On Computing the Multidimensional Scalar Multiplication on Elliptic Curves

Walid Haddaji1,3*, Loubna Ghammam2, Nadia El Mrabet3,
Leila Ben Abdelghani4

1\textit{Laboratory of Analysis, Probability and Fractals (LAPF), Faculty of Sciences, Environment Avenue, Omrane, 5000, Monastir, Tunisia.}
2\textit{ITK Engineering GmbH, Im Speyerer Tal 6 Rülzheim76761 Germany.}
3\textit{Laboratory of Secure System and Architecture (SSA), Ecole des Mines de Saint Etienne, 880 Rte de Mimet, Campus Georges Charpak Provence, 13120, Gardanne, France.}

*Corresponding author(s). E-mail(s): haddajiwalid95@gmail.com; loubna.ghammam@itk-engineering.de; nadia.elmrabet@emse.fr; leila.benabdelghani@fsm.rnu.tn;

\textbf{Abstract}

A multidimensional scalar multiplication (d-mul) consists of computing $[a_1]P_1 + \cdots + [a_d]P_d$, where d is an integer ($d \geq 2$), a_1, \cdots, a_d are scalars of size $l \in \mathbb{N}^*$ bits, P_1, P_2, \cdots, P_d are points on an elliptic curve E. This operation (d-mul) is widely used in cryptography, especially in elliptic curve cryptographic algorithms. In fact, it is utilized in the digital signature verification algorithm (ECDSA [1]), proving and verification algorithms such as the Succinct Non-interactive Argument of Knowledge (zkSNARK) protocol [2–4], and in isogeny based post-quantum cryptosystems [5]. Several methods in the literature allow to compute the d-mul efficiently (e.g., the bucket method [6], the Karabina et al. method [7–9]). This paper aims to present and compare the most recent and efficient methods in the literature for computing the d-mul operation in terms of with, complexity, memory consumption, and proprieties. We will also present our work on the progress of the optimisation of d-mul in two methods. The first method is useful if $2^d - 1$ points of E can be stored. It is based on a simple precomputation function. The second method works efficiently when d is large and $2^d - 1$ points of E can not be stored. It performs the calculation on the fly without any precomputation. We show that our first method is $100(1 - \frac{1}{2^d})\%$ more efficient, while our second exhibits a 50% improvement in efficiency. These
improvements will be substantiated by assessing the number of operations and practical implementation.

Keywords: Elliptic curves, multidimensional scalar multiplication (d-mul), scalar multiplication, complexity

1 Introduction

Elliptic curve scalar multiplication is the main operation of the elliptic curve based algorithms such as EdDSA [10] for the signature scheme, and Elliptic Curve Diffie Hellman protocol ECDH [11]. This operation enables the repetition of adding a point \(P \) from an elliptic curve \(E \) to itself \(k \) times to result in a new point on \(E \). This point is denoted as \([k]P \), where \(k \in \mathbb{Z} \). Several works optimising this operation have been proposed in this context. Among these methods, one can cite the double and add method [12]. This method uses the binary form of the scalar to perform a doubling for each bit and an addition if this bit is 0. We also recall the addition subtraction method [12], which uses the non adjacent form (NAF [13]) of the scalar. It performs a doubling for each digit, an addition if that digit is 1, and a subtraction of points if it is equal to \(-1\). To reduce the running time, if we have enough memory, we can use the window method (w-method [13]). This method enables us to precompute a limited number of points and decompose a scalar into \(l \) coefficients, denoted as \(k_i \) with \(0 \leq i \leq l - 1 \), ensuring that any non zero \(k_i \) is an odd number. In the main operation, it performs a doubling and either an addition (if \(k_i > 0 \)) or a subtraction (if \(k_i < 0 \)) for each coefficient \(k_i \).

Cryptographic applications can benefit from multidimensional scalar multiplication algorithms (d-mul). For example, the signature verification of ECDSA [1] and the SIDH protocol [14] require a d-mul for \(d = 2 \). Multidimensional scalar multiplication can also speed up simple scalar multiplication [9]. In recent years, d-mul algorithms have attracted attention in this context. A d-mul takes \(d \) scalars \(\alpha_1, \alpha_2, \ldots, \alpha_d \) and \(d \) points from the elliptic curve \(E \), denoted as \(P_1, P_2, \ldots, P_d \), and produces the result \(\alpha_1 P_1 + \alpha_2 P_2 + \ldots + \alpha_d P_d \), where \(l \in \mathbb{N}^* \) and \(\log_2(\alpha_i) = l \) for \(1 \leq i \leq d \). The best known d-mul algorithms are discussed in papers such as [7–9, 15–19]. While [15, 17–19] focus on special cases of \(d \), [7–9, 16] generalise d-mul for elliptic curves.

Our contribution: Initially, we were motivated by the usefulness of a d-mul with a small \(d \) in certain cryptographic schemes. For this reason, we exploited the possibility of precomputation and storage to design a first method with an efficient main operation. While preparing this first method, we discovered newer schemes based on zkSNARK [2, 20] that require a d-mul with a large number of scalars. In this case, our first method is no longer applicable. Furthermore, according to [2, 20] the computation of the d-mul is the bottleneck in zkSNARK based schemes. This motivated us to develop a second method that doesn’t require precomputation and storage to efficiently compute a d-mul with a large \(d \). Our methods represent a revitalisation of the design, in contrast
to [2–4] which focus on optimising the bucket method through software and hardware enhancements. These methods include some countermeasures against side channel attacks. In addition, the second method, designed for large \(d\), is algorithmically simple and does not require many memory accesses.

Notations:
Let \(a, b \in \mathbb{Z}\), \(x \in \mathbb{Z}\), and \(C\) be a matrix. In the rest of this paper, we use the following notations:

- \([a, b]\) is the set of integers between \(a\) and \(b\),
- \(\text{HW}(x)\) is the Hamming weight of \(x\),
- \(C^t\) is the transposition of \(C\),
- \(p\) is a prime number,
- \(K\) is a finite field of characteristic \(p\),
- \(E\) is an elliptic curve defined over \(K\),
- \(P_\infty\) represents the identity of the group \((E(K),+)\),
- \(A\) is an addition on \(E\),
- \(D\) is a doubling on \(E\),

This paper is structured as follows: first, we present in section 2 a State of the Art of the known methods for multidimensional scalar multiplication (d-mul). Section 3 introduces two new methods for efficient computation of d-mul in two methods. The first deals with the case of a small parameter \(d\) using precomputation. It represents a generalisation of Shamir’s trick which is specifically when \(d = 2\). The second method does not rely on precomputation. Instead, it performs d-mul calculations on the fly. It processes simultaneously the bits of scalars \(\alpha_i\), where \(i \in [[1, d]]\). In section 5, we make a detailed comparison of the complexity of our work with that of other existing methods. We compare some key properties of the presented methods with special focus on comparing our methods with the optimised version of Karabina et al.’s algorithms in terms of main operation complexity, as these represent the latest advances in d-mul. This comparison concerns the level of curve arithmetic (number of additions and doublings) and coordinate systems (affine, projective and Jacobian). For clarity, we refer to the methods of Karabina et al. [7–9] as d-MUL methods. We then apply the optimised version of d-MUL methods and our first method on the secp256k1 curve [21] used in ECDSA [1] and the Montgomery curve [22] used in SQI sign [5] to compare running times for small \(d\). We repeat this comparison by applying the same version of d-MUL methods and our second method on the BLS12 – 381 curve [23] used in zkSNARK protocols for large \(d\). Note that the improvements proposed in this paper are applicable to any elliptic curve. Our paper concludes with a summary of results and contributions.

