
Foundations of Anonymous Signatures: Formal Definitions,

Simplified Requirements, and a Construction Based on

General Assumptions

Jan Bobolz1, Jesus Diaz2, and Markulf Kohlweiss3

1University of Edinburgh, UK
2Input Output, Spain

3University of Edinburgh and Input Output, UK

January 10, 2024

Abstract

In today’s systems, privacy is often at odds with utility: users that reveal little information
about themselves get restricted functionality, and service providers mistrust them. In practice,
systems tip to either full anonymity (e.g. Monero), or full utility (e.g. Bitcoin). Well-known
cryptographic primitives for bridging this gap exist: anonymous credentials (AC) let users
disclose a subset of their credentials’ attributes, revealing to service providers “just what they
need”; group signatures (GS) allow users to authenticate anonymously, to be de-anonymized
“just when deemed necessary”. However, these primitives are hard to deploy.

Current AC and GS variants reach specific points in the privacy-utility tradeoff, which we
point as counter-productive engineering-wise, as it requires full and error-prone re-engineering
to adjust the tradeoff. Also, so far, GS and AC have been studied separately by theoretical
research.

We take the first steps toward unifying and generalizing both domains, with the goal of
bringing their benefits to practice, in a flexible way. We give a common model capturing their
core properties, and use functional placeholders to subsume intermediate instantiations of the
privacy-utility tradeoff under the same model. To prove its flexibility, we show how concrete
variants of GS, AC (and others, like ring signatures) can be seen as special cases of our scheme
– to which we refer as universal anonymous signatures (UAS). In practice, this means that
instantiations following our construction can be configured to behave as variant X of a GS
scheme, or as variant Y of an AC scheme, by tweaking a few functions.

1

Contents

1 Introduction 3
1.1 Our contributions . 4

2 Related Work 5

3 Preliminaries 5

4 Formalizing UAS 6
4.1 Syntax . 6
4.2 Security Model . 8

5 ΠUAS: A Generic UAS Construction 10
5.1 Correctness and Security of ΠUAS . 11

6 Building Related Schemes from UAS 13
6.1 Digital Signatures . 14
6.2 Group Signatures . 14
6.3 Anonymous Credentials . 15
6.4 Ring Signatures . 16

7 Conclusion and Future Work 16

A Formal UAS Model 21
A.1 Global Variables and Oracles . 21
A.2 Security Properties . 25

B Cryptographic Building Blocks 27
B.1 Public-Key Encryption . 27
B.2 Commitments . 29
B.3 Simulation Extractable Non-Interactive Zero-Knowledge Proofs of Knowledge 30
B.4 Signatures over Blocks of Committed Messages . 34

C Correctness and Security Proofs for ΠUAS 37

D Models and Proofs for Relationships with Other Schemes 48
D.1 Digital Signatures . 48
D.2 Group Signatures . 49
D.3 Anonymous Credentials . 51
D.4 Ring Signatures . 53

E Relationships with More Schemes 55
E.1 Group Signatures with Message Dependent Opening 55
E.2 Multimodal Private Signatures . 56
E.3 Revocable Anonymous Credentials . 57

2

1 Introduction

Anonymous signatures aim to strike a balance between the utility of authenticating identity infor-
mation and the privacy offered by unlinkability. Exploring different privacy-vs-utility tradeoffs has
been at the core of well-known cryptographic primitives for decades. Anonymous credentials (AC)
[Cha85] allow users to selectively disclose attributes to verifiers. Group signatures (GS) [CvH91]
let users prove group membership, preserving anonymity unless an authority de-anonymizes them.
Related schemes, like ring signatures or direct anonymous attestation, share their goal: preserving
privacy while authenticating some useful information.

Utility at authentication time. AC schemes focus on offering utility at the moment in which
a user shows possession of a credential, often enabling selective attribute disclosure, or arbitrary
predicates – e.g. “I am over 18 and from an EU country.” In contrast, GS schemes create signatures
over arbitrary messages that, in addition, prove the statement “I am a valid member of this group.”

Utility after authentication time. Camenisch et al. [CL01, CDL+13] mention AC schemes
with conditional release of information after authentication – but, to the best of our knowledge, no
formal model is provided, and this type of utility is not frequent in AC. In contrast, GS schemes
emphasize utility after signing time, typically allowing trusted parties to open signatures for signer
identification.

Utility at issuance time. Frequently, the term utility refers to information revealed by signa-
tures or the authentication process, but some AC schemes add extra semantics to issuance. For
instance, some schemes support using previously obtained credentials to request new ones [CDL+13].
In the GS literature, as far as we know, extended behavior at issuance time has not been considered
so far.

Why is this not ideal? Many AC and GS variants with different privacy-vs-utility tradeoffs
exist, covering many use cases. Yet, real world adoption is limited, with exceptions like Hyperledger
Anoncreds [WG23]. We explore potential reasons:

From a security point of view, while reference models exist such as the foundations of group
signatures series [BMW03, BSZ05, BCC+16], each variant requires a slightly different model to
capture privacy and unforgeability properties that deviate from the established tradeoff. That is:
whenever we aim for a new privacy-vs-utility tradeoff, a slightly different security model needs to
be created, which is not a trivial task.

Engineering-wise, GS or AC schemes usually seem a good fit for privacy problems. But often,
the privacy-vs-utility tradeoff needed is not exactly what existing schemes and implementations
offer. Then, engineers face a trilemma: (1) if, luckily, a model and provably secure construction –
but no implementation – exist for the desired tradeoff, they can implement it from scratch; (2) if
an implementation for a closely related scheme exists, they can adapt it ad hoc; or (3) they may be
forced to abandon the privacy-enhancing approach, to achieve the needed utility. (1) and (2) are
error-prone and discouraged for production-ready systems; and (3) is bad for privacy. In another
frequent setting, what engineers are demanded for v1 of their product may differ from what their
v2 will need. While a flexible system may not always offer the most efficient implementation, it
may still be more acceptable than rebuilding the solution from scratch.

3

Given these concerns, can we create a unified tradeoff-dynamic model spanning privacy and
security of AC and GS schemes? Is there a generic construction for such a model, offering engineers
flexibility to choose their desired privacy-vs-utility tradeoff without requiring full reimplementation,
redesign, and proof?

1.1 Our contributions

A model with functional placeholders for dynamic privacy-vs-utility tradeoffs (Section
4). Customization is desirable during credential issuance, authentication, and after authentication.
We use functional placeholders to capture possible tradeoffs, bringing the expressiveness of AC
show predicates to issuance and opening. Modeling this flexibility requires abstracting anonymity,
unforgeability, and non-frameability for issuance and signing. Usually, schemes prove knowledge of
a key pair and credential(s), plus a tradeoff-dependent claim that can be captured by a function.
Yet, capturing security and privacy with dynamic tradeoffs is harder than with static ones. E.g.,
in the dynamic case, one can define a function f such that, for two users with keys upk1, upk2, and
credentials crd1, crd2, y = f(upk1, crd1) = f(upk2, crd2). Thus, user upk1 producing a signature
that opens to y may not be a framing of user upk2. To address it, we use extraction, and check that
the extracted values are consistent with what is expected. We call the resulting scheme Universal
Anonymous Signatures (UAS).

A generic construction (Section 5). We present a generic construction, ΠUAS, that we prove
secure under our UAS model. We use BBS+ [ASM06, CDL16, TZ23], a variant of CL signatures
[CL02], providing randomizable attribute-based credentials. This signature scheme has been used
before (e.g.[GL19]) to build Sign-Randomize-Proof GS schemes [BCN+10]. We also draw inspira-
tion from the Sign-Encrypt-Prove approach to GS schemes [BSZ05]: we have the signer encrypt a
function of their credential’s attributes under an opener’s public key and prove its correct compu-
tation. For issuance-time utility, the user proves, during an interactive protocol with the issuer,
that a predefined function of their public key and credentials is acceptable.

Relationships with other schemes (Section 6). We study our UAS model and ΠUAS con-
struction as a generalization of privacy-preserving signature and authentication schemes. We define
several function combinations that instantiate specific privacy-vs-utility tradeoffs within our UAS
framework – which we call ΠUAS restrictions. We prove that these restrictions imply well-known
schemes, including digital signatures, GS, AC, and ring signatures, under their respective refer-
ence models. While we establish concrete connections for a few schemes, the space of possible
ΠUAS restrictions is extensive. We give a glimpse of these more advanced connections in Appendix
E, where we sketch proofs on how to build GS with message-dependent opening [EHK+19], mul-
timodal private signatures [NGSY22a], and revocable ACs [CKS10]. Further restrictions can be
easily imagined, giving schemes such as AC with auditability, ring signatures with some sort of
linkability, etc. This allows engineers to adapt privacy-vs-utility tradeoffs by modifying restriction
functions, maintaining security and controlling information leakage.

Before presenting our main construction, Section 2 introduces related work on closely related
primitives, and Section 3 summarizes our construction’s main building blocks. Further details are
deferred to the appendix.

4

Why do we need flexible privacy-vs-utility tradeoffs? A promising use case for digital
identity is compliance for global decentralized financial infrastructures (e.g., Zcash or Monero), or
in Centrally Banked Digital Currencies [KKS22]. As the legal frameworks for such systems is still
evolving, it is paramount that asset privacy be configurable [Esp22]. UAS offers a principled way
to achieve this.

2 Related Work

There are many anonymous signatures (AC, GS, or related) schemes that aim at achieving a different
privacy-vs-utility tradeoff. In GS schemes the focus is on opening and linkability: [SEH+12] makes
de-anonymization dependent on messages; [GL19] does not allow de-anonymization, but signatures
by the same signer are linkable; in [MSS06] signers are fully identified towards other group members
and linkable for non group members; in [LNPY21], signers are de-anonymizable only if a predicate
of their “identity” and the signed message is not satisfied. In AC schemes, the usual selective
disclosure [CL01] is augmented to revealing arbitrary predicates on the credentials’ attributes, e.g.,
in [DMM+18], which is the state of the art in utility at authentication time. Some works consider
delegation capabilities [BCC+09, CKLM14], or revocation [CKS10]. We now focus on schemes that
aim at more flexible tradeoffs and at general security models that are scheme independent.

Related work on flexible tradeoffs. To the best of our knowledge, our work is the first to model
flexible tradeoffs at all steps of the “credential and signature lifecycle”. However, some works already
pushed towards achieving more flexibility. Benôıt et al. and Nguyen et al. [LNPY21, NGSY22a]
introduce the notion of what can be called “functional opening”. That is, the information that the
opener can learn is a function of the signer’s identity, rather than the identity itself. However, their
notion of “identity” is left abstract, which makes it hard to apply in real world settings. We give a
concrete definition of identity, via credentials with attributes. Kohlweiss et al. [KLN23] introduces
generic functions for utility at opening time, that allow an auditor to learn a function of the user’s
credential and private information fixed by the auditor in advance.

Related work on general security models. Probably, the most relevant works towards achiev-
ing a common and generic model are those in the “Foundations of Group Signatures” line [BMW03,
BSZ05, BCC+15], with [KY06] proposed in parallel to [BSZ05]. Before them, many different models
coexisted, each focusing on similar but slightly different security and privacy properties. In the AC
domain no similar foundational line exists as far as we know, although [CKL+15] does a great job
in subsuming previous works and proposing a modular approach towards AC schemes. In some
sense, our goal is similar to these unifying works, but focusing on the achieved privacy-vs-utility
tradeoff. As mentioned, there are currently many variants of both GS and AC schemes offering
similar but slightly different tradeoffs, at the cost of introducing many similar but slightly different
models. Our goal is to avoid that.

3 Preliminaries

Public-Key Encryption has Setup, KG, Enc, and Dec algorithms. Setup(1κ) produces public
parameters par . KG(par) generates a encryption-decryption key pair (ek , dk), Enc(ek ,m) encrypts

5

message m with ek and outputs ciphertext c. Dec(dk , c) decrypts ciphertexts using dk to retrieve
message m. We rely on chosen plaintext secure public-key encryption schemes (IND-CPA).

Non-Interactive Zero-Knowledge (NIZK). A NIZK scheme [SCO+01] for a NP relation R
has three algorithms: SetupR, ProveR, VerifyR. Algorithm SetupR(1κ) produces the common
reference string crs. ProveR(crs, x, w) creates a NIZK proof π of knowledge of witness w for x
such that (w, x) ∈ R. 1/0 ← VerifyR(crs, x, π) verifies the proof. The properties we build on
are completeness, soundness, zero-knowledgeness, and extractability. We require extractability to
hold in the presence of a simulator (simulation extractability), and zero-knowledge to hold in the
presence of an extractor (extraction zero-knowledge) [GO14].

Signatures over Blocks of Committed Messages, with proofs. We use schemes that allow
signing blocks of messages, and commitments to blocks of messages, and which are also compatible
with proof systems over the produced signature and signed (commitments to) messages. An SBCM
scheme is as a tuple (Setup, KG,Blind, Sign, Unblind,Verify). par ← Setup(1κ) produces some
public parameters. (vk , sk) ← KG(par) produces a verification-signing key pair. c ← Blind(vk ,
msg ,msg , r) is run by a user to request a signature over msg ∪msg , where msg are revealed
to the signer, but msg are signed in committed form. β ← Sign(sk , c, π,msg) is run by the
signer, to produce a partial signature β over a set of committed messages msg and set msg .
σ ← Unblind(vk , β, c, r,msg ,msg) is run by the user to complete the signer’s partial signature β.
Finally, 1/0← Verify(vk , σ,msg ,msg) verifies a signature σ over message vector msg ∪msg . An
SBCM scheme must be unforgeable and blind.

4 Formalizing UAS

In a UAS scheme, users generate their key pair, and optionally advertise their public key and
conditions for issuance in order to become issuers. Openers first generate their key pairs, and
then advertise what information they expect to learn from signatures. Users may later use their
credentials to request new ones, or to produce a signature. Issuance only succeeds if the user’s
credentials (if any) meet the issuer’s requirements. Signatures may directly output some information
derived from the user’s data. Also, each signature has a selected opener, who can later learn only
the information included by the user. When openers learn their information, they also prove the
correctness of the result, which can be verified by any interested party. This prevents openers from
framing innocent users.

4.1 Syntax

In detail, a UAS scheme is composed of the following PPT algorithms:

Setup(1κ)→ par . Given security parameter 1κ, returns global system parameters par . We assume
that par are passed implicitly to all other functions.

KG(par)→ (upk , usk). Given par , a user generates a key pair (upk , usk). An issuer is a user
who defines an issuance function fis. We denote such issuance keys by ipk = (upk , fis) and
isk = (ipk , usk).1

1The (pk, f) tuple simplifies our notation, while simultaneously guaranteeing that users can easily inspect the

6

OKG(par)→ (preopk , preosk). An opener runs OKG to generate its pre-opener keys. The opener
externally extends the keys with an opening function fop. We denote such opening keys
opk = (preopk , fop) and osk = (opk , preosk).

⟨Obt(upk , usk , ipk ,C ,a), Iss(isk , ipk ,a , yis)⟩ → ⟨C/⊥, R/⊥⟩. Lets a user with key usk obtain a
credential C = (cid ,a , crd , ipk) from an issuer with key (ipk , isk). cid is a unique identifier for
the credential crd , on attribute set a . The user may employ previously obtained credentials
C = {(cid i,a i, crd i, ipk i)}i∈[n], from which we may omit the ipk i for readability. The yis
value received by the issuer is the claimed output of fis, over the user’s data. Note that the
issuer can reject initiating the protocol if yis is not acceptable. The user outputs the issued
credential C, and the issuer outputs R← (reg , cid), where reg is the protocol transcript.

Sign(upk , usk , opk ,C ,m, fev)→ (σ, yev). Upon receiving user secret key usk , opener public key
opk , credentials C , message m and evaluation function fev, returns signature σ, and a value
yev. We use Σ to denote the tuple (σ, yev).

Verify(opk , ipk ,Σ,m, fev)→ 1/0. Checks whether Σ = (σ, yev) is a valid signature over message m,
from a user with credentials issued by issuers with public keys in ipk , for evaluation function
fev and opener key opk .

Open(osk , ipk ,Σ,m, fev)→ (yop, π)/⊥. Run by the opener with private key osk . Receives a sig-
nature Σ = (σ, yev) over message m and evaluation function fev, generated using credentials
by issuers with public keys in ipk . If Σ is valid, the function outputs a value yop, and a proof
of correct opening π.

Judge(opk , ipk , yop, π,Σ,m, fev)→ 1/0. Checks if π is a valid opening correctness proof for the
value yop, obtained by applying Open to the the signature Σ = (σ, yev) over message m, and
for evaluation function fev.

Issuance, evaluation, and opening functions. These are the functional placeholders modu-
lating the behavior of UAS instantiations. They control the conditions for issuing credentials, the
information revealed alongside signatures, and the information revealed when opening signatures.

fis : (upk ,a , {(cid i,a i)}i∈[n])→ yis. Chosen by each issuer within a family of functions Fis, the
issuance function defines the conditions required by the issuer to grant a credential over
attributes a , when requested by a user with public key upk , optionally using a set of n
endorsement credentials with identifiers and attributes given by {(cid i,a i)}i∈[n]. The range
of fis is Ris.

fev : (upk , {(cid i,a i)}i∈[n],m)→ yev. Signing evaluation functions (or, simply, evaluation func-
tions), from a family of functions Fev, can be set on a per-signature basis. They receive
the user public key upk , a set of credential identifiers and attributes {(cid i,a i)}i∈[n] (where
n may be 0), and the message to be signed m. fev outputs a value yev from a well defined set
Rev.

functions picked by issuers and openers. The second tuple might appear surprising, but it is natural that the secret
key in a public key scheme contains at least the information of the public key, e.g., RSA.

7

fop : (upk , {(cid i,a i)}i∈[n],m)→ yop. Chosen by openers from a family of functions Fop. The
opening functions define the utility value extractable from signatures. This value is derived
from the user’s upk , credentials’ identifiers and attributes {(cid i,a i)}i∈[n] (n ≥ 0) used for
signing, and signed message m. It outputs a value yop from a well defined set Rop.

For instance, let fis (resp. fev) output the requesting user’s (resp. signer’s) public key, and
fev output always 0. The corresponding Ris and Rop are the set of all possible user public keys,
and Rev is {0}. This combination leads to a ΠUAS restriction that behaves like a group signature
scheme. See Section 6 for details.

Correctness. An UAS scheme is correct if a signature produced by an honest user, who chooses
an honest opener and leverages only credentials obtained from honest issuers, is accepted by an
honest verifier, and any opening proof honestly computed from such a valid signature is accepted
by an honest judge. Moreover, the yev (resp. yop) value attached to the signature must match the
output of fev (resp. fop) when evaluated on the endorsement credentials, signed message, and the
user’s upk . Similarly, the yis value in the transcripts of all involved credentials used to produce
the signature must match the output of fis when computed from the requested attributes, user’s
upk , and any further endorsement credential involved in its issuance. Correctness is formalized in
ExpcorrectUAS,A , in Appendix A.

4.2 Security Model

A UAS scheme must satisfy privacy and security properties, both for the issuance protocol, and for
the produced signatures. We introduce them semi-formally here. The full formalization as exper-
iments Expiss-anon-bUAS,A , Expsig-anon-bUAS,A , Expiss-forgeUAS,A , Expsig-forgeUAS,A , and Expframe

UAS,A can be found in Appendix
A.

Issuance anonymity. User obtains credentials by running an interactive ⟨Obt, Iss⟩ protocol with
an issuer. The authorization of the issuing can employ previously obtained endorsement credentials
to prove that the request meets the issuers requirements—captured by function fis defined by the
issuer. We model via the issuance anonymity property that no information about the endorsement
credentials besides the output of fis is revealed.

Formally, we define a left-or-right game. The adversary repeatedly plays the issuer in the ⟨Obt,
Iss⟩ protocols against one out of two challenges selected by a random bit b that the adversary needs
to guess. Each challenge specifies an honest user and its endorsement credentials. In addition,
the adversary can obtain new (non-challenge) credentials for honest users that can be used as
endorsement credentials, create signatures with the challenge and non-challenge credentials, open
non-challenge signatures, and corrupt users, issuers, and openers at will. To avoid trivial wins, the
adversary cannot mix challenge with non-challenge credentials when signing, and the output of the
fis function when obtaining challenge credentials and the outputs of fev and fop functions when
signing with challenge credentials need to be the same for both challenge users. To see why this
is needed, consider a simple fis function that outputs the public key of the user – which trivially
allows an adversarial issuer to distinguish ⟨Obt, Iss⟩ runs.

Signature anonymity. In UAS, signatures come with signature utility information yev, computed
by fev, and opener utility information yop computed by fop and only retrievable by the chosen

8

opener. Signature anonymity captures that signatures do not leak any more information than
specified by these functions.

Formally, we define a left-or-right game. The adversary can add honest and corrupt users at will,
request signatures using arbitrary credentials, and open the resulting signatures. The adversary
is given the capability to repeatedly request signatures for an opener, an evaluation function fev,
a message, and one out of two challenges selected by a random bit b that the adversary needs to
guess. Each challenge specifies a challenge users and a set of credentials. To avoid trivial wins,
among other simple checks, the yev value output by fev has to be the same for both challenges.
Similarly, if the opener is corrupt, the value output by fop has to be the same for both challenges.
The adversary can open signatures, but only if they are not challenge ones. This is to avoid trivial
wins in which the opener was not initially corrupt, and thus the fop equality check did not apply.

Issuance unforgeability. Honest issuers in the interactive ⟨Obt, Iss⟩ protocol to request new
credentials specify an issuing policy fis that involves endorsement credential attributes and identi-
fiers (if any), the requesting user’s public key, and the requested attributes. Issuance unforgeability
captures that fis must be met, and that the endorsement credentials (if any) have been legitimately
obtained.

In a nutshell, the adversary can corrupt users, issuers, and openers, obtain credentials on behalf
of honest or corrupt users, and produce signatures leveraging any of these credentials. Eventually,
the adversary has to output a credential identifier, which must belong to a credential issued by
an honest issuer. The adversary wins if the yis value claimed by the user as an input to Iss does
not match the expected output from fis, or if there is a mismatch in the endorsement credentials’
attributes or the associated user public key. Note that we require that the credential identifier
output by the adversary corresponds to a credential produced by an honest issuer. While we have
access to the issuance transcript, we cannot otherwise assume that we know the identifiers of the
adversary’s endorsement credentials, their attributes, or user public keys needed for evaluating fis
and running the required tests. Thus, we resort to extraction: the issuance transcript must allow
for the extraction of these otherwise private values.

