d−1 grey pebbles and t
steps such that in the end, the i-th output (selector) gate is pebbled right instead
of left (or vice versa), all other selector gates are in the same configuration as
in the beginning, and all other gates are pebbled white.

Here, t = 4d−1.

Notice that our pebbling strategy is simply the JW pebbling strategy with
the addition of (nearly identical) rules of pebbling selector gates, and hence the
analysis is essentially the same, and is included here for completeness.

More specifically, we need to analyze both the runtime and space complexity
(number of grey pebbles) of RecPutGrey.

Runtime. We want to find a closed expression for t : N→ N, which is the number
of steps made to place a pebble on layer d (and nowhere else). Note that the
number of steps needed to remove a pebble and the number of steps to place a
pebble are identical. Thus, we know that t(1) = 1 and t(d) = 4t(d − 1). Thus,
we obtain t(2) = 4, t(3) = 4 · 4 and t(d) = 4d−1.

Pebbling complexity. Similarly, we want to find a closed expression for s : N→ N
which is the number of grey simultaneous pebbles needed to place a pebble on
layer d. To count the number of grey pebbles needed, first observe that, in order
to place a pebble on layer d, the algorithm first places a pebble on layer d − 1
and then another pebble on layer d − 1 and then a pebble on layer d. Then, to
remove the first of the two pebbles from layer d− 1, one needs s(d− 1) pebbles,
while there are two more pebbles lying on layer d and lying on the co-parent.
Thus, we have that s(d) = s(d − 1) + 2. Moreover, s(1) = 1. Hence, we obtain
s(d) = 1 + 2 · (d− 1) = 2d− 1.

C Proof of Circuit Switch Lemma

We first establish the adaptive simulatability of weak online Yao (cf. Section 8.1)
before returning to the proof of Lemma 3.

Lemma 6. Assuming the IND-CPA security of the underlying encryption scheme,
weak online Yao is adaptively SIM-secure for NC1 circuits.

Proof sketch. The statement follows directly from a modification to the adaptive
simulatability proof due to Jafargholi and Wichs [JW16]: Observe that when the
output map is computed in the online phase, the map actually only assigns bit
values to existing output wire keys that were sampled in the offline phase. The
output wire keys are moreover not used as encryption keys anywhere else in the
circuit. Since the encryption scheme used to garble gates is further assumed to be
IND-CPA secure, revealing the output wire keys (used as messages in the IND-
CPA game) does not affect security. Wire keys are moreover chosen completely
independently of the rest of the garbling procedure and hence we can use the
messages provided by an IND-CPA adversary.

Lemma 3. We are going to prove the first statement, the second statement fol-
lows from an analogous argument. Let Syao be the simulator for Gbyao obtained

from Lemma 6 when garbling C0. Games Hyb
0,0,0
A and Hyb

0,1,0
A differ only in

the circuit whose output is not selected. Indistinguishability of the two games
is shown in two steps. We define an intermediate game HybSyao that simulates
the garbling of C0 on input x0 using Syao, given only the topology of C0 and
output y = C0(x0) = C1(x1). This game is shown to be indistinguishable from
both Hyb

0,0,0
A and Hyb

0,1,0
A via reductions to adaptive simulatability of garbling

C0 and C1 respectively. Since C0(x0) = C1(x1) and both circuits have the same
topology, and hence both circuits share the same simulator, game HybSyao can be

shown to be indistinguishable from both Hyb
0,0,0
A and Hyb

0,1,0
A .

