
On Computing the Multidimensional Scalar

Multiplication on Elliptic Curves

Walid Haddaji1,3*, Loubna Ghammam2, Nadia El Mrabet3,
Leila Ben Abdelghani4

1,3*Laboratory of Information Technologies and Communications
Applied to Defense, Military Research Center (MRC), Route de Marsa

B.P. 200 Aouina, 4216, Tunis, Tunisia.
2ITK Engineering GmbH, Im Speyerer Tal 6 Rülzheim76761Germany.

3Laboratory of Secure System and Architecture (SSA), Ecole des Mines
de Saint Etienne, 880 Rte de Mimet, Campus Georges Charpak

Provence, 13120, Gardanne, France.
4Laboratory of Analysis, Probability and Fractals, Faculty of Sciences,

Environment Avenue, Omrane, 5000, Monastir, Tunisia.

*Corresponding author(s). E-mail(s): haddajiwalid95@gmail.com;
Contributing authors: loubna.ghammam@itk-engineering.de;
nadia.elmrabet@emse.fr; leila.benabdelghani@fsm.rnu.tn;

Abstract

A multidimensional scalar multiplication (d-mul) consists of computing [a1]P1+
· · · + [ad]Pd, where d is an integer (d ≥ 2), α1, · · · , αd are scalars of size
l ∈ N∗ bits, P1, P2, · · · , Pd are points on an elliptic curve E. This operation
(d-mul) is widely used in cryptography, especially in elliptic curve cryptographic
algorithms. In fact, it is utilized in the digital signature verification algorithm
(ECDSA [1]), proving and verification algorithms such as the Succinct Non in-
teractive Argument of Knowledge (zkSNARK) protocol [2–4], and in isogeny
based post-quantum cryptosystems [5]. Several methods in the literature allow
to compute the d-mul efficiently (e.g., the bucket method [6], the Karabina et
al. method [7–9]). This paper aims to present and compare the most recent and
efficient methods in the literature for computing the d-mul operation in terms
of with, complexity, memory consumption, and proprieties. We will also present
our work on the progress of the optimisation of d-mul in two methods. The first
method is useful if 2d − 1 points of E can be stored. It is based on a simple
precomputation function. The second method works efficiently when d is large

1

and 2d − 1 points of E can not be stored. It performs the calculation on the fly
without any precomputation. We show that our first method is 100(1 − 1

d
)%

more efficient, while our second exhibits a 50% improvement in efficiency. These
improvements will be substantiated by assessing the number of operations and
practical implementation.

Keywords: Elliptic curves, multidimensional scalar multiplication (d-mul), scalar
multiplication, complexity

1 Introduction

Elliptic curve scalar multiplication is the main operation of the elliptic curve based
algorithms such as EdDSA [10] for the signature scheme, and Elliptic Curve Diffie
Hellman protocol ECDH [11]. This operation enables the repetition of adding a point
P from an elliptic curve E to itself k times to result in a new point on E. This point
is denoted as [k]P , where k ∈ Z. Several works optimising this operation have been
proposed in this context. Among these methods, one can cite the double and add
method [12]. This method uses the binary form of the scalar to perform a doubling
for each bit and an addition if this bit is 0. We also recall the addition subtraction
method [12], which uses the non adjacent form (NAF [13]) of the scalar. It performs
a doubling for each digit, an addition if that digit is 1, and a subtraction of points
if it is equal to −1. To reduce the running time, if we have enough memory, we can
use the window method (w-method [13]). This method enables us to precompute a
limited number of points and decompose a scalar into l coefficients, denoted as ki with
0 ≤ i ≤ l− 1, ensuring that any non zero ki is an odd number. In the main operation,
it performs a doubling and either an addition (if ki > 0) or a subtraction (if ki < 0)
for each coefficient ki.
Cryptographic applications can benefit from multidimensional scalar multiplication
algorithms (d-mul). For example, the signature verification of ECDSA [1] and the
SIDH protocol [14] require a d-mul for d = 2. Multidimensional scalar multiplication
can also speed up simple scalar multiplication [9]. In recent years, d-mul algorithms
have attracted attention in this context. A d-mul takes d scalars α1, α2, . . . , αd and
d points from the elliptic curve E, denoted as P1, P2, . . . , Pd, and produces the result
[α1]P1 + [α2]P2 + . . .+ [αd]Pd, where l ∈ N∗ and log2(αi) = l for 1 ≤ i ≤ d. The best
known d-mul algorithms are discussed in papers such as [7–9, 15–19]. While [15, 17–19]
focus on special cases of d, [7–9, 16] generalise d-mul for elliptic curves.

Our contribution:

Initially, we were motivated by the usefulness of a d-mul with a small d in certain
cryptographic schemes. For this reason, we exploited the possibility of precomputation
and storage to design a first method with an efficient main operation. While prepar-
ing this first method, we discovered newer schemes based on zkSNARK [2, 20] that
require a d-mul with a large number of scalars. In this case, our first method is no
longer applicable. Furthermore, according to [2, 20] the computation of the d-mul is

2

the bottleneck in zkSNARK based schemes. This motivated us to develop a second
method that doesn’t require precomputation and storage to efficiently compute a d-
mul with a large d. Our methods represent a revitalisation of the design, in contrast
to [2–4] which focus on optimising the bucket method through software and hardware
enhancements. These methods include some countermeasures against side channel at-
tacks. In addition, the second method, designed for large d, is algorithmically simple
and does not require many memory accesses.

Notations:

Let a, b ∈ Z, x ∈ Z, and C be a matrix. In the rest of this paper, we use the following
notations:

• [|a, b|] is the set of integers between a and b,
• HW (x) is the Hamming weight of x,
• Ct is the transposition of C,
• p is a prime number,
• K is a finite field of characteristic p,
• E is an elliptic curve defined over K,
• P∞ represents the identity of the group (E(K),+),
• A is an addition on E,
• D is a doubling on E,

This paper is structured as follows: first, we present in section 2 a State of the Art
of the known methods for multidimensional scalar multiplication (d-mul). Section 3
introduces two new methods for efficient computation of d-mul in two methods. The
first deals with the case of a small parameter d using precomputation. It represents a
generalisation of Shamir’s trick which is specifically when d = 2. The second method
does not rely on precomputation. Instead, it performs d-mul calculations on the fly.
It processes simultaneously the bits of scalars αi, where i ∈ [|1, d|]. In section 5, we
make a detailed comparison of the complexity of our work with that of other existing
methods. We compare some key properties of the presented methods with special focus
on comparing our methods with the optimised version of Karabina et al.’s algorithms
in terms of main operation complexity, as these represent the latest advances in d-
mul. This comparison concerns the level of curve arithmetic (number of additions and
doublings) and coordinate systems (affine, projective and Jacobian). For clarity, we
refer to the methods of Karabina et al. [7–9] as d-MUL methods. We then apply the
optimised version of d-MUL methods and our first method on the secp256k1 curve [21]
used in ECDSA [1] and the Montgomery curve [22] used in SQIsign [5] to compare
running times for small d. We repeat this comparison by applying the same version
of d-MUL methods and our second method on the BLS12 − 381 curve [23] used in
zkSNARK protocols for large d. Note that the improvements proposed in this paper
are applicable to any elliptic curve. Our paper concludes with a summary of results
and contributions.

