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Abstract. Secure Multi-Party Computation (MPC) constructions typically allow computation over
a finite field or ring. While useful for many applications, certain real-world applications require the
usage of decimal numbers. While it is possible to emulate floating-point operations in MPC, fixed-point
computation has gained more traction in the practical space due to its simplicity and efficient realizations.
Even so, current protocols for fixed-point MPC still require computing a secure truncation after each
multiplication gate. In this paper, we show a new paradigm for realizing fixed-point MPC. Starting from
an existing MPC protocol over arbitrary, large, finite fields or rings, we show how to realize MPC over a
residue number system (RNS). This allows us to leverage certain mathematical structures to construct
a secure algorithm for efficient approximate truncation by a static and public value. We then show
how this can be used to realize highly efficient secure fixed-point computation. In contrast to previous
approaches, our protocol does not require any multiplications of secret values in the underlying MPC
scheme to realize truncation but instead relies on preprocessed pairs of correlated random values, which
we show can be constructed very efficiently, when accepting a small amount of leakage and robustness
in the strong, covert model. We proceed to implement our protocol, with SPDZ [36] as the underlying
MPC protocol, and achieve significantly faster fixed-point multiplication.
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1 Introduction

Secure multi-party computation (MPC) is the area of cryptography concerned with the computation of
arbitrary functions over private data held by mutually distrusting parties. Since its inception by Andrew
Yao [74], it has received a large amount of research interest [49, 66, 16, 36, 62, 59, 55, 51]. Computation
is usually represented as a Directed Acyclic Graph (DAG) of 2-input, 1-output gates where each gate
operates on the inputs, most commonly over bits [59, 66, 62, 51] (boolean MPC ), large fields [16, 36] or
rings [30](arithmetic MPC ). Even though operations in an arithmetic MPC scheme over a large field are
typically less efficient than operations in an MPC scheme over bits, they are significantly more efficient
than a corresponding emulation by an MPC scheme over bits. Furthermore, arithmetic MPC computations
are required in a plethora of different applications, for example in auctions [17], benchmarks [33], machine
learning [34], private smart contracts [11, 13], private database querying [72], threshold signatures [32] and
RSA key modulus generation with unknown factorization [48, 27]. However, in certain applications, such
as statistics [41, 33] and machine learning [61, 73, 75, 25] it is not sufficient to work over the integers, but
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instead require decimal numbers. While there are multiple ways of efficiently emulating decimal arithmetic
using integers, doing so in MPC, without impacting efficiency significantly has proven elusive as we will
discuss in the related works section below. Looking ahead, research in the area has pointed in the direction
of fixed-point arithmetic, where integers are interpreted as decimal numbers with a static amount of digits
after the decimal point, being the most efficient way of realizing secure decimal computation. This has the
advantage that addition is exactly the same as for integer arithmetic, and multiplication is almost the same; in
the sense that the multiplication operation is the same, but the result needs to be truncated with a constant.
Such a truncation has proven expensive in MPC [24] and most researchers in that area [38, 42, 69] have
gone in the direction of trying to combine MPC over bits and integers to realize bit operations, such as
truncation, efficiently. In this paper, we take a different direction and ask if it is 1) possible to efficiently
realize fixed-point arithmetic in MPC without emulating bit operations and 2) if it is doable only assuming
black-box access to an arithmetic MPC protocol. By representing integers in a residue number system (RNS)
and accepting small additive errors in the truncation we answer both of these in the affirmative.

An RNS is a method for representing integers by their residues modulo a fixed set of coprime integers. This
allows the representation of large integers using smaller integers, and it has received some attention in recent
years because multiplication and addition may be done in parallel by the smaller integers, allowing large
computations to be parallelized. This again can lead to advantages in high-performance computation [71, 39].
While our proposed scheme enjoys these advantages when preprocessing multiplication triples, it is the
mathematical structure of an RNS we take advantage of to realize efficient truncation, and hence, efficient
fixed-point computation.

Contributions In this paper we show how to realize secure computation over a 2-component RNS, resulting
in secure computation over a biprime ring. We build this from two separate MPC instances, using any MPC
scheme supporting computation over arbitrary prime fields. An example of such a scheme is SPDZ [36], which
relies on additive secret sharing of values, along with additively shared information-theoretic MACs for its
underlying security against a statically and maliciously corrupted dishonest majority.

First, this provides us with an MPC system with more efficient preprocessing over very large domains,
compared with the underlying MPC scheme used. This is advantageous in certain applications such as
distributed generation of an RSA modulus [48, 27]. However, the main motivating factor behind our scheme is
a highly efficient realization of secure approximate truncation, with a few bits of leakage of the least significant
bits. Concretely we introduce an algorithm working over a maliciously UC-secure MPC functionality over
arbitrary fields and show how this can be used to realize approximate truncation in a preprocessing model.
Both our main online protocol and the offline preprocessing it relies on, only require a constant number of
rounds of communication and no secure multiplications or other heavy cryptographic machinery. We prove
both information-theoretically UC-secure based on black-box access to a functionality for maliciously secure
MPC over a large ring. We show the robustness of this construction secure in the strong covert model [10],
while retaining maliciously privacy, against an adversary corrupting a majority of parties. We highlight
that we are not the first authors considering such a compromise between efficiency and security for MPC
protocols [35]. The cost of this efficient preprocessing is a small amount of leakage during the online protocol.
Either log2(n) bits or a single bit (if one can accept the addition of O(n2) extra multiplications during the
online phase, where n is the number of parties). Furthermore, we note that due to an artifact of our simulation
proof, we require the simulator to be allowed to perform O(2n) computations with low, but non-negligible
probability. Hence, O(2n) will be polynomially bounded by any computational security parameter required to
realize the underlying maliciously secure MPC functionality. Still, we highlight this has no influence on the
actual efficiency of our protocols.

Based on this efficient preprocessing protocol and online phase we show how to construct an efficient
fixed-point MPC scheme. Finally, we benchmark our scheme, based on SPDZ, through micro-benchmarks along
with the versatile application of the Fast Fourier Transform. Depending on the size of the computation domain
and network latency, our results show that the small reduction in security for approximate truncation allows
us to get a 3.2-42x faster online phase. Suppose preprocessing is included (based on MASCOT [56]) then our
protocol is 36-1,400x faster than the protocol of Catrina and Saxena [24] for fixed-point computation, which
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also exclusively requires access to a black box MPC scheme. We furthermore find our protocol competitive
for large domain computation, when counting the preprocessing time.

1.1 Related Work

Our work is far from the first usage of RNS in cryptography, although, to the best of our knowledge, this is
the first time it is used to achieve efficient MPC for fixed-point arithmetic.

On the other hand, RNS has been used as a tool for optimizing the implementation of large field arithmetic,
which is highly relevant in many public-key systems such as RSA [67] or schemes based on general elliptic
curves [8] and isogenies [54]. It has also been shown that such RNS-based implementations can help in
thwarting certain types of fault-injection attacks [44]. The fact that RNS is an application of the Chinese
Remainder Theorem (CRT) has in itself been used to optimize distributed RSA key generation [26, 37, 28].

As previously mentioned, working with decimal numbers is crucial in many MPC applications, such as
statistics [41, 33] and machine learning [61, 73, 75, 25]. Many early works that require decimal numbers
do not consider a formal treatment of how to represent decimal number systems in MPC but are instead
rather pragmatic in how to achieve their specific computation goals. Examples include MPC computation
of the natural logarithm through Taylor series expansion [61], or approximating 1/p through the use of
Newton iteration [4]. Du and Atallah [41] presented a custom two-party protocol for general secure division to
implement linear regression in the two-party setting. However, Kiltz et al. [58] showed that the protocol of Du
and Atallah leaks some information, and demonstrated a leakage-free protocol for division in the two-party
setting. Atallah et al. [9], presented yet further protocols for realizing floating point division for use in secure
linear regression, this time working with more than two parties. Fouque et al. [43] showed how to do general
computation over rationals, through the use of Paillier encryption. Although their scheme supports more than
two parties, it only allows a limited number of consecutive operations. Another approach to floating point
representation of values for two-party computation, based on Paillier encryption and oblivious PRFs (OPRFs),
was given by Franz et al. [45], who thoroughly formalized a system closely related to the IEEE 754 standard [1]
used by regular CPUs for floating point arithmetic. Later a full implementation of secure evaluation of IEEE
754 was done by Franz and Katzenbeisser based on garbled circuits [46]. Boyle et al. [19] showed how to
achieve efficient fixed-point computation based on function secret sharing in the two-party model. Catrina
and Saxena [24] showed how to realize secure fixed-point computation using any secret sharing-based MPC
scheme for an arbitrary number of parties. Their approach is to do an efficient approximate truncation after
each multiplication to move the decimal point back down. This approach, however, requires the computation
of a bit-decomposed random number, which again requires O(k) multiplications in MPC, when working
over a field of at most 2k elements. Besides the advantage of working over a generic MPC scheme with
general inputs, the work by Catrina and Saxena also has the advantage of working over both positive and
negative numbers and does not lose accuracy regardless of the number of computations. Later Catrina and
de Hoogh [23] showed how to realize this without the need for probabilistic computation in the truncation.
Their idea is to compute a bit-comparison circuit in MPC using the bit decomposition of the random pad,
which leads to a constant penalty in complexity. Unfortunately, all the approaches referenced above for
secure computation with decimal numbers only work in the semi-honest security model. In many real-world
situations, passive security is not sufficient. However, it turns out, that due to the black-box construction of
the solution by Catrina and Saxena, using an MPC scheme that is maliciously secure is enough to realize
their algorithms maliciously securely, as shown by Damg̊ard et al. [34]. Damg̊ard et al. also showed that with
only minor modifications, their probabilistic truncation algorithm could be used when the underlying MPC
scheme performs computation over a ring.

Motivated by the need for bit-decomposition for truncation (and more general computation over bits) a
series of works have been focused on efficiently combining MPC schemes over bits and fields/rings [38, 64, 63],
Being able to perform a mix of arithmetic and bit operations can prove essential in certain applications,
e.g. when computing the digest of a hash function in MPC. Dedicated schemes with a preprocessing
phase generating raw material that works in both the binary and arithmetic domains have also been
constructed [69, 42], yielding significantly more efficient protocols in practice than the approach of Catrina
and Saxena.
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Even without the recent protocols for efficient bit-decomposition, researchers have found secure fixed-point
computations to generally be more efficient than secure floating-point computation [5, 57]. This is due to the
complex computations needed for floating-point multiplications, which would be required to be carried out in
MPC, compared to a single truncation in the fixed-point approach.

Finally, it should be mentioned that recently a lot of other authors have investigated MPC over rings [30,
2, 31], although their focus has generally been on arbitrary rings, or rings of the type Z2k , as these afford a
computation domain closer to traditional CPUs, when k = 32 or k = 64.

1.2 Construction Blueprint

The overall idea we present is to use two independent black-box realized MPC schemes, over Zp and Zq, to
realize an MPC scheme over Zm with m = p · q by interpreting the elements in Zp and Zq as elements in
an RNS over m, through the Chinese Remainder Theorem. Based on this we show that one can efficiently
truncate elements in Zm by p with an additive error of at most 1 without requiring any MPC multiplications,
but only using sharings of correlated and uncorrelated randomness in both the MPC scheme over Zp and
Zq. Specifically, we need a random value r ∈ Zp to be stored in an MPC scheme both over Zp and Zq. We
call a pair of such correlated random values a noise pair and show how to efficiently construct such pairs in
the semi-honest and strong covert model but with an additive error in the sharing over Zq. We then use the
RNS MPC scheme over Zm to realize fixed-point computation in MPC with base p. By picking base p we can
use our efficient truncation algorithm to perform the needed truncation after a fixed-point multiplication.
We furthermore show that in this setting, the error in the noise pairs does not cause problems. Hence we
circumvent the need for a general truncation of a 2-power, requiring a non-constant amount of multiplications,
as is generally seen in fixed-point MPC computations [24, 42].

1.3 Outline

The rest of the paper is structured as follows: in section 2 we introduce the preliminaries we require, which
concretely is the UC functionality for arithmetic MPC. Then in section 3 we present the main mathematical
observation and abstractly show how it allows us to do divisions by p on elements stored in an MPC system
over Zm, which is realized through two distinct MPC systems over Zp and Zq. In section 4 we present the
MPC protocols needed to realize the algorithm presented in section 3. In section 5 we formally show how
to realize a UC-secure RNS MPC scheme with efficient truncation based on our construction. Finally, in
section 6.1 we discuss an implementation of our scheme and benchmark it against the typical approach to
fixed-point computation in MPC.

2 Preliminaries

Table 1. The parameters and variables in
play in this paper.

s Statistical security parameter.
s̃ s̃ = s+ 1
γ The covert deterrence factor.
p
Primes of at least s̃ bits. p < q.

q
m The RNS domain = p · q.
n The number of parties.
U The maximum error.
Q The maximum usable space modulo q.

