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Abstract. X-Wing is a hybrid key-encapsulation mechanism based on X25519 and
ML-KEM-768. It is designed to be the sensible choice for most applications. The
concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved
efficiency compared to using a generic KEM combiner. In this paper, we introduce the
X-Wing hybrid KEM construction and provide a proof of security. We show (1) that
X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption
holds in the X25519 nominal group, and (2) that X-Wing is a post-quantum IND-CCA
secure KEM if ML-KEM-768 is itself an IND-CCA secure KEM and SHA3-256 is
secure when used as a pseudorandom function. The first result is proved in the ROM,
whereas the second one holds in the standard model. Loosely speaking, this means
X-Wing is secure if either X25519 or ML-KEM-768 is secure. We stress that these
security guarantees and optimizations are only possible due to the concrete choices
that were made, and it may not apply in the general case.
Keywords: Hybrid KEM · Post-Quantum Cryptography · Public-Key Cryptography
· X-Wing

1 Introduction
To counter the potential threat of store-now/decrypt-later attacks using quantum comput-
ers, industry has started to deploy post-quantum key-encapsulation mechanisms (KEMs)
for key agreement (cf. [O’B23, WR22]). The post-quantum cryptography that is now being
considered for widespread adoption is relatively young compared to the public-key cryp-
tography that has protected applications until now. For example, RSA and (elliptic-curve)
Diffie-Hellman might not be secure against quantum-computers, but these schemes have
undergone decades of cryptographic analysis. For this reason, many opt to deploy a hybrid
of traditional and post-quantum schemes: if the post-quantum component turns out to be
weak, security falls back to the (non-post-quantum) security of traditional constructions.

Warning. X-Wing depends on the NIST standard ML-KEM, which has not been finalized yet. Thus,
X-Wing is not final yet.
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2 X-Wing

Conversely, when the traditional component becomes weak due to practical quantum
attacks, security falls back to the (post-quantum) security of the post-quantum scheme.

As pointed out by Giacon, Heuer, and Poettering [GHP18], under the standard IND-
CCA security definition for KEMs1, creating a generic KEM combiner is more subtle than
one might expect. They show that the obvious combiner KDF(k1∥k2) is not IND-CCA
secure in all cases, but that such a generic combiner can be made secure by mixing in
the ciphertexts into the KDF input, e.g., as KDF(k1∥k2∥c1∥c2). As typical post-quantum
KEMs have large ciphertexts, this second combiner comes with a noticeable performance
penalty.

Despite this, in specific applications such as TLS 1.3, the simpler combiner is taken to be
secure because the ciphertexts are mixed into the transcript hash. This has led to the current
situation where there are two different hybrid KEMs, both called X25519Kyber768Draft00
[WS23, WW23]: one for HPKE where the ciphertext is used in the key derivation input,
and one for use in TLS where security instead relies on the transcript hash outside the
combiner. This is an undesirable situation.

In this paper, we show that there is a class of KEMs where the best of both worlds
can be achieved: For these KEMs, the simple, more efficient combiner yields an IND-CCA
secure hybrid KEM despite not using the KEM ciphertext during key derivation. We call
these KEMs ciphertext second preimage resistant (C2PRI) and show that ML-KEM [NIS23]
provides ciphertext second preimage resistance. We use this observation to design an
efficient, hybrid KEM suitable for a broad range of applications.

Furthermore, besides having to choose the details of the combiner (e.g., which PRF to
use or which design to follow), the KEMs used in the combiner have to be decided upon
as well, which involves several crucial choices to start the scheme. Then, the parameters
and security levels have to be fixed. There might be further details to consider. For
instance, for ECDH, designers need to decide upon how a KEM is to be created from the
Diffie–Hellman key exchange like X25519 [Ber06, LHT16].

Although there is value in having a standardized recipe to create bespoke hybrid KEMs
using a black-box combiner from existing KEMs [OWK23], for most use cases a single
choice is beneficial for increased interoperability, and reduced engineering efforts. With
X-Wing we are making concrete choices, and we provide a proof of security for these
specific choices. This simplifies our proof and yields a performance level unmet by previous
constructions at the same security level.

X-Wing is a concrete KEM and not a generic combiner. Its simplicity and performance
ensures it is a good choice in most use cases, including TLS and HPKE. X-Wing targets
128-bit security, and achieves this goal by combining X25519 and ML-KEM-768 using
SHA3-256 as the key derivation function. ML-KEM-768 is chosen over ML-KEM-512 to
hedge against advances in cryptanalysis and to match X25519Kyber768Draft00 [WS23],
which already found real-world usage.

In this paper, we show that X-Wing achieves IND-CCA security based on either the
security properties of either X25519 or ML-KEM. In the pre-quantum case, we model
SHA3-256 as a random oracle and reduce the IND-CCA security of the scheme to the
strong Diffie-Hellman problem in the X25519 nominal group. To achieve this result, we
also show that ML-KEM-768 retains a ciphertext second preimage resistance, even if its
secret key is known to the attacker. In the post-quantum case, we give a standard model
reduction from the IND-CCA security of X-Wing to IND-CCA security of ML-KEM-768
while assuming SHA3-256 to be a PRF. Here we closely follow the proof idea for KEM
combiners given by Giacon, Heuer, and Poettering [GHP18], while extending it to KEMs
that may allow for a small decryption error probability.

1Here, IND-CCA means the standard notion of ciphertext indistinguishability under adaptive chosen-
ciphertext attacks for KEMs.
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Structure of this paper. To start, in Section 2 we describe the design of X-Wing, and
explain the choices made. Before getting into the details of our construction, in Section 3,
we give an intuitive explanation for the security of our scheme as well as a sketch of
the proof. Notation and definitions are introduced Section 4. The QSF framework is
introduced in Section 5; our generic construction – termed Quantum Superiority Fighter –
constitutes a generalization of the specific X-Wing construction. In Section 6 we prove the
security of QSFs in general, and finally, in Section 7 we show that X-Wing is a Quantum
Superiority Fighter and provide benchmarks for an optimized implementation of X-Wing.

2 Design

X-Wing private key (2464 bytes):

ML-KEM-768 private key
(2400 bytes)

X25519 private key
(32 bytes)

X25519 public key
(32 bytes)

X-Wing public key (1216 bytes):

ML-KEM-768 public key
(1184 bytes)

X25519 public key
(32 bytes)

X-Wing ciphertext (1120 bytes):

ML-KEM-768 ciphertext
(1088 bytes)

X25519 ciphertext
(32 bytes)

X-Wing shared key (32 bytes):

SHA3-256

 \./
/^\

(6 bytes)

ML-KEM-768
shared key
(32 bytes)

X25519
shared key
(32 bytes)

X25519
ciphertext
(32 bytes)

X25519
public key
(32 bytes)


The initial X-Wing label is encoded as 6-byte ASCII string “\.//^\”.

