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Abstract. Fully Homomorphic Encryption (FHE) is a prevalent cryptographic
primitive that allows for computation on encrypted data. In various cryptographic
protocols, this enables outsourcing computation to a third party while retaining
the privacy of the inputs to the computation. However, these schemes make an
honest-but-curious assumption about the adversary. Previous work has tried to re-
move this assumption by combining FHE with Verifiable Computation (VC). Recent
work has increased the flexibility of this approach by introducing integrity checks
for homomorphic computations over rings. However, efficient FHE for circuits of
large multiplicative depth also requires non-ring computations called maintenance
operations, i.e. modswitching and keyswitching, which cannot be efficiently verified
by existing constructions. We propose the first efficiently verifiable FHE scheme
that allows for arbitrary depth homomorphic circuits by utilizing the double-CRT
representation in which FHE schemes are typically computed, and using lattice-based
SNARKs to prove components of this computation separately, including the mainte-
nance operations. Therefore, our construction can theoretically handle bootstrapping
operations. We also present the first implementation of a verifiable computation on
encrypted data for a computation that contains multiple ciphertext-ciphertext multi-
plications. Concretely, we verify the homomorphic computation of an approximate
neural network containing three layers and >100 ciphertexts in less than 1 second
while maintaining reasonable prover costs.
Keywords: Fully-Homomorphic Encryption · Verifiable FHE · Lattice-based SNARKs
· Computation on Encrypted Data

1 Introduction
Fully Homomorphic Encryption (FHE) schemes can be used to add privacy-preserving
properties to cloud applications by encrypting the client’s inputs such that the server can
still (homomorphically) perform computations on them, resulting in encrypted outputs
that are sent back to the client. Examples of such applications are oblivious RAM
(ORAM) [PCDN23], privacy-preserving machine learning [BGGJ19] and more recently
confidential smart contracts in general-purpose blockchains [ZAM23]. Normally, FHE
schemes can only be used in settings where the server is assumed to be honest-but-curious,
meaning the server is trusted to perform the homomorphic computations correctly but
not trusted with access to the confidential plaintext values on which the computation is
performed. This trust assumption can be removed by adding verifiablitity to existing FHE
schemes and thereby constructing verifiable FHE (vFHE) [VKH23]. By adding integrity to
the FHE primitive, vFHE could be used to maintain confidentiality of FHE against active
adversaries performing e.g. key-recovery attacks [CT15, CGG16]. More generally, vFHE
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enables verifiable computation on encrypted data, aka Private Verifiable Computation
(PVC) [FGP14], in which a client can outsource computation to a server in a verifiable
way while preserving the privacy of its inputs and outputs.

A common approach for constructing vFHE is to combine an FHE scheme with
a Verifiable Computation (VC) scheme which is used to prove the correctness of the
homomorphic computations. However, combining these two primitives in an efficient way
turns out to be a highly non-trivial task. Namely, VC can usually prove arithmetic circuits
whose gates are additions or multiplications over some field Fp, while the homomorphic
computation that the server wants to prove is performed over polynomial rings. Simply
representing the computation as circuits over Fp introduces many significant overheads on
the size of the proofs or on the size of CRS (common reference strings), and also on the
running time of the prover and of the verifier.

To overcome this, recent works [GNS23, BCFK21] have studied how to modify the
VC protocols to work over rings, in an attempt to have proofs that match the type of
computation done by the server and do not require representing operations over rings with
gates over Fp. We propose a fundamentally different approach, namely, to exploit the
well-known decomposition of the polynomial rings used in FHE as direct product of fields1

which evokes the use of a lattice-based SNARK over fields to generate the proofs.

1.1 Our Contributions
We propose the first verifiable fully homomorphic encryption scheme combining FHE
and SNARKs (succinct non-interactive argument of knowledge) in a non-trivial way.
Our approach is modular, meaning that it is possible to construct blocks of verifiable
homomorphic circuits that can be assembled together to build larger circuits. Our
construction is the first one to handle real homomorphic computation, including the
fundamental maintenance operations known as modulus switching and key-switching (aka
relinearization). In addition, this implies that we can handle bootstrapping and achieve
fully homomorphic encryption. Moreover, we provide a public C++ implementation of
our construction and ran experiments that can serve as baselines for future works when it
comes to practical results.

1.2 Exploiting double-CRT to make FHE more VC-friendly
Most FHE schemes work over cyclotomic rings R = Z[X]/⟨XN + 1⟩, where N is a power
of two. In particular, ciphertexts are composed by elements of RQ := R/QR, where Q is
a large integer. Thus, when a server performs computation on encrypted data, it operates
on elements from RQ, i.e., polynomials modulo XN + 1 and Q. At first glance, this type
of computation is not easily represented by circuits over Fp, which is the set VC typically
handles.

However, FHE schemes are commonly implemented using a double-CRT representation,
which works by choosing Q as a product of a few small primes q0, ..., qL, then using the
isomorphism

RQ = Zq0 [X]
⟨XN + 1⟩ × ...×

ZqL
[X]

⟨XN + 1⟩

to represent operations on RQ as independent operations on each Rqi
. Since for each prime

qi, it holds that Zqi
is a field, this gives us a hint that it could be possible to instantiate

different VC instances, defined over fields Fq0 , ...,FqL
and then have L+ 1 proofs to prove

the actual computation over RQ.

1This is often called residual number representation (RNS) or double-CRT representation.
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Figure 1: Homomorphic computation of (c0 + c1) · c2 · c3 modulo Q = q0 · q1. Every
gate represents a homomorphic addition or multiplication, which are composed by many
operations over RQ. When we represent the circuit as two circuits with low-level operations
defined modulo q0 and q1, and inputs ci,j = cj mod qi, the output of the first multiplication
gate is used as input of the following gates in all the circuits.

However, between the homomorphic operations, one needs to execute two “maintenance
operations” that are not defined in terms of additions and multiplications on RQ, and
thus do not respect the above isomorphism. These operations are key switching, which
is used to guarantee that ciphertexts have a valid format during the whole computation,
and modulus switching, which controls the noise growth. Concretely, as discussed in more
detail in Section 2.6, both operations require non-arithmetic modular reductions. Moreover,
since the isomorphism does not hold, the computations modulo qi become dependent of
values modulo qj for j ̸= i. This means that instead of having L+ 1 independent circuits
defined modulo different primes qi’s, which could be proved independently, we actually
have L+ 1 circuits that are interconnected, with intermediary wires being shared among
them. This is illustrated in Figure 1 and discussed in more detail in Sections 2.4 and 2.5.

c00 c01 c02 c03 c10 c11 c12 c13

+

×

×

+

×

×

mod q0 mod q1

π0,0
π0,1

π1,1π1,0

Figure 2: Two circuits representing the homomorphic computation of (c0 + c1) · c2 · c3
modulo Q = q0 · q1. We divide the circuits in two layers, the first one is composed by the
proofs π0,0 and π0,1, and the second layer corresponds to the proofs π1,0 and π1,1. Proof
π1,0 considers as input the value c0,3 and the two outputs of the first layer. And similarly
for π1,1 and c1,3.

Because of the non-arithmetic operations and the wires shared among the circuits, we
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cannot simply have one proof for each prime qi. Thus, we subdivide each circuit into layers,
such that the input wires can come from any circuit, and the output wires can be connected
to any other circuit, but the internal wires are connected only to gates with respect to
the same qi. As such, we have “boxes” defined entirely modulo one single prime and we
can finally have a proof for them, which gives us a proof for the original homomorphic
computation modulo Q as a concatenation of the proofs of these small subcircuits. This is
illustrated in Figure 2. Notice that simply breaking a proof with respect to Q =

∏L
i=0 qi

into proofs with respect to qi’s does not increase the proof size, since each proof now is
smaller (containing elements modulo qi). However, adding k layers multiplies the proof
size by O(k). On the other hand, the prover’s running time is basically the same and the
CRS can even become smaller. Moreover, if a non-interactive VC protocol is used, then
our solution remains non-interactive, since the prover can generate all πi,j ’s and only then
send them to the client for verification.

1.3 Optimizations and efficiency
By looking at the homomorphic operations more closely, we see that there are different
ways of grouping them or changing the order they are executed in, such that we add no
or very little overhead to the prover and reduce the proof size and the verifier’s running
time. First of all, all the operations between plaintexts and ciphertexts, and also the
homomorphic additions can be grouped in single proofs, since they do not require key
switching or modulus switching, and these are the only two operations that mix the wires.
Also, the homomorphic multiplication is usually composed by a tensor product, then a key
switching, then a modulus switching. Thus, at first glance, a block of operations finishing
with a ciphertext-ciphertext multiplication would require 3 layers of proofs, however,
switching the modulus from Q to Q′ := Q/qL means that the following computation is
executed modulo Q′, thus there is no subsequent computation modulo qL. As a result, we
can actually finish the proof with respect to qL, then pass its output as inputs to the other
proofs and save one layer. This is shown in Figure 3. Also, each layer has one less column
than the previous layer, which almost halves the proof size.

c0

f f f

KeySwt KeySwt KeySwt

ModSwt
g

ModSwt
g

ModSwt
g

modq0 modq1 modq2

c1 c2

c0 c1 c2

modq0 modq1 modq2

c0 c1 c2

f f f

KeySwt

ModSwt
g

KeySwt

ModSwt
g

KeySwt

c0 c1

Figure 3: Proof for homomorphic computation of the composition g ◦ f , where f ends
with a multiplication. On the right, we show how we can merge two layers by ending the
proof corresponding to the last prime.