2 State of the Art
The d-mul problem consists in computing \([\alpha_1] P_1 + \cdots + [\alpha_d] P_d\), where \(d, l\), and \(\alpha_1, \cdots, \alpha_d\) are integers such that \(d \geq 2\), \(l \geq 1\), with \(1 \leq i \leq d\), \(\alpha_i \in [0, 2^l - 1]\) and \(P_1, P_2, \cdots, P_d \in E\).
2.1 Case of d=2

2.1.1 Simultaneous Scalar Multiplication (Shamir’s trick [24, 25])

Shamir’s trick allows the computation of \([\alpha_1]P_1 + [\alpha_2]P_2\). This method is given in detail in [26]. Let \(l \in \mathbb{N}^*\), \(\alpha_1, \alpha_2\) be two integers such that \(l = \log_2(\alpha_i)\), with \(i \in \{1, 2\}\). The binary representations of \(\alpha_1\) and \(\alpha_2\) are given by:

\[
(\alpha_1)_2 = (b_{l-1}^{(1)} \cdots b_1^{(1)} b_0^{(1)})_2, \\
(\alpha_2)_2 = (b_{l-1}^{(2)} \cdots b_1^{(2)} b_0^{(2)})_2.
\]

Note that, \(\forall j \in [0, l - 1], \forall i \in \{1, 2\}, b_j^{(i)} \in \{0, 1\}\), \(b_{l-1}^{(i)}\) is denoted by the most significant bit and \(b_0^{(i)}\) is the least significant bit. We define the \(2 \times l\) matrix \(C\) by:

\[
C = \begin{pmatrix}
 b_{l-1}^{(1)} & \cdots & b_1^{(1)} & b_0^{(1)} \\
 b_{l-1}^{(2)} & \cdots & b_1^{(2)} & b_0^{(2)}
\end{pmatrix}
\]

where, for each integer \(k\), we use \([k]\) to express the scalar multiplication of a given point on \(E\) by \(k\). We remark that

\[
[\alpha_1]P_1 + [\alpha_2]P_2 = (P_1, P_2)C \left(\begin{array}{c}
 2^{l-1} \\
 \vdots \\
 2^1 \\
 2^0
\end{array} \right)
\]

\[
= [2^{l-1}][b_{l-1}^{(1)}]P_1 + [b_{l-1}^{(2)}]P_2 + \cdots + [2^1][b_1^{(1)}]P_1 \\
+ [b_1^{(2)}]P_2 + [2^0][b_0^{(1)}]P_1 + [b_0^{(2)}]P_2.
\]

This computation leads to the algorithm 1, which takes as inputs:

- \(\alpha_1, \alpha_2 \in \mathbb{N}^*\),
- \(l\): the size (in bits) of the longest scalar,
- \(P_1, P_2 \in E\).

The number of additions depends on the so-called Joint Hamming Weight (JHW) of \(\alpha_1\) and \(\alpha_2\) defined in [26] as the number of non zero columns in the matrix \(C\). It is possible to extend the JHW definition to any finite number of scalars. Since \(\alpha_1\) and \(\alpha_2\) are randomly generated and have a size of \(l\) bits, then \(\text{JHW}(\alpha_1, \alpha_2) \approx \frac{l}{4}\). Thus, the main operation of this method involves \(l\) steps. At each step \(j \in [0, l - 1]\), one doubling is performed, and if \((b_j^{(1)}, b_j^{(2)}) \neq (0, 0)\), one addition is also performed. So the complexity of the main operation is approximately

\[
\frac{3}{4}A + (l - 1)D.
\]
Algorithm 1 Simultaneous Scalar Multiplication (Shamir’s trick [24, 25])

Input: \(l \geq 1, \alpha_1 = (b_1^{(1)} \cdots b_1^{(l)})_2, \alpha_2 = (b_2^{(1)} \cdots b_2^{(l)})_2, P_1, P_2 \in E \)

Output: \([\alpha_1]P_1 + [\alpha_2]P_2 \)

1. precomputation \(G \leftarrow P_1 + P_2 \).
2. \(R \leftarrow P_\infty \).
3. for \(j = l - 1 \) down to 0 do
 3.1 \(R \leftarrow 2R \).
 3.2 if \(((b_j^{(1)}, b_j^{(2)}) = (1, 0)) \) then \(R \leftarrow R + P_1 \)
 3.3 else if \(((b_j^{(1)}, b_j^{(2)}) = (0, 1)) \) then \(R \leftarrow R + P_2 \)
 3.4 else if \(((b_j^{(1)}, b_j^{(2)}) = (1, 1)) \) then \(R \leftarrow R + G \)
4. return \(R \)

For the precomputation one addition is performed.
The non adjacent form (NAF [13]) of \(\alpha_1 \) and \(\alpha_2 \) can be used instead of their binary representations to optimise the complexity of Shamir’s trick. In fact, NAF is one of the signed binary representations admitting the smallest number of non zero digits. NAF can be illustrated using the following example:

\[
\alpha = (11100011111011)_2 = (100\bar{1}00100000\bar{1}0\bar{1})_{\text{NAF}}
\]

where \(\bar{1} = -1 \). Compared to the binary representation, the use of this representation allows us to reduce the number of additions. In fact, \(HW(\alpha_1) \approx HW(\alpha_2) \approx \frac{4}{9}l \), which makes \(JHW(\alpha_1, \alpha_2) \approx \frac{5}{9}l \). Consequently, if we use the NAF representation, Shamir’s trick requires the precomputation of two points, \(G = P_1 + P_2 \) and \(H = P_1 - P_2 \), and has the following main operation complexity

\[
\frac{5}{9}lA + lD.
\]

2.1.2 Bernstein’s method (DJB)

Let \(l \in \mathbb{N}^*, \alpha_1, \alpha_2 \in [0, 2^l - 1] \). The DJB method allows to compute \([\alpha_1]P_1 + [\alpha_2]P_2 \) based on the concept of the differential addition chain [15] that is an addition chain in which \(P_1 \) and \(P_2 \) are represented by their difference \(P_1 - P_2 \). Montgomery observed in [27] that for \(P_1 \) and \(P_2 \) two points of the curve \(y^2 = x^3 + ax^2 + x \) (Montgomery’s curve), we can efficiently compute the \(x \)-coordinate of \(P_1 + P_2 \) from the \(x \)-coordinates of \(P_1, P_2 \) and \(P_2 - P_1 \). Based on this observation and the concept of a differential addition chain, Bernstein designed in [15] a method to compute \([\alpha_1]P_1 + [\alpha_2]P_2 \) on the Montgomery curve for \(l \)-bit scalars \(\alpha_1 \) and \(\alpha_2 \). At each step, one doubling and two additions are performed, which ensures the uniformity of the operations. More precisely, three temporal variables \(T_1, T_2 \) and \(T_3 \) are initialised, respectively, to \(P_\infty, P_1 \) and \(P_2 \). Then, they are updated at each step by doubling one of the \(T_i \) and adding two different pairs of points. The rules of this updating are based on a recursive formula
on the bits of α_1 and α_2 given in [15]. As an example, we show in figure ?? how this formula works to construct a differential addition chain of $(13, 17)$.

![Diagram of differential addition chain](image)

Figure 1: The differential addition chain of $(13, 17)$.