Figure 1: The X-Wing KEM private key, public key, ciphertext, and shared key.

The primary goal of X-Wing is to be usable and the go-to solution in most applications.
There are many aspects to being ‘usable’, which can be in conflict.

First, there are the security guarantees and performance, which we already covered
in the introduction; by targeting IND-CCA security at 128 bits with extra margin for
ML-KEM, we have a solid security guarantee with comfortable margin, while retaining
performance.

Secondly, there is implementation simplicity. We designed X-Wing so that it is straight-
forward to implement with X25519 and ML-KEM-768 as black boxes. In particular, we
opted not to use the DHKEM(X25519) construction from HPKE [BBLW22, ABH+21] that
turns X25519 into a KEM. Also, these considerations steered us away from utilizing a stan-
dard combiner. Compared to a scheme based on DHKEM and the GHP-combiner [GHP18],
we achieve the same security at a lower computational cost and implementation complexity.
We stress that this optimization is possible, because of the concrete choices we made, and
it may not apply in general.
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We chose X25519 as it is currently the de-facto standard traditional key-agreement with
excellent performance. ML-KEM is currently NIST’s only choice for a post-quantum KEM.
More importantly, these choices closely match with the choices made in the Internet-Draft
X25519Kyber768Draft00 [WS23], which is used in the current wide-scale early deployment of
post-quantum cryptography in TLS by Google and Cloudflare [O’B23, WR22]. A summary
of the X-Wing design is depicted in Figure 1.

While we could further improve performance, by opening up ML-KEM and merging the
key derivation phase of ML-KEM with that of X-Wing, we decided against this optimization
since it would require the implementer to open up the ML-KEM implementation abstraction,
which might not always be possible or desirable.

The final key-derivation includes the X25519 public key and ciphertext (i.e., both the
DH long-term and ephemeral public keys). The first is added as a measure of security
against multi-target attacks, similarly to what is done in the ML-KEM design.2 Removing
the X25519 ciphertext from the final key-derivation step is not possible, as X25519, if seen
as a KEM, is not ciphertext second preimage resistant. Removing either or both tokens
would not improve performance by much, since in the KDF call, we are already processing
only a single SHA3-256 input block.

3 Security Intuition

Second Preimage attacks against KEM Combiners. Hashing public keys, shared
keys, and ciphertexts are natural steps in creating a generic KEM combiner, but one
might think that the key-derivation stage could be as uncomplicated as concatenating
both shared keys before applying a key-derivation function. Let us call this the pedestrian
combiner. Giacon, Heuer, and Poettering [GHP18] showed that such a combiner would not
robustly provide IND-CCA security. Instead, the GHP-combiner [GHP18] that is proved
secure, additionally mixes both ciphertexts into the key-derivation step.

The paper provides an in-depth explanation of the attack that can be performed if
the ciphertexts are omitted. To briefly illustrate the attack, recall that a robust combiner
is meant to combine two or more schemes so that security is preserved if all but one
schemes are replaced by an arbitrarily bad scheme. Consider a hypothetical bad scheme,
which is broken in the following sense: given a challenge ciphertext c1, it is easy to find
another ciphertext c′1 ̸= c1 that decapsulates to the same shared key k1. Then, an attacker
could win the IND-CCA game against the KEM combiner as follows: Given (c1, c2) as the
challenge ciphertext, where c2 is the ciphertext for a secure KEM, the adversary knows
this will decapsulate to KDF(k1, k2) for unknown k2. However, the attacker can simply
call its decapsulation oracle on (c′1, c2), which is a legitimate query, and obtain the correct
shared key.

Second Preimage Resistant KEMs. The fact that the previous attack works for a
degenerate insecure KEM does not mean that omitting a corresponding ciphertext from
the KDF input always leads to an attack. Indeed in this paper we show that, for X-Wing,
this is not the case: we can omit the (large) ML-KEM-768 ciphertext from the KDF
input, and still prove that X-Wing is an IND-CCA secure KEM. Intuitively, this is because
ML-KEM-768 has the following property: even if ML-KEM-768 is broken as a KEM, we
show that its internal structure—based on the Fujisaki-Okamoto transform—guarantees
that it is impossible to find a second ciphertext as described above. We call this notion
ciphertext second preimage resistance for KEMs.

2https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/C0D3W1KoINY/m/99kIvydoAwAJ

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/C0D3W1KoINY/m/99kIvydoAwAJ
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Inlining the Diffie-Hellman based KEM. The X-Wing construction is not a generic
KEM combiner because we do not treat the DH component as a black-box KEM. We
instead take the direct route, reducing the X25519-based security of our construction to the
hardness of breaking the Strong Diffie-Hellman [ABR01] (SDH) problem in a nominal group.
Intuitively, this means that we prove security based on a computational-Diffie-Hellman-like
problem, but no assumption is made about the format of the generated group element.
In particular, no assumption is made that the shared group element is indistinguishable
from random bytes. Indistinguishability of the final shared secret from a random key is
established by modeling the key-derivation function as a random oracle.

Proof-strategy. The proof is split into two cases: one covering the possibility of quantum
computers becoming a reality (and thus breaking X25519), and the other one covering
the possibility of post-quantum cryptography, specifically ML-KEM-768, being classically
broken.

Pre-Quantum Security: This the case case where X25519 is assumed to be secure
but ML-KEM-768 may not offer any security. This proof is itself presented in two steps
and, in both cases, the attacker is assumed to be classical. We first prove that X-Wing is
IND-CCA secure when:

1. The SHA3-256 KDF is modeled as a Random Oracle;

2. X25519 is modeled as a nominal group in which the strong Diffie-Hellman assumption
holds; and

3. ML-KEM-768 is modeled as a possibly broken KEM that provides no security beyond
ciphertext second preimage resistance.

We then show that ML-KEM-768 satisfies the ciphertext second preimage resistance
property, again in the ROM.

Post-Quantum Security: This is the case where ML-KEM-768 is assumed to be post-
quantum secure, but X25519 offers no security. This proof is itself presented in two steps
and, in both cases, the attacker is assumed to be able to perform quantum computations,
but it interacts with X-Wing classically. We prove in the standard model that X-Wing is
secure when:

1. The SHA3-256 KDF is modeled as a (post-quantum) PRF;

2. There is no assumption on the X25519 component; and

3. ML-KEM-768 is assumed to provide (post-quantum) IND-CCA security.

We present the above proofs in a modular way, by first justifying the QSF design, and
then arguing that SHA3-356, X25519 and ML-KEM-768 are good instantiations.