3

2 State of the Art

The d-mul problem consists in computing [α1]P1 + · · · + [αd]Pd, where d, l, and
α1, · · · , αd are integers such that d ≥ 2, l ≥ 1, with 1 ≤ i ≤ d, αi ∈ [0, 2l − 1] and
P1, P2, · · · , Pd ∈ E.

2.1 Case of d=2

2.1.1 Simultaneous Scalar Multiplication (Shamir’s trick [24, 25])

Shamir’s trick allows the computation of [α1]P1 + [α2]P2. This method is given in
detail in [26]. Let l ∈ N∗, α1, α2 be two integers such that l = log2(αi), with i ∈ {1, 2}.
The binary representations of α1 and α2 are given by:

(α1)2 = (b
(1)
l−1b

(1)
l−2 · · · b

(1)
1 b

(1)
0)2,

(α2)2 = (b
(2)
l−1b

(2)
l−2 · · · b

(2)
1 b

(2)
0)2.

Note that, ∀j ∈ [0, l − 1],∀i ∈ {1, 2}, b
(i)
j ∈ {0, 1}, b

(i)
l−1 is denoted by the most

significant bit and b
(i)
0 is the least significant bit. We define the 2× l matrix C by:

C =

(
b
(1)
l−1 · · · b

(1)
1 b

(1)
0

b
(2)
l−1 · · · b

(2)
1 b

(2)
0

)

where, for each integer k, we use [k] to express the scalar multiplication of a given
point on E by k. We remark that

[α1]P1 + [α2]P2 = (P1, P2)C

2l−1

...
21

20

= [2l−1]([b

(1)
l−1]P1 + [b

(2)
l−1]P2) + · · ·+ [21]([b

(1)
1]P1

+ [b
(2)
1]P2) + [20]([b

(1)
0]P1 + [b

(2)
0]P2).

This computation leads to the algorithm 1, which takes as inputs:

• α1, α2 ∈ N,
• l: the size (in bits) of the longest scalar,
• P1, P2 ∈ E.

The number of additions depends on the so-called Joint Hamming Weight (JHW) of
α1 and α2 defined in [26] as the number of non zero columns in the matrix C. It is
possible to extend the JHW definition to any finite number of scalars.

4

Algorithm 1 Simultaneous Scalar Multiplication (Shamir’s trick [24, 25])

Input: l ≥ 1, α1 = (b
(1)
l−1 · · · b

(1)
1 b

(1)
0)2, α2 = (b

(2)
l−1 · · · b

(2)
1 b

(2)
0)2, P1, P2 ∈ E

Output: [α1]P1 + [α2]P2

1. precomputation G← P1 + P2.
2. R← P∞.
3. for j = l − 1 down to 0 do
3. 1 R← [2]R.

3. 2 if ((b
(1)
j , b

(2)
j) = (1, 0)) then R← R+ P1

3. 3 else if ((b
(1)
j , b

(2)
j) = (0, 1)) then R← R+ P2

3. 4 else if ((b
(1)
j , b

(2)
j) = (1, 1)) then R← R+G

4. return R

Since α1 and α2 are randomly generated and have a size of l bits, then JHW (α1, α2) ≈
3
4 l. Thus, the main operation of this method involves l steps. At each step j ∈ [0, l−1],

one doubling is performed, and if (b
(1)
j , b

(2)
j) ̸= (0, 0), one addition is also performed.

So the complexity of the main operation is approximately

3

4
lA+ (l − 1)D.

For the precomputation one addition is performed.
The non adjacent form (NAF [13]) of α1 and α2 can be used instead of their binary
representations to optimise the complexity of Shamir’s trick. In fact, NAF is one of
the signed binary representations admitting the smallest number of non zero digits.
NAF can be illustrated using the following example:

α = (11100011111011)2 = (1001̄001000001̄01̄)NAF

where 1̄ = −1. Compared to the binary representation, the use of this representation
allows us to reduce the number of additions. In fact, HW (α1) ≈ HW (α2) ≈ l

3 , which
makes JHW (α1, α2) ≈ 5

9 l. Consequently, if we use the NAF representation, Shamir’s
trick requires the precomputation of two points, G = P1 + P2 and H = P1 − P2, and
has the following main operation complexity

5

9
lA+ lD.

2.1.2 Bernstein’s method (DJB)

Let l ∈ N∗, α1, α2 ∈ [0, 2l − 1]. The DJB method allows to compute [α1]P1 + [α2]P2

based on the concept of the differential addition chain [15] that is an addition chain
in which P1 and P2 are represented by their difference P1−P2. Montgomery observed
in [27] that for P1 and P2 two points of the curve y2 = x3 + ax2 + x (Montgomery’s
curve), we can efficiently compute the x−coordinate of P1+P2 from the x−coordinates

5

of P1, P2 and P2 − P1. Based on this observation and the concept of a differential
addition chain, Bernstein designed in [15] a method to compute [α1]P1 + [α2]P2 on
the Montgomery curve for l-bit scalars α1 and α2. At each step, one doubling and
two additions are performed, which ensures the uniformity of the operations. More
precisely, three temporal variables T1, T2 and T3 are initialised, respectively, to P∞, P1

and P2. Then, they are updated at each step by doubling one of the Ti and adding two
different pairs of points. The rules of this updating are based on a recursive formula
on the bits of α1 and α2 given in [15]. As an example, we show in figure ?? how this
formula works to construct a differential addition chain of (13, 17).

(0,0) (1,0) (0,1) (1,-1)

(0,1) (1,1) (0,2)

(1,3) (2,2) (1,2)

(3,5) (4,4) (3,4)

(7,9) (6,8) (6,9)

(13,17) (14,18) (13,18)

Figure 1: The differential addition chain of (13, 17).

6

In the following iterations, we use the differential addition chain of (13, 17) to
calculate [13]P1 + [17]P2 using the DJB method:

j = 0 : P∞ P1 P2,

j = 1 : P2 P1 + P2 [2]P2,

j = 2 : P1 + [3]P2 [2]P1 + [2]P2 P1 + [2]P2,

j = 3 : [3]P1 + [5]P2 [4]P1 + [4]P2 [3]P1 + [4]P2,

j = 4 : [7]P1 + [9]P2 [6]P1 + [8]P2 [6]P1 + [9]P2,

j = 5 : [13]P1 + [17]P2 [14]P1 + [18]P2 [13]P1 + [18]P2.

The complexity of the main operation in DJB is

2lA+ lD

Table 1 compares the Bernstein and Shamir methods.

Method Main operation Precomputation Storage Uniformity

Shamir’s trick lD+ 3
4
lA 1A 3 points ×

Bernstein lD+2lA − 2 points ✓

Table 1: Comparison of the Bernstein and Shamir methods.

2.2 Case of d > 2

Recall that our goal is to compute efficiently [α1]P1+[α2]P2+· · ·+[αd]Pd, where d ≥ 2,
α1, · · · , αd ∈ N with log2(αi) = l, for some l ∈ N∗, 1 ≤ i ≤ d and P1, · · · , Pd ∈ E.