Note that the issuance unforgeability requirements apply recursively to endorsement credentials.
To see this consider adversaries that perform the same oracle queries but output the credential
identifiers of endorsement credentials. This excludes construction that allows the use of fraudulently
obtained credentials when honestly obtaining a new credential.

Signature unforgeability. Signatures carry two types of utility: yev, produced by computing
fev, and revealed alongside the signature; and yop, produced by computing fop, and learned by
the chosen opener. No adversary should be capable of producing a signature that is accepted by
Verify, yet contains wrong yev and yop values. To check this, we let the adversary add corrupt
users, issuers, and openers, obtain credentials on behalf of any existing user and issuer, produce
signatures by honest users, as well as open any signature. The adversary is challenged to produce
a signature, and wins if the signature is accepted by Verify, yet the yev value associated to it is
wrong ; or if an honest opener cannot produce a proof that is accepted by Judge, or for which the
associated yop value is wrong. The adversary also wins if any of the credentials used to produce the
signature was fraudulently obtained. We define wrong by recomputing the fev and fop functions: as
in issuance unforgeability, we extract the necessary inputs from the adversary’s signature forgery.
We also extract from the issuance transcripts of honestly issued endorsement credentials to check
that they were correctly issued.

9

Figure Fig. 1 explains the need for both issuance and signature unforgeability.

Figure 1: Credential chain segments covered by each unforgeability property. Issuance unforgeabil-
ity prevents forged credentials at any point, but is agnostic to signatures. Signature unforgeability
prevents last-layer credential forgeries, and signature forgeries. E.g., only issuance unforgeability
detects if the credential in red is a forgery.

Non-frameability. While the unforgeability properties capture the security expectations of ver-
ifiers and openers, non-frameability captures what expectations honest users can still have even
when both issuers and openers are corrupt. Concretely, note that in the unforgeability properties,
we open using the official opening algorithm. In contrast, in non-frameability the adversary has
to produce both a valid signature and valid opening and proof. It wins if this signature was not
produced via some of the oracles, if the signature and opening proof are valid, yet the output yop
values is wrong, or if the upk associated to the signature belongs to an honest user. This protects
honest users from being framed, either by their upk being used to compute yop or by yop being
made up in the first place. Again, we make use of extraction techniques to recover all the needed
information for attesting correct computation fop, and to learn the signer’s upk .

5 ΠUAS: A Generic UAS Construction

We give a generic construction of a UAS scheme from generic building blocks. We use three NP
relations: Ris, Rev, and Rop, described next. These relations include verifying correct computation
of the fis, fev and fop functions.

Ris: For NIZK proofs at issuance time. Requires users to prove knowledge of their (usk , upk) pair,
and the requested credential is bound to usk . It also requires any endorsement credential to
be a valid credential (signed by some issuer) and bound to usk , and enforces the corresponding
fis policy.

Rev: For NIZK proofs at signing time. Ensures that signatures encode the correct signature eval-
uation (computed via fev) and opening values (computed via fop), and all the involved cre-
dentials are bound to the same usk .

Rop: For NIZK proofs at opening time. Ensures that the utility information revealed by the opener,
via the Open algorithm, is correct.

10

Ris =

(fis, c, cid ,a , ipk , {ipk i}i∈[n], yis), (upk , usk , {(cid i,a i, crd i)}i∈[n], r) :
(upk , usk) ∈ [KG(par)] ∧

c = SBCM.Blind(ipk , usk , (cid ,a), r) ∧
fis(upk ,a , {(cid i,a i)}i∈[n]) = yis ∧

∀i ∈ [n] : SBCM.Verify(ipk i, crd i, usk , (cid i,a i)) = 1

Rev =

(m, fev, yev, fop, cop, {ipk i}i∈[n], ek), (upk , usk , {(cid i,a i, crd i)}i∈[n], yop, r) :

(upk , usk) ∈ [KG(par)] ∧ cop = E.Enc(ek , yop; r) ∧
yev = fev(upk , {(cid i,a i)}i∈[n],m) ∧
yop = fop(upk , {(cid i,a i)}i∈[n],m) ∧

∀i ∈ [n] : SBCM.Verify(ipk i, crd i, usk , (cid i,a i)) = 1

Rop =
(ek , c, yop), (dk) :

(ek , dk) ∈ [OKG(par , ·)] ∧
yop = E.Dec(dk , c)

Figure 2: Specification of the NP relations used in ΠUAS. R = {x,w : predicate(x,w)}, where x is
the public statement and w is the prover’s secret witness.

We build ΠUAS as defined in Fig. 3 and Fig. 4. Briefly, Setup computes the public parameters
for SBCM, Enc, and the three NIZK systems. KG generates an SBCM user key pair, and OKG
an Enc key pair (ek , dk). If a user wishes to upgrade itself to an issuer, it sets (ipk = (upk , fis),
isk = (ipk , usk)) for its chosen fis. Similarly, an opener can upgrade (ek , dk) into (opk = (ek ,
fop), osk = (opk , dk)) by advertising fop in a reliable manner, defining the utility it will accept
to extract from signatures. In the ⟨Obt, Iss⟩ protocol, the user computes fis over the requested
attributes, upk , and the endorsement credentials and runs an SBCM blind signature protocol with
the issuer, augmented with NIZK.ProveRis . In Sign, the user computes fev and fop over the
message, attributes, and upk , encrypts yop with the chosen opk , and proves correct computation

via NIZK.ProveRev . Verify simply verifies the NIZK. In Open, if Verify accepts the signature, the
opener decrypts cop to get yop, and outputs it along with a proof obtained via NIZK.ProveRop .
Judge verifies both the signature and the opening proof.

5.1 Correctness and Security of ΠUAS

Correctness is by inspection of the honest algorithms. The uniqueness of credentials for honestly
issued and obtained credential identifiers is a sub-property of correctness. We observe that both
parties contribute uniformly random nonces to this identifier. We give theorems and intuition, but
defer formal definitions and proofs to Appendix C.

Theorem 1 (Issuance anonymity of ΠUAS). If the SBCM scheme is blinding, the NIZK system
is zero-knowledge and simulation-extractable, and the public-key encryption scheme is correct and
IND-CPA secure, then ΠUAS satisfies issuance anonymity as defined in Definition 2.

Theorem 2 (Signature anonymity of ΠUAS). If the NIZK system is zero-knowledge and simula-
tion extractable, and the public-key encryption scheme is correct and IND-CPA secure, then ΠUAS

satisfies signature anonymity as defined in Definition 3.

For the two anonymity properties, we perform game hops until we obtain a game independent of
bit b. For this, we simulate the NIZK proofs and replace the encryption of yop with an encryption

11

Setup(1κ)

parSBCM ← SBCM.Setup(1κ)

parE ← E.Setup(1κ)

crs is ← NIZK.SetupRis(1κ)

crsev ← NIZK.SetupRev (1κ)

crsop ← NIZK.SetupRop(1κ)

return par = (parSBCM, parE,

crs is, crsev, crsop)

KG(par)

(parSBCM, ·, ·, ·, ·)← par

(vk , sk)← SBCM.KG(parSBCM)

upk ← (par , vk)

usk ← sk

return (upk , usk)

OKG(par)

(·, parE, ·, ·, ·)← par

(ek , dk)← E.KG(parE)

preopk ← ek

preosk ← dk

return (preopk , preosk)

Sign(upk , usk , opk , ({(cid i,a i, crd i, ipk i)}i∈[n]),m, fev)

yev ← fev(upk , {(cid i,a i)}i∈[n],m)

(ek , fop)← opk

yop ← fop(upk , {(cid i,a i)}i∈[n],m)

cop ← E.Enc(ek , yop; r)

πev ← NIZK.ProveRev (crsev,

(m, fev, yev, fop, cop, {ipk i}i∈[n], ek),

(upk , usk , {(cid i,a i, crd i)}i∈[n], yop, r))

return Σ = (σ = (πev, cop), yev)

Verify(opk , ipk = {ipk i}i∈[n],Σ,m, fev)

(πev, cop), yev)← Σ

(ek , fop)← opk

return NIZK.VerifyRev (crsev, πev,

(m, fev, yev, fop, cop, {ipk i}i∈[n], ek)

)

Open(osk , ipk ,Σ,m, fev)

(opk , preosk = dk)← osk ; (ek , ·)← opk

if Verify(opk , ipk ,Σ,m, fev) = 0 : return ⊥
((πev, cop), yev)← Σ

yop ← E.Dec(dk , cop)

πop ← NIZK.ProveRop(crsop, (ek , c, yop), (dk))

return (yop, πop)

Judge(opk , yop, πop,Σ,m)

if Verify(opk , ipk ,Σ,m, fev) = 0 : return 0

((·, cop), ·)← Σ; (ek , ·)← opk

return NIZK.VerifyRop(crsop, πop, (ek , c, yop))

Figure 3: ΠUAS algorithms 1/2: everything except issuing.

of 0. This is justified by IND-CPA security. Notably simulation extraction is needed to simulate
decryption. For issuing anonymity we additionally assign all challenge credentials to the same
virtual user. This is justified by the blinding property of the SBCM scheme.

Theorem 3 (Issuance unforgeability of ΠUAS). If the NIZK scheme is extraction zero-knowledge
and simulation extractable, and the SBCM scheme is correct, unforgeable, and has deterministically
derived public keys, then ΠUAS satisfies issuance unforgeability as defined in Definition 4.

Theorem 4 (Signature unforgeability of ΠUAS). If the underlying NIZK scheme is complete, ex-
traction zero-knowledge and simulation extractable, the public key encryption scheme is correct, and
the SBCM scheme is correct, unforgeable, and has deterministically derived public keys, then ΠUAS

satisfies signing unforgeability as defined in Definition 5.

Theorem 5 (Non-frameability of ΠUAS). If the NIZK system is extraction zero-knowledge and
simulation extractable and the SBCM scheme is correct, blind, and unforgeable, then ΠUAS satisfies
non-frameability as defined in Definition 6.

The three unforgeability and non-frameability proofs share the intuition: Using simulation, we
ensure via a series of game hops that we reach a game where we can embed an SBCM unforgeability

12

Obt(upk , usk , ipk , {(cid i,a i, crd i)}i∈[n],a) Iss(isk , {ipk i}i∈[n],a , yis)

cid I
cid I ←$AS

cidU ←$AS

cid ← (cid I, cidU)

y′
is = fis(upk ,a , {(cid i,a i)}i∈[n])

r ← ΓSBCM

c← SBCM.Blind(ipk , usk , (cid ,a), r)

π ← NIZK.ProveRis(crs is,

(fis, c, cid ,a , ipk , {ipk i}i∈[n], y
′
is),

(upk , usk , {(cid i,a i, crd i)}i∈[n], r)) (cidU, c, π)

cid ← (cid I, cidU)

b← NIZK.Verify(crs is, π,

(fis, c, cid ,a , ipk , {ipk i}i∈[n], yis))

if b = 0 : return ⊥

β β ← SBCM.Sign(isk , c, (cid ,a))

reg = (({ipk i}i∈[n],a , yis),

cid I, (cidU, c, π), β)

return R = (reg , cid)

σ ← SBCM.Unblind(ipk , β, c, r, usk , (cid ,a))

if SBCM.Verify(ipk , σ, usk , (cid ,a)) = 0 :

return ⊥
return (cid ,a , crd = σ, ipk)

Figure 4: ΠUAS algorithms 2/2: issuing protocol. AS is an assumed attribute space.

challenge. This requires that the SBCM secret key is only used in operations that can be simulated
using SBCM challenge oracles. Then, if the adversary wins the UAS game, we leverage its output to
break SBCM unforgeability. Here, the main complexity is in alternating extraction and simulation:
as our initial games already extract, we rely on extraction zero-knowledge NIZKs. Moreover, we
need to ensure that we only extract from non-simulated proofs (and never attempt extraction of
simulated ones).

6 Building Related Schemes from UAS

ΠUAS restrictions. Given a generic UAS construction, ΠUAS, we can restrict the achieved privacy-
vs-utility tradeoff by requiring it to use concrete fa

is, f
b
ev and f c

op functions. We refer to the result

as the (fa
is, f

b
ev, f

c
op)-ΠUAS restriction. Note that security of ΠUAS implies security of its restrictions.

To showcase the generality of UAS, we briefly describe concrete ΠUAS restrictions that instantiate
vanilla digital signatures, group signatures, anonymous credentials, and ring signatures, using the
functions defined in Fig. 5. Fig. 6 graphically depicts these connections. The instantiations
based on our ΠUAS generic construction are probably not the most efficient approach to build the
corresponding related scheme. Still, we see it as an initial feasibility result, from which to build
more efficient instantiations – perhaps relying on alternative UAS constructions for more restricted

13

but still expressive enough function classes. We defer security models and proofs to Appendix D
and show relations to other more recent variants of GS and AC schemes [EHK+19, NGSY22a] in
Appendix E.

Issuance functions Signature evaluation functions

Open functions

fupk
is (upk , ·, ·) := return upk fupk

ev (upk , ·, ·) := return upk

f0
ev(·, ·, ·) := return 0

fd
ev(·, (·,a), ·) := return (attr i)i∈d

f ring
ev (upk , ·, ·) := if upk ∈ ring : return 1

else return 0

f0
op(·, ·, ·) := return 0

fupk
op (upk , ·, ·) := return upk

Figure 5: Functions for the ΠUAS restrictions described next. “·” denotes ignored arguments. fa is
a function named “a”; fa is a function parameterized with a.

UAS

DS [GMR88] (Section 6.1)

GS [BSZ05] (Section 6.2)

AC [FHS19] (Section 6.3)

RS [BKM06] (Section 6.4)

(·, fupk
ev , f0

op)-ΠUAS

(fupk
is , f0

ev, f
upk
op)-ΠUAS

(fupk
is , fd

ev, f
0
op)-ΠUAS

(·, f ring
ev , f0

op)-ΠUAS

Figure 6: ΠUAS-restrictions instantiating related schemes.

6.1 Digital Signatures

As a warm up, we show that a (·, fupk
ev , f0

op)-ΠUAS restriction realizes a conventional digital signatures
satisfying EUF-CMA security [GMR88]. No issuance function is required, as users do not need
credentials to sign. The evaluation function outputs the signer’s public key, and any opening
function works – the output is ignored. A possible optimization would be using the empty string
as ciphertext for constant functions (e.g. f0

op) and skip verifiable encryption. Concretely, we create

Πds
UAS from ΠUAS, where public parameters par are passed implicitly:

Setup(1κ) par ′ ← ΠUAS.Setup(1
κ); (preopk , preosk)← ΠUAS.OKG(par);

opk ← (preopk , f0
op); osk ← (opk , preosk); return par = (par ′, opk).

KG(1κ) return (upk , usk)← ΠUAS.KG(par ′).

Sign(usk ,m) (σ, yev)← ΠUAS.Sign(upk , usk , opk , ∅,m, fupk
ev);

return σ. //yev =upk

Verify(upk ,m, σ) return ΠUAS.Verify(opk , ∅,Σ = (σ, upk),m, fupk
ev).

//Since f
upk
ev outputs the signer’s upk , we know that σ is bound to the owner of upk .

6.2 Group Signatures

We show that a (fupk
is , f0

ev, f
upk
op)-ΠUAS restriction is a secure group signature scheme in a definition

in the spirit of [BSZ05]. First, the fupk
is function outputs the upk of the requesting user, allowing

14

the issuer to detect a user requesting multiple credentials – note that, in vanilla group signatures,
there is a single issuer and a single membership certificate per user. Thus, linkable issuance is the
expected behavior. The evaluation function f0

ev outputs a constant value. Finally, the opening
function fupk

op outputs the signer’s upk , allowing the opener to identify the signer of any group
signature. Concretely, we create Πgs

UAS from ΠUAS as follows:

KG(1κ) par ← ΠUAS.Setup(1
κ)//implicit; (preopk , preosk) ← ΠUAS.OKG(par); opk ← (preopk ,

f
upk
op); osk ← (opk , preosk); (ipk ′, isk ′)← ΠUAS.KG(par);
ipk ← (ipk ′, fupk

is); isk ← (ipk , isk ′); return (gpk = (ipk , opk), isk , osk).

UKG(1κ) return (upk , usk)← ΠUAS.KG(par).

⟨Obt(usk , ipk), Iss((isk , opk), upk)⟩
⟨C,R⟩←ΠUAS.⟨Obt(upk , usk , ipk , ∅, ∅), Iss(isk , ∅, ∅, yis=upk)⟩.
return ⟨(usk , C), R⟩ //The credential is locally augmented with the user’s secret key.

Sign(gpk , (usk , C),m) (ipk , opk) ← gpk ; (σ, yev) ← ΠUAS.Sign(upk , usk , opk , C,m, f0
ev); return σ

//yev = 0 is the constant output of f0ev.

Verify(gpk , σ,m) (ipk , opk)← gpk ; return ΠUAS.Verify(opk , ipk , (σ, 0),m, f0
ev).

Open(gpk=(ipk , opk), osk , σ,m) return ΠUAS.Open(osk , ipk , σ, 0,m, f0
ev).

Judge(gpk=(ipk , opk), π, upk , σ,m) return ΠUAS.Judge(opk , upk , π, (σ, 0),m).

6.3 Anonymous Credentials

We show how to build AC systems from UAS signatures. For concreteness, we use a (f
upk
is , fd

ev, f
0
op)-

ΠUAS restriction which suffices for the AC scheme of Fuchsbauer et al. [FHS19] which does not have
issuance anonymity and supports selective disclosure of attributes. Thus, our issuance function
returns the user’s public key as for GS and the evaluation function reveals the chosen subset of
attributes.

To match the syntax of the target scheme, we implement a simple challenge response protocol
via UAS signing. The evaluation function fd

ev returns subset D = (attr i)i∈d of the attributes. The
open function f0

op reveals nothing.

IssKeyGen(1κ) par ′ ← ΠUAS.Setup(1
κ); (preopk , preosk) ← ΠUAS.OKG(par ′); opk ← (preopk ,

f0
op); osk ← (opk , preosk); (ipk ′, isk ′)← ΠUAS.KG(par ′);

par ← (par ′, opk) //kept implicit ; return (ipk=(ipk ′, fupk
is)), isk=(ipk , isk ′)).

UserKeyGen(1κ) return (upk , usk)← ΠUAS.KG(par ′).

⟨Obt(usk , ipk ,a), Iss(isk , upk ,a)⟩
⟨CUAS, R⟩←ΠUAS.⟨Obt(upk , usk , ipk ,C=∅,a), Iss(isk , ipk=∅,a , yis=upk)⟩.
return ⟨C=(usk , CUAS), if R ̸= ⊥ : ⊤⟩//Local translation of protocol outputs.

Show(ipk ,a ,d , C=(usk , CUAS)),Verify(ipk ,d , D)⟩
V: send r ← {0, 1}κ to S
S: send (σ, yev) = Σ← ΠUAS.Sign(upk , usk , opk , CUAS, r, f

d
ev) to V

V: return yev = D ∧ΠUAS.Verify(opk , ipk ,Σ, r, f
d
ev)

15

6.4 Ring Signatures

We use a (·, f ring
ev , f0

op)-ΠUAS restriction to build a ring signature scheme, Πring
UAS. For signing, signers

compute a f ring
ev function, where ring = {upk i}i∈[n] is an arbitrary set of public keys. This function

returns 1 if the signer’s upk ∈ ring , and 0 otherwise. A ring signature is a ΠUAS signature evaluated
on such a f ring

ev function – which does not require any credential. The construction is as follows:

Setup(1κ) par ′ ← ΠUAS.Setup(1
κ); (preopk , preosk)← ΠUAS.OKG(par);

opk ← (preopk , f0
op); osk ← (opk , preosk); return par = (par ′, opk).

//We assume that the setup is trusted to compute the correct opk .

KG(1κ) return (pk , sk)← ΠUAS.KG(par ′).

Sign(usk , ring ,m) (σ, yev)← ΠUAS.Sign(upk , usk , opk , ∅,m, f ring
ev); return σ //yev = (upk ∈ ring) .

Verify(ring ,m, σ) return ΠUAS.Verify(opk , ∅,Σ = (σ, yev = 1),m, f ring
ev).

//Since fring
ev outputs 1 we know that the signer is in the ring.

Note that the issuance function is never used, as no credential takes part in the signing process,
so we simply ignore it. The same does not apply to the open function, though. Even if no actual
Open function is exposed by the ring signature construction, a malicious party could try to open a
signature. Thus, we need to fix it to a function that does not leak information, like f0

op.

7 Conclusion and Future Work

We present a general model and construction for anonymous signatures, allowing for different
privacy-vs-utility trade-offs. The flexibility of our model stems from functional placeholders that
modulate the utility information learned by issuers, verifiers, and openers at credential issuance
and authentication time, as well as after authentication. To showcase its generality, we show how
to securely instantiate well-known schemes using our construction.

A further natural generalization of our model would allow for issuers and openers to adjust their
functions dynamically, or to allow for multiple openers for the same signature. A practical con-
cern are optimized implementations of ΠUAS restrictions and optimized constructions for restricted
function classes. For example, the instantiation from the building blocks in Appendix B, based on
BBS+, ElGamal, and basic sigma proofs, is well suited (and efficient) for cases that need selective
disclosure. However, it falls short (or would be inefficient) for others.

References

[AO00] Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures.
In Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, 20th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 20-24,
2000, Proceedings, volume 1880 of Lecture Notes in Computer Science, pages 271–286.
Springer, 2000. doi:10.1007/3-540-44598-6_17.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k -taa. In Security and
Cryptography for Networks, 5th International Conference, SCN 2006, Maiori, Italy,
September 6-8, 2006, Proceedings, pages 111–125, 2006.

16

https://doi.org/10.1007/3-540-44598-6_17

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya,
and Hovav Shacham. Randomizable proofs and delegatable anonymous credentials.
In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, 29th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Pro-
ceedings, volume 5677 of Lecture Notes in Computer Science, pages 108–125. Springer,
2009. doi:10.1007/978-3-642-03356-8_7.

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and
Christophe Petit. Short accountable ring signatures based on DDH. In Günther Per-
nul, Peter Y. A. Ryan, and Edgar R. Weippl, editors, Computer Security - ESORICS
2015 - 20th European Symposium on Research in Computer Security, Vienna, Austria,
September 21-25, 2015, Proceedings, Part I, volume 9326 of Lecture Notes in Computer
Science, pages 243–265. Springer, 2015. doi:10.1007/978-3-319-24174-6_13.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth.
Foundations of fully dynamic group signatures. In Mark Manulis, Ahmad-Reza
Sadeghi, and Steve A. Schneider, editors, Applied Cryptography and Network Security
- 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Pro-
ceedings, volume 9696 of Lecture Notes in Computer Science, pages 117–136. Springer,
2016. doi:10.1007/978-3-319-39555-5_7.