4 Preliminaries
4.1 Notation and conventions
For an integer n, we denote by Zn the residual ring Z/nZ. a ←$ A denotes sampling a
uniformly at random from a non-empty finite set A. ← denotes a deterministic assignment
of a variable. {0, 1}n is the set of all bitstrings of length n. (x, y) denotes a tuple of two
elements x and y. X[y] denotes access into the table X at position y. Tables are denoted
with bold uppercase variable names or

∑
. An uninitialized position in a table is denoted

with the bottom symbol ⊥. X[·]← y sets all positions of table X to y. o←$A(I) denotes
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running the algorithm A with input I with uniform random coins and o describing its
output. If A has additionally access to an oracle O, this is denoted as o←$AO(·)(I). A
security game consists of a main procedure and optionally some oracle procedures. When a
game is played, the main procedure is run and adversary A is given some inputs and access
to the oracle procedures. Based on the output of the adversary A and its oracle calls, the
main procedure outputs 1 or 0 depending on whether the adversary A won the game. If a
game aborts at any time, it means that the adversary has no advantage in winning this
game. In case of a decision game, this means that the game returns a random bit indicating
whether the adversary has won or not. Whenever an adversary algorithm executes "stop
with x", it halts returning x to its challenger. We denote an adversary A playing game G
as GA. The probability of the game returning a 1 when played by adversary A is written
as Pr[GA ⇒ 1]. Our security analyses are concrete, which means that we prove that the
advantage of an attacker against a construction with fixed parameters is bounded by a
real value that is argued to be small. Here, small means a summation of statistical terms
and advantage terms, the former representing worst-case probabilities below 2−128 and the
latter representing attacks on lower-level primitives that are assumed to require at least
2128 steps to break.

4.2 Key-Encapsulation Mechanisms
4.2.1 Syntax

Definition 1 (Key Encapsulation Mechanism (KEM)). A key encapsulation mechanism
is a triple of algorithms KEM = {KeyGen, Enc, Dec} with public keyspace PK, private
keyspace SK, ciphertext space C, and shared keyspace K. The triple of algorithms is
defined as:

• KEM.KeyGen( ) ←$ (sk, pk) Randomized algorithm that outputs a secret (private)
key sk ∈ SK, and a public key pk ∈ PK.

• KEM.Enc(pk) ←$ (k, c) Randomized algorithm that, given a public key pk ∈ PK,
outputs a shared key k ∈ K, and a ciphertext c ∈ C.

• KEM.Dec(c, sk) → y ∈ {k,⊥} Deterministic algorithm that, given a secret key,
sk ∈ SK and a ciphertext c ∈ C, returns the shared key k ∈ K. In case of rejection,
this algorithm returns ⊥.

4.2.2 Correctness

The correctness of a KEM imposes that, except with small probability drawn over the
random coin space of KEM.KeyGen and KEM.Enc, we have that KEM.Dec correctly
recovers the shared key produced by KEM.Enc. Formally, we say that a KEM is δ-correct
if:

Pr
[

k ̸= k′
∣∣∣∣(sk,pk)←$KeyGen( )

(k,c)←$Enc(pk)
k′←Dec(c,sk)

]
≤ δ.

4.2.3 Security

The IND-CCA security game for KEMs is denoted as IND-CCAb
KEM,A and is shown in

Figure 2.

Definition 2 (IND-CCA advantage for KEMs). The advantage of A in breaking the
IND-CCA security of KEM is defined as

AdvKEM
IND-CCA,A =

∣∣Pr[IND-CCA0
KEM,A ⇒ 1]− Pr[IND-CCA1

KEM,A ⇒ 1]
∣∣.
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Game IND-CCAb
KEM,A

(sk, pk)←$ KEM.KeyGen( )
(k0, c∗)←$ KEM.Enc(pk)
k1 ←$ K
b′ ←$ADec(·)(pk, c∗, kb)
return b′

Oracle Dec(c)
if c = c∗ then

return ⊥
k ← KEM.Dec(c, sk)
return k

Figure 2: IND-CCA security game for KEMs.

4.3 Pseudorandom function
A pseudorandom function (PRF) is a keyed deterministic function that cannot be distin-
guished from a truly random function.

Definition 3 (Pseudorandom Function (PRF)). For a finite keyspace K, input space X ,
finite output space Y, and an efficiently computable function f : K × X → Y, we define
the PRF advantage of adversary A based on the experiments in Figure 3 as

Advf
PRF,A =

∣∣Pr[PRF0
f,A ⇒ 1]− Pr[PRF1

f,A ⇒ 1]
∣∣.

Game PRFb
f,A

T[·]← ⊥
k ←$ K
b′ ←$AEval(·)

return b′

Oracle Evalf (x)
if x ∈ T then

return T[x]
y0 ← f(k, x); y1 ←$ Y
T[x]← yb

return yb

Figure 3: PRF security games.

4.4 Nominal Group
The construction that we introduce in this paper uses an elliptic curve. In our security
proofs, we abstract away the elliptic curve and use the notion of a nominal group. In this
section, we recall the definition of a nominal group, as of [ABH+21].

Definition 4 (Nominal Group [ABH+21]). A nominal group N = (G, g, p, εh, εu, exp)
consists of an efficiently recognizable finite set of elements G (also called “group elements”),
a base element g ∈ G, a prime p, a finite set of honest exponents εh ⊂ Z, a finite
set of exponents εu ⊂ Z/pZ, and an efficiently computable exponentiation function
exp : G×Z→ G, where we write Xy for exp(X, y). The exponentiation function is required
to have the following properties:

1. (Xy)z = Xyz for all X ∈ G, y, z ∈ Z.

2. The function ϕ defined by ϕ(x) = gx is a bijection from εu to {gx|x ∈ [1, p− 1]}.

As done in [ABH+21] for a nominal group N = (G, g, p, εh, εu, exp), we define DH to
be the uniform distribution of honestly generated exponents εh and DU to be the uniform
distribution on εu. We also recall the definition for the statistical distance between these
distributions: ∆N = ∆[DH , DU ] = 1

2
∑

x∈Z
|Pr
DU

(x)− Pr
DH

(x)| [ABH+21].
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4.5 Strong Diffie-Hellman Problem
Definition 5 (Strong Diffie-Hellman (SDH) Problem). We define the advantage function
of an adversary A against the Strong Diffie-Hellman problem over the nominal group N as

AdvSDH
N ,A = Pr

[
Z = gxy

∣∣∣x, y ← εu; Z ← ADH(·,·)(gx, gy)
]

.

where DH is a decision oracle that on input (Y, Z) with Y, Z ∈ G, returns 1 iff Y x = Z
and 0 otherwise.

5 Introducing QSF
In this section, we introduce a framework to build a robust hybrid KEM based on two
building blocks, a nominal group and another KEM. We show that the resulting KEM is
secure even if one of the building blocks loses its security properties. We call this QSF.