In all our protocols we assume n mutually distrusting parties partic-
ipate. We denote the set of all parties by P and use Adv to denote
the adversary corrupting a subset of P of size at most n− 1. We
let s denote a statistical security parameter. Hence, the statistical
distance between the real execution and simulation will be at most
2−s for any fixed s. Furthermore, we define s̃ = s+ 1, which is an
artifact used in the proofs to ensure 2−s for the entire simulation.
We let p and q be positive integers with q > p ≥ 2s s.t. gcd(p, q) = 1
and m = p · q. We use ∼ in conjunction with standard distributions
to denote “approximately distributed by” for certain variables. E.g.
x ∼ IrwinHall(n).

We let a ←R Zp mean that a is uniformly sampled from the
ring Zp. Furthermore, in general, we use a← P to mean that the
value a is computed by the procedure P . For integers y and z > 0,
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we let y mod z denote the unique integer x for which 0 ≤ x < z
and x ≡ y (mod z). Furthermore, throughout the paper, we use [a]
to denote the set of integers {1, . . . a}.

We highlight that while most of our protocols are secure against a static adversary corrupting a dishonest
majority of parties, our protocols for generating correlated randomness only achieve robustness in the strong
covert [10] model. We recall that in this model the adversary may cheat but will get caught with a certain,
non-negligible probability γ. Furthermore, if caught, the adversary gets no influence on the computation, nor
learns anything about the honest parties’ input, and all honest parties learn that cheating has occurred, along
with the identification of one of the corrupt parties who cheated. If the adversary does not get discovered
when cheating, then they learn the honest parties’ input and get to influence the result of the computation.
However, we emphasize, that our concrete protocols achieve even stronger security since the adversary does
not learn the honest party’s input, even if they cheat and don’t get caught.

We use U to denote the maximum additive error that can occur in our protocol. The error that can occur
in our specific noise pair preprocessing will be at most U − 1, and our main algorithm, algorithm 5, adds 1 to
any error of the preprocessed material.

We outline the different variables and their meaning in table 1.

2.1 UC Functionalities

We prove our construction secure in the UC framework [21] and hence no rewinding is used in our proofs and
our protocol is secure under arbitrary composition.

In the ideal functionalities, we abstract away the session ID, sid, and simply assume that only a single
instance of each subfunctionality is used for specific input parameters, since this is all we require for our
protocol.

FCT(n,m)

This functionality is parametrized by the number of parties participating, n, and a modulo describing the range of
sampling.

Sample: Upon receiving (sample, ssid) from all parties, if ssid has not been seen before, then sample x←R Zm

and send (sample, ssid, x) to all parties as adversarially delayed output. If ssid has been seen before, then return
(sample, ssid, x) as adversarially delayed output.

Fig. 2.1. Ideal functionality for coin-tossing

Coin-Tossing In fig. 2.1 we introduce the standard coin-tossing functionality, which allows maliciously
secure sampling of uniformly random integers modulo some m.
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FABB(n,m)

This functionality is parametrized by the number of parties participating, n, and the modulo which the computation
is over, Zm.

Rand: Upon receiving (random, ssid) from all parties for a fresh ssid, the box samples x ←R Zm and stores
(ssid, x).

Input: Upon receiving (input, i, ssid, x) for a fresh ssid from some party i ∈ [n] and (input, i, ssid, ?) from all
other parties j ∈ [n]\{i}, then store (ssid, x mod m).

Linear: Upon receiving (linear, α, β, ssid1, ssid2) for α, β ∈ Zm and a fresh ssid2 and existing ssid1 from all
parties i ∈ [n], retrieve (ssid1, x) and store (ssid2, α · x+ β).

Add: Upon receiving (add, ssid1, ssid2, ssid3) for a fresh ssid3 and existing ssid1 and ssid2 from all parties
i ∈ [n], retrieve (ssid1, x), (ssid2, y) and store (ssid3, x+ y).

Mult: Upon receiving (mult, ssid1, ssid2, ssid3) for a fresh ssid3 and existing ssid1 and ssid2 from all parties
i ∈ [n], retrieve (ssid1, x), (ssid2, y) and store (ssid3, x · y).

Output: Upon receiving (output, ssid,P) for an existing ssid with P ⊆ [n] from all parties i ∈ [n], retrieve
(ssid, x) and send x to the adversary Adv. Wait for Adv to return either deliver or abort. If the adversary
returns deliver, output x to all parties in P, otherwise output abort.

Abort: Adv may at any point input abort at which point the functionality returns abort to all parties and aborts
by not accepting any more calls for the current sid.

Fig. 2.2. Ideal functionality for a maliciously secure arithmetic black box with abort.

MPC Functionality We are building our protocol on top of any already existing maliciously secure MPC
scheme where an adversary may statically corrupt a dishonest majority of the participating parties, and
where computations can be modeled as an arithmetic black box over a field or ring with a domain of size at
least 2s. We observe the model fits well with many modern schemes such as SPDZ [36] and SPDZ2k [30] for
any number of parties or OLE schemes [40, 50] in the two-party setting. We describe the ideal functionality
in fig. 2.2.
We refer the reader to Appendix A for more details on the MPC models.

When it comes to all MPC-related functionalities we implicitly assume each command contains a session
ID, sid, for the specific execution instance of the functionality. We will, however, not write this explicitly.
Furthermore, we will assume that all received commands get relayed verbatim to all parties, including the
adversary. The only exception being input commands; (input, i, ssid, x), where the private input x is removed
and instead the message (input, i, ssid,⊥) is relayed.

As a convenience, we denote a value x within the ABB box working on integers modulo m as [x]m
and assume that (add, . . . ), (linear, . . . ) and (mult, . . . ) reflect the natural commands on [·]m. I.e. [w]m =
(α · [x]m + [y]m) · [z]m implicitly defines a call to (linear, . . . ), (add, . . . ) and (mult, . . . ) in the natural way
s.t. w = (α · x+ y) · z mod m.

We furthermore assume that [x]m in practice consists of an additive sharing between the parties. That is,
we assume party i for i ∈ [n] hold xi s.t. x =

∑
i∈[n] xi mod m. We note, that this does not require white-box

usage of the underlying MPC scheme, as the command FABB(n,m).(random, . . . ) can be used to define [xi]m
for i ∈ [n− 1]. Then FABB(n,m).(add, . . . ) can be used to define xn and FABB(n,m).(random, . . . ) to sample
a random additive sharing of [xn]m =

∑
i∈[n−1][xi]m.

Similarly, we will use Sharem(x)→ [x]m from party i to denote the call FABB(n,m).(input, i, ssidx, x)
by party i and the call FABB(n,m).(input, j, ssidx, ?) by all other parties i ≠ j ∈ [n] for a fresh subsession ID
ssidx associated with x. That is, we use ? to denote a value defined by another party. Similarly, we will use
Openm([x]m)→ x from each party i ∈ [n] to denote the call FABB(n,m).(output, ssidx, [n]) where ssidx
denotes the subsession ID of [x]m. That is, to open a value towards all parties. We use a similar shorthand for
opening values towards a subset of parties or a specific part i.e., we let Openm([x]m,P)→ x from each party
i ∈ [n] denote the call FABB(n,m).(output, ssidx,P) where ssidx denotes the subsession ID of [x]m, and
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thus where party j ∈ P learns x and all other parties, learn nothing besides the fact that parties in P have
learned the value associated with ssidx. We will also assume this convenience when sampling random values,
by letting [r]m ←R Zm denote FABB(n,m).(random, ssidr) for a subsession ID ssidr associated with r.

Finally, we highlight that the command FABB(n,m).(random, . . . ) can be used to trivially realize FCT.

3 Truncation

In this section, we present our approach for efficient truncation in MPC through the use of an RNS. Below
we present theorem 1 which gives an efficient algorithm for truncation with the smaller moduli in an RNS
with two moduli. Then we show how to work with an RNS in MPC in Section 3.1.

Consider an RNS of two components as follows: Let p, q ∈ N be distinct positive integers with gcd(p, q) = 1
and let m = p · q. The Chinese Remainder Theorem yields the existence of a ring isomorphism Zm

∼= Zp × Zq

which we will denote by ϕ : Zm → Zp × Zq defined by ϕ(x) = (x mod p, x mod q). To ease the notation later,
we let x(p) denote x ∈ Zp and x(q) denote x ∈ Zq. The inverse of ϕ(x) is

ϕ−1(x(p), x(q)) = (bqx(p) + apx(q)) mod m

where a, b ∈ N are chosen such that
ap+ bq = 1.

Note that this implies that ap = 1 mod q and bq = 1 mod p, so a = p−1 mod q and b = q−1 mod p.
Representing integers in Zm as their images under ϕ is an example of an RNS with ϕ being a ring isomorphism
that implies addition and multiplication may simply be done coordinate-wise. An RNS representation may
also be used to efficiently compute truncation by one of the components as shown in the following theorem:

Theorem 1. Let gcd(p, q) = 1 and x ∈ Z with 0 ≤ x < pq = m and let (x(p), x(q)) = ϕ(x). Then

⌊x/p⌋ = a(x(q) − x(p)) mod q

where a = p−1 mod q.

Proof. Let a = p−1 mod q and b = q−1 mod p. Write x = kp+ r with k ∈ Z and 0 ≤ r < p. Then r = x(p)

and ⌊x/p⌋ = k and since x < m we have 0 ≤ k < q, so we just need to prove that k ≡ a(x(q) − x(p)) (mod q).
Now

kp+ x(p) = x ≡ bqx(p) + apx(q) (mod m)

since (x(p), x(q)) = ϕ(x). This implies

kp ≡ (bq − 1)x(p) + apx(q) (mod m).

Since q | m, we may consider this congruence modulo q, and noting that ap ≡ 1 (mod q) we get

k ≡ a((bq − 1)x(p) + x(q)) ≡ a(x(q) − x(p)) (mod q)

as desired. ⊓⊔

3.1 RNS in MPC

Consider an MPC scheme working over Zm. A value in such a scheme is defined using two MPC instances,
one over Zp and one over Zq such that gcd(p, q) = 1. We do so using ϕ as defined above to represent a value
in Zm for m = pq by a pair of values in Zp × Zq.

Concretely, we use two MPC instances, FABB(n, p) and FABB(n, q), which together with the linear function
ϕ induces another MPC instance FABB(n,m). We will abuse notation to use [x]m to denote an RNS realized
through shares [x(p)]p in FABB(n, p) and [x(q)]q in FABB(n, q) where m = p · q and hence

x = (q · (q−1x(p) mod p) + p · (p−1 · x(q) mod q)) mod pq .
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That is, where ϕ(x) → (x mod p, x mod q) = (x(p), x(q)). Concretely this means that [x]m = ([x mod
p]p, [x mod q]q) = ([x(p)]p, [x

(q)]q).
These values can be defined from the MPC commands:

Sharem(x) = (Sharep(x mod p),Shareq(x mod q))

and
Openm([x(p)]p, [x

(q)]q,P) = ϕ−1(Openp([x
(p)]p,P),Openq([x

(q)]q,P)).

3.2 Fixed-point Arithmetic

Observe that fixed-point representation of a real number is given as follows: If we let b ∈ N with b ≥ 2
be the base, we may represent a real number x ∈ R by its fixed-point representation with base b given by
the integer fb(x) = ⌊b · x⌋. The fixed-point representation allows us to approximate arithmetic (see [70] for
an analysis of the error terms) on real numbers by integer arithmetic since fb(x) + fb(y) ≈ fb(x+ y) and
⌊ 1bfb(x)fb(y)⌋ ≈ fb(x · y). The base b is usually a power of two since this allows the division by b after each
multiplication to be done by bit shifts, but any integer b ≥ 2 will work.

With this in mind, we can do fixed-point computation in MPC over a domain Zm with base p whenm = p·q
for numbers p, q with gcd(p, q) = 1, given a generic MPC construction that works over Zp and Zq through the
RNS mapping in section 3.1. That is, given [x]m with an RNS decomposition ϕ([x]m) = ([x(p)]p, [x

(q)]q), let
[y]q = (p−1 mod q) · [x(q)]q − [x(p)]p. Then compute ⌊[x]m/p⌋ = ([y mod p]q, [y]q) by applying theorem 1.

However, one problem remains; How do we move a value [y]q to [y]p and vice versa as these values live in
two distinct MPC instances?

4 The Construction

Fig. 1. Illustration of the dependencies between the different sub algorithms.

To facilitate the transfer of values between two different MPC instances we present two algorithms Liftp→q

(algorithm 3) and Liftq→p (algorithm 4) which allow exactly this. Although the first of these has the side
effect of a small additive error. Both of these algorithms, however, require secret correlated randomness in
FABB(n, p) and FABB(n, q). Assume q > p, we preprocess a pair of values ([r]p, [r + ϵ · p]q) for a uniformly
random r ∈ Zp and some small non-negative integer ϵ < U . We denote such a correlated randomness pair a
noise pair.