2.2.1 Interleaving with NAFs

Interleaving is a technique, as described in [13], used to prepare precomputed points for
each [αi]Pi using distinct methods. During each step of the main operation, we perform
a doubling operation and addition by employing the precomputed points corresponding
to each [αi]Pi. In this context, we introduce an interleaving approach based on window
non adjacent forms (wNAFs). Specifically, for 1 ≤ i ≤ d, we assign a window width

wi ∈ N∗ to αi using algorithm 3 in [28]. We calculate wiNAF(αi) =
∑li−1

j=0 (k
i
j2

i),

where kij ∈ {1, 3, · · · , 2wi−1} and li is the number of digits kij for each i. Subsequently,

for 1 ≤ i ≤ d, we precompute the points [j]Pi for odd values of j < 2wi−1. During
the main operation, the digits of scalars αi are jointly processed from left to right to

7

perform a single doubling. This method is outlined in algorithm 3.51 in [13]. It requires∑d
i=1(2

wi−2) as storage points. Its precomputation is given by:

#{i;wi > 2}D+

d∑
i=1

(2wi−2 − 1)A

and its main operation complexity is

lD+ l

d∑
i=1

(
1

wi + 1
)A

2.2.2 Bucket method (Pippenger Algorithm)

This method is proposed in [6] and described in detail in [2–4]. It is based on the
Pippenger algorithm, which was originally designed to efficiently compute the multi
exponent multiplication [2]. It is hardware optimised in [2] for d-mul speed-up. It is
parallelized in [3] to provide an efficient GPU implementation of zkSNARK. It is used
in [4] with a new coordinate system for twisted Edwards curves to speed up the d-mul
for a large d. The bucket method works as follows:

• we select an integer w ≥ 2 such that w ≈ log2(d), w is referred to as the ’window
width’,

• for each i ≤ d, we write αi = (αi,⌈ l
w ⌉, · · · , αi,1)2w . This implies that we partition

each αi into ⌈ l
w ⌉ words, each word is of size w bits,

• for each 0 ≤ j ≤ ⌈ l
w ⌉ − 1:

– let P [j] = [α1,j]P1 + [α2,j]P2 + · · ·+ [αd,j]Pd,

– we range the points P1, · · · , Pd into 2w buckets (B
[j]
0 , B

[j]
1 , · · · , B[j]

2w−1) according
to αi,j and we eliminate the bucket 0, with 1 ≤ i ≤ d,

– we add the points in each bucket to obtain the sums S
[j]
1 , S

[j]
2 , · · · , S[j]

2w−1,

– we compute P [j] =
∑2w−1

k=1 [k]S
[j]
k using an efficient method proposed in [6].

• after computing of all P [j], we calculate the final result,
∑⌈ l

w ⌉−1
j=0 [2jw]P [j], using an

inverse recursive method described in [3].

This method is given in algorithm 1 in [2]. Its main operation complexity is given by:

lD+ ⌈ l
w
⌉(d+ 2w+1)A

2.2.3 d-MUL methods

To understand d-MUL methods, we introduce the following mathematical concepts:
Definition 1. [8]
Let d ∈ N∗, A a (d+1)× d−matrix of integers. A is a state matrix if it satisfies the
following properties:

8

1. ∀i ∈ [|1, d+ 1|], each row Ai has i− 1 odd entries,
2. ∀i ∈ [|1, d+1|] ∃j ∈ [|1, d|]; Ai+1−Ai = cjej, where cj ∈ {−1, 1} and ej is the unit

basis vector.

The magnitude of a (d+ 1)× d−state matrix A is defined by:

|A| = max{|Aij |; i ∈ [|1, d+ 1|], j ∈ [|1, d|]}

Theorem 1. [8]
Let A be a (d+ 1)× d−state matrix. Then, there exists a unique (d+ 1)× d−matrix
B such that each row of A is equal to the sum of two rows of B.
Definition 2. [8]
A state matrices chain is a sequence (A(i))li=1 of (d+1)× d−state matrices such that

1. A(1) = A,
2. |A(l)| = 1,
3. each row of A(i+1) is the sum of two rows from A(i), for i ∈ [|1, l − 1|],
4. (|A(i)|)li=1 is a strictly decreasing sequence.

We offer the three versions of d-MUL methods in chronological order as follows:

d-MUL

The d-MUL (algorithm 1 in [7]) requires, as a first step, transforming the scalars into
a state matrix A. This transformation is called the initialisation step. It is illustrated
in algorithm 1 in [7]. Then it constructs a chain of state matrices (A(i))li=1 from A
such that A(1) = A using algorithm 2 in [7]. Finally, it carries out successive linear
combinations on the points Pi, moving in the opposite direction to that of the con-
struction, until obtaining the sum [α1]P1 + · · ·+ [αd]Pd.

Randomised d-MUL

Let d, l ∈ N∗, P1, P2, · · · , Pd ∈ E, r a binary string of size ld. Let v be a binary
vector of size d. r and v are generated uniformly at random. Let σ be a permutation
on {2, · · · , d+ 1}. Randomised d-MUL (algorithm 2 in [8]) produces a random point
of the form [α1]P1 + · · · + [αd]Pd, where α1, α2, · · · , αd ∈ [0, 2l − 1] are randomly
generated from r. Unlike d-MUL, randomised d-MUL avoids constructing a chain of
state matrices from a matrix of a given magnitude. In fact, using a permutation on
{0, 1, · · · , d − 1}, it constructs a chain of state matrices from a matrix of magnitude
1. The magnitudes of the matrices in this chain form a strictly increasing sequence.
The magnitude of the final matrix is determined by the binary chain r. Furthermore,
randomised d-MUL performs the needed computation on the points Pi at each con-
struction step. It ends with a random point as a linear combination of these points.
We can use algorithm 1 in [8] to recover the scalars.

9

Optimised d-MUL

Randomised d-MUL does not allow the scalars to be chosen apriory. Therefore,
Hutchinson and Karabina proposed the optimised d-MUL [9] to ensure this correct-
ness. It optimises computations compared to d-MUL by using bit permutations and
XOR operation. The use of negative scalars is supported by the optimised d-MUL. In
fact, if a scalar is negative, it must be replaced by its symmetric, which is positive,
and the point associated with it must also be replaced by its symmetric. Therefore,
the algorithm 4 in [9] presents a version of optimised d-MUL with positive scalars
Furthermore, optimised d-MUL requires the generation of a random permutation σ
on {1, · · · , d} using the parity of the scalars αi (algorithm 1 in [9]).
We compare d-MUL methods in table 2.
The authors of all versions of d-MUL methods have recommended to:

Method
Main operation
complexity

Precomputation Static table
Temporal
storage

d-MUL lD+ldA.

dA.
2ld conditional tests.
2ld sums of 2 rows
of a (d+ 1)× d−matrix.

d points.
l(d+ 1)d
scalars.

Randomised
d-MUL

lD+ldA.
ld bits additions .
ld conditional tests.

dA. d points. ld bits.