[BCD+17] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid
Reyzin, Kai Samelin, and Sophia Yakoubov. Accumulators with applications to
anonymity-preserving revocation. In 2017 IEEE European Symposium on Security and
Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017, pages 301–315. IEEE, 2017.
URL: https://doi.org/10.1109/EuroSP.2017.13, doi:10.1109/EUROSP.2017.13.

[BCN+10] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan Warinschi.
Get shorty via group signatures without encryption. In Security and Cryptography for
Networks, 7th International Conference, SCN 2010, Amalfi, Italy, September 13-15,
2010. Proceedings, pages 381–398, 2010.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger defini-
tions, and constructions without random oracles. In Shai Halevi and Tal Rabin, editors,
Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Com-
puter Science, pages 60–79. Springer, 2006. doi:10.1007/11681878_4.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based on general
assumptions. In EUROCRYPT 2003, Proceedings, pages 614–629, 2003.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The
case of dynamic groups. In CT-RSA 2005, Proceedings, pages 136–153, 2005.

[CDL+13] Jan Camenisch, Maria Dubovitskaya, Anja Lehmann, Gregory Neven, Christian
Paquin, and Franz-Stefan Preiss. Concepts and languages for privacy-preserving
attribute-based authentication. In Simone Fischer-Hübner, Elisabeth de Leeuw, and
Chris J. Mitchell, editors, Policies and Research in Identity Management - Third IFIP

17

https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1109/EUROSP.2017.13
https://doi.org/10.1007/11681878_4

WG 11.6 Working Conference, IDMAN 2013, London, UK, April 8-9, 2013. Proceed-
ings, volume 396 of IFIP Advances in Information and Communication Technology,
pages 34–52. Springer, 2013. doi:10.1007/978-3-642-37282-7_4.

[CDL16] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation using the
strong diffie hellman assumption revisited. In TRUST 2016, Proceedings, pages 1–20,
2016.

[Cha85] David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Commun. ACM, 28(10):1030–1044, 1985. doi:10.1145/4372.4373.

[CKL+15] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen, Gregory
Neven, and Michael Østergaard Pedersen. Formal treatment of privacy-enhancing cre-
dential systems. In SAC 2015, Revised Selected Papers, pages 3–24, 2015.

[CKLM14] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Mal-
leable signatures: New definitions and delegatable anonymous credentials. In IEEE
27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, 19-22
July, 2014, pages 199–213. IEEE Computer Society, 2014. doi:10.1109/CSF.2014.22.

[CKS10] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. Solving revocation with
efficient update of anonymous credentials. In Juan A. Garay and Roberto De
Prisco, editors, Security and Cryptography for Networks, 7th International Confer-
ence, SCN 2010, Amalfi, Italy, September 13-15, 2010. Proceedings, volume 6280 of
Lecture Notes in Computer Science, pages 454–471. Springer, 2010. doi:10.1007/

978-3-642-15317-4_28.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In EUROCRYPT 2001, Proceed-
ing, pages 93–118, 2001.

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In
Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, Security in Communi-
cation Networks, Third International Conference, SCN 2002, Amalfi, Italy, September
11-13, 2002. Revised Papers, volume 2576 of Lecture Notes in Computer Science, pages
268–289. Springer, 2002. doi:10.1007/3-540-36413-7_20.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia Dwork,
editor, Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings, volume
4117 of Lecture Notes in Computer Science, pages 78–96. Springer, 2006. doi:10.1007/
11818175_5.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups (extended abstract). In Burton S. Kaliski Jr., editor, Advances in Cryptol-
ogy - CRYPTO ’97, 17th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture Notes in
Computer Science, pages 410–424. Springer, 1997. doi:10.1007/BFb0052252.

18

https://doi.org/10.1007/978-3-642-37282-7_4
https://doi.org/10.1145/4372.4373
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/BFb0052252

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor,
EUROCRYPT ’91, Proceedings, pages 257–265. Springer, 1991.

[DL21] Jesus Diaz and Anja Lehmann. Group signatures with user-controlled and sequential
linkability. In Juan A. Garay, editor, Public-Key Cryptography - PKC 2021 - 24th IACR
International Conference on Practice and Theory of Public Key Cryptography, Virtual
Event, May 10-13, 2021, Proceedings, Part I, volume 12710 of Lecture Notes in Com-
puter Science, pages 360–388. Springer, 2021. doi:10.1007/978-3-030-75245-3_14.

[DMM+18] Dominic Deuber, Matteo Maffei, Giulio Malavolta, Max Rabkin, Dominique Schröder,
and Mark Simkin. Functional credentials. Proc. Priv. Enhancing Technol., 2018(2):64–
84, 2018. doi:10.1515/popets-2018-0013.

[EHK+19] Keita Emura, Goichiro Hanaoka, Yutaka Kawai, Takahiro Matsuda, Kazuma Ohara,
Kazumasa Omote, and Yusuke Sakai. Group signatures with message-dependent open-
ing: Formal definitions and constructions. Secur. Commun. Networks, 2019:4872403:1–
4872403:36, 2019. doi:10.1155/2019/4872403.

[Esp22] Espresso Systems. Configurable Asset Privacy. https://github.com/

EspressoSystems/cap/blob/main/cap-specification.pdf, 2022.

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving sig-
natures on equivalence classes and constant-size anonymous credentials. J. Cryptol.,
32(2):498–546, 2019. doi:10.1007/s00145-018-9281-4.

[GL19] Lydia Garms and Anja Lehmann. Group signatures with selective linkability. In PKC
2019, Proceedings, pages 190–220, 2019.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988. doi:10.1137/0217017.

[GO14] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. J. Cryptol.,
27(3):506–543, 2014. doi:10.1007/s00145-013-9152-y.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for NP. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004
of Lecture Notes in Computer Science, pages 339–358. Springer, 2006. doi:10.1007/
11761679_21.

[KKS22] Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. Peredi: Privacy-
enhanced, regulated and distributed central bank digital currencies. In Heng Yin,
Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS 2022,
Los Angeles, CA, USA, November 7-11, 2022, pages 1739–1752. ACM, 2022. doi:

10.1145/3548606.3560707.

19

https://doi.org/10.1007/978-3-030-75245-3_14
https://doi.org/10.1515/popets-2018-0013
https://doi.org/10.1155/2019/4872403
https://github.com/EspressoSystems/cap/blob/main/cap-specification.pdf
https://github.com/EspressoSystems/cap/blob/main/cap-specification.pdf
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1137/0217017
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707

[KLN23] Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen. Privacy-preserving blueprints.
In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT
2023 - 42nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part II, vol-
ume 14005 of Lecture Notes in Computer Science, pages 594–625. Springer, 2023.
doi:10.1007/978-3-031-30617-4_20.

[KY06] Aggelos Kiayias and Moti Yung. Secure scalable group signature with dynamic joins
and separable authorities. Int. J. Secur. Networks, 1(1/2):24–45, 2006. doi:10.1504/
IJSN.2006.010821.

[LNPY21] Benôıt Libert, Khoa Nguyen, Thomas Peters, and Moti Yung. Bifurcated signatures:
Folding the accountability vs. anonymity dilemma into a single private signing scheme.
In Anne Canteaut and Franccois-Xavier Standaert, editors, Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceed-
ings, Part III, volume 12698 of Lecture Notes in Computer Science, pages 521–552.
Springer, 2021. doi:10.1007/978-3-030-77883-5_18.

[MSS06] Mark Manulis, Ahmad-Reza Sadeghi, and Jörg Schwenk. Linkable democratic group
signatures. In Information Security Practice and Experience, Second International
Conference, ISPEC 2006, Hangzhou, China, April 11-14, 2006, Proceedings, pages
187–201, 2006.

[NGSY22a] Khoa Nguyen, Fuchun Guo, Willy Susilo, and Guomin Yang. Multimodal private
signatures. Cryptology ePrint Archive, Paper 2022/1008, 2022. https://eprint.

iacr.org/2022/1008. URL: https://eprint.iacr.org/2022/1008.

[NGSY22b] Khoa Nguyen, Fuchun Guo, Willy Susilo, and Guomin Yang. Multimodal private
signatures. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology
- CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part II, volume 13508
of Lecture Notes in Computer Science, pages 792–822. Springer, 2022. doi:10.1007/
978-3-031-15979-4_27.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA,
pages 427–437. ACM, 1990. doi:10.1145/100216.100273.

[PS96] David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In
Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology - ASI-
ACRYPT ’96, International Conference on the Theory and Applications of Cryp-
tology and Information Security, Kyongju, Korea, November 3-7, 1996, Proceedings,
volume 1163 of Lecture Notes in Computer Science, pages 252–265. Springer, 1996.
doi:10.1007/BFb0034852.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue Sako,
editor, Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA

20

https://doi.org/10.1007/978-3-031-30617-4_20
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1007/978-3-030-77883-5_18
https://eprint.iacr.org/2022/1008
https://eprint.iacr.org/2022/1008
https://eprint.iacr.org/2022/1008
https://doi.org/10.1007/978-3-031-15979-4_27
https://doi.org/10.1007/978-3-031-15979-4_27
https://doi.org/10.1145/100216.100273
https://doi.org/10.1007/BFb0034852

Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings,
volume 9610 of Lecture Notes in Computer Science, pages 111–126. Springer, 2016.
doi:10.1007/978-3-319-29485-8_7.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor, Ad-
vances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume
2139 of Lecture Notes in Computer Science, pages 566–598. Springer, 2001. doi:

10.1007/3-540-44647-8_33.

[SEH+12] Yusuke Sakai, Keita Emura, Goichiro Hanaoka, Yutaka Kawai, Takahiro Matsuda,
and Kazumasa Omote. Group signatures with message-dependent opening. In Michel
Abdalla and Tanja Lange, editors, Pairing-Based Cryptography - Pairing 2012 - 5th
International Conference, Cologne, Germany, May 16-18, 2012, Revised Selected Pa-
pers, volume 7708 of Lecture Notes in Computer Science, pages 270–294. Springer,
2012. doi:10.1007/978-3-642-36334-4_18.

[TZ23] Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V, volume 14008 of
Lecture Notes in Computer Science, pages 691–721. Springer, 2023. doi:10.1007/

978-3-031-30589-4_24.

[WG23] Anoncreds WG. Hyperledger anoncreds. https://www.hyperledger.org/use/

anoncreds, May 2023.

A Formal UAS Model

A.1 Global Variables and Oracles

Global variables. Users are referred to with user identifiers, uid; for credentials, we use cid ;
and for openers, oid. Although issuers are “extended” users, we use iid to refer to a user acting
as issuer. For notational convenience, we often use these identifiers instead of the corresponding
user/issuer/opener keys. All tables defined in Table 1 are initialized empty. Among them, it is
worth emphasizing:

CRD. Indexable by cid , it stores (uid, crd , iid,a , n, {(cid i, iidi)}i∈[n]) tuples, where uid identifies the
credential owner, crd (if available) is the credential, iid is the issuer identifier, a are the
attributes in crd , n is the number of credentials used to support this request, and (cid i, iidi)
for i ∈ [n] are the corresponding credential and issuer identifiers. We may use CRD[cid] to
refer to CRD[cid] for all cid ∈ cid. Also, we sometimes use CRD[cid] to mean C = (cid ,a ,
crd , IPK[iid]) such that CRD[cid] = (·, crd , iid,a , ·, ·). We may also write CRD[cid] = C =
{CRD[cid i]}i∈[n] for vectors of IDs. Finally, we write CRD[uid] to denote the set of credentials
of user uid, i.e. CRD[uid] = {(cid ,a , crd , IPK[iid]) | (uid, crd , iid,a , ·, ·) ∈ CRD}.

CCRD. Like CRD, but tracks challenge credentials. Contains entries of the form (uid∗b , crd , iid,a , n,
{(cid∗

i , iidi)}i∈[n], uid
∗
1−b), storing both uidb and uid1−b.

21

https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://www.hyperledger.org/use/anoncreds
https://www.hyperledger.org/use/anoncreds

SIG. Signatures generated by SIGN: (uid, oid,m, fev,Σ) tuples, where uid is the signer, oid is the
opener, m is the signed message, fev is the used evaluation function, and Σ = (σ, yev) is the
generated signature.

CSIG. Stores challenge signatures output to A in the signature anonymity game that depend on
the hidden bit b (either directly or because it depends on credentials that depend on b). Like
SIG, each entry is of the form (uid, oid,m, fev,Σ).

For convenience, we allow indexing OWN and ISR by identifier sets (i.e. OWN[cid], ISR[cid]).
To avoid inconsistencies, if OWN (resp. ISR) is called with a set cid including cids owned (resp.
issued) by different uids (resp. iids), the output is ⊥. Also, ATT[cid] returns the union of all the
attributes in cid.

Table Indexed by Content
H{U, I,O} uid,iid,oid Honest users, issuers, and openers.
C{U, I,O} uid,iid,oid Corrupt users, issuers, and openers.
{U, I,O}K uid,iid,oid User/Issuer/Opener key pairs.
{U, I,O}PK uid,iid,oid User/Issuer/Opener public keys.
{U, I,O}SK uid,iid,oid User/Issuer/Opener private keys.
OWN cid uid of the owner of the credential identified by cid .
ATT cid Attribute set encoded in the credential identified by cid .
ISR cid iid of the issuer of the credential identified by cid .
SIG / Honest sigs: (uid, oid,m, fev,Σ = (σ, yev)).
CSIG / Chall sigs: (uid, oid,m, fev,Σ = (σ, yev)).
CRD cid Issued creds: (uid, crd , iid,a , n, (cid, ISR[cid])).
CCRD cid Chall creds: (uid∗b , crd , iid,a , n, (cidb, ISR[cidb]), uid

∗
1−b).

Table 1: Global state tables. Details of SIG, CSIG, CRD, and CCRD in the text.

Oracles. We define several oracles to model adversarial capabilities. We use the conventional
oracles for generating users or openers ({HU,HO}GEN for honest ones; {CU,CO}GEN for fully
corrupt ones), or corrupting existing users, issuers, or openers ({U, I,O}CORR). Also, we use an
ISET oracle for “upgrading” a user to an issuer. Importantly, note that the OCORR oracle, for
corrupting openers, rejects queries if the corresponding opener’s key pair has been used to produce
challenge signatures. This set of oracles is formally defined in Fig. 7.

The oracles for obtaining (non-challenge) credentials are OBTISS, ISSUE, and OBTAIN. In
OBTISS, both issuer and user are honest; in ISSUE, only the issuer is honest; in OBTAIN, only
the user is honest. In these oracles, we essentially do some bookkeeping of all the information
that honest participants see. For issuing challenge credentials, in the issuance anonymity game, we
introduce the OBTCHALb oracle. To call this oracle, A specifies two challenge users and two sets
of endorsement credentials – as well as one common issuer and set of attributes for the requested
credentials. The challenge bit b defines which set of challenge user and credentials will be used.
In this case, we need to prevent some trivial attacks: namely, no challenge and non-challenge
credentials can be mixed in the same request, and the output of fis has to be the same for both
sets of challenge credentials.

To create signatures and operate on them, the adversary can use the SIGN and OPEN oracles.
Besides some bookkeeping, the SIGN oracle prevents trivial attacks by disallowing using both chal-
lenge and non-challenge credentials to produce a signature. In queries involving (only) multiple

22

challenge credentials, we also make sure that, in their respective issuance protocols, all were paired
with the same uid∗1−b, as that would trivially leak b too. In addition, fev must output the same
value for both challenge sets, and if the opener is corrupt, so does fop. With respect to OPEN, we
simply prevent opening challenge signatures. Finally, the SIGCHALb oracle, used in the signature
anonymity game, given two sets of user and credentials, picks the one defined by the bit b, and
produces a challenge signatures. The checks against trivial wins are equivalent to those of SIGN.
Note though, that the SIGCHALb oracle is never used in conjunction with OBTCHALb, so we do not
need to prevent trivial wins involving challenge credentials.

The non-challenge oracles are defined in Fig. 8, and Fig. 9 defines the challenge ones.

HUGEN(uid)

//Generate honest user

if uid ∈ HU ∨ uid ∈ CU : return ⊥
(upk , usk)← KG(par)

UK[uid]← (upk , usk)

HU← HU ∪ {uid}
return upk

CUGEN(uid, upk)

//Create corrupted user

if uid ∈ HU ∪ CU : return ⊥
CU← CU ∪ {uid}
UK[uid] = (upk ,⊥)
return ⊤

UCORR(uid)

//Corrupt existing honest user

if uid ∈ CU ∨ uid /∈ HU : return ⊥
if uid ∈ HI ∪ CI : return ⊥
HU← HU \ {uid}
CU← CU ∪ {uid}
return (USK[uid],CRD[uid])

ISET(uid, fis)

//Upgrade user to issuer

if uid /∈ HU ∪ CU : return ⊥
if uid ∈ HI ∪ CI : return ⊥
if fis /∈ Fis : return ⊥
IK[uid]← (ipk = (UPK[uid], fis),USK[uid])

if uid ∈ HU : HI← HI ∪ {uid}
if uid ∈ CU : CI← CI ∪ {uid}
return ipk

HOGEN(oid, fop)

//Generate honest opener

if oid ∈ HO ∨ oid ∈ CO : return ⊥
if fop /∈ Fop : return ⊥
(preopk , preosk)← OKG(par)

OK[oid]← (opk = (preopk , fop), preosk)

HO← HO ∪ {oid}
return opk

COGEN(oid, preopk , fop)

//Create corrupted opener

if oid ∈ HO ∪ CO : return ⊥
if fop /∈ Fop : return ⊥
CO← CO ∪ {oid}
OK[oid] = ((preopk , fop),⊥)
return ⊤

OCORR(oid)

//Corrupt existing honest opener

if oid ∈ CO ∨ oid /∈ HO : return ⊥
//Nontriviality: involved in chall sig?

if ∃(·, oid, ·, ·, ·) ∈ CSIG : return ⊥
HO← HO \ {oid}
CO← CO ∪ {oid}
return OSK[oid]

ICORR(uid)

//Corrupt existing honest issuer

if uid /∈ HI : return ⊥
HI← HI \ {uid}
CI← CI ∪ {uid}
HU← HU \ {uid}
CU← CU ∪ {uid}
return (USK[uid],CRD[uid])

Figure 7: Detailed oracles available in our model (1/3). Oracles for key generation.

23

OBTISS(uid, iid,a , cid)

//Honest issuer issues to honest user

//Require: both honest & no challenge creds

if uid /∈ HU ∨ iid /∈ HI : return ⊥
if ∃i ∈ [n] s.t. cid i ∈ CCRD : return ⊥
//Run issue/obtain protocol

(·, fis)← IPK[iid]

yis ← fis(UPK[uid],a , (cid,ATT[cid]))

⟨C,R⟩ ← ⟨Obt(UPK[uid],USK[uid],CRD[cid],a),

Iss(ISK[iid], ISR[cid],a , yis)⟩
(reg , cid)← R

//Bookkeeping: register this issuance

if cid ∈ CRD ∨ cid ∈ CCRD : coll← 1; return ⊥
reg[cid]← (yis, reg)

CRD[cid]← (uid, crd , iid,a , n, (cid, ISR[cid]))

return ⊤

ISSUE(iid,a , iid = {iidi}i∈[n], yis)

//Honest issuer issues to A
//Require: honest issuer

if iid /∈ HI : return ⊥
//Issue to A
⟨·, R⟩ ← ⟨A, Iss(ISK[iid], iid,a , yis)⟩
if R = ⊥ : return ⊥
(reg , cid)← R

//Bookkeeping: register this issuance

if cid ∈ CRD : coll← 1; return ⊥
reg[cid]← (yis, reg)

CRD[cid]← (⊥,⊥, iid,a , n, {(⊥, iidi)}i∈[n])

return ⊤

OBTAIN(uid, iid,a , cid)

//A issues to honest user

//Require: honest user, no challenge credentials

if uid /∈ HU ∨ iid /∈ CI : return ⊥
if ∃i ∈ [n] s.t. cid i ∈ CCRD : return ⊥
//Obtain credential from A
⟨C, ·⟩ ← ⟨Obt(UPK[uid],USK[uid], IPK[iid],

CRD[cid],a),A⟩
(cid , ·, crd , ·)← C

//Bookkeeping: register received credential

if cid ∈ CRD ∨ cid ∈ CCRD : coll← 1; return ⊥
CRD[cid]← (uid, crd , iid,a , n, (cid, ISR[cid]))

return ⊤

OPEN(oid, iid,Σ,m, fev)

//Opener reveals opening yop for Σ

//Require: Σ is not challenge signature

if (·, ·, ·, ·,Σ) ∈ CSIG :

return ⊥
//Open Σ to receive yop and proof π

(yop, π)← Open(OSK[oid], IPK[iid],Σ,m, fev)

return (yop, π)

SIGN(oid, uid, cid = {cid i}i∈[n],m, fev)

//Honest user creates a signature

//If cids given: ignore uid arg, set to cid owner

if n > 0 : set (overwrite) uid = OWN[cid]

//Require: Honest user, no mixing challenge creds

if uid /∈ HU ∨ fev /∈ Fev : return ⊥
if ∃i ̸= j ∈ [n] s.t. cid i ∈ CRD ∧ cid j ∈ CCRD :

return ⊥
yev ← fev(UPK[uid], (cid,ATT[cid]),m)

//If challenge cred is involved: nontriviality checks

if cid1 ∈ CCRD :

//Credential ownership does not trivially leak b

for i ∈ [n] : (·, ·, ·, ·, ·, ·, uid∗1−b,i)← CCRD[cid i]

if ∃i ̸= j ∈ [n] s.t. uid∗1−b,i ̸= uid∗1−b,j :

return ⊥
if uid∗1−b,1 /∈ HU : return ⊥
//fev does not trivially leak b

if fev(UPK[uid
∗
1−b,1], (cid,ATT[cid]),m) ̸= yev :

return ⊥
//fop does not trivially leak b

((·, fop), ·)← OPK[oid]

if oid ∈ CO∧
fop(UPK[uid], (cid,ATT[cid]),m) ̸=
fop(UPK[uid

∗
1−b,1], (cid,ATT[cid]),m) :

return ⊥
//Create signature + bookkeeping

if cid1 ∈ CCRD :

Σ← Sign(UPK[uid],USK[uid],OPK[oid],CCRD[cid],m, fev)

CSIG← CSIG ∪ {(uid, oid,m, fev,Σ)}
else :

Σ← Sign(UPK[uid],USK[uid],OPK[oid],CRD[cid],m, fev)

SIG← SIG ∪ {(uid, oid,m, fev,Σ)}
return Σ

Figure 8: Detailed oracles available in our model (2/3). Oracles for obtaining credentials, signatures,
and processing them, excluding oracles specific to the anonymity games.

