
YOUCHOOSE: A LIGHTWEIGHT ANONYMOUS PROOF OF ACCOUNT
OWNERSHIP

Aarav Varshney1, Prashant Agrawal2,3, and Mahabir Prasad Jhanwar1,3

1Department of Computer Science, Ashoka University, {aarav.varshney, mahavir.jhawar}@ashoka.edu.in
2Department of Computer Science and Engineering, IIT Delhi, prashant@cse.iitd.ac.in

3Centre for Digitalisation, AI and Society, Ashoka University

ABSTRACT

We explore the issue of anonymously proving account ownership (anonymous PAO). Such proofs allow a prover
to prove to a verifier that it owns a valid account at a server without being tracked by the server or the verifier,
without requiring any changes at the server’s end and without even revealing to it that any anonymous PAO
is taking place. This concept is useful in sensitive applications like whistleblowing. The first introduction of
anonymous PAOs was by Wang et al., who also introduced the secure channel injection (SCI) protocol to realize
anonymous PAO in the context of email account ownership. In this paper, we propose YouChoose, an approach
that improves upon Wang et al.’s SCI-based anonymous PAO. Unlike SCI, which demands carefully designed
multi-party computation (MPC) protocols for efficiency, YouChoose works without MPC, simply relying on the
verifier to selectively forward TLS records. It is faster, more efficient, and more adaptable compared to SCI.
Further, the simplicity of the YouChoose approach readily enables anonymous PAO in different settings such
as various ciphersuites of TLS, account types other than email, etc., while the SCI approach needs specifically
designed MPC protocols for each use case. We also provide formal security definitions for a generalized
anonymous PAO of which both YouChoose and SCI are concrete instantiations.

1 INTRODUCTION

Anonymous credentials provide a powerful tool for making asser-
tions about identity while maintaining privacy. In an anonymous
credential scheme, individuals identify themselves by using dif-
ferent pseudonyms with different organizations, thus preventing
even colluding credential issuers and verifiers from identifying
and tracking users. More precisely, say a person P wants to
anonymously prove to a verifier V that they possess a credential
from a credential issuer I. P obtains a credential from I against
a pseudonym PI they use with I, and transforms it to a credential
against a pseudonym PV they use with V . This convinces V that
the credential is genuine, but even if I and V actively collude,
they cannot link the pseudonyms PI and PV together.

However, in some applications, it may be unrealistic for P to ob-
tain such anonymous credentials from I. For instance, consider
a whistleblower use-case where an employee wants to anony-
mously report misconduct at their organization to a journalist
and the journalist wants assurance that the information is sent
by a genuine employee. In this case, the employee cannot use a
standard anonymous credential scheme to prove their employee
status, simply because merely using a privacy tool such as an
anonymous credential would make I suspicious of P and un-
willing to issue any self-incriminating anonymous credential.
Similarly, when third-party identity providers act as credential
issuers then the business interests of these identity providers do
not always align with the privacy interests of the users. Thus, in-
frastructural changes to support anonymous credentials may not
be a priority item for them. Hence, a practical security goal is
anonymous authentication without requiring any infrastructural
changes at the issuer and without even letting the issuer know
of any such authentication taking place.

Specifically, we focus on a specific anonymous credential called
an email-based anonymous proof of account ownership (PAO).

Here, P wants to prove to V that they own an email account
with I, without revealing which account. Email is ubiquitous
in business, government, education and daily life. As a result,
employees routinely have working email addresses within their
organizations. Email-based anonymous PAO thus fits perfectly
with our goal of avoiding infrastructural changes from I while
anonymously proving the insider status of P to V .

An email-based non-anonymous PAO typically relies on P’s
ability to retrieve email sent to the claimed email address (V
sends a random challenge to the claimed email address and
requires P to produce the challenge), but it reveals P’s email
address to V . Email-based anonymous PAO was first introduced
by Wang et al. [1], where they let P prove ownership of an email
account at a domain without revealing their email address, by
relying on P’s ability to send emails from the claimed email
address. The verifier V acts as a proxy sitting between P and
S (see Figure 1a). P sends an email from their claimed email
account, say alice@domain.com, to themselves (or some
other account they own). V securely injects a challenge into
messages sent over the secure channel such as TLS between P
and S . This is done via a 2-party computation protocol called
secure channel injection (SCI) [1] that allows P and V to jointly
compute an authenticated and encrypted message containing the
injected challenge, without P learning the challenge bits and
V learning the message contents and session keys. Later, if P
is able to produce the challenge to V (by accessing either the
sent emails folder of the claimed email account or the inbox
of the recipient account), then it proves to V that the email
was successfully sent by S . This is a proof of email account
ownership because S successfully sends emails from P only if
it can verify that P holds an account with S .

YouChoose. In this paper, we introduce YouChoose, an alter-
native approach to anonymous PAO that is considerably lighter-
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Figure 1: SCI based anonymous proof of account ownership (PAO) on the left versus our YouChoose based anonymous PAO on
the right. Here, P is the prover, S is the email server of domain.com, and V is the verifier. *⃝ represent the injected challenge; 0,
1 represent the order of the email messages and b represents the bit denoting the email forwarded by V.

weight and general than the SCI-based approach of Wang et al.
The basic idea behind YouChoose is shown in Figure 1b. P sends
two email messages m0 and m1 from alice@domain.com
to an account they own. V ensures that the interaction is with
domain.com and forwards only one of the emails mb for a
randomly chosen b ∈ {0, 1}. P’s challenge is to find out whether
m0 or m1 was forwarded. If P sends the correct bit b to V , it
proves with a soundness error of 1/2 that S had forwarded the
email and thus P is an eligible domain.com user. Although
the soundness error can be made negligibly small by repeating
the above process, this would require P to send multiple emails.
We optimize this by carefully designing a protocol that achieves
a negligible soundness error with just one email while respecting
the restrictions imposed by the underlying TLS secure channel.

The YouChoose approach is simpler, more efficient, and more
general than the SCI-based approach for anonymous PAO. Since
general-purpose 2-party computation (2PC) protocols for SCI
are expensive, Wang et al. designed special-purpose SCI proto-
cols by leveraging recent advancements in maliciously secure
2PC for the AES-CBC/HMAC-SHA-256 ciphersuite of TLS 1.2
[1] and in oblivious polynomial evaluation for the AES-GCM
ciphersuite. Similar efficient 2PC protocols need to be carefully
designed to support other ciphersuites like ChaCha20-Poly1305
in TLS 1.3 [2]. In contrast, the YouChoose approach of selec-
tively forwarding messages is fairly general and can be used
not only with any ciphersuite in TLS 1.2 or TLS 1.3, but also
for anonymous PAO beyond just email. For example, P could
anonymously prove ownership of a Twitter account to V by hav-
ing V selectively forward tweets submitted by P via the Twitter
API. Further, since the most expensive step in YouChoose is a
few simple coin tosses, it is more efficient than Wang et al.’s
specially designed SCI protocol, which incurs roughly 3 seconds
overhead per session versus only a second in case of YouChoose.

