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Abstract. Blockchains suffer from scalability limitations, both in terms
of latency and throughput. Various approaches to alleviate this have been
proposed, most prominent of which are payment and state channels,
sidechains, commit-chains, rollups, and sharding. This work puts forth
a novel commit-chain protocol, Bitcoin Clique. It is the first trustless
commit-chain that is compatible with all major blockchains, including
(an upcoming version of) Bitcoin.
Clique enables a pool of users to pay each other off-chain, i.e., without
interacting with the blockchain, thus sidestepping its bottlenecks. A user
can directly send its coins to any other user in the Clique: In contrast to
payment channels, its funds are not tied to a specific counterparty, avoid-
ing the need for multi-hop payments. An untrusted operator facilitates
payments by verifiably recording them.
Furthermore, we define and construct a novel primitive, Two-Shot Adap-
tor Signatures, which is needed for Bitcoin Clique while being of indepen-
dent interest. This primitive extends the functionality of normal Adaptor
Signatures by allowing the extraction of the witness only after two sig-
natures are published on the blockchain.

1 Introduction

Blockchain technologies have gained increasing popularity in the past decade
as they provide a robust, secure, and decentralized infrastructure that allows
parties to make monetary transactions, as well as execute applications. The
main ingredient used in virtually all blockchains are consensus protocols, which
guarantee that all honest parties have received and agree on the latest state of the
system. Unfortunately, because of their distributed nature, public blockchains do
not scale well in terms of throughput and latency [1]. For example, Bitcoin needs
at least 1h to finalize a new transaction [2] and can process around 7 transactions
per second, in contrast to centralized, trusted payment processors that achieve
instant finality and can process tens of thousands of transactions per second.

To tackle this issue, off-chain protocols were introduced. An off-chain pro-
tocol allows parties to make transactions without involving the blockchain and
only come on-chain in case of disputes, vastly increasing throughput. The first
type of widely deployed off-chain protocols is payment channels [3,4,5,6,7]. Two



parties open a channel with a single on-chain transaction, locking their funds into
a “joint account”. They can then pay each other many times entirely off-chain,
via a fast two-party protocol. An honest party can always unilaterally retrieve
its rightful funds on-chain, thus it does not need to trust its counterparty.

Nevertheless, locking coins for exclusive use with a single counterparty is
a severe limitation. Payment Channel Networks (PCNs) [6,7] mitigate this by
enabling atomic multi-hop payments. A routing algorithm specifies a path of
channels between the payer and the payee, then each intermediary receives funds
in one channel and atomically sends the same amount (minus a fee) to the other.

In order for a channel to serve as an intermediate hop, it needs to have enough
balance on one of the two sides of the channel. Unfortunately, intermediary
channels are often used excessively in one direction, leading to channel imbalance.
Payment Channel Hubs (PCHs) [8,9,10] were introduced to mitigate this. A PCH
is a PCN node that offers liquidity and reliability in exchange for higher fees.

To deliver on these guarantees, the PCH must have the capacity to handle a
scenario in which all parties simultaneously pay all their coins to the same party.
This needs a large amount of locked funds: Consider a PCH with n clients, each
of which owns c coins in its channel with the hub. The latter must have (n− 1)c
coins in its channel with each client P in order to support everyone else each
giving c coins to P , for a grand total of n(n−1)c coins locked by the hub. Due to
these scalability issues, practical hubs restrict the allowed payments and charge
the users high fees to compensate for the opportunity cost of their locked funds.

To tackle this limitation of PCHs, an alternative off-chain approach that fore-
goes channels completely was introduced: plasma or commit-chain protocols [11].
Here a separate log of transactions between participating users is maintained by
an untrusted operator that periodically commits the latest system state on-
chain efficiently. Due to this need for on-chain commitments, contrary to PCNs,
commit-chains do not achieve instant finality. Still, they greatly reduce the re-
quired operator collateral while maintaining high throughput and low fees. In
most such protocols the operator either needs no collateral at all or has to lock
nc coins, a linear improvement compared to PCHs. A popular subcategory of
commit-chains are rollups [12,13]. They store all transaction data on-chain, but
carry out the associated computation off-chain.

To date, all commit-chain protocols need the Turing-complete capabilities of,
e.g., Ethereum [14] to validate exit requests and disputes. In this work we present
Bitcoin Clique, the first commit-chain protocol suitable for blockchains with a
limited scripting language such as Bitcoin [2]. Clique enables its users to pay
each other off-chain without having to lock coins with a specific counterparty,
therefore completely avoiding the issues that PCNs face. A payment only needs
the active participation of the payer, the payee and an untrusted operator. To
achieve this we leverage OP_CHECKTEMPLATEVERIFY (OP_CTV) [15], an opcode
that is a prime candidate for inclusion in the next Bitcoin soft fork, as well as
a novel primitive of independent interest, Two-Shot Adaptor Signatures, which
extends Adaptor Signatures [16] and is for the first time formally defined and
provided with an efficient and provably secure construction in this work. At a

2



high level, the latter enables the atomic exchange of a signature for a secret that
satisfies a specific relation. This is useful for a range of applications [17,18,19,20].
Extending this primitive, we build Two-Shot Adaptor Signatures that disclose
the secret upon the publication of two adapted signatures instead of just one.

As we formally prove, Bitcoin Clique achieves security and scalability, needing
only three off-chain messages per payment and a single on-chain transaction of
minimal size at fixed intervals. Building on top of Bitcoin brings commit-chains
to blockchains with constrained scripting capabilities, providing Bitcoin users
more versatility of off-chain solutions and expanding the use cases of the cryp-
tocurrency. Furthermore, it informs designers of future blockchains that pursue
minimal on-chain scripting capabilities without compromising on the achievable
off-chain functionality.

Similarly to other commit-chains and optimistic rollups [13], our solution
only finalizes payments upon an on-chain commitment. We find this to be an
acceptable tradeoff in exchange for drastically higher throughput than on-chain
payments, as well as more flexibility and less collateral than payment channels.

1.1 Our Contributions

Two-Shot Adaptor Signatures. We formally define and construct a novel
cryptographic primitive, Two-Shot Adaptor Signatures (2-AS), which builds on
Adaptor Signatures (AS) [16]. The security of our construction is fully proven.
Intuitively, 2-AS ensures that a party that publishes a signature on each of two
predefined messages atomically leaks a secret, whereas if only one of the two
signatures is published, then the secret remains hidden. 2-AS are both useful for
Bitcoin Clique and of independent interest. The construction works by combining
two AS instances and the 2-AS secret is the sum of the two AS secrets.

Bitcoin Clique. We provide the first commit-chain that is compatible with Bit-
coin and other UTXO-based blockchains, enabling trustless off-chain payments
between commit-chain users with superior throughput and lower fees than on-
chain transactions, while avoiding the shortcomings of payment channels. We use
of two special tools to design our protocol: Firstly, we employ the to-be-added
OP_CTV opcode, which enables securely updating the state of Clique with the ac-
tive participation of just a single party, the operator. Secondly, we leverage our
novel primitive Two-Shot Adaptor Signatures at the heart of our construction,
which underpins a punishing mechanism against users that try to maliciously
obtain twice their rightful coins upon exiting. Relevant security properties are
defined and formally proven.

1.2 Related Work

Off-chain Channels. There has been extensive work on off-chain channels.
The first line of works focused on off-chain payments over blockchains with a
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limited scripting language such as Bitcoin [4,5,6,21,22,23,24]. In [25] the Light-
ning Network (LN) [6] is formally proven secure in the UC framework [26]. State
channels generalize payment channels by allowing parties to execute off-chain
any application that is supported by the underlying blockchain, not just pay-
ments. 2-party state channels over Bitcoin are constructed in [16]. Most state
channels constructions (e.g., [27,28,29,30]) function over Ethereum.

Commit-chains. The original concept of a commit-chain was introduced by
Plasma [11]. Many different plasma protocol variants such as MVP [31], Cash [32]
Debit [33] and Snapp [34] were introduced thereafter. These have been mostly
discussed at https://ethresear.ch without formal treatment.

Formal treatment of commit-chain/Plasma solutions was first presesnted
by NOCUST and NOCUST-ZKP [35]. Their solution requires the underlying
blockchain to support Turing-complete smart contracts. Another technique [36]
achieves better efficiency in comparsion to preexisting solutions but relies on
Trusted Execution Environments (which our work does not require). Liquid [37]
is a centralized commit-chain that functions on top of Bitcoin: users need to trust
a supermajority of a fixed federation of servers. Compared to channels, commit-
chains avoid imbalance issues, payment routing, complex channel management
and unsustainable collateral in exchange for instant finality.

Fast Finality Techniques. Snappy [38] and LDSP [39] speed up transactions
and are optimized for a small set of merchants that receive payments from a
large set of customers. A subset of the merchants (a.k.a statekeepers) guarantee
fast payment finality using the customer’s collateral, before the transaction be-
comes finalized on-chain. They only allow for unidirectional payments and put
all transactions on-chain. We compare LN-based PCHs, NOCUST, Snappy, and
the current work in Table 1. There, for Snappy it is epoch = latency period [38].