For the game hop from Hyb
0,0,0
A to HybSyao , we construct adaptive simulatabil-

ity distinguisher B from adaptive indistinguishability distinguisher A as shown
in Fig. 17. The reduction obtains two circuits C0, C1 from A and forwards C0

to the challenger. Upon receiving garbled circuit C̃0 and output wire keys Lout,
B computes a random output map Kout using the keys Lout. With the help of
Kout, the reduction then garbles Sel0 ◦ C0 that can be combined with C̃0 to

Reduction B(1λ):

(C0, C1)←$A(1λ)

Send C0 to the challenger and receive (C̃0, Lout)

for g ∈ OutputGates(C0) :

yg ←$ {0, 1}
(kL, kR)← Lout(g)

Kout(yg)← kL

Kout(1− yg)← kR

Garble Sel0 ◦ C0 according to Gbyao and obtain (C̃,K, d∗),

using Kout as KRightPred for selector gates

C̃∗ ← C̃ ∪ C̃0

(x0, x1)←$A(C̃∗, d∗)

Send x0 to the challenger and receive (x̃∗, d)

b′ ←$A(x̃∗)

return b′

Fig. 17: Reduction B.

obtain d∗ as well as either the garbled circuit C̃∗ = Sel0 ◦ C0||C0 or a similar
garbled circuit C̃∗ where C0 is simulated. Finally, B queries A with input C̃∗

and d∗ to obtain inputs x0, x1, sends x0 to the challenger, forwards the response
to A, and returns A’s output bit b′.

Observe that the output mapKout computed by B does not necessarily match
the one of the challenger. This does however not influence the distributions of
ciphertext in a garbled selector gate since Sel0(bL, bR) = Sel0(bL, 1− bR). Hence
C̃∗ is either Sel0◦C0||C0 garbled according to Yao, or a simulated garbled circuit.
In the first case, B is equivalent to Hyb

0,0,0
A . In the second case, B is equivalent

to HybSyao . The game hop from HybSyao to Hyb
0,1,0
A follows via a similar reduction

that sends C1 and x1 to the challenger instead.

D Selector Switch

We use the language of pebbling games to express our result. We proceed as fol-
lows: To prove the indistinguishability of Hyb0,1,0A and Hyb

0,1,1
A , we define different

pebbles which we can place on gates and which describe how different gates are
garbled. Given such a pebbling configuration, we describe a hybrid game which
garbles the circuit according to the pebbling configuration. We then define legal
moves between pebbling configurations (also knowns as pebbling rules), and we
show that

(1) each legal move reduces to IND-CPA security, and that
(2) we do not make too many moves.

Additionally, we also prove that we do not need more than a certain number of
so-called grey pebbles, but let’s return to this later.

D.1 Pebbling Colors and Rules

We now first introduce our circuit class, then our pebbling colors, and then our
pebbling rules.

Definition 15 (Selector Circuit). We call a circuit a selector circuit if it
consists of two (potentially identical) circuits C0 and C1, composed in parallel
and a layer of selector gates at the bottom determining whether the output of the
left or the right circuit is returned.

Colors Selector nodes either have a left or a right pebble on them. Other nodes
have either a white or a grey pebble on them, leading to four colors: left (L),
right (R), white (W) and grey (G).

Operations associated with colors. A gate with a white pebbled is garbled ac-
cording to the operation specified by this gate. For a gate with a grey pebble
on it, all ciphertexts contain the active output key, i.e., the operation com-
puted by a grey bit depends on which key is active thus also called input-
dependent garbling. For a selector gate with left pebble, we have as operation
Sel0(xleft, xright) = xleft, and for a selector gate with a right pebble on it, we have
as operation Sel1(xleft, xright) = xright. Note that selector garblings are not input-
dependent and that Sel0(0, 0) = Sel1(0, 0) = 0 and Sel0(1, 1) = Sel1(1, 1) = 1.

Configurations. In Section 8.3, different hybrid games used different variants
of the circuit C ′ = Selsel ◦ CbL ||CbR . In this section, we are interested in C ′ =
Selsel ◦ C0||C1 for sel ∈ {0, 1} and C ′ = Selsel ◦ C1||C0 for sel ∈ {0, 1}. Since we
want to swap a left selector by a right selector (or vice versa), in this section,
the left or right pebble on the selector gate determines whether it is a left or
right selector. The hybrids Hyb

0,1,0
A and Hyb

0,1,1
A all garble the entire circuit as

in Yao’s garbling scheme and use either left or right selectors. We give names to
the corresponding pebbling configurations.