One problem that hinders the practical efficiency of our construction, is that to
achieve soundness, state-of-the-art efficient VC schemes [Gro16, GWC19] need to prove
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computations over fields Fq where q is around 256 bits, while the qi’s typically used in FHE
schemes are around 30 bits. One could emulate the smaller moduli in the bigger field Fq, but
this inevitably blows up the number of gates in the arithmetic circuit that the VC scheme
verifies. We observe that recently proposed lattice-based approaches [GMNO18, ISW21]
can achieve similar security while being flexible in terms of field choice. Note that the use
of lattice-based constructions also comes with the added benefit of maintaining plausible
post-quantum security.

In Section 3.4, we study the efficiency of our scheme when instantiated to verify building
blocks such as ciphertext additions, plaintext-ciphertext multiplication, matrix-vector
multiplication, and higher depth computations such as ciphertext-ciphertext multiplication,
slot rotations and more general high-depth functions composed of these building blocks.

1.4 Implementation and practical results

We present the first implementation of a verifiable FHE construction that can be efficiently
instantiated for fully homomorphic circuits i.e. with a possible multiplicative depth greater
than one. We instantiate it for a homomorphic circuit representing a 3-layered neural
network and implement it in C++ to show the practicality of our scheme. The only other
vFHE implementation known to us [VKH23] proves the correct computation of a single
ciphertext-ciphertext multiplication (without the required maintenance operations) in 443s
while our implementation needs only 167s to prove a homomorphic computation on >100
ciphertexts that includes the maintenance operations required to compute higher depth
computations. Verification times vary from 0.6s to 0.9s depending on the size of the input
layer.

2 Preliminaries

2.1 Notations

We denote the security parameter as λ. The notation y ← A(x) signifies the execution
of a probabilistic polynomial-time (PPT) algorithm A which outputs y given the input
x. The symbol F is used to denote a finite field, while R denotes a ring. We denote by
negl(λ) an arbitrary negligible function in λ. Within the paper, square brackets are used
to indicate a range [n] = {1, . . . , n}, and also to represent the central remainder modulo q
as [n]q. Bold lowercase letters are used to denote vectors and bold uppercase for matrices.

2.2 Rank-1 Constraint System (R1CS)

An R1CS instance is a collection of constraints on a vector of values c ∈ FNw called the
wire values, where Nw is the number of wire values and F is a finite field. The first n
values of this wire vector are called the statement x ∈ Fn. The last Nw − n values are
called the witness w ∈ FNw−n. There are Ng constraints which are also referred to as
gates. An R1CS instance CS can be defined as a tuple CS =

(
Ng, n,Nw, {ai, bi, ci}i∈[Ng ]

)
for Ng, n,Nw ∈ N (with n ≤ Nw) and ai, bi, ci ∈ FNw+1 for all i ∈ [Ng]. Define a function
CS : Fn × FNw−n → {0, 1} for some constraint system CS. This function has the property
that for some statement x ∈ Fn and witness w ∈ FNw−n, CS(x,w) = 1 if and only if
zai ·zbi = zci for z = [1 x⊤w⊤] and i ∈ [Ng]. We call the constraint system satisfiable for
some statement x iff there exists some w such that CS(x,w) = 1. The set of all satisfiable
wire values (x,w) is a relation called RCS . We can define the corresponding language as
LCS = {x | ∃w s.t. CS(x,w) = 1}.
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2.3 Succinct Non-interactive ARguments of Knowledge (SNARKs)
We define Succinct Non-interactive ARgument of Knowledge (SNARK) schemes in the
preproccesing model with a designated verifier. A SNARK consists of the following three
probabilistic polynomial time (PPT) algorithms:

- Setup(1λ, CS)→ (crs, st) : given the security parameter λ and the constraint system
CS, it generates a common reference string crs and a verification state st.

- Prover(crs,x,w) → π : given a common reference string crs, a statement x and a
witness w, it generates a proof π.

- Verifier(st,x, π)→ b : given a verification state st, a statement x and a proof π, it
generates a verification bit b ∈ {0, 1}.

These algorithms must satisfy the completeness and knowledge soundness properties.

Completeness. A SNARK scheme is complete iff for any security parameter λ, statement
x and witness w, and R1CS instance CS,

Pr

 Verifier(st,x, π) = 1

∣∣∣∣∣∣
CS(x,w) = 1

(crs, st)← Setup(1λ, CS)
π ← Prover(crs,x,w)

 = 1.

Knowledge Soundness. A SNARK scheme satisfies knowledge soundness iff for any
PPT algorithm Prover∗, there exists a PPT extractor Extr such that for any security
parameter λ, R1CS instance CS and state z,

Pr

 Verifier(st,x, π∗) = 1
∧

CS(x,w∗) ̸= 1

∣∣∣∣∣∣
(crs, st)← Setup(1λ, CS)
(π∗,x)← Prover∗(crs; z)

w∗ ← Extr(crs; z)

 ≤ negl(λ).

SNARKs schemes are also required to be succinct. Concretely, this requires that the
proof size can be expressed as poly(λ+ log |CS|) and the Verifier algorithm runs in time
poly(λ+ |x|+ log |CS|).

2.3.1 Latices-based SNARKs.

Traditionally, SNARKs defined over Fq rely on the large size of this field to guarantee
security and soundness, which means that q typically has around 256 bits. Lattice-based
SNARKs, on the other hand, base their security on hardness assumptions such as the
learning with errors problem (LWE), which allow them to be instantiated with smaller
fields, i.e., Fq with small q. Thus, they are a perfect tool for our construction, because we
can use small values of q to match the small primes used in FHE schemes. As an additional
benefit of lattice-based SNARKs, they are post-quantum, just like the FHE schemes are.
Thus, combining them with FHE gives us constructions that are still post-quantum secure.

In our analysis, we assume that the verification runs in time O(λ+ |x|) and each proof
is composed by a constant number of ring elements, which together have size O(λ). Those
assumptions are true for current constructions of lattice-based SNARKs[GMNO18, ISW21].
We refer to the appendix B for more details on the construction of lattice-based SNARKs.

2.4 Fully Homomorphic Encryption (FHE)
FHE schemes are encryption schemes with the property that arbitrary circuits C can
be evaluated homomorphically in the ciphertext space. To make the presentation more
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concrete, we consider in this section the BGV scheme [BGV12], but notice that other
schemes, like FV [FV12] and CKKS [CKKS17], are very similar. We give a high-level
description of the construction, that suffices for our purposes. Moreover, to simplify the
presentation, we just present a symmetric-key version of BGV. Transforming it into a
asymmetric scheme is done via simple standard techniques.

Let R = Z[X]/⟨XN +1⟩, where N = 2k for some k ∈ N. Define a modulus Q =
∏L

i=0 qi

where each qi is a different prime, and RQ = ZQ[X]/⟨XN + 1⟩. The ciphertexts are
defined as vectors over RQ, but the homomorphic operations are easier to understand if
the ciphertexts are considered polynomials in RQ[Y ], where Y is a new variable. That
is, we can view a ciphertext c ∈ Ru

Q as c(Y ) =
∑u−1

i=0 ci · Y i. Fix a plaintext modulus
t and an error distribution χerr over R that samples coefficients according to a discrete
Gaussian distribution with standard deviation σerr. Then, we say that c(Y ) decrypts to
a message m ∈ Rt if when we evaluate c(Y ) on the secret key, we get the message plus
some small noise term, i.e., c(sk) mod Q = te + m for e ∈ R. Notice that in this case,
(c(sk) mod Q) mod t = m.

2.4.1 Generic construction.

A homomorphic encryption scheme HE requires the following functions for parameter
generation, secret key generation, encryption and decryption. For a basic (symmetric-key)
version of the BGV scheme, they can be constructed as follows.

- HE.ParamGen(1λ, L): given the security parameter λ and a multiplicative depth L,
choose N , Q =

∏L
i=0 qi and σ ∈ R such that the (N,Q, σ)-RLWE problem achieves

λ bits of security and the FHE scheme based on it can accommodate homomorphic
circuits of depth L. Let R := Z[X]⟨XN + 1⟩, RQ := R/QR and Rt := R/tR for
some plaintext modulus t. The message and the ciphertext spaces are Rt and RQ[Y ],
respectively. Set params := (N,Q, σ, t), which is a default input to the following
algorithms.

- HE.KeyGen(1λ): Given the security parameter λ, uses params to output some secret
key s and rlk which is the relinearization key with respect to s (see Section 2.6).

- HE.Encsk(m): Consider m ∈ Rt. Sample a uniformly at random from RQ, and
e← χerr. Compute b := −a · sk + t · e+m ∈ RQ. Output c(Y ) := b+ a · Y .

- HE.Decsk(c): Compute b⋆ := [c(sk)]Q over RQ. Output b⋆ mod t. Notice that
b⋆ mod t = m iff all coefficients of e remain smaller than ⌊Q/2t⌋, i.e. the noise term’s
l∞-norm remains below a certain bound.