Optimised
d-MUL

lD+ldA.
ld 2−bit XORs.
dA.

d points. ld bits.

Table 2: Comparison of d-MUL methods

• forget about using the first version of d-MUL methods [7],
• use the randomised d-MUL method [7] when the cryptographic application requires
the use of random scalars,

• employ optimised d-MUL [9] when those scalars are prefixed.

Since we are working in the context of elliptic curve optimisation, we will use the latest
version of d-MUL methods (optimised d-MUL) for our next comparisons.

3 Our methods

This paper aims to compute efficiently the following d-mul:

[α1]P1 + [α2]P2 + · · ·+ [αd]Pd

where d ≥ 2, l ∈ N∗, α1, · · · , αd are scalars with log2(αi) = l, and P1, · · · , Pd ∈ E.
In this work, we distinguish between cases. The first case is when d is small, and the
second one when d is large.
In the following, we explain when d is small or large:

10

we suppose that our available storage space allows us to store at most 2M − 1 points,
where M ∈ N∗, then

• if d ≤M , d is small,
• if d > M , d is large.

In this section, we present two methods of an efficient computation of d-mul. The
first method when d is small and we have precomputation steps. It is referred to as
Multidimensional Shamir’s trick. The second method consists of the calculation
of the d-mul without precomputation and when d is large. This method is called
Multiple double and add.

3.1 First method (Multidimensional Shamir’s trick)

3.1.1 Description

Recall that this method is considered when d is small (see above for the definition of
small). Note that for this method we need to store some precomputed points. This
case applies to several cryptographic algorithms, including digital signature algorithms
EdDSA [10], ECDSA [1], and also used in post quantum signature SQISign [5].
This method aims to efficiently compute the following d-mul:

[α1]P1 + [α2]P2 + · · ·+ [αd]Pd,

where P1, · · · , Pd ∈ E and α1, · · · , αd ∈ N, with log2(αi) = l, 1 ≤ i ≤ d. Note that
if there are i ∈ [|1, d|] such that log2(αi) = m < l, we add l −m zeros to the left of
the most significant bits of αi. This is because, at each step j ∈ [0, l − 1], we need
to precompute elliptic curve points in the format [c1]P1 + [c2]P2 + · · · + [cd]Pd, with
c1, c2, · · · , cd represent the d bits that are used at each jth step.
Let us write the scalars α1, α2, · · · , αd in their binary representations as follows:

α1 = (b
(1)
l−1b

(1)
l−2 · · · b

(1)
1 b

(1)
0)2,

α2 = (b
(2)
l−1b

(2)
l−2 · · · b

(2)
1 b

(2)
0)2,

...

αd−1 = (b
(d−1)
l−1 b

(d−1)
l−2 · · · b(d−1)

1 b
(d−1)
0)2,

αd = (b
(d)
l−1b

(d)
l−2 · · · b

(d)
1 b

(d)
0)2.

Note that, ∀j ∈ [0, l − 1],∀i ∈ [|1, d|], b
(i)
j ∈ {0, 1}, b

(i)
l−1 is denoted by the most

significant bit and b
(i)
0 is the least significant bit. We present the scalars (αi)1≤i≤d in

11

the matrix C as follows:

C =

b
(1)
l−1 · · · b

(1)
1 b

(1)
0

b
(2)
l−1 · · · b

(2)
1 b

(2)
0

...
...

. . .
...

b
(d)
l−1 · · · b

(d)
1 b

(d)
0

We arrange the points (Pi)1≤i≤d within the matrix row P in the following manner:

P =
(
P1 P2 · · · Pd

)
We place the powers (2j)0≤j≤l−1, where 0 ≤ j ≤ l − 1, in the matrix column S as
follows:

S =

2l−1

...
21

20

Thus, we get:

[α1]P1 + [α2]P2 + · · ·+ [αd]Pd = PCS

= P

b
(1)
l−1 · · · b

(1)
1 b

(1)
0

b
(2)
l−1 · · · b

(2)
1 b

(2)
0

...
...

. . .
...

b
(d)
l−1 · · · b

(d)
1 b

(d)
0

2l−1

...
21

20

= P

b
(1)
l−12

l−1 + · · ·+ b
(1)
1 21 + b

(1)
0 20

b
(2)
l−12

l−1 + · · ·+ b
(2)
1 21 + b

(2)
0 20

...

b
(d)
l−12

l−1 + · · ·+ b
(d)
1 21 + b

(d)
0 20

= [2l−1]([b

(d)
l−1]Pd + · · ·+ [b

(2)
l−1]P2 + [b

(1)
l−1]P1)

+ [2l−2]([b
(d)
l−2]Pd + · · ·+ [b

(2)
l−2]P2 + [b

(1)
l−2]P1)

...

+ [21]([b
(d)
1]Pd + · · ·+ [b

(2)
1]P2 + [b

(1)
1]P1)

+ [20]([b
(d)
0]Pd + · · ·+ [b

(2)
0]P2 + [b

(1)
0]P1)

From our computation, we remark that we can precompute and store the points of

the form
d∑

i=1
b
(i)
j ̸=0

Pi in a table T . It is possible to use a storage T since we assumed that

12

d is small. Then, we can simplify the computation of the d-mul and we get:

[α1]P1 + [α2]P2 + · · ·+ [αd]Pd = [2l−1]T [xl−1] + [2l−2]T [xl−2] + · · ·+ [21]T [x1] + [20]T [x0].

with ∀j ∈ [0, l − 1], xj =
⊕d

i=1(b
(i)
j << (i− 1)) and T [xj] =

d∑
i=1

b
(i)
j ̸=0

Pi, where:

{
•
⊕

is the XOR operation,
• << is the left shift operation.

The T [xi] are precomputed, stored, and considered later in the main operation.
Note that the table T is constructed in the following way:

P∞ −→ T [0],

P1 −→ T [1],

P2 −→ T [2],

P1 + P2 −→ T [3],

P3 −→ T [4],

P1 + P3 −→ T [5],

P2 + P3 −→ T [6],
...

P1 + P2 + · · ·+ Pd −→ T [2d − 1].

This method is detailed in algorithm 2, maintaining its similarity to Shamir’s trick
when d = 2. This algorithm takes as inputs the scalars α1, α2, · · · , αd. It outputs the
point Q = [α1]P1 + · · ·+ [αd]Pd.
For each j ∈ [0, l − 1], in the jth step of the main operation, we use an integer

xj =
⊕d

i=1(b
(i)
j << (i−1)) to locate the stored points to be processed. The parameter

xj is the positive integer whose binary representation is b
(d)
j b

(d−1)
j · · · b(2)j b

(1)
j .

3.1.2 Complexity

This method costs a storage of 2d − 1 points and requires 2d − d − 1 additions as
precomputation. When uniformity is not a concern, we use the algorithm 2, where the
main operation contains l steps. During each step j ∈ [0, l−1], we perform one doubling

and one addition if at least one of the bits b
(i)
j is non null, with j ∈ [0, l − 1] and

1 ≤ i ≤ d. Consequently, the total complexity of the main operation in this method
consists of l doublings and JHW (α1, α2, · · · , αd) ≈ (1 − 1

2d
) additions. However, if

13

Algorithm 2 Multidimensional Shamir’s trick

Input: α1 = (b
(1)
l−1 · · · b

(1)
0)2, · · · , αd = (b

(d)
l−1 · · · b

(d)
0)2,

P1, P2, · · · , Pd ∈ E.
Output: [α1]P1 + · · ·+ [αd]Pd.