Definition 6 (QSF). Let N = (G, g, p, εh, εu, exp) be a nominal group, let KEM be a
key encapsulation mechanism and let H be a hash function. We define the QSF KEM as
depicted in Figure 4.

Algorithm KeyGen()
(sk1, pk1)←$ KEM.KeyGen()
sk2 ←$ εh

pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
sk ← (sk1, sk2, pk2)
return (sk, pk)

Algorithm Enc(pk)
(pk1, pk2)← pk
k1, c1 ←$ KEM.Enc(pk1)
ske ←$ εh

c2 ← exp(g, ske)
k2 ← exp(pk2, ske)
k ← H(label∥k1∥k2∥c2∥pk2)
c← (c1, c2)
return (k, c)

Algorithm Dec(c, sk)
(sk1, sk2, pk2)← sk
(c1, c2)← c
k1 ← KEM.Dec(c1, sk1)
k2 ← exp(c2, sk2)
if k1 = ⊥ then

return ⊥
k ← H(label∥k1∥k2∥c2∥pk2)
return k

Figure 4: QSF Framework.

5.1 Correctness
The correctness of the QSF framework follows from the correctness of the KEM used
to instantiate QSF. Formally, if QSF is instantiated with a δ-correct KEM, then the
correctness of QSF is defined as follows:

Pr
[

k ̸= k′
∣∣∣∣(sk,pk)←$KeyGen( )

(k,c)←$Enc(pk)
k′←Dec(c,sk)

]
≤ δ.
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6 Security of QSF
In this section, we will analyze the security of the QSF framework. We will consider two
cases. In the first case, we will analyze the security of QSF relative to the security of the
nominal group, while in the second case, we analyze the security relative to the security of
the underlying KEM.

6.1 Reduction to SDH and C2PRI in the ROM
As mentioned in the introduction, we introduce ciphertext second preimage resistance for
KEMs (C2PRI) and show that this notion is sufficient, together with the SDH security of
the nominal group, to make QSF an IND-CCA secure KEM.

Definition 7 (C2PRI). We define the advantage function of an adversary A against KEM
second preimage resistance as:

AdvC2PRI
KEM,A = Pr

[
Dec(c, sk) = k∗ ∧ c ̸= c∗

∣∣∣∣(sk,pk)←$KeyGen( )
(k∗,c∗)←$Enc(pk)
c←A(sk,pk,k∗,c∗)

]
.

Note that the adversary also gets access to the secret key. This ensures that this
notion will hold even if other security notions are broken, such as IND-CCA security. This
allows us to prove the security of QSF relative to the strength of the nominal group for an
arbitrarily bad KEM. With this definition, we can prove the IND-CCA security of QSF.

Note that this notion is related to the key-binding properties introduced by Cremers et
al. in [CDM23] and Alwen et al. in [AHK+23, §5.3]. Instead of finding any collision, as
for the properties introduced by Cremers et al. and Alwen et al., we opted for a second
preimage resistance notion, as this best fits our requirements in the following proof. This is
a strictly weaker notion, since the adversary is tasked to find a second preimage instead of
any collision. Also this allows us to prove better concrete bounds on the achieved security
level.

Theorem 1. Let N = (G, g, p, εh, εu, exp) be a nominal group and KEM be a key encap-
sulation mechanism, let H be a random oracle with an output size of n and let A be an
adversary against the IND-CCA security of QSF in Definition 6 making at most qh queries
to the random oracles. Then there exist adversaries B and C such that,

AdvIND-CCA
QSF,A ≤ 2∆N + AdvSDH

N ,B + AdvC2PRI
KEM,C .

The run-times of B and C are roughly the same as of A. B performs at most 2qh queries
to its own DH oracle.

Proof. Let us consider the following games,

Game 0 Let G0 be defined as in Figure 5. In this game, Σ is used to model H(m) as lazily
sampled random oracle. Clearly, G0 is the IND-CCA0 game instantiated with QSF.
By definition,

Pr[IND-CCA0
QSF,A ⇒ 1] = Pr[GA0 ⇒ 1].

Game 1 For G1 we choose the secret keys sk2 and ske from the set of exponents εu instead
of the set of honest exponents εh. This allows us to use the SDH problem to bound
the probability of the next game hop.

Claim 1
|Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]| ≤ 2∆N .
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Game G0/G1/G2/G3/G4∑
[·]← ⊥

(sk1, pk1)← KEM.KeyGen()
sk2 ←$ εh

sk2 ←$ εu ▷ G1 −G4
pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
(k∗1 , c∗1)← KEM.Enc(pk1)
ske ←$ εh

ske ←$ εu ▷ G1 −G4
c∗2 ← exp(g, ske)
k∗2 ← exp(pk2, ske)
c∗ ← (c∗1, c∗2)
s← label∥k∗1∥k∗2∥c∗2∥pk2
if

∑
[s] = ⊥ then∑
[s]←$ {0, 1}n

k∗ ←
∑

[s]
k∗ ←$ {0, 1}n ▷ G4

b′ ← ADec(·),H(·)(pk, c∗, k∗)
return b′

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k1 ← KEM.Dec(c1, sk1)
k2 ← exp(c2, sk2)
if k1 = ⊥ then

return ⊥
▷ G3 −G4 ◁
if k1 = k∗1 ∧ c1 ̸= c∗1 then

abort2
s← label∥k1∥k2∥c2∥pk2
if

∑
[s] = ⊥ then∑
[s]←$ {0, 1}n

k ←
∑

[s]
return k

H(m)
▷ G2 −G4 ◁
if label∥k1∥k2∥c2∥pk2 = m then

if k2 = k∗2 then
abort1

if
∑

[m] = ⊥ then∑
[m]←$ {0, 1}n

return
∑

[m]

Figure 5: Game G0 −G4.

Proof With this game hop, we change the distribution from which these values are chosen.
∆N defines the bound on the probability of an adversary to distinguish the original
distribution from the new one for one element. As we are replacing the distribution
of two elements, we get 2∆N as an upper bound for A to detect this change.

Game 2 With the changes in G2 we prevent the adversary from querying the random oracle
containing the value k∗2 that was used to generate the challenge key k∗. This prevents
A entirely from obtaining the shared challenge key k∗ from the random oracle.

Claim 2
|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ Pr[abort1] = AdvSDH

N ,B .