A homomorphic encryption scheme also requires a function HE.Eval that evaluates an
arithmetic circuit C on some input ciphertexts ci(Y ) = HE.Enc(mi) and outputs ciphertext
c′(Y ) such that HE.Dec(c′) = C({mi}). We present the functions called by the HE.Eval
function to homomorphically compute basic operations on ciphertexts.

- HE.Add(c0, c1): Output cadd(Y ) = c0(Y ) + c1(Y ) = (b0 + b1) + (a0 + a1) · Y . It is
easy to see that

cadd(sk) mod t = [c0(sk) + c1(sk)]Q mod t = m0 +m1.

Thus, c(Y ) is an encryption of the sum of the messages, as desired. Notice that the
noise terms are also added together, and therefore homomorphic addition increases
the noise additively.
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- HE.Mult(c0, c1): Output cmult(Y ) = c0(Y ) · c1(Y ) = b0 · b1 + (a0 · b1 + a1 · b0) · Y +
a0 · a1 · Y 2. We can see that

cmult(sk) mod t = c0(sk) · c1(sk) mod t = m0 ·m1,

which is an encryption of m0 ·m1, as desired. Notice that ciphertext multiplication
leads to quadratic noise growth since the noise terms are multiplied.
Furthermore, the degree of cmult in Y is larger than the degree of both input
ciphertexts, and thus requires more elements of RQ to store it. In other words, this
operation increases the size of the ciphertexts.

- HE.MultPtxt(c0,m1): Output cmultP txt(Y ) =
∑k

i=0 m1 · c0,i · Y i for input ciphertext
c0(Y ) of degree k. Notice that cmultP txt has the same degree as c0 in Y , so the size of
the output ciphertext remains constant. Also, the noise term of c0 is only multiplied
by m0, and therefore the noise growth is small compared to ciphertext-ciphertext
multiplication (at least when t is relatively small).

Notice that both the noise and ciphertext degree grow exponentially with the multi-
plicative depth of the homomorphic circuit being evaluated. In levelled FHE schemes, this
is typically solved by performing maintenance operations after every ciphertext-ciphertext
multiplication. More concretely, the ciphertext c(Y ) = c0 + c1 · Y + c2 · Y 2 ∈ RQ is
first relinearized using a relinearization key rlk resulting in c′(Y ) = c′

0 + c′
1 · Y ∈ RQ.

This is followed by the modswitching operation which aims to remove the noise added by
ciphertext-ciphertext multiplication (and relinearization). As the name implies, this is
achieved by switching to a smaller modulus Q⋆ = Q/qi such that c′′(Y ) = c′′

0 +c′′
1 ·Y ∈ RQ⋆ ,

which essentially divides the noise by qi. See Section 2.6 for a more detailed description.

2.5 Basics of RNS
All the homomorphic operations are composed of some operations over RQ, which boil
down to adding and multiplying polynomials of degree less than N , then reducing them
modulo XN + 1, and reducing each coefficient modulo Q.

Because Q is typically large (say, with more than 1000 bits), to work directly with
polynomials mod Q, we need to use libraries that implement arbitrary precision integers,
which is inefficient. To overcome this, the residue number system (RNS), is typically used.
It exploits the decomposition of Q =

∏ℓ
i=1 qi to work with several polynomials modulo

each qi, which fit in the 32- or 64-bit native integer types of current processors.
In more detail, becauseQ =

∏ℓ
i=1 qi, by using the Chinese remainder theorem coefficient-

wise, we have

RQ = ZQ[X]/⟨XN + 1⟩ =
ℓ∏

i=1
Zqi [X]/⟨XN + 1⟩.

Thus, working with an element of RQ is equivalent to working with a vector of size ℓ in∏ℓ
i=1Rqi

. Therefore, we could in principle verify the homomorphic computation over RQ

with ℓ independent proofs over each Zqi
. We will discuss the limitations of this method

soon.
Since multiplying polynomials efficiently requires first performing a fast Fourier trans-

form, or number-theoretic transform (NTT), it is common to go one step further and
represent elements of RQ in the “NTT form". Given a ∈ RQ, instead of simply storing
its list of coefficients, we precompute the NTTs of a with respect to each qi. For this, we
choose each qi as a prime congruent to 1 modulo 2N . This guarantees that there is a
primitive 2N -th root of unity ωi ∈ Zqi and that the following is an isomorphism:

NTTi(a) = (a(ω0
i ), a(ω1

i ), a(ω3
i ), ..., a(ω2N−1

i )) ∈ ZN+1
qi
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Putting all together, we start with a(X) ∈ RQ, then we obtain a list of polynomials
(a1(X), ..., aℓ(X)) ∈ Rq1 × ...×Rqℓ

, then we map each of them to a vector using the NTTs
so, at the end, a(X) is stored as a matrix

Mat(a) :=

NTT1(a1)
...

NTTℓ(aℓ)

 =

a1,0 . . . a1,N

...
. . .

...
aℓ,0 . . . aℓ,N

 ∈ Zℓ×(N+1).

By using a special type of NTT transform, called a negative-wrapped convolution (on which
we will not elaborate here), we can avoid the polynomial reduction after multiplication
[LMPR08, Zuc18]. Therefore, we can implement each addition and multiplication over
RQ with pointwise operations of the corresponding matrices. For example, a · b ∈ RQ is
C := Mat(a)⊙ Mat(b), that is, each entry (i, j) of C is [ai,j · bi,j ]qi

So computations over RQ can instead be performed as vector computations over l
different finite fields. We will refer to this as the double-CRT (dCRT) representation. In
the following section, it will become clear that the FHE scheme presented in Section 2.4 is
not practical when computed in dCRT representation entirely. Maintenance operations
require inverting the NTT transform and then sharing elements between different rows in
the matrix representation.

2.6 Maintenance operations
In Section 2.4, we explained that ciphertexts maintenance enables the scheme to manage
arbitrary depth homomorphic circuits. Typically, one relinearizes after multiplication,
followed by a modswitch to decrease the noise. We define the modulus at level i as Q(i) =∏i

j=0 qj . Therefore, ciphertexts encrypted over RQ(L) can manage homomorphic circuits
of multiplicative depth L. It will become clear from a more detailed description below that
the maintenance operations are not composed of additions and multiplications over RQ(i) .
This implies that they can not be performed in dCRT representation. Therefore, one should
first invert the NTT transform. However, one can avoid inverting the RNS decomposition
by performing fast base extension FastBaseExt. To extend the decomposition of c ∈ RQ̃

in base Q(l) = q1 · . . . · ql to another base Q̃(k) = q̃1 · . . . · q̃k that is coprime to Q(l), one
computes

FastBaseExt(c,Q(l), Q̃(k)) :=
( l∑

i=1

[
c · (Q(l)/qi)−1

]
qi

· (Q(l)/qi) mod q̃j

)k

j=1

Notice that this does not exactly equal [[c]Q(l) ]Q̃(k) , but it can be shown that using fast base
extension in maintenance operations only adds negligible noise to the resulting ciphertexts.

2.6.1 Relinearization.

As discussed in Section 2.4, multiplying ciphertexts results in a degree 2 ciphertext
c(Y ) = c0 + c1 ·Y + c2 ·Y 2 which should be relinearized to a ciphertext c′(Y ) = c′

0 + c′
1 ·Y ,

that decrypts to the same plaintext. One approach would be to encrypt sk2 as rlk(Y ) =
rlk0 + rlk1 · Y and then compute c′

j = cj + c2 · rlkj for j ∈ {0, 1}. Notice however, that
this would add a large noise term c2 · e, where e is the noise term of rlk(Y ) and c2 is an
element modulo Q(i). Therefore, we instead use a decomposition of c2 into its RNS base

DQ(i)(c2) =
(

FastBaseExt([c2]q0 , q0, Q
(i)),

. . . ,

FastBaseExt([c2]qi
, qi, Q

(i))
)
∈ Ri+1

Q(i) ,
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and define the relinearization key as a vector of ciphertexts rlk0, rlk1 ∈ Ri+1
Q(i) , such that

we can compute the relinearization as c′
j = cj + ⟨DQ(i)(c2), rlkj⟩ for j ∈ {0, 1}. This

ensures that noise terms of rlk are only multiplied with smaller elements modulo qj , since
the elements of DQ(i)(c2) were base extended from the base qj to the base Q(i). Using
a similar technique, one can construct from a ciphertext c(Y ) another ciphertext c′(Y )
such that [c(sk)]Q(i) = [c′(sk′)]Q(i) mod t, i.e. they decrypt to the same plaintext using a
different secret key. This operation is referred to as key-switching.

2.6.2 Modulus Switching.

To decrease the noise in a ciphertext c(Y ) ∈ RQ(i) [Y ] at level i, one switches the modulus of
that ciphertext to Q(i−1) = Q(i)/qi. This produces another ciphertext c′(Y ) ∈ RQ(i−1) [Y ]
such that c(sk) mod Q(i) and c′(sk) mod Q(i−1) are equivalent modulo t, i.e. they decrypt
to the same plaintext. Given that the noise at c(Y ) = c0 + c1Y satisfies a certain bound,
the coefficients of c′ can be calculated as

c′
l = 1

qi
(cl + δl)

where δl = t(−cl/t mod qi) for l ∈ {0, 1}. This operation can be performed in RNS
decomposition by base extending δ ∈ Rqi to the base Q(i−1).