It is also interesting to note that Wang et al.’s scheme requires
the prover to have exclusive access to the recipient account and
is thus restricted to email-type applications. In YouChoose, the
challenge is identifying whether the first or the second email
was forwarded and not the email contents themselves, so it does
not require the prover to have exclusive access to the recipient

account. This may be useful in applications such as the Twitter
example above, where the finally posted tweets may be read by
anybody.

Our main contributions are the following:

• We introduce the YouChoose approach, a simpler and more
efficient alternative to SCI-based anonymous PAO.

• We formalize the general paradigm of anonymous PAO com-
mon to both YouChoose and SCI, of V acting as a proxy
between P and S , securely modifying messages in the secure
channel established between P and S and using these mod-
ifications as a challenge for P to prove account ownership
(Section 3). Our security definitions generalize the definitions
given by Wang et al.

• We propose and implement a concrete YouChoose protocol for
SMTP-TLS and discuss the implementation aspects for anony-
mously proving email account ownership using SMTP over
the TLS secure channel (Section 4). We analyze the security
of the protocol in Section 5. We provide our implementation at
this github link1 and plan to release it as open-source software.

2 RELATED WORK

Whistleblowing. Whistleblowing is crucial to educate the public
of misdeeds and to call those in power to account. Therefore, it
is desirable to cryptographically protect the identity of a whistle-
blower to allow a low-risk disclosure of wrongdoing. The use
of secure messaging apps [3, 4], mix-nets [5], or onion routing
systems such as the Tor network [6] allows whistleblowers to
communicate anonymously with journalists. However, these
systems do not provide a way for whistleblowers to prove their
insider status.

A whistleblower could use group signatures schemes [7] instead
which allow a member of a group (such as an organization) to
sign a message on behalf of the group without revealing their
identity. However, it violates the privacy we seek as a group
manager can still identify the signer. Ring signatures [8] do

1Link: https://github.com/aarav22/anon-pao

https://github.com/aarav22/anon-pao
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not require such group manager, but nevertheless allow signing
on behalf of an ad hoc group of public keys. However, this
method requires that all group members possess public keys
accessible via a trusted directory, hence requiring cooperation
of the organization.

Anonymous credentials allow a user to prove to another party
that they have a valid identity certified by some certificate
authority (CA), without revealing the identity itself [9, 10, 11].
Nevertheless, the CA learns that the user wishes to use a
privacy tool such as an anonymous credential, which in it-
self is sensitive information in use-cases such as whistleblowing.

Email-based Anonymous PAO. An anonymous PAO allows a
prover to prove ownership of an account to a verifier without
revealing which account. In case of email identity, instead of
proving that the account owner owns a particular email address
such as alice@domain.com, the verifier will be convinced
if the prover proves that it owns some valid email address at
domain.com.

Secure Channel Injection (SCI) [1] allows a verifier to inject
a random challenge into an email sent from a prover’s email
account to an account accessible only by the prover. The SCI
protocol by Wang et al. depends on two 2PC protocols: 2P-
HMAC and 2P-CBC, which are used to jointly compute the
HMAC tag and the TLS ciphertext, respectively. However, this
approach not only requires a 2PC protocol making it computa-
tionally expensive but it is currently only optimized for AES in
CBC mode that lacks support in TLS 1.3.

Multi-context TLS (mcTLS) [12] is a modified version of TLS
that enables middleboxes to read and/or access specific parts of
a TLS connection by revealing some specific session keys to
them. This modification allows for message injection similar to
SCI, but it is not compatible with existing web infrastructure as
it requires changes in TLS. Moreover, for mcTLS to work, the
server must have full awareness of the modifications made by the
middleboxes, which might arouse suspicion of a non-standard
protocol execution in the server.

Mailet, as described in [13], is a censorship-circumvention sys-
tem designed to enable users in censored regions to access social
media websites. It employs a similar setup where the client com-
municates with the website through a distributed set of proxy
servers, but the client needs to share its credentials among the
proxies. These distributed proxies then engage in a secure com-
putation protocol with each other to collectively compute the
TLS record, facilitating authentication with the remote server.
Although one might consider utilizing their protocol for anony-
mous PAO, if the proxy servers collude, it allows them to imper-
sonate as the client and forge messages.

DECO [14] is a protocol that allows the client to prove to a
third-party verifier that it received a certain response from the
server. This could theoretically be used to anonymously prove
ownership of an account if the server sends a distinct success
message upon successful authentication, since the client could
prove to the verifier that it received a success message. However,
the way it is implemented requires the session key to be split
between the client and the verifier and thus requires a secure
MPC protocol for client authentication. However, this approach
does not work for email-based anonymous PAO as the SMTP

standard does not require servers to send a distinct success
message to the clients upon authentication.

3 FORMALIZATION OF ANONYMOUS PAO

We now formalize a generalized version of SCI-based anony-
mous PAO [1] where a) the modifications made by V could
be more general than simply injecting messages in the secure
channel between P and S and, in particular for YouChoose,
include dropping of messages, and b) the proof is for general
account ownership as opposed to just email account ownership;
we characterize this general account ownership by a credential
verification algorithm CVer run by S that takes as input an ac-
count credential cred and outputs 1 if the credential was valid
and 0 otherwise (e.g., for email-based account ownership, CVer
would take the email and password as input credential and out-
put 1 if the email was registered at the domain and the supplied
password was correct and 0 otherwise).

Formally, we say that an anonymous PAO scheme is a tuple
of protocols (Setup,GenToken,Prove) between P, V and S
defined as follows:

• (P⟨k⟩,V⟨⟩, S ⟨k⟩)←Setup(d, P⟨⟩,V⟨⟩, S ⟨⟩): This is a protocol
to establish a secure channel between P and S with V acting
as a proxy. All of P, V and S obtain an identifier d identifying
S ’s domain; neither of them obtain any secret input. P and S
output a common session key k for the secure channel; V does
not obtain any output.