Proof To prove this claim, we show the existence of adversary B that wins the SDH game
exactly when A would query H2 containing the k∗2 used to generate k∗. Consider
adversary B from Figure 6 playing the SDH game and simulating A’s view on the
IND-CCA game.
Adversary B uses the challenge group elements X = exp(g, x) as the static public key
and Y = exp(g, y) as the ephemeral public key for the challenge ciphertext. Therefore,
the shared challenge key k∗ is supposed to be H2(label∥k∗1∥exp(Y, x)∥c∗2∥pk2). B is
unable to compute exp(Y, x) and therefore sets k∗ to a uniform random value. For
A to win the IND-CCA game, it would have to query H2 with exp(Y, x). B can
use the DH oracle to detect when A queries H2 with the result of exp(Y, x), since



M. Barbosa et al. 11

Adversary BDH(·,·)(X, Y )∑
[·]← ⊥

E[·]← ⊥
(sk1, pk1)←$ KEM.KeyGen()
pk2 ← X
pk ← (pk1, pk2)
(k∗1 , c∗1)←$ KEM.Enc(pk2)
c∗2 ← Y
c∗ ← (c∗1, c∗2)
k∗ ←$ {0, 1}n

b′ ← ADec(·),H(·)(pk, c∗, k∗)

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k1 ← KEM.Dec(c1, sk1)
if k1 = ⊥ then

return ⊥
if E[(c2, k1)] = ⊥ then

E[(c2, k1)]←$ {0, 1}n

return E[(c2, k1)]

H(m)
if label∥k1∥k2∥c2∥pk2 = m then

if DH(Y, k2) = 1 then
stop with k2

if DH(c2, k2) = 1 then
if E[(c2, k1)] = ⊥ then

E[(c2, k1)]←$ {0, 1}n

return E[(c2, k1)]
if

∑
[m] = ⊥ then∑
[m]←$ {0, 1}n

return
∑

[m]

Figure 6: Adversary B.

DH(Y, k∗2) = 1 iff k∗2 = exp(Y, x). Therefore, if this check in the H oracle evaluates to
1 we know that the k2 provided has to equal k∗2 . When this happens, A has provided
B with the solution to the SDH game. A similar approach can be used to simulate
the Dec oracle. When calculating the shared key in the Dec oracle, the input for the
random oracle has to have the form label∥k1∥exp(c2, x)∥c2∥pk2 which B is not able
to compute. B can use the same method as before to check whether A performs such
a query using the DH oracle. We then use the table E to ensure consistency between
the random oracle H and the Dec oracle. Therefore, B simulates A’s view on the
IND-CCA game perfectly and wins the SDH game iff the adversary queries H with
the result of exp(Y, x), which is the k∗2 used to generate k∗. Note that the adversary
B makes at most 2qh queries to the DH oracle.

Game 3 G3 introduces changes that prevent the adversary from querying the Dec oracle with
a ciphertext c1 that is different from the ciphertext c∗1 that was used to generate
the challenge ciphertext c∗, but results in the same k1 as the k∗1 that was used to
generate k∗.

Claim 3
|Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]| ≤ Pr[abort2] = AdvC2PRI

KEM,C .

Proof To prove this claim, we show the existence of an adversary C, depicted in Figure 7,
that simulates A’s view on the IND-CCA game and wins iff A would trigger abort2.
All oracles are simulated perfectly. This is easily possible, since C also obtains the
secret key from its challenger. C stops exactly when the abort2 would be hit in G3.
When the stop instruction is reached, C obtained a k1 that is equal to k∗1 but where c1
and c∗1 are different. This means that C found a second ciphertext that decapsulates
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Adversary C(sk1, pk1, k∗1 , c∗1)∑
[·]← ⊥

sk2 ←$ εu

pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
ske ←$ εu

c∗2 ← exp(g, ske)
k∗2 ← exp(pk2, ske)
c∗ ← (c∗1, c∗2)
s← label∥k∗1∥k∗2∥c∗2∥pk2
if

∑
[s] = ⊥ then∑
[s]←$ {0, 1}n

k∗ ←
∑

[s]
b′ ← ADec(·),H(·)(pk, c∗, k∗)

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k1 ← KEM.Dec(c1, sk1)
k2 ← exp(c2, sk2)
if k1 = ⊥ then

return ⊥
if k1 = k∗1 ∧ c1 ̸= c∗1 then

stop with c1
k ← H2(label∥k1∥k2∥c2∥pk2)
return k

H(m)
if label∥k1∥k2∥c2∥pk2 = m then

if k2 = k∗2 then
abort1

if
∑

[m] = ⊥ then∑
[m]←$ {0, 1}n

return
∑

[m]

Figure 7: Adversary C.

to the same shared key as the challenge key k∗1 . The ciphertext c1 is therefore a
correct answer for the C2PRI game.

Game 4 In G4 we replace the shared challenge key k∗ with a uniform random key. With this
change we reached the IND-CCA1 game instantiated with QSF. Therefore,

Claim 4
Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].

Proof To prove that this change is undetectable by A, we need to argue that A’s view
when interacting with the various oracles is independent of the value of k∗. The
abort condition in H prevents the adversary from querying the random oracle with
the value of k∗2 used to generate the shared key k∗ from the challenge. Since the
adversary A cannot query the random oracle H with the input used to generate k∗,
the output of the random oracle H is independent of k∗. The abort condition in
Dec also prevents the adversary from querying the Dec oracle in a way that would
result in k∗ being outputted. Either c1 or c2 must be different from c∗1 or c∗2. If c1 is
different, then the resulting key k1 must be different from k∗1 , otherwise the abort
condition would be triggered. If c2 is different, then the input to the random oracle
must also be different, since it is included in its input. Therefore, the behavior of
the Dec oracle is independent of the value of k∗. Since the behavior of all oracles is
independent of k∗, the adversary cannot detect this game hop.

Now that k∗ is chosen uniformly at random, which means that G4 matches the definition
of the IND-CCA1

QSF,A game perfectly. Therefore,

Pr[GA4 ⇒ 1] = Pr[IND-CCA1
QSF,A ⇒ 1].

This concludes the proof of Theorem 1.
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6.2 Reduction to security of KEM in the standard model
Theorem 2. Let N = (G, g, p, εh, εu, exp) be a nominal group and KEM be a key encap-
sulation mechanism, let H be a secure PRF with an output size of n when keyed on k1,
and let A be an adversary against the IND-CCA security of QSF in Definition 6. Then,
there exist B, C, D, and E, such that,

AdvQSF
IND-CCA,A ≤ AdvKEM

IND-CCA,B + AdvKEM
IND-CCA,C + AdvH

PRF,D + AdvH
PRF,E + 2δ ,

where δ is the correctness bound for KEM. The run-times of B, C, D, and E are roughly
the same as of A. B and C perform at most qd queries to their own decapsulation oracles.

Proof. This proof follows closely the proof for [GHP18, Theorem 1].

