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Abstract. Basic encryption and signature on lattices have comparable
efficiency to their classical counterparts in terms of speed and key size.
However, Identity-based Encryption (IBE) on lattices is much less effi-
cient in terms of compactness, even when instantiated on ideal lattices
and in the Random Oracle Model (ROM). This is because the underly-
ing preimage sampling algorithm used to extract the users’ secret keys
requires huge public parameters. In this work, we specify a compact
IBE instantiation for practical use by introducing various optimizations.
Specifically, we first propose a modified gadget to make it more suitable
for the instantiation of practical IBE. Then, by incorporating our gad-
get and the non-spherical Gaussian technique, we provide an efficient
preimage sampling algorithm, based on which, we give a specification of
a compact IBE on ideal lattice. Finally, two parameter sets and a proof-
of-concept implementation are presented. Given the importance of the
preimage sampling algorithm in lattice-based cryptography, we believe
that our technique can also be applied to the practical instantiation of
other advanced cryptographic schemes.

1 Introduction

Identity-based encryption Identity-based encryption (IBE), introduced by Shamir
in [Sha84], is considered as a viable alternative to the classical public key encryp-
tion, which requires a dedicated infrastructure. Indeed, an IBE scheme avoids
a certificate repository by deriving a user’s public key from its identity, and
the associated private key is extracted by a trusted authority using a master
secret key. This simplifies the key generation and distribution in a multi-user
system and is particularly attractive in resource constrained environments. The
first IBE schemes, based on bilinear maps and on quadratic residue assump-
tions respectively, appeared in [BF01, Coc01], followed by improvements from
various perspectives [JR13, Lew12, Wat09, DG17, BWY11, BGK08]. However,



these traditional constructions are vulnerable to quantum attacks due to Shor’s
algorithm [Sho99].

Lattice-based cryptography Lattice-based cryptography is seen as a desirable
alternative to the traditional number theoretic cryptography, due to its pre-
sumed security against quantum computers, algorithmic simplicity, and versa-
tility for constructing various advanced schemes. For the basic encryption and
signature, lattice-based constructions are the most practically efficient among
post-quantum cryptosystems. In July 2022, NIST announced the first four post-
quantum algorithms to be standardized, and three of them are lattice-based:
Kyber [SAB+20] for public key encryption/KEMs; Dilithium [LDK+22] and Fal-
con [PFH+22] for digital signatures. These algorithms have an efficiency com-
parable to their classical counterparts.

When it comes to lattice-based IBE, however, this is far from the case. Even
when instantiated on ideal lattice and in the Random Oracle Model (ROM),
lattice-based IBE schemes still suffer from inefficiencies, particularly in terms
of key size. The reason for this is the low efficiency of the associated preimage
sampling algorithm, which essentially forms the backbone of the user key ex-
traction procedure in lattice-based IBE schemes. In fact, the preimage sampling
algorithm plays a central role in a large fraction of the advanced lattice-based
cryptosystems.

Preimage sampling At the heart of many lattice-based schemes is what is known
as Ajtai’s function fA(x) = Ax mod Q, where A ∈ Zn×m

Q is a short and fat ran-
dom matrix. Ajtai’s function actually defines the inhomogeneous short integer
solution (ISIS) problem, which is believed to be hard [Ajt96, MR04, GPV08] for
appropriate parameters. Given a lattice trapdoor for A, one can efficiently com-
pute a short preimage. However, some early proposals [GGH97, HHP+03] based
on lattice trapdoor were broken by statistical attacks [NR06, DN12, YD18], since
the preimages leak information from the trapdoor.

Towards the proper use of lattice trapdoors, the preimage sampling algo-
rithm was first formalized by Gentry, Peikert and Vaikuntanathan [GPV08],
which samples preimages from a given lattice coset with a specific Gaussian dis-
tribution. Since then, it has become an essential building block in most advanced
cryptographic applications. From an implementation perspective, however, the
algorithm itself is inherently sequential and inefficient. In 2010, Peikert [Pei10]
proposed the convolution technique and made the sampling procedure paral-
lelizable, at the cost of a moderate increase in the Gaussian parameter of the
preimages, which yields some security loss. In the past decade, preimage sam-
pling has been further improved by a batch of follow-up works [MP12, DP16,
Pre15, CGM19, DGPY20, EFG+22, ETWY22, YJW23], with the emphasis on
the practical instantiations of the hash-and-sign signatures [GPV08], the sim-
plest application of the preimage sampling algorithm. Basically, these instan-
tiations can be classified into two families: NTRU trapdoor based and gadget
based.
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1. NTRU trapdoor based. In 2014, Ducas, Lybashevsky and Prest [DLP14]
presented the first practical instantiation over NTRU lattices of the sampler
in [GPV08], by exploiting a nearly optimal NTRU trapdoor. This scheme was
further developed as Falcon [PFH+22] by integrating the fast Fourier sam-
pler [DP16]. Falcon offers good performance in terms of time and space, but
its signing and key generation are rather complex. Espitau et al. proposed a
simplified variant of Falcon, called Mitaka [EFG+22], which uses the hybrid sam-
pler [Pre15] for easier implementation at the cost of a moderate security loss.
Recently, Espitau et al. [ETWY22] have further optimized Falcon and Mitaka
by sampling the preimage from an ellipsoidal discrete Gaussian distribution.

2. Gadget based. The gadget based preimage sampling was invented by Mic-
ciancio and Peikert in [MP12]. Following the idea of [Pei10], the sampling pro-
cedure of the Micciancio-Peikert framework is decomposed into offline and on-
line phases. The online sampling boils down to the sampling over the lattice
Λ⊥
Q(g) = {z | 〈g, z〉 = 0 mod Q} where g = (1, b, · · · , bk−1) is called a gad-

get vector. As shown in [MP12], sampling over the gadget lattice Λ⊥
Q(g) is

easy and fast, and the key generation is quiet simple, which offers significant
advantages in terms of implementation. In addition, the gadget based frame-
work turns out to be extremely versatile for the construction of advanced prim-
itives [GVW13, GVW15, BVWW16]. However, the gadget based constructions
suffer from rather large key sizes. To improve the practicality, Chen, Genise
and Mukherjee introduced the notion of approximate trapdoor [CGM19] and
proposed to use truncated gadget f = (bl, · · · , bk−1) for trapdoor construction.
While the improvement is substantial, the size of the gadget-based scheme is
still much larger than desired. Recently, Yu, Jia and Wang developed a compact
gadget framework in which the gadget used is a square matrix, instead of the
short and fat one used in [MP12, CGM19]. This further reduces the key size.