We present a concrete algorithm for generating such noise pairs NoisePairU (1) for U = n, which is
used as a black-box in FABB(n, ·). Using a noise pair it is possible to compute and publicly open [x(p)]p + [r]p
in FABB(n, p), and input this into FABB(n, q) since r will hide the secret value x(p). However, to go from
FABB(n, p) and FABB(n, q) is not as easy, since r ∈ Zp it cannot statistically hide a value [x(q)]q when q > p.
Thus to realize Liftq→p we require another random value, denoted by ρ, which is larger than 2s, and hence
can statistically hide the part of the value x(q) which is larger than p. This is a standard technique known as
noise-drowning. We specify the concrete randomness sampling procedure in algorithm Pad (2). Using a pad
and another noise pair, ([r′]p, [r

′ + ϵ · p]q), it is possible to compute and open [x(q)]q + [r′ + ϵ · p]q + p · [ρ]q
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and input this into FABB(n, p) followed by the subtraction of [r′]q in order to transfer a value from FABB(n, q)
to FABB(n, p).

The approach might cause over and underflows. However, we show that to a large extent, by carefully
picking parameters, this can be avoided. Specifically, we show how to combine Liftp→q and Liftq→p, based
on the idea of theorem 1, in NoisyTruncU , which computes the ⌊[x]m/p⌋ with an additive error of at most
U . Furthermore, we show how to reduce this error to at most 1, with algorithm NoisyTrunc1, which we
present in Section 4.4.

In the sequel we formalize these algorithms, and formally prove them in section 5.

4.1 Preprocessing

Noise pairs A noise pair consists of correlated randomness ([r]p, [r̄]q), where r ←R Zp is uniformly random
and r̄ = r + ϵp for an integer ϵ in the range 0 ≤ ϵ < U with a constant U > 0. Constructing correlated
randomness over multiple MPC schemes is not a problem unique to us [68]. Still, a small additive error
typically only has minimal impact on fixed-point computations, and our truncation algorithm might introduce
a small error even if r̄ = r. Hence instead of relying on previous results, we have tried to design a preprocessing
protocol to facilitate transfer between two distinct MPC domains as lightweight as possible, only assuming
black-box access to an arithmetic MPC scheme FABB(n, ·), but with acceptance of a small additive error.

As a warm-up for our noise pair algorithm, first consider the semi-honest setting. In this setting, it is
sufficient for each party to input random values r(i) ←R Zp into the MPC computation both over Zp and Zq.
MPC can then be used to compute the values [r]p =

∑
i∈[n][r

(i)]p and [r̂]q = [r + ϵ · p]q =
∑

i∈[n][r
(i)]q where

ϵ < n depended on the values of r(i). This approach is clearly correct, but only semi-honestly secure as a
malicious party could simply input inconsistent values in Zp and Zq.

Since the random value r is independent of any secret input, it is straightforward to make this covertly
secure, through the standard covert paradigm of committing to multiple candidates, validating all but one,

and then keeping the last one [10]. That is, each party i selects λ random values r
(i)
1 , . . . , r

(i)
λ ←R Zp for

λ = ⌈1/(1− γ)⌉ with γ being the deterrence factor. Then input this into FABB(n, p) and FABB(n, q) through

Sharep(r
(i)
j ) and Shareq(r

(i)
j ) for i ∈ [n] and j ∈ [λ]. Using a coin-tossing protocol, the parties collaboratively

select an index c←R Zλ to keep and check Openp([r
(i)
j ]p = Openq([r

(i)
j ]q) for i ∈ [n] and j ∈ [λ]\{c}. Finally

the pair to keep is computed [r]p =
∑

i∈[n][r
(i)
c ]p mod p and [r̂]q = [r + ϵ · p]q =

∑
i∈[n][r

(i)
c ]q. However, one

subtlety that occurs with this approach is that an adversary corrupting n− 1 parties can now decide on a
value ϵ̃ < n− 1 and cause an error of ϵ = ϵ̃ or ϵ = ϵ̃+1 (depending on the random choice of the honest party).

This is because the adversary can choose not to pick the values r
(i)
j randomly and hence control the amount

of overflows modulo p that occurs when adding together the values modulo q.
Fortunately, this is easy to handle by having each party contribute part of each of the other party’s

random share modulo p. This ensures that as long as there is a single honest party, then all shares will be
randomly distributed and thus the overflow cannot be controllable by the adversary, and is hence guaranteed
to be Bernoulli distributed. We formally describe this in algorithm 1. However, we do note that this approach
still does not prevent the adversary from knowing ϵ with 1 bit uncertainty.

Furthermore, observe that since we don’t assume an underlying MPC scheme with identifiable abort, the
adversary could cheat in one of the covertly generated pairs, and abort in case that pair gets selected for
verification. To handle this problem we can use the folklore approach of commit-and-open wherein parties
commit to the randomness they need to execute algorithm 1 and broadcast these commitments. If an abort
happens in the underlying MPC scheme, then all parties will have to open their commitments. All parties
can then recompute what all other parties were supposed to send and hence identify any party that has not
followed the protocol. This of course reveals no secret information since algorithm 1 only does prepossessing,
and hence is independent of any private input. For simplicity, we will however leave it out of the formal
description.
The algorithm works in the FABB-, FCT-hybrid model and produces a result that is contained within the
ideal functionality of FABB. Hence we cannot prove the algorithm UC-secure on its own without resulting to
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Algorithm 1 Covert NoisePairn() = ([r]p, [r̄]q) with deterrence factor γ

Require: ⊥
Ensure: ([r]p, [r̄]q = [r + ϵ · p]q) for 0 ≤ ϵ < n with ϵ ∼ IrwinHall(n)
1: Let λ = ⌈1/(1− γ)⌉
2: for k ∈ [λ] do
3: Each party j samples (r1,j,k, · · · , rn,j,k)← Zn

p

4: Sharep(ri,j,k)→ [ri,j,k]p for each i, j ∈ [n].
5: [ri,k]p =

∑
j∈[n][ri,j,k]p for i ∈ [n].

6: Openp([ri,k]p, {i}), so party i learns ri,k, for i ∈ [n].
7: Shareq(ri,k)→ [ri,k]q, for i ∈ [n]
8: end for
9: FCT.sample(ssid, λ)→ c ▷ From fig. 2.1
10: for For each party i ∈ [n] and noise pair k ∈ [λ] \ {c} do
11: r

(p)
i,k ← Open([ri,k]p) and r

(q)
i,k ← Open([ri,k]q)

12: end for
13: if ∃r(p)i,k ̸= r

(q)
i,k for any i ∈ [n] and k ∈ [λ]\{c} then

14: Output (cheat, i) and terminate the algorithm.
15: end if
16: [rc]p =

∑
i∈[n][ri,c]p mod p for i ∈ [n]

17: [rc + ϵ · p]q = [r̄c]q =
∑

i∈[n][ri,c]q mod q, for i ∈ [n]

18: return ([rc]p, [r̄c]q)

stateful UC-models such as GUC [22]. However, keeping a global MPC state does not seem the right choice,
given that our secure computations are stand-alone. For this reason, we will instead prove our full protocol
secure in a monolithic manner in section 5. The intuition in simulating the covert noise pairs is, however, very
simple and revolves around choosing the honest parties’ shares of rc such that the right ϵ is achieved and
choosing a proper c such that the right iterations are opened. This will be argued in the proof of lemma 7 as
part of the monolithic proof.

Observe that we can somewhat accurately estimate the error ϵ as follows:

Remark 1. The variable ϵ in the output of algorithm 1 is approximately Irwin-Hall4 distributed when executed
with at least one honest party,

ϵ ∼ IrwinHall(n).

The proof of this remark can be found in Appendix B.

Padding Our protocol also requires bounded randomness, used to hide overflow modulo p when padding
a value from Zp in Zq, but also when we wish to statistically hide a bounded value in Zq. In our protocol
we handle this using noise-drowning, i.e. by hiding any overflow, which can leak secret information, using
exponentially large noise. While simply using a random value in Zq would be sufficient, it would risk affecting
correctness since any overflow modulo q would yield an incorrect result. Hence we need to sample randomness
that prevents an overflow modulo q, but which is exponentially large in the security parameter to ensure
that it hides any modulo p overflow. In the semi-honest setting, this is easy to achieve by having each party
sample uniform randomness of sufficient size and summing the contribution of each party. That is if the
bound is A then each party i samples ρi ←R ZA and the parties compute ρ =

∑
i∈[n] ρi. Clearly ρ mod A is

uniformly random if just a single party has been honest. Furthermore, if all parties follow the protocol then it
will hold that ρ < An.

Because the input of each party (ρi) is independent of the underlying function we wish to evaluate in MPC,
it becomes clear that we can perform this sampling with covert security following the same paradigm we used

4 Recall that the Irwin-Hall distribution is the distribution of a sum of n independent random variables each of which
are uniformly distributed on [0, 1) and that the Irwin-Hall(n)→ N(n/2, n/12) as n→∞.

10



for noise pairs above. That is, we sample λ ρ candidates and validate a random set of λ− 1 candidates. If
they are all less than An we assume this will also hold for the last one and we will use this one. As in the
case for the noise pairs we use a standard commit-and-open approach to ensure that the adversary cannot
abort to avoid detection.

We formalize this in algorithm 2 in the FCT, FABB-hybrid model.

Algorithm 2 Covert Pad(A)→ [ρ]q with deterrence factor γ.

Require: An < q
Ensure: [ρ]q with ρ mod A←R ZA and ρ < An
1: Let λ = ⌈1/(1− γ)⌉
2: Each party i samples ρi,k ← ZA for k ∈ [λ].
3: Each party i does Shareq(ρi,k)→ [ρi,k]q.
4: FCT.sample(ssid, λ)→ c ▷ From fig. 2.1
5: ρi,k ← Openq([ρi,k]q) for i ∈ [n] and k ∈ [λ]\{c}.
6: if ∃i, k : ρi,k ≥ A then
7: Output (cheat, i) and abort
8: end if
9: return [ρ]q =

∑
i∈[n][ρi,c]q.

Like for the noise pair construction above, we will use the algorithm as part of the full protocol, ΠaABB,
which we present and prove secure in section 5. Again it is crucial for the simulation, to choose a proper c, to
open the right iterations. Which will again be discussed in lemma 7 as part of the monolithic proof.

4.2 Lifting

Based on noise pairs and pads we now introduce the lifting algorithms Liftp→q and Liftq→p in algorithm 3
and algorithm 4 respectively, which we use to move values from FABB(n, p) to FABB(n, q) and vice versa.

Algorithm 3 Compute Liftp→q([x]p) = [y]q

Require: [x]p
Ensure: [y]q = [x− ϵp]q with 0 ≤ ϵ ≤ U ▷ Using algorithm 1
1: Sample a pair ([r]p, [r̄]q)← NoisePairU ()
2: x̄← Open([x]p + [r]p)
3: [y]q ← x̄− [r̄]q
4: return [y]q

Lemma 1. Algorithm 3 computes [y]q = [x− ϵ · p]q where ϵ is an integer with 0 ≤ ϵ ≤ U when r̄ = r + ϵ̃ · p
for 0 ≤ ϵ̃ < U .

Proof. Note that x̄ = x+ r− b · p where b ∈ {0, 1} and b = 1 if and only if x+ r ≥ p. Now, since r̄ = r + ϵ̃ · p
for 0 ≤ ϵ̃ < U we have

x̄− r̄ = x− b · p− ϵ̃ · p.

Setting ϵ = b+ ϵ̃ finishes the proof as this implies ϵ ≤ U . ⊓⊔

Algorithm Liftq→p requires both a noise pair, (r, r̄) and some auxiliary randomness, ρ. The bounded, yet
exponentially large (in the security parameter) auxiliary randomness is used to statistically hide the value ϵ
when viewing x̄ = x′ + ϵ · p for x′ < p. However, this is non-trivial since it is not possible to sample ρ for the
full domain Zq, as this could result in an incorrect result, and since ρ must be unknown to all parties.
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Algorithm 4 Compute Liftq→p([x]q) = [y]p

Require: [x]q with x < Q ≤ q−(U+1)p

n(U+1)(2s̃+1)

Ensure: [y]p = [x mod p]p
1: ([r]p, [r̄]q)← NoisePairU ()
2: [ρ]q ← Pad((U + 1)2s̃Q/p) ▷ Using Algorithm 2
3: x̄← Openq([x]q + [r̄]q + [ρ]q · p)
4: [y]p ← (x̄ mod p)− [r]p
5: return [y]p

Lemma 2. Algorithm 4 computes [x mod p]p when ρ < n(U + 1)2s̃Q/p for p ≤ Q ≤ q−(U+1)p
n(U+1)(2s̃+1) .

Proof. Since x < Q ≤ q−(U+1)p
n(U+1)(2s̃+1) we have

x+ r̄ + ρp < x+ Up+ p+ (n(U + 1)2s̃Q/p)p

= Q+ (U + 1)p+ n(U + 1)2s̃Q

< (U + 1)p+ n((U + 1)2s̃ + 1)Q

≤ (U + 1)p+ n((U + 1)2s̃ + 1)
q − (U + 1)p

n(U + 1)(2s̃ + 1)

= (U + 1)p+ q − (U + 1)p = q

Hence no overflow modulo q will happen. Thus we can define x̄ = x+ r̄ + ρp as integers which implies that
x̄ mod p = x+ r mod p, so y = x mod p as desired. ⊓⊔

For security, we require ρ > 2s to ensure statistically hiding noise-drowning.

4.3 Probabilistic Truncation

We now show how to use Liftp→q and Liftq→p to do efficient truncation with a small error in algorithm
NoisyTrunc. The error stems from Liftp→q, both due to the error permitted in NoisePairU and due to
the possibility that x+ r > p, which will result in an error of a single bit when it happens.