Correctness. As usual, correctness ensures that an honestly produced signature is accepted by
Verify, and an honestly produced (yop, π) pair is accepted by Judge. We also check that the yev and

24

OBTCHALb(uid
∗
{0,1}, iid,a ,

cid∗
{0,1}

{((cid∗
0,i, cid

∗
1,i))}i∈[n])

//A issues to unknown user (anonymity challenge)

//Require: Both users honest

if uid∗0 /∈ HU ∨ uid∗1 /∈ HU : return ⊥
if iid /∈ CI : return ⊥
//Check owners, issuers of endorsement creds

//and disallow challenge credentials

for (d, i) ∈ {0, 1} × [n] :

if cid∗
d ̸= ∅ ∧ uid∗d ̸= OWN[cid∗

d,i] : return ⊥
if IPK[cid∗

0,i] ̸= IPK[cid∗
1,i] : return ⊥

if cidd,i ∈ CCRD : return ⊥
//Check that fis does not trivially leak b

(·, fis)← IPK[iid]

if fis(UPK[uid
∗
0],a , {(cid∗

0,i,ATT[cid
∗
0,i])}i∈[n]) ̸=

fis(UPK[uid
∗
1],a , {(cid∗

1,i,ATT[cid
∗
1,i])}i∈[n]) :

return ⊥
//Have user uid∗b obtain credential from A
⟨C, ·⟩ ← ⟨Obt(UPK[uid∗b],USK[uid

∗
b], IPK[iid],

CRD[cid∗
b],a),A⟩

(cid , ·, crd , ·)← C

//Bookkeeping: store resulting credential

if cid ∈ CRD ∨ cid ∈ CCRD : coll← 1; return ⊥
CCRD[cid]← (uid∗b , crd , iid,a , n, (cid

∗
b , ISR[cid

∗
b]), uid

∗
1−b)

return ⊤

SIGCHALb(oid, uid
∗
{0,1},

cid∗
{0,1}

{(cid∗
0,i, cid

∗
1,i)}i∈[n] ,m, fev)

//Unknown user creates signature (anonymity challenge)

//Require: Consistent honest owners and issuers

for d ∈ {0, 1} :
if cid∗

d ̸= ∅ ∧ uid∗d ̸= OWN[cid∗
d] : return ⊥

if uid∗0 /∈ HU ∨ uid∗1 /∈ HU ∨ fev /∈ Fev : return ⊥
if IPK[cid∗

0] ̸= IPK[cid∗
1] : return ⊥

//Check that fop, fev do not trivially leak b

((·, fop), ·)← OPK[oid]

if oid ∈ CO∧
fop(UPK[uid

∗
0], (cid

∗
0,ATT[cid

∗
0]),m) ̸=

fop(UPK[uid
∗
1], (cid

∗
1,ATT[cid

∗
1]),m) : return ⊥

yev ← fev(UPK[uid
∗
0], (cid

∗
0,ATT[cid

∗
0]),m)

ỹev ← fev(UPK[uid
∗
1], (cid

∗
1,ATT[cid

∗
1]),m)

if yev ̸= ỹev : return ⊥
//Create and publish signature Σ∗

b

Σ∗
b ← Sign(UPK[uid∗b],USK[uid

∗
b],OPK[oid],CRD[cid∗

b],m, fev)

CSIG← CSIG ∪ {(uidb, oid,m, fev,Σ
∗
b)}

return Σ∗
b

Figure 9: Detailed oracles available in our model (3/3). Oracles specific to the anonymity games.

yop values are the result of a correct computation of fev and fop, and that all credentials involved in
the signature were issued correctly – in particular, that the yis value provided during the issuance
protocol matches the output of fis. We emphasize that our correctness definition also enforces
uniqueness in the credential identifiers. Concretely, even when the adversary does not follow the
rules (e.g., outputs a fully corrupted oid), it can still win if it manages to produce two credentials
with colliding identifiers (this is captured in the OBTISS, OBTAIN, ISSUE and OBTCHALb oracles,
which set the coll variable if that happens, even though they later abort issuance). For this, we
additionally give the adversary access to all the oracles. We formally define correctness in Fig. 10.
An UAS scheme is said to be correct as per Definition 1.

Definition 1. (Correctness of UAS) A UAS scheme is correct if, for any p.p.t. adversary A,
ExpcorrectUAS,A (1κ) outputs 1 with negligible probability.

A.2 Security Properties

Helper functions. We require the existence of three helper functions – not available in the actual
scheme, but rather to the challenger in the experiments. We introduce them here, and give concrete
definitions for our construction, in Appendix C.

25

ExpcorrectUAS,A (1κ)

1 : par ← Setup(1κ); coll← 0

2 : (uid, oid, cid,m, fev)← AOcorr (par)

3 : //uid must be honest; osk must be known

4 : //cid issuers must be honest

5 : if uid /∈ HU ∨ OSK[oid] = ⊥ ∨
6 : ∃cid ∈ cid s.t. ISR[cid] /∈ HI : return coll

7 : //fev is valid; the same uid owns all creds

8 : if fev /∈ Fev ∨ OWN[cid] ̸= uid : return coll

9 : Σ = (σ, yev)← Sign(UPK[uid],USK[uid],

10 : OPK[oid],CRD[cid],m, fev)

11 : //Honest verifiers accept honest sigs

12 : if Verify(OPK[oid], IPK[cid],Σ,m, fev) = 0 :

13 : return 1

14 : //All endorsement credentials met their fis

15 : for cid ∈ cid do :

16 : (·, ·, ·,a , n, {(cid i, ·)}i∈[n]))← CRD[cid]

12 : (yis, reg)← reg[cid]; ((·, fis), ·)← IPK[cid]

13 : if fis(UPK[uid],a , ({(cid i,ATT[cid i])}i∈[n])) ̸= yis :

14 : return 1

15 : endfor

16 : //yev matches an honestly computed fev output

17 : y′
ev ← fev(UPK[uid], (cid,ATT[cid]),m)

18 : if yev ̸= y′
ev : return 1

19 : (yop, π)← Open(OSK[oid], IPK[cid],Σ,m, fev)

20 : Parse OPK[oid] as ((·, fop), ·)
21 : //Honest Judge accepts honest Open outputs,

22 : //wherein yop matches the value output by Open

23 : if Judge(OPK[oid], IPK[cid], yop, π,Σ,m, fev) = 0 ∨
24 : yop ̸= fop(UPK[uid], (cid,ATT[cid]),m)) :

25 : return 1

26 : return coll

Figure 10: Correctness experiment for UAS schemes. Ocorr includes all oracles in Fig. 7, Fig. 8
and Fig. 9.

SimSetup(1κ)→ (par , τ). Given a security parameter, outputs global parameters par whose distri-
bution is computationally indistinguishable to that produced by the Setup algorithm2, as well
as a trapdoor τ .

ExtIss(τ, reg)→ (upk , {(cid i,a i)}i∈[n]). Receives trapdoor τ and a valid ⟨Obt, Iss⟩ transcript reg .
It deterministically outputs the receiving user’s public key upk and IDs and attributes of the
credentials used by the user for the request.

ExtSign(τ,Σ)→ (upk , {(cid i,a i)}i∈[n]). Receives trapdoor τ and a valid signature Σ. It determin-
istically outputs the signing user’s public key upk and credential set C used to generate the
signature.

These helpers are referenced by the oracles and experiments, and each security definition should
be read as “is secure with respect to SimSetup,ExtIss,ExtSign”. Schemes must define these helpers
once, such that all security notions are fulfilled with respect to those three helpers.

Anonymity. The formal specification of the anonymity games is given in Fig. 11, and the def-
inition of an issuance (resp. signature) anonymous UAS scheme in Definition 2 (resp. Definition
3).

Definition 2. (Issuance anonymity in UAS) We define the advantage Adviss-anonUAS,A of A against

Expiss-anon-bUAS,A as Adviss-anonUAS,A = |Pr[Expiss-anon-1UAS,A (1κ) = 1] − Pr[Expiss-anon-0UAS,A (1κ) = 1]|. A UAS scheme

satisfies issuance anonymity if, for any p.p.t. adversary A, Adviss-anonUAS,A is a negligible function of
1κ.

2One should consider this indistinguishability an implicit but important requirement of all security definitions
that make use of SimSetup.

26

Expiss-anon-bUAS,A (1κ)

1 : par ← Setup(1κ)

2 : b∗ ← AOanon-b,OBTCHALb(par)

3 : return b∗

Expsig-anon-bUAS,A (1κ)

1 : par ← Setup(1κ)

2 : b∗ ← AOanon-b,SIGCHALb(par)

3 : return b∗

Figure 11: Issuance and signature anonymity experiments for UAS schemes. Oanon-b ← ({HO,CO,
HU,CU}GEN, ISET, {I,O,U}CORR, ISSUE,OBTISS,OBTAIN,SIGN,OPEN).

Definition 3. (Signature anonymity in UAS) We define the advantage Advsig-anonUAS,A of A against

Expsig-anon-bUAS,A as Advsig-anonUAS,A = |Pr[Expsig-anon-1UAS,A (1κ) = 1]− Pr[Expsig-anon-0UAS,A (1κ) = 1]|. A UAS scheme

satisfies signature anonymity if, for any p.p.t. adversary A, Advsig-anonUAS,A is a negligible function of
1κ.

Unforgeability. The unforgeability-related experiments are given in Fig. 12, and the definition of
an issuance unforgeable (resp. signature unforgeable) UAS scheme in Definition 4 (resp. Definition
5).

Definition 4. (Unforgeable issuance of UAS) We define the advantage Adviss-forgeUAS,A of A against

Expiss-forgeUAS,A as Adviss-forgeUAS,A = Pr[Expiss-forgeUAS,A (1κ) = 1]. A UAS scheme has unforgeable issuance if, for

any p.p.t. adversary A, Adviss-forgeUAS,A is a negligible function of 1κ.

Definition 5. (Unforgeable signatures of UAS) We define the advantage Advsig-forgeUAS,A of A against

Expsig-forgeUAS,A as Advsig-forgeUAS,A = Pr[Expsig-forgeUAS,A (1κ) = 1]. A UAS scheme has unforgeable signing if, for

any p.p.t. adversary A, Advsig-forgeUAS,A is a negligible function of 1κ.

Non-frameability. The non-frameability experiment is specified in Fig. 13, and the correspond-
ing definition of non-frameable UAS schemes is given in Definition 6.

Definition 6. (Non-frameability of UAS) We define the advantage Advframe
UAS,A of A against Expframe

UAS,A
as Advframe

UAS,A = Pr[Expframe
UAS,A(1

κ) = 1]. A UAS scheme satisfies non-frameability if, for any p.p.t.

adversary A, Advframe
UAS,A is a negligible function of 1κ.

B Cryptographic Building Blocks

B.1 Public-Key Encryption

A public-key encryption scheme is defined by the following algorithms:

par ← E.Setup(1κ). Produces public parameters par given a security parameter 1κ.

(ek , dk)← E.KG(par). Given public parameters par , produces an encryption-decryption key pair
(ek , dk).

c ← E.Enc(ek ,m). Encrypts message m with encryption key ek , producing ciphertext c.

m ← E.Dec(dk , c). Decrypts ciphertext c with decryption key dk . A deterministic algorithm.

27

Expiss-forgeUAS,A (1κ)

1 : //Set up with extraction trapdoor τ

2 : (par , τ)← SimSetup(1κ)

3 : //A challenges extractor on issuance of cid

4 : cid ← AOforge(par)

5 : //Require: cid issued by honest issuer to A.
6 : if ISR[cid] /∈ HI ∨ reg[cid] = ⊥ : return 0

7 : if OWN[cid] ∈ HU : return 0

8 : //Retrieve & extract data on cid issuance

9 : (·, ·, iid,a , n, {(·, iidi)}i∈[n])← CRD[cid]

10 : (ipk , fis)← IPK[iid], (yis, reg)← reg[cid]

11 : (upk , {(cid i,a i)}i∈[n])← ExtIss(τ, reg)

12 : //A wins if extraction invalid for yis

13 : if fis(upk ,a , {(cid i,a i)}i∈[n]) ̸= yis : return 1

14 : //A wins if extracted creds not issued

15 : return CheckEndorsementCreds(upk , {cid i,a i, iidi}i∈[n])

CheckEndorsementCreds(upk , {cid i,a i, iidi}i∈[n])

1 : for i ∈ {i ∈ [n] : iidi ∈ HI} :
2 : //A wins if honest issuer didn’t issue a i

3 : if ISR[cid i] ̸= iidi ∨ ATT[cid i] ̸= a i : return 1

4 : //A wins if cred belongs to honest user

5 : if OWN[cid i] ∈ HU : return 1

6 : //Retrieve & extract data on issuance of cid i

7 : (·, reg ′)← reg[cid i], (upk
′, ·)← ExtIss(τ, reg ′)

8 : //A wins if cred was not issued to same upk

9 : if upk ̸= upk ′ : return 1

10 : return 0

Expsig-forgeUAS,A (1κ)

1 : //Set up with extraction trapdoor τ

2 : (par , τ)← SimSetup(1κ)

3 : //A outputs UAS signature forgery candidate Σ

4 : (oid, iid,Σ = (σ, yev),m, fev)← AOforge(par)

5 : //Require: signature was not produced by honest user

6 : if (·, ·,m, fev,Σ) ∈ SIG : return 0

7 : //Require: signature is accepted by honest Verify

8 : if Verify(OPK[oid], IPK[iid],Σ,m, fev) = 0 : return 0

9 : //Use extractor to retrieve hidden values in Σ

10 : (upk , {(cid i,a i)}i∈[n])← ExtSign(τ,Σ)

11 : //A wins if extraction inconsistent to yev

12 : if fev(upk , {(cid i,a i)}i∈[n],m) ̸= yev : return 1

13 : //A wins if Σ cannot be opened correctly

14 : if OSK[oid] ̸= ⊥ :

15 : (yop, π)← Open(OSK[oid], iid,Σ,m, fev)

16 : (·, fop)← OPK[oid]

17 : if Judge(OPK[oid], IPK[iid], yop, π,Σ,m, fev) = 0 ∨
18 : fop(upk , {(cid i,a i)}i∈[n],m) ̸= yop : return 1

19 : //A wins if extracted creds not issued

20 : return CheckEndorsementCreds(upk , {cid i,a i, iidi}i∈[n])

Figure 12: Unforgeability experiments in UAS schemes. Oforge ← {HO,CO,HU,CU}GEN, ISET, {O,
U, I}CORR,OBTAIN,OBTISS, ISSUE,SIGN,OPEN.

A public-key encryption scheme is correct if, given a honestly generated key pair (ek , dk), pro-
duced with honestly generated parameters parE, Pr[E.Dec(dk ,E.Enc(ek ,m)) = m] = 1.

A public-key encryption scheme has IND-CPA security if Pr[ExpIND-CPA-1
E,A (1κ) = 1]−Pr[ExpIND-CPA-0

E,A (1κ) =

1]| is a negligible function of κE, for any p.p.t. adversary A, where ExpIND-CPA-b
E,A is as defined in

Fig. 14.
A public-key encryption scheme has IND-CCA security if Pr[ExpIND-CCA-1

E,A (1κ) = 1]−Pr[ExpIND-CCA-0
E,A (1κ) =

1]| is a negligible function of κE, for any p.p.t. adversary A, where ExpIND-CCA-b
E,A is as defined in

Fig. 14.

Proving that a key pair was correctly generated. In Rop of ΠUAS, we include statements
requiring to prove that a key pair was produced by an E.KG algorithm (therein denoted (opk ,
osk) ∈ [OKG(par , ·)]). While how to do this highly depends on the concrete construction, note
that it can be as trivial as proving knowledge of a discrete logarithm – as is the case in ElGamal
encryption, which is IND-CPA secure under the DDH assumption, as required by UAS.

28

Expframe
UAS,A(1

κ)

1 : (par , τ)← SimSetup(1κ)

2 : (oid, iid,Σ = (σ, yev),m, fev, yop, π)← AOframe(par)

3 : //Require: signature was not produced by honest user

4 : if (·, oid,m, fev,Σ) ∈ SIG : return 0

5 : //Require: signature is accepted by honest Verify

6 : if Verify(OPK[oid], IPK[iid],Σ,m, fev) = 0 : return 0

7 : //Require: opening proof is accepted by honest Judge

8 : if Judge(OPK[oid], IPK[iid], yop, π,Σ,m) = 0 : return 0

9 : (upk , {(cid i,a i)}i∈[n])← ExtSign(τ,Σ)

10 : //A wins if fop evaluated on extracted values doesn’t match yop

11 : (·, fop)← OPK[oid]

12 : if fop(upk , {(cid i,a i)}i∈[n],m) ̸= yop : return 1

13 : //A wins if the extracted upk belongs to an honest user

14 : if ∃uid ∈ HU s.t. UPK[uid] = upk : return 1

15 : return 0

Figure 13: Experiment for non-frameability on UAS schemes. Oframe ← {HO,CO,HU,CU}GEN,
ISET, {I,O,U}CORR, ISSUE,OBTISS,OBTAIN,SIGN.

ExpIND-CPA-b
E,A (1κ)

par ← E.Setup(1κ)

(ek , dk)← E.KG(par)

b∗ ← ALR(b,·,·)(ek), where:

LR(b,m0,m1) returns E.Enc(ek ,mb)

return b∗

ExpIND-CCA-b
E,A (1κ)

par ← E.Setup(1κ)

(ek , dk)← E.KG(par)

b∗ ← ALR(b,·,·),DEC(dk,·)(ek), where:

LR(b,m0,m1) returns E.Enc(ek ,mb)

and

DEC(dk , c) returns E.Dec(dk , c)

if c has not been output by LR

return b∗

Figure 14: IND-CPA and IND-CCA games.

B.2 Commitments

Although we don’t directly leverage commitments functionality in our UAS scheme or constructions,
they are an essential part of SBCM schemes, which we present in a following section. Thus, we
overview commitment schemes briefly now. In a nutshell, a commitment scheme is defined by the
following algorithms:

par ← C.Setup(1κ). Given a security parameter 1κ, returns the public parameters par to commit
messages.

c← C.Commit(par ,m; r). Given the public parameters and a message m, outputs a commitment
c to m, for which randomness r from some predefined randomness space R is used.

Opening a commitment c means revealing the message m and randomness r that were used to
produce c. Commitment schemes are required to be binding and (usually) hiding:

29

Binding. Intuitively, the binding property of commitment schemes means that no adversary can
change the message that has been committed to. More formally, Pr[ExpbindC,A (1κ) = 1] must be
a negligible function of the security parameter.

Hiding. The hiding property captures that no adversary should be able to learn the message that
was committed, when given only the commitment. This is formally defined through Exphide-bC,A ,

where |Pr[Exphide-bC,A (1κ) = 1|b = 1]−Pr[Exphide-bC,A (1κ) = 1|b = 0]| must be a negligible function
of the security parameter.

ExpbindC,A (1κ)

par ← C.Setup(1κ)

(m0, r0,m1, r1)← A(par)
c0 ← C.Commit(par ,m0, r0)

c1 ← C.Commit(par ,m1, r1)

if m0 ̸= m1 ∧ c0 = c1 : return 1

return 0

Exphide-bC,A (1κ)

par ← C.Setup(1κ)

b′ ← ACOM(par,·,·), where :

COM(par ,m0,m1) :

r
$← R

return C.Commit(par ,mb, r)

return b′

Figure 15: Games for commitment schemes.

Commitments on Blocks of Messages. We also use an extension of commitment schemes
that allows committing to multiple messages at once. The properties we need are the same, and
their definitions are extended in the natural way. Namely, C.Commit receives a vector/block of
messages, msg instead of a single message. In the games, the adversary returns lets of messages
and, in the binding game, the comparison m0 ̸= m1 now compares lists msg0 and msg1, which
must differ in at least one element. This extension is straightforward, for instance, from Pedersen
commitments [BCC+15].

B.3 Simulation Extractable Non-Interactive Zero-Knowledge Proofs of
Knowledge

Let R be an NP relation defined by pairs of elements (x,w), where x is a statement and w a witness
proving that (x,w) ∈ R. For concrete relations, we write R = {(x), (w) : f(x,w)}, where f(x,w)
is a Boolean predicate denoting the concrete conditions that x and w need to meet. The set of all
x such that there exists a w for which (x,w) ∈ R is the language, or L, for R. x /∈ L means that
there is no w such that (x,w) ∈ R.

We use non-interactive zero-knowledge proofs of knowledge (NIZKPoK, or, for short, NIZK)
over NP relations, in the Common Reference String (CRS) model. A NIZK system is a tuple
(NIZK.Setup,NIZK.Prove,NIZK.Verify), defined as follows [GOS06]:

crs ← NIZK.Setup(1κ). Generates a CRS crs from security parameters 1κ.

π ← NIZK.Prove(crs, x, w). Given crs, statement x, and witness w, creates a proof π.

1/0← NIZK.Verify(crs, π, x). Checks whether π is a valid proof for x.

30

Any zero-knowledge proof of knowledge must meet completeness, soundness, and zero-knowledge
properties. We further need simulation extractability [CL06], and extraction zero-knowledge [GO14].
To define more formally the properties we need, we have to define three extra algorithms:

(crs, τ)← NIZK.SimSetup(1κ). Produces a crs as the NIZK.Setup algorithm, along with a trapdoor
τ .

π ← NIZK.Sim(crs, τ, x). Given a trapdoor τproduced by NIZK.SimSetup, and a statement x, pro-
duces a simulated proof π.

w = NIZK.Extract(crs, τ, x, π). Given a trapdoor τproduced by NIZK.SimSetup, and a proof π,
returns a witness w. We assume (without loss of generality if one-way functions exist) that
NIZK.Extract is deterministic.

When we want to make explicit the NP relation R to which the previous algorithms refer to, we
use NIZK.SetupR,NIZK.ProveR, NIZK.VerifyR, etc., and omit the NIZK prefix and super-index
when clear from context. Altogether, the tuple (Setup,Prove,Verify,SimSetup,Sim,Extract) needs
to meet the following properties:

Completeness. Ensures that, for any (x,w) ∈ R, any honest prover will be able to create a
proof π that is accepted by any honest verifier, with overwhelming probability. More precisely,
Pr[Expcomp

NIZK,A(1
κ) = 1] = 0, for any p.p.t. A, for Expcomp

NIZK,A in Fig. 16.

Soundness. Ensures that no adversary can create proofs accepted by Verify, for statements x /∈ L,
except with negligible probability. That is, for for all p.p.t. A, Pr[ExpsoundNIZK,A(1

κ) = 1] is negligible

in 1κ (where ExpsoundNIZK,A is as in Fig. 16).