In the following iterations, we use the differential addition chain of $(13, 17)$ to calculate $[13]P_1 + [17]P_2$ using the DJB method:

\[
\begin{align*}
 j = 0 : & \quad P_{\infty} \quad P_1 \quad P_2, \\
 j = 1 : & \quad P_2 \quad P_1 + P_2 \quad [2]P_2, \\
\end{align*}
\]

The complexity of the main operation in DJB is

\[2lA + iD\]
Table 1 compares the Bernstein and Shamir methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Main operation</th>
<th>Precomputation</th>
<th>Storage</th>
<th>Uniformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shamir’s trick</td>
<td>lD + \frac{1}{4}A</td>
<td>lA</td>
<td>3 points</td>
<td>×</td>
</tr>
<tr>
<td>Bernstein</td>
<td>lD + 2A</td>
<td>−</td>
<td>2 points</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1: Comparison of the Bernstein and Shamir methods.

2.2 Case of \(d > 2 \)
Recall that our goal is to compute efficiently \([\alpha_1]P_1 + [\alpha_2]P_2 + \cdots + [\alpha_d]P_d \), where \(d \geq 2 \), \(\alpha_1, \cdots, \alpha_d \in \mathbb{N} \) with \(\log_2(\alpha_i) = l_i \), for some \(l \in \mathbb{N}^* \), \(1 \leq i \leq d \) and \(P_1, \cdots, P_d \in E \).

2.2.1 Interleaving with NAFs
Interleaving is a technique, as described in [13], used to prepare precomputed points for each \([\alpha_i]P_i \) using distinct methods. During each step of the main operation, we perform a doubling operation and addition by employing the precomputed points corresponding to each \([\alpha_i]P_i \). In this context, we introduce an interleaving approach based on window non adjacent forms (wNAFs). Specifically, for \(1 \leq i \leq d \), we assign a window width \(w_i \in \mathbb{N}^* \) to \(\alpha_i \) using algorithm 3 in [28]. We calculate \(w_i \text{NAF}(\alpha_i) = \sum_{j=0}^{l_i-1}(k_{j}^i2^j) \), where \(k_{j}^i \in \{1,3,\cdots,2^{w_i}-1\} \) and \(l_i \) is the number of digits \(k_{j}^i \) for each \(i \). Subsequently, for \(1 \leq i \leq d \), we precompute the points \([j]P_i\) for odd values of \(j < 2^{w_i}-1 \). During the main operation, the digits of scalars \(\alpha_i \) are jointly processed from left to right to perform a single doubling. This method is outlined in algorithm 3.51 in [13]. It requires \(\sum_{i=1}^{d}(2^{w_i}-2) \) as storage points. Its precomputation is given by:

\[
\# \{i; w_i > 2\}D + \sum_{i=1}^{d}(2^{w_i-2} - 1)A
\]

and its main operation complexity is

\[
\ell D + \ell \sum_{i=1}^{d}\left(\frac{1}{w_i+1}\right)A
\]

2.2.2 Bucket method (Pippenger Algorithm)
This method is proposed in [6] and described in detail in [2–4]. It is based on the Pippenger algorithm, which was originally designed to efficiently compute the multi-exponent multiplication [2]. It is hardware optimised in [2] for d-mul speed-up. It is parallelized in [3] to provide an efficient GPU implementation of zkSNARK. It is used in [4] with a new coordinate system for twisted Edwards curves to speed up the d-mul for a large \(d \). The bucket method works as follows:
• we select an integer \(w \geq 2 \) such that \(w \approx \log_2(d) \), \(w \) is referred to as the 'window width',
• for each \(i \leq d \), we write \(\alpha_i = (\alpha_{i,1}, \ldots, \alpha_{i,1}) 2^w \). This implies that we partition each \(\alpha_i \) into \(\left\lceil \frac{d}{w} \right\rceil \) words, each word is of size \(w \) bits,
• for each \(0 \leq j \leq \left\lceil \frac{d}{w} \right\rceil - 1:\n - let \(P^{(j)} = [\alpha_{1,j}]P_1 + [\alpha_{2,j}]P_2 + \cdots + [\alpha_{d,j}]P_d \),
 - we range the points \(P_1, P_2, \ldots, P_d \) into \(2^w \) buckets \((B_1^{(j)}, B_2^{(j)}, \ldots, B_{2^w}^{(j)}) \) according to \(\alpha_{i,j} \) and we eliminate the bucket 0, with \(1 \leq i \leq d \),
 - we add the points in each bucket to obtain the sums \(S_1^{(j)}, S_2^{(j)}, \ldots, S_{2^w}^{(j)} \),
 - we compute \(P^{(j)} = \sum_{k=1}^{2^w} kS_k^{(j)} \) using an efficient method proposed in \([6]\).

• after computing of all \(P^{(j)} \), we calculate the final result, \(\sum_{j=0}^{\left\lceil \frac{d}{w} \right\rceil - 1} 2^w P^{(j)} \), using an inverse recursive method described in \([3]\).

This method is given in algorithm 1 in \([2]\). Its main operation complexity is given by:

\[
 lD + \left\lceil \frac{d}{w} \right\rceil (d + 2^{w+1}) A
\]

2.2.3 d-MUL methods

To understand d-MUL methods, we introduce the following mathematical concepts:

Definition 1. \([8]\)

Let \(d \in \mathbb{N}^* \), \(A \) a \((d + 1) \times d\)–matrix of integers. \(A \) is a state matrix if it satisfies the following properties:

1. \(\forall i \in [1, d + 1] \), each row \(A_i \) has \(i - 1 \) odd entries,
2. \(\forall i \in [1, d + 1] \), \(\exists j \in [1, d] \); \(A_{i+1} - A_i = c_je_j \), \(c_j \in \{-1, 1\} \) and \(e_j \) is the unit basis vector.

The magnitude of a \((d + 1) \times d\)–state matrix \(A \) is defined by:

\[
|A| = \max\{|A_{ij}|; i \in [1, d + 1], j \in [1, d]\}\]

Theorem 1. \([8]\)

Let \(A \) be a \((d + 1) \times d\)–state matrix. Then, there exists a unique \((d + 1) \times d\)–matrix \(B \) such that each row of \(A \) is equal to the sum of two rows of \(B \).

Definition 2. \([8]\)

A state matrices chain is a sequence \((A^{(i)})_{i=1}^l\) of \((d + 1) \times d\)–state matrices such that

1. \(A^{(1)} = A \),
2. \(|A^{(i)}| = 1 \),
3. each row of \(A^{(i+1)} \) is the sum of two rows from \(A^{(i)} \), for \(i \in [1, l - 1] \),
4. \((|A^{(i)}|)_{i=1}^l\) is a strictly decreasing sequence.

We offer the three versions of d-MUL methods in chronological order as follows:
d-MUL

The d-MUL (algorithm 1 in [7]) requires, as a first step, transforming the scalars into a state matrix A. This transformation is called the initialisation step. It is illustrated in algorithm 1 in [7]. Then it constructs a chain of state matrices $(A^i)_{i=1}^l$ from A such that $A^{(1)} = A$ using algorithm 2 in [7]. Finally, it carries out successive linear combinations on the points P_i, moving in the opposite direction to that of the construction, until obtaining the sum $[\alpha_1]P_1 + \cdots + [\alpha_d]P_d$.

Randomised d-MUL

Let $d, l \in \mathbb{N^*}$, $P_1, P_2, \cdots, P_d \in E$, r a binary string of size ld. Let v be a binary vector of size d. r and v are generated uniformly at random. Let σ be a permutation on $\{2, \cdots, d+1\}$. Randomised d-MUL (algorithm 2 in [8]) produces a random point of the form $[\alpha_1]P_1 + \cdots + [\alpha_d]P_d$, where $\alpha_1, \alpha_2, \cdots, \alpha_d \in [0, 2^l - 1]$ are randomly generated from r. Unlike d-MUL, randomised d-MUL avoids constructing a chain of state matrices from a matrix of a given magnitude. In fact, using a permutation on $\{0, 1, \cdots, d-1\}$, it constructs a chain of state matrices from a matrix of magnitude 1. The magnitudes of the matrices in this chain form a strictly increasing sequence. The magnitude of the final matrix is determined by the binary chain r. Furthermore, randomised d-MUL performs the needed computation on the points P_i at each construction step. It ends with a random point as a linear combination of these points. We can use algorithm 1 in [8] to recover the scalars.