Lattice-based IBE. The first lattice-based IBE scheme was proposed in [GPV08]
in the ROM under the LWE and SIS assumptions (GPV-IBE), by using the
preimage sampling algorithm devised therein. Subsequently, considerable re-
search related to lattice-based IBE has been conducted from different perspec-
tives, such as weakening the assumptions by removing the random oracle [ABB10a,
AFL16, Yam16, KY16], and additional security properties [ABB10b, CHKP10,
BLSV18]. These constructions demonstrate, on the theoretical side, the versa-
tility of the preimage sampling algorithm for the construction of lattice-based
IBE.

On the practical side, the first (proof-of-concept) implementation of IBE with
practical parameters was instantiated on the NTRU lattice [DLP14], and its per-
formance was later improved by a number of software optimizations in [MSO17].
As for implementations on ideal lattices, in 2018, Bert et al. [BFRLS18] mixed
the IBE scheme [ABB10a] in the standard model on the Ring-SIS/LWE assump-
tions with the efficient trapdoor of Peikert and Micciancio [MP12] and provided
an efficient implementation. Later, Bert et al. [BEP+21] implemented preimage
sampling algorithms on module lattices, relying on the works of [MP12, GM18],
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and several instantiations on module lattice based schemes were presented, in-
cluding the IBE in the standard model [ABB10a]. The above two implementa-
tions of IBE schemes instantiated on ideal lattice are mainly aimed at demon-
strating the time efficiency of the preimage sampling, ignoring the huge key size.
For example, if we choose a parameter set in [BFRLS18], the master public key is
more than 325 KB for 41-bit security in the classical core-SVP model [ADPS16].

Challenges for compact lattice-based IBE in practice Currently, the state of
the art in terms of efficiency is still the GPV-IBE instantiated on structured
lattices. Recall that in the GPV-IBE, the fat matrix A ∈ Zn×m

Q and its as-
sociated trapdoor T represent the master public key and the master secret
key respectively. Given any identity id ∈ {0, 1}∗, the trusted authority ex-
tracts a skid for user id by using T. Specifically, id is first hashed to some
u ∈ Zn

Q, then a short vector x following the discrete Gaussian distribution is
output as the corresponding skid by invoking a preimage sampling algorithm,
i.e., x ∼ DZm,σ conditioned on Ax = u mod Q. On input a bit µ ∈ {0, 1}, the
encryption algorithm uses the Dual-Regev scheme [GPV08], which first sam-
ples s ← χn

s , e ← χm
e , e ← χe from some distributions χs, χe, then computes

c = st ·A + et mod Q and c = st · u + e + bQ2 e · µ mod Q, and finally outputs
ct = (c, c) as the ciphertext. Using its secret key x, the decryption algorithm
computes z = c− c · x = e− et · x+ bQ2 e · µ mod Q and outputs 0 if z is closer
to 0 than to bQ2 e; otherwise it outputs 1.

Note that the correctness requires that the absolute value of the error term,
dominated by et ·x, is less than bQ4 e. Typically, the distribution χe is the centered
binomial distribution with an appropriate parameter, say η, to hide the plaintext
µ under the LWE assumption. Roughly, according to the central limit theorem,
et · x follows a distribution that is very close to a discrete Gaussian distribution
with a standard deviation of σ

√
m ·
√

η
2 and an expectation of 0. Consequently,

the decryption failure rate for a single-bit encryption can be approximated by the
Gaussian error function as δ ≈ 1−erf

(
⌊Q/4⌉

σ
√
m·√η

)
. Note that σ

√
m is the expected

ℓ2-norm of the preimage x. This implies that for a reasonable decryption failure
rate, the ratio Q

σ
√
m

should be greater than c · 4√η for some constant c. For
instance, having c = 3 (i.e. the ratio Q

σ
√
m

= 12 · √η) leads to a decryption
failure rate of about 1 − erf(3) ≈ 2−15.5, which can be reduced small enough
by Error Correction Codes (ECC). For current preimage samplers, however, the
best achievable ratio Q

σ
√
m

is far less than desired. As an illustration, recall that
Falcon [PFH+22] uses the GPV sampler [GPV08] and is instantiated on the
most compact NTRU lattice, which means that the the standard deviation σ
and the lattice dimension m are simultaneously the smallest. Even in this case,
the ratio is Q

σ
√
m
≈ 2.3, which cannot guarantee the correctness of the decryption

algorithm when used directly in IBE. This explains why the GPV-IBE based on
the NTRU lattice uses very large parameters [MSO17]. The situation becomes
even worse when the GPV-IBE is instantiated on ideal lattices.
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Our contributions In this work, we present an efficient instantiation of the GPV-
IBE [GPV08] on ideal lattice, called SRNSG, by incorporating various optimiza-
tions, with the emphasis on compactness. More specifically, the contributions of
this paper are summarized as follows.

1. Improved preimage sampling for IBE. As for preimage sampling on
ideal lattices, the state of the art is the compact gadget in [YJW23] combined
with the non-spherical Gaussian in [JHT22], which may offer the most efficient
hash-and-sign signature on ideal lattice. According to our analysis, however,
it is not the best choice for IBE to balance the security and key size. This is
because for the former, we only need the preimage norm to be approximately
equal to the modulus Q to ensure the forgery security; while for the latter, we
need the preimage norm to be much smaller than Q to reduce the decryption
failure rate. To remedy this issue, we present an adapted compact lattice gadget
based on [YJW23] to make it more suitable for the instantiation of practical
IBE, which can be seen as a combination of [CGM19] and [YJW23]. Besides,
we incorporate the non-spherical Gaussian [JHT22] into our improved preimage
sampler to reduce the size of the users’ secret keys.

2. Practical instantiation of GPV-IBE. By plugging our improved preimage
sampling algorithm into the GPV-IBE [GPV08], we obtain a compact IBE based
on ideal lattice, named SRNSG. Like LAC [LLZ+18], a candidate in the NIST
proposals of round 2, to save the bandwidth as much as possible, we use a smaller
modulus Q, together with the BCH code in the decryption algorithm to address
the problem of increasing the decryption failure rate caused by using a smaller
Q.

3. Proof-of-concept implementation. Finally, we provide new parameter
sets and give a proof-of-concept implementation of SRNSG to demonstrate its
efficiency. The performance is summarized in Table 1.