• (P⟨stp⟩,V⟨stv⟩, S ⟨m′/⊥⟩)←GenToken(P⟨k, cred⟩,V⟨⟩, S ⟨k⟩):
This is a protocol to generate an authentication token that P
can use to anonymously prove to V that it owns a valid account
at S . P supplies the account ownership credential cred as
input, and both P and S supply the secure channel’s session
key k. P sends a message m to the secure channel during the
protocol and S outputs a message m′ ∈ M(m) if CVer(c) = 1,
whereM(m) denotes the set of modifications that V is allowed
to make on m; S outputs ⊥ if CVer(cred) = 0. The output
m′ acts as a token that P needs to obtain from S through an
out-of-band channel. P and V output their internal states stp
and stv to be used later.

• (P⟨⟩,V⟨0/1⟩)←Prove(P⟨stp,m′⟩,V⟨stv⟩): This is a protocol
that allows P to prove account ownership to V using the token
obtained from S at the end of the GenToken protocol. P
and V supply their internal states stp and stv as input and P
additionally supplies the token m′. V outputs 1 if the token is
valid and 0 otherwise.

We also assume that all protocols implicitly obtain a security
parameter n (in unary).

Security Properties. Our security properties are naturally ex-
tensions of the security properties proposed by Wang et al. [1]
for SCI-based PAO. The soundness requirement (Definition 3.1)
captures that the verifier accepts the proof only if the prover
indeed owns a valid account with the server. This soundness
requirement is more direct than the injection secrecy property
of [1] that provides soundness in the SCI setting. Injection se-
crecy requires that P does not learn the challenge injected by V
during the GenToken protocol and hence implies soundness be-
cause then P can retrieve the challenge only if it has an account



PREPRINT – YOUCHOOSE: A LIGHTWEIGHT ANONYMOUS PROOF OF ACCOUNT OWNERSHIP 4

at S . We cannot use this definition directly because the chal-
lenge in YouChoose is which of the message pairs selected by
P was dropped and hence we opt for the more direct soundness
definition.

Transcript privacy (Definition 3.2) is required to prevent leak-
age of credential information to V and thus impersonation of
P by V . Transcript integrity (Definition 3.3) prevents V from
modifying the messages sent over the secure channel beyond
what is allowed by the modification function M. This is re-
quired, e.g., to prevent V from sending a malicious email to
a modified recipient address on behalf of P. Finally, server
obliviousness (Definition 3.4) captures that S remains unaware
of any anonymous PAO taking place between P and V . We
require that the transcript that S receives looks indistinguishable
from the case when P establishes a secure connection with S
and sends through the secure channel a message that follows a
distribution D, where D denotes the distribution of messages
routinely sent by account owners through S for purposes other
than anonymous PAO. Thus, server obliviousness captures that
the server cannot distinguish an execution of anonymous PAO
with a routine communication of messages from the account
owners via S .

Definition 3.1 (Soundness). For all PPT adversaries P supplying
an input credential cred such that CVer(cred) outputs 0, the
probability that V outputs 1 in the Prove protocol when S runs
honestly is negligible.

Definition 3.2 (Transcript privacy). The GenToken and Prove
protocols do not reveal any information about P’s account cre-
dential cred or the session key k to V .

Definition 3.3 (Transcript integrity with respect to M). For
all PPT adversaries V , if P and S are honest and P supplies a
message m to the secure channel, S cannot output m′ <M(m),
except with negligible probability.

Definition 3.4 (Server obliviousness with respect to D). As-
suming that P and V are honest, S cannot distinguish between
a) an execution of Setup and GenToken where it obtains a key
k during Setup and a message m′ during GenToken, and b) an
execution of the setup and communication steps of a secure
channel established with P where P sends a message m′ ← D
to the secure channel.

Network Assumptions. We now highlight the network as-
sumptions under which we aim to achieve the above security
properties. We do not require any more assunmptions than those
made in Wang et al.’s work for SCI-based anonymous PAO [1]:

1. Each party can only view the traffic on their own local net-
work. In particular, P cannot access the transcript of interac-
tions between V and S and S cannot access the transcript of
interactions between P and V . Without the first assumption,
it is impossible to achieve soundness since P can readily
identify the modifications sent to S without requiring an ac-
count at S . Without the second assumption, it is impossible
to achieve server obliviousness.

2. No party can spoof their identities or re-route messages to
nodes other than the intended recipients. Without this as-
sumption, a malicious S could spoof as V and violate server
obliviousness (and identify P) or a malicious P can spoof as
S and violate soundness.

3. S cannot detect a non-standard secure channel protocol by
just looking at V’s IP address.

3.1 Preliminaries

In this section, we describe notation and recall some background
about TLS, which acts as the secure channel for our protocol,
and SMTP, which acts as the application layer protocol for
establishing email account ownership.

Notation. Let x
$
←− S denote an element x sampled uniformly

at random from a set S . Given a positive integer x, let [x] denote
the set {1, . . . , x}. We use ⊥ to indicate an empty message or
failure and ∥ to denote concatenation of elements.

3.1.1 Electronic Mail and SMTP.

The Internet e-mail system has three major components: user
agents, mail servers, and the Simple Mail Transfer Protocol
(SMTP). These components can be described in the context of
a sender, Alice, sending an e-mail message to a recipient, Bob.
A typical e-mail message starts its journey in the sender’s user
agent, travels from the sender’s user agent to the sender’s mail
server (this process is called message submission), and travels
from the sender’s mail server to the recipient’s mail server (this
process is called message transmission), where it is deposited in
the recipient’s mailbox. The recipient could access the messages
in their mailbox by logging into its mail server. Microsoft’s
Outlook, Apple Mail, and Mozilla Thunderbird are among the
popular user agents for e-mail. Mail servers are commonly
operated by the user’s service provider. Webmail solutions such
as Gmail blur the distinctions between mail submission and mail
transfer somewhat.

SMTP is the principal application-layer protocol for Internet
electronic mail. SMTP define both server-to-server and client-
to-server communication patterns. While it is primarily used
to execute message transmission, i.e., transfer mail from the
sender’s mail server to the recipient’s mail server, it is also used
for mail submission, i.e., sending mail from the sender’s user
agent to the sender’s mail server. Once at the destination server,
email can be retrieved using protocols such as POP3 and IMAP.