Rollups. Finally, a solution similar to commit-chains is called rollups. This
approach aims at performing expensive computation (i.e., executing smart con-
tracts) off-chain, while committing all (unprocessed) data to the blockchain, ef-
fectively using the latter as a data availability layer while the rollup is active, and
as a finality platform once a party leaves the rollup. Rollups (e.g., [12,13,40,41,42])
are essentially a special case of commit-chains. They are of lesser interest for
blockchains with restricted scripting capabilities such as Bitcoin, where the stor-
age of L1, not its computation, corresponds to the lion’s share of the cost.

Extensions to Adaptor Signatures. The technique of [43] extends adaptor
signatures to two pre-signers, who collaborate to pre-sign. Given then a single
adapted pre-signature, they can extract the witness. In contrast, 2-AS has a
single pre-signer that needs two adapted pre-signatures to extract the witness.
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PCH (LN) NOCUST Bitcoin Clique
Snappy (m

statekeepers)

off-chain
payment

costs

Network (messages) 8 3 3 3 + 2m
per-payment storage

(user/operator)
O(log(max pays)) /
O(log(max pays))

312b/841b
(ephemeral)

1 sig + 5 pks/ 5 pks
(ephemeral) 0 / 0

fixed storage
(user/operator)

2 ints + 2 pks/
2n ints + 2n pks

529b/
5n ints + n pks

n pks + n ints /
n pks + n ints 0 / 0

on-chain
overhead

(txs)

startup n n 2 n+m
pessimistic teardown 2n 2n 2n n+m

per epoch — 1 1 0
per payment 0 0 0 1

Works w/o Turing-complete SC ✓ ✗ ✓ ✗

Allows any-to-any payments ✓ ✓ ✓ ✗
user collateral (total payments

of up to c coins/epoch) — 0 0 c

operator collateral (c coins/user) n(n− 1)c nc nc —
statekeeper collateral

(insuring up to nc coins/epoch) — — — nc

Table 1. Comparison of PCHs based on LN [6], NOCUST [35], Bitcoin Clique, and
Snappy [38] for n users. Ephemeral data is deleted after each epoch.

2 Preliminaries

A digital signature scheme, first formalized in [44], is an established crypto-
graphic primitive that enables efficient message authentication. It provides (i)
Gen, a probabilistic polynomial time (PPT) algorithm that generates a secret-
public key pair, (ii) Sign, a PPT algorithm that, on input a secret key and
an arbitrary message, produces a signature and (iii) deterministic polynomial
time (DPT) Vrfy which, on input a public key, a message and signature, it re-
turns whether the signature is valid. The security property ensures that, without
knowledge of the secret key, one cannot forge a valid signature.

Consider next a security parameter k ∈ N and a relation R, i.e., a set of
statement-witness pairs (Y, y), where Y, y ∈ {0, 1}∗. Let LR, the language of the
relation, be the set of statements for which a valid witness exists: LR = {Y |
∃y s.t. (Y, y) ∈ R}. We further say that R is a hard relation if: (i) there exists a
PPT algorithm RGen(1k) that produces new (Y, y) pairs in R, (ii) one can check
efficiently (i.e., in polynomial in k time) whether a given (Y, y) pair is in R (i.e.,
R is decidable) and (iii) there is no PPT algorithm that, given Y , produces a
witness y such that (Y, y) ∈ R with more than negligible probability in k.

Adaptor Signatures (AS). This scheme, formalized in [45], is built on a digital
signatures scheme and a hard relation R̃. It enables the atomic exchange of (i)
a valid signature on a message of interest m ∈ {0, 1}∗ with (ii) a valid witness
of a pre-agreed statement. In addition to the 3 algorithms of the underlying
signatures, adaptor signatures provide 4 new ones: pSign, pVrfy,Adapt and Ext. In
this work we leverage AS to build two-shot adaptor signatures (2-AS, Section 5).

The typical AS scenario involves two parties: Alice, who generates the pair
(Y, y) ∈ R̃, keeps the witness y secret, and publishes Y , and Bob, who controls

5



the signing keypair (sk , pk). Initially, Bob calls pSign(sk ,m, Y ) in order to pre-
sign m, then sends the resulting pre-signature σ̃ to Alice. She verifies that σ̃
is valid by checking that pVrfy(pk ,m, σ̃, Y ) returns 1. σ̃ is however not a valid
signature (i.e., Vrfy(pk,m,σ) = 0, where Vrfy is the verification algorithm of
the underlying signature scheme). Nevertheless, Alice can call Adapt(pk , σ̃, y)
(note the use of her witness y) to obtain the desired valid signature σ: now it
is Vrfy(pk ,m, σ) = 1. Alice then broadcasts σ (usually on a blockchain). The
adapted signature σ is special: Bob can extract Alice’s witness y from it by
running Ext(σ, σ̃, Y ). The atomic exchange of σ for y is now complete.

The adapted signature σ thus serves a double role: It both proves that Bob
indeed signed m and discloses Alice’s witness to him.

A motivating application for this scheme is the atomic sale over a blockchain
of a secret that satisfies a specific constraint, e.g., is the secret key of a specific
public key: The seller Bob sends the statement (his public key) to the buyer
Alice. She prepares a transaction that pays Bob, pre-signs it and sends him
its pre-signature. Bob adapts it and publishes the transaction with the resulting
signature. Lastly Alice extracts the witness (Bob’s secret key) from the signature.

AS offer the following functional and security properties: (i) Bob cannot ob-
tain a signature without adapting, (ii) if he adapts he will always obtain a valid
signature and (iii) Alice can always extract the witness from an adapted signa-
ture. Thus, if Bob gets paid, then Alice learns the witness, ensuring atomicity.

CTV. We now provide some intuition on CTV, the proposed Bitcoin opcode [15]
that we make heavy use of in this work. At a high level, it allows us to constrain
the future use of coins. This new restriction ability enables complex ownership
structures of coins, bringing to Bitcoin a large and useful subset of the smart
contracts possible in blockchains with Turing-complete scripting languages [14]
with a minimal, well-scrutinized modification to the Bitcoin Script.

Its mechanics are relatively simple: the CTV opcode is included in a transac-
tion output and fully specifies every piece of data of the spending transaction,
exept for the content of its inputs. At an intuitive level, it is enough to think
that a CTV dictates the outputs of the next transaction.

For example, consider a transaction output θ′ of c coins that is spendable by
Alice, as well as another transaction output θ with 2c coins, encumbered only
with a CTV that commits to a transaction with a single θ′ output. This means
that anyone can spend θ, as long as the spending transaction has a single output,
θ′. The interpretation of this setup is that Alice has to pay a fee of c coins to
the miners to gain c coins.

Let us examine a more useful example: Alice keeps her coins in an output
encumbered with a CTV that specifies a single output. The latter is either spend-
able by her “hot wallet” key after a delay, or by her “cold wallet” key immediately.
To pay, she first spends the CTV-encumbered output, then waits for the delay
and finally uses the payment transaction. If however her hot wallet is compro-
mised (which can presumably happen more easily than to her cold wallet), she
still can salvage her coins with the cold wallet key within the delay window.
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Observe that in the common case of no compromise, her cold wallet secret key
is never used. This way to secure funds is currently impossible in Bitcoin.

More complex applications of CTV, such as Bitcoin Clique, implicate multiple
mutually distrustful parties. Without CTV, all involved outputs would have to be
signed by all parties, otherwise any missing party could be cheated out of its coins
by the rest. This however does not scale, as it requires the active participation of
all parties for any state update. Even worse, a single inactive party can lead to
the protocol stalling, effectively locking honest party coins forever. CTV removes
these pitfalls by fixing where the coins of involved outputs will go without new
signatures by all parties on every update.

With regards to notation, consider a transaction tx. We denote a CTV that
commits to a transaction with the outputs of tx with CTV(tx): An output with
spending condition CTV(tx) can only be spent by a transaction with the outputs
of tx and no other transactions. For efficiency and privacy, a short commitment
to the relevant tx data, generated with a hash function, is stored with CTV(tx).

3 Model

3.1 Blockchain and Transaction Model

In this work we focus on blockchains based on the Unspent Transaction Output
(UTXO) model, such as Bitcoin. Under this model, coins are held in outputs.
Formally, an output θ is a tuple (cash, φ), where cash denotes the amount of coins
associated to the output and φ defines the conditions (also known as script) that
need to be satisfied to spend the output. Our modeling is inspired by [46,16].

A transaction transfers coins across outputs, meaning that it consumes one
or more existing outputs and creates a list of new outputs. A transaction has one
input for each output it spends, which carries the witness that satisfies the script
of the output being spent (typically one or more signatures). In other words, each
transaction input is tied with exactly one previously unspent output of an older
transaction. Thus, the transactions of a UTXO-based blockchain are organized
in a directed, acyclic transaction graph. Formally, a transaction tx is a tuple of
the form (txid, In,Out,Witness), where txid ∈ {0, 1}∗ is the unique identifier of tx
and is calculated as txid := H(In,Out), where H is a hash function, commonly
modeled as a random oracle. In is a vector of pointers to the outputs being spent
and Out = (θ1, . . . , θn) is a vector of the new outputs. The sum of coins of the new
outputs must not exceed the sum of coins of the spent outputs. Witness ∈ {0, 1}∗
contains the witnesses that satisfy the scripts of the old outputs.