Table 1. Summarized performance of SRNSG

Security level NIST-1 NIST-5

mpk size (in bytes) 4896 10272
ct size (in bytes) 8510 16638
Extract (in cycles) 4,364,517 9,999,207
Enc (in cycles) 1,029,074 2,329,433
Security C / Q 133 / 121 294 / 267

Rode map We begin with preliminary materials in Section 2, followed by our
improved preimage sampling in Section 3. Then we present the instantiated
GPV-IBE by using our new sampler in Section 4. In Section 5, the concrete
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security analysis are presented. Besides, we provide new parameter sets and the
performance of the implementation. Finally, we draw a conclusion in Section 6.

2 Preliminary

Let R, Z and N denote the set of real numbers, integers and natural numbers
respectively. For positive integer q, let Zq = {−bq/2c,−bq/2c+1, · · · , q−bq/2c−
1} denotes the quotient ring Z/(qZ). For a ∈ Z, let (a mod q) be the unique
integer a′ ∈ Zq such that a = a′ mod q. For a real-valued function f and a
countable set S, we write f(S) =

∑
x∈S f(x) assuming this sum is absolutely

convergent.

2.1 Linear algebra and lattices
A vector is denoted by a bold lower case letter, e.g. x = (x1, . . . , xn), and in
column form. The concatenation of x1,x2 is denoted by (x1,x2). Let 〈x,y〉 be
the inner product of x,y ∈ R and ‖x‖ =

√
〈x,x〉 be the ℓ2 norm of x. A

matrix is denoted by a bold upper case letter, e.g. A = [a1 | · · · | an], where ai
denotes the ith column of A. Let Ã = [ã1 | · · · | ãn] denote the Gram-Schmidt
orthogonalization of A. Let ⊗ denote the tensor product. Let A⊕B denote the
block diagonal concatenation of A and B. The largest singular value of A is
denoted by s1(A) = maxx ̸=0

∥Ax∥
∥x∥ . Let At be the transpose of A.

We write Σ � 0, when a symmetric matrix Σ ∈ Rm×m is positive definite,
i.e. xtΣx > 0 for all nonzero x ∈ Rm. We write Σ1 � Σ2 if Σ1 − Σ2 � 0. For
any scalar s, we write Σ � s if Σ − s · I � 0. If Σ = BBt, we call B a square
root of Σ. We use

√
Σ to denote any square root of Σ when the context permits

it.
Given B = [b1 | · · · | bn] ∈ Rm×n with all bi’s linearly independent, the

lattice generated by B is Λ(B) = {Bz | z ∈ Zn}. The dimension of Λ(B) is n
and B is called a basis. Let Λ∗ = {y ∈ span(Λ) | 〈x,y〉 ∈ Z, ∀x ∈ Λ} be the dual
lattice of Λ.

In lattice-based cryptography, the q-ary lattice is of special interest and de-
fined by some A ∈ Zn×m

q as:

Λ⊥
q (A) = {x ∈ Zm : Ax = 0 mod q}.

The dimension of Λ⊥
q (A) is m and (q · Z)m ⊆ Λ⊥

q ⊆ Zm. For any u ∈ Zn
q and

x ∈ Zm such that A · x = u mod q, the “shifted lattice” is the set

Λ⊥
u (A) = {z ∈ Zm : A · z = u mod q} = Λ⊥

q (A) + x.

2.2 Gaussians
The Gaussian function ρ : Rm → (0, 1] is defined as ρ(x) = exp(−π · 〈x,x〉).
Applying a linear transformation given by an invertible matrix B yields

ρB(x) = ρ(B−1x) = exp(−π · xtΣ−1x),
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where Σ = BBt. For any c ∈ span(B), the shifted ρ√Σ with center c is defined as
ρ√Σ,c(x) = ρ√Σ(x− c). Normalizing ρ√Σ,c, we obtain the continuous Gaussian
distribution D√

Σ,c. Restricting the support of the distribution to the lattice Λ,
we get the discrete Gaussian distribution DΛ,

√
Σ,c. Formally, for any x ∈ Λ,

DΛ,
√
Σ,c(x) =

ρ√Σ,c(x)

ρ√Σ,c(Λ)
.

Let ηϵ(Λ) = min{s > 0 | ρ(s ·Λ∗) ≤ 1 + ϵ} be the smoothing parameter with
respect to a lattice Λ and ϵ ∈ (0, 1). We write

√
Σ ≥ ηϵ(Λ), if ρ√Σ−1(Λ

∗) ≤ 1+ϵ.
We also use η′ϵ(Λ) = ηϵ(Λ)/

√
2π to denote the scaled smoothing parameter.

Let D+
Z,r be the half integer Gaussian defined by ρr(x)/ρr(N) for any x ∈ N.

We denote Nk(c,Σ) as the k-dimensional normal distribution with center c and
covariance Σ. If c = 0 and Σ = I, we write Nk(c,Σ) as Nk.

Lemma 1 ([GPV08]). Let Λ be an m-dimensional lattice with a basis B, then
ηϵ(Λ) ≤ maxi ‖b̃i‖ ·

√
log (2m(1 + 1/ϵ))/π, where b̃i is the i-th vector of B̃.

Lemma 2 ([MR04]). Let Λ be a lattice, c ∈ span(Λ). Then for any ϵ ∈ (0, 1
2 )

and s ≥ ηϵ(Λ), ρs(Λ+ c) ∈ [ 1−ϵ
1+ϵ , 1]ρs(Λ).

Theorem 1 ([GMPW20]). For any ϵ ∈ [0, 1) defining ϵ̄ = 2ϵ/(1−ϵ), a matrix
S of full column rank, a lattice coset A = Λ+a ⊂ span(S), and a matrix T such
that ker(T) is a Λ-subspace and ηϵ(Λ ∩ ker(T)) ≤ S, we have

T ·DA,S ≈ϵ̄ DTA,TS.

2.3 Cyclotomics

Let Z∗
m be the set of the d = φ(m) integers invertible modulo m. Let ζm be the

m-th primitive root of 1 and Φm(X) =
∑

i∈Z∗
m
(X − ζim) ∈ Z[X] be the m-th cy-

clotomic polynomial. We denote by R = Z[ζm] ' Z[X]/(Φm(X)) the cyclotomic
ring of conductor m and by K = Q[ζm] ' Q[X]/(Φm(X)) the corresponding
cyclotomic field. Let KR = K ⊗ R = R[ζm] ' R[X]/(Φm(X)). In this paper, we
focus on the case of power-of-two conductor, i.e. m = 2t for some t ∈ Z.