Zero-knowledge. Intuitively, captures that no information can be learned from a statement
and proof pair, beyond the statement’s validity. This is captured by requiring the adversary to
distinguish between a run in the real world (b = 0), where the setup is done with Setup, and A has
access to an honest prover Prove; and a run in an ideal world (b = 1), where the setup is replaced by
SimSetup, and proofs are simulated with the help of the trapdoor produced by SimSetup. Note that,
in the context of simulation extractable NIZK, this property not only requires that the simulated
proofs are indistinguishable to the real ones; it also requires that SimSetup is indistinguishable from
Setup. All this is formalized by requiring that |Pr[Expzk-0NIZK,A(1

κ) = 1]−Pr[Expzk-1NIZK,A(1
κ) = 1]| be

a negligible function of 1κ, where Expzk-bNIZK,A is as defined in Fig. 16.

Simulation Extractability. Simulation extractability is a stronger property than just sound-
ness, combining knowledge soundness and simulation soundness. While soundness merely requires
that the adversary cannot compute proofs for false statements, simulation extractability requires
that an adversary cannot compute proofs for which it does not know a witness, even after seeing
several simulated proofs. In our case, simulation extractability is straight-line (i.e. does not re-
quire rewinding), and adaptive (i.e. the adversary gets to see multiple extracted witnesses during
its execution). Formally, for simulation extractability we require that Pr[Expsimext

NIZK,A(1
κ) = 1] is a

negligible function of 1κ, where Expsimext
NIZK,A is defined in Fig. 16.

31

As studied in [CL06], simulation extractable NIZKPoKs formalize the concept of “signatures
of knowledge” (see, e.g., [CS97]). Which basically means that, given an (x,w) pair from an NP
relation, we can treat x as a public key, and w as its corresponding private key, and leverage them to
build digital signature schemes – with the advantage of being able to do so while proving arbitrary
claims, as long as they can be represented as an NP relation. We note that, given a simulation
extractable NIZK system, it is straightforward to build a signature of knowledge by adding the
message to be signed in the statement of the NIZK.

Extraction zero-knowledge. While simulation-extractability models that “extraction still works
in the presence of simulation”, we will also require that “simulation still works in the presence of
extraction”. This is due to the fact that the UAS unforgeability games are built on extraction to
decide the winning condition, and then in the security proof (e.g., Theorem 3), we need to argue
that we can still apply zero-knowledge to the game that already uses the extractor. This is a non-
standard property, but has been mentioned before [GO14]. We will also sketch how to implement
it. More formally, we give an adversary access to an oracle that outputs either honest or simulated
proofs (like for the zero-knowledge property), as well as to an extraction oracle, with the restriction
that the adversary must not ask for extraction of proofs returned by the first oracle (since that
would enable a trivial distinguisher given that we can extract a witness from an honest proof but
cannot generally extract from a simulated proof). Formally, for all adversaries A, we require that
|Pr[Expextzk-0NIZK,A(1

κ) = 1] − Pr[Expextzk-1NIZK,A(1
κ) = 1]| be a negligible function of 1κ, where Expextzk-bNIZK,A

is as defined in Fig. 16. A similar (in spirit) definition has been given in [GO14].

Expcomp
NIZK,A(1

κ)

crs ← Setup(1κ)

(x,w)← A(crs)
if (x,w) /∈ R : return 0

π ← Prove(crs, x, w)

b← Verify(crs, π, x)

return 1− b

Expsimext
NIZK,A(1

κ)

(crs, τ)← SimSetup(1κ)

ASim(crs,τ,·),Extract(crs,τ,·,·)(crs)

return 1 if for some w ← Extract(crs, τ, x, π)

query, Verify(crs, π, x) = 1 ∧ (x,w) /∈ R ∧
no Sim(·, ·, x) query resulted in π

Expextzk-bNIZK,A(1
κ)

(crs, τ)← SimSetup(1κ)

if b = 0 :

return AProve(crs,·,·),Extract′(crs,τ,·,·)(crs)

if b = 1 :

return ASim′(crs,τ,·,·),Extract′(crs,τ,·,·)(crs)

ExpsoundNIZK,A(1
κ)

crs ← Setup(1κ)

(x, π)← A(crs)
return x /∈ L ∧Verify(crs, π, x) = 1

Expzk-bNIZK,A(1
κ)

if b = 0 :

crs ← Setup(1κ)

return AProve(crs,·,·)(crs)

if b = 1 :

(crs, τ)← SimSetup(1κ)

return ASim′(crs,τ,·,·)(crs)

Sim′(crs, τ, x, w)

if (x,w) :

return Sim(crs, τ, x)

return ⊥

Extract′(crs, τ, x, π)

if no Prove(crs, x, ·) or Sim′(crs, x, ·) query
resulted in π :

return NIZK.Extract(crs, τ, x, π)

return ⊥

Figure 16: Games for Simulation Extractable NIZK schemes.

32

Implementing a proof that is zero-knowledge in the presence of an extraction oracle.
One can upgrade a traditional straight-line adaptively simulation extractable NIZK to one that is
additionally zero-knowledge in the presence of an extraction oracle. The construction for this is
effectively encrypt-then-prove.

In more detail, let R be some relation, let E be some public-key encryption scheme, and let
NIZK′ be a non-interactive proof system for relation R′ = {(x′ = (x, c, parE, ek), w

′ = (w, r)) | (x,
w) ∈ R ∧ c = E.Enc(ek , w; r)}. We construct NIZK as follows.

crs ← NIZK.Setup(1κ). Runs crs ′ ← NIZK′.Setup(1κ) and parE ← E.Setup(1κ), (ek , dk)← E.KG(parE).
Sets crs = (crs ′, parE, ek).

π ← NIZK.Prove(crs, x, w). Computes c = E.Enc(ek , w; r) for random r, then π′ ← NIZK′.Prove(crs ′,
(x, c, parE, ek), (w, r)). It outputs π = (π′, c).

1/0← NIZK.Verify(crs, π, x). For π = (π′, c) checks that NIZK.Verify(crs ′, π′, (x, c, parE, ek)) = 1.

For this construction, we can use the following simulator/extractor helpers.

(crs, τ)← NIZK.SimSetup(1κ). Runs (crs ′, τ ′) ← NIZK′.SimSetup(1κ) and parE ← E.Setup(1κ),
(ek , dk)← E.KG(parE). Sets crs = (crs ′, parE, ek) and τ = τ ′.

π ← NIZK.Sim(crs, τ, x). Computes c = E.Enc(ek , 0) (where 0 is some appropriate constant value),
then π′ ← NIZK′.Sim(crs ′, τ, (x, c, parE, ek)). It outputs π = (π′, c).

w = NIZK.Extract(crs, τ, x, π). For π = (π′, c), runs (w, r) = NIZK′.Extract(crs ′, τ, (x, c, parE, ek),
π′) and outputs w.

It is easy to see that NIZK as described above inherits completeness (if the encryption scheme
E is correct), zero-knowledge (if E is CPA-secure), and simulation extractability from NIZK′.

We briefly sketch how to prove zero-knowledge in the presence of an extraction oracle for NIZK.
Assume that NIZK′ is zero-knowledge and simulation extractable and that the encryption scheme
E is correct and CPA-secure. Our rough strategy will be to switch to using the ciphertext c
for extraction so that we can apply ZK without having to extract from proofs. We start with
Expextzk-0NIZK,A(1

κ) and game-hop our way to Expextzk-1NIZK,A(1
κ) as follows:

1. Instead of running NIZK′.Extract in the extraction oracle, decrypt c and output the plaintext.
This change is undetectable because of the soundness of NIZK′ and the correctness of the
encryption scheme.

2. Switch from computing π via NIZK′.Prove in the first oracle to computing π via NIZK′.Sim.
This change is undetectable because of the zero-knowledge property of NIZK′.

3. Switch extraction back, i.e. instead of decrypting c during extraction queries, compute the wit-
ness via NIZK′.Extract again. This change is undetectable because of simulation extractability
of NIZK′.

4. Switch the ciphertext of simulated proofs to encryptions of 0, i.e. instead of c = E.Enc(ek , w),
compute c = E.Enc(ek , 0) during simulation queries. This change is undetectable because of
CPA-security of E (note that due to the previous game-hop, the experiment does not need
the decryption key for E anymore, hence CPA-security suffices).

33

The last change brings the modified game in line with Expextzk-1NIZK,A(1
κ). In a way, this proof is

reminiscent of Naor-Yung’s proof of a CCA secure encryption scheme using NIZKs [NY90], which
is natural given that zero-knowledge in the presence of an extraction oracle has a sort of “CCA”
flavor.

B.4 Signatures over Blocks of Committed Messages

For our generic constructions, we use interactive signing protocols between a user and a signer, where
the user has a block of messages to sign blindly, and both receive a common block of messages to be
also included in the resulting signature. This is precisely the case of partially blind signatures, that
collapse to blind signatures [PS96] when there is no common message between user and signer; and
to conventional signatures when the user does not input a message to be blindly signed [AO00].

To the best of our knowledge, models of existing schemes for signing blocks of messages like
[CL02, ASM06, PS16, CDL16] target the case of signing blocks of plain messages, and are subse-
quently informally extended to support signing commitments to blocks of messages via interactive
protocols. However, they do not support signing both committed and plain messages (although the
extension is trivial); and, more importantly, do not give security models of the resulting construc-
tion, nor of course prove its security. As we use this variant as a generic building block, we briefly
model such a scheme for Signatures over Blocks of Committed Messages (SBCM).

The syntax for an SBCM scheme is as follows:

par ← SBCM.Setup(1κ). It produces public parameters for the other algorithms, given an input
security parameter 1κ.

(vk , sk)← SBCM.KG(par). Generates a verification-signing key pair.

c← SBCM.Blind(vk ,msg ,msg , r). A user computes commitment c to request a signature over
messages msg (in committed form) and msg (in plain form), to signer with verification key
vk . r is expected to be a random value r ← Γ from a predefined randomness set Γ. The
output is the commitment c.

β ← SBCM.Sign(sk , c,msg). The signer, with signing key sk , produces a partial signature β over
the messages committed to in commitment c, as well as the messages in msg .

σ ← SBCM.Unblind(vk , β, c, r,msg ,msg). A user who requested a signature over msg and msg ,
where c is a commitment over msg using randomness r, finalizes the signature, computing σ
from the signer’s partial signature β.

1/0← SBCM.Verify(vk , σ,msg ,msg). Checks whether σ is a valid signature over the set of mes-
sages msg and msg , under verification key vk .

The correctness and security properties are defined as follows.

Correctness. Informally, an SBCM scheme is correct if signatures generated between an hon-
est party running SBCM.Blind, an honest signer running SBCM.Sign fed with the output of
SBCM.Blind and matching msg and signing key pair, and the user finally running SBCM.Unblind
over the partial signature by the signer and leveraging the same randomness as in SBCM.Blind,
produces a signature over msg and msg that is accepted by SBCM.Verify.

34

Deterministically derived public keys. Because SBCM keys are not only used to issue cre-
dentials, but also serve as user keys (vk , sk) = (upk , usk), we require that a user’s secret key usk has
a unique public key upk associated with it. More formally, we require that there is a deterministic
function f such that for all (vk , sk) ∈ [SBCM.KG(par)], we have vk = f(par , sk). In theory, this is
not a restriction (the SBCM.KG randomness can serve as a canonical sk). In practice, most SBCM
schemes are already of that form where SBCM.KG first generates random values for the secret key
and then deterministically computes the corresponding public key.

Unforgeability. It must be unfeasible for an adversary to produce signatures over blocks of
messages that have not been signed (in committed shape) by the signer. In order to enable us to
even decide which messages have been (blindly) signed, we force the adversary to reveal messages
msg ,msg and commitment randomness r whenever it wants to query a signature. This gives us
security against adversaries A that know what messages they request, which, when using SBCM
as a building block in a larger construction, can be achieved by making A prove knowledge of
the the messages. More formally, an SBCM scheme is unforgeable if, for all p.p.t. adversaries A,
Pr[ExpEUF

SBCM,A(1
κ) = 1], as defined in Fig. B.4, is a negligible function of the security parameter.

Blindness. Finally, the signer must not learn the plaintext values of the messages that are signed
in committed form. Note that this is a weaker notion than the usual blindness property of (partially)
blind signature schemes, where it is additionally required that the adversary cannot link a signature
to the signing process that produced it. Informally, we capture this basically as the hiding notion
of a commitment scheme – and formally define it in Expblind-bSBCM,A in Fig. B.4. Note that, in the
definition, we explicitly do not give back to the adversary A any full signature (i.e., after running
SBCM.Unblind) obtained from values returned by A, as this would allow the adversary to trivially
check what messages (among the ones he chose) were signed. While this may seem a too weak notion,
it is good enough for our needs, as in our UAS construction we never share actual signatures, but
zero-knowledge proofs of knowledge of such signatures.

An SBCM scheme is blind if, for all p.p.t. adversariesA, |Pr[Expblind-1SBCM,A(1
κ) = 1]−Pr[Expblind-0SBCM,A(1

κ) =
1]| is a negligible function of the security parameter.

ExpEUF
SBCM,A(1

κ)

1 : par ← Setup(1κ)

2 : (vk , sk)← KG(par)

3 : (σ∗,msg∗,msg∗)← ASIGN(·,·,·)(par , vk)

4 : where SIGN(msg ,msg , r) :

5 : c← SBCM.Blind(vk ,msg ,msg , r)

6 : β ← SBCM.Sign(sk , c,msg)

7 : return β

8 : if SBCM.Verify(vk , σ∗,msg∗,msg∗) = 1

9 : and A did not query SIGN(msg∗,msg∗, ·) :
10 : return 1

11 : return 0

Expblind-bSBCM,A(1
κ)

1 : par ← Setup(1κ)

2 : (vk , sk)← KG(par)

3 : b∗ ← ABLIND(·,·,·)(par , vk), where:

4 : BLIND(msg0,msg1,msg) :

5 : r ←R
6 : c← Blind(vk ,msgb,msg , r);

7 : Hand c to A, receive β from A
8 : σ ← SBCM.Unblind(vk , β, c, r,msgb,msg)

9 : return SBCM.Verify(vk , σ,msgb,msg)

10 : return b∗

Figure 17: Games for SBCM schemes.

35

B.4.1 An Instantiation of SBCM with BBS+

Next, we give an instantiation of an SBCM scheme, based on BBS+ signatures. We emphasize
again that this is essentially equivalent to the protocol for signing committed block of messages in
[ASM06] and, also, to the equivalent ones in [CL02, PS16] (although not for BBS+ signatures). The
main difference being that we allow merging committed blocks of messages and blocks of (plaintext)
messages into the same signature.

par ← SBCM.Setup(1κ, n, n). Generates a bilinear group B = (p,G1,G2,GT , g1, g2, e) ← G(1κ),
and n+ n+ 1 additional generators g, h1, ..., hn,h1, ..., hn of G1. Returns par ← (1κ, n, n,B, g, h1,
..., hn, h1, ..., hn). We assume that par is available to all other algorithms, even when not explicitly
passed as an argument.

(vk , sk)← SBCM.KG(par). Parses par as (1κ, ·, ·, (p,G1,G2,GT , g1, g2, e), . . .). Outputs sk ← Z∗
p,

and vk = gsk2 .

c ← SBCM.Blind(vk ,msg ,msg , r). If |msg | > n or |msg | > n, abort. Else, compute c ←
gr

∏
i∈[|msg |] h

msgi

i . Output c.

β ← SBCM.Sign(sk , c,msg). If |msg | > n, abort. Else, compute x, s̃
$← Z∗

p, A← (g1cg
s̃
∏

i∈|msg | h
msgi
i)1/(sk+x).

Return β ← (A, x, s̃).

σ ← SBCM.Unblind(vk , β, c, r,msg ,msg). Parse β as (A, x, s̃) If A = 1G1
: return ⊥. If e(A,

vk · gx2) ̸= e(g1cg
s̃
∏

i∈|msg | h
msgi
i , g2): return ⊥. Else, set s← r + s̃ and return (A, x, s).

1/0 ← SBCM.Verify(vk , σ,msg ,msg). To verify a signature σ, for message set msg that was
signed as a block commitment, and message set msg , signed as plaintext, parse σ as (A, x, s) and
check that

e(A, gx2 vk) = e

g1g
s ·

∏
i∈|msg |

h
msgi ·

∏
i∈|msg |

hmsgi , g2


Proving that a key pair was correctly generated. In Ris and Rev of ΠUAS, we include
statements requiring to prove that a key pair was produced by a KG algorithm (therein denoted
(upk , usk) ∈ [KG(par)]). In the case of the BBS+ construction of SBCM, this is as simple as
proving knowledge of a discrete logarithm.

Proving Knowledge of Signature. Proving knowledge of a BBS+ signature as produced in
our SBCM variant is essentially the same as in [ASM06, CDL16], only needing to account for the
different basis for messages signed in committed and plain form.

Correctness. Correctness is easy to verify.

36

EUF security. EUF security of our SBCM variant is easily derivable from EUF security of
vanilla BBS+ signatures [CDL16]. We sketch an adversary A against BBS+, given an adversary
B against SBCM. To help the explanation, we point out that a vanilla BBS+ scheme is just like
SBCM, but removing the Blind and Unblind algorithms, and BBS.Sign takes the full message
in plain form (instead of partially committed). Given the previous, A operates as follows. It
first receives the BBS+ challenge: an (par , vk) pair, where (1κ, n,B, g, h1, ..., hn) ← par for some
bilinear group B, and vk has the exact same structure as in SBCM. To simulate the environment
for B, A appropriately divides n in n1 ≥ 1 and n2 ≥ 1 (such that n1 + n2 = n), and separates
the generator set consequently, to produce a parameter set par ′ with the structure expected by
B. That is, this produces par ′ ← (1κ, n1, n2,B, g, h1, ..., hn1

, h1, ..., hn2
). It is direct that par ′ is

indistinguishable from the output of SBCM.Setup. Then, A invokes B on (par ′, vk). To simulate B’s
queries to its SIGN(msg ,msg , r) oracle, A queries its oracle Sign(msg ,msg) to receive (A, x, s),

where x, s
$← Z∗

p and A = (g1 · gs ·
∏

i∈|msg | h
msgi ·

∏
i∈|msg | h

msgi)1/(sk+x), and then A returns the

appropriately “blinded” signature β = (A, x, s− r) to B. Note that β is distributed as a legitimate
partial signature produced by a SIGN oracle. A outputs whatever B does. It is easy to see that,
whenever B wins (against SBCM EUF), then so does A (against BBS+ EUF).

Blindness. Blindness is a direct consequence of the hiding property of the underlying Peder-

sen block commitment scheme. Indeed, the distribution of c = gr
∏

i∈[|msg |] h
msgi

i as output by

SBCM.Blind(vk ,msg ,msg , r) is uniformly random, independent of msg , given that r is uniformly
random in Zp. Furthermore, the issuer does not learn anything about the messages from the sig-
nature verification bit returned by the BLIND oracle. This is because that bit can be predicted by
the issuer, using only public information. It will be 1 if and only the issuer’s β = (A, x, s̃) fulfills
e(A, vk · gx2) = e(g1cg

s̃
∏

i∈|msg | h
msgi
i , g2) (note that this expression does not involve the hidden

messages msg , only the public commitment c and public messages msg i). As a result, blindness
holds perfectly.

C Correctness and Security Proofs for ΠUAS

To prove security, we use the following helpers (as required by the theorems):

SimSetup(1κ)→ (par , τ). Runs parSBCM ← SBCM.Setup(κ), parE ← E.Setup(κ), (crs is, τis) ←
NIZK.SimSetupRis(κ), (crsev, τev)← NIZK.SimSetupRev(κ), and (crsop, τop)← NIZK.SimSetupRop(κ).
Return par = (parSBCM, parE, crs is, crsev, crsop) and τ = (τis, τev, τop).

ExtIss(τ, reg)→ (upk , {(cid i,a i)}i∈[n]). Parses reg = (cid , c, π). Runs (upk , usk , {(cid i,a i, crd i)}i∈[n],

r) ← NIZK.ExtractRis(crs is, τis, (fis, c, cid ,a , ipk , {ipk i}i∈[n], yis), π). Outputs (upk , {(cid i,
a i)}i∈[n]).

ExtSign(τ,Σ)→ (upk , {(cid i,a i)}i∈[n]). Parses Σ = ((πev, cop), yev). Runs (upk , usk , {(cid i,a i,

crd i)}i∈[n], yop, r)← NIZK.ExtractRev(crsev, τev, (m, fev, yev, fop, cop, {ipk i}i∈[n], ek), πev). Out-
puts (upk , {(cid i,a i)}i∈[n]).

Theorem 6 (Correctness of ΠUAS). If the underlying schemes for public-key encryption and SBCM
are correct, and the NIZK is complete, then our generic construction ΠUAS satisfies correctness as
defined in Definition 1.

37

Correctness of ΠUAS follows easily from inspection, given that the involved signature and opening
proof are honestly computed. However, the adversary can also win the correctness game if it finds
a collision in the credential identifiers (i.e., coll = 1). Hence, it is worth to emphasize that coll = 1
only with negligible probability. To see this, recall that coll = 1 if there is a collision in the cid of
one or more credentials created during the ⟨Obt, Iss⟩ protocol – this can be checked in the issuance-
related oracles, which contain checks such as “if cid ∈ CRD : coll ← 1”. Note that, in ΠUAS’s
⟨Obt, Iss⟩ protocol, cid = (cid I, cidU), where the issuer picks cid I, and the user picks cidU. Since,
in the oracles that set coll, at least one of them is always picked uniformly at random from the
attribute space AS (which is assumed to be of length dependent on the security parameter), then
the probability of finding a collision is negligible in the security parameter.

Theorem 1 (Issuance anonymity of ΠUAS). If the SBCM scheme is blinding, the NIZK system
is zero-knowledge and simulation-extractable, and the public-key encryption scheme is correct and
IND-CPA secure, then ΠUAS satisfies issuance anonymity as defined in Definition 2.

For the proof, intuitively our goal is to show that we can assign all challenge credentials to a
virtual user (upk∗, usk∗), independent of the bit b. To enable the switch, we need to simulate the
NIZK proofs (among others, to ensure that the adversary cannot notice the switch from looking at
proofs). Another way the adversary may learn about b is by breaking the encryption of yop when
SIGNing with challenge credentials, so we replace the encryption cop with an encryption of 0 and
argue that the adversary cannot notice this change because of IND-CPA security. To enable the
latter argument, we need to change the OPEN oracle to reply using the NIZK extractor instead of
the decryption key to compute its answers.

Theorem 1. Consider the following sequence of games.

Gb
0 = Expiss-anon-bUAS,A (1κ) is the original game from Definition 2.