1. Precompute V = {T [0], T [1], · · · , T [2d − 1]}.
2. Q = P∞.
3. for j = l − 1 down to 0 do
3. 1 Q← [2]Q.

3. 2 xj ←
⊕d

i=1(b
(i)
j << (i− 1)).

3. 3 if xj ̸= 0 then Q← Q+ V [xj].
4. return Q.

uniformity is a priority, we opt for algorithm 4, where the main operation precisely
involves l additions and l doublings. The complexity of this method is shown in table
3.

Without uniformity
(algorithm 2)

With uniformity
(algorithm 4)

Main operation lD+(1− 1
2d

)lA lD+lA

Precomputation (2d − d− 1)A

Storage 2d − 1 points

Table 3: The complexity of the first method.

To illustrate how our method works, we present the following example:
Example 1. Let d = 3, α1 = 13, α2 = 17, α3 = 21, and P1, P2, P3 ∈ E. The parameter
l is the size of the longest scalar, in this example log2(21) = l = 5. The binary
representations of α1, α2 and α3 are given as follows:

13 = (01101)2,

17 = (10001)2,

21 = (10101)2.

14

According to the presented method for this example P , S and C are given as follows:

P =
(
P1, P2, P3

)
S =

1
2
4
8
16

C =

0 1 1 0 1
1 0 0 0 1
1 0 1 0 1

 .

As explained at the beginning of this method, table T contains all the possibilities of

the points
d∑

i=1
b
(i)
j ̸=0

Pi, with 0 ≤ j ≤ l − 1. In this example, T is given by:

T = {P∞, P1, P2, P1 + P2, P3, P1 + P3, P2 + P3, P1 + P2 + P3}.

Thus,

[13]P1 + [17]P2 + [21]P3 = PCS

=
(
P1, P2, P3

)0 1 1 0 1
1 0 0 0 1
1 0 1 0 1

24

23

22

21

20

=
(
P1, P2, P3

)23 + 22 + 20

24 + 20

24 + 22 + 20

= [24]T [6] + [23]T [1] + [22]T [5] + [21]T [0] + [20]T [7]

We compute this sum using the algorithm 2. The complexity in this example is
interpreted as follows:

• The main operation’s complexity: 5D+4A,
• The precomputation’s complexity: 4A,
• The storage: 7 points.

If we use the algorithm 4, the main operation’s complexity is 5D+5A

15

3.2 Second method (Multidimensional Double and add)

3.2.1 Description

In some cryptographic algorithms, such as the zkSNARK protocol, the d-mul is used
for a large d (e.g. d = 222). Simply put, these schemes use a large number of scalars
to compute the d-mul. This poses a challenge for storage on resource constrained
devices. Thus, we can’t store efficiently precomputed points as explained in section
3.1. Therefore, in this section, we present an efficient method for computing d-mul
with a large d. This method is called Multidimensional double and add. It does
not rely on the precomputation.
Similarly to the first method, for 1 ≤ i ≤ d, the binary representation of αi is as
follows:

αi = (b
(i)
l−1b

(i)
l−2 · · · b

(i)
1 b

(i)
0)2.

where l is the size of the longest scalar.

For j ∈ [0, l−1], this method acts simultaneously on the bits b
(1)
j , b

(2)
j , · · · , b(d−1)

j , b
(d)
j .

For j ∈ [0, l−1], let xj =
⊕d

i=1(b
(i)
j << (i−1)). If xj ̸= 0, we perform one doubling, we

compute on the fly the points T [xj] =
d∑

i=1
b
(i)
j ̸=0

Pi, and we add the result of the doubling

to T [xj]. We assume that we always have xj ̸= 0 since the probability of xj = 0 is
negligible when d is large. This method is detailed in algorithm 3. In fact, the condition

xj = 0 is equivalent to b
(i)
j = 0,∀i ∈ [|1, d|]. Since the scalars are generated uniformly

at random and d is large, xj = 0 has a probability of 1/2d, which is very small. For
example, in a practical case, d could be 222. Therefore, the probability of xj = 0 is

1
24194304 .

Algorithm 3 Multidimensional double and add

Input: α1 = (b
(1)
l−1 · · · b

(1)
0)2, · · · , αd = (b

(d)
l−1 · · · b

(d)
0)2,

P1, P2, · · · , Pd ∈ E.
Output: [α1]P1 + · · ·+ [αd]Pd.

1. Q← P∞
2. for j = l − 1 down to 0 do
2. 1 Q← [2]Q.
2. 2 T = P∞.
2. 3 for i = 1 to d do

if b
(i)
j ̸= 0 then T ← T + Pi.

2. 4 Q = Q+ T .
3. return Q.

16

3.2.2 Complexity

Let j ∈ [0, l− 1], xj =
⊕d

i=1(b
(i)
j << (i− 1)). At each jth step, this method performs

one doubling, HW (xj)− 1 additions to compute the point T [xj] =
d∑

i=1
b
(i)
j ̸=0

Pi, and one

addition to add the result of the doubling to T [xj]. In total, we perform one doubling

andHW (xj) additions at each step. Thus, this method requires exactly
∑l−1

j=0 HW (xj)
additions and l doublings. It is worth noting that xj represents the binary sequence

b
(d)
j b

(d−1)
j · · · b(1)j b

(1)
j , where j ∈ [0, l − 1]. For i ∈ [|1, d|], each bit b

(i)
j is derived from

the scalar αi. Because αi is generated uniformly at random, HW (xj) is approximately
d
2 . The complexity of this method is approximately given by:

d

2
lA+ lD

To illustrate this method, we provide the following example:
Example 2. Let d = 4, α1 = 17, α2 = 25, α3 = 28, α4 = 12 and P1, P2, P3 ∈ E. In
this example l = 5 and the binary representations of α1, α2, α3 and α4 are given as
follows:

α1 = (10001)2,

α2 = (11001)2,

α3 = (11100)2,

α4 = (01100)2.

We have:

[α1]P1 + [α2]P2 + [α3]P3 + [α4]P4 = [17]P1 + [25]P2 + [28]P3 + [12]P4

= [16](P1 + P2 + P3) + [8](P2 + P3 + P4)

+ [4](P3 + P4) + [2]P∞ + (P1 + P2)

= [24]([1]P1 + [1]P2 + [1]P3 + [0]P4)

+ [23]([0]P1 + [1]P2 + [1]P3 + [1]P4)

+ [22]([0]P1 + [0]P2 + [1]P3 + [1]P4)

+ [21]([0]P1 + [0]P2 + [0]P3 + [0]P4)

+ [20]([1]P1 + [1]P2 + [0]P3 + [0]P4).

17

According to the second method for this example

x4 = 7,

x3 = 14,

x2 = 12,

x1 = 0,

x0 = 3.