Any f ∈ K can be uniquely written as f =
∑d−1

i=0 fiζ
i
m with fi ∈ Q. We call

(f)c = (f0, · · · , fd−1) ∈ Qd the coefficient embedding (or coefficient vector) of
f . The element of f ∈ K can also be identified with the matrix form M(f) =
[(f)c | (ζmf)c | (ζd−1

m f)c] ∈ Qd×d.
There are d embeddings of K fixing over Q. Concretely, for i ∈ Z∗

m, the
embedding σi is defined by σi(ζm) = ζim. These d embeddings are the singular
values ofM(f). The canonical embedding of f ∈ K is σ(f) = (σi(f))i∈Z∗

m
∈ Kd.

The conjugate of f is denoted by f∗.
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2.4 Identity-based encryption
– Setup(1λ): on input the security parameter 1λ�output the master public key

and master secret key pair (mpk,msk).
– Extract(msk, id): given msk and a user identity id ∈ {0, 1}∗, output a secret

key skid for that identity.
– Enc(mpk, id, µ): on input mpk, id and a plaintext µ, output a ciphertext ct.
– Dec(skid, ct): given skid and ct, output a plaintext µ.

The correctness condition is that for all identities id, Dec correctly decrypts a
ciphertext encrypted to id, given the skid produced by Extract.

3 Our Improved Preimage Sampler

In this section, we present our improved preimage sampler by incorporating a
new gadget and the non-spherical Gaussian.

3.1 A new gadget sampler more suitable for IBE

In this subsection we give a new gadget that is more suitable for practicalisation
of advanced cryptographic schemes. Notice that compared with [MP12, CGM19],
the most compact gadget is proposed by Yu, Jia and Wang [YJW23] that uses
a square matrix as the gadget, instead of a fat one. However, by our analysis,
it is not the best choice for IBE on ideal lattice, since the extreme compactness
increases the decryption failure rate when used in IBE. We present a modified
gadget that may be seen as a combination of [CGM19] and [YJW23]. We begin
with the description of our gadget, followed by proving the simulatability of the
gadget sampler, which is a crucial property in the security proof.

Our gadget works with a composite modulus Q = pq where p, q are positive
integers, as in [YJW23]. Instead of using the square matrix p · I as the gadget,
we choose the gadget as in [MP12, CGM19], but the semi-random sampling
technique [YJW23] is retained. In more detail, let b be a small integer, w =
dlogb qe and let g = (1, b, . . . , bw−1) ∈ Zw. Given a target t ∈ ZQ, our sampler
outputs some z = (z0, . . . , zw−1) ∈ Zw following discrete Gaussian such that
〈f , z〉 = t − e mod Q for some small e, where f = p · g is the gadget vector in
our sampler. We note the bijection τ : ZQ 7→ Zp × Zq defined by τ(t) = (tp, tq)
such that t = ptq + tp. The main idea of our algorithm is to deterministically
treat the remainder tp as the approximation error e as in [YJW23], then sample
z over the coset Λ⊥

tq (g
t) as in [MP12, CGM19]. A formal description is given in

Algorithm 1.
It is straightforward to define ApproxGadget(t, r, p, q) for t ∈ Zn

Q by indepen-
dently calling Algorithm 1 on each entry of t. The correctness of Algorithm 1 is
shown in Lemma 3.

Lemma 3. Algorithm 1 is correct. More precisely, let p, q > 0 be integers, Q =
pq, r > 0 and t ∈ ZQ such that τ(t) = (tp, tq). Then ApproxGadget(t, r, p, q)
outputs z such that z ∼ DΛ⊥

tq
(gt),r and 〈f , z〉 = t− tp mod Q.
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Algorithm 1: ApproxGadget(t, r, p, q)
Require: a target t ∈ ZQ, a positive real r > 0 and integers p, q > 0 with Q = pq

Ensure: a vector z ∼ DZw,r conditioned on ⟨f , z⟩ = t− e mod Q for some e ∈ Zp.
1: (tp, tq)← τ(t)

2: sample z← DΛ⊥
tq

(gt),r

3: return z

Proof. In Algorithm 1, z is sampled from DΛ⊥
tq

(gt),r, with q being the modulus,
hence 〈g, z〉 = tq mod q, that is, p(〈g, z〉− tq) = 0 mod Q. Immediately, we have
〈f , z〉 = t − tp mod Q. On the other hand, for any z ∈ Zw, the error e ∈ Zp

satisfying 〈f , z〉 = t− e mod Q is unique, i.e. e = tp. Then 〈f , z〉 = t− tp mod Q
holds if and only if z ∈ Λ⊥

tq (g
t). Therefore, the distribution of z is exactly DZw,r

conditioned on 〈f , z〉 = t− tp mod Q for some e ∈ Zp.

Remark 1. In step 2 of Algorithm 1, we can sample z← DΛ⊥
tq

(gt),r by using the
techniques in [GPV08, MP12, GM18, HJ19, ZY22]. In SRNSG the parameter q is
a power of b, i.e., q = bw, therefore we can sample z with great ease as in [MP12].

We now prove that for uniformly random target t ∈ ZQ, the preimage and
error distributions of ApproxGadget(t, r, p, q) can be simulated.

Lemma 4. Let p, q > 0 be integers, Q = pq, r ≥ ηϵ(Λ
⊥
q (g

t)) with some negligible
ϵ > 0. Then the following two distributions are statistically close.

1. First sample t← U(ZQ), then sample z← ApproxGadget(t, r, p, q), compute
e = t mod p, output (z, t, e);

2. First sample e← U(Zp), then sample z← DZw,r, compute t = e+〈f , z〉 mod
Q, output (z, t, e).

Proof. The supports of two distributions are identical as follows:

{(z, t, e) ∈ Zw × ZQ × Zp | t = e+ pz mod Q}.

Distribution 1 outputs (z, t, e) with probability P1[(z, t, e)] =
1
Q · P1[z | t] =

1
pq ·

ρr(z)

ρr(Λ⊥
tq

(gt))
, and Distribution 2 with P2[(z, t, e)] =

1
pP2[z | e] = 1

p
ρr(z)
ρr(Zw) . Since

r ≥ ηϵ(Λ
⊥
q (g

t)) and ρr(Zw) =
∑

i∈Zq
ρr(Λ

⊥
i (g

t)), Lemma 2 shows ρr(Λ
⊥
tq (g

t)) ∈
[ 1−ϵ
1+ϵ ,

1+ϵ
1−ϵ ]

ρr(Zw)
q . Hence P1[(z, t, e)] ∈ [ 1−ϵ

1+ϵ ,
1+ϵ
1−ϵ ] ·P2[(z, t, e)] and we complete the

proof.