Optimised d-MUL

Randomised d-MUL does not allow the scalars to be chosen apriory. Therefore, Hutchinson and Karabina proposed the optimised d-MUL [9] to ensure this correctness. It optimises computations compared to d-MUL by using bit permutations and XOR operation. The use of negative scalars is supported by the optimised d-MUL. In fact, if a scalar is negative, it must be replaced by its symmetric, which is positive, and the point associated with it must also be replaced by its symmetric. Therefore, the algorithm 4 in [9] presents a version of optimised d-MUL with positive scalars. Furthermore, optimised d-MUL requires the generation of a random permutation σ on $\{1, \cdots, d\}$ using the parity of the scalars α_i (algorithm 1 in [9]). We compare d-MUL methods in table 2.

The authors of all versions of d-MUL methods have recommended to:

- forget about using the first version of d-MUL methods [7],
- use the randomised d-MUL method [7] when the cryptographic application requires the use of random scalars,
- employ optimised d-MUL [9] when those scalars are prefixed.

Since we are working in the context of elliptic curve optimisation, we will use the latest version of d-MUL methods (optimised d-MUL) for our next comparisons.
3 Our methods

This paper aims to compute efficiently the following d-mul:

\[[\alpha_1]P_1 + [\alpha_2]P_2 + \cdots + [\alpha_d]P_d \]

where \(d \geq 2, \ l \in \mathbb{N}^*, \ \alpha_1, \cdots, \alpha_d \) are scalars with \(\log_2(\alpha_i) = l \), and \(P_1, \cdots, P_d \in E \).

In this work, we distinguish between cases. The first case is when \(d \) is small, and the second one when \(d \) is large.

In the following, we explain when \(d \) is small or large:

- if \(d \leq M \), \(d \) is small,
- if \(d > M \), \(d \) is large.

In this section, we present two methods of an efficient computation of d-mul. The first method when \(d \) is small and we have precomputation steps. It is referred to as Multidimensional Shamir’s trick. The second method consists of the calculation of the d-mul without precomputation and when \(d \) is large. This method is called Multiple double and add.

3.1 First method (Multidimensional Shamir’s trick)

3.1.1 Description

Recall that this method is considered when \(d \) is small (see above for the definition of small). Note that for this method we need to store some precomputed points. This case applies to several cryptographic algorithms, including digital signature algorithms EdDSA [10], ECDSA [1], and also used in post quantum signature SQISign [5].

This method aims to efficiently compute the following d-mul:

\[[\alpha_1]P_1 + [\alpha_2]P_2 + \cdots + [\alpha_d]P_d. \]
where $P_1, \ldots, P_d \in E$ and $\alpha_1, \ldots, \alpha_d \in \mathbb{N}$, with $\log_2(\alpha_i) = l$, $1 \leq i \leq d$. Note that if there are $i \in \llbracket 1, d \rrbracket$ such that $\log_2(\alpha_i) = m < l$, we add $l - m$ zeros to the left of the most significant bits of α_i. This is because, at each step $j \in [0, l - 1]$, we need to precompute elliptic curve points in the format $[c_1]P_1 + [c_2]P_2 + \cdots + [c_d]P_d$, with c_1, c_2, \ldots, c_d represent the d bits that are used at each j^{th} step.

Let us write the scalars $\alpha_1, \alpha_2, \ldots, \alpha_d$ in their binary representations as follows:

\[
\alpha_1 = \left(b_1^{(1)} b_2^{(1)} \cdots b_1^{(1)} b_0^{(1)} \right)_2,
\]

\[
\alpha_2 = \left(b_1^{(2)} b_2^{(2)} \cdots b_1^{(2)} b_0^{(2)} \right)_2,
\]

\[
\vdots
\]

\[
\alpha_{d-1} = \left(b_1^{(d-1)} b_2^{(d-1)} \cdots b_1^{(d-1)} b_0^{(d-1)} \right)_2,
\]

\[
\alpha_d = \left(b_1^{(d)} b_2^{(d)} \cdots b_1^{(d)} b_0^{(d)} \right)_2.
\]

Note that, $\forall j \in [0, l - 1], \forall i \in \llbracket 1, d \rrbracket$, $b_i^{(j)} \in \{0, 1\}$, $b_i^{(0)}$ is denoted by the most significant bit and $b_i^{(l)}$ is the least significant bit. We present the scalars $(\alpha_i)_{1 \leq i \leq d}$ in the matrix C as follows:

\[
C = \begin{pmatrix}
 b_1^{(1)} & \cdots & b_1^{(1)} & b_0^{(1)} \\
 b_2^{(1)} & \cdots & b_1^{(2)} & b_0^{(2)} \\
 \vdots & \ddots & \vdots & \vdots \\
 b_1^{(d)} & \cdots & b_1^{(d)} & b_0^{(d)}
\end{pmatrix}
\]

We arrange the points $(P_i)_{1 \leq i \leq d}$ within the matrix row P in the following manner:

\[
P = (P_1 \ P_2 \ \cdots \ P_d)
\]

We place the powers $(2^j)_{0 \leq j \leq l-1}$, where $0 \leq j \leq l - 1$, in the matrix column S as follows:

\[
S = \begin{pmatrix}
 2^{l-1} \\
 \vdots \\
 2^j \\
 2^0
\end{pmatrix}
\]

11
Thus, we get:

\[
\alpha_1 P_1 + \alpha_2 P_2 + \cdots + \alpha_d P_d = PCS
\]

\[
= P \begin{pmatrix}
\alpha_1 P_1 \\
\alpha_2 P_2 \\
\vdots \\
\alpha_d P_d
\end{pmatrix}
= P \begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_d
\end{pmatrix}
\begin{pmatrix}
P_1 \\
P_2 \\
\vdots \\
P_d
\end{pmatrix}
= P \begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_d
\end{pmatrix}
\begin{pmatrix}
P_1 \\
P_2 \\
\vdots \\
P_d
\end{pmatrix}
= \begin{pmatrix}
2^{l-1} T [x_{l-1}] + [2^{l-2} T [x_{l-2}] + \cdots + [2^1 T [x_1] + [2^0 T [x_0].
\end{pmatrix}