Algorithm 5 Compute NoisyTruncU ([x]m) = [y]m
Require: [x]m = ([x1]p, [x2]q) with 0 ≤ x < pQ− Up
Ensure: [y]m = [⌊x/p⌋+ ϵ]m with 0 ≤ ϵ ≤ U for [y]m = ([y1]p, [y2]q)

[x̄1]q ← Liftp→q([x1]p)
[y2]q ← (p−1 mod q)([x2]q − [x̄1]q)
[y1]p ← Liftq→p([y2]q)
return ([y1]p, [y2]q)

Lemma 3. Algorithm 5 computes [⌊x/p⌋+ ϵ]m with 0 ≤ ϵ ≤ U .

Proof. From algorithm 3 we get that x̄1 = x1 − ϵp for some integer ϵ with 0 ≤ ϵ ≤ U . Next, from theorem 1
we get that (p−1 mod q)(x2 − x1) = ⌊x/p⌋, so

[y2]q = (p−1 mod q)([x2]q − [x̄1]q) = (p−1 mod q)([x2]q − [x1 − ϵp]q) = [⌊x/p⌋+ ϵ]q.
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Now,

y2 = ⌊x/p⌋+ ϵ < ⌊pQ− Up
p

⌋+ ϵ = Q− U + ϵ ≤ Q,

hence the input size requirement of algorithm 4 is fulfilled and will thus yield the correct result. This concludes
the proof. ⊓⊔

Error. Observe that the Algorithm algorithm 3 may inherently cause a 1-bit additive error, even if there is
no error in the NoisePair used. Specifically, this occurs if x+ r > p as a modulo wrap-around will occur.
This error is carried over to algorithm 5, hence always resulting in the potential of a 1-bit additive error in
the truncation result. This is unfortunately inevitable with our algorithms. However, we argue that when our
scheme is used for fixed-point computation, this will rarely cause any issues. The reason is that any error will
only be present in the least significant digits of the result of a multiplication. Fixed-point computation is
already an approximation of true values, hence any usage of such algorithms must already take into account
the potential of a rounding error. Thus, on an intuitive level, we expect any algorithm using fixed-point to not
be highly sensitive to a slight error in the least significant digits, as a half-bit error can always be expected
implicitly as part of inevitable rounding. The sensitivity can of course be reduced by increasing the precision.
Even so, a small error may still accumulate through repeated multiplications. This would for example be the
case if computing exponentiation through repeated multiplications. Hence, one should take into account how
the multiplicative depth of a given computation can cause an increase in error, and increase the fixed-point
precision (i.e. the choice of p) accordingly.

This has also been confirmed (for a 1-bit additive error) by Mohassel and Zhang [65] in the setting of
machine learning regression training on standard datasets such as MNIST. In Section 6.1 we confirm that
this is indeed also the case for the Fast Fourier Transform when using our protocol (even when allowing for
an error up to n).

Reduction in computation space. Besides the potential of adding a small error, algorithm 5 also requires
a reduction of the available computation space. This is because noise-drowning is required to prevent any
leakage when moving a secret shared value from FABB(n, q) to FABB(n, p). While an RNS over Zq and Zp

should give a ring Zm with m = p · q, algorithm 5 requires the value x ∈ Zm to be less than pQ − Up for

Q ≤ q−(U+1)p
n(U+1)(2s̃+1) . Assuming we use algorithm 1 for preprocessing and hence that U = n, then the amount

of usable bits in Zq is approximately log(q) − 2 log(n) − s̃. Hence the largest value we can represent will
have to consist of less than approximately log(p) + log(q)− 2 log(n)− s̃ bits. That is, we lose approximately
2 log(n) + s̃ bits of Zm. Since we require Q > p (otherwise we could not fully represent values from Zp in Zq

when lifting in algorithm 3), we can conclude that q > n2p2s̃. Such a domain size is significantly larger than
2s which is typically the minimally required size by standard MPC schemes such as SPDZ [36]. However,
requiring a gap in computation space when computing truncation is common. Several previous works [24, 42]
require at least the s most significant bits to be 0 to be able to do truncation correctly. It is also worth
stressing that both in our and previous works, the limit in computation space is only relevant for the value
being truncated. Hence general computation can use the full domain in both cases.

Input constraints. Reduction in computation space is not the only constraint we encounter on the magnitude
of secret values. Specifically corrupt parties are always allowed to choose their own input in MPC, and
since the underlying scheme FABB(n, q) supports the full domain Zq, we cannot simply hope that their
input fulfills the constraints required by Lemma 4.2. However, this can be enforced by using a comparison
operation [23]. Still, depending on the computation, such a check might be superfluous in the security model.
since the correctness of most computations will not be fulfilled if corrupt parties give malformed input. This
is inherently something that cannot be prevented in MPC unless the input can be anchored in some manner.
Hence, causing a computation to fail by giving bad input that yields a bad result, or giving bad input that
yields an error in one of the underlying algorithms, might amount to the same thing.
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Negative numbers. One final problem that occurs when constraining the computation domain is that
representing negative numbers using two’s complement is no longer possible. This is because a negative
number with a small absolute value, will not fulfill the input constraint of algorithm 4. However, it fortunately
turns out to be easy to still facilitate computation over signed values when q is odd and p | (q − 1)/2 by
applying the following approach: Given unsigned input x ∈ Zm, let x > m/2 represent the negative integer
x−m, similarly to two’s complement.

However, before any truncation is computed we increase the unsigned input x ∈ Zm by p(q − 1)/2 ≈ m/2.
Note that this does not affect x(p) of ϕ(x)→ (x(p), x(q)) and since p | (q − 1)/2, we have ϕ(x+ p(q − 1)/2) =
(x(p), x(q) + p(q − 1)/2). Formally, we define a new operator NoisyTrunc′

U by

NoisyTrunc′
U (x) = NoisyTruncU (x+ ap)− a

where a = ⌊q/2⌋ ≈ m/2. Recall that NoisyTruncU (x
′) = ⌊x′/p⌋+ ε for 0 ≤ ε ≤ U if x′ satisfied the upper

bound in Algorithm 5, hence the following holds:

NoisyTrunc′
U (x) = NoisyTruncU (x+ ap)− a

= NoisyTruncU (x+ ⌊q/2⌋p)− ⌊q/2⌋
= ⌊x/p⌋+ ε+ (q − 1)/2− (q − 1)/2 = ⌊x/p⌋+ ε.

4.4 Error Reduction

Below we show an approach for reducing the error that can occur in the approximate truncation algorithm 5
above. The error can be removed completely by using Lemma 8 in appendix B with M > p ·U , this, however,
requires evaluating a very large polynomial of degree ≈ pU2 in MPC, after computing algorithm 5. Which
would completely remove any advantage of our algorithm. Instead, we propose an algorithm that reduces
the error down to a single additive bit, and involves evaluating algorithm 5 twice, along with evaluating
a polynomial of degree ≈ U2 in MPC; something that requires the online computation of O(U2) secure
multiplications. We describe this in algorithm 6 and prove it in lemma 8 in appendix B.

Intuitively by first doing the truncation with an error up to U , it is possible to multiply the result with p
to isolate the noise and then apply the truncation again. Hence, the result can be adjusted to have noise that
is at most 1.

While a lower error is objectively desirable we believe this algorithm is more of theoretical interest than
practical interest, as it requires running algorithm 5 twice along with O(n2) multiplications. This is a very
significant overhead, while the payoff is minimal when running with a small number of parties such as 2 or 3.

Algorithm 6 Compute NoisyTrunc1([x]m) = [⌊x/p⌋ + ε′]m with 0 ≤ ε′ ≤ 1. Let P be a polynomial of
degree U2 + 3U − 1 as defined in Remark 6 such that P (x) = ⌊x/(U + 1)⌋.
Require: 0 ≤ x < m− (U + 1)(2s̃ + 1)p2 − Up, [x]m = ([x1]p, [x2]q)

[y]m ← NoisyTruncU ([x]m) ▷ y = ⌊x
p
⌋+ ϵ

[x′]m = (U + 1)([x]m − p[y]m + pU) ▷ x′ = (U + 1)(p(U − ϵ) + (x mod p))

[w]m ← NoisyTruncU ([x
′]m) ▷ w = ⌊ (U+1)(x mod p)

p
⌋+ (U + 1)(U − ϵ) + ε′

[y′]m = [y]m − U − P ([w]m) ▷ y′ = ⌊x/p⌋+ ε′. See the proof of lemma 8 for details.
return [y′]m

Remark 2. The variable ε′ in the output of algorithm 6 is distributed as follows when executing with at least
one honest party:

ε′ ∼ Bernoulli((x mod p)/p) +N

(
1

2
,

1

12U

)
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Still, one more detail to consider is that the input to the second application of truncation has to satisfy
the upper bound constraint of algorithm 5. More concretely:

Remark 3. Assume U2 + 2U ≤ 2s and Q > p > 2s then when x′ = (U + 1)([x]m − p[y]m + pU) as per
algorithm 6 then x′ < pQ− Up.

We leave the proofs of remark 2 and 3 to appendix B. We also leave the full specification of polynomial
P (in algorithm 6) to lemma 8 and the proof of correctness of algorithm 6 to proposition 1 both found in
appendix B.

Finally, we observe that evaluating a polynomial of degree O(U2) in MPC would traditionally require
O(log(U2)) = O(log(U)) multiplicative depth due to the dependency of the factors when computing exponen-
tiation. However, a technique exists that can reduce this to constant rounds while still only requiring O(U2)
multiplication gates. We refer the interested reader to the work of Bar-Ilan and Beaver for details [12].

5 Formal UC Construction

Based on the discussion in Section 3 and 4, we now formally show how to construct an augmented MPC
functionality, FaABB, allowing truncation modulo p with an additive error of at most 1. In fig. 5.1 the ideal
functionality is shown (i.e. implementation of algorithm 6). In fig. 5.2 and 5.3 we show how to realize this
functionality in the FABB-hybrid model. We choose to show this version of the protocol (algorithm 6) and
prove its simulatability because it is a theoretically interesting case and is simply an extension, building on
top of algorithm 5, and hence the protocol and the associated security proof of algorithm 5 follows from the
presented protocol and security proof when adjusting the error in the ideal functionality. As described in
section 4.1 we use a standard commit-and-open approach to ensure that the adversary can not avoid detection
by aborting.

Since it is possible to implement truncation using FABB, our construction might intuitively seem superfluous,
however our goal is to show how to realize approximate truncation more efficiently by leveraging an RNS,
rather than realizing it using an MPC scheme in itself. Furthermore, we note that our FaABB realization also
reduces the problem of doing MPC over Zm to the problem of doing MPC over smaller domains Zp and Zq,
which could potentially lead to optimizations when working over very large domains, e.g. when using MPC to
construct RSA moduli [4]. For this reason, we realize FaABB using two instances of FABB; one modulo p and
one modulo q. We note that the security model of FaABB builds on the security of FABB (in fig. 2.2), which is
malicious. The only exception is that the optimized truncation command only affords covert robustness, in
correspondence with our current realization of generation of correlated randomness using the NoisePair
(algorithm 1). Furthermore, we notice that the distribution of the truncation error is necessarily closely linked
to the underlying protocol for NoisePair.
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FaABB(n, p, q, γ)

This functionality is parametrized by the number of parties participating, n, and the modulo which the computation
is over, m = p · q, and a deterrence factor γ.

Rand: Upon receiving (random, ssid) from all parties for a fresh ssid, sample x←R Zm and store (ssid, x).
Input: Upon receiving (input, i, ssid, x) for a fresh ssid from some party i ∈ [n] and (input, i, ssid, ?) from all

other parties j ∈ [n]\{i}, then store (ssid, x mod m).
Linear: Upon receiving (linear, ssid1, ssid2, α, β) for α, β ∈ Zm and a fresh ssid2 and existing ssid1 from all

parties i ∈ [n], retrieve (ssid1, x) and store (ssid2, α · x+ β).
Add: Upon receiving (add, ssid1, ssid2, ssid3) for a fresh ssid3 and existing ssid1 and ssid2 from all parties

i ∈ [n], retrieve (ssid1, x), (ssid2, y) then store (ssid3, x+ y).
Mult: Upon receiving (mult, ssid1, ssid2, ssid3) for a fresh ssid3 and existing ssid1 and ssid2 from all parties

i ∈ [n], retrieve (ssid1, x), (ssid2, y) and store (ssid3, x · y).
Truncation: Upon receiving (truncation, ssid1, ssid2) for an existing ssid1 and fresh ssid2 from all parties

i ∈ [n], sample ϵ and compute ε′ ∈ {0, 1} as described in Remark 2, and send (truncation, ϵ, ε′) to Adv. Once
Adv returns (cheat, j, g, f) where j is a corrupt party, g ∈ {0, 1} and f : Zm → Zm, proceed as follows:
– If g = 0 retrieve (ssid1, x) and compute x̄ = ⌊x

p
⌋+ ε′ and store (ssid2, x̄).

– If g = 1 sample a random bit b which is 1 with probability γ and proceed as follows:
• If b = 1 return (cheat, j) to all parties.