3.2 Our improved preimage sampler

In this subsection, we describe a new preimage sampler based on the afore-
mentioned gadget, together with the non-spherical Gaussian [JHT22]. Let Γ =
(n,m, p, q,Q, χ) denote the global parameters where Q = pq and χ is the distri-
bution of secrets. Let A ∈ Zn×m

Q be a matrix such that m > n. Our approximate
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trapdoor for A is defined as a matrix T ∈ Zm×n such that A ·T = F = In ⊗ f
mod Q, where f = p · g = p · (1, b, . . . , bw−1) is the gadget vector. The qual-
ity of the trapdoor is measured by its largest singular value s1(T). Similar
to [MP12, CGM19], our trapdoor can be instantiated in statistical mode or
computational mode, for higher efficiency, we only consider the computational
mode in this work.

Let Σ = σ2
1 · I2n ⊕ σ2

2 · Iwn and Σp = Σ − r2 ·T ·Tt. Algorithm 2 illustrates
the preimage sampling algorithm by using the aforementioned approximate gad-
get trapdoor and the non-spherical technique in [JHT22]. At a high level, the
sampling procedure follows the same manner with [MP12, CGM19] and uses the
gadget sampler as “black-box”. The output x satisfies

Ax = Fz+Ap = v − e+Ap = u− e mod Q.

Thus the approximation error e in Algorithm 2 is exactly the one in Algorithm 1,
i.e., for uniformly random u, the error e is uniformly random over Zn

p .

Algorithm 2: ApproxPreSamp(A,T,u, r, Σ)

Require: (A,T) ∈ Zn×m
Q × Zm×wn such that AT = F mod Q, a vector u ∈ Zn

Q,
r ≥ ηϵ(Λ

⊥
q (g

t)) and Σ such that Σp ≻ 0

Ensure: an approximate preimage x of u for A.
1: p← DZm,

√
Σp

2: v = u−Ap mod Q

3: z← ApproxGadget(v, r, p, q)

4: return x = p+Tz

Let L = [Im | T]. The next lemma characterizes the distribution of the linear
transformation on the concatenation of p ← DZm,

√
Σp

and z ← DZn,r, which
represents the convolution step, i.e.,

x = p+Tz = L · (p, z).

Lemma 5 ([JHT22], adapted). Let Σ = σ2
1 · I2n ⊕ σ2

2 · Iwn. For σ2
1 ≥ (r2 +

r̄2) ·
(
s1(T)

)2
+ 2r2 + 4r̄2 and any σ2

2 such that Σp ≥ r̄2, the distribution
L ·DZm+wn,

√
Σp⊕r2·Iwn

is statistically close to DZm,
√
Σ.

Now we are ready to present the main theorem to state that the preimage and
error distributions are simulatable without knowing the trapdoor, for uniformly
random target u, as in [CGM19]. The proof follows that in [CGM19, JHT22],
but is slightly simpler, as we only use Theorem 1 once instead of twice.

Theorem 2. Let (A,T) be a matrix-approximate trapdoor pair, B =
[

T
−In

]
and

(r,Σ) such that
√
Σp ⊕ r2In ≥ ηϵ (L(B)). Denote by A−1(·) the shorthand of
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ApproxPreSamp(A,T, ·, r, Σ). Then the following two distributions are statisti-
cally indistinguishable:

{
(A,x,u, e) : u← U(Zn

Q), x← A−1(u), e = u−Ax mod Q
}{

(A,x,u, e) : x← DZm,
√
Σ , e← U(Zn

p ), u = Ax+ e mod Q
}

Proof. Let

– p← DZm,
√

Σp
be a perturbation,

– u ∈ Zn
Q be the input target,

– v = u−Ap mod Q be the target of the algorithm ApproxGadget(v, r, p, q).

Real distribution: The real distribution of (A,x,u, e) is

A,u← U(Zn
Q),p← DZm,

√
Σp

,v = u−Ap,

z← ApproxGadget(v, r, p, q),x = p+Tz, e = u−Ax.

Hybrid 1: Instead of sampling u ← U(Zn
Q), we sample v ← U(Zn

Q) and p ←
DZm,

√
Σp

, and compute u = v +Ap. We keep (z, e,x) unchanged. Clearly, the
real distribution and Hybrid 1 are the same.
Hybrid 2: Instead of sampling v, z and computing e as in Hybrid 1, we sample
z← DZwn,r and e← U(Zn

p ), and compute v = e+Fz. All other terms (p,x,u)
remain unchanged. By Lemma 4, Hybrid 1 and Hybrid 2 are statistically close.
Hybrid 3: Instead of sampling p, z and compute x = p + Tz in Hybrid 2, we
sample directly x← DZm,s and compute u = Ax+ e. Note that in Hybrid 2,

u = v +Ap = e+ pz+Ap = e+A(p+Tz) = Ax+ e mod Q

and x = p+Tz follows the distribution [Im | T]·DZm+n,
√

Σp⊕r2In
. By Lemma 5,

Hybrid 3 and Hybrid 2 are statistically close. This completes the proof.

4 Specification of the Optimized IBE

This section gives a complete specification of the SRNSG IBE algorithm. We first
summarize the parameters and notations in Table 2. For ease of notation, we
treat the each element f ∈ K and its matrix form M(f) as identical.

4.1 Setup

SRNSG uses the RLWE-style key pair. Its master secret key is R ← χ2×w
n and

the master public key is essentially (a,b = f − [1, a] ·R mod Q), where f is the
gadget. A formal description of the key generation is given in Algorithm 3.

The element a ∈ RQ is generated by an ideal extendable-output function
XOF with a 32-byte seed seeda. For compactness, it is stored as seeda.

11



Table 2. Description of parameters and notations.

Description

lm message length, lm = 256

ls seed length, ls = 256

lv codeword length lv = 511

lt ECC codeword distance

(p, q) gadget parameters

Q global modulus, Q = pq

b a small integer as the log base

w dimension of gadget vector f , w = ⌈logb q⌉

n a power of 2 integer

R Z[X]/(Xn + 1)

RQ R/(Q · R)

χ centered binomial distribution with parameter 1/2, i.e., {−1 : 1
8
, 0 : 3

4
, 1 : 1

8
}

χn centered binomial distribution over R with parameter 1/2

Qs upper bound of extraction query number, Qs = 230

ϵ closeness parameter, ϵ = 1/
√
Qs · 256

r̄ base Gaussian parameter r̄ = ηϵ
(
Z(2+w)·2048

)
r gadget Gaussian parameter r = br̄ by lemma 1

σ1, σ2 standard deviation of the preimage

Σ covariance matrix of the preimage, Σ = σ2
1 · I⊕ σ2

2 · I

f gadget vector f = p · [1, b, . . . , bw−1] ∈ Rw

R secret matrix R← χ2×w
n

(a,b) public elements a← U(R), b = f − [1, a] ·R mod Q

Σp perturbation covariance Σp = Σ−r2 · [RI ] · [R
t I] =

[
σ2
1 ·I−r2RRt −r2R

−r2Rt (σ2
2−r2)·I

]
≻ r̄2

Σ2 the Schur complement of (σ2
2−r2)·I in Σp, i.e., Σ2 = σ2

1 ·I−
σ2
2 ·r

2

σ2
2−r2

RRt =
[

a b
b∗ d

]
C C =

[
a−bd−1b∗ b

d

]