From our computation, we remark that we can precompute and store the points of the form

\[
d P_i = \sum_{j=1}^{d} [b_i^{(j)}] P_i
\]

in a table \(T \). It is possible to use a storage \(T \) since we assumed that \(d \) is small. Then, we can simplify the computation of the \(d \)-mul and we get:

\[
[\alpha_1] P_1 + [\alpha_2] P_2 + \cdots + [\alpha_d] P_d = \begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_d
\end{pmatrix}
\begin{pmatrix}
P_1 \\
P_2 \\
\vdots \\
P_d
\end{pmatrix}
= \begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_d
\end{pmatrix}
\begin{pmatrix}
P_1 \\
P_2 \\
\vdots \\
P_d
\end{pmatrix}
= \begin{pmatrix}
2^{l-1} T [x_{l-1}] + [2^{l-2} T [x_{l-2}] + \cdots + [2^1 T [x_1] + [2^0 T [x_0].
\end{pmatrix}

with \(\forall j \in [0, l-1], x_j = \oplus_{i=1}^{d} (b_i^{(j)} \ll (i - 1)) \) and \(T[x_j] = \sum_{b_i^{(j)} \neq 0} P_i \), where:

\[
\begin{align*}
\oplus & \quad is \ the \ XOR \ operation, \\
\ll & \quad is \ the \ left \ shift \ operation.
\end{align*}
\]
The $T[x_i]$ are precomputed, stored, and considered later in the main operation. Note that the table T is constructed in the following way:

$$P_\infty \rightarrow T[0],$$
$$P_1 \rightarrow T[1],$$
$$P_2 \rightarrow T[2],$$
$$P_1 + P_2 \rightarrow T[3],$$
$$P_3 \rightarrow T[4],$$
$$P_1 + P_3 \rightarrow T[5],$$
$$P_2 + P_3 \rightarrow T[6],$$
$$\vdots$$
$$P_1 + P_2 + \cdots + P_d \rightarrow T[2^d - 1].$$

This method is detailed in algorithm 2, maintaining its similarity to Shamir’s trick when $d = 2$. This algorithm takes as inputs the scalars $\alpha_1, \alpha_2, \cdots, \alpha_d$. It outputs the point $Q = [\alpha_1]P_1 + \cdots + [\alpha_d]P_d$. For each $j \in [0, l - 1]$, in the j^{th} step of the main operation, we use an integer $x_j = \bigoplus_{i=1}^{d}(b_j^{(i)}<<(i-1))$ to locate the stored points to be processed. The parameter x_j is the positive integer whose binary representation is $b_j^{(d)}b_j^{(d-1)}\cdots b_j^{(1)}$.

<table>
<thead>
<tr>
<th>Algorithm 2 Multidimensional Shamir’s trick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: $\alpha_1 = (b_1^{(1)} \cdots b_0^{(1)})_2, \cdots, \alpha_d = (b_1^{(d)} \cdots b_0^{(d)})_2$, $P_1, P_2, \cdots, P_d \in E$.</td>
</tr>
<tr>
<td>Output: $[\alpha_1]P_1 + \cdots + [\alpha_d]P_d$.</td>
</tr>
<tr>
<td>1. Precompute $V = {T[0], T[1], \cdots, T[2^d - 1]}$.</td>
</tr>
<tr>
<td>2. $Q = P_\infty$.</td>
</tr>
<tr>
<td>3. for $j = l - 1$ down to 0 do</td>
</tr>
<tr>
<td>3.1 $Q \leftarrow [2]Q$.</td>
</tr>
<tr>
<td>3.2 $x_j \leftarrow \bigoplus_{i=1}^{d}(b_j^{(i)}<<(i-1))$.</td>
</tr>
<tr>
<td>3.3 if $x_j \neq 0$ then $Q \leftarrow Q + V[x_j]$.</td>
</tr>
<tr>
<td>4. return Q.</td>
</tr>
</tbody>
</table>

3.1.2 Complexity

This method costs a storage of $2^d - 1$ points and requires $2^d - d - 1$ additions as precomputation. When uniformity is not a concern, we use the algorithm 2, where the
main operation contains \(l \) steps. During each step \(j \in [0, l-1] \), we perform one doubling and one addition if at least one of the bits \(b^{(j)}_i \) is non null, with \(j \in [0, l-1] \) and \(1 \leq i \leq d \). Consequently, the total complexity of the main operation in this method consists of \(l \) doublings and \(JHW(\alpha_1, \alpha_2, \ldots, \alpha_d) \approx (1 - \frac{1}{2^d}) \) additions. However, if uniformity is a priority, we opt for algorithm 4, where the main operation precisely involves \(l \) additions and \(l \) doublings. The complexity of this method is shown in table 3.

<table>
<thead>
<tr>
<th></th>
<th>Without uniformity (algorithm 2)</th>
<th>With uniformity (algorithm 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main operation</td>
<td>((D + (1 - \frac{1}{2^d})A))</td>
<td>(D + lA)</td>
</tr>
<tr>
<td>Precomputation</td>
<td>((2^d - d - 1)A)</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>(2^d - 1) points</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: The complexity of the first method.

To illustrate how our method works, we present the following example:

Example 1. Let \(d = 3, \alpha_1 = 13, \alpha_2 = 17, \alpha_3 = 21, \) and \(P_1, P_2, P_3 \in E \). The parameter \(l \) is the size of the longest scalar, in this example \(\log_2(21) = 5 \). The binary representations of \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) are given as follows:

\[
13 = (01101)_2,
\]
\[
17 = (10001)_2,
\]
\[
21 = (10101)_2.
\]

According to the presented method for this example \(P, S \) and \(C \) are given as follows:

\[
\begin{align*}
P &= (P_1, P_2, P_3) \\
P &= \begin{pmatrix} 1 \\ 2 \\ 4 \\ 8 \\ 16 \end{pmatrix} \\
S &= \begin{pmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}
\end{align*}
\]
As explained at the beginning of this method, table T contains all the possibilities of the points $\sum_{i=1}^{d} P_i$, with $0 \leq j \leq l - 1$. In this example, T is given by:

$$T = \{P_\infty, P_1, P_2, P_1 + P_2, P_3, P_1 + P_3, P_2 + P_3, P_1 + P_2 + P_3\}.$$

Thus,

$$= (P_1, P_2, P_3) \begin{pmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2^4 \\ 2^3 \\ 2^2 \\ 2^1 \\ 2^0 \end{pmatrix}$$

$$= (P_1, P_2, P_3) \begin{pmatrix} 2^3 + 2^2 + 2^0 \\ 2^4 + 2^0 \\ 2^4 + 2^2 + 2^0 \end{pmatrix}$$

We compute this sum using the algorithm 2. The complexity in this example is interpreted as follows:

- The main operation’s complexity: $5D + 4A$,
- The precomputation’s complexity: $4A$,
- The storage: 7 points.

If we use the algorithm 4, the main operation’s complexity is $5D + 5A$

3.2 Second method (Multidimensional Double and add)

3.2.1 Description

In some cryptographic algorithms, such as the zkSNARK protocol, the d-mul is used for a large d (e.g. $d = 2^{22}$). Simply put, these schemes use a large number of scalars to compute the d-mul. This poses a challenge for storage on resource constrained devices. Thus, we can’t store efficiently precomputed points as explained in section 3.1. Therefore, in this section, we present an efficient method for computing d-mul with a large d. This method is called **Multidimensional double and add**. It does not rely on the precomputation.

Similarly to the first method, for $1 \leq i \leq d$, the binary representation of α_i is as follows:

$$\alpha_i = (b^{(i)}_{d-1}b^{(i)}_{d-2} \cdots b^{(i)}_1b^{(i)}_0)_2.$$

where l is the size of the longest scalar.

For $j \in [0, l - 1]$, this method acts simultaneously on the bits $b^{(1)}_j, b^{(2)}_j, \ldots, b^{(d-1)}_j, b^{(d)}_j$.

15
For \(j \in [0, l-1] \), let \(x_j = \bigoplus_{i=1}^{d} (b^{(i)}_j << (i-1)) \). If \(x_j \neq 0 \), we perform one doubling, we compute on the fly the points \(T[x_j] = \sum_{i=1}^{d} P_i \), and we add the result of the doubling to \(T[x_j] \). We assume that we always have \(x_j \neq 0 \) since the probability of \(x_j = 0 \) is negligible when \(d \) is large. This method is detailed in algorithm 3. In fact, the condition \(x_j = 0 \) is equivalent to \(b^{(i)}_j = 0 \), \(\forall i \in [1, d] \). Since the scalars are generated uniformly at random and \(d \) is large, \(x_j = 0 \) has a probability of \(1/2^d \), which is very small. For example, in a practical case, \(d \) could be \(2^{22} \). Therefore, the probability of \(x_j = 0 \) is \(\frac{1}{2^{4194304}} \).