• If b = 0 retrieve (ssid1, x) and compute x̄ = ⌊ f(x)
p
⌋+ ε′, store (ssid2, x̄) and finally return (accept) to

Adv.
Output: Upon receiving (output, ssid,P) for an existing ssid with P ⊆ [n] from all parties i ∈ [n], retrieve

(ssid, x) and send x to the adversary Adv. Wait for Adv to return either deliver or abort. If the adversary
returns deliver, output x to all parties in P, otherwise output abort.

Abort: Adv may at any point input abort at which point the functionality returns abort to all parties and aborts
by not accepting any more calls for the current sid.

Fig. 5.1. Ideal functionality for the augmented arithmetic black box

Lemma 4. Protocol ΠaABB in Fig. 5.2 and 5.3 UC-securely implements the ideal functionality FaABB of
Fig. 5.1 in the FABB-, FCT-hybrid

5 model with robustness against a static and strong, covert adversary
with deterrence γ and privacy against a static and malicious adversary, corrupting up to n− 1 parties, with
statistical security parameter s for a simulator running polynomially in 2n time. Under the assumption that

the input parameter, x fulfills that: 0 ≤ x < pQ−Up for 2s < p < Q ≤ q−(U+1)p
n(U+1)(2s̃+1) and s̃ = s+1, 0 ≤ U ≤ n,

q > p with gcd(p, q) = 1.

To prove lemma 4 we first build a simulator that uses the ideal functionality FaABB of Fig. 5.1. Then
using a series of game-hops we show that an adversary controlled by the environment interacting between the
simulation and the real protocol cannot distinguish except with a statistically small probability.

Remark 4. In our simulation proof, we need to do a game-hop with statistical indistinguishability, which
involves arguing that 2 distinct variables are statistically indistinguishable. For this reason, we require s̃ = s+1
to represent the statistical distance of s between each of the variables. Hence we can use the union bound to
argue that the aggregated statistical distance between the distributions is 2−s.

Remark 5. Notice that the ideal functionality chooses both ϵ and ε′ from the same distribution as the real
protocol in an honest run.

For simplicity, we only prove security for the maximum number of corrupted parties and assume without loss
of generality that the honest party is party n. We also for simplicity choose to assume that the adversary
never tries to cheat in more than one iteration. It is trivial, though cumbersome, to enhance the simulation to
handle an adversary that might cheat in any number of iterations. Let S be the following simulator simulating

5 Observe that FCT can be realized using FABB.(random, ssid).
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the honest party, through interaction with the ideal functionality FaABB. Furthermore, we implicitly assume
the simulator keeps track of all messages it receives, in particular, the ssids and we say a ssid is fresh if it
has not been associated to a value in FABB(n, p) or FABB(n, q). We then define the simulator S as follows:

ΠaABB(n, p, q, γ, s)

This protocol implements FaABB in the FABB-, FCT-hybrid model. It is parametrized by the number of parties
participating, n, and the modulo m = p · q for which the computation is over, where gcd(p, q) = 1 and q >
(n+ 1)(2s̃ + 1)p+ n. Assume implicit access to the instances FABB(n, p) and FABB(n, q).

Rand: Upon receiving (random, ssid) for a fresh ssid proceed as follows:
1. [r(p)]p ←R Zp under derived ssidp.
2. [r(q)]q ←R Zq under derived ssidq.

Input: Upon receiving (input, i, ssid, x) for some party i ∈ [n] and (input, i, ssid, ?) from all other parties
j ∈ [n]\{i} for a fresh ssid:
1. [x(p)]p ← Sharep(x mod p) under derived ssidp.
2. [x(q)]q ← Shareq(x mod q) under derived ssidq.

Linear: Upon receiving (linear, α, β, ssid1, ssid2) where α, β ∈ Zm, ssid2 is fresh and [x(p)]p and [x(q)]q exists
under derived ssid1,p and ssid1,q respectively, proceed as follows:
1. [y(p)]p ← (α mod p) · [x(p)]p + (β mod p) under derived ssid2,p.
2. [y(q)]q ← (α mod q) · [x(q)]q + (β mod q) under derived ssid2,q.

Add: Upon receiving (add, ssid1, ssid2, ssid3) where ssid3 is fresh and [x(p)]p, [x
(q)]q, and [y(p)]p, [y

(q)]q exist
under derived ssid1,p, ssid1,q and ssid2,p, ssid2,q respectively, proceed as follows:
1. [z(p)]p ← [x(p)]p + [y(p)]p under derived ssid3,p.
2. [z(q)]q ← [x(q)]q + [y(q)]q under derived ssid3,q.

Mult: Upon receiving (mult, ssid1, ssid2, ssid3) where ssid3 is fresh and [x(p)]p, [x
(q)]q, and [y(p)]p, [y

(q)]q exist
under derived ssid1,p, ssid1,q and ssid2,p, ssid2,q respectively, proceed as follows:
1. [z(p)]p ← [x(p)]p · [y(p)]p under derived ssid3,p.
2. [z(q)]q ← [x(q)]q · [y(q)]q under derived ssid3,q.

Output:
Upon receiving (output, ssid,P) where [x(p)]p and [x(q)]q exist under derived ssidp and ssidq and P ⊆ [n],
proceed as follows:
1. x(p) ← Openp([x

(p)]p,P) and x(q) ← Openq([x
(q)]q,P).

2. Compute and output x = q · (q−1x(p) mod p) + p · (p−1 · x(q) mod q) mod p · q.
Abort: If at any point FABB(n, p) or FABB(n, q) outputs abort, then output abort as well.

Fig. 5.2. Protocol realizing FaABB(n,m, s)
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ΠaABB(n, p, q, γ, s) - Continued

Truncation: Upon receiving (truncation, ssid1, ssid2) for a fresh ssid1 and existing derived ssid2,p and ssid2,q
from all parties i ∈ [n], retrieve [x(p)]p and [x(q)]q if it can be determined through the previous computations
that 0 ≤ x < pQ− Up, then preform NoisyTrunc1([x]m) = [⌊x/p⌋+ ε′]m = ([y]m) through the following steps,
letting λ = ⌈1/(1− γ)⌉:
1. Do the following input-independent covert preprocessing steps:

(a) Each party i samples ρi,k, ψi,k ← Z(U+1)2s̃Q/p for k ∈ [λ]. ▷ Sampling for noise drowning in algorithm 4.
(b) [ρi,k]q ← Shareq(ρi,k) and [ψi,k]q ← Shareq(ψi,k) for each i ∈ [n] and k ∈ [λ].
(c) Each party i samples ri,j,k,l ← Zp for j ∈ [n], k ∈ [λ], l ∈ [4]. ▷ Sampling for needed noise pairs,

algorithm 1.
(d) Sharep(ri,j,k,l)→ [ri,j,k,l]p for each i, j ∈ [n], k ∈ [λ], l ∈ [4].
(e) Compute [ri,k,l]p =

∑
j∈[n][ri,j,k,l]p for i ∈ [n].

(f) Openp([ri,k,l]p, {i}), so party i learns ri,k,l, for i ∈ [n].
(g) Shareq(ri,k,l)→ [r̄i,k,l]q, for i ∈ [n].
(h) FCT.sample(ssid, λ)→ c. ▷ Sample the challenge
(i) ρi,k ← Openq([ρi,k]q) and ψi,k ← Openq([ψi,k]q) for i ∈ [n] and k ∈ [λ]\{c}. ▷ Compute and validate

the noise drowning randomness.
(j) If any ρi,k, ψi,k ≥ (U + 1)2s̃Q/p for k ∈ [λ]\{c} then output (cheat, i) and abort. Otherwise set

[ρ]q =
∑

i∈[n][ρi,c]q and [ψ]q =
∑

i∈[n][ψi,c]q.

(k) For each party i ∈ [n] compute ri,k,l ← Open([ri,k,l]p) and r̄i,k,l ← Open([r̄i,k,l]q) for each k ∈ [λ]\{c}. ▷
Validate and compute the noise pairs

(l) If ri,k,l ̸= r̄i,k,l output (cheat, i) and then abort.
(m) Compute [rc,l]p =

∑
i∈[n][ri,c,l]p mod p and [r̄c,l]q = [rc,l + ϵc,l · p]q =

∑
i∈[n][r̄i,c,l]q mod q, for i ∈ [n].

(n) Define pairs ([rl]p, [r̄l]q) = ([rc,l]p, [r̄c,l]q) for l ∈ [λ].
2. x̃(p) ← Open([x(p)]p + [r1]p) ▷ The following steps executes algorithm 6
3. [x̄(p)]q ← x̃(p) − [r̄1]q ▷ First execution of algorithm 5
4. [y(q)]q ← (p−1 mod q)([x(q)]q − [x̄(p)]q)
5. ỹ(q) ← Openq([y

(q)]q + [r̄2]q + [ρ]q · p).
6. [y(p)]p ← (ỹ(q) mod p)− [r2]p.
7. [v(q)]q = (U + 1)([x(q)]q − p[y(q)]q + pU) and [v(p)]p = (U + 1)([x(q)]q − p[y(q)]q + pU).
8. ṽ(p) ← Open([v(p)]p + [r3]p). ▷ Second execution of algorithm 5
9. [v̄(p)]q ← ṽ(p) − [r̄3]q

10. [w(q)]q ← (p−1 mod q)([v(q)]q − [v̄(p)]q)
11. w̃(q) ← Openq([w

(q)]q + [r̄4]q + [ψ]q · p).
12. [w(p)]p ← (w̃(q) mod p)− [r4]p.
13. [x̄(q)]q = [v(q)]q − U − P ([w(q)]q) and [x̄(p)]p = [v(p)]p − U − P ([w(p)]p) ▷ See remark 6
14. Store x̄(p) and x̄(q) under derived ssid2.

Fig. 5.3. Protocol realizing Truncation of FaABB(n,m, s)

5.1 The simulator, S:

When the ideal functionality is initialized, it needs to be initialized with a deterrence factor γ, where we
assume, without loss of generality that 1/(1− γ) is an integer.

In the description of the protocol, we have been explicit in the distinction between ssid used in FaABB

and the ssid’s used in the two different instances of FABB. For simplicity, we will abstract that away from
now on.

Case 1: Rand – On input (random, ssid) on FABB(n, p) and FABB(n, q) from any party, relay the message
(random, ssid) to FaABB. Then internally emulate FABB(n, p) and FABB(n, q) by sampling x(p) ←R Fp and
x(q) ←R Fq.

Case 2: Input – On input (input, i, ssid, x(p)) and (input, i, ssid, x(q)) from corrupt party i with a fresh ssid

on FABB(n, p) and FABB(n, q) respectively, then define xi = ϕ−1(x
(p)
i , x

(q)
i ) for ϕ−1 as defined in Section 3.1
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and relay (input, i, ssid, xi) to FaABB. Similarly, on input (input, i, ssid, ?) for all other corrupt parties j,
relay the message to FaABB and internally store adversarial inputs.

Case 3: Linear – On input (linear, ssid1, ssid2, α
(p), β(p)) for α(p), β(p) ∈ Fp and (linear, ssid1, ssid2, α

(q), β(q))
for α(q), β(q) ∈ Fq for a fresh ssid2 and existing ssid1 on FABB(n, p) respectively FABB(n, q) from a corrupt

party, compute α = ϕ−1(α
(p)
i , α

(q)
i ) and β = ϕ−1(β

(p)
i , β

(q)
i ) for ϕ−1 as defined in Section 3.1 and relay the

message (linear, ssid1, ssid2, α, β) to FaABB.

Case 4: Mult – On input (mult, ssid1, ssid2, ssid3) for a fresh ssid3 and existing ssid1, ssid2 on FABB(n, p),
respectively FABB(n, q) from a corrupt party, relay the message (mult, ssid1, ssid2, ssid3) to FaABB.

Case 5: Truncation – Upon receiving (truncation, ϵ, ε′) from FaABB simulate the calls to FABB(n, p) and
FABB(n, q) as described in the simulator for Rand, Input, Linear, Mult. FCT.sample is simulated to fit
the implementation. The remaining non-trivial steps are simulated as follows:

1f Based on the extracted adversarial shares, along with ϵ the simulator samples random shares for the
honest party s.t. ϵp = (

∑
i∈[n] ri,k,l mod q) − (

∑
i∈[n] ri,k,l mod p) using rejection sampling. Finally,

simulate Openp([ri,k,l]p, {i}) to corrupt party i based on the extracted shares and the honest shares.
1g Based on the extracted inputs of the adversary, check if r̄i,k,l ̸= ri,k,l for all shares shared by the adversary

for all k ∈ [λ], l ∈ [4] and check if any ρi,k, ψi,k ≥ (U + 1)2s̃Q/p. In either case input (cheat, i, 1, f)
to the ideal functionality FaABB for any such i, save the iteration number as ℓl = k and whether the
cheating was on the noise pairs or the padding. Here f is defined from the value a = (

∑
i∈[n−1] r̄i,k,l

mod q)− (
∑

i∈[n−1] ri,k,l mod p) and ρi,k, ψi,k s.t. x̄ = ⌊ f(x)p + ϵ⌋ 6 Delay the delivery of the response
from FaABB.