We now briefly review how SMTP submits an e-mail message
from a sender’s user agent to the sender’s mail server. First,
the client SMTP (running on the sender’s user client) has TCP
establish a connection to port 587 at the server SMTP (running
on the sender’s mail server). Once the connection is established,
the client and server perform application layer SMTP handshak-
ing: the SMTP client indicates the e-mail address of the sender
and the e-mail address of the recipient. Once the SMTP client
and server have introduced themselves to each other, the client
sends the messages. In particular, the client issues five com-
mands: EHLO (an abbreviation for Extended HELLO), MAIL
FROM, RCPT TO, DATA, and QUIT. These commands are self-
explanatory (the DATA command signals the client’s readiness
to send the email content, including headers and body, after
which the client starts transmitting the actual email data). The
server issues replies to each command, with each reply having
a reply code. SMTP did originally not require authentication
for message submission (i.e., user agent to mail server), but this
was added later to fight spam. If the client needs to authenti-
cate itself before sending the email, it uses the AUTH command.
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The server may support various authentication mechanisms like
LOGIN, PLAIN, or CRAM-MD5. The PLAIN version of the
AUTH command allows a client to provide its username and
password to the server in plain.

As SMTP runs over TCP, all SMTP messages travel as payload
in TCP packets. TLS is a popular mechanism for enhancing
TCP communications with confidentiality, data integrity, server
authentication, and client authentication. TLS consists of two
primary components: Handshake Protocol - it authenticates the
communicating parties, negotiate cryptographic modes and pa-
rameters, and establish shared keying material; Record Protocol
- it uses the parameters established by the handshake protocol to
protect (confidentiality and integrity) traffic between the com-
municating peers.2 Therefore, for a comprehensive security,
SMTP must run over TLS. There are two ways to negotiate an
TLS session. The first is to use TLS directly. This requires
a IANA-assigned dedicated port. Application layer protocols
that use this method are often indicated by adding a ‘S’ at the
end, e.g., SMTPS. In the case of SMTP, port 465 was initially
defined for SMTPS, but was deprecated later (it is nevertheless
still used).

The second major way to use TLS is to connect with TCP on
the normal port first and then upgrade the connection using a
protocol-specific command. This method is commonly referred
to as STARTTLS. The specifications in the RFCs commonly
require clients to first query a server for STARTTLS support
with a specific ‘capability’ command before trying to upgrade
the connection [15]. The server can confirm an upgrade; the
TLS handshake follows.

Requirements for the SMTP server. (1) Auth: Only authen-
ticated users with legitimate sender addresses can send emails
using a server that is correctly setup using a valid TLS certifi-
cate and being configured as a closed relay. (2) NoEcho: For
soundness, the server should not echo back received commands
to the client.

3.1.2 TLS Ciphersuites

TLS offers multiple ciphersuites to construct TLS records. In
this paper, we focus on two ciphersuites: AES in CBC mode
with HMAC-SHA256 (MAC-then-encrypt construction) and
AES with Galois / Counter Mode (GCM). We briefly describe
these two cipher suites below.

Cipher I. In this scheme, CBC mode of operation is used in
AES for encryption and HMAC-SHA256 for authentication.
This cipher suite is vulnerable to specific padding and timing
attacks, as detailed in [16, 17, 18] and is defined in a now-
expired RFC draft [19]. Despite its exclusion from TLS 1.3,
it remains prevalent in TLS 1.2. In the widely adopted MAC-
then-encrypt method, an authentication tag T is computed over
a message M, followed by the encryption of both M and T to
generate the ciphertext C. Authentication tag T using HMAC is
calculated as T = HMAC(K,M) = H((K ⊕ opad) || H((K ⊕ ipad)
|| M)), where K denotes the MAC key, H represents the SHA256
hash function, and ipad and opad are predefined constants. Let
P = (P1, . . . , Pt) where Pi, i ∈ [t], represents a 128-bit block. To
encrypt P using the CBC mode, a random 128-bit IV is chosen,

2Handshake and Record Protocol correspond to the setup and com-
munication steps of the TLS secure channel respectively.

such that C0 = IV and Ci = AESK′ (Ci−1 ⊕ Pi) for i ∈ [t], where
K′ is an AES key to ultimately output C = (C0, . . . ,Ct).

Cipher II. AES-GCM utilizes AES in counter mode and em-
ploys Galois field arithmetic for authentication, as specified
in [20]. In contrast to Cipher I, AES-GCM integrates authenti-
cation within the stream cipher, avoiding the need for a separate
MAC computation. It is both supported and recommended for
TLS 1.3 as it takes advantage of parallel processing and pipelin-
ing to achieve high speeds with low cost and low latency. In
AES-GCM, a series of 128-bit counters Ji for i ∈ [t] are en-
crypted using AES with a key K. The resulting ciphertext C
is produced by combining these encrypted counters with 128-
bit plaintext blocks P = (P1, . . . , Pt) as C = AESK(Ji) ⊕ Pi
for i ∈ [t]. The associated data A and ciphertext blocks are
processed together using a multiplication operation with a K-
dependent constant H (where H = AESK(0128)) in the Galois
field GF(2128). This process, carried out by the GHASH func-
tion, generates the authentication tag T = GHASHH(A,C). The
authentication tag is appended to the ciphertext to produce the
final output C′ = (C,T ).

3.1.3 Secure Channel Injection (SCI)

SCI [1] is a three-party protocol between a client, a proxy, and
a server, parameterized by a message M = Mp||M∗||Ms where
the client holds as input a message prefix Mp ∈ {0, 1}∗, message
suffix Ms ∈ {0, 1}∗ and the proxy is interested in injecting a
challenge/message M∗ ∈ {0, 1}∗ into the client-server interaction.
The protocol is secure if the client learns nothing about the
injected message M∗, and the proxy learns nothing about the
client’s message prefix Mp and message suffix Ms. SCI must be
instantiated with a secure channel protocol, such as TLS, and
the proxy is required to inject a message into an existing secure
channel communication between the client and the server. In
the case of SCI for TLS, the client and the proxy collaboratively
compute a valid TLS record, leveraging the intricacies of TLS
encryption. They describe their implementation for two TLS
cipher suites: Cipher I and Cipher II.

For Cipher I, SCI is implemented using two sub-protocols 2P-
HMAC and 2P-CBC. Within 2P-HMAC, the client computes a
partial tag T1 over Mp and sends it to the proxy. Subsequently,
the proxy calculates a partial tag T2 over M∗ using T1 and returns
it to the client. The client completes the computation of the
tag T by using T2 and the remaining message Ms. Moving to
2P-CBC, when M = Mp||M∗||Ms, where Mp = (P1, . . . , Pq),
M∗ = (Pq+1, ..., Pq+r), and Ms = (Pq+r+1, . . . , Pt), then the client
transmits C0, . . . ,Cq to the proxy. It engages in a secure multi-
party computation (MPC) for Cq+1, . . . ,Cq+r (or AESK(Ci−1⊕Pi)
for i = q + 1 to q + r) and obtains Cq+r from the proxy to
compute Cq+r+1, . . . ,Ct. The proxy forwards a valid TLS record
C = (C0, . . . ,Ct),encapsulating the message M, to the server.