Algorithm 3 Multidimensional double and add

Input: \(\alpha_1 = (b^{(1)}_{l-1} \cdots b^{(1)}_0)_2, \cdots, \alpha_d = (b^{(d)}_{l-1} \cdots b^{(d)}_0)_2 \), \(P_1, P_2, \cdots, P_d \in E \).

Output: \([\alpha_1]P_1 + \cdots + [\alpha_d]P_d\).

1. \(Q \leftarrow P_\infty \)
2. for \(j = l - 1 \) down to 0 do
 2.1 \(Q \leftarrow [2]Q \).
 2.2 \(T = P_\infty \).
 2.3 for \(i = 1 \) to \(d \) do
 2.3.1 if \(b^{(i)}_j \neq 0 \) then \(T \leftarrow T + P_i \).
 2.4 \(Q \leftarrow Q + T \).
3. return \(Q \).

3.2.2 Complexity

Let \(j \in [0, l-1] \), \(x_j = \bigoplus_{i=1}^{d} (b^{(i)}_j << (i-1)) \). At each \(j \)th step, this method performs one doubling, \(HW(x_j) - 1 \) additions to compute the point \(T[x_j] = \sum_{i=1}^{d} P_i \), and one addition to add the result of the doubling to \(T[x_j] \). In total, we perform one doubling and \(HW(x_j) \) additions at each step. Thus, this method requires exactly \(\sum_{j=1}^{l-1} HW(x_j) \) additions and \(l \) doublings. It is worth noting that \(x_j \) represents the binary sequence \(b^{(d)}_j b^{(d-1)}_j \cdots b^{(1)}_j b^{(0)}_j \), where \(j \in [0, l-1] \). For \(i \in [1, d] \), each bit \(b^{(i)}_j \) is derived from the scalar \(\alpha_i \). Because \(\alpha_i \) is generated uniformly at random, \(HW(x_j) \) is approximately \(\frac{d}{2} \). The complexity of this method is approximately given by:

\[
\frac{d}{2}(A + D)
\]

To illustrate this method, we provide the following example:
Example 2. Let \(d = 4, \alpha_1 = 17, \alpha_2 = 25, \alpha_3 = 28, \alpha_4 = 12 \) and \(P_1, P_2, P_3 \in E \). In this example \(l = 5 \) and the binary representations of \(\alpha_1, \alpha_2, \alpha_3 \) and \(\alpha_4 \) are given as follows:

\[
\begin{align*}
\alpha_1 &= (10001)_2, \\
\alpha_2 &= (11001)_2, \\
\alpha_3 &= (11100)_2, \\
\alpha_4 &= (01100)_2.
\end{align*}
\]

We have:

\[
\begin{align*}
&= [16](P_1 + P_2 + P_3) + [8](P_2 + P_3 + P_4) \\
&\quad + [4](P_3 + P_4) + [2]P_\infty + (P_1 + P_2) \\
&= [2^4][[1]P_1 + [1]P_2 + [1]P_3 + [0]P_4) \\
&\quad + [2^2]([0]P_1 + [0]P_2 + [1]P_3 + [1]P_4) \\
&\quad + [2^1]([0]P_1 + [0]P_2 + [0]P_3 + [0]P_4) \\
&\quad + [2^0]([1]P_1 + [1]P_2 + [0]P_3 + [0]P_4). \\
\end{align*}
\]

According to the second method for this example

\[
\begin{align*}
x_4 &= 7, \\
x_3 &= 14, \\
x_2 &= 12, \\
x_1 &= 0, \\
x_0 &= 3.
\end{align*}
\]

As \(HW(7) = 3, HW(14) = 3, HW(12) = 2, HW(0) = 0 \) and \(HW(3) = 2 \), In this example, we interpret the complexity as follows:

- the main operation’s complexity: \(5D + 10A \),
- the storage: 4 points.

17
4 Security analysis and countermeasures

In this section, we examine security concerns associated with our methods and provide the corresponding countermeasures.

4.1 First method

Let \(j \in [0, l - 1] \) and \(x_j = \bigoplus_{i=1}^{d} (b_i^{(i)} \ll (i - 1)) \). Although the probability of getting a non-zero \(x_j \) is negligible, we consider this situation to be a security problem. Indeed, in the algorithm 2, an adversary could perform a power attack to deduce that the bits of the scalars \(\alpha_i \) used in the \(j \)th step are all equal to zero. To solve this problem, we provide algorithm 4 to consider the two possible cases, \(x_j \neq 0 \) and \(x_j = 0 \). Then we inject a false addition when \(x_j = 0 \) to ensure uniformity of the elliptic curve operations. Thus the complexity of the main operation reaches exactly \(l \) additions and \(l \) doublings with a slight increase compared to algorithm 2. In other words, we do not go to great lengths to ensure this uniformity.

Algorithm 4 Uniform Multidimensional Shamir’s trick

Input: \(\alpha_1 = (b_1^{(1)} \cdots b_1^{(0)})_2, \cdots, \alpha_d = (b_d^{(1)} \cdots b_d^{(0)})_2 \), \(P_1, P_2, \cdots, P_d \in E \).
Output: \([\alpha_1]P_1 + \cdots + [\alpha_d]P_d \).

1. Precompute \(V = \{T[0], T[1], \cdots, T[2^d - 1]\} \).
2. \(Q = P_\infty, F \leftarrow V[d - 1] \).
3. for \(j \) from \(l - 1 \) down to 0 do
 3.1 \(Q \leftarrow [2]Q \).
 3.2 \(x_j \leftarrow \bigoplus_{i=1}^{d} (b_i^{(1)} \ll (i - 1)) \).
 3.3 if \(x_j \neq 0 \) then \(Q \leftarrow Q + V[x_j] \).
 3.4 else \(F \leftarrow F + Q \). //A fake addition.
4. return \(Q \).

4.2 Second method

Let \(j \in [0, l - 1] \) and \(x_j \) be the same parameter used in the first method. Viewing the main operation within algorithm 3 as a comprehensive entity, we consistently uphold uniformity across all steps with a high probability. In fact, the only distinct case arises when \(x_j = 0 \), indicating that \(b_j^{(i)} = 0 \) for \(1 \leq i \leq d \). However, this event occurs with an extremely low probability \(\left(\frac{1}{2^d} \right) \) given a large \(d \). In this rare scenario, we have the opportunity to enhance the security of our algorithm and achieve complete uniformity by introducing a fake addition operation. Although this practice is not expensive in terms of curve operations, its cost escalates significantly as \(d \) increases. This increased cost arises from the calculation of \(x_j \) and the associated conditional statements. Consequently, in algorithm 3, we have intentionally omitted the conditional check on \(x_j \). This decision ensures that the same block of operations...
is approximately practised at every step, regardless of the value of x_j. This strategy enhances efficiency, as d grows larger.