12



In step 3 to step 5 of Algorithm 3, we need to sample the trapdoor R such
that Σp − r̄2 · I is positive definite. This can be realized by: (1) checking the
positive definiteness of the Schur complements of sub-matrices in Σp recursively;
then (2) checking the definiteness of ring elements in K. In more detail, since
σ2 > r in our parameters, we need to check the positive definiteness of the Schur
complement Σ2 of (σ2

2 − r2) · I, which in turn follows this procedure and boils
down to check the positive definiteness of field elements in KR. To this end, we
simply compute their canonical embedding respectively, then check whether each
element is positive or not.

In step 7, the element a− bd−1b∗ in C is the Schur complement of d in Σ2.
We include the triangular matrix C as a part of the secret key to simplify the
key extraction procedure.

Algorithm 3: Setup
Require: None
Ensure: (mpk, msk)

1: seeda ← {0, 1}ls , a← XOF(seeda) ▷ a ∈ RQ

2: repeat
3: R← χ2×w

n ▷ R ∈ R2×w

4: Σp =
[
σ2
1 ·I

σ2
2 ·I

]
− r2 · [RI ] · [R

t I]

5: until Σp ≻ r̄2

6: Let Σ2 = σ2
1 · I− r2

r2−r̄2
RRt =

[
a b
b∗ d

]
7: C =

[
a−bd−1b∗ b

d

]
▷ C ∈ K2×2

R

8: f = p · [1, b, . . . , bw−1] ▷ f ∈ R1×w

9: b = f − [1, a] ·R mod Q ▷ b ∈ R1×w

10: return (mpk = (seeda,b), msk = (R,C))

4.2 Extract users’ secret keys
On input a user’s id ∈ {0, 1}∗, the extracting procedure shown in Algorithm 4
produces a short preimage y = (y0, . . . , yw+1) ∈ R2+w such that [1, a,b] · y =
H(id) − e mod Q for some small e ∈ R. This procedure consists of two phases:
offline and online, following the idea of [Pei10, MP12]. In the offline phase, it
samples an integer perturbation vector p from DR2+w,Σp

. Then in the online
phase, it produces an approximate preimage using the semi-random sampling
technique [YJW23], as shown in the previous section. The output secret key for
each user is essentially (y1, . . . ,yw+1). For compactness, we use some encoding
technique, like [ETWY22], to compress (y1, . . . ,yw+1).

The perturbation sampling algorithm is implemented with Peikert’s Gaus-
sian convolution technique [Pei10] at the ring level, together with Genise and
Micciancio’s technique [GM18] that samples perturbation p by gradually updat-
ing the center and the covariance matrix using the Schur complement. In more
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Algorithm 4: Extract
Require: msk, id ∈ {0, 1}∗
Ensure: skid

Offline phase:
1: p← SampleP(msk) ▷ p ∈ R2+w

2: a← XOF(seeda)

3: u = H(id) ▷ u ∈ RQ

4: v = u− [1, a,b] · p mod Q ▷ v ∈ RQ

Online phase:
5: x← SampleGadgetF(v) ▷ f · x ≈ v mod Q

6: y = p+ [RI ] · x ▷ y = (y0, y1, . . . , yw+1), [1, a,b] · y ≈ u mod Q

7: return skid = (y1, · · · , yw+1) ▷ [a,b] · skid ≈ u− y0 mod Q

detail, SampleP proceeds as follows. First, it samples p′ = (p2, . . . , pw+1) ∈ Rw

with variance σ2
2−r2. Then by [GM18], it samples (p0, p1) ∈ R2 with covariance

Σ2 = σ2
1 · I −

σ2
2 ·r

2

σ2
2−r2

RRt =
[

a b
b∗ d

]
and center c = − r2

σ2
2−r2

·R · p′ = (c0, c1). To
achieve this, it continues the above recursive procedure, i.e., 1. sample p1 with
covariance d and center c1; 2. sample p0 with updated covariance a − bd−1b∗

and center c0 + (p1 − c1)bd
−1. Notice that the above procedure can be adapted

recursively to sampling over R by exploiting the tower structures of R and K,
as shown in [GM18]. However, to avoid sampling over Z with large and varying
variance, which has great impact on time efficiency and side-channel security,
we use Peikert’s Gaussian convolution technique [Pei10] at the ring level to keep
efficiency. That is, given covariance d ∈ KR and center c ∈ KR, it first samples a
continuous Gaussian vector y of covariance d−r̄2, which can be done by applying
the linear transformation defined by the Gram root of d− r̄2. Then it rounds the
real coefficients of y + c to some near integer by the integer Gaussian sampler
SampleZ (Algorithm 7). The detailed algorithm is shown in Algorithm 5.

Algorithm 5: SampleP

Require: msk

Ensure: p ∼ DR2+w,
√

Σp

1: p′ ← DZw·n,
√

σ2
2−r2

▷ p′ ∼ DRw,
√

σ2
2−r2

2: c = (c0, c1) =
r2

σ2
2−r2

·R · p′ ▷ c ∈ K2
R

3: Σ2 = σ2
1 · I−

σ2
2 ·r

2

σ2
2−r2

RRt =
[

a b
b∗ d

]
4: p1 ← SampleFz(d, c1)

5: p0 ← SampleFz(a− bd−1b∗, c0 + (p1 − c1)bd
−1)

6: return p = (p0, p1,p
′)
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Algorithm 6 is simply a ring variant of Peikert’s sampler [Pei10]. In step 3
we abuse the notation and it means that each coefficient c′i of c′ is used as input
of SampleZ, i.e., n independent parallel invocations of Algorithm 7.

Algorithm 6: SampleFz

Require: a covariance d and a center c ▷ d, c ∈ KR

Ensure: z ← DR,d,c

1: y ← Nn

2: c′ = c+
√
d− r̄2 · y ▷ c′ = c′0 + c′1 ·X + · · ·+ c′n−1 ·Xn−1 ∈ KR

3: z ← SampleZ(c′) ▷ z ∈ R
4: return z

Algorithm 7 shows the sampler for DZ,r̄,c with arbitrary center c ∈ R, which is
adapted from [PFH+22, HPRR20]. It samples some fixed Gaussian using table-
based approach (Algorithm 8) followed by a rejection sampling to make the
output correct.