Definition 16 (Left/Right Configuration). If C ′ is a selector circuit, we
call a pebbling configuration configleft of C ′ the left configuration if all selector
gates are pebbled left and all other gates are pebbled white. We call a pebbling
configuration configright of C ′ the right configuration if all selector gates are
pebbled right and all other gates are pebbled white.

Pebbling Rules. Our pebbling games only allow the use of the following two
pebbling rules, also illustrated in Fig. 18.

grey (G) If both parents of a node N are grey, then a white pebble on N can
be replaced by a grey pebble and a grey pebble on N can be replaced by a
white pebble.

L R

Fig. 18: Pebbling rules for input dependent gates (left) and left to right selector
gate pebbling rules (right).

left-right (LR) If both parents of a selector node N are grey, then a left pebble
on N can be replaced by a right pebble and a right pebble on N can be
replaced by a left pebble.

Definition 17 (G-LR pebbling strategy). We call a pebbling strategy G-LR,
if it only uses the G rule and the LR rule.

Garbling subroutine. We now define a new garbling subroutine 2Garbleconfig,bit in
Fig. 19. It is parameterized by a configuration config that indicates how to garble
each gate, and partial function bit that contains the current guessed values of
the output of a gate. Gbconfig,bit takes as input two circuits C0 and C1, constructs
the circuit Selconfig ◦ C0||C1 and then garbles Selconfig ◦ C0||C1 as determined by
the colors of the pebbling configuration. Note that

GCircuit(Sel0 ◦ C0||C1) = 2Garbleconfigleft,⊥(C0, C1) (8)

GCircuit(Sel1 ◦ C0||C1) = 2Garbleconfigright,⊥(C0, C1)

GCircuit(Sel1 ◦ C1||C1) = 2Garbleconfigright,⊥(C1, C1)

GCircuit(Sel0 ◦ C1||C1) = 2Garbleconfigleft,⊥(C1, C1)

GInput(K,x0||x1) = 2Input(K,x0, x1)

GEval(C̃, x̃, d) = 2Eval(C̃, x̃, d)

D.2 Main lemmas for the proof of Lemma 4

For the proof of Lemma 4, we prove Equation 6, and the proof of Equation 7 is
analogous. The proof of Equation 6 consists of four lemmas.

The first lemma introduces the guessing of ℓ many bits into the game and
shows that we loose (exactly) a factor of 2−ℓ in security in this step. The next two
lemmas bound the advantage of an adversary between two hybrids that differ
exactly by one pebbling rule step. And the fourth lemma bounds the number
of these steps by a polynomial. We now first state the lemmas, then show that
Equation 6 follows from them, and then provide the proof of the lemmas in
Appendix D.3, Appendix D.4, Appendix D.5 and Appendix B.1.

2Garbleconfig,bit(C0, C1)

for g ∈ Gates(Sel ◦ C0||C1) :

if config(g) = (reduction, op0, op1) then

pL ← LeftPred(g,Sel ◦ C0||C1)

pR ← RightPred(g,Sel ◦ C0||C1)

for g ∈ Gates(Sel ◦ C0||C1)\{pl, pr} :

Kg(0)←$ {0, 1}λ, Kg(1)←$ {0, 1}λ

bL ← bit(pL); bR ← bitR(pR)

KpL(1− bL)← ⊥;KpL(1)← GETAL(bL)

KpR(1− bR)← ⊥;KpR(1)← GETAR(bR)

for g ∈ Gates(Sel ◦ C0||C1) :

Kleft ← KLeftPred(g,Sel ◦ C0||C1)

Kright ← KRightPred(g,Sel ◦ C0||C1)