For Cipher II, SCI is implemented using 2P-CTR and 2P-
GMAC. In 2P-CTR, the client straightforwardly encrypts Mp =
(P1, . . . , Pq) as Cp = (AESK(J1) ⊕ P1, . . . ,AESK(Jq) ⊕ P1) and
Ms as Cs = (AESK(Jq+r+1) ⊕ Pq+r+1, . . . ,AESK(Jt) ⊕ Pt) lo-
cally, computes a ’key stream,’ AESK(Jq+1), . . . ,AESK(Jq+r)
and then transmits it to the proxy, and the proxy uses the key
stream to encrypt M∗, resulting in C∗. 2P-GMAC is more intri-
cate. For GMAC, the computation of GHASH over ciphertext
blocks C = (C1, . . . ,Ct) at the point H is required. However,
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Figure 2: SMTP-TLS based anonymous PAO. Here, the dashed
rectangle represents a TLS fragment. Steps 1-2 set up the prover
and the verifier. Step 3 queries the server’s capabilities. Step 4
performs a TLS handshake. Steps 5-9 send the email.

the client does not possess the entire C. It only holds the point
H, Cp = (C1, . . . ,Cq), and Cs = (Cq+r+1, . . . ,Ct), while the
proxy holds C∗ = (Cq+1, . . . ,Cq+r). This computation is re-
duced to evaluating a polynomial p(x) at the point H, where
p(x) =

∑t
i=1 Ci ẋt−i+1. Here, p(x) can be further expressed as the

sum of polynomials: p(x) = pp(x) + p∗(x) + ps(x). The client
possesses both pp(x) and ps(x) and only needs the evaluation
of p∗(x) which depends on C∗. To evaluate p∗(x), an oblivious
polynomial evaluation scheme is used. In the process, the ver-
ifier acts as a sender, supplying coefficients of the polynomial
p∗(x), and the client serves as a receiver, holding the point H
and only learning the evaluation of p∗(H).

4 THE YOUCHOOSE PROTOCOL

We now describe the YouChoose protocol for anonymous PAO.
The high-level outline of our scheme using TLS as the secure
channel and SMTP as the application level protocol is shown
in Figure 2. We begin with a basic version of our protocol that
works for all authenticated encryption schemes based on the
MAC-then-Encrypt or Encrypt-then-MAC paradigm, such as
the AES-CBC/HMAC-SHA256 ciphersuite used in TLS 1.2
(Section 4.1). However, this basic protocol does not satisfy
transcript privacy under nonce-based authenticated encryption
schemes such as AES-GCM used in TLS 1.2 and 1.3. Thus, we
also propose a variant of YouChoose for this case in Section 4.2.

4.1 The Basic Protocol

We now describe the basic YouChoose protocol (see Figure 3).
First, during the Setup protocol, P and S establish a secure
channel among them with V acting as a proxy in-between. Dur-
ing this protocol, P and V obtain S ’s domain name d. V queries
the DNS for the IP address of an SMTP server with domain
name d, checks if the server supports the STARTTLS extension
by making an SMTP query to this IP address, and aborts the
protocol if it does not. P then initiates a TLS handshake with

S with V acting as a proxy to establish a session key k for the
secure channel between P and S .

Setup(d, P⟨⟩,V⟨⟩, S ⟨⟩) :
1 V: query DNS for d and obtain an IP address S addr
2 send SMTP query to S addr to check if it supports STARTTLS
3 if yes: establish a TCP connection with S and notify P
4 else: abort
5 P: perform TLS handshake with S via proxy V and establish key k

output: P⟨k⟩, V⟨⟩, S ⟨k⟩

GenToken(P⟨k, cred⟩,V⟨⟩, S ⟨k⟩) :
1 P: send header AUTH containing cred to S via V
2 send header MAIL containing sender email address to S via V
3 send header RCPT containing recipient email address to S via V
4 send header DATA to S via V // begin email body
5 prepare email body m = ((pi)

np

i=1, (ci0, ci1)n
i=1, (si)

ns
i=1)

6 stp := (ci0, ci1)n
i=1

7 let sqn = current TLS sequence number
8 for i ∈ [np + n + ns]:
9 if i ≤ np:

10 epi ← TLS.Enc(k, pi, sqn) // see Figure 4
11 else if i ≤ np + n:
12 eci0 ← TLS.Enc(k, ci0, sqn)
13 eci1 ← TLS.Enc(k, ci1, sqn)
14 else if i > np + n:
15 esi ← TLS.Enc(k, si, sqn)
16 sqn← sqn + 1
17 update the sequence number in TLS to sqn
18 send (np, n, ns, (epi)

np

i=1, (eci0, eci1)n
i=1, (esi)

ns
i=1) to V

19 send header QUIT to S via V // end email transaction

20 V: for i ∈ [n]: bi
$
←− {0, 1}

22 send ((epi)
np

i=1, (ecibi )
n
i=1, (esi)

ns
i=1) to S

23 stv := (b1, . . . , bn)
24 S : decrypt m′ = ((pi)

np

i=1, (cibi )
n
i=1, (si)

ns
i=1) from the TLS channel

25 if CVer(cred) = 1: res← m′
26 else: res← ⊥
output: P⟨stp⟩, V⟨stv⟩, S ⟨res⟩

Prove(P⟨stp,m′⟩,V⟨stv⟩) :
1 P: parse m′ as m′ = ((p′i)

np

i=1, (c
′
i)

n
i=1, (s′i)

ns
i=1)

2 parse stp as stp = (ci0, ci1)n
i=1

3 for i ∈ [n]:
4 b′i = 0 if c′i = ci0 else b′i = 1
5 send (b′1, . . . b

′
n) to V

6 V: parse stv as stv = (b1, . . . , bn)
7 res← 1 if (b1, . . . bn) = (b′1, . . . b

′
n) else 0

output: P⟨⟩, V⟨res⟩

Figure 3: The basic YouChoose protocol. TLS.Enc denotes
the TLS encryption algorithm that explicitly takes a sequence
number as input (see Figure 4).