Algorithm 7: SampleZ

Require: a center c

Ensure: z ← DZ,r̄,c

1: d← c− ⌊c⌋
2: z+ ← BaseSample()

3: b← U({0, 1})
4: z ← b+ (2b− 1)z+

5: x← (z−d)2−(z+)2

2r̄2

6: r ← U({0, 1, . . . , 264 − 1})
7: if r > exp(x) then
8: restart
9: end if

10: return z + ⌊c⌋

In step 4 of Algorithm 8, RCDT means the reverse cumulative distribution
table with size 13, similar to that in Falcon [PFH+22], according to which one
can sample a non-negative integer efficiently.

Algorithm 9 consists mainly of n parallel approximate gadget sampling and
outputs a vector x ∈ Rw such that x is an approximate image under the gadget
f ∈ Rw. This is a concrete specification of our gadget sampler presented in
Section III. Notice that in step 4, zi’s form a w-by-n matrix and each row of the
matrix is converted naturally to a ring element by the coefficient embedding.

Given a target u ∈ ZQ, Algorithm 10 samples an approximate z such that
〈p ·g, z〉 = u−e mod Q for some small e ∈ Zp, where g = (1, b, . . . , bw−1) ∈ Zw.
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Algorithm 8: BaseSample

Require: None
Ensure: z+ ← D+

Z,r̄
1: u← U({0, 1}72)
2: z+ ← 0;
3: for i = 0, . . . , 12 do
4: z+ ← z+ + [[u < RCDT[i]]]

5: end for
6: return z+

Algorithm 9: SampleGadgetF

Require: v ∈ RQ ▷ v(X) = v0 + v1X + · · ·+ vn−1X
n−1

Ensure: x ∈ Rw

1: for i = 0 to n− 1 do
2: zi ← ApproxGadget(vi) ▷ zi ∈ Zw

3: end for
4: [z0, . . . , zn−1]⇒ (x0, . . . , xw−1) = x ∈ Rw

5: return x ▷ f · x ≈ v mod Q

In step 1, the approximate error e is generated deterministically [YJW23], and
the remaining steps follow the highly optimized gadget sampler (for modulus
q being power-of-b) in [MP12], which consists of sampling and shift operations
over integers. Notice that step 3 can be accomplished by calling Algorithm 7:
zi ← b · SampleZ(−v/b) + v.

Algorithm 10: ApproxGadget
Require: u ∈ ZQ

Ensure: z ∈ Zw ▷ ⟨p · g, z⟩ ≈ u mod Q

1: e = u mod p, v = (u− e)/p

2: for i = 0 to w − 1 do
3: zi ← DbZ+v,r

4: v = v−zi
b

5: end for
6: return z = (z1, . . . , zw)

4.3 Encryption

On input mpk, id and a message µ ∈ {0, 1}lm , the encryption procedure use the
Dual-Regev encryption scheme [GPV08]. The subroutine ECCEnc converts the
message µ into a codeword µ̂.
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Algorithm 11: Enc
Require: mpk, id, µ
Ensure: ct
1: a← XOF(seeda) ▷ a ∈ RQ

2: u = H(id) ▷ u ∈ RQ

3: µ̂ = ECCEnc(µ) ▷ µ̂ ∈ {0, 1}lv
4: s← χn, e← χ1+w

n , e← Zlv ▷ s ∈ R, e ∈ Zlv

5: c = s · [a,b] + e mod Q ▷ c ∈ R1×(1+w)
Q

6: c = (s · u)lv + e+ Q
2 · µ̂ mod Q ▷ c ∈ Zlv

Q

7: return ct = (c, c)

4.4 Decryption

On input skid, ct, the decryption procedure first recovers the corresponding µ̂,
then uses the subroutine ECCDec to decode it.

Algorithm 12: Dec
Require: skid, ct

Ensure: µ

1: µ̃ = c− (c · skid)lv
2: for i = 0 to lv − 1 do
3: if Q

4
≤ µ̃i <

3Q
4

then
4: µ̂i = 1

5: else
6: µ̂i = 0

7: end if
8: end for
9: µ = ECCDec(µ̂)

10: return µ

4.5 Recommended parameters

We specify three sets of parameter for the toy, NIST-1, NIST-5 security levels
respectively in Table 3.

5 Security and Performance

5.1 Security

On the theoretical side, SRNSG follows the GPV-IBE construction [GPV08],
which is secure under chosen-plaintext and chosen-identity attack assuming that
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Table 3. Recommended parameters.

Security level toy NIST-1 NIST-5

Polynomial degree n 512 1024 2048
Modulus Q 98304 393216 1048576

Gadget parameters (p, q) (1536, 26) (1536, 28) (212, 28)

Log base b 8 16 16
Gadget dimension w 2 2 2

Standard deviation σ1 291.9 820.4 1159.9

Standard deviation σ2 65.8 249.2 261.6

ℓ2-norm of skid 14422.8 42967.3 96752.1

ECC codeword distance lt 33 33 33

Single bit error rate 2−11.3 2−17.71 2−21.9

Decryption error rate 2−80.3 2−190.6 2−261.9

mpk size (in bytes) 2208 4896 10272
skid size (in bytes) 1696 4096 8320
ct size (in bytes) 4360 8510 16638

the LWE problem is hard, in the ROM [GPV08] or in the Quantum ROM
(QROM) [BDF+11, KYY18]. We omit the details.

Concretely, we consider the cost of known lattice attacks and the estimation
of concrete security following the core-SVP methodology [ADPS16]. We summa-
rize the security estimation in Table 4. The details of concrete security estimate
is shown in Supplementary Material A.

Table 4. The concrete security are estimated as the core-SVP hardness of known
attacks.

Security level toy NIST-1 NIST-5

BKZ blocksize for primal attack 206 458 1008
Classical core-SVP security 60 133 294
Quantum core-SVP security 54 121 267

BKZ blocksize for dual attack 204 458 1012
Classical core-SVP security 59 133 295
Quantum core-SVP security 54 121 268
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5.2 Performance

We provide a proof-of-concept implementation for x86 64 platform, written in
standard C for both parameter sets. In this section, we report its performance.

The implementation is complied by gcc 8.3.0 and runs on Deepin 20.9. Table 5
shows the performance of our implementations on a single core of Intel Core i7-
10710U @ 1.1 GHz with 8GB RAM.