Koutput ← Kg

if config(g̃) = W :

g̃ ←$ garblewhite(Kleft,Kright,Kout, op(g))

if config(g̃) = L :

g̃ ←$ garblewhite(Kleft,Kright,Kout,Sel0)

if config(g̃) = R :

g̃ ←$ garblewhite(Kleft,Kright,Kout,Sel1)

if config(g̃) = G :

d← bit(g)

g̃ ←$ garblegrey(Kleft,Kright,Kout, d)

if config(g̃) = (reduction, op0, op1) :

g̃ ←$ garblereduction(Kout, op0, op1)

C̃[g]← g̃

K ← {(Kg, g), g ∈ InputGates(Sel ◦ C0||C0)}
for g ∈ OutputGates(C) :

if Kout(g) = (Kg(0),Kg(1))

then outg ← 0

else outg ← 1

d← {(outg, g) : g ∈ OutputGates(C)}

return ((C̃,Kout),K, d)

2Input(K,x0, x1)

for g ∈ InputGates(Sel0 ◦ C0||C0) :

dg ← Value of x0||x1 at position g

x̃[g]← Kg[dg]

return x̃

garblewhite(Kleft,Kright,Kout, op)

g̃ ← ∅

for (bleft, bright) ∈ {0, 1}2 :

d← op(bleft, bright)

if LeftPred(g,Sel ◦ C0||C1) = pL/R then

cin ← ENCL/R(bleft,Kout(d),Kout(d))

else cin ←$ enc(Kleft(bleft),Kout(d))

if RightPred(g,Sel ◦ C0||C1) = pL/R then

cout ← ENCL/R(bright, cin, cin)

else cout ←$ enc(Kright(bright), cin)

g̃ ← g̃ ∪ {cout}
return g̃

garblegrey(Kleft,Kright,Kout, d)

g̃ ← ∅

for (bleft, bright) ∈ {0, 1}2 :

if LeftPred(g,Sel ◦ C0||C1) = pL/R then

cin ← ENCL/R(bleft,Kout(d),Kout(d))

else cin ←$ enc(Kleft(bleft),Kout(d))

if RightPred(g,Sel ◦ C0||C1) = pL/R then

cout ← ENCL/R(bright, cin, cin)

else cout ←$ enc(Kright(bright), cin)

g̃ ← g̃ ∪ {cout}
return g̃

garblereduction(Kout, d)

g̃ ← ∅

for (bleft, bright) ∈ {0, 1}2 :

d0 ← op0(bleft, bright), d1 ← op1(bleft, bright)

c0in ← ENCL(bleft,Kout(d0),Kout(d0))

c1in ← ENCL(bleft,Kout(d0),Kout(d1))

cout ← ENCR(bright, c
0
in, c

1
in)

return g̃

2Eval(C̃, x̃, d)

Same as GEvalyao

See Fig. 12.

Fig. 19: 2Garble subroutine

PebHyb
bL,bR,config,ℓ
A (1λ)

(C0, C1, st)←$A(1λ)
n ← InputLength(C0)

K ←$ Ksample(1n)

C′ ← Sel ◦ CbL ||CbR

for every g s.t. config(g) = G :

bit(g)←$ {0, 1}
r ← ℓ− |Dom(bit)|

s←$ {0, 1}r

(C̃, d)←$ 2Garbleconfig,bit(CbL , CbR)

(x0, x1, st
′)←$A(C̃, d, st)

x← xbL ||xbR

for every g s.t. config(g) = G :

if value of g in C′(x) ̸= bit(g)

then return 0

if s ̸= 0r then

return 0

x̃← 2Input(K,xbL ||xbR)

b′ ←$A(x̃, st’)
return b′

Rconfigold,A
confignew,ℓ(1

λ)

(C0, C1, st)←$A(1λ)
n ← InputLength(C0)

K ←$ Ksample(1n)