As HW (7) = 3, HW (14) = 3, HW (12) = 2, HW (0) = 0 and HW (3) = 2, In this
example, we interpret the complexity as follows:

• the main operation’s complexity: 5D+10A,
• the storage: 4 points.

4 Security analysis and countermeasures

In this section, we examine security concerns associated with our methods and provide
the corresponding countermeasures.

4.1 First method

Let j ∈ [0, l− 1] and xj =
⊕d

i=1(b
(i)
j << (i− 1)). Although the probability of getting

a non zero xj is negligible, we consider this situation to be a security problem. Indeed,
in the algorithm 2, an adversary could perform a power attack to deduce that the bits
of the scalars αi used in the jth step are all equal to zero. To solve this problem, we
provide algorithm 4 to consider the two possible cases, xj ̸= 0 and xj = 0. Then we
inject a false addition when xj = 0 to ensure uniformity of the elliptic curve operations.
Thus the complexity of the main operation reaches exactly l additions and l doublings
with a slight increase compared to algorithm 2. In other words, we do not go to great
lengths to ensure this uniformity.

4.2 Second method

Let j ∈ [0, l − 1] and xj be the same parameter used in the first method. Viewing
the main operation within algorithm 3 as a comprehensive entity, we consistently
uphold uniformity across all steps with a high probability. In fact, the only distinct

case arises when xj = 0, indicating that b
(i)
j = 0 for 1 ≤ i ≤ d. However, this

event occurs with an extremely low probability (1
2d
) given a large d. In this rare

scenario, we have the opportunity to enhance the security of our algorithm and achieve
complete uniformity by introducing a fake addition operation. Although this practice
is not expensive in terms of curve operations, its cost escalates significantly as d
increases. This increased cost arises from the calculation of xj and the associated
conditional statements. Consequently, in algorithm 3, we have intentionally omitted

18

Algorithm 4 Uniform Multidimensional Shamir’s trick

Input: α1 = (b
(1)
l−1 · · · b

(1)
0)2, · · · , αd = (b

(d)
l−1 · · · b

(d)
0)2,

P1, P2, · · · , Pd ∈ E.
Output: [α1]P1 + · · ·+ [αd]Pd.

1. Precompute V = {T [0], T [1], · · · , T [2d − 1]}.
2. Q = P∞, F ← V [d− 1].
3. for j = l − 1 down to 0 do
3.1 Q← [2]Q.

3.2 xj ←
⊕d

i=1(b
(i)
j << (i− 1)).

3.3 if xj ̸= 0 then Q← Q+ V [xj].
3.4 else F ← F +Q. //A fake addition.

4. return Q.

the conditional check on xj . This decision ensures that the same block of operations
is approximately practised at every step, regardless of the value of xj . This strategy
enhances efficiency, as d grows larger.
Let us examine the algorithm 3 more closely, concentrating on loop 2.3. It becomes

apparent that an adversary has the ability to determine the values of the bits b
(i)
j at

every jth step, where 1 ≤ i ≤ d. This can be achieved by manipulating a power attack

during the running of the addition operations to decide whether the bit b
(i)
j should

be interpreted as 0 or 1. To solve this problem, and to thwart the adversary’s ability
to deduce the bits of the scalars αi, a simple solution is to apply an efficient random

permutation, such as the Fisher-Yates shuffle algorithm [29], to the bits b
(i)
j during

each jth step. This is referred to as full use of permutations. Because the running
time of such a permutation depends on a large d, using it for all the l steps could affect
the efficiency of the method. To address this concern, we propose a solution based
on the following two scenarios: one scenario where the scalars are predetermined and
another where they are generated for single use.

− First scenario:

• the scalars are predetermined,
• we predefine a set of indices called Perm from the set {0, 1, · · · , l − 1},
• at every jth step, we apply an efficient permutation σ to the set {1, · · · , d} if
j ∈ Perm,
• if j /∈ Perm, σ acts as the identity map on the set {1, · · · , d},
• This operation is called partial use of permutations.

− Second scenario:

• the scalars are generated for single use,
• we choose the set Perm at random from the set {0, · · · , l − 1} each time the
algorithm runs,
• The same approach is used as in the first scenario.

19

In both scenarios, we ensure that the bits b
(i)
j are hidden during certain steps, which

significantly improves security. Specifically, if we assume that the cardinality of Perm
is denoted as m ∈ [|1, l|], an adversary would have to perform an exhaustive attack
with a complexity of 2dm to reveal the hidden bits. This complexity is exceptionally
high, mainly due to the large integer d in this method. We can strengthen security by
extending the set Perm, taking into account the available computational resources.
Furthermore, in the second scenario, we can weaken the adversary’s effort by modifying
the steps affected by the random permutations in each algorithm run. This does not
affect the security of the scalars as they are used only once. At the end of each jth step,
we can free the memory from the generated permutation to ameliorate the efficiency
of our algorithm.
Algorithm 5 serves as a representation of all the above modifications.

Algorithm 5 Multidimensional double and add (modified)

Input: α1 = (b
(1)
l−1 · · · b

(1)
0)2, · · · , αd = (b

(d)
l−1 · · · b

(d)
0)2,

P1, P2, · · · , Pd ∈ E.
Output: [α1]P1 + · · ·+ [αd]Pd.

1. Q← P∞
2. Perm

r←− {0, 1, · · · , l−1}. //Pick uniformly at random a subset Perm from the set
{0, 1, · · · , l − 1}.

3. for j = l − 1 down to 0 do
3.1 Q← [2]Q.
3.2 T = P∞.
3.3 if j ∈ Perm then generate a random permutation σ on {1, · · · , d}.
3.4 else σ ← id{1,··· ,d}. // σ operates as it is the identity map.
3.5 for i = 1 to d do

if b
(σ(i))
j ̸= 0 then T ← T + Pσ(i).

3.6 Q = Q+ T .
4. return Q.

5 Comparison

In this section, we compare our method against those outlined in the state of the Art,
assessing their complexity and various properties such as uniformity, precomputation,
windowing, and parallelisation. Our primary focus is comparing the complexity of the
main operation and the running time of our method against that of the optimised d-
MUL, which represents the latest advancement in optimising d-mul. To commence, we
initiate our comparative analysis by examining the existing methods, especially in the
specific case where d = 2. We provide a comprehensive comparison, as shown in table
5, for this particular case. Subsequently, we broaden our evaluation to encompass the
general case, considering two scenarios: one scenario involving a small d and the other
with a larger d. To simplify the comparison, we employ a uniform window size w for

20

all scalars αi in the Interleaving method.
Note that all our practical experiments are carried out on an Intel i7 Personal Work-
station with 8GB RAM and SSD storage, using SageMath.
Before proceeding with the categorisation of our comparison based on the parameter
d, it is important to note the presence of certain properties in the presented methods
and then compare them against our approaches in table 4.

Method Precomputation Windowing Parallelisation Uniformity
Shamir’s trick ✓ × × ✓
Bernstein × × ✓ ✓
Bucket method × ✓ ✓ ✓
Optimised d-MUL ✓ × ✓ ✓
Our first method ✓ × × ✓
Our second method × × ✓ ✓

Table 4: Comparison of the proprieties of our method against the existing
methods.