1h If (cheat, i, 1, f) was not given as input to FaABB in the simulation of step 1g, then input (cheat,⊥, 0,⊥)
to FaABB and delay the delivery of the response from FaABB and emulate FCT.sample → c as the real
functionality FCT. If cheating occurred in step 1g then wait for FaABB to either output (cheat, i) or
(accept), if FaABB outputs (cheat, i) emulate FCT.sample to output a random c as in the real functionality
but under then constraint that c ̸= ℓl. If FaABB outputs (accept) emulate FCT.sample to output a random
c = ℓl.

1i Simulate Openq(ρi,k) and Openq(ψi,k) based on the extracted values from corrupt parties, and simulate
the honest party according the protocol by sampling ρn,k and ψn,k randomly from Z(U+1)2s̃Q/p.

1j If (cheat, i, 1, f) was given as input to ΠaABB in step 1g and ΠaABB gave as output (cheat, i) and the
cheating occurred on the padding, then output (cheat, i) and abort.

1k Simulate the opening of values ri,k,l and r̄i,k,l using the extracted and simulated shares.
1l If (cheat, i, 1, f) was given as input to ΠaABB in step 1g and ΠaABB gave as output (cheat, i) and the

cheating occurred on the noise pair, then output (cheat, i) and abort.

2, 8 Simulate a value for x denoted x′ and use it to simulate the opening of x̃(p) using x′
(p)

and r1 that S
picked earlier. Similarly for v(p).

5, 11 Simulate the opening of ỹ(q) by using the simulated values previously picked. Similarly for w̃(q).

Case 6: Output – On input (output, ssid,P) for an existing ssid to FABB(n, p), respectively FABB(n, q) from
a corrupt party, relay the message (output, ssid,P) to FABB(n, p) and FABB(n, q). If i ∈ P then define x(p),
x(q) to be the messages received back from FABB(n, p), respectively FABB(n, q). Then define x = ϕ−1(x(p), x(q))
for ϕ−1 as defined in Section 3.1 and output (ssid, x).

Case 7: Abort – On input (abort) from a corrupt party to either FABB(n, p) or FABB(n, q) relay the message
to FaABB and all other corrupt parties.

6 Note that f is always uniquely defined from a, ρi,k, ψi,k, p, q, ϵ since RNSs are linear and a and ρi,k, ψi,k cause
additive errors in part of the computation.
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Indistinguishability: We now argue indistinguishably through a series of game-hops from the simulation
above down to the real execution and argue that any adversary controlled by the environment interacting
between two consecutive games cannot distinguish except with statistically small probability. During the
game-hops, we will assume extraordinary powers in the simulator to simplify the proof process. However, we
will ultimately still end up with a sequence of games going from the simulation (without any special powers)
to the real execution though statistically or perfectly indistinguishable game hops.

Game 0 – Simulation as in 5.1: In this game, the adversary is acting on the simulation described in Section 5.1.

Game 1 – Run basic commands as in the real protocol: In this game, the adversary is talking to a simulator
that simulates all commands except Truncation as in the real protocol, and Truncation as in 5.1. We
assume that the simulator has access to all the honest parties’ input.

Game 2 – Simulated with the real x: This game runs as the previous one, except the real x is used instead of
x′.

Game 3 – A real execution of the protocol: In this game, the adversary is acting on a real execution of the
protocol, as described in protocol 5.2 and 5.3.

Lemma 5. Games 0 and 1 are perfectly indistinguishable

Proof. That the execution of the basic commands is indistinguishable follows from the fact that FABB(n,m)
can be computed securely, that ϕ is bijective, and the fact that the simulator knows all the honest inputs.
That FABB(n,m) can be computed securely means that all that is relayed to FABB(n, p) and FABB(n, q), could
be relayed to

∏
ABB(n, p) and

∏
ABB(n, q) instead. That ϕ is bijective ensures that the tour around FaABB in

game 0 makes no difference for the results. That the simulator in game 1 knows all the honest parties’ inputs
ensures, that it can still simulate the truncation, with the same input values as in game 0. ⊓⊔

Lemma 6. Game 1 and 2 are statistically indistinguishable with a statistical distance of at most 2−s

Proof. Notice that the first time x′ is used in the simulation is in step 2, so the whole prepossessing is
unchanged between these two games. In step 2 and 8 x and v are perfectly masked by the values r1 and r3
respectively which are perfectly random and unknown to the distinguisher as long as at least one party is
honest. In step 5 and 11 the values ỹ and w̃ are masked by the values r̄2 and ρ, or r̄4 and ψ, respectively. Both
r̄2 and r̄4 are perfectly random modulo p, and both ρ and ψ are perfectly random modulo (U +1)2s̃Q/p. Since
y, w < Q as shown in Alg. 5 we get that ỹ and w̃ statistically hides y and w respectively with distance 2−s̃.
This gives a collective statistical distance of at most 2−s̃+1 = 2−s as wanted and discussed in Remark 4. ⊓⊔

Lemma 7. Games 2 and 3 are perfectly indistinguishable under the assumption that the simulator may run
in O(2n)time.

Proof. First notice that the ϵ and ε′ used in the simulated preprocessing (game 2) is distributed in the same
way as in the real preprocessing (game 3). This is argued to be the case in honest computations in remark 5.
In the case of a cheating adversary (succeeding in cheating) any alterations to ε′ present in the real execution
of the protocol may be absorbed into f(x) in the simulation. Therefore ε′ effectively has the same distribution
in both cases.

Now notice that if the adversary attempts to cheat then the ideal functionality aborts with probability γ.
Since the simulated preprocessing aborts if the ideal functionality aborts, game 1 aborts with probability
γ. In the real preprocessing (game 2) the probability of abort (when the adversary attempts to cheat) is
1 − 1/λ = 1 − 1/(⌈1/(1 − γ)⌉) = 1 − 1/(1/(1 − γ)) = γ, (remember we assumed the ideal functionality is
initialized with a deterrence factor where 1/(1− γ) is an integer).

Most of the simulation runs just as in the real protocol, the only values that are computed differently
are c, the honest parties’ shares of ri,k,l, and x̄; the resulting truncated value. From proposition 1 and the
assumption that the input parameter x fulfills: 0 ≤ x < pQ−Up we see that the truncated value has the same
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distribution in both games. The honest parties shares of ri,k,l are chosen randomly (as in the real protocol)
but with the constraint of producing the right ϵ, as ϵ is distributed in the same way in the simulation and real
preprocessing. However, to make the shares for the honest party, the simulator does rejection sampling. In the
rare case where ϵ is close to either its maximum or minimum value, doing an ordinary rejection sampling is
expected to take exponential time in the number of participants. But if the number of participants is limited
by some small constant, then the expected running time of the rejection sampling is also upper bounded by a
constant.

If the adversary is not attempting to cheat, c is chosen from the same distribution in the real protocol and
the simulation. If the adversary does however attempt to cheat (remember we assumed that the adversary
only ever attempts to cheat in one iteration), c is chosen under the constraint, that the simulation aborts, if
the ideal functionality calls out the cheating. As already argued the ideal functionality calls out the cheating
with the right probability and c has the right distribution.

Notice that if the adversary does not attempt to cheat, then all the guarantees of the subprotocols are
upheld, and the result is correct in both games. If the adversary attempts to cheat but is caught it results in
the process being aborted in both games. If the adversary succeeds in cheating (altering the value of r̄, ϵ, ε′

or pushing the value of ρ or ψ outside the allowed range7) it influences the result of the process in the same
way in both games, but in neither game, it reveals additional data. Attempting to cheat can therefore not
help the distinguisher to distinguish between the two games.

Using the real x in game 2, x is trivially distributed in the same way as in game 3. Which insures that all
values derived from x, ϵ,rl, r̄l, ρ and ψ has the right distributions. This includes ỹ, ṽ and w̃ ⊓⊔

We have now reduced the simulation to the execution of the real protocol. Now lemma 4 follows.

Proof (of lemma 4).
Protocol ΠaABB (Fig. 5.2 and 5.3) UC-securely implements the ideal functionality FaABB (Fig. 5.1) in the

FABB-, FCT-hybrid model with a statistical security parameter of s, for a simulator running polynomially
in 2n time. Under the assumption that the input parameter, x fulfills that: 0 ≤ x < pQ− Up for 2s < p <

Q ≤ q−(U+1)p
n(U+1)(2s̃+1) and s̃ = s + 1, 0 ≤ U ≤ n, q > p with gcd(p, q) = 1. This follows from the statistical

indistinguishability between game 0 and game 3 shown in lemmas 5, 6 and 7.
The robustness against a static and strong covert adversary with deterrence factor γ, corrupting up to n− 1
parties with deterrence factor γ follows from the ideal functionality, as the protocol is not shown to have
greater security properties than the ideal functionality.
The privacy against a static and malicious adversary corrupting up to n− 1 parties with statistical security
parameter s stems from the fact that the ideal functionality only allows the cheating adversary to alter the
result, it does not leak more information then the always allowed ε′. ⊓⊔

6 Efficiency

6.1 Implementation

We developed a proof-of-concept implementation8 of our RNS based MPC scheme and NoisyTruncU of
algorithm 5 and compare it against SPDZ [36] for fixed-point computation when using the algorithm of
Catrina and Saxena [24] for probabilistic truncation. We specifically chose to compare with the probabilistic
truncation of Catrina and Saxena because, to the best of our knowledge, it is the most efficient scheme that
only requires black-box access to FABB(n, ·), with a sufficiently large prime modulo, and which is also secure
in the dishonest majority setting. Furthermore, this scheme is already implemented in our framework of
choice, FRESCO, and hence makes it to make a more fair, apples-to-apples comparison. Concretely their
scheme realizes probabilistic approximate truncation using a random value, bounded by a certain 2-power,

7 Here we do not consider it cheating if the value is not moved outside the allowed range.
8 Our FRESCO fork is freely available at https://github.com/jonas-lj/fresco and our benchmark setup can be
found at https://github.com/jonas-lj/FFTDemo.
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with a known bit-decomposition, which is used to pad the value to truncate. This value is then opened and
truncated in plain. The public, truncated value is then input to MPC again and the padding is subtracted
and the decomposed random bits are used to account for any overflow that might happen from the random
padding. We highlight that both their and our construction can be executed in constant rounds both during
the online and preprocessing phases and that both constructions do not require any secure multiplications
during the online phase. However, we also forgo the need for secure multiplications in the preprocessing phase.

Our benchmarks consist of micro-benchmarks in multiple network settings and with different-sized
computation domains, but also through the real-world application of Fast Fourier Transform (FFT) using
the Cooley–Tukey algorithm. All phases of the Catrina and Saxena protocol we benchmark are maliciously
secure. While our online and triple preprocessing phases are also maliciously secure (see Damg̊ard et al. [34]),
our generation of correlated randomness (NoisePairs and Pads) is only secure in the strong covert security
model for robustness.

We chose to benchmark our protocol with the larger error ϵ ≤ n, instead of ε′ ≤ 1 as practically efficient
MPC computations are generally only desirable for a small number of parties, such as 2 or 3. Thus, the improve-
ment in error by running algorithm 5 over algorithm 6 is minimal. While the computational punishment is sig-
nificant as our base algorithms must be run twice along with multiple multiplication gates. Thus, we believe this
is the desirable practical version, as the fixed-point domain size can be increased a few bits to make any error in-
significant in practice. Furthermore, for our chosen real-world application of FFT, we empirically validated that
the error in the accuracy of the result when using NoisyTruncU was at most 5.81 ·10−15 for any of our bench-
marked setups.

Table 2. Domain sizes used in the benchmarks,
assuming 3 parties and at least 39 bits of statis-
tical security. Column “Usable” expresses the
usable amount of bits.

log(m)
Ours [24]

log(p) log(q) Usable Usable
136 40 96 91 95
192 56 136 147 151
256 88 168 211 215
512 216 296 467 471
1536 728 808 1491 1495

Since our protocol offers security based on a malicious arith-
metic secure MPC protocol and supports security for a dishonest
majority, we found SPDZ [36, 30] to be the most natural com-
petitor and MPC scheme which we can base our underlying
FABB on. For this reason, we chose to implement our scheme
in the FRESCO [3] framework, which is an open-source Java
framework for MPC that natively has support for SPDZ. It is
designed to allow developers to implement their own MPC back-
end and then take advantage of an extensive library of functions
such as sorting, searching, and statistics, which can be used to
design real-world MPC applications. Furthermore, FRESCO has
been used extensively in other academic works [33, 6, 34, 14].

Code design. We wrote our code as a new MPC back-end for
FRESCO, aggregating two SPDZ instances, of appropriate mod-
uli and using these to implement the basic arithmetic operations
required by an MPC scheme (input, output, addition, linear
operations, and multiplications). We then wrote our efficient, approximate truncation function and integrated
this with the existing FRESCO code for performing fixed-point arithmetic. (see section 3.2 for details on
fixed-point computation in MPC and section 4.3 for a discussion of representing negative numbers in our
scheme). Our code uses no multi-threading on top of what is implicitly done in FRESCO, and we observe
that FRESCO only takes advantage of multi-threading insofar as to allow asynchronous networking and in
certain select locations implicitly through the Java class ParallelStream. As our code is a proof-of-concept,
there are still plenty of places it can be improved; in particular, using common seeds of randomness between
each pair of parties could be used to limit communication when computing NoisePairs and Pads.