C′ ← Sel ◦ CbL ||CbR

for every g s.t. configold(g) = G :

bit(g)←$ {0, 1}
r ← ℓ− |Dom(bit)|

s←$ {0, 1}r

for every g :

if configold(g) = confignew(g) then :

config(g)← configold(g)

else op0 ← op(g, configold(g))

op1 ← op(g, confignew(g))

(C̃, d)←$ 2Garbleconfig,bit(CbL , CbR)

(x0, x1, st
′)←$A(C̃, d, st)

x← xbL ||xbR

for every g s.t. configold(g) = G :

if value of g in C′(x) ̸= bit(g)

then return 0

if s ̸= 0r then

return 0

x̃← 2Input(K,xbL ||xbR)

b′ ←$A(x̃, st’)
return b′

Fig. 20: Hybrid pebbling games and reduction

Lemma 7 (Guessing). Assuming the IND-CPA security of the underlying
encryption scheme, we have that for any PPT adversary A which queries circuits
C0, C1 with equal input length and inputs x0 and x1 such that C0(x0) = C1(x1),
and for all ℓ ∈ N,∣∣∣Pr[1 = PebHyb

0,1,configleft,ℓ

A

]
− Pr

[
1 = PebHyb

0,1,configright,ℓ

A

]∣∣∣
= 2−ℓ

∣∣∣Pr[1 = Hyb
0,1,0
A

]
− Pr

[
1 = Hyb

0,1,1
A

]∣∣∣ (9)

Lemma 8 (G Pebbling move). Let configold and confignew be two pebbling
configurations which are one G pebbling move away from each other, and assume
w.l.o.g., that a grey pebble is removed in this step. Then, for all PPT adversaries
A, ∣∣∣Pr[1 = PebHyb

0,1,configold,ℓ
A

]
− Pr

[
1 = PebHyb

0,1,confignew,ℓ
A

]∣∣∣
≤
∣∣∣Pr[1 = Rconfigold,A

confignew,ℓ
, IND-CPA0L,R

]
− Pr

[
1 = Rconfigold,A

confignew,ℓ
, IND-CPA1L,R

]∣∣∣
where Fig. 20 defines Rconfigold,A

confignew,ℓ
.

Lemma 9 (Bounding a L-R Pebbling move). Let configold and confignew

be two pebbling configurations which are one L-R pebbling move away from each
other, and assume w.l.o.g., that a left pebble is replaced by a right pebble in this
step. Then, for all PPT adversaries A,∣∣∣Pr[1 = PebHyb

0,1,configold,ℓ
A

]
− Pr

[
1 = PebHyb

0,1,confignew,ℓ
A

]∣∣∣
≤
∣∣∣Pr[1 = Rconfigold,A

confignew,ℓ
, IND-CPA0L,R

]
− Pr

[
1 = Rconfigold,A

confignew,ℓ
, IND-CPA1L,R

]∣∣∣
where Fig. 20 defines Rconfigold,A

confignew,ℓ
.

Lemma 10 (Pebbling Complexity). Let C be a selector circuit of depth
d, with selector gates at the very bottom (on the outputs) and m outputs. The
algorithm PebbleSelectors(C) is a (G,LR) pebbling strategy and requires 2d − 1
grey pebbles and m · t steps to move from the left to the right configuration. Here,
t = m · 4d

To see that Equation 6 follows, observe that Lemma 10 sais that there is a
pebbling strategy which needs at most 2d− 1 grey pebbles, thus, we can choose
ℓ = 2d−1. Since the depth d is logarithmic in the security parameter, the factor
2−ℓ which we lose in Lemma 7 is polynomial in the security parameter.

Moreover, Lemma 8 and Lemma 9 ensure that the distinguishing advantage
between two adjacent hybrids is negligible, and Lemma 10 ensures that we need
onlym·4d−1 hybrid games.m·4d−1 is also a polynomial in the security parameter,
since d is logarithmic in the security parameter and since the number of inputs
m is determined by a circuit written by a PPT adversary. Thus, indeed, if the
underlying symmetric encryption scheme is IND-CPA secure, Equation 6 holds.