− The case of d = 2:

Method Main operation Precomputation Storage
Naive (α1 + α2 − 1)A − 2 points

Shamr’s trick lD+ 3
4
lA 1A 3 points

Bernstein lD+2lA − 2 points
Optimised 2-mul lD+2lA 2A 2 points
Our method lD+lA 1A 3 points

Table 5: The comparison of complexity for d = 2.

In this case, if we do not need uniformity (as in algorithm 2), our method is
equivalent to Shamir’s trick in terms of the complexity of the main operation, pre-
computation and storage, where storage refers to the number of points that need
to be stored. However, this equivalence only holds for precomputation and storage
if we introduce uniformity into our method (algorithm 4). In this case, Shamir’s
trick outperforms our method in terms of the efficiency of the main operation.
Moreover, this work surpasses Bernstein’s method in terms of the main operation.
In fact, it conserves l point additions.

− The case of small d > 2:
We proceed to compare our first method, in table 6, with existing methods when d
is small. Table 6 showcases a notable achievement: our method surpasses optimised
d-MUL in terms of the complexity of the main operation. Furthermore, it outper-
forms the Interleaving method when d exceeds w+1. However, our method requires
more precomputation and storage compared to optimised d-MUL. Additionally,
the Interleaving method necessitates to calculate wNAFs (Non Adjacent Forms) of

21

Method Main operation Precomputation Storage

Naive (
∑d

i=1 αi − 1)A − d points

Interleaving lD+ ld
w+1

A dD+(2w−2 − 1)A d2w−2 points

Optimised d-MUL lD+ldA dA d points

Our method lD+lA (2d − d− 1)A 2d − 1 points

Table 6: The comparison of complexity for small d > 2.

the scalars αi at each step and does not guarantee the uniformity of operations.
When assessing the overall complexity, which includes both the main operation
and the precomputation, while keeping d and w constant, we offer the following
comparisons:

• Our method overestimates the efficiency of optimised d-MUL if l ≥ 2d−2d−1
d−1 ,

• Our method also outperforms the Interleaving method when l ≥
(w+1)(2d−2w−2−d)

d .

To simplify the general comparison (table 6) and to present it only as a function
of the parameter l, which is considerably larger than d and w, we offer the up-
dated comparison in table 7 with d = 6 and w = 4. Our method’s main operation

Method Main operation Precomputation Storage

Naive (
∑6

i=1 αi − 1)A − 6 points

Interleaving lD+ 6
5
lA 6D+18A 24 points

Optimised d-MUL lD+6lA 6A 6 points
Our method lD+lA 57A 63 points

Table 7: The comparison of complexity, for d = 6 and w = 4.

complexity surpasses that of optimised d-MUL. This latter offers advantages like
uniformity and parallelisation. Thus, our primary focus is to compare our method
with d-MUL.
Table 8 shows that our method maintains a constant main operation complexity
with respect to d, while optimised d-MUL’s complexity varies. Additionally, for each
d, optimised d-MUL consumes d − 1 more additions than our method. Table 9
presents a detailed analysis considering the arithmetic field and different coordinate
systems. We assume S = 3

4M, where M, S and I represent multiplication, squaring
and inversion in K. The data in table 9 clearly show that our method outperforms
optimised d-MUL regarding main operation complexity for small d ≥ 2 across dif-
ferent coordinate systems. In particular, it shows remarkable efficiency when using
Jacobian coordinates.
To confirm this comparison, we applied our method (’Mu-S-secp256k1’ and ’Mu-
S-Mont’) and optimised d-MUL (’d-MUL-secp256k1’ and ’d-MUL-Mont’) on both
the secp256k1 curve [21] used in ECDSA [1] and the Montgomery curve [22] used
in SQIsign [5]. For a closer look at the running time comparison, we set d to 4 and

22

d Optimised d-MUL Our method
3 lD+3lD lD+lA
4 lD+4lA lD+lA
5 lD+5lA lD+lA
6 lD+6lA lD+lA
7 lD+7lA lD+lA
8 lD+8lA lD+lA

Table 8: The comparison of the main
operation complexity.

vary the parameter l within the set {32, 64, 128, 192, 256, 320}, generating four ap-
proximate graphs in figure 2 that plot the running time as a function of l. These
graphs show that our method is significantly faster than the optimised d-MUL over-
all scalar sizes l and whichever curve we use. Furthermore, for each curve we observe
an increasing divergence between the graph of our method and that of d-MUL as
l increases. This divergence arises because optimised d-MUL consistently processes
4 scalars of l bits, while our method appears to process only one scalar of l bits
due to precomputational advantages. Consequently, as the parameter l escalates,
the processing time naturally increases. In addition, we evaluate the running time
by varying the number of scalars d within the set {2, 3, 4, 5, 6, 7, 8} while keeping
the scalar size at l = 256. This evaluation yields four plots in figure 3, which show
that the running time of optimised d-MUL grows linearly with d, while that of our
method remains nearly constant as a function of d. This confirms that the complex-
ity of the main operation in our method is independent of the number of scalars.

Coordinates Optimised d-MUL Our method

Affine l(d+ 1)I+ l(7
2
+ 11

4
d)M l(2I+ 25

2
M)

Projective l(43
4

+ 27
2
d)M 97

4
lM

Jacobian l(17
2

+ 15d)M 47
2
lM

Table 9: Comparison of main operation complexity
for different coordinate systems.

− The case of a large d:
In this case, we focus on comparing our method against some efficient methods for
large d. We use table 10 to compare the complexity of our second method against
optimised d-MUL and the bucket method in terms of main operation complexity,
precomputation and storage. From table 10 we can see that all three methods have
the same memory requirements. However, optimised d-MUL stands out by requiring
d additions for precomputation, which is significant for large d. They all use the same
number of doublings in their main operations but differ in the number of additions.
Our method requires about l d2 additions in the main operation, outperforming d-
MUL. However, for large d with w = log(d), the bucket method outperforms our
method. The challenge with the bucket method is that it requires many buckets, each

23

Figure 2: Running time of the main operation as a function of l for d = 4)

Figure 3: Comparison of main operation running time as a function of d for l = 256.

Method Main operation Precomputation Storage

Bucket method lD +⌈ l
w ⌉(d+ 2w+1)A − d

Optimised d-MUL lD+ldA dA d

Our method lD+l d2A − d

Table 10: The comparison of complexity for the some window w ≈
log2(d).

accumulating curve points. For example, with d = 222, it needs to initialize about
222

22 l buckets, resulting in more memory access. In contrast, our method efficiently
tracks and uses the points Pi in the main operation with simple, low cost operations,
with 1 ≤ i ≤ d.
We used the BLS12−381 curve to compare the running time of our method against
optimised d-MUL over different d values from the set {2s; s ∈ [9, 19]}, keeping l
fixed at 256. This comparison examines our method in three different scenarios:

24

• In the first scenario, no permutations are applied. This is suitable when the secu-
rity of the scalars αi is not a priority, and the primary focus is on achieving high
computational efficiency,

• The second scenario involves applying random permutations to steps selected by
the set Perm (which contains 50 steps in this comparison). It balances security
and efficiency based on the cardinality of the set Perm,

• In the third scenario, random permutations are applied to all computation steps
with j ∈ [0, l − 1]. This approach provides robust scalars security with minimal
loss of efficiency.