A valid transaction can be added to a single block of the blockchain (or ledger,
GLedger). A block consists of a number of transactions. There is a unique block for
each height ∈ N and new blocks are continuously created. As explained below,
the height of the block in which it is included can be leveraged by the script(s)
of a transaction via a timelock. The liveness property guarantees that an honest
transaction has to wait for at most u ∈ N blocks from submission to inclusion.
One can of course store a transaction locally (a.k.a. off-chain) along with (some
of) its witnesses in order to publish it later on-chain if needed.
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Let us now enumerate the five types of spending conditions of an output
used in this work. The most common spending condition is a public key. To
satisfy it, the spending transaction must be signed with the corresponding secret
key. Two more spending conditions are absolute and relative timelocks. These
conditions make the output unspendable before a certain point in time. An
absolute timelock is a block height after which the output can be spent. A
relative timelock is the number of blocks that the output must stay on-chain
before it can be spent. All timelocks in this work last for strictly longer than the
liveness parameter u. The fourth spending condition is the threshold signature,
which allows a subset of specific size of a designated set of keys to spend the
output (this functionality is implemented with the OP_CHECKSIGADD opcode3).
The last spending condition type is CTV, which has been introduced in Section 2.

We introduce our notation through examples: The spending condition pkB
∧ CTV(tx2) + t1 of an output of tx1 can be spent by tx2 signed by skB , only
after tx1 has been on-chain for t1 blocks (“+t” denotes relative timelock). (pkC ∧
pkD) ∧ t2 can be spent by a transaction signed by both skC and skD, only after
block t2 (“∧t” denotes absolute timelock).

3.2 Commit-chain model

A commit-chain protocol is executed among a set of users P, an operator Op
and GLedger. We break the execution down into three phases: the transaction,
the exit, and the healing phase. In the transaction phase users can transfer coins
off-chain to one another and in the exit phase users can withdraw their rightful
coins on-chain. Users that want to continue the Clique enter the healing phase.

Transaction phase. During this phase each user Pi ∈ P can send a message of the
form (Pi, Pj , v, aux) to the operator Op indicating that Pi wants to send v coins
to user Pj ∈ P. At the end of this phase each user P ∈ P attempts to compute
a tuple of the form (v, e, π), where v is P ’s balance in epoch e and π is a balance
proof. The protocol should ensure that a user can send coins to and receive coins
from multiple users during this phase. Balances are not updated immediately
but only at the end of the transaction phase. This property is referred to as
late or eventual finality. Due to late finality, it could indeed be the case that an
honest user cannot calculate the latest π at every moment. In this case the user
will use its previous balance proof to exit the system if she so wishes without
loss of funds.

Op is tasked with processing payments and updating user balances. Some
commit-chain protocols require Op to send one or more on-chain transactions to
GLedger to commit to the latest state of the system at the end of each epoch.

Exit phase. This phase can be triggered by any user P ∈ P. It is carried out
by submitting one or more suitable transactions to GLedger. If Op misbehaves, P
will detect it and exit in time, securely recovering all its coins on-chain.
3 github.com/bitcoin/bips/blob/master/bip-0342.mediawiki#cite_note-5
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Healing phase. Some commit-chain protocols require a restoration process by the
users and Op to revert to the transaction phase after an exit phase is completed.

3.3 Communication and adversarial assumptions

Let us now discuss the communication and adversarial assumptions in our mod-
eling. A commit-chain protocol is executed in the presence of a PPT adversary
who can corrupt up to all but one parties. The corrupted parties are then con-
trolled by the adversary, i.e., they can deviate from the protocol description and
act in an arbitrary and possibly coordinated fashion.

We also assume that parties are connected via authenticated channels, i.e.,
the adversary can read, delay, replay or drop messages sent between parties but
cannot modify their content. All parties have read and write access to GLedger.
The adversary cannot drop messages sent by an honest party to GLedger, but it
can delay them for up to a fixed period of time.

3.4 Security and Performance Guarantees

We here provide intuition for the intended guarantees of Bitcoin Clique. We refer
the reader to Appendix C for the formal security definitions.

Transaction Phase Correctness. We say that a transaction is valid if the sender
owns in the commit-chain more coins than the amount to be paid. During the
transaction phase, if Op, the sender Pi ∈ P and the receiver Pj ∈ P of a valid
transaction (Pi, Pj , v, aux) are honest, then either Pi’s balance is reduced by v
and Pj ’s balance is increased by v, or both balances remain unchanged (if the
adversary drops or delays a message too much).

Exit Phase Correctness. If an honest user exits the commit-chain system, she is
removed from the user set P. For simplicity we assume that a user always exits
with all her coins.

Balance Security. In the presence of any number of malicious parties, including
Op, an honest user does not lose any coins at any stage of the protocol, i.e., an
honest user is able to always exit with her entire balance. We note that due to
late finality, this property essentially states that users will either be able to exit
with their balance from the current or the previous epoch.

Operator Balance Security. An honest operator does not lose the collateral she
deposited in the commit-chain, even in presence of any number of malicious
users. Furthermore, she is able to exit the Clique at any time.

Formal security properties are given in Section 6 (Theorems 2 and 3).
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Efficiency. Let t denote the duration of an epoch and c the per-epoch communi-
cation of Op with GLedger. A commit-chain protocol is efficient if t, c ∈ O(1), i.e.,
the duration of an epoch and the per-epoch communication of Op with GLedger
independent of the number of both users and payments.

Efficiency is the reason why a commit-chain protocol is useful, as it guarantees
that its payment fees are drastically lower than on-chain transaction fees.

4 Protocol and Primitive Overview

In this section we go over the Bitcoin Clique protocol and Two-Shot Adaptor
Signatures in an informal but detailed manner, providing the necessary intuition
behind both.

4.1 Bitcoin Clique

Consider users P with |P| = n and an operator Op running a Bitcoin Clique
protocol. Under the current design, users can only own and exchange coins in
a single, fixed denomination. Adding more denominations is relatively straight-
forward, but left as future work – discussion to that direction can be found in
Section 7. In the current section we limit the total number of coins to be a
power of 2 and we assume that each user owns 1 coin for ease of exposition;
these limitations are not present in the formal protocol.

This subsection is organized as follows: We start with the protocol flow during
normal operation, which includes payments and epoch changes. We then explain
the off-chain tree of transactions that is the core of the construction. Subse-
quently the exit phase is discussed. Afterwards we elaborate on the mechanism
which guarantees that epoch changes respect balance security; this is where
two-shot adaptor signatures and the need for operator collateral come into play.
Then the Clique setup procedure is presented, tying everything together. Lastly
we discuss the healing mechanism, which is formally presented in Appendix D.

Transaction Phase. During normal operation, Alice ∈ P can send her coin to
Bob ∈ P by sending him a single signed message, who in turn generates some
keys and sends them, together with Alice’s message, to Op. The latter then
signs and publishes these messages to all Clique users. In practice, this last step
is efficient, as Op can simply post them on, e.g., its website. Honest users should
check that their payments appear there and initiate the exit phase if they do not
appear within a reasonable length of time.

Periodically, i.e., at the end of each epoch, Op publishes to GLedger a specially
crafted step transaction with 1 input and 1 output that carries the sum of all
Clique coins and commits to the latest coin distribution. This transaction spends
a previous step transaction. This is efficient: a transaction of minimal, constant
size safeguards all epoch payments, irrespective of their number or the amount
of users. Looking ahead, in order to move its coins back on-chain, any user can
unilaterally start the exit phase by spending on-chain the step transaction.
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Transactions structure. The central structure of a Clique is a binary tree of
transactions with one leaf per coin, which exists entirely off chain during normal
operation (i.e., until the exit phase). The root transaction of the tree has a single
input that spends the step transaction and has two outputs, each with half the
total coins. Each non-leaf transaction spends one of the two outputs of its parent
and in turn provides two outputs, each with half the coins. Looking forward, a
user can exit unilaterally by publishing to GLedger the branch of transactions
that connect the root to its leaf, which contains O(log(n)) transactions.

A parent transaction specifies its children using CTV. Crucially, CTV guar-
antees that Op can generate this tree locally, without interacting with the users,
just by using their public keys. This avoids costly interactions and prevents a sin-
gle user from stalling the protocol by inaction, ensuring the protocol is practical.
Since CTV uses hashes, the resulting structure is a Merkle tree of transactions.
This structure ensures logarithmic on-chain complexity for each user. An exam-
ple Merkle tree can be seen in Figure 1.