For a more detailed description of these maintenance operations, as well as alternative
methods, we refer to [Zuc18, KPZ21]. Importantly, notice that all computations required
by the maintenance operations (and also the double-CRT vector operations) are easily
representable by R1CS constraints.

2.7 Verifiable FHE (vFHE)
We present a definition for vFHE schemes adjusted from Viand et al. [VKH23]. This
definition simply extends the definition of an FHE scheme by introducing a Verify algorithm
that verifies the ciphertext cy and proof π output by the Eval algorithm for a certain input
ciphertext cx and homomorphic circuit f . More concretely, a vFHE scheme consists of the
following algorithms

- params← ParamGen(1λ, f): given a security parameter λ and a homomorphic circuit
f , it computes the parameters params which are a default input to all other algorithms.

- (sk, pk)← KeyGen(1λ): given a security parameter λ, it generates the public key pk
and secret key sk.

- cx ← Enc(x, pk): given plaintext input(s) x and a public key pk, it computes
encryption(s) cx.

- (cy, πy) ← Eval(cx, pk): given some input ciphertexts cx and the public key pk, it
computes the output ciphertexts cy and a proof πy.

- {accept, reject} ← Verify(cx, cy, πy, sk): given some input ciphertexts cx, some output
ciphertexts cy and a proof πy, output either accept or reject.

- y ← Dec(cy, sk): given some ciphertext(s) cy and secret key sk, it computes the
decryption(s) y.

Next, we define the properties that a vFHE scheme should satisfy.
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Correctness. [VKH23] defines a correct vFHE scheme as a scheme that always decrypts
to the correct plaintext, i.e., decryption works with probability one. However, most FHE
schemes have a small failure probability, thus, we change the definition replacing “one” by
overwhelming. Formally, for a certain security parameter λ, any function f and plaintext
inputs x, using the parameters params← ParamGen(1λ, f), it holds that

Pr

 Dec(cy, sk) = f(x)

∣∣∣∣∣∣
(sk, pk)← KeyGen(1λ)

cx ← Enc(x, pk)
(cy, πy)← Eval(cx, pk)

 = 1− negl(λ).

Completeness. A complete vFHE scheme always verifies for output ciphertexts and
proof generated honestly for the corresponding input ciphertexts. More formally, for
a certain security parameter λ and any function f and plaintext inputs x, using the
parameters params← ParamGen(1λ, f), it holds that

Pr

 Verify(cx, cy, πy, sk)
= accept

∣∣∣∣∣∣
(sk, pk)← KeyGen(1λ)

cx ← Enc(x, pk)
(cy, πy)← Eval(cx, pk)

 = 1.

Soundness. A sound vFHE scheme only allows a negligible probability that some input
and output ciphertexts verify if their corresponding plaintexts are not valid. More formally,
for a certain security parameter λ and any function f , plaintext inputs x and adversary A,
using the parameters params← ParamGen(1λ, f), it holds that

Pr


Verify(cx, cy, πy, sk)

= accept
∧

Dec(cy, sk) ̸= f(x)

∣∣∣∣∣∣∣∣
(sk, pk)← KeyGen(1λ)

x← Aparams(pk)
cx ← Enc(x, pk)

(cy, πy)← Aparams(cx, pk)

 ≤ negl(λ).

Security. The security of a vFHE scheme is defined basically in the same way as the
security of a regular FHE scheme. Formally, for a certain security parameter λ, any function
f , plaintext inputs x and adversary A, using the parameters params← ParamGen(1λ, f),
we say that the vFHE scheme is CPA-secure if it holds that∣∣∣∣∣∣∣∣Pr

 b′ = b

∣∣∣∣∣∣∣∣
(sk, pk)← KeyGen(1λ)

(x0, x1, st)← Aparams(pk)
cx ← Enc(xb, pk) for b← {0, 1}

b′ ← Aparams(cx, st)

− 1
2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

Notice that [VKH23] defines CCA1 security and it is known that by combining FHE
and SNARKs, we can achieve CCA1, but this introduces some technical and theoretical
complications that would push us away from our goal of constructing a practical vFHE
scheme. Thus, we prefer to stick to CPA security.

3 vFHE Schemes from Lattice-based SNARKs
In this section, we construct our new verifiable FHE (vFHE), as defined in Section 2.7, by
combining a second-generation FHE scheme, such as BGV or CKKS, and a lattice-based
SNARK. A vFHE scheme allows a client to outsource the computation of f on input x to
a service provider, while keeping x private and also verifying the correctness of the final
result y = f(x). Without loss of generality, we assume that the homomorphic computation
corresponding to the outsourced function is represented as a layered circuit, as explained
in Section 3.1. The homomorphic computation is then performed as usual, and to allow
the verification of the computation, the SNARK is used to generate proofs for each layer
of the circuit. This is explained in detail in Section 3.2.
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3.1 Layered circuits for homomorphic computation
In this section2, we assume that the homomorphic computation can be represented as
a circuit where each gate takes as input elements of the ring RQ (polynomials modulo
XN + 1 and coefficients in ZQ) and performs a homomorphic addition, plaintext-ciphertext
multiplication, or ciphertext-ciphertext multiplication, which is divided in a tensor product
and the maintenance routines, the key-switching and the modulus switching. Moreover,
it is always possible (and it is common in the FHE literature) to use layered circuits
for the homomorphic computation, where each layer finishes with ciphertext-ciphertext
multiplication gates, and the number of layers is then the multiplicative depth of the
circuit. Thus, we consider the following structure for the circuits: First of all, define
Q(k) =

∏k
i=0 qi, i.e., the product of k + 1 small primes. For a circuit with multiplicative

depth L, fresh ciphertexts are defined over RQ(L) = RQ. Then we represent the circuit as
the following composition of subcircuits

C0(...(ML−1(CL−1(ML(CL(·))))))

where each subcircuit Ck takes as input input(k) elements of RQ(k) , outputs output(k)
elements of RQ(k) , and only the output gates can be tensor products. The subcircuit
Mk then corresponds to the key- and modulus-switchings. Hence, it takes as input
input(k − 1) ≤ output(k) elements of RQ(k) , and outputs input(k − 1) elements of RQ(k−1) .

3.2 Our vFHE scheme
Our scheme combines a second-generation FHE scheme E = (HE.ParamGen,HE.KeyGen,
HE.Enc,HE.Dec,HE.Eval), such as BGV and CKKS, and a lattice-based SNARK Π =
(Setup,Prover,Verifier).

- ParamGen(1λ, f): Given the function f , construct a layered circuit
C0(...(ML−1(CL−1(ML(CL(·)))))) of multiplicative depth L that computes f(·).
Run HE.ParamGen(1λ, L) to generate the FHE parameters HE.params. Return
params = (HE.params, L, {Ci}, {Mi}) and consider them default inputs to the follow-
ing algorithms.

- KeyGen(1λ) Generate the secret, public, and relinearization key of the FHE scheme,
i.e., run (HE.sk,HE.pk,HE.rlk)← HE.KeyGen(1λ). Then, run the setup algorithm
of the SNARK scheme for each multiplicative layer i, over each field that is used in
the dCRT representation of RQ(i) . In more detail:

1. For each prime qj with j = 0, . . . , L, use the SNARK setup algorithm to generate
(crsL,j , vrkL,j)← Π.Setup(1λ, CL) in Fqj

.
2. For each multiplicative layer i = L−1 to i = 0, use the SNARK setup algorithm

to generate
(a) (crsi,j , vrki,j)← Π.Setup(1λ, Ci ◦Mi+1) in Fqj

, for 0 ≤ j ≤ i.
(b) (crsi,i+1, vrki,i+1)← Π.Setup(1λ,Mi+1) in Fqi+1 .

Output the secret/public keys: sk = (HE.sk, {vrki,j}) and pk = (HE.pk,HE.rlk, {crsi,j}).

2Extending our construction to also implement slot rotations is straightforward, as discussed in
Appendix A, where we also present an optimized way of adding all the slots minimizing the number of
proof layers.
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- Enc(x, pk): Return cx = HE.Enc(x,HE.pk) ∈ R2
Q(L) for x ∈ Rt.

- Eval(c̄, pk): For a layered circuit C0(...(ML−1(CL−1(ML(CL(·)))))) and vector of
input ciphertexts c̄ ∈ (R2

Q(L))input(L), run the evaluation algorithm of the FHE scheme
as usual, but use the intermediate values as the wire values that are used to generate
proofs in the SNARK scheme. In more detail:

1. For each prime qj with j = 0, . . . , L:
(a) Evaluate cL,j ← HE.Eval(c̄j , CL,HE.rlk) where c̄j ∈ (R2

qj
)input(L) and

cL,j ∈ (R3
qj

)output(L) since CL has input(L) inputs and output(L) outputs.
Additionally store the results of all intermediate computations as wL,j ∈ F∗

qj
.