During the GenToken protocol, P submits an email to the mail
server S using SMTP over the TLS secure channel established
above, and V drops parts of the email body such that the email
finally forwarded by S allows P to construct an anonymous
PAO authentication token. P first sends SMTP headers AUTH,
MAIL, RCPT, and DATA to S in order to set up the email
transaction, where AUTH contains P’s email account credentials
(e.g., username and password), MAIL contains the sender email
address, RCPT contains the recipient email address, and DATA
notifies the beginning of the email body. After this, P constructs
an email body containing a sequence of challenge message pairs
and V drops a randomly chosen message out of each message
pair before forwarding them to S , such that S still accepts the
received transcript as a valid SMTP email. As per the SMTP
protocol, S forwards the email to the recipient mail server only
if the credentials supplied in the AUTH header are valid. P can
retrieve the contents of the forwarded email either by accessing
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the recipient email account or by accessing the sent emails folder
of the sender email account.

During the Prove protocol, P compares the sequence of
forwarded messages in the retrieved email with the original
message pairs and constructs the sequence of challenge bits
denoting which of the message pairs were forwarded by V . V
verifies these challenge bits, completing the anonymous PAO.

TLS.Enc(k = (khmac, kenc),m, sqn =⊥)
if sqn == ⊥:

let sqn = current TLS sequence number
let type = TLS data type, version = TLS version
mac← HMAC(khmac, sqn ∥ type ∥ version ∥ size(m) ∥ m)
data := m ∥ mac
ciphertext← AES-CBC(kenc, data)
record := (type ∥ version ∥ size(ciphertext) ∥ ciphertext)
return record

Figure 4: TLS.Enc algorithm for the AES-CBC/HMAC authen-
ticated encryption scheme.

Dropping parts of email body under TLS. Notice that mod-
ification or even dropping of parts of the email body by V is
not allowed as per the integrity guarantees provided by the
TLS via authenticated encryption schemes and strict sequence
numbering. We circumvent this restriction as follows. P splits
the email message body m into multiple fragments such that
m = ((pi)

np

i=1, (ci0, ci1)n
i=1, (si)

ns
i=1), where ci0, ci1 for each i denote

the fragments corresponding to the challenge message pairs and
pi and si respectively denote fragments for the prefix and suffix
of the challenge message pairs in the email body. P encrypts
each of these fragments individually into a TLS record via an
Encrypt-then-MAC or MAC-then-Encrypt authenticated encryp-
tion scheme such that for each challenge message pair i, both
ci0 and ci1 are assigned the same sequence number and a strictly
monotonic sequence numbering is followed otherwise. V then
drops one of the encrypted TLS records corresponding to each
challenge message pair, while forwarding all other TLS records
as-is. In this way, S obtains a valid email body consisting of
a sequence of TLS records with strictly monotonic sequence
numbers.

Since the only unpredictable decision made by V is whether
to drop or forward a TLS record corresponding to a challenge
message pair, the number of challenge message pairs n directly
determines the level of security provided by our scheme (i.e.,
with n such pairs, the probability that P incorrectly proves
account ownership to V is bounded by 2−n).

Transcript privacy. Note that in Encrypt-then-MAC or
MAC-then-Encrypt schemes, V only obtains a sequence of
semantically secure ciphertexts and hence transcript privacy is
maintained. This is not the case in nonce-based authenticated
encryption schemes such as AES-GCM, where V obtains
a sequence of ciphertexts encrypted under the same nonce
for each challenge message pair. V can exploit this to
learn the session key, thus violating transcript privacy. Thus,
we propose an alternative protocol for AES-GCM in Section 4.2.

Preparing email body for server obliviousness. To achieve
server obliviousness, we require that the final email body

m′ = ((pi)
np

i=1, (cibi )
n
i=1, (si)

ns
i=1) for some bi ∈ {0, 1} received

by S must be indistinguishable from some distribution D
representing routine email communication among the account
owners. Towards this end, we suggest a simple strategy that
hides the challenge message pairs into innocuous looking
images that users routinely share over emails. Consider such an
image I. P splits I into n fragments I = (I1, . . . , In) and creates
a noisy version of each fragment Ii by adding a small amount
of noise ϵi to it, i.e., I′i = Ii + ϵi. P then constructs the email
body as before: m = ((pi)

np

i=1, (Ii, I′i )
n
i=1, (si)

ns
i=1). The email body

finally obtained by S would be m′ = ((pi)
np

i=1, (I′′i )n
i=1, (si)

ns
i=1)

where I′′ is a composite image such that its ith fragment I′′i
equals either Ii or I′i . Since the noises ϵi are small, I′′ is visually
indistinguishable from I. Thus, I′′ can be assumed to be drawn
from the distribution D which achieves server obliviousness.
Note, however, that P on obtaining m′ can still reliably extract
the challenge bits since it exactly knows both I and I′.

Size of email body. In a standard SMTP-TLS connection, the
email body is fragmented into TLS records of size 16KB (if
the email body is smaller than 16KB then it is not fragmented).
Since our challenge is solely dependent on the ability to drop or
forward an entire fragment, we require each challenge message
to be in a fragment of its own. Thus, for a realistic security
parameter n = 80, we would require the email body to be split
into 160 fragments. This would require communication of size at
least 160× 16KB ≈ 2.5MB of data from P to V , which results in
an email carrying 1.25MB of data due to selective forwarding by
V . This is commensurate to the size of a typical email containing
an image or a pdf file.

4.2 Supporting nonce-based authenticated encryption
schemes

In our protocol, we encrypt each challenge message pair (ci0, ci1)
using the same sequence number sqn so that V can drop one of
the messages. However, this poses a problem in nonce-based
authenticated encryption schemes such as AES-GCM used in
TLS 1.2 and 1.3. When the same sequence number is used to
encrypt two messages it results in the same nonce for both the
encryptions (see the TLS.Enc algorithm in Figure 5 for AES-
GCM based encryption within TLS). This violates the nonce
uniqueness requirement [20] that prohibits using the same nonce
to encrypt more than one plaintext while using the same key.
Violation of this requirement may lead to key recoverability
attacks as shown in [21] which in turn leads to violation of
transcript privacy.