Exit phase. If an honest user P ∈ P decides to move its coins back on-chain
or detects misbehavior by Op, – slow response times, invalid responses, or an
incorrect step transaction on-chain – it triggers the exit phase. As alluded to
previously, P accomplishes this by publishing the root transaction that corre-
sponds to the last valid step transaction, along with the log(n) + 1 transactions
that constitute its own branch of the Merkle Tree. In particular, each non-root
transaction that P publishes spends one of the two outputs of its parent. This
is the only way to spend this output without a timelock – the child transaction
is specified via CTV.

txroot

x1,1

x1,2

tx1,2

x2,1

x2,2

tx3,4
x2,3

x2,4

CTV(tx3,4)

CTV(tx1,2) P2

P1

P3

P4

Fig. 1. Merkle tree for 4 users. The usage of CTV is exemplified.

The leaf transaction has 2 outputs as well, one of which concerns P . This
output has a different spending condition: it requires a two-shot adaptor signa-
ture, pre-signed by Op and adapted by P — we will promptly explain why. P
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spends the leaf output using an out transaction, which finally gives P access to
its coins after a timelock.

For example, if n = 128 and P is the only exiting user, it has to publish the
root transaction, another 6 Merkle tree transactions and the out transaction to
exit, i.e., 8 constant-size transactions in total.

Once the step transaction is spent by P , it prompts all other Clique users to
either follow the same on-chain procedure to retrieve their coins on-chain within a
fixed timeframe — this is the timelock of the Merkle tree transactions we alluded
to before — or join the healing phase (discussed below), otherwise their coins
can be confiscated by Op. The latter is required to guarantee operator balance
security. Note that a user R exiting after P needs to publish less than log(n)+1
transactions on-chain, since part of the tree has already been published. More
specifically, if R exits after P and shares 1 ≤ m ≤ log(n) levels of the Merkle
tree with P , then R only needs to publish log(n)−m+ 1 transactions to exit.

Some details that are omitted here for simplicity can be found in Section 6.

Updating step transactions. One crucial question has been left unanswered:
How does Op securely supersede the step transaction at each epoch change? On
the one hand, if Op can freely spend the step transaction, it can simply steal
all Clique coins without recourse. On the other hand, future payments are not
known when the step transaction is generated, thus CTV cannot be used. Of
course, requiring signatures by all users for each epoch update is impractical.

To resolve this quandary, the following solution is employed: Two step trans-
actions are active and unspent at each instant. Each carries the entirety of the
Clique coins. The first set of coins is initially provided by the users, whereas
the second is provided by Op as collateral. At the end of each epoch, a timelock
on the older one expires and Op can freely spend it. If Op is honest, it will use
the next step transaction, as discussed earlier. If however it steals the coins or
stays inactive, users exit via the other active step transaction – the CTV spend-
ing method, which requires the root transaction, is not timelocked. Op cannot
steal the newer step transaction, as it is still timelocked. This technique ensures
balance security for the users.

This solution however creates yet another problem: What prevents the users
from simply exiting via both step transactions? This would effectively double
each user’s coins by stealing Op’s collateral. This is where the two-shot adaptor
signature shines. As alluded to above, P ∈ P has to publish an out transaction
after the leaf transaction and wait for a timelock to access its coins. The out
transaction needs a signature that P can only obtain by adapting a specially
crafted pre-signature by Op using a specific AS witness. If Op learns two adapted
signatures by P on out transactions of consecutive epochs, it can extract two AS
witnesses, sum them to obtain the 2-AS witness and use the latter to confiscate
the coins of one or both out transactions before P ’s timelock expires. Therefore
P can claim its coins from either step transaction securely, but not from both.
This technique provides operator balance security. We refer the reader to Figure 6
for a complete illustration.
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Special care needs to be taken when coins change hands between epochs. In
order to maintain operator balance security, the payee needs a 2-AS signature
by the payer to spend its coin. This is so that Op can punish the payer if both
payer and payee try to exit with the same coin.

Clique Setup. At last, all building blocks are in place. They are put together
during the setup procedure as follows: Parties exchange keys and pre-signatures,
then calculate the initial Merkle tree of transactions. Fixed conventions are used
(e.g., lexicographic ordering of public keys) so that all parties agree on exactly the
same tree. Each user then moves its c on-chain coins to the first step transaction,
which exceptionally has n inputs. Its output commits to the Merkle root via CTV.
Simultaneously Op moves its collateral (equal to the total Clique coins) to a step
transaction that commits to the same Merkle root. As discussed before, Op can
also spend them, but only after a timelock. The timelock of the second one is
longer by t blocks. We say that t is the length of an epoch.

Observe that no user nor Op can lose coins during setup. Users only move
their coins into the step transaction after ensuring that its output is the expected
one and that they can spend their entire branch up to and including the out
transaction (which needs the correct pre-signature). Likewise Op verifies that it
can extract the required key and punish any user that attempts to take its coins
from both step transactions.

Healing Phase. After one or more users exit, one or both step transactions
are spent and part of the Merkle tree is on-chain. The remaining users need a
mechanism to restore suitable unspent step transactions to carry on. We design
a method by which the active users collaborate among them and with Op to
consolidate the outputs of each Merkle tree into a new step transaction. This is
achieved by including one more spending method to each output of each tree
transaction. This method does not use a CTV, since the exiting users are not
known when the tree is built and foreseeing all possible exit combinations leads
to an exponential blowup. It instead needs a signature by Op and all users that
have their coins in said output. At a high level, active users try to gather the
needed signatures for the consolidating transaction. If some users that have not
exited are inactive, the active users that share a tree output with them publish
the minimum tree transactions needed to exclude the inactive users from the tree
outputs and then try to consolidate again. Once the consolidating transaction is
fully signed, it is published to GLedger. The Clique is healed. A full description
can be found in Appendix D.

4.2 Two-Shot Adaptor Signatures

As we saw in Section 2, a (simple) adaptor signature scheme (AS) [16] ties
together the signature of a message (in our case a transaction) and the revelation
of a secret value (a.k.a. witness). In a bit more detail, a pre-signer first generates a
pre-signature, the publisher adapts this pre-signature using its witness, and upon
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publishing the resulting full signature the pre-signer can extract the publisher’s
witness using the pre- and full signatures. In order to ensure compatibility with
Bitcoin, we instantiate AS with Schnorr adaptor signatures (we refer the reader
to [16] for its details).

We extend this scheme to require two signatures for extraction. In particular,
a two-shot adaptor signature scheme (2-AS) guarantees that extraction is im-
possible under a single valid signature and prevention of extraction is impossible
under two valid signatures.

The construction of this primitive is an efficient modification of AS. Given
the relation R̃ of the underlying AS, the relation R of 2-AS consists of two copies
of R̃. Pre-signing, pre-signature verification, and adapting are done like in AS.
Extraction performs the action of AS on the two signatures and returns the two
extracted witnesses.

In order to ensure compatibility with Bitcoin, we instantiate AS with Schnorr
adaptor signatures (we refer the reader to [16] for its details). We leave the proof
that Schnorr adaptor signatures satisfy are secure as per the definition of [45] as
future work.

The next two sections describe our two contributions in depth. We first
present two-shot adaptor signatures in Section 5, as they are a prerequisite for
Bitcoin Clique, which is presented subsequently in Section 6.

5 Two-Shot Adaptor Signatures

5.1 Primitive Definition

For the construction of Bitcoin Clique we require a primitive that enables a
party to extract a secret after two signatures are posted on the blockchain. To
this end we define and instantiate a more generalized adaptor signature scheme
called two-shot adaptor signature scheme (2-AS). This primitive allows for the
extraction of a witness given two pre-signatures and two full signatures.

Definition 1 (2-AS Syntax). Let k ∈ N be the security parameter. A two-shot
adaptor signature signature scheme 2-AS is defined with respect to a hard relation
R̃ which can be sampled efficiently with R̃Gen and a digital signature scheme of
which the algorithms Gen and Vrfy are provided as part of the interface. It also
provides the following algorithms:

2-pSign(sk ,m, Y ): a PPT algorithm that on input a secret key, a message m ∈
{0, 1}∗ and Y ∈ LR̃, outputs a pre-signature σ̃.

2-pVrfy(pk ,m, σ̃, Y ): a DPT algorithm that on input a public key pk , a message
m ∈ {0, 1}∗, a pre-signature σ̃, and a statement Y ∈ LR̃, outputs 1 if the
pre-signature is valid and 0 otherwise.

2-Adapt(pk , σ̃, y): a DPT algorithm that on input a public key pk , a pre-signature
σ̃, and a witness y, outputs a full signature σ.

2-Ext(σ1, σ2, σ̃1, σ̃2, Y1, Y2): a DPT algorithm that on input two pairs of mes-
sages, full signatures and pre-signatures, outputs a tuple of two witnesses y
or ⊥ otherwise.
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We provide the algorithms Gen and Vrfy of the underlying signatures scheme as
part of the 2-AS primitive unchanged in order to ensure that a full signature re-
sulting from 2-Adapt is compatible with protocols that use the signatures scheme
but not the 2-AS scheme, such as Bitcoin (cf. Definition 2 and Figure 2 below).