Figure 4 illustrates the comparison using a multiple bar graph. It shows the running
time of both our method (’Mu-D1’, ’Mu-D2’ and ’Mu-D3’ representing the three
scenarios) and the optimised d-MUL (’d-MUL’). In figure 4, the main operation of

Figure 4: Running time of the main operation as a function of a large d for l = 256.

our method runs faster than the optimised d-MUL, even with partial or full use
of permutations. As d increases, the performance gap widens. This is because opti-
mised d-MUL involves costly computations for scalar bits, and these costs escalate
with higher d values. Furthermore, when we use permutations, the time difference
between our method and optimised d-MUL is always more significant than without
permutations. This is due to the permutation complexity, which is O(d) for each
permutation on the set {1, · · · , d}.

6 Conclusion

In this paper, we have proposed a novel approach for computing multidimensional
scalar multiplication on elliptic curves. Our work has been presented in two distinct
methods to treat two different cases:
The first method is designed for the case where the number of scalars d is small. This
method uses precomputation to efficiently perform the main operation, outperforming
existing methods in this context. Our method is practical for schemes with a small
number of scalars, such as ECDSA with d = 2, and speeds up the classic scalar
multiplication. it is also a strong candidate for improving the efficiency of isogeny
based post quantum cryptosystems such as SQISign. We confirmed the effectiveness

25

of this method by evaluating the running time by applying it to the secp256k1 [21]
and Montgomery [22] curves used in ECDSA and SQIsign respectively. Note that this
method is preferable when the scalars are prefixed.
The second method is tailored for the case where the number of scalars d is large. In
such cases, there is no precomputation, and all calculations are performed on the fly.
This method is similar to the double and add method. It simultaneously processes the
bits of the scalars arranged in the same column from left to right at each step. Its main
operation is more efficient than that of optimised d-MUL method and requires fewer
memory accesses compared to the bucket method. Our method is highly practical for
proving and verification algorithms such as the Succinct Non interactive Argument of
Knowledge (zkSNARK) protocol that uses a large number of scalars. We tested its
efficiency by evaluating its running time on the BLS12 − 381 curve [23]. Note that
this method incorporates security measures against power attacks.
In the future, we could apply our methods in certain cryptographic schemes.

References

[1] Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature
algorithm (ecdsa). International journal of information security 1, 36–63 (2001)

[2] Xavier, C.F.: Pipemsm: Hardware acceleration for multi-scalar multiplication.
Cryptology ePrint Archive (2022)

[3] Lu, T., Wei, C., Yu, R., Chen, C., Fang, W., Wang, L., Wang, Z., Chen,
W.: Cuzk: Accelerating zero-knowledge proof with a faster parallel multi-scalar
multiplication algorithm on gpus. Cryptology ePrint Archive (2022)

[4] El Housni, Y., Botrel, G.: Edmsm: Multi-scalar-multiplication for snarks and
faster montgomery multiplication. Cryptology ePrint Archive (2022)

[5] De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: Sqisign: compact
post-quantum signatures from quaternions and isogenies, 64–93 (2020). Springer

[6] Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.-J.: Faster batch forgery
identification, 454–473 (2012). Springer

[7] Hutchinson, A., Karabina, K.: Constructing multidimensional differential addi-
tion chains and their applications. Journal of Cryptographic Engineering 9(1),
1–19 (2017)

[8] Hisil, H., Hutchinson, A., Karabina, K.: d-mul: optimizing and implementing
a multidimensional scalar multiplication algorithm over elliptic curves, 198–217
(2018). Springer

[9] Hutchinson, A., Karabina, K.: A new encoding algorithm for a multidimensional
version of the montgomery ladder, 403–422 (2020). Springer

26

[10] Josefsson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (eddsa).
Technical report (2017)

[11] Haakegaard, R., Lang, J.: The elliptic curve diffie-hellman (ecdh). Online at
https://koclab. cs. ucsb. edu/teaching/ecc/project/2015Projects/Haakegaard+
Lang. pdf (2015)

[12] Coron, J.-S.: Resistance against differential power analysis for elliptic curve
cryptosystems, 292–302 (1999). Springer

[13] Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography
(2004)

[14] Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies, 19–34 (2011). Springer

[15] Bernstein, D..: Differential addition chains (2006)

[16] Brown, D..: Multi-dimensional montgomery ladders for elliptic curves. (2006)

[17] Bos, J.W., Costello, C., Hisil, H., Lauter, K.: High-performance scalar multipli-
cation using 8-dimensional glv/gls decomposition, 331–348 (2013). Springer

[18] Azarderakhsh, R., Karabina, K.: Efficient algorithms and architectures for double
point multiplication on elliptic curves, 25–30 (2016)

[19] Rao, S., Rao, S.: Three dimensional montgomery ladder, differential point tripling
on montgomery curves and point quintupling on weierstrass’ and edwards curves,
84–106 (2016). Springer

[20] Nitulescu, A.: zk-SNARKs: a gentle introduction. Technical report (2020)

[21] Bi, W., Jia, X., Zheng, M.: A secure multiple elliptic curves digital signature
algorithm for blockchain. arXiv preprint arXiv:1808.02988 (2018)

[22] Costello, C., Smith, B.: Montgomery curves and their arithmetic: The case of large
characteristic fields. Journal of Cryptographic Engineering 8(3), 227–240 (2018)

[23] Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the bls12-381
elliptic curve. Cryptology ePrint Archive (2019)

[24] Straus, E.G.: Addition chains of vectors (problem 5125). American Mathematical
Monthly 70(806-808), 16 (1964)

[25] ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31(4), 469–472 (1985)

27

[26] Sakai, Y., Sakurai, K.: Algorithms for efficient simultaneous elliptic scalar multi-
plication with reduced joint hamming weight representation of scalars, 484–500
(2002). Springer

[27] Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factoriza-
tion. Mathematics of computation 48(177), 243–264 (1987)

[28] King, B.: wnaf*, an efficient left-to-right signed digit recoding algorithm, 429–445
(2008). Springer

[29] Hazra, T.K., Ghosh, R., Kumar, S., Dutta, S., Chakraborty, A.K.: File encryption
using fisher-yates shuffle, 1–7 (2015). IEEE

28

	Introduction
	Our contribution:
	Notations:

	State of the Art
	Case of d=2
	Simultaneous Scalar Multiplication (Shamir’s trick straus1964addition, elgamal1985public)
	Bernstein's method (DJB)

	Case of d>2
	Interleaving with NAFs
	Bucket method (Pippenger Algorithm)
	d-MUL methods
	d-MUL
	Randomised d-MUL
	Optimised d-MUL

	Our methods
	First method (Multidimensional Shamir’s trick)
	Description
	Complexity

	Second method (Multidimensional Double and add)
	Description
	Complexity

	Security analysis and countermeasures
	First method
	Second method

	Comparison
	Conclusion