(b) Calculate proof πL,j ← Π.Prover(crsL,j , c̄j ||cL,j ,wL,j).
2. For each multiplicative layer i = L− 1 to i = 0:

(a) Generate the intermediate outputs used for modulus switching ci,i+1 ←
HE.Eval(ci+1,i+1,Mi+1,HE.rlk) where ci+1,i+1 ∈ (R3

qi+1
)input(i) and ci,i+1 ∈

(R2
qi+1

)input(i), since a maintenance circuit has as many ciphertext outputs
as inputs. Also, for 0 ≤ j ≤ i, generate intermediate outputs ci,j ←
HE.Eval(ci+1,j ||[ci+1,i+1]qj , Ci ◦Mi+1,HE.rlk) where ci+1,j ∈ (R3

qj
)input(i),

and ci,j ∈ (R2
qj

)output(i) since Ci has input(i) inputs and output(i) outputs.
Again, store the results of all intermediate computations as wi,j ∈ F∗

qj
for

0 ≤ j ≤ i+ 1.
(b) For 0 ≤ j ≤ i, using additionally in the statement HE.rlk, modswitching

outputs ci+1,i+1 and the decompositions
[c̃i]qj

∈ (Ri+1
qj

)input(i) used for relinearization, calculate the proofs

πi,j ← Π.Prover(crsi,j , ci+1,j ||ci,j ||[ci+1,i+1]qj ||[c̃i]qj ||HE.rlk,wi,j).

Also calculate the proofs for the maintenance circuit Mi+1

πi,i+1 ← Π.Prover(crsi,i+1, ci+1,i+1||ci,i+1||[c̃i]qj ||HE.rlk,wi,i+1).

Return all ciphertexts ci,j output by HE.Eval and all proofs πi,j output by Π.Prover

- Verify(c̄, {ci,j}, {πi,j}, sk): Given the input ciphertexts c̄ ∈ (R2
Q(L))input(L), all inter-

mediate outputs ci,j ∈ (R3
qj

)output(i), the proofs πi,j and verification keys vrki,j , run
Π.Verifier for every partial circuit in every field Fqj and output reject if any SNARK
verifier rejects. Otherwise output accept. In more detail:

1. For each prime qj with j = 0, . . . , L: verify the circuit CL by running bL,j ←
Π.Verifier(vrkL,j , c̄j ||cL,j , πL,j) and output reject if bL,j = 0.

2. For each multiplicative layer i = L− 1 to i = 0:
(a) For 0 ≤ j ≤ i, verify the circuit Ci ◦Mi+1 in Fqj

by using the relevant input
and output ciphertexts, modswitching outputs and inputs for relinearization
to run

bi,j ← Π.Verifier(vrki,j , ci+1,j ||ci,j ||[ci+1,i+1]qj
||[c̃i]qj

||HE.rlk, πi,j)

and output reject if bi,j = 0.
(b) Verify the circuit Mi+1 by using the relevant input and output ciphertexts

and inputs for relinearization to run

bi,i+1 ← Π.Verifier(vrki,i+1, ci+1,i+1||ci,i+1||[c̃i]qj
||HE.rlk, πi,i+1)

and output reject if bi,i+1 = 0.
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(c) Output accept, since all subcircuits verified correctly.

- Dec(cy, sk): Output y = HE.Dec(c,HE.sk) ∈ Rt and cy ∈ (R3
Q(0))output(0).

Subcircuit blueprinting. In our basic construction, the vFHE public key contains
O(L2) different SNARK crs instances which are used in the Eval algorithm to generate
the vFHE proof. This could easily be decreased to only O(L) instances by generating
a "blueprint" crs for each prime qj . These crs’s encode a blueprint circuit CB which is
able to compute all other subcircuits C0(M1(·)), . . . , CL−1(ML(·)), CL by setting certain
input wires to zero. Since these subcircuits would be very similar, mostly differing in the
number of inputs and outputs, the added number of gates would be minimal, which means
that the added cost of proof generation would also be minimal. Note that one can also
choose to make this tradoff for certain similar layers but not for others. This blueprinting
technique also effects the number of SNARK vrk instances in the secret key but their size
is negligible compared to the crs’s.

3.3 Security analysis
The FHE and the SNARK schemes are used independently in our construction, hence, the
security of our scheme is trivially inherited from them. In this section, we briefly discuss
the security requirements that were defined in Section 2.7.

3.3.1 Correctness & Completeness.

These properties follow from the correctness and completeness of the FHE and SNARK
scheme respectively. Our construction simply divides the FHE computation in an exhaustive
set of subcircuits. The Eval algorithm evaluates every subcircuit, propagating outputs as
intended by the FHE scheme. The Verify algorithm will accept when all the SNARKs that
prove these subcircuits verify.

3.3.2 IND-CPA Security.

Suppose there is an algorithm A that breaks the CPA-security of our scheme. Then we
can construct an algorithm B that breaks the CPA-security of the underlying FHE scheme
by simply letting B generate the public parameters of the SNARK scheme (as they are
all independent of the secret values of the FHE scheme, thus B is able to do so), and
providing them to the A algorithm. The remainder of the IND-CPA security game is the
same for the vFHE adversary, so B can forward the messages between A and its challenger.
Therefore, our construction remains CPA-secure if the base FHE scheme is already so.

3.3.3 Soundness.

The knowledge-soundness of the SNARK scheme implies that the probability ε that a PPT
algorithm can produce a verifying but non-valid assignment is negligible in the security
parameter λ. If we denote this probability for the subcircuit in layer i with the modulus
qj as εi,j and call this event Vi,j (such that Pr[Vi,j ] = εi,j), and denote the soundness
probability from Section 2.7 as εvFHE, we can use the union bound to state that

εvFHE ≤ Pr[
⋃

i=0,...,d
j=0,...,i+1

Vi,j ] ≤
∑

i=0,...,d
j=0,...,i+1

εi,j ≤ d2ε = negl(λ)

where d is the multiplicative depth of the homomorphic circuit.
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3.4 About the compactness and client’s efficiency
To avoid trivial constructions of FHE where the server does not actually compute anything,
but just attaches the circuit to the ciphertext and the client decrypts and evaluates the
circuit on their own, one usually requires that FHE schemes be compact [DGHV10], i.e.,
the running time of decrypting a ciphertext is independent of the circuit that was evaluated.
We notice that as all existing leveled FHE schemes, our construction does not satisfy this
compactness property, but it is not equivalent to the trivial construction either. Indeed,
there are functions for which it is more expensive for the client to compute them locally
than to outsource their computation, run the decryption and the verification.3 Moreover,
we notice that there are other reasons for a client to outsource the computation, for
example, if the client has already outsourced the storage or if the computation to be
performed depends on inputs from the server, which are unknown to the client (as is
common when the server offers machine learning as a service, since in this case the server
trains a large model and the client cannot download the model to run it locally). Finally,
we would like to stress that in practice, our construction is still much more efficient than
existing constructions and allows the computation of complicated and deep circuits that
could not be handled previously.

All that said, we now present an analysis of the verification cost, then we provide
examples of some functions families that are “outsourceable”.

3.4.1 Verification cost

As stated in Section 2.3.1, the time complexity of verifying a proof π that a circuit with
input size ℓin and output size ℓout was correctly computed is O(ℓin + ℓout + λ). Notice
that we instantiate our SNARKs over Fqj for 0 ≤ j ≤ L, thus, each gate of the circuit that
operates on polynomials is actually a point-wise addition or multiplication of N -dimensional
vectors corresponding to the NTTs of the polynomials (see Section 2.5). Thus, because the
circuit is defined in terms of polynomials, its verification cost is O(N · (ℓin + ℓout) + λ).

Lemma 1. Verifying CL(·) can be done in O(N · L · (input(L) + output(L)) + L · λ) basic
operations, i.e., operations modulo small primes qj’s.

Proof. One just has to note that CL is a circuit from R
input(L)
Q(L) to R

output(L)
Q(L) , thus, the

verification for each prime qj can be done in time O(N · (input(L) + output(L)) + λ). Since
we have L+1 primes, verifying CL(·) costs, in total, O(N ·L · (input(L)+output(L))+L ·λ)
basic operations.

Lemma 2. Verifying Ck(Mk+1(·)) can be done in O(N · output(k + 1) · (k + 1)2 + N ·
output(k) · (k + 1) + λ · (k + 1)) basic operations, i.e., operations modulo small primes qj ’s.

Proof. Since Mk+1 runs the relinearization and the modulus-switching, it uses the algorithm
FastBaseExt, which takes as input the outputs of Ck+1 used as inputs for Ck, for each of
the k + 1 primes used to compute Ck+1. Thus, Mk+1 is a circuit from R

input(k)·(k+1)
Q(k+1) to

R
input(k)
Q(k) .

Then, we have Ck : Rinput(k)
Q(k) → R

output(k)
Q(k) . Thus, Ck◦Mk+1 : Rinput(k)·(k+1)

Q(k+1) → R
output(k)
Q(k) ,

which means that for each prime q0, ..., qk, we can verify Ck(Mk+1(·)) in time O(N ·input(k)·
(k+ 1) +N · output(k) +λ). Since input(k) ≤ output(k+ 1), verifying it for all k+ 1 primes
has time complexity O(N · output(k + 1) · (k + 1)2 +N · output(k) · (k + 1) + λ · (k + 1)).