We define RGen(1k) as:

[(Y1, y1)
$← R̃Gen(1k); (Y2, y2)

$← R̃Gen(1k); return ((Y1, Y2), (y1, y2))]

We now define the Correctness of a 2-AS scheme, as well as its two secu-
rity properties: Pre-signature adaptability and non-extractability and Full Ex-
tractability.

Correctness states that if a pair of pre-signatures are adapted using the cor-
rect witnesses, the resulting signatures are valid and one can extract the full
witness given the pair of pre-signatures and signatures.

Definition 2 (Correctness). A 2-AS scheme is correct if ∀k ∈ N and any
three messages m1,m2 ∈M it holds:
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2-pVrfy(pk ,m1, σ̃1, Y1) = 1
∧2-pVrfy(pk ,m2, σ̃2, Y2) = 1
∧Vrfy(pk ,m1, σ1) = 1
∧Vrfy(pk ,m2, σ2) = 1
∧((Y1, Y2),y) ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(sk , pk)
$← Gen(1k)

((Y1, Y2), (y1, y2))
$← RGen(1k)

σ̃1
$← 2-pSign(sk ,m1, Y1)

σ̃2
$← 2-pSign(sk ,m2, Y2)

σ1 ← 2-Adapt(σ̃1, y1)
σ2 ← 2-Adapt(σ̃2, y2)
y← 2-Ext(σ1, σ2, σ̃1, σ̃2, Y1, Y2)


= 1.

The adaptability & non-extractability property roughly states that (i) if a
pre-signature is valid then one can adapt it into a valid signature given the cor-
responding witness and (ii) a witness for a statement cannot be extracted when
only a single signature that resulted from adapting a pre-signature is known.

1: (Y, (y1, y2))
$← RGen(1k)

2: (pk ,m, σ̃, b, aux)← A(Y )
3: if ¬2-pVrfy(pk ,m, σ̃, Y ) then return 0
4: σ ← 2-Adapt(σ̃, yb)
5: if ¬Vrfy(pk ,m, σ) then return 1 // adaptability
6: y∗ ← A(σ, aux)
7: return (Y, y∗) ∈ R // non-extractability on single signature

Game 2-ADP-NEXTA(1k)

Fig. 2. Game for Adaptability & Non-Extractability under single signature

Definition 3 (Pre-signature adaptability & non-extractability). A 2-AS
scheme is 2-ADP-NEXT-secure if

∀k ∈ N,∀A ∈ PPT,Pr[2-ADP-NEXTA(1k) = 1] < negl(k) .
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We will now define the remaining property, Full Extractability, which is de-
fined using a cryptographic game. It is based on the corresponding notion of [45].
At a high level, it ensures that the adversary cannot output a pair of valid signa-
tures that has neither been published by the honest signer nor can be produced
by adapting a suitable pair of honestly produced pre-signatures using a witness
known to the adversary.

The 2-FEXT game captures this requirement by providing the adversary with
a signing and a pre-signing oracle, as well as an oracle that outputs a random
statement but not its witness. The adversary outputs two message-signature
pairs and wins if they are both valid, neither message has been queried to the
signing oracle and its output cannot be used to extract a valid witness. The
oracles are defined in Figure 3 and 2-FEXT is formally defined in Figure 4.

O2pS(m,Y ):

1: σ̃
$← 2-pSign(sk , m, Y )

2: T (m)
∪← (Y, σ̃)

3: return σ̃

Game Oracle O2pS

O2S(m):

1: σ
$← Sign(sk ,m)

2: Q ∪← {m}
3: return σ

Game Oracle O2S

O2R():

1: (·, Y )
$← RGen()

2: C ∪← {Y }
3: return Y

Game Oracle O2R

Fig. 3. Oracles for the 2-FEXT game

1: Q ← ∅; C ← ∅; T ← empty M 7→ 2LR×pre-sigs map; (sk , pk) $← Gen(1k)
2: (m∗

1,m
∗
2, σ

∗
1 , σ

∗
2)← AO2pS,O2S,O2R(pk)

3: bf ← Vrfy(pk ,m∗
1, σ

∗
1) ∧ Vrfy(pk ,m∗

2, σ
∗
2) ∧m∗

1 /∈ Q ∧m∗
2 /∈ Q

4: bw ← ∄Y1, Y2, σ̃1, σ̃2 : (Y1, σ̃1) ∈ T (m∗
1) ∧ (Y2, σ̃2) ∈ T (m∗

2) ∧ Y1 /∈ C ∧ Y2 /∈ C
∧((Y1, Y2), 2-Ext(σ∗

1 , σ
∗
2 , σ̃1, σ̃2, Y1, Y2)) ∈ R

5: return bf ∧ bw

Game 2-FEXTA(1k)

Fig. 4. Game for Full Extractability

Definition 4. A Two-Shot Digital Signature scheme is 2-FEXT-secure if

∀k ∈ N,∀A ∈ PPT,Pr[2-FEXTA(1k) = 1] < negl(k) .

5.2 Construction

Let AS be a secure adaptor signature scheme w.r.t. a hard relation R̃. We now
provide a construction of 2-AS based on AS. The relation R used in the construc-
tion is a tuple ((Y1, Y2), (y1, y2)) where ∀b ∈ {1, 2}, (Yb, yb) form an R̃ tuple. In
other words, we have:

R = {((Y1, Y2), (y1, y2))|(Y1, y1) ∈ R̃ ∧ (Y2, y2) ∈ R̃ ∧ y1 ̸= y2} . (1)

Our construction of 2-AS is defined in Figure 5.
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2-pSign(sk ,m, Y )

return AS.pSign(sk ,m, Y )

2-Ext(σ1, σ2, σ̃1, σ̃2, Y1, Y2)

y1 ← AS.Ext(σ1, σ̃1, Y1)

y2 ← AS.Ext(σ2, σ̃2, Y2)

return (y1, y2)

2-pVrfy(pk ,m, σ̃, Y )

return AS.pVrfy(pk ,m, σ̃, Y )

2-Adapt(pk , σ̃, y)

return AS.Adapt(pk , σ̃, y)

Fig. 5. Two-Shot Adaptor Signature construction

Theorem 1 (Security). Assume that AS is a secure adaptor signature from [16]
with respect to R̃, and let R be a hard relation defined as in Equation (1) w.r.t.
R̃. Then the construction defined in Figure 5 is a secure two-shot adaptor sig-
nature scheme in the random oracle model.

To prove Theorem 1 we have to prove the following 3 Lemmas.

Lemma 1 (Correctness). Under the assumptions of Thm. 1, the construction
of Figure 5 satisfies correctness (Def. 2).

Lemma 2 (Adaptability). Under the assumptions of Thm. 1, the construction
of Figure 5 satisfies pre-signature adaptability (Def. 3).

Lemma 3 (2-FEXT Security). Under the assumptions of Thm. 1, the con-
struction of Figure 5 satisfies 2-FEXT security (Def. 4).

We refer the reader to Appendix A for the proofs of Lemmas 1, 2, and 3. Our
scheme can be easily extended to a k-shot adaptor signature for k > 2, however
we do not currently know of any applications for such a primitive and as such
we have focussed on k = 2.

6 Bitcoin Clique Protocol

We now present our protocol in more detail. An illustration of the CTV-based
Merkle tree can be seen in Figure 6. Thanks to CTV, the root transaction is the
only transaction that can spend the on-chain txstep.

To update the balances of the users at the end of each epoch, this Merkle
tree and the associated txstep need to be updated by Op. As we saw earlier, after
the end of the epoch Op has to be able to freely spend the current txstep and
replace it with the desired next txstep. As discussed, to prevent Op from abusing
this power and stealing all Clique coins, two step txs exist on-chain at any time.
To protect Op from losing its collateral by a user that spends both step txs, the
aforementioned 2-AS-based technique is employed. In Figure 6, P1’s secret y1 is
revealed if P1 exits from both trees (i.e., by spending the txstep of two consecutive
epochs) and Op can use it on the pkOp ∧ Y1 spending condition of txout,e,1 to
punish P1. Op is not in a race with P1, since the latter cannot spend the coins
immediately but needs to wait until block tp (spending condition pkout,1 ∧ tp of
txout,e,1).
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txstep,e

4 · c

txstep,e+2

4 · c

txroot,e

2 · c

2 · c

tx1,2
c

c

tx3,4
c

c

txout,e,1
c

CTV(tx3,4)

CTV(tx1,2)

pkout,1 ∧ tp

pkOp ∧ Y1

CTV(txroot,e)

pkOp + t

CTV(txroot,e+2)

pkOp + t

pk2 ∧ 2-AS(Op, P2)

pk1 ∧ 2-AS(Op, P1)

pk3 ∧ 2-AS(Op, P3)

pk4 ∧ 2-AS(Op, P4)

Fig. 6. Illustration of a Bitcoin Clique with 4 users, showing the transactions that can
be published on-chain for the step transaction of epoch e, txstep,e. 2-AS(Op, Pj) repre-
sents a spending condition that requires a signature generated via a two-shot adaptor
signature, where Op is the pre-signer and Pj the adapter. The diamond notation repre-
sents an OR spending condition, e.g., txout,e,1 can be spent either by P1 after block tp
or by Op if she knows y1 such that (Y1, y1) ∈ R. Op can learn y1 only if P1 maliciously
publishes the txout of two consecutive epochs. The txout of two epochs are unspent at
any point during a transaction phase, here only one is shown. The outputs of txroot,e,
tx1,2 and tx3,4 can be spent by Op after a timelock, thus preventing a coalition of
malicious users from indefinitely blocking Op’s collateral. These timelocked spending
methods however are omitted here for conciseness.