Game G0/G1/G2/G3/G4
sk1, pk1 ←$ KEM.KeyGen()
sk2 ←$ εh

pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
sk ← (sk1, sk2)
k∗1 , c∗1 ←$ KEM.Enc(pk1)
ske ←$ εu

c∗2 ← exp(g, ske)
k∗2 ← exp(pk2, ske)
k∗1 ←$ K ▷ G1 −G3

k∗ ← H(label∥k∗1∥k∗2∥c∗2∥pk2)
k∗ ←$ {0, 1}n ▷ G2 −G4

c∗ ← (c∗1, c∗2)
b′ ←$ADec(·)(pk, c∗, k∗)
return b′

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k1 ← KEM.Dec(c1, sk1)
k2 ← exp(c2, sk2)
if k1 = ⊥ then

return ⊥
if c1 = c∗1 then ▷ G1 −G3

k1 ← k∗1
k ← H(label∥k1∥k2∥c2∥pk2)
if c1 = c∗1 then ▷ G2

k ←$ {0, 1}n

return k

Figure 8: Games G0 to G4.

Game 0 This is the standard IND-CCA security game for QSF and so,

Pr[IND-CCA0
QSF,A ⇒ 1] = Pr[G0 ⇒ 1].

Game 1 The challenge shared key produced by KEM is replaced with a random key.

Claim 1 This change should not be noticeable by the adversary A. If it is, then we can
construct an efficient adversary B against the IND-CCA security of KEM with
roughly the same running time as A, such that,

∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ AdvIND-CCA,B

KEM + δ.

Proof We construct B as in Figure 9. The adversary B simulates the environment of A
by calculating the nominal group components of QSF itself and embedding the
KEM challenge into the QSF challenge. The decapsulation oracle is simulated by B
as follows: it can calculate the nominal group part itself and query its own KEM
decapsulation oracle on all ciphertexts except c∗1. Because of this, it will simply use
its own challenge shared key k∗1 if c∗1 is in the decapsulation query by A.
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The strategy adopted by B correctly interpolates between games G0 and G1, except
when c∗1 would decapsulate to something other than k∗1 in G0. We can bound the
probability of this inconsistency using the correctness of KEM, which justifies the δ
term in the claim. More precisely, we have∣∣Pr[GA0 ⇒ 1]− Pr[G0

KEM,B ⇒ 1]
∣∣ ≤ δ,

and
Pr[GA1 ⇒ 1] = Pr[G1

KEM,B ⇒ 1],

which means that∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ AdvKEM

IND-CCA,B + δ,

and B will clearly perform at most as many decapsulation queries to its KEM
decapsulation oracle as A makes decapsulation queries.

Game 2 In this game, all QSF shared keys that are provided to the adversary computed using
k∗1 are replaced with random values.

Claim 2 This change should not be noticeable by the adversary A. If it is, then we can
construct an efficient adversary D against the PRF security of H with roughly the
same running time as A, such that

∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]
∣∣ ≤ AdvH

PRF,D.

Proof This is a simple reduction shown in Figure 10. This adversary can generate all
cryptographic parameters except k∗1 , for which it uses its PRF oracle. As we can
see, when the challenge PRF key is real, then D will be using a real output of
the pseudorandom function and hence running G1; whereas if the challenge key is
random, D will be using a uniformly sampled output and running G2. Hence,

Pr[GA1 ⇒ 1] = Pr[G0
H,D ⇒ 1],

and

Pr[GA2 ⇒ 1] = Pr[G1
H,D ⇒ 1],

which means that

∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]
∣∣ ≤ AdvH

PRF,D,

and D will perform one evaluation query for generating the challenge key and perform
at most one evaluation query per decapsulation query by A.

Game 3 We undo the modification introduced in the previous game, but only for keys output
by the decapsulation oracle.

Claim 3 We justify this hop with a reduction to the PRF property of H very similar to the
previous one.

∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]
∣∣ ≤ AdvH

PRF,E .
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Proof We construct E as in Figure 10, and the analysis is similar to the previous hop.

Pr[GA2 ⇒ 1] = Pr[PRF0
H,E ⇒ 1],

and
Pr[GA3 ⇒ 1] = Pr[PRF1

H,E ⇒ 1],

which means that ∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]
∣∣ ≤ AdvH

PRF,E ,

and E will perform at most one evaluation query per decapsulation query by A as it
will never call the evaluation oracle in its main algorithm.

Game 4 Finally, we revert the changes introduced in Game 1 and use a real key for k∗1
once more. This makes the decapsulation oracle identical to Game 0, and the only
remaining change in the main experiment is that k∗ is random.

Claim 4 This hop is justified in a way that is very similar to the jump to Game 1. We
introduce adversary C against the IND-CCA security of KEM, with roughly the same
running time as A, in Figure 9. We claim that,

∣∣Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]
∣∣ ≤ AdvKEM

IND-CCA,C + δ .

Proof Again, the reduction to the IND-CCA security of KEM is perfect, except if c∗2 would
not decapsulate to k∗1 in Game 4. This event can be bound by the correctness of
KEM, and the claim follows.

Claim 5 Pr[GA4 ⇒ 1] = Pr[IND-CCA1
QSF,A ⇒ 1]

Proof This follows from the definition of IND-CCA1
QSF,A.

The theorem follows from collecting all the terms in the claims.

Adversary BDecO(·)/CDecO(·)(pk1, k∗1 , c∗1)
sk2 ←$ εh

pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
ske ←$ εu

k1, c∗1 ←$ KEM.Enc(pk1)
c∗2 ← exp(g, ske)
k∗2 ← exp(pk2, ske)
k∗ ← H(label∥k∗1∥k∗2∥c∗2∥pk2)
k∗ ←$ {0, 1}n ▷ C
c∗ ← (c∗1, c∗2)
b′ ←$ADec(·)(pk, c∗, k∗)
return b′

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k2 ← exp(c2, sk2)
if c1 = c∗1 then

k1 ← k∗1
else k1 ← DecO(c1)
if k1 = ⊥ then

return ⊥
k ← H(label∥k1∥k2∥c2∥pk2)
return k

Figure 9: Adversary B and C against the IND-CCA security of KEM. Note that both
place at most qd queries to DecO, one for each decapsulation query placed by A.
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Adversary DEvalH (·)/EEvalH (·)()
sk1, pk1 ←$ KEM.KeyGen()
sk2 ←$ εh

pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
sk ← (sk1, sk2, pk2)
k1, c∗1 ←$ KEM.Enc(pk1)
ske ←$ εu

c∗2 ← exp(g, ske)
k∗2 ← exp(pk2, ske)
k∗ ← EvalH(label∥k∗2∥c∗2∥pk2)
k∗ ←$ {0, 1}n ▷ E
c∗ ← (c∗1, c∗2)
b′ ←$ADec(·)(pk, c∗, k∗)
return b′

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k2 ← exp(c2, sk2)
if c1 = c∗1 then

k ← EvalH(label∥k2∥c2∥pk2)
return k

k1 ← KEM.Dec(sk1, c1)
if k1 = ⊥ then

return ⊥
k ← H(label∥k1∥k2∥c2∥pk2)
return k

Figure 10: Adversary D and E against the PRF security of H.