Table 5. Performance of SRNSG. Numbers are the median cycle measured over 1, 000
executions.

Security level toy NIST-1 NIST-5

Setup 3,095,820 7,136,414 4,812,673
Extract 2,152,345 4,364,517 9,999,207
Enc 496,206 1,029,074 2,329,433
Dec 353,271 689,747 1,624,520

5.3 Comparison

We do not compare the implementations of IBE based on ideal lattice in [BFRLS18]
and [BEP+21], as the different security models would make the comparison ir-
relevant. In contrast, in Table 6, we compare with the implementation based on
NTRU lattice in [MSO17], which is the instantiation of the GPV-IBE as well.
Notice that for a fair comparison, we re-estimate the security for their parameters
in the core-SVP model.

As shown in Table 6, generally, the NTRU-based instantiation is more com-
pact than SRNSG. For the NIST-I security level, while SRNSG has higher security
level and much smaller msk size, the sizes of mpk, skid and ct are about 2 times
the sizes of that in [MSO17]. This is an inherent gap, as the dimension of the
underlying SIS problems instance is 2 times the dimension of that in [MSO17].
The higher dimension increases the sizes, although SRNSG uses smaller modulus.

However, it is worthy to note that SRNSG removes the NTRU assumption and
its concrete security relies essentially on the Ring LWE assumption. This is an
attractive feature especially for more powerful applications with overstretched
parameters. Besides, SRNSG has significant advantages from the implementa-
tion standpoint: (1) SRNSG has very compact msk and avoids the notoriously
complex NTRU trapdoor generation; (2) the offline phase of the extraction pro-
cedure in SRNSG can be more conveniently implemented without floating-point
numbers [DGPY20]; (3) the base samplings of the online phase of the extraction
procedure in SRNSG are in the form DbZ+z,r for z ∈ Z, which is beneficial for
further optimization and side-channel protections. Finally, SRNSG can be more
conveniently adapted to the unstructured setting, thanks to the absence of costly
matrix inversions in the key generation.
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Table 6. Comparison of SRNSG with [MSO17]. Sizes are in bytes. Note that here we
only consider trapdoor size in the msk and omit the auxiliary matrix C in SRNSG or
the Falcon tree in [MSO17].

Security level toy NIST-1 NIST-5

SRNSG Security C / Q 59 / 54 133 / 121 294 / 267
[MSO17] Security C / Q 43 / 39 122 / 111 —

SRNSG mpk size 2208 4896 10272
[MSO17] mpk size 1472 2944 —

SRNSG msk size 512 1024 2048
[MSO17] msk size 2208 4160 —

SRNSG skid size 1696 4096 8320
[MSO17] skid size 872 1744 —

SRNSG ct size 4350 8510 16638
[MSO17] size 1728 3584 —

6 Conclusion

We present the first instantiation of GPV-IBE on ideal lattices towards prac-
tical use. The main technique is an improved preimage sampling algorithm,
which integrates a modified gadget sampler that is more suitable for practicali-
sation of advanced cryptographic schemes, and the non-spherical Gaussian tech-
nique [JHT22]. Besides, we provide two parameter sets and a proof-of-concept
implementation. Thanks to the gadget structure, the key extraction procedure
is easy and fast, which makes SRNSG an attractive post-quantum IBE for con-
strained environments. Given the importance of the preimage sampling algo-
rithm in lattice-based cryptography, we believe that our technique can also be
applied in the practicalisation of other advanced cryptographic schemes.

6.1 Future works

To support more flexible parameter choices, we can use the cyclotomic ring of
3-smooth conductor m = 2ℓ ·3k, instead of power-of-2 conductors. Alternatively,
we may adapt the ring structure to the module setting, at the cost of increasing
the master public key size.

It is worthy to implement our algorithms fully over integers by the techniques
of [DGPY20] in the key extraction procedure, and [CHK+21] in the encryption
and decryption algorithms, which supports NTT multiplication for our NTT-
unfriendly modulus Q. We leave the optimized implementation as future works.

From the perspective of cryptographic functionality, we focus more on the ba-
sic IBE itself in this work. Actually, by using the FSXY [FSXY12] and FO [FO99,
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HHK17, JZC+18] transformations, we can get efficient identity-based key ex-
change protocol in the CK+ model and the identity-based KEM against the
chosen ciphertext attack in the (Quantum) ROM.
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Supplementary Material



A Concrete Security Estimates

Notice that the concrete security of SRNSG is related to the hardness of (the Ring
variants of) LWE and SIS problems. However, since the SIS problem is much
harder than the LWE problem for the same parameters in SRNSG, we omit
the hardness estimation for the SIS problem, and only consider two embedding
attacks that are commonly referred to as primal attack and dual attack for the
LWE problem.

A.1 Lattice reduction and core-SVP hardness

The BKZ lattice reduction algorithm [SE94] and its optimized variants [CN11,
MW16] are the best known algorithms for solving lattice problems. The BKZ
algorithm can find short lattice vectors and this strength increases with the
blocksize β of BKZ. For a d-dimensional lattice Λ, BKZ with blocksize β would
find some short v ∈ Λ with

‖v‖ ≤ δdβvol(Λ)
1/d and δβ ≈

(
(πβ)

1
β β

2πe

) 1
2(β−1)

when d > β > 50.
The core-SVP methodology, proposed in [ADPS16], gives a common method

to assess the cost of lattice attacks. Following this methodology, one first es-
timates the blocksize β required for successful attacks and then quantify the
attack cost with the core-SVP hardness model that is conservative. Specifically,
the cost of BKZ with blocksize β is estimated as 20.292β [BDGL16] in the classical
setting and 20.265β [Laa16] in the quantum setting.

A.2 Primal and dual attack

The hardness of the LWE problem depends on the choices of n,Q and the stan-
dard deviation τ of the distribution χ for the trapdoor R (In SRNSG, τ = 1

2
is fixed). For primal attack, the LWE samples are converted to a unique-SVP
instance for lattice Λ, then the BKZ algorithm is employed to recover the unique
shortest vector (s, e, 1), which consists of the LWE secret and error vectors. As
shown in [ADPS16], the attack is successful if and only if

‖(s, e, 1)‖
√

β

l + n+ 1
≤ δ

2β−(l+n+1)−1
β ·Q

l
l+n+1 .

where l denotes the number of LWE samples.
For dual attack, short vectors in the dual lattice are used to solve the deci-

sional LWE problem. According to [ADPS16], if the BKZ algorithm is capable
of finding a short vector of length α = δl+nQn/(l+n+1), then one can break the
decisional LWE problem with advantage ϵ = 4 exp(−2(πατ/Q)2).
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