Let us examine the algorithm 3 more closely, concentrating on loop 2.3. It becomes apparent that an adversary has the ability to determine the values of the bits $b_j^{(i)}$ at every j^{th} step, where $1 \leq i \leq d$. This can be achieved by manipulating a power attack during the running of the addition operations to decide whether the bit $b_j^{(i)}$ should be interpreted as 0 or 1. To solve this problem, and to thwart the adversary’s ability to deduce the bits of the scalars α_i, a simple solution is to apply an efficient random permutation, such as the Fisher-Yates shuffle algorithm [29], to the bits $b_j^{(i)}$ during each j^{th} step. This is referred to as full use of permutations. Because the running time of such a permutation depends on a large d, using it for all the l steps could affect the efficiency of the method. To address this concern, we propose a solution based on the following two scenarios: one scenario where the scalars are predetermined and another where they are generated for single use.

− First scenario:
 - the scalars are predetermined,
 - we predefine a set of indices called $Perm$ from the set $\{0, 1, \cdots, l-1\}$,
 - at every j^{th} step, we apply an efficient permutation σ to the set $\{1, \cdots, d\}$ if $j \in Perm$,
 - if $j \notin Perm$, σ acts as the identity map on the set $\{1, \cdots, d\}$,
 - This operation is called partial use of permutations.

− Second scenario:
 - the scalars are generated for single use,
 - we choose the set $Perm$ at random from the set $\{0, \cdots, l-1\}$ each time the algorithm runs,
 - The same approach is used as in the first scenario.

In both scenarios, we ensure that the bits $b_j^{(i)}$ are hidden during certain steps, which significantly improves security. Specifically, if we assume that the cardinality of $Perm$ is denoted as $m \in [1, l]$, an adversary would have to perform an exhaustive attack with a complexity of 2^{dm} to reveal the hidden bits. This complexity is exceptionally high, mainly due to the large integer d in this method. We can strengthen security by extending the set $Perm$, taking into account the available computational resources. Furthermore, in the second scenario, we can weaken the adversary’s effort by modifying the steps affected by the random permutations in each algorithm run. This does not affect the security of the scalars as they are used only once. At the end of each j^{th} step, we can free the memory from the generated permutation to ameliorate the efficiency of our algorithm.

Algorithm 5 serves as a representation of all the above modifications.
Algorithm 5 Multidimensional double and add (modified)

Input: \(\alpha_1 = (b_{l-1}^{1} \cdots b_0^{1})_2, \cdots, \alpha_d = (b_{l-1}^{d} \cdots b_0^{d})_2 \), \(P_1, P_2, \cdots, P_d \in E \).

Output: \([\alpha_1]P_1 + \cdots + [\alpha_d]P_d \).

1. \(Q \leftarrow P_{\infty} \)
2. \(Perm \leftarrow \{0, 1, \cdots, l-1\} \). //Pick uniformly at random a subset \(Perm \) from the set \(\{0, 1, \cdots, l-1\} \).
3. for \(j = l-1 \) down to 0 do
 3.1 \(Q \leftarrow [2]Q \).
 3.2 \(T = P_{\infty} \).
 3.3 if \(j \in Perm \) then generate a random permutation \(\sigma \) on \(\{1, \cdots, d\} \).
 3.4 else \(\sigma \leftarrow id_{\{1, \cdots, d\}} \). // \(\sigma \) operates as it is the identity map.
 3.5 for \(i = 1 \) to \(d \) do
 if \(b_j^{\sigma(i)} \neq 0 \) then \(T \leftarrow T + P_{\sigma(i)} \).
 3.6 \(Q = Q + T \).
4. return \(Q \).

5 Comparison

In this section, we compare our method against those outlined in the state of the Art, assessing their complexity and various properties such as uniformity, precomputation, windowing, and parallelisation. Our primary focus is comparing the complexity of the main operation and the running time of our method against that of the optimised d-MUL, which represents the latest advancement in optimising d-mul. To commence, we initiate our comparative analysis by examining the existing methods, especially in the specific case where \(d = 2 \). We provide a comprehensive comparison, as shown in table 5, for this particular case. Subsequently, we broaden our evaluation to encompass the general case, considering two scenarios: one scenario involving a small \(d \) and the other with a larger \(d \). To simplify the comparison, we employ a uniform window size \(w \) for all scalars \(\alpha_i \) in the Interleaving method.

Note that all our practical experiments are carried out on an Intel i7 Personal Workstation with 8GB RAM and SSD storage, using SageMath.

Before proceeding with the categorisation of our comparison based on the parameter \(d \), it is important to note the presence of certain properties in the presented methods and then compare them against our approaches in table 4.

- The case of \(d = 2 \):

In this case, if we do not need uniformity (as in algorithm 2), our method is equivalent to Shamir’s trick in terms of the complexity of the main operation, precomputation and storage, where storage refers to the number of points that need to be stored. However, this equivalence only holds for precomputation and storage if we introduce uniformity into our method (algorithm 4). In this case, Shamir’s trick outperforms our method in terms of the efficiency of the main operation.
<table>
<thead>
<tr>
<th>Method</th>
<th>Precomputation</th>
<th>Windowing</th>
<th>Parallelisation</th>
<th>Uniformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shamir’s trick</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Bernstein</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bucket method</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Optimised d-MUL</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Our first method</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Our second method</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 4: Comparison of the properties of our method against the existing methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Main operation</th>
<th>Precomputation</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>$((\alpha_1 + \alpha_2 - 1)\mathbf{A} - 2$ points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shamr’s trick</td>
<td>$lD + \frac{3}{4}l\mathbf{A}$</td>
<td>1\mathbf{A}</td>
<td>3 points</td>
</tr>
<tr>
<td>Bernstein</td>
<td>$lD + \frac{2}{3}l\mathbf{A}$</td>
<td>–</td>
<td>2 points</td>
</tr>
<tr>
<td>Optimised 2-mul</td>
<td>$lD + \frac{3}{2}l\mathbf{A}$</td>
<td>2\mathbf{A}</td>
<td>2 points</td>
</tr>
<tr>
<td>Our method</td>
<td>$lD + l\mathbf{A}$</td>
<td>1\mathbf{A}</td>
<td>3 points</td>
</tr>
</tbody>
</table>

Table 5: The comparison of complexity for $d = 2$.

Moreover, this work surpasses Bernstein’s method in terms of the main operation. In fact, it conserves l point additions.

- **The case of small $d > 2$:**
 We proceed to compare our first method, in table 6, with existing methods when d is small. Table 6 showcases a notable achievement: our method surpasses optimised d-MUL in terms of the complexity of the main operation. Furthermore, it outperforms the Interleaving method when d exceeds $w + 1$. However, our method requires more precomputation and storage compared to optimised d-MUL. Additionally, the Interleaving method necessitates to calculate wNAFs (Non Adjacent Forms) of the scalars α_i at each step and does not guarantee the uniformity of operations. When assessing the overall complexity, which includes both the main operation and the precomputation, while keeping d and w constant, we offer the following comparisons:

- Our method overestimates the efficiency of optimised d-MUL if $t \geq \frac{2^d - 2d - 1}{d - 1}$,
Our method also outperforms the Interleaving method when \(l \geq \frac{(w+1)(2^d - 2^w - 2 - d)}{d} \).

To simplify the general comparison (table 6) and to present it only as a function of the parameter \(l \), which is considerably larger than \(d \) and \(w \), we offer the updated comparison in table 7 with \(d = 6 \) and \(w = 4 \). Our method’s main operation complexity surpasses that of optimised d-MUL. This latter offers advantages like uniformity and parallelisation. Thus, our primary focus is to compare our method with d-MUL.

Table 7: The comparison of complexity, for \(d = 6 \) and \(w = 4 \).