D.3 Proof of Lemma 7 (Guessing)

Due to Equation 8, we have that for all ℓ ∈ N,

Pr
[
1 = PebHyb

0,1,configleft,ℓ
A

∣∣∣ s = 0|ℓ|
]
= Pr

[
1 = Hyb

0,1,0
A

]
and

Pr
[
1 = PebHyb

0,1,configleft,ℓ
A

∣∣∣ s ̸= 0|ℓ|
]
= 1.

Moreover, Pr
[
s = 0ℓ

]
= 2−ℓ and thus,

Pr
[
1 = PebHyb

0,1,configleft,ℓ
A

]
= 1 · (1− 2−ℓ) + 2−ℓ Pr

[
1 = Hyb

0,1,0
A

]
(10)

Analogously,

Pr
[
1 = PebHyb

0,1,configright,ℓ

A

]
= 1 · (1− 2−ℓ) + 2−ℓ Pr

[
1 = Hyb

0,1,1
A

]
(11)

Putting equation 10 and 11 together directly yields Equation 9.

D.4 Proof of Lemma 8 (G move)

The reduction Rconfigold,A
confignew,ℓ (cf. Fig. 20) proceeds exactly as PebHyb

0,1,configold,ℓ
A

except for the gate g where configold and confignew differ. Here, the operation
induced by configold always encrypts the active key (denoted op0), and the op-
eration induced by confignew (denoted op1) encrypts whichever key should be
encrypted according to the circuit C ′ = Sel◦C0||C1. Here, the reduction uses its
left-or-right oracles for both parents of g.

In order to simulate the rest of the garbling properly, the reduction also
queries the encryption oracles (twice with the same message) whenever the keys
of the parents of g are used for encrypting a key. Since the parents of g are
grey-pebbled, we know that they only encrypt the active key. The active key is
accessible to the reduction because it can retrieve it via the GETA query from
the IND-CPA game and does so in the very beginning.

To see the soundness of the reduction, we can inline the code of the IND-CPA
game into the reduction and observe that indeed, the emulation is perfect.

To see this from the code of the reduction, first observe that the code marked

in pink (cf. Fig. 20) is not used by PebHyb0,1,config
old/new,ℓ

A . The reduction computes

a new configuration config based on configold and confignew which marks g as a
special reduction gate. For the encryptions of all gates which are not g, the re-

duction perfectly emulates PebHyb0,1,config
old/new,ℓ

A . For g itself, if the IND-CPAbL/R

game has bit 0, the encryption always encrypts according to op0, i.e., config
old.

If the bit is 1, then the encryption always encrypts according to op1, except for

the active keys. For active keys, however, op0 and op1 are identical, they both
encrypt the active key. Thus, we have that

Rconfigold,A
confignew,ℓ → IND-CPA0L/R = PebHyb

0,1,configold,ℓ
A

Rconfigold,A
confignew,ℓ → IND-CPA1L/R = PebHyb

0,1,confignew,ℓ
A

and Lemma 8 follows.

D.5 Proof of Lemma 9 (L-R move)

The reduction and essentially all arguments in this proof are analogous to the
proof of Lemma 8 (G move). The core difference is the argument for why, in
this game hop, changing from a left to a right pebble on a selector gate does
not change which output key is encrypted under the two active input keys when
garbling the selector gate.

Since C0(x0) = C1(x1), we have two cases. In case 0, both the 0-keys of
the parent nodes of the selector gate are active and in this case Sel0(0, 0) =
Sel1(0, 0) = 0 as required. In case 1, both the 1-keys of the parent nodes of the
selector gate are active and in this case, we also have Sel0(1, 1) = Sel1(1, 1) = 1
as needed.

	 Adaptive Distributional Security for Garbling Schemes with O**x Online Complexity