In order for P to pay R, the latter generates a new statement-witness pair for
2-AS along with new keys for the tree and out txs. All users are informed by Op
about the new keys, so that they can take them into account when computing
the tree of the next epoch. Simply switching from P ’s to R’s keys at the new
epoch however would expose Op to an attack: P takes its output in the old epoch
and R takes its output in the new epoch, thus Op loses an equal collateral. As
alluded to earlier, the protection is as follows: When the current epoch ends, P
receives a pre-signature from Op, adapts it, and gives the complete signature
to R. R needs this extra signature to obtain its coins during the next epoch.
Therefore, if both P and R try to obtain the same coin, Op will learn P ’s secret
and retrieve its collateral from P ’s out tx in the current epoch.

To sum up, at any time there are two unspent txstep on-chain, representing
the last two epochs. Each can be spent by the corresponding tree of transactions,
or by Op after a timelock. The two timelocks are staggered, so that Op cannot
spend both txstep simultaneously. At the end of the e-th epoch, Op spends one
txstep,e with a new txstep,e+2, alternating between the two series of step txs on
every epoch. If some users exit, the rest can actively collaborate to heal the
Clique by signing and publishing a single tx which moves all available coins to
a new step output and carry on with the protocol.

We next provide the protocol pseudocode. We refer the reader to Appendix B
for the full protocol code, to Appendix C for its security proof, and to Ap-
pendix D for the healing subprotocol.
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Constants: N users with c coins each, operator Op, each epoch lasts t blocks.

Setup Phase.

1. Public keys distribution:
– Op and users exchange normal and 2-AS keys.

2. Initial transactions preparation:
– txstep,1 is funded by the N users and has a t-block timelock.
– txstep,2 is funded by Op with Nc collateral coins and has a 2t-block timelock.

3. out transactions preparation:
– Op pre-signs the two out txs of each user using as statement the 2-AS keys

of the user and sends the two pre-signatures to the user for verification.
4. Setup Finalization:

– Users sign txstep,1 and Op signs txstep,2, the two txs are published to GLedger.

Payment Phase (P transfers an output to R).

1. P sends to R a signed message with the output, R’s id and the next epoch.
2. R sends to Op new normal and 2-AS keys, along with P ’s message.
3. Op generates a new 2-AS key for this output and sends it to all N users, along

with P ’s message and R’s keys.
4. When the current epoch ends, P adapts the pre-signature by Op, gets a valid

signature and sends it to R for verification, who needs this signature to spend
the corresponding coins (see l. 1 of Epoch Finalization & l. 3 of User Exit).

Epoch Finalization Phase. When the timelock of txstep,e expires:

1. Op generates the (e+ 2)-th tx tree and txstep,e+2 and publishes the latter,
which spends txstep,e. For each output that has been transfered during epoch e,
Op uses the 2-AS keys of both the sender and the receiver to build the new tx
tree. This means that signatures from both parties are needed to spend the leaf
tx of this output at epoch e+ 1.

2. Op pre-signs the new out tx of each user using as statement the 2-AS key of the
user and sends the pre-signature to the user.

3. Each user verifies that the epoch change has taken place in a timely manner,
with the expected tx tree, and that the pre-signature is valid.

User Exit Phase. P must exit when it detects any dishonest behavior. The
procedure below is repeated for each of P ’s outputs.

1. P signs and publishes all txs that constitute the path from the root to its leaf
of the latest Merkle tree, spending the latest unspent txstep.

2. P adapts the relevant pre-signature and adds the resulting signature to txout,e.
3. If P received its output at the latest epoch, P also adds the previous owner’s

signature to txout,e and publishes it.

Bitcoin Clique
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4. P stops any action related to this output except for further use of its now
on-chain coins. This prevents accidentally adapting another pre-signature and
disclosing P ’s secret keys to Op.

Operator Exit Phase. Op needs to receive Nc coins to recover its collateral.

1. Op tries to get the coins of a txstep of which the timelock has expired.
2. If this fails (because both step txs are spent by the root tx of the corresponding

tx tree), Op tries to take c coins per user:
– If the timelock of any tx in the tx tree expires, Op gets its funds from it

(thus receiving value equal to the sum of coins that are owned by the users
that have tx in their path).

– For every user P that has published both its out txs (and thus no timelock
on either of its paths is left to expire), Op extracts both P ’s AS secrets from
the signatures using 2-Ext.

– Op spends at least one of P ’s two out txs using its own secret key and the
sum of P ’s two secrets, thus taking c coins from P as desired.

The two central balance security theorems follow, where an environment E
may order any party to exit at any time:

Theorem 2 (User balance security). ∀ honest P ∈ P that owns a set of
outputs O in the protocol, if it is instructed by E to exit (Figure 16) then it will
eventually exclusively own all outputs in O on-chain.

This theorem also covers any case of emergency exit or response to someone
else’s exit, since in such a case P must have already safeguarded or be in the
process of safeguarding its outputs when it receives E ’s exit instruction. It holds
because an honest user can retrieve its coins on-chain after a failed setup, it can
unilaterally put exactly one out tx on-chain any time after a successful setup,
and the timelock of the out tx will always expire, giving the user access to its
funds on-chain.

Theorem 3 (Operator balance security). If honest Op is instructed by E
to exit (Figure 18) then eventually Op will exclusively own at least the sum of
all players’ outputs (which is equal to Op’s collateral).

This theorem also implicitly covers any case in which a response to someone
else’s exit is needed. As discussed, it holds because Op can always claim the
coins back, either from an expired timelock of a step or tree tx, or by punishing
a user that published two out txs (and thus leaked its secret to Op).

Formal proofs for both theorems can be found in Appendix C. Transaction
and exit phase correctness as well as efficiency can be verified by simple inspec-
tion of the protocol.

7 Future Work

Several future work directions remain open. To begin with, only unilateral closure
was considered. This however has a high aggregate on-chain cost and, in case of
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closure of a big Clique, could create on-chain congestion. Our protocol can be
extended in a straightforward manner to efficiently handle cooperative exiting of
a subset of the users. This is doable by moving the exiting users’ outputs from
the leaves of the Merkle tree to the next step transaction. This solution only
needs the cooperation of Op, not of all Clique users, maintaining practicality.

Furthermore, the current construction is not privacy-preserving, as all parties
learn all payments. Per-epoch mixing techniques can be used to bolster privacy.

Additionally, removing the fixed-denomination payment value limitation and
the need for operator collateral would greatly improve usability and practicality.
A simple extension of our protocol can provide multiple denominations by includ-
ing one Merkle tree per denomination. Fiat cash exemplifies how this approach
could be sufficient for practical use.

Operators introduce centralization concerns. Nevertheless, since many Cliques
with different operators can coexist and compete, operators are dissuaded from
providing poor service, and balance security ensures users only rely on the op-
erator for quality of service, not for funds safety. Operator power can be further
limited by (i) adding a voting mechanism among users to replace the operator
and (ii) enabling inter-Clique payments. These are left as future directions.

What is more, the tree structure need not necessarily be binary. It is possible
that other structures are in practice more efficient, e.g., tertiary trees. Comple-
mentarily, leaf transactions with more than 2 users can be leveraged, trimming
a few levels from the tree. Such optimizations are left as a concern for a possible
future production-level implementation.

Last but not least, to the best of our knowledge, the security of Schnorr
adaptor signatures with respect to the definitions of [45] has not been proven.
We leave this proof as future work.
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A Proof of theorem 1

We now provide the proof of Theorem 1. This is a direct result of Lemmas 1, 2,
and 3, which we prove below.

Proof (Lemma 1). The proof consists mainly of a direct substitution of the
definition of 2-AS correctness (Definition 2) with the provided 2-AS construction
(Figure 5).

(sk , pk)
$← Gen(1k), ((Y1, Y2), (y1, y2))

$← RGen(1k)

σ̃1 = pSign(sk ,m1, Y1), σ̃2 = pSign(sk ,m2, Y2),

σ1 = Adapt(σ̃1, y1), σ2 = Adapt(σ̃2, y2),

(y′1, y
′
2)← (Ext(σ1, σ̃1, Y1),Ext(σ2, σ̃2, Y2))
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Due to the assumed correctness of the underlying AS scheme ([45], Figure 1,
Right), it is:

2-pSign(sk ,m1, Y1) = pSign(sk ,m1, Y1) = 1

∧ 2-pSign(sk ,m2, Y2) = pSign(sk ,m2, Y2) = 1

∧ Vrfy(pk ,m1, σ1) = 1 ∧ Vrfy(pk ,m2, σ2) = 1

∧(Y1, y1) ∈ R̃ ∧ (Y2, y2) ∈ R̃

The relation R̃ is hard and thus the same witness can be generated by R̃Gen
twice only with negligible probability in k — otherwise, a PPT adversary given
a statement could simply generate a new pair and produce the desired secret wit-
ness with non-negligible probability in k. Therefore y1 ̸= y2 with overwhelming
probability in k, thus ((Y1, Y2), (y1, y2)) ∈ R. The proof is complete.