<table>
<thead>
<tr>
<th>Method</th>
<th>Main operation</th>
<th>Precomputation</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>(\sum_{i=1}^{n_d} \alpha_i - 1)</td>
<td>–</td>
<td>6 points</td>
</tr>
<tr>
<td>Interleaving</td>
<td></td>
<td>6D+18A</td>
<td>24 points</td>
</tr>
<tr>
<td>Optimised d-MUL</td>
<td></td>
<td>6A</td>
<td>6 points</td>
</tr>
<tr>
<td>Our method</td>
<td></td>
<td>57A</td>
<td>63 points</td>
</tr>
</tbody>
</table>

Table 8: The comparison of the main operation complexity.

\[
\begin{array}{ccc}
\hline
d & \text{Optimised d-MUL} & \text{Our method} \\
3 & D+3\bar{D} & D+IA \\
4 & D+4\bar{A} & D+IA \\
5 & D+5\bar{A} & D+IA \\
6 & D+6\bar{A} & D+IA \\
7 & D+7\bar{A} & D+IA \\
8 & D+8\bar{A} & D+IA \\
\hline
\end{array}
\]

Table 8: The comparison of the main operation complexity.

To confirm this comparison, we applied our method ('Mu-S-secp256k1' and 'Mu-S-Mont') and optimised d-MUL ('d-MUL-secp256k1' and 'd-MUL-Mont') on both the secp256k1 curve [21] used in ECDSA [1] and the Montgomery curve [22] used in SQISign [5]. For a closer look at the running time comparison, we set \(d \) to 4 and vary the parameter \(l \) within the set \(\{32, 64, 128, 192, 256, 320\} \), generating four approximate graphs in figure 2 that plot the running time as a function of \(l \). These
graphs show that our method is significantly faster than the optimised d-MUL overall scalar sizes l and whichever curve we use. Furthermore, for each curve we observe an increasing divergence between the graph of our method and that of d-MUL as l increases. This divergence arises because optimised d-MUL consistently processes 4 scalars of l bits, while our method appears to process only one scalar of l bits due to precomputational advantages. Consequently, as the parameter l escalates, the processing time naturally increases. In addition, we evaluate the running time by varying the number of scalars d within the set $\{2, 3, 4, 5, 6, 7, 8\}$ while keeping the scalar size at $l = 256$. This evaluation yields four plots in figure 3, which show that the running time of optimised d-MUL grows linearly with d, while that of our method remains nearly constant as a function of d. This confirms that the complexity of the main operation in our method is independent of the number of scalars.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
Coordinates & Optimised d-MUL & Our method \\
\hline
Affine & $(d + 1)I + (d + \frac{d}{2})$ & $\frac{l(2l + \frac{2l}{2})}{2}$ \M \\
Projective & $(\frac{d}{2} + \frac{d}{2})$ & $\frac{l(2l + \frac{2l}{2})}{2}$ \M \\
Jacobian & $(\frac{d}{2} + 15d)$ & $\frac{l(2l + \frac{2l}{2})}{2}$ \M \\
\hline
\end{tabular}
\caption{Comparison of main operation complexity for different coordinate systems.}
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{Running time of the main operation as a function of l for $d = 4$}
\end{figure}

\begin{itemize}
\item **The case of a large d:**
In this case, we focus on comparing our method against some efficient methods for large d. We use table 10 to compare the complexity of our second method against optimised d-MUL and the bucket method in terms of main operation complexity, precomputation and storage. From table 10 we can see that all three methods have the same memory requirements. However, optimised d-MUL stands out by requiring d additions for precomputation, which is significant for large d. They all use the same
Figure 3: Comparison of main operation running time as a function of \(d\) for \(l = 256\).

<table>
<thead>
<tr>
<th>Method</th>
<th>Main operation</th>
<th>Precomputation</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucket method</td>
<td>(lD + \left\lceil \frac{1}{2} \right\rceil(d + 2^w + 1)A)</td>
<td>(-)</td>
<td>(d)</td>
</tr>
<tr>
<td>Optimised d-MUL</td>
<td>(lD + ldA)</td>
<td>(dA)</td>
<td>(d)</td>
</tr>
<tr>
<td>Our method</td>
<td>(lD + \frac{1}{2}A)</td>
<td>(-)</td>
<td>(d)</td>
</tr>
</tbody>
</table>

Table 10: The comparison of complexity for the some window \(w \approx \log_2(d)\).

number of doublings in their main operations but differ in the number of additions. Our method requires about \(l^2\) additions in the main operation, outperforming d-MUL. However, for large \(d\) with \(w = \log(d)\), the bucket method outperforms our method. The challenge with the bucket method is that it requires many buckets, each accumulating curve points. For example, with \(d = 2^{22}\), it needs to initialize about \(2^{22}/l\) buckets, resulting in more memory access. In contrast, our method efficiently tracks and uses the points \(P_i\) in the main operation with simple, low cost operations, with \(1 \leq i \leq d\).

We used the BLS12−381 curve to compare the running time of our method against optimised d-MUL over different \(d\) values from the set \(\{2^s; s \in [9, 19]\}\), keeping \(l\) fixed at 256. This comparison examines our method in three different scenarios:

- In the first scenario, no permutations are applied. This is suitable when the security of the scalars \(\alpha_i\) is not a priority, and the primary focus is on achieving high computational efficiency.
- The second scenario involves applying random permutations to steps selected by the set \(\text{Perm}\) (which contains 50 steps in this comparison). It balances security and efficiency based on the cardinality of the set \(\text{Perm}\),
- In the third scenario, random permutations are applied to all computation steps with \(j \in [0, l - 1]\). This approach provides robust scalars security with minimal loss of efficiency.

Figure 4 illustrates the comparison using a multiple bar graph. It shows the running time of both our method ('Mu-D1', 'Mu-D2' and 'Mu-D3' representing the three
scenarios) and the optimised d-MUL (‘d-MUL’). In figure 4, the main operation of

![Figure 4: Running time of the main operation as a function of a large d for l = 256.](image)

our method runs faster than the optimised d-MUL, even with partial or full use of permutations. As d increases, the performance gap widens. This is because optimised d-MUL involves costly computations for scalar bits, and these costs escalate with higher d values. Furthermore, when we use permutations, the time difference between our method and optimised d-MUL is always more significant than without permutations. This is due to the permutation complexity, which is $O(d)$ for each permutation on the set \{1, \ldots, d\}.

6 Conclusion

In this paper, we have proposed a novel approach for computing multidimensional scalar multiplication on elliptic curves. Our work has been presented in two distinct methods to treat two different cases:

The first method is designed for the case where the number of scalars d is small. This method uses precomputation to efficiently perform the main operation, outperforming existing methods in this context. Our method is practical for schemes with a small number of scalars, such as ECDSA with $d = 2$, and speeds up the classic scalar multiplication. It is also a strong candidate for improving the efficiency of isogeny based post quantum cryptosystems such as SQISign. We confirmed the effectiveness of this method by evaluating the running time by applying it to the secp256k1 [21] and Montgomery [22] curves used in ECDSA and SQIsign respectively. Note that this method is preferable when the scalars are prefixed.

The second method is tailored for the case where the number of scalars d is large. In such cases, there is no precomputation, and all calculations are performed on the fly. This method is similar to the double and add method. It simultaneously processes the bits of the scalars arranged in the same column from left to right at each step. Its main operation is more efficient than that of optimised d-MUL method and requires fewer memory accesses compared to the bucket method. Our method is highly practical for proving and verification algorithms such as the Succinct Non interactive Argument of Knowledge (zkSNARK) protocol that uses a large number of scalars. We tested its
efficiency by evaluating its running time on the BLS12 – 381 curve [23]. Note that this method incorporates security measures against power attacks.

In the future, we could apply our methods in certain cryptographic schemes.

References