7 X-Wing
Now that we have proven the security of the QSF framework, we want to introduce one
concrete instantiation of QSF using X25519, ML-KEM-768 and SHA3-256. We believe
that this instantiation provides a secure and efficient KEM suitable for most applications.
As a name for this instantiation, we choose X-Wing. For our QSF proof to apply to X-Wing
we need to show that X25519 can be modeled as a nominal group and that ML-KEM-768
is C2PRI secure. This is done in this section, followed by the definition of X-Wing.

7.1 X25519 is a nominal group
X-Wing uses X25519 as specified in [LHT16]. As shown in [ABH+21] X25519 can be
modeled as a nominal group N = (G, g, p, εh, εu, exp). We summarize the results in this
section.

We first define G to be all 256 bit long bitstrings. We then define an encoding function
encode_pk as well as a decoding function decode_pk, mapping point on Curve25519 to a
bitstring and vice versa. For this, we can use the encoding and decoding functions as defined
in [LHT16]. p is the order of the largest prime order subgroup and g is a Curve25519 point of
order p, such that the number of points on Curve25519 is 8p. εh = {8n|n ∈ [2251, 2252−1]}
stands for all valid secret keys, respectively for the key generation function of X25519.
exp(X, y) = encode_pk(y · decode_pk(X)), which corresponds to the X25519.DH function.
Let εu = {8n|n ∈ [(p + 1)/2, p− 1]}. This provides us with a statistical difference between
the uniform distribution over εu and εh of ∆N < 2−126 [ABH+21].

Therefore, the definition of this nominal group matches the definition of X25519
perfectly.

7.2 Second Preimage resistance of ML-KEM-768
For the security of X-Wing it is important that ML-KEM-768 is C2PRI secure. Hence,
we will show the ciphertext second preimage resistance of ML-KEM-768 in this section.

Theorem 3 (ML-KEM-768 is C2PRI secure). Let k, du, dv be integers greater than or
equal to 1, let PKE.Enc and PKE.Dec be deterministic algorithms and let G and J be
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independent random oracles with output sizes of 512 and 256 bits, and let A be an adversary
against the C2PRI security of ML-KEM-768 making at most qg and qj many hash queries
to the random oracles G and J . Then, the advantage of adversary A against the C2PRI
security of ML-KEM-768 is defined as,

AdvC2PRI
ML-KEM-768,A ≤

qg + qj + 2
2256 .

Proof. Let us recall the definition of the decapsulation algorithm of ML-KEM-768, depicted
in Figure 11.

ML-KEM-768.Dec(sk ∈ {0, 1}768k+96, c ∈ {0, 1}256(duk+dv))
skP KE ← sk[0 : 384k]
pkP KE ← sk[384k : 768k + 32]
h← sk[768k + 32 : 768k + 64]
z ← sk[768k + 64 : 768k + 96]
m′ ← PKE.Dec(skP KE , c)
(K, r′)← G(m′∥h)
K ← J(z∥c, 32)
c′ ← PKE.Enc(pkP KE , m′, r′)
if c ̸= c′ then

K ← K
return K

Figure 11: ML-KEM-768 decapsulation [NIS23]

We notice that the shared key k∗ of the challenge, for which the adversary tries to
find a second preimage, is generated by the random oracle G, since this key was honestly
generated using the ML-KEM-768.Enc procedure. So we have three cases to analyze. The
first is that the adversary finds a second ciphertext c that is different from the challenge
ciphertext c∗ but results in the same input to G. In the second case, we need to analyze
the probability that G will output the same shared secret with a different input. For the
last case, we need to analyze the probability that J will output the same shared secret as
the one from the challenge.

Case 1: The input to G collides. Suppose PKE.Dec outputs the same m′ for two
different ciphertexts c1 and c2. Then the intermediate values K and r′ are the same for
both decapsulations. Since PKE.Enc is deterministic, c′ is the same for both decapsulations.
This also means that the equality check ci = c′ cannot succeed for both ciphertexts. This
leads to a contradiction, since at least one of the ciphertexts has to be rejected and therefore
the key generated by J is returned by ML-KEM-768.Dec.

Case 2: The output of G collides. The output of G is interpreted as the two values
K and r′. An adversary can already find a second preimage in the decapsulation function
if it can find a second input to G that results in the same output K. Since G is modeled
as a random oracle, and therefore behaves like a random function, the best the adversary
can do is query the random oracle and hope to find such an input by chance. Therefore,
the probability of an adversary finding such an input is bounded by qg+1

2256 , where the 1
2256

comes from the possibility that the adversary does not query the random oracle on this
value, but a collision-causing query is performed during the decryption done by the game.

Case 3: The output of J collides. Since J is a random oracle independent of G, the
best an adversary can do is to query the random oracle J to find such an input by chance.
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Therefore, as in the previous case, the probability of finding such an input can also be
bounded by qj+1

2256 .
This concludes the proof for Theorem 3.

Note that all KEMs that are the result of the Fujisaki-Okamoto transformation and
use explicit rejection with independent random oracles are also C2PRI secure, since all
arguments hold for them as well.

7.3 Definition of X-Wing
Definition 8 (X-Wing KEM). Given the ML-KEM-768 KEM, X25519 Diffie-Hellman
key exchange, and the SHA3-256 hash function, the X-Wing KEM is defined as a tuple of
algorithms {KeyGen, Enc, Dec}, which are in turn defined in Figure 12.

Algorithm KeyGen()
sk1, pk1 ←$ ML-KEM-768.KeyGen()
sk2 ←$ random(32)
pk2 ← X25519.DH(sk2, gX25519)
sk ← (sk1, sk2, pk2)
pk ← (pk1, pk2)
return (sk, pk)

Algorithm Enc(pk)
(pk1, pk2)← pk
ske ←$ random(32)
c2 ← X25519.DH(ske, gX25519)
k1, c1 ←$ ML-KEM-768.Enc(pk)
k2 ← X25519.DH(ske, pk2)
s← “\.//^\”∥k1∥k2∥c2∥pk2
k ← SHA3-256(s)
c← (c1, c2)
return (k, c)

Algorithm Dec(c, sk)
(sk1, sk2, pk2)← sk
(c1, c2)← c
k1 ← ML-KEM-768.Dec(c1, sk1)
k2 ← X25519.DH(sk2, c2)
s← “\.//^\”∥k1∥k2∥c2∥pk2
k ← SHA3-256(s)
return k

Figure 12: X-Wing KEM. random(N) generates N random bytes. X25519.DH is the byte-
oriented function X25519 defined in section 5 of RFC 7748. gX25519 is the X25519 base point
where u = 9 on curve25519 defined in section 6.1 of RFC 7748. ML-KEM-768.KeyGen,
ML-KEM-768.Enc, and ML-KEM-768.Dec are defined in FIPS 203. SHA3-256 is defined
in FIPS 202 [Dwo15]. The X-Wing label is inlined as the first 6 ASCII-encoded bytes of
the SHA3-256 input.