Experimental setup. We ran all our experiments on AWS EC2 t2.xlarge servers located in Paris, Frankfurt,
and London and observed that the average latency between any two servers is between 10-15 ms and an
average of 0.43 ms when in the same data center. We observe that each of these machines has 4 virtual cores
on Intel Xeon CPUs and 16 GiB of RAM. All machines were running Amazon Linux Coretto and OpenJDL
17. Network communication (even on same-machine tests) is done using a standard TCP/IP socket, without
adding TLS or securing layers on top. Numbers are based on the average of at least 10 iterations and errors
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Table 3. Timing in seconds for 1024 regular multiplications and triple preprocessing for both our scheme and SPDZ
for 2 parties with domains with various bits available for computation. s ≥ 39. The best numbers are marked in bold.

Triple preprocessing Integer multiplication
log(m) Ours (RNS SPDZ) SPDZ Ours (RNS SPDZ) SPDZ

LAN, latency 0.43ms

136 11.6± 0.21 10.7± 0.18 0.197± 0.014 0.190± 0.029
192 14.8± 0.29 16.6± 0.48 0.205± 0.012 0.180± 0.008
256 19.1± 0.32 20.7± 0.18 0.206± 0.006 0.184± 0.004
512 42.3± 0.70 54.9± 1.3 0.275± 0.015 0.214± 0.008
1536 233± 1.8 462 0.467± 0.017 0.337± 0.003

WAN, latency 10 ms

136 12.8± 1.1 11.2± 0.36 0.392± 0.136 0.247± 0.046
192 15.8± 0.37 17.3± 0.43 0.311± 0.079 0.248± 0.012
256 21.2± 1.3 21.2± 0.28 0.262± 0.028 0.246± 0.015
512 44.5± 1.4 56.1± 1.2 0.326± 0.010 0.286± 0.012
1536 243± 3.7 494 0.535± 0.012 0.420± 0.008

Table 4. Timing in seconds for 1024 fixed-point multiplications and preparation of the correlated randomness required
for this (NoisePair and Pad for our scheme with γ = 2 and random bit decomposition for SPDZ) for 2 parties with
domains with various bits available for computation. Column #Triples express how many preprocessed multiplication
triples are required for 1024 fixed-point multiplications. s ≥ 39 The best numbers are marked in bold.

#Triples Correlated randomness Fixed-point multiplication
log(m) Ours [24] Ours [24] Ours [24]

LAN, latency 0.43ms

136 1024 41, 984 0.355± 0.018 0.263± 0.006 0.363± 0.010 1.17± 0.015
192 1024 58, 368 0.368± 0.011 0.264± 0.005 0.365± 0.007 1.42± 0.029
256 1024 91, 136 0.365± 0.014 0.312± 0.007 0.395± 0.007 1.68± 0.027
512 1024 222, 208 0.401± 0.062 0.669± 0.004 0.438± 0.016 2.82± 0.044
1536 1024 746, 496 0.505± 0.023 8.86± 0.077 0.787± 0.010 11.0± 0.042

WAN, latency 10 ms

136 1024 41, 984 0.438± 0.008 0.307± 0.005 0.402± 0.014 4.99± 0.32
192 1024 58, 368 0.453± 0.014 0.314± 0.006 0.413± 0.014 6.37± 0.10
256 1024 91, 136 0.455± 0.014 0.369± 0.016 0.441± 0.013 8.15± 0.12
512 1024 222, 208 0.476± 0.020 0.766± 0.008 0.487± 0.013 15.1± 0.35
1536 1024 746, 496 0.608± 0.024 8.84± 0.042 0.849± 0.021 35.6± 0.42

are the standard deviation. The only exception is triple preprocessing for SPDZ for a domain of 1536 bits,
which is only done once.

In all the benchmarks, we have used the same overall choice of domain size, m. However, some slack in
the computation space is needed to be able to carry out the probabilistic truncation correctly, both in our
scheme and the one by Catrina and Saxena. For Catrina and Saxena this reduction is n+ s bits, and for
our scheme, it is approximately 2n+ s̃ as discussed in Sec. 4.3. We show the concrete effect of this for our
benchmarks in table 2. Finally, observe that for all benchmarks we have ensured that s ≥ 39.

Micro benchmarks. We took a micro-benchmark approach to our implementation, letting it consist of several
interchangeable components for different levels of preprocessing. We did so, to allow us to isolate bottlenecks,
in our benchmarks. Hence, whatever is not benchmarked in a given test is emulated with a trivial dummy
implementation. Concretely we obtain the following micro-benchmarks

Triple preprocessing Preprocessing of multiplication triples for both Catrina and Saxena’s and our scheme.
This can be done before the input or function to compute is known. We based it on MASCOT [55], as this
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is currently the only multiplication triple preprocessing supported by FRESCO. However, more efficient
approaches have been presented since MASCOT [56], so these numbers should be considered an upper
bound.

Correlated randomness For our scheme this involves preprocessing of NoisePairs and Pads; the process
of algorithm 1 and algorithm 2. For Catrina and Saxena this involves bit-decomposition of a random
number of ⌈log2(p)⌉ bits, (excluding the preprocessing of ⌈log2(p)⌉ triples which is needed for the sampling
of random bits) needed for the approximate truncation [24]. This phase can be done offline at the same
time as triple preprocessing.

Fixed-point multiplication Online time of fixed-point multiplication with base p and hence log(p) bits
precision. Thus log(p) + 1 preprocessed multiplication triples are required for Catrina and Saxena’s
protocol and 1 for our protocol (along with a correlated randomness element). Both protocols only require
1 multiplication to be executed during the online phase.

Integer multiplication Online time of pure integer multiplications in MPC. This requires a preprocessed
multiplication triple for both protocols.

We express these micro-benchmarks in table 3 and 4. From table 3, we can conclude that triple preprocessing
becomes cheaper for our RNS scheme compared to SPDZ, the larger m gets. Whereas for the online time for
multiplications, our RNS scheme is slightly worse than SPDZ. While the first observation is expected, the
second is surprising as we intuitively would expect our scheme to perform comparatively better for larger
domains. This is because computation over Zp and Zq and generally more efficient than computation over
Zpq, assuming pq does not fit within a word. This has been the motivation for several previous usages of
RNSs [67, 8, 54]. From table 4, when it comes to the correlated randomness, we again observe that our
scheme is more efficient for larger m, whereas Catrina and Saxena’s scheme is more efficient for smaller m.
Concerning the online fixed-point multiplication time we see that our scheme is significantly faster than
the one by Catrina and Saxena, and that it scales more gracefully for larger m. It is not unexpected that
our scheme performs better for fixed-point computation (even excluding triple preprocessing) first; for the
reason of more efficient computation over the smaller Zp and Zq domains, but also since our online truncation
computation does not need to perform O(log(p)) bit-fiddling operations, like Catrina and Saxena’s scheme.
Concerning the generation of correlated randomness, it is hard to predict how our scheme would fare against
the other scheme since the approaches are so different. Although for similar reasons as above, we did expect it
to scale better relatively, compared to Catrina and Saxena’s scheme, which the benchmarks confirm. We give
more detail about the time it takes to preprocess our correlated randomness in Fig. 2. This figure shows how
the generation of correlated randomness scales with different choices of deterrence factors, both on LAN and
WAN. More specifically it shows that network latency has a minimal effect on the time, as expected due to
the protocol being constant round. As expected this loosely mimics a cost function λ(γ) = ⌈1/(1− γ)⌉, which
reflects the number of times the heaviest parts of the preprocessing must be carried out as γ increases. More
surprisingly it also shows that there is barely any performance penalty for larger computational domains, up
to log(m) = 512.

Concerning the choice of domain, we picked the smallest possible (with reasonable statistical security,
i.e. s ≥ 39) that is supported by our scheme, along with certain larger sizes and the largest supported by
FRESCO (domain size 1536 bits). While on the short side, the largest parameter also shows that using our
scheme for general integer computation over larger domains is advantageous when counting total execution
time, i.e. both online and preprocessing time together. Large domain computations are for example needed
in distributed RSA key generation [48, 27]. We would also expect the online time to be more efficient over
large domains, this does not occur in our benchmarks. We believe the reason is that the overhead required by
using 2 MPC instances outshines the computational advantage in doing multiplication over smaller domains.

We observe that online time for fixed-point multiplications is between 3.2-42x faster using our scheme
depending on the computation domain (as seen in the two right-most columns of table 4). However, if we
include the preprocessing time, our scheme is between 36-1,400x faster9. The reason for such a significant

9 The factors are for γ = 0.5 and depend on the size of the domain and whether execution is over WAN/LAN.
Concretely the factors are computed by taking the number of triples required for truncation from table 4 and
multiplying with the preprocessing time from table 3 and adding the online time (again from table 4).
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difference is that our scheme only requires 1 triple per fixed-point multiplication and Catrina and Saxena’s
protocol requires 1 + ℓ triples where 2ℓ is the domain size of the fractional digits, where ℓ = ⌈log2(p)⌉ in our
benchmarks to allow a direct comparison.
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Fig. 3. Online performance of computing an FFT of 1024 inputs for different amount of parties in different network
settings. s ≥ 39. Latency for 2 servers is 10 ms and 10-14 ms for 3 servers.

FFT benchmark. To consider our scheme in a realistic setting, we benchmarked the Fast Fourier Transform
for various input sizes using the Cooley-Tukey Algorithm. This use-case is primarily chosen because of its
pervasive appearance in computation such as signal processing or convolution neural networks, the latter
of which has also been studied in the setting of secure computation [60]. Furthermore, FFT computations
are well-suited for residue number systems because they only use multiplication and addition. The input
to the computation is a vector of complex numbers, each of which is in our implementation represented by
two fixed-point numbers, one for the real part and one for the imaginary part. We show the online time
for evaluating Cooley-Tukey on 1024 inputs using our scheme in Fig. 3. More specifically the figure shows
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Table 5. Complexity comparison between our scheme and other approaches for a single probabilistic truncation in the
amortized setting when truncating k bits of values over Zm. Row Trip. expresses the amount of preprocessed triples
needed, whereas Offline rounds expresses the rounds of communication needed which is independent of the private
inputs, and finally Online F2/Zm expresses the multiplications required to compute truncation.

[24] daBits [42] edaBits [42] Ours

Trip.
F2 0 O(log(n) · (k + s) O(log(n)2 + log(n) · (n+ k) 0
Zm k 0 0 0

Offline rounds 1 O(log(k)) O(k) 5

Online
F2 0 0 0 0
Zm 0 0 0 0

Rounds 1 1 1 2

the increase in time as the computation domain increases, for 2 and 3 parties. The base for the fixed-point
computation is p and hence depends on the domain m, as defined in table 2. The computation requires
O(|input| log(|input|)) multiplications executed over O(log(|input|)) rounds. We here observe that while each
of these multiplications consists of a secret value and public value, we still require a truncation after each
multiplication since the input is a fixed-point number. Thus, our scheme does not require multiplication triples
whereas the one by Catrina and Saxena does. From the figure we observe that our scheme is significantly
faster for FFT than the one by Catrina and Saxena as we would expect because of the reasons and findings
from the “Micro benchmark“ section, but exacerbated by the fact that our scheme does not need to multiply
two secret numbers in MPC.

6.2 Comparison with related techniques

Several schemes for efficient probabilistic truncation exist that perform better than the work of Catrina and
Saxena [24], but also require access to a functionality FABB(n, 2). While it is possible to emulate operations
modulo 2 in large fields, addition (XOR) requires a multiplication. The same is true for sampling of a random
bit. Furthermore, schemes working over modulo 2 are typically significantly more efficient than schemes
working over a large modulo p [59, 47, 52]. Hence the possibility of sampling random bits using FABB(n, 2)
and moving these to FABB(n, p) could lead to a more efficient version of the Catrina and Saxena protocol. The
line of work trying to achieve this starts with the ABY protocol [38] which is a semi-honestly secure two-party
protocol allowing mixed computation over bits and large domains when garbled circuits are used for bit
computation. This was later extended to the malicious security model for 3 parties [64]. Later Rotaru and
Wood [69] showed an efficient protocol for generating and computing over bits in an MPC scheme working
modulo a large p with the help of garbled circuits. Their protocol works for an arbitrary amount of parties,
in the dishonest majority setting against a malicious adversary. They coined the term daBits for a pair
([b]2, [b]p) where p is large. Several works improve upon this construction [7, 68, 18], culminating in the work
by Escudero et al. [42]. They show a more efficient protocol for daBits which is maliciously secure against a
dishonest majority that only requires black-box access to FABB(n, 2) and FABB(n, p). However, they also show
how to extend the daBit notion to extended daBits (edaBits), which is a representation of ({[bi]2}i, [r]p) s.t.∑

i 2
i · [bi]2 = [r]p. That is, a full bit-decomposition of a random number modulo p, represented by its binary

parts. This allows a more efficient execution of the probabilistic truncation protocol of Catrina and Saxena.
For completeness, we mention that certain other computations that require bit-decomposition can be realized
even faster using edaBits, than by adapting the existing protocols of Catrina, Saxena and de Hoogh. This is
specifically the case for comparison when using the Rabbit protocol [63].