3In works that construct private verifiable computation (PVC), this is related to the outsourceability of
the functions.
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Lemma 3 (Client’s verification cost). Verifying a layered circuit C(·) = C0(...(ML−1(CL−1(
ML(CL(·)))))) can be done in

O

(
λ · L2 +N · L · input(L) +

L∑
k=0

N · output(k) · (k + 1)2

)
(1)

operations modulo small primes qj’s.

Proof. Since the verification is done by verifying CL, then verifying the composition
Ck ◦Mk+1 for 0 ≤ k ≤ L − 1, we just have to compute t0 + t1, where t0 is cost from
Lemma 1 and t1 is the sum of costs from Lemma 2 for each k. It holds that

t1 =
L−1∑
k=0

O(N · output(k + 1) · (k + 1)2 +N · output(k) · (k + 1) + λ · (k + 1))

= O

(
λ · L2 +

L∑
k=0

N · output(k) · (k + 1)2

)

Since t0 = O(N · L · (input(L) + output(L)) + L · λ), the result follows.

We stress that thanks to the slot structure of the plaintext space of the FHE schemes
we are considering, the client can encrypt s := Θ(N) messages per ciphertext and the
homomorphic computation actually evaluates the circuit on N different inputs in parallel.
Thus, the expression in Lemma 3 can be divided by N when comparing to the cost of
evaluating the function locally. Generally speaking, a circuit is outsourceable if it is wide
and the number of “inner gates” is much larger than the number of inputs and outputs.
For example, supposing that input(k) and output(k) are constants for all k, then Lemma 3
simplifies to O(N ·L3 +λ ·L2) = O(N ·L3), because N = Θ(λ) for security reasons. Hence,
since the cost of encryption/decryption is negligible wrt the cost of verification, a circuit
with S gates and multiplicative depth L is outsourceable if S = Ω(L3).

3.4.2 Outsourceability of matrix-vector multiplication.

Let f(v) = M · v for some matrix M ∈ Zm×n and some vector v ∈ Zn. Also, let s ∈ Θ(N)
be the number of plaintext slots. Then, computing f(v1), f(v2), ..., f(vs) locally costs at
least s ·m · n ∈ Ω(N ·m · n) basic operations. However, since we can compute f with
a circuit of depth one, we can set L = 1 and the verification cost in Lemma 3 becomes
O(N(n + m) + λ). Because N = Θ(λ), this is actually O(N(n + m)), which is cheaper
than Ω(N ·m · n). This comparison could be extended to affine maps f(v) = M · v + b for
a vector b ∈ Zm. Notice that homomorphically calculating these linear functions does not
require ciphertext-ciphertext multiplications.

3.4.3 Outsourceability of depth-one circuits.

Now we extend the comparison to non-linear functions. Let f(v1,v2) = (M1 · v1) ⊙
(M2 · v2) for v1,v2 ∈ Zn and M1,M2 ∈ Zm×n where ⊙ represents the Hadamard
product. Here, homomorphically calculating f would require one layer of ciphertext-
ciphertext multiplications, so again we set L = 1. Similar to the previous comparison
we can show that the verification cost is O(N(n + m)). Also, for s ∈ Θ(N) plaintext
slots, the cost of local computation is at least Ω(N · m · n), so the function remains
outsourceable. Notice again that this comparison can be extended to functions of the form
f(v1,v2,v3) = (M1 · v1)⊙ (M2 · v2) + M3 · v3 + b.
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3.4.4 Outsourceability of higher depth circuits.

To homomorphically calculate circuits of higher depth we divide them into consecutive
depth-one circuits as described in Section 3.1. Consider for example homomorphically
calculating a function f that approximately represents the feedforward computation of a
neural network. For a d-layered network, f can be defined as f(v) = fd(. . . f2(f1(v)) . . .)
where fi(v) = σ(Mi ·v + bi) for a sequence of compatible weight matrices Mi, bias vectors
bi and an activation function σ. In FHE, the function σ is typically approximated by a
low-degree polynomial, e.g. σ(v) = v⊙ v, thus each neural network layer is a depth-one
circuit and we can set L = O(d). To ease the comparison, let’s say the number of inputs
or outputs in each layer (i.e. neurons) is upper bounded by w. Then, the cost of locally
evaluating f on s ∈ Θ(N) different inputs becomes Ω(N · d · w2). From Lemma 3, we
can conclude that the verification cost becomes O(N · w · d3). Therefore, f would be
(asymptotically) outsourceable in terms of basic operations when w ∈ Ω(d2), meaning the
neural network is sufficiently wide. In Section 5, we instantiate our construction for this
specific example.

4 Related work and comparisons
4.0.1 Comparison with [BCFK21]

In [BCFK21], two homomorphic hash functions over Galois rings are proposed and they are
used together with a variant of the GKR protocol [GKR08] to obtain verifiable computation
over encrypted data. On the positive side, their solution is publicly verifiable. However,
the types computation they can verify is rather limited.

In more detail, instead of verifying computation over RQ, they actually verify circuits
over ZQ[X], meaning that no reduction modulo XN + 1 is performed, which means
that the degrees of the polynomials involved in the homomorphic computation are no
longer bounded by N , but on depth d, they have degree O(2d ·N). Then, they use the
homomorphic hash functions to compress these polynomials and reduce the proof size. But
because the maintenance operations do not respect the homomorphic properties of the
hashes, i.e., they are not composed by additions and multiplications on ZQ[X], they cannot
prove the relinearization and the key-switching. Without relinearization, the number of
polynomials in each ciphertexts is no longer constant, but at depth d, we have Θ(2d) of
them. Thus, by exponentially increasing the number of polynomials and the degree of
each polynomial, we end up with ciphertexts of size Θ(22d ·N logQ) instead of Θ(N logQ).
Of course, operating with larger ciphertexts is also more costly timewise. In other words,
there is a huge time and memory overhead for the server depending on the depth.

In our case, the server has essentially no overhead, as the homomorphic computation is
basically unchanged.

Furthermore, no modulus switching means that the noise in the ciphertexts grows
exponentially fast. Essentially, at depth d, the noise is Θ(σ2d) where σ is a constant
bounding the initial noise of fresh ciphertexts. If the noise is too big, then the correctness
of decryption stops holding. In more detail, we need the final noise to be bounded by Q,
so,

2d · log σ < logQ ⇒ d ∈ O (log(logQ/ log σ)) = O (log logQ)
Therefore, on top of the limitation related to the size of the ciphertexts (efficiency),

there is another limitation related to the correctness, which implies that, in the best
possible scenario, the depth of the circuits that [BCFK21] can verify is only O (log logQ).
In our case, because we support modulus-switching, the FHE scheme itself supports much
deeper computation.

From Theorem 7 of [BCFK21], the time complexity of their verification of a circuit of
depth L, having S gates over RQ, and input size input(L) is Õ((input(L)+L2)N+λL logS)
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operations over ZQ. Since additions and multiplications modulo Q cost at least logQ
basic operations, supposing Q polynomial in N , as it is usual in FHE, their verification
cost becomes Õ(((input(L) + L2)N + λL logS) logN) in terms of basic integer operations.
By setting L as a constant, since basically that is the multiplicative depth that their
construction can handle, their verification cost becomes Õ(input(L)N logN+λ logS logN),
while in our case, from Equation 1, we obtain verification cost O (λ+N · input(L)).

4.0.2 Comparison with Rinocchio [GNS23]

In [GNS23], the authors propose another approach for verifying computations over en-
crypted data. Their work defines a zkSNARK for computation over rings by extending the
classical Quadratic Arithmetic Programs (QAPs) to Quadratic Ring Programs (QRPs),
and defining compatible ring-based encoding schemes. They claim that this proof system
enables privacy-preserving verifiable computation by instantiating it over the ring RQ

and combining it with RLWE-based FHE schemes. However, similar to [BCFK21], their
approach does not natively support the maintenance operations that are crucial for the
efficiency of modern FHE schemes such as [BGV12] and [FV12]. As discussed above, not
performing the maintenance operations means that both the modulus Q and the ciphertext
degree depend exponentially on the multiplicative depth d. This puts significant overhead
on the prover for any practical applications.

As the authors briefly remark, it is possible to simulate the non-arithmetic operations
in the QRP and in that way still incorporate maintenance operations in the proof. Again
this causes additional overhead in contrast to our construction, which we will analyze here.
Relinearization, for example, requires modular reduction [c]qj

of an element c ∈ RQi
for

j = 0, . . . , i. To prove this modular reduction, one needs to prove the modular reduction
of each of its N coefficients. Proving the reduction [a]qj for a ∈ ZQ requires O(logQ)
constraints, since it is only possible by first bitwise decomposing the coefficient a. Therefore,
proving relinearizations alone would add O(dLN logQ) constraints to the QRP instance
for each ciphertext. In our construction, we avoid having to express these reductions using
R1CS constraints and therefore avoid the increased CRS size and the increased cost of
proof generation.