To prevent V from obtaining both the ciphertexts (eci0, eci1)
created using the same nonce, we use an oblivious transfer (OT)
protocol where V fetches ecibi from P without learning the other
ciphertext ecib̄i

and P does not learn the bit bi chosen by V . V
forwards to S the ciphertext ecibi thus obtained. That is, instead
of V obtaining ecibi as per lines 18-22 of the GenToken protocol,
it obtains them via the OT protocol as follows: (P⟨⟩,V⟨ecibi⟩)←
OT(P⟨eci0, eci1⟩,V⟨bi⟩). This mechanism ensures that V only
learns a single ciphertext for any given nonce, thus respecting
the nonce uniqueness requirement mentioned above and hence
preserving transcript privacy. Also, P is oblivious to which
ciphertext was fetched by V and then forwarded to S . This
preserves the soundness of the protocol.
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We note that OT is very fast; in fact, it is used as a primitive
operation in many MPC protocols. We only need n OTs for the
security parameter n, which is a small number in practice. Thus,
the overhead of using OT in our protocol is negligible, as we
show in Section 6.

TLS.Enc(k,m, sqn =⊥)
if sqn == ⊥:

let sqn = current TLS sequence number
let type = TLS data type, version = TLS version, taglen = TLS tag length
data := m ∥ type
outlen := size(data) ∥ taglen
authdata := (type ∥ version ∥ outlen)
calculate nonce deterministically using sqn
ciphertext← AES-GCM(k, nonce, data, authdata)
record := (type ∥ version ∥ size(ciphertext) ∥ ciphertext)
return record

Figure 5: TLS.Enc algorithm for AES-GCM authenticated en-
cryption scheme.

5 SECURITY ANALYSIS

Theorem 5.1. The protocols presented in Section 4 satisfy
soundness as per Definition 3.1.

Proof (Sketch). In the basic YouChoose protocol presented in
Section 4.1, P does not learn about which message out of the
message pairs were forwarded by V because V sends them di-
rectly to S and by the requirements on SMTP (see Section 3.1),
S does not echo any message back to P (note that S is honest in
the soundness definition). Thus, the probability that P guesses
the challenge bits (b1, . . . , bn) correctly and makes V output 1
during the Prove protocol is bounded by 2−n.

In the variant designed for AES-GCM (Section 4.2), P does not
learn which message of any message pair was forwarded by V
since the ciphertext ecbi is obtained by V by running the OT
protocol with P where P remains oblivious of the bit bi. The
rest of the argument follows similarly as above.

Theorem 5.2. The protocols presented in Section 4 satisfy tran-
script privacy as per Definition 3.2.

Proof (Sketch). In the basic YouChoose protocol presented in
Section 4.1, V only obtains ciphertexts (eci0, eci1)n

i=1 under a
MAC-then-Encrypt or Encrypt-then-MAC scheme, which leak
no information about the underlying messages, session keys,
credentials, etc. In the variant designed for AES-GCM (Section
4.2), V only learns one ciphertext out of (eci0, eci1) for any i in 1
to n, by the properties of OT. In particular, V never learns two
ciphertexts encrypted with the same nonce (corresponding to the
same sequence number) for any i. This is indistinguishable to
receiving a fresh ciphertext encrypted under AES-GCM for each
i, which does not leak any information about the underlying
messages or credentials.

Theorem 5.3. The protocols presented in Section 4 satisfy
transcript integrity with respect to a modification function
M as per Definition 3.3, where M takes as input a message
m = ((pi)

np

i=1, (ci0, ci1)n
i=1, (si)

ns
i=1) and outputs the set {((pi)

np

i=1,

(cibi )
n
i=1, (si)

ns
i=1) | bi ∈ {0, 1}}.

Proof (Sketch). As per the GenToken protocol, P authenticates
TLS records containing repeated sequence numbers only for
challenge message pairs (ci0, ci1) for i = 1 to n and otherwise
follows strict sequence ordering. This restricts V to drop exactly
one ciphertext ecibi from each ciphertext pair (eci0, eci1) and
sequentially forward all other TLS records, otherwise S will
abort the connection as per the integrity guarantees of TLS. Thus,
if S does not abort, it only obtains a message m′ ∈ M(m).

Theorem 5.4. The protocols presented in Section 4 satisfy
server obliviousness with respect to D as per Definition 3.4,
whereD is the distribution defined in Section 4.

Proof (Sketch). If both P and V are honest then by the prop-
erties of TLS, S obtains a message m′ = ((pi)

np

i=1, (cibi )
n
i=1,

(si)
ns
i=1) for some bi ∈ {0, 1}, where P sent the message m =

((pi)
np

i=1, (ci0, ci1)n
i=1, (si)

ns
i=1) to the TLS channel. If m was chosen

by adding small noises to the images, then m′ is indistinguish-
able from a message sampled fromD because of the arguments
mentioned in Section 4. Hence, we achieve server oblivious-
ness.

6 IMPLEMENTATION AND EVALUATION

To evaluate the feasibility and efficiency of YouChoose we im-
plement a prototype. We develop our prototype in Python and
use tlslite − ng [22] as our TLS library and use smtplib within
tlslite − ng to send emails according to the SMTP specifica-
tions [23]. However, we customize the TLS library on the
client’s side to accept sequence numbers as parameters at authen-
ticated encryption interfaces like _encryptThenSeal (AES-
GCM and ChaCha20/Poly1305) and _macThenEncrypt
(AES-CBC / HMAC-SHA256). These changes enable You-
Choose to selectively discard specific TLS records by V , as
detailed in Section 4. It is important to note that these changes
are necessary only on the client’s side and no changes are made
on the server’s side. We use Oblivious Transfers (OTs) to sup-
port nonce-based ciphersuites, utilizing the OTC library [24],
developed by Chou-Orlandi [25]. We make our implementation
open source on GitHub at https://github.com/aarav22/anon-pao.

Our prototype mainly consists of P’s code for preparing and
sending emails and V’s code for dropping selected TLS records.
We evaluate our prototype for different network configurations.
We denote the configuration where P, V , and S are located
on separate servers as L1, L2, L3. This configuration mimics
real-world scenarios where S might be situated in a different
region and/or operated by standard services like Outlook or
Gmail. We denote the configuration where P and V are located
on separate servers, while S is located on the same server as V
as L1, L2, L2. This configuration is useful to minimize the effect
of latency between V and S on the performance of YouChoose.
In the L1, L1, L1 configuration, P, V , and S are all located on
the same server. This configuration is useful for comparing
the communication and computation overheads of YouChoose.
Using an entirely local setup should minimize network latency
and, consequently, the communication overhead between all
the parties. To test L1, L2, L3 and L1, L2, L2, we deploy our
programs on two separate Linode [26] nanode instances, each
powered by a 1-core processor and 1GB of RAM.

https://github.com/aarav22/anon-pao
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We compare our prototype with the existing state of the art
anonymous PAO, SCI. As a reminder from Section 3.1.3, SCI
requires a unique design and implementation tailored to each
TLS ciphersuite. At present, SCI designs implementations for
both Cipher I and Cipher II, as described in Section 3.1.2. We
developed SCI for Cipher I independently, as we lacked access
to the authors’ codebase. We implemented 2P-HMAC by adding
interfaces in SHA256 module to extract partial states that can
be exchanged between P and V . To implement 2P-CBC, we
leveraged advancements in maliciously secure two-party com-
putation, adopting a more recent and efficient protocol [27] that
significantly reduces the processing time compared to the pre-
viously employed protocol [28]. We make this implementation
open source as well.