It is hard to make an apples-to-apples efficiency comparison between these schemes and ours (and the
one by Catrina and Saxena) due to their need for FABB(n, 2). This is because FABB(n, 2) can typically not
be realized using the same techniques as for FABB(n, p) with p > 2s. However, in table 5 we try to compare
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the different schemes asymptotically, based on the heavy computations (multiplications in FABB for Zm and
F2)

10.
Furthermore, we observe that the edaBits authors find a 5-9x improvement in computing the “comparison”

operation, compared to the arithmetic approach of Catrina and de Hoogh [23] when including preprocessing.
While comparison is not the same as probabilistic truncation, the main bottleneck of both protocols is the
bit-decomposition of a random element in Fm. Hence we believe a similar improvement would be found for
probabilistic truncation. Thus we expect that our results will still be about a factor 4-280x more efficient than
the edaBit approach when including preprocessing and using the “comparison” improvement factor verbatim.

It is worth emphasizing that both the online and preprocessing approach by Catrina and Saxena, daBits,
and edaBits are maliciously secure against a dishonest majority. Our online phase is also maliciously secure,
but our concrete suggestion for realizing the preprocessing phase is done in a strong covert security model for
robustness. Furthermore, the possible error in the truncation of Catrina and Saxena is at most 1, whereas
our error is at most 1 ≤ U . Finally, we require working in a domain of o(p3) bits (spread on two different
MPC schemes working modulo p and modulo q > p2), which gives us o(p2) usable bits in the secret shared
value that gets truncated. Catrina and Saxena, daBits, and edaBits also require a gap in the usable bits of 2s,
hence they need a domain of o(p2) bits when p ≈ 2s.

We leave as future work the possibility of incorporating daBit and edaBit techniques to sample random
and correlated values in different domains in a manner that works with our protocols.
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A Background on MPC and its Security Models

Many different flavors of MPC exist today concerning the security they offer. This is typically classified by
several different metrics depending on such as whether the adversary corrupts parties before the start of the
protocol (static security) or after (adaptive security), and the number of parties they corrupt (dishonest or
honest majority). In this paper, we consider the setting of static corruption and a dishonest majority. Another
essential metric of corruption is what powers the adversary have over the corrupt parties. Concerning the
latter, the most common models are the semi-honest and malicious models. In the semi-honest model, corrupt
parties are assumed to follow the protocol and are thus only allowed to break privacy based on analysis of
the transcript. In the malicious model on the other hand, corrupt parties might deviate from the prescribed
protocol, but except with negligible probability they cannot influence the result of the computation in any
way, and they don’t learn anything other than they would have, had they behaved honestly. The malicious
model is very strong and is generally much more computationally expensive than the semi-honest model.
Furthermore, multiple theoretical limitations of the malicious model exist; if at most t < n/2 parties are
corrupt then it is possible to guarantee the completion of the computation with output to all parties in case
of malicious corruption, under the assumption of a broadcast channel [49]. This is known as guaranteed output
delivery. A weaker version of this is fairness [29] where all parties are guaranteed to learn the output if a
single party does. Hence, ensuring that a rushing adversary11 cannot selectively abort if they don’t like the
result of the computation. Thus, for a malicious corruption threshold t ≥ n/2 we can still have malicious
security [66, 16, 36, 62, 59, 55, 51], but with the possibility of the protocol aborting in case of malicious
behavior. This leaves two cases; do we identify a corrupt party when aborting, or will it be unknown to the
honest parties who else is honest and who misbehaves? The identification of malicious parties becomes highly
relevant in real-world executions, where we would like to boot, and perhaps publicly shame, a malicious
server. It turns out that identifiable abort becomes cumbersome and computationally expensive [53, 15].

To achieve greater granularity of the security need versus the computational requirements Aumann and
Lindell [10] formally introduced the model of covert security which captures the situation where parties can
act maliciously, but they will get caught (identified) if they do so with a certain (non-negligible) probability.
Concretely based on a public parameter γ, known as the deterrence factor, the adversary can succeed in
cheating with probability at most 1 − γ. More specifically Aumann and Lindell define 3 different covert
models: Fail-safe where the simulator is allowed to fail/be distinguishable in case the adversary succeeds in
cheating. Weak ; where the adversary receives the honest parties’ input when cheating regardless of whether

11 A rushing adversary is allowed to wait for a reply from all honest parties before communicating.
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they get caught or not. Strong ; where the adversary only learns the honest parties’ inputs in case they cheat
and don’t get caught.

The features relating to abort and identifiability are closely connected to the synchronicity of the
communication model. In the synchronous model, parties are expected to communicate at the same time and
hence a party can abort by refusing to send a required message at the required points in the protocol. Thus,
their identity is implicitly identified, through this inaction. We call this a stop-abort. Note that the synchronous
model does not preclude a rushing adversary, as we can simply imagine that each party (synchronously) gets
to decide whether they want to be the next one to provide input. Thus, the adversary can simply decide
to skip each possible option they have to provide input until the malicious parties are the only ones that
have not provided input. In practice, a stop-abort is discovered through a time-out on the network layer in
the protocol. A harder case happens in the situation where an adversary behaves maliciously and sends a
mathematically incorrect message, which will only cause the protocol to fail at a later time. We call this a
fault-abort. In such situations, it can be impossible to identify which party sent the wrong message; at least
without requiring all parties to send their transcript of the entire protocol, and hence break privacy. We note
that our functionality FABB in fig. 2.2 allows the adversary to identifiably stop-abort implicitly at any step by
not querying the box with a message that makes it operate. Fault aborts are explicitly captured in the output
phase. While some protocols may allow the discovery of fault-aborts earlier, they only really become relevant
in the output phase as the functionality FABB does not afford fairness (where all parties are guaranteed to
learn the output if a single party does), and hence an abort only really becomes relevant when the adversary
learns the output of the computation. The reason is that a rushing adversary could learn the output and
choose to abort if they do not like it. In such situations, it becomes crucial to be able to identify the malicious
party as the abort is now dependent on the honest parties’ private input (through the computation).

B Helper proofs

Proof (of remark 1). Assume without loss of generality that the honest party is n. Observe that party
n will always pick values r1,n,c, . . . , rn,n,c uniformly at random. Next see that the value rk will be a sum
of values modulo p, including rn,n,c. Hence, the value is uniformly random distributed. This in turn, also
means that each ri,c will be uniformly random distributed modulo p. Thus, we see that the distribution of
r̄c =

∑
i∈[n] ri,c and hence ϵ can be described exactly, see for example [20]. However, this is quite cumbersome.

Instead, we consider a continuous distribution as an approximation. Recall that the Irwin-Hall distribution is
the probability distribution for a random variable; computed as the sum of independent random and uniform
variables. This if we assume that the ri,c’s are continuously, uniformly distributed, ri,c ∼ p ·U(0, 1) for all
i ∈ [n], then r̄c =

∑
i∈[n] ri,c ∼ p · IrwinHall(n). Now since ϵ = ⌊r̄c/p⌋ we have that ϵ is approximately

Irwin-Hall distributed on n; ϵ ∼ IrwinHall(n). ⊓⊔

Proof (of remark 2). First observe that ε′ can be calculated based on ϵ and x in the following way:

ε′ =

⌊
⌊ (U+1)(x mod p)

p ⌋+ ϵ

U + 1

⌋
(1)

which is argued in lemma 8, now recall from remark 1 that ϵ ∼ IrwinHalls(n). Next, recalling that the
Irwin-Hall distribution converges to the normal distribution,we have ϵ ∼ N(U/2, U/12) for a sufficiently large
number of parties. Similarly, consider an indicator variable b which is 1 if x+ r > p in algorithm 3, similarly
to the variable in the proof of lemma 1. Observe that b can be approximated by a Bernoulli distribution
with probability parameter (x mod p)/p. I.e. b ∼ Bernoulli(x mod p)/p). Now see that the distribution of b
affects ϵ in lemma 6 by at most 1. Thus, the error, ϵ, resulting from algorithm 1 when used in algorithm 3 is
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approximately distributed by N(U/2, U/12) +Bernoulli((x mod p)/p). Thus, from equation 1 we get

ε′ ∼

⌊
⌊ (U+1)(x mod p)

p ⌋+N(U/2, U/12) +Bernoulli((x mod p)/p)

U + 1

⌋

∼
⌊
(U + 1)Bernoulli((x mod p)/p) +N(U/2, U/12) +Bernoulli((x mod p)/p)

U + 1

⌋
∼
⌊
(U + 2)Bernoulli((x mod p)/p) +N(U/2, U/12)

U + 1

⌋
=Bernoulli((x mod p)/p) +N(U/2, U/12)

⊓⊔

Proof (of remark 3). First, observe the following:

x− py + pU ≤ pQ− Up− p
(⌊

pQ− Up
p

⌋
+ ϵ

)
+ Up

= pQ− Up− (pQ− Up+ pϵ) + Up

= pϵ+ Up ≤ Up

Thus we have that x′ ≤ (U + 1)Up, so all there is left to show is that:

(U + 1)Up ≤ pQ− Up
(U + 1)U + U ≤ Q

U2 + 2U ≤ Q

Now since Q > p and p > 2s, we thus have for U2 + 2U ≤ 2s as by assumption.

The following lemma and its constructive proof show how to construct the polynomial P required by
algorithm 6 and that the computation of this algorithm indeed reduces an error ϵ ≤ n to ε′ ≤ 1. The security
proof of algorithm 6 is found in the monolithic proof of Lemma 4 in Section 5.

Proposition 1. Algorithm 6 computes [⌊x/p⌋+ ε′]m with ε′ ∈ {0, 1}, under the assumption that 0 ≤ x <
pQ− Up.

Proof. This follows from lemma 8 using algorithm 5 as the function T with L = U and M = U + 1.

Lemma 8. Let p > 1 and assume that T = Tp,L : N→ N computes the truncation by p with a bounded error,
e.g.

T (x) =

⌊
x

p

⌋
+ ϵ

where ϵ is some random number with 0 ≤ ϵ ≤ L and L < p. If we let M be an integer with M ≥ 2 and define

T ′(x) = T (x)− L+ P (T (M(x− pT (x) + pL)))

where P = PM is a polynomial such that P (x) = ⌊x/M⌋ for x = 0, . . . ,M +ML+L− 1 (see remark 6), then

T ′(x) =

⌊
x

p

⌋
+ ε′

for a non-negative integer ε′ where

0 ≤ ε′ ≤


0 if M > pL,

1 if L < M ≤ pL,
1 +

⌊
L
M

⌋
if M ≤ L.

33



Proof. Write x = kp+ r with k, r ∈ N and 0 ≤ r < p. Then T (x) = k + ϵ where 0 ≤ ϵ ≤ L so

x− pT (x) + pL = x− kp− pϵ+ pL = r + p(L− ϵ).

Now a second application of T gives us

T (M(r + p(L− ϵ))) =
⌊
Mr +Mp(L− ϵ)

p

⌋
+ ϵ̃ =

⌊
Mr

p

⌋
+M(L− ϵ) + ϵ̃.

for some ϵ̃ with 0 ≤ ϵ̃ ≤ L. Now note that
⌊
Mr
p

⌋
+M(L− ϵ) + ϵ̃ < M +ML+ L since r < p so Mr/p < M

and hence ⌊Mr/p⌋ < M , ϵ ≥ 0 and ϵ̃ ≤ L, so we may apply P and get

P

(⌊
Mr

p

⌋
+M(L− ϵ) + ϵ̃

)
=


⌊
Mr
p

⌋
+M(L− ϵ) + ϵ̃

M

 = L− ϵ+ ε′

where

ε′ =


⌊
Mr
p

⌋
+ ϵ̃

M

 ≤

⌊
M(p−1)

p

⌋
+ ϵ̃

M

 =

M −
⌊
M
p

⌋
+ ϵ̃

M

 .
Now, if M ≤ L then ε′ ≤ 1 +

⌊
L
M

⌋
because ϵ̃ ≤ L. If M > L then ignoring the ⌊M/p⌋ term, the numerator is

strictly smaller than 2M so ε′ ≤ 1. If M > pL then ε′ = 0 because ⌊M/p⌋ > L so the numerator is strictly
smaller than M . Inserting this into the definition of T ′ gives

T ′(x) = T (x)− L+ P (T (M(x− pT (x) + pL))) =

⌊
x

p

⌋
+ ϵ− L+ L− ϵ+ ε′ =

⌊
x

p

⌋
+ ε′

which finishes the proof. ⊓⊔

Remark 6. The polynomial PM used in lemma 8 may be constructed using Lagrange interpolation,

PM (x) =

M+ML+L−1∑
j=0

⌊
j

M

⌋M+ML+L−1∏
i=0
i ̸=j

x− i
j − i

 .

Note that PM has degree M +ML+ L− 2 and may be computed in advance for given M and L.
In our case, L will be a lot smaller than p, so we will in practice choose M = L+ 1 and accept the small

error term because using M > pL will make the degree of PM very high, so the evaluation of this will become
a bottleneck.
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