Modulus-switching also significantly increases the amount of constraints in the QRP
since it requires non-arithmetic modular reduction. Moreover, ciphertexts coefficients are
defined modulo Qi−1 after this operation. The authors of Rinocchio suggest to emulate this
modulus switch by multiplying by the constant (1, 1, . . . , 1, 0, . . . , 0) in RNS decomposition,
for i−1 non-zero elements. Since this only emulates the reduction in the RNS decomposition
of the ring, one eventually has to properly reduce (requiring bitwise decomposition) before
the next round of maintenance operations. The authors do remark that modulus-switching
can be avoided by using a scale-invariant FHE scheme [FV12]. However, in that case the
homomorphic multiplication of ciphertexts would require non-arithmetic computations.
Both approaches, in contrast to our construction, also imply that the size of ciphertexts
and therefore the amount of constraints, does not decrease linearly w.r.t. the current
multiplicative depth.

One advantage of Rinocchio is that while our proof size depends on the multiplicative
depth of the circuit, their proofs consist of a constant number of encoding elements.
However, [GNS23] describe this encoding as a Regev-style encoding for plaintext space
RQ, which is impractical since Q typically has hundreds of bits. To be fair, we mention
an improvement of the encoding in Rinocchio introduced by Viand et al. [VKH23] where
each of the RNS digits of a ring element is encoded separately such that the plaintext
modulus of the encoding scheme corresponds to a modulus qi instead of Q. In this case the
encoding size per ring element would be similar to our construction, but we would have to
encode less elements because of the reasons mentioned above, as well as the blueprinting
technique mentioned in Section 3.2.
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To summarize: our construction is generally more efficient than Rinocchio except in
proof size when multiplicative depth is large, but we have shown that in this case their
CRS size and proof generation are impractically costly.

5 Implementation and Performance
In this section, we discuss an instantiation of our scheme that uses the construction by
Ishai et al. [ISW21] as lattice-based SNARK to verify the following computation of a BGV
homomorphic circuit

[cl+1]kl+1
j=1 =

[(
kl∑

i=1
al,ijcl,i + bl,j

)2 ]kl+1

j=1

(2)

for two layers l = 0 and l = 1. Here, a and b are elements of the plaintext space Rt,
and ciphertexts c ∈ RQ[Y ]. Notice that this computation approximates the feedforward
evaluation of a basic neural network layer. Since each layer has a multiplicative depth
of one, we can evaluate one neural network layer before performing relinearization and
modswitch on the ciphertexts c1,i. We refer to Section 3.4 for a more detailed description
of this instantiation.

It is trivial to show that for standard BGV parameters that provide 128-bit security, it
suffices to select a BGV modulus, Q = Q(1) = q0q1q2, the product of three 30-bit primes,
and a post-modswitch modulus Q(0) = q0q1. (Concretely, the output ciphertexts c2,i

satisfy the noise bound for decryptability and the relinearized ciphertexts c′
1,i satisfy the

noise bound required before modswitching.) Therefore, we claim that this computation is
verifiable using 6 proofs in 2 layers and 3 finite fields, as in Figure 3. To simplify parameter
selection for this specific instantiation, the moduli Q(0), Q(1) contain an extra prime.
Remark that our construction also allows for other similar adjustments, e.g. removing
multiple primes per modswitch for increased noise reduction.

As shown in Section 3.3, we can select the security parameters for the FHE and SNARK
scheme independently. We now select the parameters of the lattice-based SNARK scheme
such that 128-bit security is achieved (for instantiations over all prime fields Fqi). This
scheme consists of a linear PCP and a linear-only vector encryption. To ensure efficiency
of the former, we select the primes qi such that the prime fields Fqi

contain Ng-th roots of
unity for Ng = 220 which determines the maximum number of gates in one R1CS instance.
This allows for O(n logn) construction of the QAP that the linear PCP is based on. Notice
that the existence of the Ng-th roots of unity ensure the existence of the N -th roots of
unity required for the NTT transformation in BGV (since N = 212). Also, a soundness
amplification parameter ρ is determined in order to achieve sufficient knowledge soundness
for the PCP.

As for the linear-only vector encryption, the parameters were selected similarly to the
method in Section 4.2 of [ISW21]. Recall that the plaintext space Fpi

of this scheme needs
to match the finite field of the PCP. In this context, qi are the ciphertext space moduli.
In Table 1, we summarize our selection of the necessary parameters. Lastly, we slightly
adjusted both the linear PCP and the vector encryption to remove components that form
the zero-knowledge property of the resulting SNARK.

We have implemented4 this instantiation of our vFHE scheme for the homomorphic
circuit described by Equation (2). Using the libsnark library, we implemented the R1CS
constraint systems. This includes the elementary BGV computations in double-CRT
representation, as well as the circuits required for the relinearization and the modswitch
operations. The latter include sub-circuits for the NTT transformations which are most

4https://github.com/jannikspiessens/vFHE

https://github.com/jannikspiessens/vFHE
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Table 1: Parameter selection for the lattice-based SNARK. p is the plaintext modulus,
while q is the ciphertext modulus. n and s are the lattice dimension and the Gaussian
width of the lattice-based vector encryption. ρ is the soundness amplification parameter. τ
is the ciphertext sparsification parameter which ensures the linear-only property and q′ is
the post-modswitch modulus which decreases proof size. For a more thorough explanation,
we refer to Ishai et al. [ISW21].

p ρ τ log2 q q′ n s
1085276161 15 5 87 389942329959458 3500 4
1092616193 15 5 87 410854793832210 3500 4
1095761921 15 5 87 420467605951707 3500 4

expensive in terms of the number of R1CS gates required. We used the lattice-zksnark
library by Ishai et al. to implement the Setup, Prover and Verifier SNARK methods
that are used in our scheme. The timings of these algorithms, aggregated over all 6 R1CS
instances, are most relevant for the performance of our scheme and are shown in Table
2. The total crs size over all 6 proofs is 11.6GB while the proof size is about 53.2kB.
There are 3 133 440 gates in all R1CS instances combined. Note that crs size and setup
time could be greatly reduced (possibly 6x smaller) when using the blueprinting technique
discussed in Section 3.2.

Table 2: Performance results for SNARK methods of our construction on the computation
of Equation (2) for different k0 and k1 = 3, k2 = 1.

k0 Setup time Prover time Verifier time
5 1 821 s 116 s 597 ms
15 1 922 s 131 s 618 ms
25 2 023 s 138 s 664 ms
35 2 025 s 138 s 692 ms
50 2 129 s 146 s 731 ms
75 2 448 s 167 s 824 ms
100 2 431 s 167 s 925 ms

We compare our results with [VKH23], who implemented the Rinocchio scheme, and
also the naive approach of using field-incompatible proof schemes to verify the dCRT
computations. Both approaches are unable to efficiently verify homomorphic circuits with
depth greater than one, therefore they only verify a circuit that performs one ciphertext-
ciphertext multiplication (followed by a modswitch). Comparison is unfair since it is
unclear how their constructions would scale for higher depth circuits. However, we note
that our implementation still achieves a 4-6x improvement in prover time while verification
times remains practical, even for circuits with a high number of public inputs.
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A More building blocks for vFHE
A.1 Rotations
For any odd integer k ∈ [N ], homomorphically rotating the slots by k positions is done in
two steps: First, we apply an automorphism τk : X 7→ Xk to both components ci ∈ RQ of
a ciphertext c(Y ), then we apply a key switching from s(Xk) to s(X).

Since the automorphism is implemented by simply permuting the entries of the matrices
corresponding to the double-CRT representation of c(Y ), it does not add any cost to the
proof and just implies that the wires of the proof of key switching have to be renamed to
match the permutation. Then, the key-switching procedure is basically the same as the
relinearization, which was already implemented for the homomorphic multiplication.

A.2 Adding all the slots via rotations
Let AddSlotsk : R2

Q → R2
Q be a procedure that takes one ciphertext encrypting (µ0, ..., µS−1)

and outputs an encryption of a vector u such that u[k] =
∑S−1

i=0 µi and u[i] = 0 for i ̸= k,
i.e., the sum is located in the k-th slot and all the other slots are zero.

Algorithm 1: Standard way of adding all the slots homomorphically
Input: Ciphertext c(Y ) ∈ RQ[Y ], key-switching keys Ki from ψ2i(s) to s, for

0 ≤ i < logS, where s is the secret key. An integer k ∈ [0, S − 1].
Output: Ciphertext c′(Y ) ∈ RQ[Y ],

1 c′(Y ) = c(Y )
2 for 0 ≤ i < logS do
3 r(Y ) = ψ2i(c(Y )) ▷ Automorphism that rotates by 2i

4 r(Y ) = KeySwt(c(Y ),Ki)
5 c′(Y ) = c′(Y ) + r(Y )
▷ Apply a mask to zero other slots

6 u = (0, ..., 0) ∈ ZS

7 u[k] = 1
8 u(X) = Pack(u)
9 c′(Y ) = c′(Y ) · u

10 return c′(Y )

This procedure is usually implemented as shown in Algorithm 1, since it requires
only Θ(logS) rotations. However, since each rotation requires a key switching, this
algorithm would require Θ(logS) layers of proofs in our construction. Instead, we propose
Algorithm 2, which computes the same, but only applies the key switchings at the end and
in parallel, requiring thus, just 2 layers of proofs, one for the main block, and another one
for the key switchings. The main idea is that we can loop rotating the slots and adding,
as in the original algorithm, but then we are producing a ciphertext that depends not only
on the original secret key, but also on “rotated keys” obtained after the automorphisms.
Namely, we are adding terms like r(i)

0 ψ2i(sk) to the ciphertext. Thus, if we store the values
r

(i)
0 , we can use them to key switch at the end, producing encryptions of −r(i)

0 ψ2i(sk),
which can then be added to the final ciphertext so that we only keep the term that depends
on sk itself.