We need an Oblivious Polynomial Evaluation (OPE) protocol to
implement SCI for Cipher II. Wang et al. reference a now inse-
cure OPE scheme [29]. Therefore, we do not report benchmarks
for SCI with Cipher II.

We present our findings in Table 6, covering both ciphersuites.
These results reflect the median time and standard deviation
from five runs. Notably, the size of the email body varies in
our tests, depending on the method used. For the baseline, we
send a standard email with a minimal body size of 130 bytes.
In the case of SCI, the email body extends to 192 bytes, with
an additional 32 bytes stemming from M∗, as injected by V .
With YouChoose, the email body reaches 2.5MB. However, it is
important to note that only 1.25MB of this is actually transmitted
to S , as detailed in Section 4.

Our results show that for Cipher I, YouChoose outperforms SCI,
being at least 2x faster when sending an email to Outlook and
4.9x faster with a local SMTP server. From a broader perspective,
when employing YouChoose with Cipher I, the time difference
compared to baseline emails is minimal as it is only 0.35 seconds
slower for a local SMTP server and 0.95 seconds slower for an
Outlook server. This discrepancy becomes even less pronounced
with Cipher II. In this scenario, YouChoose lags behind the
baseline by only 0.33 seconds for a local SMTP server and 0.68
seconds for an Outlook server.

We find that the performance of YouChoose is primarily influ-
enced by the communication overhead, which correlates with
the size of the email body. However, it shows negligible com-
putation overhead evident from the minimal time differences
observed between the L1, L2, L3 configurations and the L1, L2,
L2 configurations. Furthermore, our email body size is compa-
rable to the size forced upon by SCI because the recommended
way in SCI to hide challenges in the email body and achieve
server obliviousness is to embed them in an image or media file,
which are typically in MBs [1]. This comparison underscores
that the larger email body size, a factor in YouChoose’s com-
munication overhead, is not an anomaly but rather a measure to
achieve server obliviousness.

7 CONCLUSION AND FUTURE WORK

We formalized the security requirements for anonymous PAO
and proposed YouChoose, a lightweight approach to meet these
security guarantees. Our approach provides a simple way to
achieve anonymous PAO without resorting to specially designed
MPC protocols for different proofs of account ownership. We

Cipher P, V, S Baseline (s) SCI (s) YouChoose (s)

Cipher I
L1, L2, L3 0.37 (±0.03) 3.1 (±0.04) 1.32 (±0.02)
L1, L2, L2 0.1 (±0) 2.21 (±0.17) 0.45 (±0.01)
L1, L1, L1 0 (±0) 0.37 (±0.01) 0.24 (±0.01)

Cipher II
L1, L2, L3 0.6 (±0.25) - 1.28 (±0.07)
L1, L2, L2 0.1 (±0) - 0.43 (±0.01)
L1, L1, L1 0 - 0.26 (±0)

Figure 6: The median time and standard deviation (in parenthe-
ses) in seconds taken by SCI and YouChoose to send an email
for anonymous PAO across 5 executions. The email-body size
in YouChoose is set to 2.5MB, although only 1.25MB is finally
sent. For SCI, the total email-body size including the challenge
is 192 bytes. L1, L2, and L3 denote three different locations.

demonstrate our approach for email account ownership using
SMTP over TLS. Specifically, we implemented the first anony-
mous PAO that works with all the ciphersuites of TLS 1.2 and
1.3. The overhead introduced in our anonymous PAO is not
more than the time required to send a typical email containing
an image file as an attachment.

Anonymous PAOs introduced by Wang et al.[1] are an important
primitive to provide the necessary security and privacy guaran-
tees for extremely sensitive uses cases such as whistleblowing.
However, they present interesting opportunities in other use-
cases as well. In this regard, we conjure that the following
directions are worth exploring in the future:

1. Anonymous PAO for other account types. Although both
our work and Wang et al.’s work has focused on email-based
anonymous PAO, it appears that anonymous PAO for other
account types such as social media accounts may have other
interesting use-cases. For example, many Internet based
service providers need to verify that the account owners on
their website are genuine and for this purpose they trust
social-media identity providers such as Google, Facebook
and Twitter. However, the current technologies for this pur-
pose (e.g., OAuth [30]) reveal to the identity providers the
services availed by the user. Furthermore, tracking users is in
the business interest of these identity providers. Anonymous
PAOs fit in this setup perfectly as they allow the users to
anonymously prove to the service providers that they own
a genuine social media account without even requiring any
co-operation from the social media account providers. For
such a use-case, an MPC-based SCI approach is likely to
be expensive and cumbersome to implement. In contrast to
the MPC-based SCI protocol in email-based account own-
ership that exploits the fixed format of the SMTP protocol
messages, the format of messages exchanged in these social
media account APIs is likely to be more complex and dy-
namic. The YouChoose approach of selectively forwarding
messages does not require any MPC protocol and is thus
likely to be a more suitable fit.

2. Shared email hosting. We now point out a limitation
of YouChoose and SCI’s paradigm of email-based anony-
mous PAO where V sends a challenge to S and consid-
ers a reproduction of this challenge by P as a proof that
P owns an email account at the domain of S . For ex-
ample consider a common case where the organization
controlling the domain domain.com outsources its email
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services to third party providers such as Gmail (Google
Workspace [31]). In this case, P, an employee at the or-
ganization wants to prove to V that it owns an email address
of the form ___@domain.com but the outsourced mail
server S provides its services to other organizations too, say
domain2.com. Now, when V forwards its challenge to S ,
and this challenge is reproduced by P, V is not convinced
that P owns an account at domain.com or domain2.com.
Such use-cases are completely beyond the general paradigm
of both YouChoose and SCI. For this, one could leverage a
modified version of the “parse-and-extract” protocol from re-
cent research on zero-knowledge middleboxes (ZKMBs [32]).
This will prove to V in zero-knowledge that P’s email address
(used in the SMTP AUTH step) ends with domain.com.
We leave this thread open for future work.
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