Proof (Lemma 2). This proof follows from two facts. Firstly, the fact that the
signature verification of line 5 of Figure 2 does not return 1 with overwhelming
probability stems from the adaptability of AS (according to the adaptability def-
inition of [16]). Concretely, AS adaptability means that a single pre-signature can
be adapted to a valid full signature given y where (Y, y) ∈ R̃ with overwhelming
probability, which is the exact same requirement of line 5 in the 2-ADP-NEXT
game.

Secondly, the fact that the relation membership check of line 7 of Figure 2
does not return 1 with overwhelming probability stems from the definition of
the relation R, the hardness of the underlying relation R̃ and the fact that the
challenger has adapted with only one of the two underlying witnesses. More
specifically, we can reduce 2-ADP-NEXT to the 1-one-wayness game of R̃ as
defined in [45]: An adversary A that wins the 2-ADP-NEXT game due to line 7
with non-negligible probability α can be used by an adversary B to win G1-ow

R̃
with probability α/2. B is called with Y ∈ LR̃. B samples (Y ′, y′) with R̃Gen,
flips a fair coin and assigns Y1 ← Y, Y2 ← Y ′ in case of heads, Y1 ← Y ′, Y2 ← Y
otherwise. B then passes (Y1, Y2) to A — since both Y and Y ′ are sampled
from R̃Gen, the input to A follows the same distribution as in 2-ADP-NEXT and
its output b is independent of B’s coin flip. This means that A will request for
the pre-signature to be adapted with y′ half of the times, which B can do. In
this scenario, if A wins the 2-ADP-NEXT game, the element y∗3−b of its output
is a witness to Y , thus B can output it and win the G1-ow

R̃
game. In total, B

wins G1-ow
R̃

with non-negligible probability α/2 given an adversary A that wins
2-ADP-NEXT with non-negligible probability α.

Proof (Lemma 3). The proof of this lemma follows via a reduction of 2-FEXT to
the Gfext of the AS scheme [45]. We now describe a concrete adversary B that
plays the Gfext game and can simulate all queries made by the adversary of the
2-FEXT game, A. To this end, when called with input pk ([45], Figure 3, line 2)
by the Gfext game, B first initializes an empty map T that maps messages to pre-
signed statement/pre-signature pairs, an empty set of signed messages Q, and an
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empty set of oracle-generated statements C. It then forwards pk to A (Figure 4,
line 2). Furthermore, B simulates the oracles O2pS,O2S,O2R of 2-FEXT (which
are made available to A) by leveraging the respective oracles of Gfext as follows:

O2pS(m,Y ∈ LR̃): Invoke the pre-signing oracle of Gfext on m and obtain σ̃
(σ̃ ← OpSign(m, Y )). Add (Y, σ̃) to T (m), then output σ̃.

O2S(m): Add m to Q, then output the signature on m, which is obtained by the
signing oracle of Gfext, OSign(m).

O2R(): Obtain a new random statement by invoking the statement-producing
oracle of Gfext twice (Y1 ← ONewY(), Y2 ← ONewY), add both to C and
output the pair (Y1, Y2).

Observe that the map and sets tracked by the simulated oracles contain the
exact same elements with the corresponding map and sets of the Gfext oracles
after every invocation. Finally, B chooses b from {1, 2} uniformly at random and
outputs (m∗

b , σ
∗
b ), where the output of A is (m∗

1,m
∗
2, σ

∗
1 , σ

∗
2).

We can see that the inputs and oracle responses that A receives follow the
same distribution as in a standalone 2-FEXT game, therefore its probability of
winning its game (say, α) is maintained when used internally by B as described
above.

Every time A wins 2-FEXT, the returned σ∗
1 and σ∗

2 are valid signatures for
the returned m∗

1 and m∗
2 respectively (i.e., Vrfy(pk ,m∗

1, σ
∗
1) ∧ Vrfy(pk ,m∗

2, σ
∗
2)),

it has not queried the messages to the oracles (i.e., m∗
1,m

∗
2 /∈ Q) and yet it is

impossible to use the forged signatures to extract a witness for any statement
that was used to pre-sign with O2pS and was not produced by O2R (i.e., (∄ Y1,
Y2, σ̃1, σ̃2: (Y1, σ̃1) ∈ T (m∗

1) ∧ (Y2, σ̃2) ∈ T (m∗
2) ∧ Y1 /∈ C ∧ Y2 /∈ C ∧ ((Y1, Y2),

2-Ext(σ∗
1 , σ

∗
2 , σ̃1, σ̃2, Y1, Y2)) ∈ R). In that case, output (m∗

b , σ
∗
b ) of B wins Gfext

at least half of the times: As we saw, the signature is valid (Vrfy(pk ,m∗
b , σ

∗
b ) out-

puts 1), thus the assertion of line 3 of Gfext succeeds. Next, the message has not
been queried to O2S (as m∗

b /∈ Q), thus it has not been queried to OSign, thus the
assertion of line 4 of Gfext succeeds as well. As for the alignment of B’s output
with the requirement of line 6 of Gfext, we argue that if the requirement could
fail no matter which b was chosen, then A would lose, which is a contradiction.
Failure of B’s requirement of line 6 for both possible values of b means that
∀b ∈ {1, 2},∃Yb, σ̃b : (Yb, σ̃b) ∈ T [m∗

b ]∧Yb /∈ C ∧ (Yb,Ext(Yb, σ̃b, σ
∗
b )) ∈ R̃. Due to

the definitions of O2pS, O2R, and 2-Ext, this means that ∀b ∈ {1, 2}, (Yb, σ̃b) ∈
T (m∗

b) ∧ Yb /∈ C ∧ ((Y1, Y2), (Ext(σ̃1, σ
∗
1 , Y1),Ext(σ̃2, σ

∗
2 , Y2))) ∈ R, dicrectly con-

tradicting the last requirement for A to win Gfext.
Thus, at least one of the two b values results in B winning. Since b is selected

independently, B wins its game with probability at least α/2. This concludes the
reduction.

B Bitcoin Clique Construction

Let N ← |P|. Using GLedger [47,48] with parameter κ = windowSize to model
the blockchain, one of [49,50,51] (a.k.a. MuSig) for n-of-n multisignatures and
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one of [52,53] for t-of-n threshold signatures (abbreviated here as TSig(t, set
of keys)). For example, the spending condition TSig(2, {pkE , pkF , pkG}) can be
spent by a transaction signed by any two out of skE , skF , skG. Spending condi-
tions can be combined with a logical OR (∨).

Let the inclusion delay, denoted with s, be a (derived) system parameter
that specifies the maximum number of blocks between the submission of a tx
and its inclusion on-chain. In detail, if P submits a valid tx when her chain is
of height h and if no competing tx is submitted, then tx will be included in a
block of height between h+1 and h+ s (inclusive). Note that s depends entirely
on the details of GLedger.

Definition 5 (Epoch update deadline). The epoch update deadline, denoted
with p, is the number of blocks within which protocol parties expect Op to update
each epoch. In detail, consider an honest P ∈ P that sees a chain of height h′

and an unspent txstep with a timelock t that is included in the block of height h.
If h′ ≥ h+ t+ p, then P assumes that Op is faulty and exits unilaterally.

Note that p can be negotiated between the protocol parties. In this work we
assume p is a fixed system parameter.

Definition 6 (Epoch update slack). The epoch update slack, denoted with
w, is the maximum number of blocks within which an honest Op must update
each epoch. In detail, if Op sees an unspent txstep,i with a timelock t that is
included in the block of height h, then she has to publish txstep,i+2 (which spends
txstep,i) until block h+ t+ w to avoid triggering the honest party unilateral exit
of Def. 5.

Lemma 4 (Epoch update). Let s be the inclusion delay as described above, p
be the epoch update deadline (Def. 5) and w be the epoch update slack (Def. 6).
It is

w = p− s− 1 .

Proof (Lemma 4). We here adopt the notation of Def. 6. If Op submits txstep,i+2

when its block height is h + t + w, then it will be included at most in block of
height h+ t+w+s. In order to avoid triggering the honest party unilateral exits
of Def. 5, it must be h+ t+ w + s < h+ t+ p⇔ w < p− s. Since w is defined
as the maximum value that prevents these exits, it is w = p− s− 1.