The number of additions on RQ is basically the same in both algorithms. The number
of key switchings also doesn’t change. The only overhead is that now the prover has to
store all the O(logS) ring elements r(i)

0 ∈ RQ produced in the first loop. That is, we
reduce the number of proof layers from Θ(logS) to 2 basically for free.
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Algorithm 2: Verification-friendly slot addition
Input: Ciphertext c ∈ R2

Q, Key-switching keys Ki from s(X2i) to s(X), for
0 ≤ i < logS. An integer k ∈ [0, S − 1].

Output: Ciphertext c ∈ R2
Q,

1 (a′, b′) = (c[0], c[1]) ▷ Encryption of m under s
2 for 0 ≤ i < logS do
3 (r(i)

0 , r
(i)
1 ) = ψ2i(c) ▷ r

(i)
1 = r

(i)
0 ψ2i(s) + e(i) + ψ2i(m)

4 b′ = b′ + r
(i)
1 ▷ Now b′ is of the form a′s+

∑i
j=0 r

(i)
0 ψ2i(s) + e′ +m′

▷ Apply the key switchings
5 for 0 ≤ i < logS do
6 vi = Decompose(r(i)

0 ) ·Ki ∈ R2
Q ▷ vi[1] = vi[0]s+ ei − r(i)

0 ψ2i(s)

7 c′(Y ) = (a′, b′) +
∑log S−1

i=0 vi

▷ Apply a mask to zero other slots
8 u = (0, ..., 0) ∈ ZS

9 u[k] = 1
10 u(X) = Pack(u)
11 c′(Y ) = c′(Y ) · u
12 return c′(Y )

B Lattice-based SNARKs
We recall a lattice-based designated-verifier SNARK, proposed by Ishai et al.[ISW21]
which combines linear PCPs and linear-only vector encryption following the Bitansky et
al. [BCI+13, BISW17] compiler. Note that these components can be easily adjusted such
that they construct a designated-verifier zkSNARK.

B.0.1 Linear Probabilistically Checkable Proofs (LPCPs).

A linear PCP is a PCP where the oracle is restricted to respond with linear functions
a = Q⊤π of the queries Q. Following Ishai et al., we will define them using three PPT
algorithms. A LPCP with k queries, query length l and knowledge error ε consists of a
tuple of algorithms ΠLP CP = (Q,P,V) with the following properties

- Q(CS) → (st,Q) : given the the constraint system CS, it generates some query
matrix Q ∈ Fl×k and a verification state st.

- P(CS,x,w) → π : given the statement x ∈ Fn, the witness w ∈ FNw−n and the
constraint system CS, it generates a proof π ∈ Fl.

- V(st,x,a) → b : given the verification state st, the statement x ∈ Fn and some
responses a ∈ Fk, it generates a verification bit b ∈ {0, 1}

For our purposes, these LPCPs need to satisfy completeness and knowledge soundness
properties described below.

Completeness. A LPCP scheme ΠLP CP = (Q,P,V) is complete iff for every statement
x and witness w, and R1CS instance CS,

Pr

 V(st,x,Q⊤π) = 1

∣∣∣∣∣∣
CS(x,w) = 1

(st,Q)← Q(CS)
π ← P(CS,x,w)

 = 1.
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Knowledge Soundness. A LPCP scheme ΠLP CP = (Q,P,V) has knowledge soundness
iff for every statement x and proof π∗ where

Pr[V(st,x,Q⊤π∗) = 1 | (st,Q)← Q(CS)] > ε

there exists an efficient extractor Extr such that

Pr[CS(x,w∗) = 1 | w∗ ← Extr(x,π∗)] = 1.

This implies that for every x /∈ LCS and proof vector π∗

Pr[V(st,x,Q⊤π∗) = 1] ≤ ε.

Ishai et al. use the claim written below, to construct a linear PCP for R1CS over any
field F by utilizing Quadratic Arithmetic Programs (QAPs) [GGPR13].

Linear PCPs for R1CS (adapted from [ISW21]). Let CS be an R1CS instance over
a finite field F, where CS = (Ng, n,Nw, {ai, bi, ci}i∈[Ng ]). Then, there exists a 4-query
linear PCP for CS with knowledge error 2Ng/(|F|−Ng) and query length 4 +Nw +Ng−n.

They consider linear PCPs over quadratic extensions Fp2 as well as over the base field
Fp. As will be obvious from the construction later, this field needs to match the plaintext
space of the vector encryption scheme. Ishai et al. achieve this by either instantiating the
vector encryption over the same field or compiling the Fp2 PCP to a Fp PCP. We will only
consider PCPs over Fp since only they are compatible with our construction.

B.0.2 Linear-Only Vector Encryption.

We recall the definition of a vector encryption scheme by Ishai et al. and then define the
linear-only property required by the [BCI+13, BISW17] compiler. Let F be a finite field.
A secret-key additively-homomorphic vector encryption scheme over a vector space Fl

consists of a tuple of algorithms ΠEnc = (Setup,Encrypt,Decrypt,Add) with the following
properties:

- Setup(1λ, 1l)→ (p, sk): On input the security parameter λ and the plaintext dimen-
sion l, the setup algorithm outputs public parameters p and a secret key sk.

- Encrypt(sk, v)→ ct: On input the secret key sk and a vector v ∈ Fl, the encryption
algorithm outputs a ciphertext ct.

- Decrypt(sk, ct) → v/ ⊥: On input the secret key sk and a ciphertext ct, the
decryption algorithm either outputs a vector v ∈ Fl or a special symbol ⊥.

- Add(p, {cti}i∈[n], {ci}i∈[n])→ ct⋆: On input the public parameters, a collection of
ciphertexts ct1, · · · , ctn and scalars c1, · · · , cn ∈ F, the addition algorithm outputs
a new ciphertext ct⋆.

Moreover, ΠEnc should be additively homomorphic and satisfy CPA security. Addi-
tionally, ΠEnc should satisfy the following property.

Linear-only homomorphic encryption (adapted from [ISW21]). An additively-
homomorphic vector encryption scheme ΠEnc = (Setup,Encrypt,Decrypt,Add) is linear-only
iff for any PPT adversary A, there exists an PPT extractor Extr that outputs Π ∈ Fl such
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that for any security parameter λ, auxiliary state z ∈ {0, 1}poly(λ), plaintext dimension l
and plaintext generator M

Pr


Decrypt(ct′) ̸=⊥

∧
Decrypt(ct′) ̸= vi for i ∈ [k]

∣∣∣∣∣∣∣∣∣∣∣∣

(p, sk)← Setup(1λ, 1l)
(v1, . . . , vk)←M(p)

cti ← Encrypt(sk, vi) for i ∈ [k]
ct′ ← A(p, ct1, . . . , ctk; z)
Π← Extr(p, ct1, . . . , ctl; z)

ct′ = [ct1, . . . , ctl]⊤Π

 ≤ negl(λ).

B.0.3 SNARKs from Linear-Only Encryption.

We recall the Bitansky et al. [BCI+13] compiler for constructing SNARKs from linear
PCPs and linear-only vector encryption (specifically the variant by Boneh et al. [BISW17]
based on linear-only vector encryption) following Ishai et al. [ISW21].

Let CS be an R1CS instance over a finite field F. The construction relies on the
following building blocks:

- Let ΠLP CP = (QLP CP ,PLP CP ,VLP CP ) be a k-query LPCP for CS. Let m be the
query length of ΠLP CP .

- Let ΠEnc = (SetupEnc,EncryptEnc,DecryptEnc,AddEnc) be a linear-only additively-
homomorphic vector encryption scheme for Fk.

The single-theorem, designated-verifier SNARK ΠSNARK = (Setup,Prover,Verifier) for
RCS is defined as follows:

- Setup(1λ, CS) → (crs, st): On input the security parameter λ, run
(stLP CP ,Q) ← QLP CP (CS) where Q ∈ Fm×k. For each i ∈ [m], let q⊤

i ∈ Fk

denote the i th row of Q. Then sample (p, sk) ← SetupEnc(1λ, 1k) and compute
cti ← EncryptEnc(sk, q⊤

i ) for each i ∈ [m]. Output the common reference string
crs = (CS, p, ct1, · · · , ctm) and the verification state st = (stLP CP , sk).

- Prover(crs,x,w)→ π: On input the common reference string crs = (CS, p, ct1, · · · ,
ctm), a statement x, and a witness w, the prover constructs an LPCP proof π ←
PLP CP (CS,x,w). The prover then homomorphically computes the linear PCP re-
sponse ct⋆ ← AddEnc(p, {ct1, · · · , ctm},
{π1, · · · , πm}). It outputs the proof π = ct⋆.

- Verifier(st,x, π): On input the verification state st = (stLP CP , sk), the statement x,
and the proof π = ct⋆, the verifier first decrypts
a ← DecryptEnc(sk, ct⋆). If a =⊥, the verifier outputs 0. Otherwise, it outputs
VLP CP (stLP CP ,x,a).
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