Gb
1 works like G0, except that

• During SIGN queries, whenever a value is added to SIG, the experiment additionally
remembers (oid,Σ, yop), where oid is the opener id passed as SIGN input, Σ is the resulting
overall UAS signature returned by the oracle, and yop = fop(UPK[uid], (cid,ATT[cid],
m)) is the opening value computed by the Sign algorithm.

• When OPEN(oid, iid,Σ,m, fev) is queried such that (·, oid, ·, ·,Σ) ∈ SIG, then instead of
computing yop = E.Dec(osk , cop), we set yop to the value remembered for (oid,Σ) during
its corresponding SIGN query.

From the point of view of A, there is no difference between Gb
0 and Gb

1 given the correctness
property of the encryption scheme. Hence Pr[Gb

0 = 1] = Pr[Gb
1 = 1].

Gb
2 works like Gb

1, except that:

• par ← Setup is replaced with (par , τ)← SimSetup (where SimSetup is defined as above).

• Invocations of π ← NIZK.ProveRis(crs is, (fis, c, cid ,a , ipk , {ipk i}i∈[n], yis), ·) are replaced
with π ← NIZK.SimRis(crs is, τis, (fis, c, cid ,a , ipk , {ipk i}i∈[n], yis)) (this happens in the
OBTISS,OBTAIN,OBTCHALb oracles).

38

• Invocations of πev ← NIZK.ProveRev(crsev, (m, fev, yev, fop, cop, {ipk i}i∈[n], ek), ·) are

replaced with πev ← NIZK.SimRev(crsev, τev, (m, fev, yev, fop, cop, {ipk i}i∈[n], ek)) (this
happens in the SIGN oracle).

• Invocations of πop ← NIZK.ProveRop(crsop, (opk , c, yop), (osk)) are replaced with πop ←
NIZK.SimRop(crsop, τop, (opk , c, yop)) (this happens in the OPEN oracle).

Through three straightforward reductions B1,B2,B3 (in a hybrid fashion, incrementally replac-
ing the proofs/setup for each of the three relations), one can show that |Pr[Gb

1 = 1]−Pr[Gb
2 =

1]| ≤
∑3

i=1 |Pr[Exp
zk-0
NIZK,Bi

(κ) = 1]− Pr[Expzk-1NIZK,Bi
(κ) = 1]| is negligible. For that reduction,

note that by design of the games, whenever we invoke NIZK.Prove, the witness used is valid.

Gb
3 works like Gb

2, except that during OPEN queries, whenever we would compute yop = E.Dec(osk ,

cop), G
b
3 instead computes yop as (·, ·, ·, yop, r) = NIZK.ExtractRev(crsev, τev, (m, fev, yev, fop,

cop, {ipk i}i∈[n], ek), πev).

Let PoKfail be the event that NIZK.ExtractRev at some point outputs an invalid witness.
Note that if PoKfail does not occur, then there is no difference between Gb

3 and Gb
2 (since the

decryption result is the same as the extracted yop, as guaranteed by correctness of encryption
and the relation Rev). Through a straightforward reduction B, one can show that |Pr[Gb

2 =
1] − Pr[Gb

3 = 1]| ≤ Pr[PoKfail] = Pr[Expsimext
NIZK,B(κ) = 1] is negligible. For the reduction, note

that by definition of the OPEN oracle and the change in Gb
1, we only apply extraction if

(·, oid, ·, ·,Σ) /∈ CSIG ∪ SIG. Hence we never try to extract from simulated signatures.

Gb
4 works like Gb

3, except that during SIGN queries, if oid /∈ CO and cid1 ∈ CCRD, then instead of
cop ← E.Enc(ek , yop; r), the oracle computes cop ← E.Enc(ek , 0; r) (for some fixed message
“0” in the encryption scheme’s message space).
Through a straightforward reduction B that replaces the cop ciphertexts in SIGN for the first
i ← {1, . . . , p(κ)} openers in a hybrid fashion, one can show that |Pr[Gb

3 = 1] − Pr[Gb
4 =

1]| ≤ p(κ) · |Pr[ExpIND-CPA-0
E,B (κ) = 1] − Pr[ExpIND-CPA-1

E,B (κ) = 1]|, where p is a polynomial
upper-bound for the number of honest openers created by A, is negligible. For the reduction,
note that because of the changes in G1 and G3, the decryption key not used during OPEN
queries anymore. The decryption key has to be exposed when the opener is corrupted via
OCORR, but whenever our modification takes place, then an entry containing oid is added to
CSIG and hence OCORR(oid) just returns ⊥.

Gb
5 works like Gb

4 except that:

• In the beginning, it generates an additional virtual user key pair (upk⊥, usk⊥)← KG(par).

• During OBTCHALb queries, invocations of c = SBCM.Blind(ipk , usk , (cid ,a), r) are re-
placed with c = SBCM.Blind(ipk , usk⊥, (cid ,a), r).

• During OBTCHALb queries, invocations of σ ← SBCM.Unblind(ipk , β, c, r, usk∗, (cid ,a))
are replaced with σ ← SBCM.Unblind(ipk , β, c, r, usk⊥, (cid ,a)).

• During OBTCHALb queries, invocations of SBCM.Verify(ipk , σ, usk , (cid ,a)) are replaced
with SBCM.Verify(ipk , σ, usk⊥, (cid ,a)).

Through a straightforward reduction B, one can show that |Pr[Gb
4 = 1] − Pr[Gb

5 = 1]| =
|Pr[Expblind-0SBCM,B(κ) = 1] − Pr[Expblind-1SBCM,B(κ) = 1]| is negligible. Note that in Gb

5, challenge

39

credential CCRD signatures crd are not valid (they contain the wrong user secret usk⊥), but
they are also never used (given that NIZKs are simulated).

Overall, using triangle inequality, we get that |Pr[Gb
0 = 1]− Pr[Gb

5 = 1]| ≤ µ(κ) for some negligible
function µ.

In Gb
5, the view of A is independent of b, i.e. Pr[G0

5 = 1] = Pr[G1
5 = 1]. For this, note that the

only times b affects Gb
5 are:

• During OBTCHALb for selecting USK[uidb], whose value is ignored.

• During OBTCHALb for selecting CRD[cid∗
b], which is only used to compute fis, whose value

is independent of b by nontriviality check in OBTCHALb,

• During OBTCHALb for maintaining the CCRD list, which A does not get to see.

• During SIGN, the value uid = OWN[cid] for a vector cid of challenge credential IDs cid ∈
CCRD depends on b. However, note that the checks on uid and UPK[uid] are symmetric, i.e.
whether or not ⊥ is returned is independent of b. Other than those checks, UPK is only used
to compute yev and yop, whose values the nontriviality conditions ensure are independent of
b, too (except if the opener is corrupted and a challenge credential is used, i.e. oid ∈ CO and
cid1 ∈ CCRD, then yop is not even read).

Overall, we get

|Pr[Expiss-anon-0UAS,A (1κ) = 1]− Pr[Expiss-anon-1UAS,A (1κ) = 1]|
=|Pr[G0

0 = 1]− Pr[G1
0 = 1]|

=|Pr[G0
0 = 1] −Pr[G0

5 = 1] + Pr[G0
5 = 1]− Pr[G1

0 = 1]|

=|Pr[G0
0 = 1]− Pr[G0

5 = 1] + Pr[G1
5 = 1]− Pr[G1

0 = 1]|

≤|Pr[G0
0 = 1]− Pr[G0

5 = 1]|+ |Pr[G1
5 = 1]− Pr[G1

0 = 1]|
≤2 · µ(κ)

so |Pr[Expiss-anon-0UAS,A (1κ) = 1]− Pr[Expiss-anon-1UAS,A (1κ) = 1]| is negligible for all A as required. ■

Theorem 2 (Signature anonymity of ΠUAS). If the NIZK system is zero-knowledge and simula-
tion extractable, and the public-key encryption scheme is correct and IND-CPA secure, then ΠUAS

satisfies signature anonymity as defined in Definition 3.

Theorem 2. Consider the following sequence of games.

Gb
0 = Expsig-anon-bUAS,A (1κ) is the original game from Definition 3.

Gb
1 works like Gb

0, except that for each (·, oid, ·, ·,Σ) ∈ SIG created during SIGN queries, we remember
the signature’s corresponding yop value, and use it during OPEN(oid, ·,Σ, ·, ·) queries instead
of of decrypting cop (as in Theorem 1’s Gb

1). It is easy to see that correctness of the encryption
scheme implies Pr[Gb

0 = 1] = Pr[Gb
1 = 1].

Gb
2 works like Gb

1, except that Setup and replaced with SimSetup and the NIZK proofs are simulated
(analogous to Gb

2 in the proof of Theorem 1 but also replacing the call to NIZK.ProveRev in
the SIGCHALb oracle).
Similarly to Theorem 1, through straightforward reductions, one can show that |Pr[Gb

1 =

1]− Pr[Gb
2 = 1]| ≤

∑3
i=1 |Pr[Exp

zk-0
NIZK,Bi

(κ) = 1]− Pr[Expzk-1NIZK,Bi
(κ) = 1]| is negligible.

40

Gb
3 works like Gb

2, except that during OPEN queries, whenever we would compute yop = E.Dec(osk ,

cop), G
b
3 instead computes yop as (·, ·, ·, yop, r) = NIZK.ExtractRev(crsev, τev, (m, fev, yev, fop,

cop, {ipk i}i∈[n], ek), πev).

Similarly to Theorem 1, one can show that |Pr[Gb
2 = 1]−Pr[Gb

3 = 1]| ≤ Pr[Expsimext
NIZK,B(κ) = 1]

is negligible.

Gb
4 works like Gb

3, except that during SIGCHALb queries, if oid /∈ CO, then instead of cop ←
E.Enc(ek , yop; r), the oracle computes cop ← E.Enc(ek , 0; r) (for some fixed message “0”
in the encryption scheme’s message space).
Similarly to Theorem 1, but applied to SIGCHALb instead of SIGN, one can show that
|Pr[Gb

3 = 1] − Pr[Gb
4 = 1]| ≤ p(κ) · |Pr[ExpIND-CPA-0

E,B (κ) = 1] − Pr[ExpIND-CPA-1
E,B (κ) = 1]|,

where p is a polynomial upper-bound for the number of honest openers created by A, is
negligible.

Overall, using triangle inequality, we get that |Pr[Gb
0 = 1]− Pr[Gb

4 = 1]| ≤ µ(κ) for some negligible
function µ.

In Gb
4, the view of A is independent of b, i.e. Pr[G0

4 = 1] = Pr[G1
4 = 1]. For this, note that the

only time b potentially affects Gb
4 is:

• During SIGCHALb when selecting USK[uid∗b] and CRD[cid∗
b] as input to Sign. However,

USK[uid∗b] and CRD[cid∗
b] are never used in Sign (because the proof is simulated) except

to compute yev and yop with the corresponding UPK[uid∗b]. Note that yev is independent of
b because of the nontriviality check in SIGCHALb. If oid ∈ CU, the same holds for yop, if
oid /∈ CU, yop is not even read during Sign (as defined in Gb

4). Hence overall, the execution of
SIGCHALb, from A’s view, is independent of b.

Overall, with the same argument as for Theorem 1, we get that |Pr[Expsig-anon-0UAS,A (1κ) = 1] −
Pr[Expsig-anon-1UAS,A (1κ) = 1]| is negligible for all A as required. ■

Theorem 3 (Issuance unforgeability of ΠUAS). If the NIZK scheme is extraction zero-knowledge
and simulation extractable, and the SBCM scheme is correct, unforgeable, and has deterministically
derived public keys, then ΠUAS satisfies issuance unforgeability as defined in Definition 4.

Theorem 3. Let A be a PPT adversary. Consider the following sequence of games.

G0 = Expiss-forgeUAS,A (1κ) is the original game from Definition 4.

G1 works like G0 except that

• Invocations of π ← NIZK.ProveRis(crs is, (fis, c, cid ,a , ipk , {ipk i}i∈[n], yis), ·) in the OBTAIN

oracle are replaced with π ← NIZK.SimRis(crs is, τis, (fis, c, cid ,a , ipk , {ipk i}i∈[n], yis)).
We do not change the OBTISS oracle.

• Invocations of πev ← NIZK.ProveRev(crsev, (m, fev, yev, fop, cop, {ipk i}i∈[n], ek), ·) are

replaced with πev ← NIZK.SimRev(crsev, τev, (m, fev, yev, fop, cop, {ipk i}i∈[n], ek)) (this
happens in the SIGN oracle).

Through two straightforward reductions B1,B2 (in a hybrid fashion, incrementally replacing
the proofs/setup for each of the two relations), one can show that |Pr[G0 = 1]−Pr[G1 = 1]| ≤∑2

i=1 |Pr[Exp
extzk-0
NIZK,Bi

(κ) = 1]− Pr[Expextzk-1NIZK,Bi
(κ) = 1]| is negligible. For that reduction, note

41

that by design of the games, whenever we invoke NIZK.Prove, the witness used is valid. For
the other nontriviality condition of extraction zero-knowledge (namely that we must not ask
the extraction oracle to extract from a proof we queried): For Rev, we never extract (indeed,
the standard zero-knowledge property suffices there). For Ris, we call ExtIss to decide the
winning conditions, cf. Figure 12, but only if ISR[cid] ∈ HI, implying that the issuance of cid
happened outside of the OBTAIN oracle, so the corresponding issuance proof for cid was not
simulated.

G2 works like G1 except that when an honest issuer issues to an honest user, we lazily execute this
protocol only when the user is corrupted. This means that

• In the OBTISS oracle for user uid, we defer computation of the user’s NIZK proof π,
the intermediate signature β, and the final signature crd = σ. We just put π = ⊥ and
crd = ⊥ into the reg[cid] and CRD[cid] datastrutures, respectively. These values are
never read while uid ∈ HU (the changes in G1 imply that crd is not read in SIGN or
OBTAIN, and π within the transcript reg[cid] is only read when deciding the winning
condition if uid /∈ HU).

• When UCORR(uid) or ICORR(uid) is called, all deferred computations for that user take
place in the intended order. After each computation, we plug in the new values of π
into reg[cid] and the new value of crd into CRD[cid] as appropriate (the next deferred
computation may depend on crd).

There is no difference in the results of G2 and G1 (i.e. Pr[G1 = 1] = Pr[G2 = 1]), given that
crd , reg are never read until the user is corrupted.

G3 works like G2 except that we add a NIZK extractor call to the ISSUE oracle, i.e. after the Iss pro-
tocol verifies the issuance proof π, we additionally run (·, usk , ·, r) ← NIZK.ExtractRis(crs is,
τis, (fis, c, cid ,a , ipk , {ipk i}i∈[n], yis), π) (using the appropriate variable values from the con-
text). The value is computed but unused (will be part of the reduction to SBCM unforge-
ability), so there is no difference between G3 and G2 in output distribution, i.e. Pr[G1 = 1] =
Pr[G2 = 1].

Overall, |Pr[G0 = 1]−Pr[G3 = 1]| is negligible, meaning that if we show that Pr[G3 = 1] is negligible,
then also Pr[G0 = 1] is negligible. So in the following, we consider G3.

We define three events for G3:

FailRepeat is the event that during ISSUE,OBTISS, the cid I chosen by the issuer has already been
used, i.e. (cid I, ·) ∈ CRD.

FailExtr is the event that ¬FailRepeat but some NIZK.Extract call (in ISSUE and in ExtIss) does not
return a valid witness.

FailForge is the event that ¬FailRepeat ∧ ¬FailExtr, but G3 outputs 1.

Because the honest issuer chooses cid I from a superpoly domain, and there are at most polynomially
many entries in CRD, the event FailRepeat occurs only with negligible probability. Through a
straightforward reduction to the simulation extractability property of NIZK, which outputs an
unextractable proof whenever FailExtr happens, one can show that Pr[FailExtr] is negligible. For
that reduction, note that we only call NIZK.Extract on non-simulated proofs, as argued in the

42

following. First, we never extract for Rev. Consider the following cases where extraction of proof
π for Ris with statement x = (·, ·, cid = (cid I, cidU), ·, ·, ·) could potentially fail:

• If cid /∈ CRD, then we clearly did not simulate any statement involving cid .

• If CRD[cid] was written during OBTISS (i.e. the proof is lazily computed during UCORR/ICORR),
then the corresponding proof π was not simulated (because we do not simulate those proofs).

• If CRD[cid] was written during ISSUE, then due to ¬FailRepeat, no proof containing the same
cid I has been simulated at the point where A output π (and hence deterministic extraction
of π must succeed).

• If CRD[cid] was written during OBTAIN, then the corresponding issuer is corrupt (iid ∈ CI),
so we never attempt ExtIss on cid .

Finally, consider the event FailForge. We show via reduction to SBCM unforgeability that
Pr[FailForge] is negligible. For this, let p be a (polynomial) upper bound on the number of honest
users that A creates (i.e. number of HUGEN calls). We construct B(parSBCM, vkSBCM) against
SBCM unforgeability that runs G3 with a few modifications:

• B uses parSBCM from its input instead of generating it itself like G3.

• B chooses a random index i∗ ← {1, . . . , p(κ)} and for HUGEN(uid∗) queries, if this is the i∗th
HUGEN query, then B sets UK[uid∗] = (ipk∗, isk∗) = (vkSBCM,⊥) (i.e. we embed the challenge
verification key as the user’s key, we are now missing isk∗).

• If user i∗ gets corrupted, B halts.

• Whenever G3 would run SBCM.Sign(isk , c, (cid ,a)) (which is during ISSUE or when UCORR/ICORR
runs the deferred protocols from OBTISS, cf. G2), then B instead calls its oracle SIGN(usk ,
(cid ,a), r), using usk , r from the context (for UCORR/ICORR/OBTISS, the values usk , r are
available because the user is honest, for ISSUE, the values are output by the NIZK extractor,
see G3).

• Furthermore, when UCORR/ICORR runs the deferred protocols from OBTISS using upk , usk ,
r, cid ,a with issuer i∗, after querying σ ← SIGN(usk , (cid ,a), r), the reduction B also com-
putes (upk ′, usk ′, ·, r′) = NIZK.ExtractRis(crs is, τis, (fis, c, cid ,a , ipk , {ipk i}i∈[n], yis), π) from
the proof π created during the Obt protocol. If usk ̸= usk ′ and c = SBCM.Blind(ipk∗, usk ,
(cid ,a), r) = SBCM.Blind(ipk∗, usk ′, (cid ,a), r′), then B computes σ∗ = SBCM.Unblind(ipk∗,
β, c, r′, usk ′, (cid ,a)) using the partial signature β returned by the SIGN oracle query, halts
and outputs forgery (σ∗,msg∗,msg∗) = (σ∗, usk ′, (cid ,a)).

• If FailForge occurs during CheckEndorsementCreds when checking index i, then B checks that
IPK[ISR[cid i]] = ipk∗ (if not, it halts without outputting a forgery). Then B takes the witness

(upk , usk , {(cid j ,aj , crd j)}j∈[n], r) extracted in line 11 of Expiss-forgeUAS,A and outputs the forgery
(σ∗,msg∗,msg∗) = (crd i, usk , (cid i,a i)).

Note that we have no access to USK[uid∗], but that value is never used, thanks to the modifica-
tions in G1 and because we are using the oracle to issue blind signatures. If FailForge occurs and
we guessed i∗ correctly, B will have perfectly simulated G3 from the point of view of A.

43

We now argue that whenever FailForge occurs when checking index i such that IPK[ISR[cid i]] =
ipk∗, then B outputs (or has already output) a forgery. Because we guess the user, for which the
FailForge event is supposed to happen, independently of the event, this will imply that Pr[FailForge] ≤
Pr[ExpEUF

SBCM,B(κ) = 1] · p(κ) is negligible. Note that FailForge cannot occur in line 13 of Expiss-forgeUAS,A
because that would imply FailExtr, so FailForge can only occur within CheckEndorsementCreds.

First, we make the following useful observations: Whenever FailForge occurs, the signature-
message pair output by B is valid (i.e. it survives the signature verification of the challenger). If
B outputs the forgery during CheckEndorsementCreds, this is because FailForge implies ¬FailExtr,
so the extracted signature definitely verifies correctly. If B outputs the forgery during UCORR or
ICORR, then it follows from correctness of the SBCM scheme that the opening to the commitment
to usk ′ also unblinds the partial signature β to a valid signature. As a second observation, whenever
FailForge occurs, for every possible value cid , B has made at most one signature query of the form
SIGN(·, (cid , ·), r). This is because FailForge by definition implies ¬FailRepeat.

Armed with those insights, let i be the index checked by CheckEndorsementCreds when FailForge
occurs. Consider the following case distinction for when FailForge occurs. We argue that in each of
those scenarios, B has not queried for a signature on the forgery message.

• If FailForge occurs because cid i /∈ CRD, then B has never queried a signature involving cid i.

• If FailForge occurs because of the condition ISR[cid i] ̸= iidi in line 3 of CheckEndorsementCreds.
Because of ¬FailRepeat, this means that the signature involving cid i has been created honestly
by B without involving the signature oracle for ipk∗ = ISR[cid i], i.e. B has not queried for a
message involving cid i.

• If FailForge occurs because OWN[cid i] ∈ HU in line 5 of CheckEndorsementCreds (but cid i ∈
CRD), then cid i has been chosen during OBTISS. Because of ¬FailRepeat, we have not asked
for a signature containing cid i during ISSUE. Because OWN[cid i] ∈ HU, we have not (yet)
queried for the signature containing cid i during UCORR/ICORR. Hence we have not queried
for a signature containing cid i at all.

• If FailForge occurs because ATT[cid i] ̸= a i in line 3 of CheckEndorsementCreds (but cid i ∈
CRD), then when we (potentially) queried for the signature containing cid i, we would have
done so with attributes ATT[cid i]. Because ATT[cid i] ̸= a i, we have never requested a
signature containing (cid i,a i).

• If FailForge occurs because upk ̸= upk ′ in line 9 of CheckEndorsementCreds, then there are two
cases how B could have potentially queried for the forgery message:

– Assume we have queried a signature on (usk ′, (cid i,a i)) during ISSUE (where usk ′ is
output by NIZK.ExtractRis). Because upk ̸= upk ′ and because of deterministically derived
public keys, we get usk ̸= usk ′, i.e. the (unique) message we have queried for cid i is
different from the forgery message.

– Assume we have queried a signature on (usk , (cid i,a i)) during UCORR/ICORR, for a to-
be-corrupted user’s key pair (upk , usk). In this case, because the extracted upk ′ differs
from the user’s upk , and because ¬FailExtr, B at the time of the UCORR/ICORR query
would have also extracted, would have found usk ′ ̸= usk (implied by upk ′ ̸= upk and
deterministically derived public keys), and would have output a forgery on (usk ′, (cid i,
a i)), having only queried (usk , (cid i,a i)).