X-Wing has been brought to the IETF to be standardized [CSW24] as an RFC. The
final definition may differ.

8 Benchmarks
We developed a reference and optimized X-Wing implementation in the C programming
language3 and integrated it in the benchmarking environment of Libjade4. The code

3https://github.com/x-wing-kem-team/xwing
4https://github.com/formosa-crypto/libjade

https://github.com/x-wing-kem-team/xwing
https://github.com/formosa-crypto/libjade
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is available from https://github.com/x-wing-kem-team/xwing-benchmarks. The
code package also includes a reference and optimized variant of X-Wing that includes
the ML-KEM-768 ciphertext in the input to SHA3-256. In the following we refer to this
variant as X-Wing-Hash-CT. Hence, X-Wing-Hash-CT uses 1222 bytes as input for the
final key derivation, while X-Wing uses only 134 bytes by omitting the ML-KEM-768
ciphertext. Benchmarking both variants allows us to quantify the savings in computational
cost we obtain by proving that it is secure to not include the ML-KEM-768 ciphertext in
the key-derivation hash in X-Wing. We also note that this is not the only performance
optimization in X-Wing. Besides not including the large ML-KEM-768 ciphertext in the
final key derivation, we also proved that it is sufficient to use X25519 as the Diffie-Hellman
key exchange directly instead of using a KEM based on X25519. This also saves an
additional key derivation step that would have been performed by the KEM based on
X25519. We decided not to benchmark this, as it is highly dependent on the X25519
based KEM we are comparing to. However, we believe that the results for omitting
the ML-KEM-768 ciphertext in the final key derivation is already a strong argument for
X-Wing.

We chose to use the PQ-Crystals reference and optimized implementation of ML-KEM5

and we also utilize their reference and optimized implementation of SHA3-256, which itself
is based on TweetFIPS2026 and the crypto_hash/keccakc512/simple/ SUPERCOP
implementation7. For all Diffie-Hellman operations, we used lib255198.

8.1 Benchmarking procedure
Procedure. The benchmarking focused on counting the CPU clock-cycles used by the
key generation, encapsulation and decapsulation algorithms for both X-Wing and X-Wing-
Hash-CT. Furthermore, we also demonstrated the CPU clock-cycles required for SHA3-256
to process a 134 byte, and a 1222 byte input. These benchmarks were run on an x86-64
Debian 12 machine with an 11th Gen Intel Core i7-11700K with its frequency set to 3.5GHz
and with 16Gb of RAM. Turbo-boost and hyperthreading were disabled. We used GCC
version 13.2.0 with the flags taken directly from the AVX2 PQ-Crystals ML-KEM-768
implementation, namely -mavx2 -mbmi2 -mpopcnt -march=native -mtune=native -O3
-fomit-frame-pointer -z noexecstack. Each implementation’s various algorithms (i.e.
key generation, encaps and decaps) is run 100 times and the benchmark that we used is
the median of the results.

Safety and correctness. The X-Wing and X-Wing-Hash-CT implementations were
verified to be memory-safe via Valgrind and have 99% test coverage. These include
functionality tests (e.g., if the decapsulated secret is equal to the secret produced by
encapsulation) and, if applicable, verify that the implementation’s output matches the test
vectors in defined in [CSW24].

8.2 Benchmarking results
Figure 14 contains tables that display the results of the benchmarks for X-Wing and
X-Wing-Hash-CT, Table (a), and the SHA3-256, Table (b), optimized implementations.
The results are plotted as a bar graph in Figure 13, whereby Figure 13a contains the plot
of X-Wing and X-Wing-Hash-CT benchmarks, and Figure 13b contains the plot of the
SHA3-256 benchmarks.

5https://github.com/pq-crystals/kyber/tree/standard
6https://keccak.team/2015/tweetfips202.html
7http://bench.cr.yp.to/supercop.html
8https://lib25519.cr.yp.to/

https://github.com/x-wing-kem-team/xwing-benchmarks
https://github.com/pq-crystals/kyber/tree/standard
https://keccak.team/2015/tweetfips202.html
http://bench.cr.yp.to/supercop.html
https://lib25519.cr.yp.to/
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By omitting the ciphertext from the input to SHA3-256, we can see a 8% and 9%
performance gain for encapsulation and decapsulation, respectively. This is in line with
the SHA3-256 benchmarks, whereby Table c shows the clock-cycles of the encapsulation
and decapsulation operations if we remove the respective clock-cycles that are due to
calculating the hash. We see that the clock-cycles for both implementations coincide, with
the small discrepancies being due to an extra memcpy being used in the X-Wing-Hash-CT.
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(a) Benchmarks for X-Wing and X-Wing-Hash-
CT AVX2 implementations.
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(b) Benchmarks for SHA3-256 implementation
with different input sizes.

Figure 13: Benchmark plots.

Implementation Keypair Encaps Decaps
X-Wing 70942 139374 116930
X-Wing-Hash-CT 70976 150708 128336
Ratio 1.00 1.08 1.10

(a) Comparison of CPU clock-cycles when running X-Wing
and X-Wing-Hash-CT.

Input length Hash
134 bytes 1774
1222 bytes 12586
Ratio 7.10

(b) Comparison of CPU clock-
cycles when running SHA3-256
when using 134 and 1222 byte in-
put.

Implementation Encaps − Hash Decaps − Hash
X-Wing 137600 115156
X-Wing-Hash-CT 138122 115750
Ratio 1.00 1.01

(c) Comparison of CPU clock-cycles when running X-Wing and X-Wing-Hash-CT, minus the
respective cost of the SHA3-256 operation.

Figure 14: Benchmark tables.

9 Conclusion
In this paper, we introduced the new hybrid KEM, X-Wing, which combines the security
of X25519 and ML-KEM-768 to provide a robust KEM that is secure even if the security
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of one of the schemes is broken. We improve on generic KEM combiners by not including
the ML-KEM-768 ciphertext in the final key derivation, and by using X25519 as is instead
of a KEM based on X25519. For all of these changes, we provide proofs to ensure that no
vulnerabilities are introduced by these changes. We also show that these changes have
a significant impact on the performance of the scheme by providing benchmarks of the
proposed schemes. With all of this, we believe that X-Wing is a good choice for a hybrid
KEM in most use cases.
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