44

Overall, whenever FailForge occurs and B guessed i∗ correctly, then B outputs a valid forgery. Hence
Pr[G3 = 1] ≤ Pr[FailRepeat] + Pr[FailExtr] + Pr[FailForge] is negligible. ■

Theorem 4 (Signature unforgeability of ΠUAS). If the underlying NIZK scheme is complete, ex-
traction zero-knowledge and simulation extractable, the public key encryption scheme is correct, and
the SBCM scheme is correct, unforgeable, and has deterministically derived public keys, then ΠUAS

satisfies signing unforgeability as defined in Definition 5.

Proof. Most of this proof is analogous to the proof of Theorem 3, as both games use the same set
of oracles, and they share the checks made by CheckEndorsementCreds.

Specifically, we define G0, . . . ,G3 analogously to the proof of Theorem 3 (but as modifications

of Expsig-forgeUAS,A rather than Expiss-forgeUAS,A). We can conclude that |Pr[G0 = 1]−Pr[G3 = 1]| is negligible
using the arguments from the other proof. The only nontrivial difference here is that in Expsig-forgeUAS,A ,
we do extract from proofs of the relation Rev (as part of running ExtSign to decide the winning
condition), so for the game-hop from G0 to G1, we need to additionally argue that we do not try
to extract from a simulated Rev proof. However, this is easy to see and follows directly from the
check in line 6 of Expsig-forgeUAS,A .

Then, analogous to Theorem 3, we define error events for G3:

FailRepeat is the event that during ISSUE,OBTISS, the cid I chosen by the issuer has already been
used, i.e. (cid I, ·) ∈ CRD.

FailExtr is the event that ¬FailRepeat but some NIZK.Extract call (in ISSUE and in ExtIss) does not
return a valid witness.

FailJudge is the event that ¬FailExtr but G3 outputs 1 in line 17/18(cf. Figure 12) because the
honestly produced (yop, π) pair at line 15 is inconsistent to fop(. . .).

FailForge is the event that ¬FailRepeat ∧ ¬FailExtr ∧ ¬FailJudge, but G3 outputs 1.

In contrast to that proof, we have added another error event FailJudge here, but the other events
are perfectly analogous.

As in Theorem 3, we can argue that FailRepeat and FailExtr only occur with negligible probability.
We can show that Pr[FailJudge] is negligible through a straightforward reduction B to the sound-

ness property of the NIZK. If FailJudge occurs, let y′op = fop(upk , {(cid i,a i)},m) ̸= yop. In that

scenario, we have found oid, r, σ = (πev, cop), yop, πop such that NIZK.VerifyRop(crsop, π, (OPK[oid],
cop, yop)) = 1 while also cop = E.Enc(OPK[oid], y′op, r) as guaranteed by extraction of πev (note
that FailJudge implies ¬FailExtr). The second equation, which says that cop is an encryption of y′op
contradicts the relation Rop, which says that cop is an encryption of yop ̸= y′op. This is a contradic-
tion because the encryption scheme is correct (and Rop also guarantees existence of a fitting osk
to OPK[oid]). Hence π can be used by B to win the soundness game.

Finally, we show that Pr[FailForge] is negligible through a reduction B to the unforgeability
property of the SBCM scheme. B is constructed perfectly analogously to Theorem 3, except that
when FailForge occurs because G3 outputs 1 during check of index i in CheckEndorsementCreds
and IPK[iidi] = ipk∗ is our challenge public key (i.e. B has guessed the correct issuer), then B
outputs the forgery (σ∗,msg∗,msg∗) = (crd i, usk , (cid i,a i)), using the appropriate witness (upk ,

usk , {(cid i,a i, crd i)}i∈[n], yop, r) extracted from the signature in line 10 of Expext-signUAS,A (whereas the

45

corresponding B in Theorem 3 extracts from an issuance proof). The rest of the description of B
can be taken verbatim from the proof of Theorem 3.

For the analysis, note that FailForge cannot occur in line 12 of Expsig-forgeUAS,A because that would
imply FailExtr, and it cannot occur in line 17/18 because that would imply FailExtr (or contradict
correctness of decryption or contradict completeness of the NIZK). So overall, FailForge can only
occur within CheckEndorsementCreds.

Now we are in the same setting as in Theorem 3, where we can argue in the exact same way
that if B outputs a forgery, it has not queried its signature oracle for the forgery message. We
omit the details and leave the straightforward adaptation of the corresponding argumentation for
Theorem 3 to the reader.

Overall, whenever FailForge occurs and B guessed i∗ correctly, then B outputs a valid forgery.
Hence Pr[G3 = 1] ≤ Pr[FailRepeat] + Pr[FailExtr] + Pr[FailJudge] + Pr[FailForge] is negligible. ■

Theorem 5 (Non-frameability of ΠUAS). If the NIZK system is extraction zero-knowledge and
simulation extractable and the SBCM scheme is correct, blind, and unforgeable, then ΠUAS satisfies
non-frameability as defined in Definition 6.

Proof. Let A be a PPT adversary against ΠUAS non-frameability. Consider the following modified
games:

G0 works like Expframe
UAS,A.

G1 works like G0 except for two changes:

• After the Iss protocol during OBTISS, ISSUE verifies the issuance proof π, we additionally
run (·, usk , ·, r) ← NIZK.ExtractRis(crs is, τis, (fis, c, cid ,a , ipk , {ipk i}i∈[n], yis), π) (using
the appropriate variable values from the context). The result will be later used in the
SBCM unforgeability reduction. If the extracted witness is invalid, G1 halts and returns
0.

• We replace the old winning condition check “if fop(upk , {(cid i,a i)},m) ̸= yop, then

return 1” (line 12 of Expframe
UAS,A) with a new “if the witness (upk , usk , {(cid i,a i, crd i)}i∈[n],

r) extracted by NIZK.ExtractRev in ExtSign is invalid, then return 0” check.

Through a straightforward reduction to the simulation-extractability property (note: a proof
of knowledge property would suffice here) of the NIZK, one can show that the probability
that the new losing condition happens is negligible. Note that we do not simulate any proofs
in G0. Furthermore, whenever the new losing condition from the second bullet point does
not happen, then also the old winning condition does not happen (because correct extraction
directly implies the old equation), so the overall change can only be detected with negligible
probability. Hence |Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[Expsimext

NIZK,B = 1] is negligible

G2 works like G1 except that

• Invocations of π ← NIZK.ProveRis(crs is, (fis, c, cid ,a , ipk , {ipk i}i∈[n], yis), ·) are replaced
with π ← NIZK.SimRis(crs is, τis, (fis, c, cid ,a , ipk , {ipk i}i∈[n], yis)) (this happens in the
OBTAIN and OBTISS oracles).

• Invocations of πev ← NIZK.ProveRev(crsev, (m, fev, yev, fop, cop, {ipk i}i∈[n], ek), ·) are

replaced with πev ← NIZK.SimRev(crsev, τev, (m, fev, yev, fop, cop, {ipk i}i∈[n], ek)) (this
happens in the SIGN oracle).

46

Through two straightforward reductions B1,B2 (in a hybrid fashion, incrementally replacing
the proofs/setup for each of the two relations), one can show that |Pr[G1 = 1]−Pr[G2 = 1]| ≤∑2

i=1 |Pr[Exp
extzk-0
NIZK,Bi

(κ) = 1]− Pr[Expextzk-1NIZK,Bi
(κ) = 1]| is negligible. For that reduction, note

that by design of the games, whenever we invoke NIZK.Prove, the witness used is valid. For
the other nontriviality condition of extraction zero-knowledge (namely that we must not ask
the extraction oracle to extract from a proof we queried): For Ris, we never extract (indeed,
the standard zero-knowledge property suffices there). For Rev, we call ExtSign to decide the
winning conditions, cf. Figure 12, but only if there is no entry (·, ·,m, fev,Σ) ∈ SIG, implying
that the corresponding signature statement-proof pair was not simulated.

G3 works like G2 except that G3 chooses a random index i∗ ← {1, . . . , p(κ)}, where p(κ) is a
polynomial upper bound on the number of honest users A creates (i.e. number of HUGEN
calls). Furthermore, let uid∗ denote the ID of the i∗th user (or ⊥ if that user was never
created). G3 changes the check win condition “if ∃uid ∈ HUs.t.UPK[uid] = upk , then return
1” to “if uid∗ ∈ HU ∧ UPK[uid∗] = upk , then return 1”. It is easy to see that Pr[G3 = 1] ≥
Pr[G2 = 1]/p(κ). In particular, if we can show that Pr[G3 = 1] is negligible, then necessarily,
Pr[G2 = 1] is also negligible (which in turn implies that Pr[G0 = 1] is negligible).

G4 works like G3 except that if uid∗ is corrupted, G4 just aborts and outputs 0. We have Pr[G3 =
1] = Pr[G4 = 1] because after uid∗ gets corrupted, G3 will never output 1.

G5 works like G4 except that it generates some dummy user keys (upkdummy, uskdummy)← UKG(κ)
at the beginning of the experiment. Whenever A queries OBTAIN(uid∗, ·, ·, ·) or OBTISS(uid∗,
·, ·, ·) (where uid∗ is the guessed user as in G4), then G5 uses (upkdummy, uskdummy) for that
query instead of (UPK[uid∗],USK[uid∗]) to receive the credential. Note that USK[uid∗] was only
used in G4 in these queries to commit to USK[uid∗] during the SBCM blind signing protocol
(the proofs are simulated and hence independent of USK[uid∗]). The resulting credential in
G5 will be a signature on the wrong key usk∗, but that signature is not actually ever used
anywhere (cf. G2 and G4).

Through a straightforward reduction B to the SBCM blindness property, one can show that
|Pr[G4 = 1]− Pr[G5 = 1]| = |Pr[Expblind-1SBCM,B]− Pr[Expblind-0SBCM,B]| is negligible.
In G5, the value USK[uid∗] is only used for SBCM.Sign operations (when uid∗ acts as an
issuer), but nowhere else anymore.

Finally, we show that Pr[G5 = 1] is negligible by reduction to SBCM unforgeability. Intuitively,
the only way to win G5 is to for the extractor to output a valid secret key usk∗ for the guessed user
upk∗. Because user keys are SBCM keys, being able to compute usk∗ breaks SBCM unforgeability.

More formally, define adversary BSIGN(parSBCM, upk∗) against the SBCM unforgeability game
ExpEUF

SBCM,B. B runs G5, but uses parSBCM from its input and embeds upk∗ as UPK[uid∗] (where uid∗

is the guessed user in G5). Whenever USK[uid∗] would be used in G5 (which is only for SBCM.Sign
operations), B instead uses its SIGN oracle (using the appropriate extracted values established in
G1). When G5 outputs 1, B chooses some msg ,msg that it has not queried before, and some
random r, then takes the extracted usk∗ to compute c ← SBCM.Blind(upk∗,msg ,msg , r) and
σ = SBCM.Unblind(upk∗,SBCM.Sign(usk∗, c,msg), c, r,msg ,msg). It outputs the forgery (σ,
msg ,msg). By correctness of the SBCM scheme, σ is a valid signature on msg ,msg , hence a
forgery.

Overall, whenever G5 outputs 1, B outputs an SBCM forgery. Hence Pr[G5 = 1] ≤ Pr[ExpEUF
SBCM,B =

1] is negligible. As argued above, this implies that Pr[G0 = 1] is negligible. ■

47

D Models and Proofs for Relationships with Other Schemes

D.1 Digital Signatures

For digital signatures, we follow the conventional EUF-CMA security model [GMR88], whose un-
forgeability property we reproduce in Fig. 18 for self-containedness. A digital signature scheme ds
is EUF-CMA unforgeable if for all ppt A, Pr[Expeuf-cma

A,ds (1κ) = 1] is negligible.

Expeuf-cma
A,ds (1κ)

1 : par ← Setup(1κ)

2 : (upk , usk)← KG(par)

3 : (m, σ)← ASign(usk,·)(upk)

4 : if A queried Sign on m : return 0

5 : return Verify(upk ,m, σ)

Figure 18: Security game for EUF-CMA signatures [GMR88].

Security of Πds
UAS. We now prove that Πds

UAS, the (·, fupk
ev , f0

op)-ΠUAS restriction specified in Section
6.1, is a secure digital signature scheme.

Theorem 7 (Unforgeability of Πds
UAS). If the base ΠUAS construction (Section 6.1) has signature

unforgeability and non-frameability according to Definition 5 and Definition 6, then Πds
UAS satisfies

EUF-CMA unforgeability as defined in Fig. 18.

The proof is ultimately a reduction to the non-frameability property of UAS. However, before we
can start that reduction, we need two intermediate arguments. First, because the adversary against
non-frameability is expected to output a valid opening proof, we first add the honest computation
of an opening proof to the game and argue that it’s unlikely to fail. Second, because UAS are
anonymous by default, non-frameability’s winning condition uses the signer key upk output by
the extractor ExtSign. We need to ensure that upk extracted by ExtSign is indeed the challenge
upk from the UF-CMA game (which should be the case for good ExtSign, as fupk

op (. . .) = upk by
construction).

Proof. Let A be an adversary against Expeuf-cma
A,ds (1κ) for our Πds

UAS construction. Now, consider the
following sequence of games:

G0 This is the standard Expeuf-cma
A,ds (1κ).

G1 Behaves like G0 but it computes par ′ as (par ′, τ)← SimSetup(1κ) (note that the distribution of
par ′ does not change). Furthermore, when A outputs a winning forgery (m, σ):

• G1 runs the UAS extractor (upk ′, ·) ← ExtSign(τ,Σ) with the appropriate Σ = (σ, upk)
(where upk is the challenge public key used in Expeuf-cma

A,ds). If the extracted upk ′ is
different from upk , then G1 outputs 0. We call the event that this happens FailEv.

• G1 computes an opening proof (yop, πop) ← Open(osk , ∅,Σ,m, fupk
ev) for the signature

output by A. If πop is invalid, i.e. yop ̸= 0 or Judge(opk , ∅, yop, πop,Σ,m, fupk
ev) = 0

(where osk is as computed during Πds
UAS.Setup), then G1 outputs 0. We call the event

that this happens FailOp.

48

Clearly, there is no difference between G0 and G1 unless one of the two error events happens,
hence |Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[FailEv ∨ FailOp] (via difference lemma).

We argue that the signature unforgeability property of UAS ensures that Pr[FailEv ∨ FailOp]
is negligible. In the following, we consider an adversary B against Expsig-forgeUAS,A , leveraging A against

Expeuf-cma
A,ds . B uses its oracles to set up one honest user. Let uid, upk be that honest user’s ID and

public key, respectively. B uses that user’s upk when simulating Expeuf-cma
A,ds for A. It also sets up

an honest opener for fop = f0
op and subsequently uses its corresponding opk for the simulation. Let

oid be that opener’s ID. Whenever A asks for a signature, B uses its own UAS SIGN oracle in the
natural way to answer. When A outputs its candidate forgery (m, σ) and wins its unforgeability

game, then B outputs (oid, ∅,Σ = (σ, upk),m, fupk
ev) to Expsig-forgeUAS,A . It is easy to see that FailEv

and FailOp both correspond to winning cases for B: If FailEv happens, then B wins in line 12
of Expsig-forgeUAS,A , if FailOp happens, then B wins in line 17/18. Because B is a ppt and ΠUAS is
unforgeable, Pr[FailEv ∨ FailOp] must be negligible (and hence G0 and G1 are indistinguishable).

Now, consider A playing against G1. We can build an adversary B that breaks non-frameability
of the underlying ΠUAS construction. The simulation of A’s environment is again direct. Eventually,
A outputs a (m, σ) pair.

When that happens, B outputs (oid, ∅,Σ = (σ, upk),m, fupk
ev , 0, πop) in its non-frameability game.

If A wins G1, then σ does not belong to SIG, and hence it is accepted by Verify in B’s non-
frameability game. Moreover, Judge accepts πop (because ¬FailOp is required for A to win G1).
Moreover, because of ¬FailEv, we also know that ExtSign outputs the expected upk . upk belongs
to an honest user (note that B does not make use of the user corruption oracle. Thus, whenever A
wins G1, then B wins its non-frameability game in line 14. This implies that Pr[G1 = 1] must be
negligible. Hence Pr[G0 = 1] is negligible, as required. ■

Note that the proof also works for proving strong unforgeability of Πds
UAS, i.e. signatures are

non-malleable.

D.2 Group Signatures

We mostly adopt the model in [BSZ05]. In this abstraction, the opener returns an index uniquely
identifying the group member who created a signature, along with a correctness proof. To ease
exposition, we assume without loss of generality that this index is just the public key that group
members generate randomly when joining the group3. A group signature scheme in [BSZ05] is
composed of KG, UKG, Sign, Verify, Open and Judge algorithms, and an ⟨Obt, Iss⟩ interactive
protocol. We omit the RReg and WReg oracles in our modeling. These oracles are there to model
information flow from the issuer to the opener, allowing the opener to trace users to their identities.
In UAS, such information flow does not have to be explicitly modeled, as users are identified by their
public key upk instead of an arbitrary “identity” that needs to be communicated. Furthermore, the
UAS definitions do not allow for concurrency when issuing membership certificates, hence we also
replace the [BSZ05] oracles SndToI,AddU,SndToU with UAS-style ISSUE,OBTISS,OBTAIN oracles,
which are constrained to sequential execution, plus an explicit HUGEN oracle. Finally, we omit
honest users in the traceability experiment, letting A take control of all users. This change does
not change the level of security, as corruption status does not factor into the winning condition,
hence A might as well work with only corrupted users and simulate honest ones itself if needed.

3The user public key is assumed to be accessible from a public table in [BSZ05], so it is easy to translate the
public key into an index, if needed.

49

Barring these minor modifications, the oracles are similar to those of UAS. We refer to [BSZ05] for
detailed descriptions. For ease of reference, we replicate the security games in Fig. 19.

Expanon-bA,gs (1κ)

1 : (gpk , isk , osk)← KG(1κ)

2 : d← AOanon−b(gpk , isk)

3 : return d

Expframe
A,gs (1κ)

1 : (gpk , isk , osk)← KG(1κ)

2 : (m, σ, upk , τ)← AOframe(gpk , osk , isk)

3 : if Verify(gpk ,m, σ) = 0 : return 0

4 : return ∃uid : upk = UPK[uid] ∧ Judge(gpk , upk ,m, σ, τ) = 1 ∧
5 : A did not query UCORR(uid) or SIGN(uid,m)

ExptraceA,gs (1
κ)

1 : (gpk , isk , osk)← KG(1κ)

2 : (m, σ)← AOtrace(gpk , osk)

3 : if Verify(gpk ,m, σ) = 0 : return 0

4 : (upk , τ)← Open(gpk , osk ,m, σ)

5 : if Judge(gpk , upk ,m, σ, τ) = 0 : return 1

6 : if A made no queries ISSUE(upk) : return 1

7 : return 0

Figure 19: Security games for group signatures [BSZ05], only with some edits to ease comparison
with Πgs

UAS. In particular, since we output upks instead of indexes, i = 0 in the traceability game now
reads “upk has not been queried to ISSUE or OBTISS”. Oanon−b ← {Chb,OPEN,OBTAIN,HUGEN,
UCORR,CUGEN}, Otrace ← {ISSUE}, and Oframe ← {OBTAIN,SIGN,HUGEN,UCORR,CUGEN}.

Security of Πgs
UAS We prove that our Πgs

UAS construction (Section 6.1) is an anonymous, traceable,
and non-frameable group signature scheme, according to the (modified) model in [BSZ05], if the
underlying ΠUAS construction is secure.

Theorem 8 (Anonymity of Πgs
UAS). If the base ΠUAS construction has signature anonymity according

to Definition 3, then Πgs
UAS (Section 6.2) is an anonymous group signature scheme.

Proof. B prepares the environment for A’s anonymity game. For this, B first calls its own HUGEN,
HOGEN (with fupk

op) and ISET (with fupk
is) oracles, and sets gpk ← (ipk , opk). Then, calls ICORR

on the generated issuer, to obtain its isk and pass it to A. To answer A’s oracle queries, B leverages
its own oracles in the natural way. In particular, calls to Chb are answered using B’s SIGCHALb
oracle. This simulation is perfect. If A distinguishes with non-negligible advantage, this directly
leads to a non-negligible advantage for B in UAS’s signature anonymity game. ■

Theorem 9 (Traceability of Πgs
UAS). If the base ΠUAS construction has signature unforgeability

according to Definition 5, and issuance unforgeability according to Definition 4, then Πgs
UAS (Section

6.2) is a traceable group signature scheme.

Proof. Let A be an adversary against ExptraceA,gs for our Πgs
UAS construction. Now, consider the fol-

lowing sequence of games:

G0 This is the standard ExptraceA,gs .

50

G1 Behaves like G0 but it computes par ′ as (par ′, τ)← SimSetup(1κ) (note that the distribution of
par ′ does not change). Furthermore:

• Whenever A queries ISSUE(upk) and the issuer does not output ⊥, then G1 computes
(upk ′, ·) ← ExtIss(τ, reg) using the UAS extractor ExtIss. If upk ̸= upk ′, i.e. if the
extracted upk ′ is inconsistent to the desired upk according to the oracle query, then G1

aborts and outputs 0 (making A lose). We call the event that this happens FailIss.

Clearly, there is no difference between G0 and G1 unless the FailIss error event happens, hence
|Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[FailIss] (via difference lemma).

Through a straightforward reduction to UAS’s issuance unforgeability (in which B guesses the
oracle query that triggers FailIss), one can show that Pr[FailIss] is negligible. This is because

FailIss effectively triggers the win condition “fupk
is (upk ′, . . .) ̸= yis = upk” in line 13 of Expiss-forgeUAS,A .

Now, consider A playing against G1. We can build an adversary B that breaks signature un-
forgeability of the underlying ΠUAS construction. The simulation of A’s environment is again direct,
setting up honest issuer iid for fupk

is and honest opener oid. Eventually, A outputs a (m, σ) pair.
When that happens, B outputs (oid, iid,Σ = (σ, 0),m, f0

ev) in its signature unforgeability game.
Note that B has not requested any UAS signatures from its oracles.

If A wins G1 because Judge outputs 0, then this clearly translates to a win for B in line 17/18

of Expsig-forgeUAS,A . If A wins G1 because A made no queries to ISSUE(upk), then B has not queried its
own ISSUE(. . . , yis = upk) oracle. Hence B wins in line 9 of CheckEndorsementCreds, given that,
because of ¬FailIss, the extractor ExtractIssue only ever outputs upk ′ that have been queried
to ISSUE(. . . , yis = upk ′) (but upk has not been queried to ISSUE). This implies that Pr[G1 = 1]
must be negligible. Hence Pr[G0 = 1] is negligible, as required. ■

Theorem 10 (Non-frameability of Πgs
UAS). If the base ΠUAS construction is non-frameable according

to Definition 6, then Πgs
UAS (Section 6.2) is a non-frameable group signature scheme.

Proof. Assume an adversary A against non-frameability in Πgs
UAS. We build an adversary B against

non-frameability of the (fupk
is , f0

ev, f
upk
op)−ΠUAS instance.

B’s simulation of A’s environment is as in the proof for traceability of Πgs
UAS, except that now

B also corrupts the issuer by running ICORR, so that it can pass isk to A. The simulation is again
perfect.
B takes A’s (m, σ, upk , π) output, and augments it to (oid, iid, (σ, 0),m, f0

ev, upk , π), where oid
and iid are the identifiers of the produced opener and issuer, respectively. Note that, if A wins in its
GS non-frameability game, then B also directly wins in its UAS non-frameability game. Concretely,
if A’s signature is accepted by Verify in the Πgs

UAS construction, then by definition it is also accepted
by ΠUAS Verify algorithm. The same applies if (upk , π) is accepted by Πgs

UAS Judge. In addition,
since A wins, then it has not leveraged the SIGN oracle to produce σ, and thus Σ = (σ, 0) /∈ SIG.
Finally, if upk ∈ HU and A did not query UCORR on upk , then B did not query UCORR on uid
such that UPK[uid] = upk , so B wins its non-frameability game at line 12 or 14. ■

D.3 Anonymous Credentials

We adopt the model in [FHS19] for anonymous credentials with selective disclosure, which re-
stricts to one credential per presentation. Therein, an anonymous credential scheme is defined via
OrgKeyGen (which we rename to IssKeyGen), and UserKeyGen algorithms, and ⟨Obtain, Issue⟩

51

and ⟨Show,Verify⟩ interactive protocols. We refer to [FHS19] for the full details. For readability,
we give the security definitions in Fig. 20.

Expanon-bA,ac (1κ)

1 : (ipk , isk)← IssKeyGen(1κ)

2 : b∗ ← AUGEN,UCORR,OBTAIN,Show,LoR(ipk , isk)

3 : return b∗

ExpforgeA,ac (1
κ)

1 : (ipk , isk)← IssKeyGen(1κ)

2 : (D, st)← AUGEN,UCORR,OBTISS,ISSUE,Show(ipk)

3 : Let d be the index set of D, i.e. D ∈ ASd

4 : ⟨·, b⟩ ← ⟨A(st),Verify(ipk ,d , D)⟩
5 : return (b = 1 ∧ ∄j s.t.

6 : (OWN[j] /∈ HU ∧D ⊆ ATT[j]))

Figure 20: Games for anonymous credentials with selective disclosure [FHS19]. OWN, ATT and the
oracles are essentially as in UAS, but Show runs the (challenge-response) Show protocol of the AC

construction with A as the verifier. A wins ExpforgeA,ac if it authenticates successfully while revealing
attributes not contained in any adversarially controlled credential.

Security of Πac
UAS We prove that Πac

UAS (Section 6.3) is an anonymous and unforgeable anonymous
credential scheme, according to [FHS19], if the underlying ΠUAS construction is anonymous and
unforgeable.

Theorem 11 (Anonymity of Πac
UAS). If the base ΠUAS construction has signature anonymity accord-

ing to Definition 3, then Πac
UAS (Section 6.3) is an anonymous AC scheme according to [FHS19].

Proof. Given A against anonymity of Πac
UAS as defined in [FHS19], we build an adversary B against

signature anonymity of ΠUAS as defined in Definition 3.
B prepares A’s game by running HUGEN and ISET (specifying fupk

is as issuance function) to
produce an (isk , ipk) issuer key pair, and then runs ICORR to learn isk , which passes to A. To
simulate A’s oracle calls, B leverages its own oracles in the UAS signature anonymity game. Show
calls are simulated by SIGN (setting m to A’s challenge, and fev to fd

ev), and LoR calls are simulated
with SIGCHALb (again, setting m to A’s challenge, and using fd

ev). Note that, in the latter, if either
of the challenge credentials does not contain the necessary attribute set (defined by fd

ev), SIGCHALb
aborts (as LoR does). The simulation is perfect.
B simply outputs whatever A does. Clearly, if A has non-negligible distinguishing advantage,

then so does B in the UAS signature anonymity game, with the same advantage. ■

Theorem 12 (Unforgeability of Πac
UAS). If the base ΠUAS construction has signature unforgeability

according to Definition 5, then Πac
UAS (Section 6.3) is an unforgeable AC scheme.

We prove the theorem by direct reduction to the signature unforgeability property. Intuitively,
an adversary who convinces an honest Πac

UAS verifier has to forge an UAS signature.

Proof. Let A be an adversary against ExpforgeA,ac (1
κ). We construct B against UAS signature unforge-

ability. B gets par ′ as input. B uses its UGEN, ISET oracles to set up an honest issuer with ID iid
and key ipk ′ for fupk

is . It further uses HOGEN to set up an honest opener with ID oid for f0
op. It

then sets par = (par ′, opk) and ipk = (ipk ′, fupk
is) and hands par , ipk to A.

52

B then answers A’s oracle queries using its own UAS oracles in the natural way. The simulation
is perfect (note that the par ′ that A sees when run as a subroutine by B are generated by SimSetup
rather than Setup, but by definition, this does not change the distribution of par ′ at all).

When A returns D and st, our adversary B runs A(st) and sends a random nonce r
$← {0, 1}κ

to A. A responds with a signature σ. B outputs (oid, iid,Σ = (σ, yev = D),m = r, fd
ev) (where d is

the adequate index set for D) as a UAS signature forgery.
Let coll be the event that the value random r has been queried before to SIGN. Because r is

chosen uniformly at random from a size 2κ set, this happens only with negligible probability.
We now argue that whenever A outputs a valid AC forgery and ¬coll, then B outputs a valid

UAS signature forgery. Because ¬coll, the forgery of B survives the check in line 6 of Expsig-forgeUAS,A
(Figure 12). If A wins its game, then the signature is valid, hence B’s forgery also survives the

check in line 8. Finally, there are two possible cases, in both of which Expsig-forgeUAS,A outputs 1:

• If fd
ev(·, (·,a)) ̸= D for the extracted a , then Expsig-forgeUAS,A outputs 1 in line 1

• If fd
ev(·, (·,a)) = D, then CheckEndorsementCreds necessarily outputs 1 in line 3 or in line 5

as guaranteed by the AC unforgeability winning condition (stating that the honest issuer has
not issued any credential with fitting attributes to a corrupted party).

Overall, we get that Pr[ExpforgeA,ac (1
κ) = 1] ≤ Pr[Expsig-forgeUAS,A (1κ) = 1]+Pr[coll], which is negligible

by assumption. ■

Note that the security definition [FHS19] does not require credentials to be bound to identities,
hence there is no need for an honest issuer to actually check the issuance utility yis = upk value (it
does not appear in the security proof). However, our UAS definitions are much more strict w.r.t.
credential ownership, i.e. Πac

UAS actually fulfills a stronger security definition that takes credential
owners into account. Such a non-transferability winning condition would correspond to line 9 of
CheckEndorsementCreds.

D.4 Ring Signatures

We adopt the model in [BKM06], where security of ring signatures is defined according to the games
in Fig. 21. More specifically, we give next their formulation of anonymity against full key exposure,
and unforgeability with respect to insider corruption (the stronger model among the variants given
in [BKM06]). We refer to [BKM06] for details.

Security of Πring
UAS We prove that our Πring

UAS construction (Section 6.4) is anonymous and unforge-
able, in the model given in [BKM06], if the underlying ΠUAS construction is secure.

Theorem 13 (Anonymity of Πring
UAS). If the base ΠUAS construction is anonymous according to

Definition 3, then Πring
UAS (Section 6.4) is an anonymous ring signature scheme.

Proof. Assume A is an adversary against anonymity of Πring
UAS. We build B that breaks signature

anonymity of the underlying ΠUAS construction.
To simulate A’s environment, when B receives the system parameters in the UAS anonymity

game, it runs the HOGEN oracle with f0
op, to get opk . Then, it generates n honest users by running

the HUGEN oracle as many times. Finally, passes the n user public keys to A. To simulate A’s

53

Expanon-bA,rs (1κ)

1 : par ← Setup(1κ)

2 : for i ∈ [n] : (pk i, sk i)← KG(par)

3 : (i0, i1, ring ,m, st)← ASign(pk1, . . . , pkn)

4 : if {pk i0
, pk i1

} ̸⊆ ring ∨ i0 = i1 : return ⊥
5 : σ∗ ← Sign(ib, ring ,m)

6 : b∗ ← A(σ∗, {sk i}i∈[n], st)

7 : return b∗

ExpforgeA,rs (1
κ)

1 : par ← Setup(1κ)

2 : for i ∈ [n] : (pk i, sk i)← KG(par)

3 : (ring ,m, σ)← ASign,Corr(pk1, . . . , pkn)

4 : if Verify(ring , σ,m) = 0 : return 0

5 : return (ring ⊆ {pk i}i∈[n] \ CU ∧
6 : A never queried Sign(·, ring ,m))

Figure 21: Security games for ring signatures [BKM06]. The Sign oracle accepts (i, R,m) tuples
and, if pk i ∈ R, adds the tuple to a list of queries, and returns σ ← Sign(sk i, R,m). Corr accepts
an index i, and leaks sk i. Corrupted users are added to CU .

queries to the Sign oracle, B leverages its own SIGN oracle. Namely, when receiving a Sign(i, R,m)
call, B checks that UPK[i] ∈ R and, if affirmative, precomputes fR

ev and calls SIGN on (oid, i, ∅,m,
fR
ev).

Eventually, A outputs (i0, i1, ring ,m, st). If i0 ̸= i1, and both UPK[i0],UPK[i1] belong to ring ,
then B calls its SIGCHALb oracle on (i0, i1, ∅,m, f ring

ev) to get a signature Σ∗ (otherwise, it aborts).
B calls UCORR on all the honest users previously generated (including the ones for i0 and i1), and
passes all secret keys along with Σ∗ and st to A. Finally, B outputs whatever A does. Note that the
simulation, for which B simply leverages its own oracles, is perfect. Clearly, if A has non-negligible
advantage in its RS anonymity game, then so does B, with the same advantage, in its UAS signature
anonymity game. ■

Theorem 14 (Unforgeability of Πring
UAS). If the base ΠUAS construction is non-frameable according

to Definition 6, and has signature unforgeability as defined in Definition 5, then Πring
UAS (Section 6.4)

is an unforgeable ring signature scheme.

Similar to the proof of the digital signature construction (Theorem 7), we need to handle the
event FailEv that the extractor outputs values for which fev(·) ̸= 1, and the event FailOp that
we cannot honestly compute an opening proof for the forgery. Both events are unlikely because of
the ΠUAS signature unforgeability property. As soon as this is done, we can reduce to the ΠUAS

traceability property, which implies that it’s hard to create new signatures that the extractor assigns
to an honest user. Given ¬FailEv, we know that the extractor assigns the signature to one of the
users in the ring, which concluces the proof.

Proof. Let A be an adversary against ExpforgeA,rs (1
κ) for our Πring

UAS construction. Now consider the
following sequence of games:

G0 This is the standard ExpforgeA,rs (1
κ).

G1 Behaves like G0 but it computes par ′ as (par ′, τ)← SimSetup(1κ) (note that the distribution of
par ′ does not change). Furthermore, when A outputs a winning forgery (ring ,m, σ):

• G1 runs the UAS extractor (upk ′, ·) ← ExtSign(τ,Σ) with the appropriate Σ = (σ, 1)
(where yev = 1 is the membership bit output by fev). If the extracted upk ′ is not part
of ring , then G1 outputs 0. We call the event that this happens FailEv.

54

• G1 computes an opening proof (yop, πop) ← Open(osk , ∅,Σ,m, f
upk
ev) for the signature

output by A. If πop is invalid, i.e. yop ̸= 0 or Judge(opk , ∅, yop, πop,Σ,m, fupk
ev) = 0

(where osk is as computed during Πds
UAS.Setup), then G1 outputs 0. We call the event

that this happens FailOp.

Clearly, there is no difference between G0 and G1 unless one of the two error events happens,
hence |Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[FailEv ∨ FailOp] (via difference lemma).

We argue that the signature unforgeability property of UAS ensures that Pr[FailEv ∨ FailOp]
is negligible. In the following, we consider an adversary B against Expsig-forgeUAS,A , leveraging A against

ExpforgeA,rs (1
κ). B uses its oracles to set up n honest users. Let uidi, upk i be those honest users’ IDs

and public keys, respectively. B uses those users’ upk i when simulating ExpforgeA,rs for A. It also sets

up an honest opener for fop = f0
op and subsequently uses its corresponding opk for the simulation.

Let oid be that opener’s ID. Whenever A asks for a signature, B uses its own UAS SIGN oracle in
the natural way to answer. Whenever A asks for corruption, B uses its own UAS corruption oracle
UCORR to answer. When A outputs its candidate forgery (ring ,m, σ) and wins its unforgeability

game, then B outputs (oid, ∅,Σ = (σ, 1),m, f ring
ev) to Expsig-forgeUAS,A . It is easy to see that FailEv

and FailOp both correspond to winning cases for B: If FailEv happens, then B wins in line 12
of Expsig-forgeUAS,A , if FailOp happens, then B wins in line 17/18. Because B is a ppt and ΠUAS is
unforgeable, Pr[FailEv ∨ FailOp] must be negligible (and hence G0 and G1 are indistinguishable).

Now consider A playing against G1. We can build an adversary B that breaks non-frameability
of the underlying ΠUAS construction. The simulation of A’s environment is again direct. Eventually,
A outputs a (m, σ) pair.

When that happens, B outputs (oid, ∅,Σ = (σ, 1),m, f ring
ev , 0, πop) in its non-frameability game.

If A wins G1, then σ does not belong to SIG, and hence it is accepted by Verify in B’s non-
frameability game. Moreover, Judge accepts πop (because ¬FailOp is required for A to win G1).
Moreover, because of ¬FailEv, we also know that upk output by ExtSign upk satisfies upk ∈ ring
and hence upk /∈ CU. Thus, whenever A wins G1, then B wins its non-frameability game in line 14.
This implies that Pr[G1 = 1] must be negligible. Hence Pr[G0 = 1] is negligible, as required. ■

E Relationships with More Schemes

Next, we give the intuition on how to build other known and more advanced schemes – or variants
of them – and specify the corresponding ΠUAS restrictions.

E.1 Group Signatures with Message Dependent Opening

We describe a direct approach to build a GS scheme in which only signatures over pre-agreed mes-
sages can be deanonymized. This resembles the work on group signatures with message dependent
opening (GS-MDO) described in [EHK+19]. The GS-MDO setting features two separate author-
ities: the opener, who opens signatures; and the admitter, who computes per-message tokens to
grant the opener permission to open signatures over the corresponding concrete messages. Without
these per-message tokens generated by the admitter, the opener cannot open signatures.

We must however observe that we cannot build the exact same functionality, nor follow the same
model, from UAS. Firstly because of the authority separation aspect at the opening level. Secondly,

55

because in GS-MDO, the admitter can enable the opener to open a signature after the user has
produced it – i.e., GS-MDO has fully authority-controlled opening, even despite the separation.

Concerning the first aspect, it is easy to see that our UAS model does not include authority
separation at the opening level. Anyway, this can be somehow mimicked via conventional techniques
(like applying threshold cryptography to the authorities’ keys), which we leave out of scope for the
sake of simplicity. On the other hand, the authority-controlled opening aspect is in some sense
philosophically differentiating. In GS-MDO, when a user produces a signature, she cannot know
whether it will be openable in the future – and this is independent from the authority separation
aspect. For instance, a rogue admitter might decide to always grant the opener “full opening”
capabilities. In that case, GS-MDO collapses to a conventional GS scheme. As opposed to this
approach, in our ΠUAS construction, the user always knows at signature generation time what
information an opener may be able to extract in the future. A related notion is the user-controlled
linkability from [DL21]. In that sense, one can see our variant of GS-MDO as GS-MDO with
user-controlled linkability, or GS-MDO-UCL.

Thus, in a nutshell, what GS-MDO provides is a scheme that allows users to produce anonymous
signatures over arbitrary messages, which openers can deanonymize at any point in time if the
admitter decides that the signed message should be deanonymizable. In contrast, what we describe
next is how to build, from ΠUAS, a scheme that allows users to produce anonymous signatures
over arbitrary messages, which openers can deanonymize only if the signed message was marked as
deanonymizable beforehand. While different as argued above, we still believe that the “message-
dependent opening” aspect is common to both.

Building Πgs−mdo−ucl
UAS . The approach to build this variant of GS-MDO from ΠUAS is simple:

given fmsg
op as defined in Equation (1), and fupk

is and f0
ev as defined in Section 6, our Πgs−mdo−ucl

UAS

construction is simply a (fupk
is , f0

ev, f
msg
op)-ΠUAS restriction. It is easy to see that this provides the

functionality hinted above: any user can get at most one membership credential, no information
is revealed alongside the (group) signatures, and the opener can only deanonymize the signatures
over messages in msg . Note that, while the opener has the capability to define a new function over
a new msg set, the signer always knows what messages are part of msg at signature generation
time. Thus, the signer knows if a signature she produces will ever be deanonymizable or not.

fmsg
op (upk , ·,m) := if m ∈msg : return upk ; else return 0 (1)

E.2 Multimodal Private Signatures

Multimodal Private Signatures [NGSY22b] (or, rather, a close relative, see next) can also be im-
plemented as a ΠUAS restriction.

The idea behind MPS is that the signed message determines the level to which the user’s
identity id is disclosed to the opener. The function F (m,w, id) determines the level of disclosure
(and whether that user is allowed to sign that message m at all). The functions G1, . . . , Gn then
model what information is disclosed for each level. Overall, the opener learns GF (m,w,id)(id) about
the user’s identity, and F (·) = 0 signifies that the user is not allowed to sign the message at all.

For our instantiation, we replace the user’s ID id with the user’s upk . Furthermore, we omit the
witness w from F , and instead let F use attributes a from the user’s credential/certificate. This is a
slightly weaker notion, as w in [NGSY22b] could be chosen depending on the current message (e.g.,

56

m could be a commitment and w its opening value). However, we believe that this is a reasonable
simplification. To recover the original notion, we can let the user self-issue a credential containing
the attribute w, at which point F within fev, fop can depend on it.

Building Πmps
UAS. For simplicity, we only give the functions needed to represent the Πmps

UAS variant
in which w is assumed to be of the (cid ,a) form. The generalization to more flexible w values
would need to take into account all the used credentials (and their attributes) in the evaluation and
opening functions, following the intuition given above.

In a nutshell, Πmps
UAS can be built as a (fupk

is , fF
ev, f

G
op)-ΠUAS restriction, where fupk

is is as defined

in Section 6, and fF
ev and fG

op are as defined in Equations (2). Note that fF
ev outputs 1 if F does

not output 0, and 0 otherwise, meaning that the signer is not allowed to sign this message at all.
fG
op is simply MPS’s G function.

fF
ev(upk , (cid ,a),m) :=

if F (upk , (cid ,a),m) = 0 : return 0

else : return 1

fG
op(upk , cid ,a , ·) :=

return GF (upk ,(cid,a),m)((upk , cid ,a)) (2)

E.3 Revocable Anonymous Credentials

From ΠUAS, it is also possible to build the approach to revocable anonymous credentials based
on lists of revoked credentials. Therein, some authority maintains a list of the credentials that
should not (or should, in the whitelisting variant) be allowed to produce signatures [CKL+15,
BCD+17, WG23]. Then, in order to produce a signature, a user has to prove knowledge of a
credential whose identifier has not been added to that revocation list (resp. has been added, in the
whitelisting variant). Since privacy needs to be ensured, this proof is done using zero-knowledge
techniques. Note also that, since UAS has opening, our approach to revocable credentials supports
signature-driven revocation straight away, as opposed to (the perhaps more usual in the academia)
issuer-driven revocation. In practice, this is useful, as verifiers (service providers) can directly
provide the evidence (signature) of a misbehavior, and have the associated credential revoked. This
is not possible with issuer-driven revocation, where only issuers can revoke credentials (e.g., when
a user warns about a lost credential).

Building Πrac
UAS. Briefly, this is achieved via a (f

upk
is , fcid,d ,L

ev , fcid
op)-ΠUAS restriction, where f

upk
is is

as in Section 6, and fcid,d ,L
ev and fcid

op are as specified in Equations (3).

fcid,d ,L
ev (upk , (cid ,a), ·) :=

if cid ∈ L : return 0

else return {a i}i∈d

fcid
op (·, (cid ,a), ·) := return cid (3)

57

Concretely, fcid,d ,L
ev is defined via a set of attributes d to reveal (which must include the creden-

tial identifier cid), and a list L of revoked credentials. Note that these parameters can be hardcoded,
though: the indexes of d are also fixed (e.g., per credential type), and L can be updated per verifier
with some reasonable frequency – e.g., daily (of course, revocation of a credential is not effective
until L, and the function, is updated). If cid appears in L, then the credential used for signing has
been revoked, and fcid,d ,L

ev outputs 0, indicating that the signature must be rejected. Otherwise,
fcid,d ,L
ev reveals the requested attributes by setting yev ← {a i}i∈d .

If a verifier wants to revoke a credential, all it has to do is ask the opener to run Open over
a received signature produced from the credential to be revoked. This outputs cid , along with a
proof π of correct opening. The verifier checks the proof and, if correct, appends cid to L.

58

	Introduction
	Our contributions

	Related Work
	Preliminaries
	Formalizing UAS
	Syntax
	Security Model

	UAS: A Generic UAS Construction
	Correctness and Security of UAS

	Building Related Schemes from UAS
	Digital Signatures
	Group Signatures
	Anonymous Credentials
	Ring Signatures

	Conclusion and Future Work
	Formal UAS Model
	Global Variables and Oracles
	Security Properties

	Cryptographic Building Blocks
	Public-Key Encryption
	Commitments
	Simulation Extractable Non-Interactive Zero-Knowledge Proofs of Knowledge
	Signatures over Blocks of Committed Messages

	Correctness and Security Proofs for UAS
	Models and Proofs for Relationships with Other Schemes
	Digital Signatures
	Group Signatures
	Anonymous Credentials
	Ring Signatures

	Relationships with More Schemes
	Group Signatures with Message Dependent Opening
	Multimodal Private Signatures
	Revocable Anonymous Credentials