Definition 7 (End of epoch). Let the end-of-epoch buffer, denoted with r,
be a number of blocks. Let h be the block height in which the timelock of the
second-latest txstep,i expires. The end of an epoch is the moment in which Op
sees a chain of height h− r. An honest Op uses in txTreei+2 the balances of the
parties as they are calculated when taking into account all payments that have
been signed off and sent by Op to all parties the end of the epoch.

The end-of-epoch mechanism ensures that all parties have the chance to receive
all payments and calculate the new txTree before the new txstep is added to
a block. Like p, r can be negotiated between the protocol parties and should
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correspond to a timespan that is larger than the slowest possible roundtrip time
between Op and any party. Once again we assume r is a fixed system parameter.

– s, inclusion delay: Maximum blocks between tx submission and inclusion
– p, epoch update deadline: Blocks within which Op must update epoch
– t: Blocks per epoch
– tleave,i: Block before which a user can exit if another user initiates exit during

epoch i
– tpunish,i: Block before which Op can punish a malicious user that tries to take

the same output from epochs i− 1 and i, or i and i+ 1
– trest: Number of blocks Op delayed publishing the last txstep. Used to correct

block drift between epochs.

– txstep,i, step txof epoch i: On-chain tx that carries all Clique funds. Can be
spent by txTreei to initiate exit. One such tx is published every epoch by Op,
spending txstep,i−2.

– txTreei: A binary tree of txs of epoch i. Its root spends txstep,i, has one leaf
per user output.

– txi,j : The j-th tx of the i-th level of the current txTree. If it is a leaf, it
corresponds to an output and is spendable by a simple and an adaptor
signature by the current output owner, if this output has been transfered
during the last epoch, it additionally needs a 2-adaptor signature by the
previous output owner. The 2-adaptor signatures of two successive epochs for
the same epoch leak to Op the secret needed to spend the txout that spends
this leaf tx. If it is not a leaf, it has a single input and is the only transaction
that can spend one of the two outputs of its parent (via CTV). It also has 2
outputs that specify its children via CTV. If it is the root, it spends txstep.
Publishing the root tx starts the exit phase.

– txout,i,j , “out” tx of epoch i and output j: Tx that spends a leaf tx. Can be
spent by Op if it knows the punishing secret, or by the output owner after
timelock tpunish elapses.

– (pkA, skA): public-secret keypair. Same subscript means that skA can create
signatures that are valid by pkA.

– pk2-AS,i,j,Op, Op’s key for epoch i, output j: Op pre-signs “out” txs with this key.
– pk2-AS,i,j,P,b, P ’s key for epoch i, output j, b ∈ {0, 1}: this is the statement used

when Op presigns “out” txs, alternating between b = 0 and b = 1 every epoch.
Op can spend the “out” tx if it knows sk2-AS,i,j,P,0 and sk2-AS,i,j,P,1.

– pkin,i,j , “in” key of epoch i and output j: Used to sign payments during normal
operation.

– pkmid,i,j , “mid” key of epoch i and output j: Can spend any non-leaf tx on the
path to txout,i,j .

– pkout,i,j , “out” key of epoch i and output j: Allows the owner to spend the “out”
tx after timelock tpunish.

Process Notation table

29



– pk∗2-AS,i,j,Op: Op’s key for epoch i− 1, output j, useful only when the output
changed hands in epoch i− 1.

– pk′2-AS,i,j,P , P ’s punishing key for epoch i, output j: The sum of the two P ’s
keys. Can be used by Op to punish P if the latter misbehaves.

– Pi,j : owner of output j at epoch i
– σ: signature
– σ̃: pre-signature

Fig. 7. Bitcoin Clique construction – Notation table

– 2s > p
– t ≥ p+ s
– ∀i ∈ N, tleave,i > s
– ∀i ∈ N, tpunish,i > tleave,i+1 + s (cf. all locations in which the two timelocks are

calculated, namely ll. 16, 18 of Fig. 9, l. 14 of Fig. 12 and l. 19 of Fig. 13)

Process Rules for constants

Fig. 8. Bitcoin Clique construction – Rules for constants

Run by everyone:
1: Agree with everyone on current block height. The current block height, t0, is

taken to be the minimum block height proposed by any party, as long as it is
at least tus − κ, where tus is the block height given by GLedger to ourselves // no
honest party can have a chain more than κ blocks shorter than ours, due to
the GLedger guarantees

2: for all j ∈ [N ] do
Run by Op:
3: (sk2-AS,1,j,Op, pk2-AS,1,j,Op)← (sk2-AS,2,j,Op, pk2-AS,2,j,Op)← Gen(1k)
4: Send pk2-AS,1,j,Op to all parties

Run by Pj:
5: ((pk2-AS,1,j,P,0, pk2-AS,1,j,P,1), (sk2-AS,1,j,P,0, sk2-AS,1,j,P,1))←

((pk2-AS,2,j,P,0, pk2-AS,2,j,P,1), (sk2-AS,2,j,P,0, sk2-AS,2,j,P,1))← RGen(1k)
6: Send (pk2-AS,i,j,P,k)i∈{1,2},k∈{0,1} to all parties
7: end for

Run by everyone:
8: Exchange public keys (pkin,1,j = pkin,2,j)j∈[N ], (pkmid,1,j = pkmid,2,j)j∈[N ],

(pkout,1,j = pkout,2,j)j∈[N ], pkcont,Op, and outpoints (O∗
j )j∈[N ] with other parties

and Op // the last key subscript specifies key owner

Process Bitcoin Clique construction – Security parameter k – Setup
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9: Ensure that each outpoint O∗
j corresponds to an on-chain unspent P2WPKH

output owned by the public key pkin,j with c coins // c is the constant value of
all outputs

10: for j ∈ [N ] do
11: pkx,j,y ← pkx,i+1,j,y

12: pk2-AS,j,Op ← pk2-AS,1,j,Op

13: pk∗2-AS,j,Op ← ⊥
14: pk′2-AS,j,P ← pk2-AS,1,j,P,0 + pk2-AS,1,j,P,1

15: end for
16: Let O ← (O∗

j )j∈[N ], trest ← 0, tleave ← tleave,1 ← t0 + t+ s,
tpunish ← tpunish,1 ← tleave + s+ 1 and obtain txstep,1, txTree1, (txout,1,j)j∈[N ]

according to Fig. 14

Run by Op:
17: Send to every P ∈ P an output O′

2 which has Nc coins and does not spend
any outpoint O∗

j

Run by everyone:
18: Let O ← O′

2, trest ← t, tleave ← tleave,2 ← t0 + 2t+ s,
tpunish ← tpunish,2 ← tleave + s+ 1 and obtain txstep,2, txTree2, (txout,2,j)j∈[N ]

according to Fig. 14

Run by Op:
19: for all j ∈ [N ] do
20: σ̃out,1,j ← 2-pSign(sk2-AS,1,j,Op, txout,1,j , pk2-AS,1,j,P,0)
21: σ̃out,2,j ← 2-pSign(sk2-AS,2,j,Op, txout,2,j , pk2-AS,2,j,P,1)
22: Send σ̃out,1,j , σ̃out,2,j to Pj

23: end for

Run by Pj ∈ P:
24: Ensure 2-pVrfy(pk2-AS,1,j,Op, txout,1,j , σ̃out,1,j , pk2-AS,1,j,P,0) = 1 and

2-pVrfy(pk2-AS,2,j,Op, txout,2,j , σ̃out,2,j , pk2-AS,2,j,P,1) = 1
25: σstart,j ← Sign(skin,j , txstep,1); send σstart,j to Op

Run by Op:
26: for all j ∈ [N ] do
27: Ensure Vrfy(pkin,j , txstep,1, σstart,j) = 1; add σstart,j to txstep,1
28: end for
29: Sign() txstep,1 with the key that spends O′

2 and add signature to txstep,2
30: Submit txstep,1 and txstep,2 to GLedger

Run by Pj ∈ P:
31: Wait for GLedger to be extended by p blocks
32: while neither of txout,1,j , txout,2,j is on GLedger do
33: if both txstep,1 and txstep,2 are on GLedger then
34: Break “while”
35: else // at least one of txstep,1, txstep,2 not on GLedger, unilateral exit
36: if txstep,1 /∈ GLedger then respend O∗

j // prevents future use of txstep,1
37: if txstep,i ∈ GLedger then exit protocol as in Fig. 16 with txstep,i
38: end if
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39: end while
40: Assume the role of Pj // setup successful, Pj owns O∗

j

Run by everyone:
41: for all i ∈ [2] do
42: Let hi be the height of the block in which the timelock of txstep,i expires
43: end for
44: e← 1 // e is the current epoch number

Fig. 9. Bitcoin Clique construction – Setup

1: Let i be the minimum number such that txstep,i is unspent
2: Let h be the current block height
3: if h ≥ hi − r ∧ e ≤ i then // epoch just changed
4: Let S be the set of party indexes that have transferred their output during

epoch e (i.e., all j ∈ [N ] : Pi ran Fig. 11)
5: {Pe+2,j}j∈[N ]\S ← {Pe+1,j}j∈[N ]\S
6: {pk2-AS,e+2,j,P,k}j∈[N ]\S,k∈{0,1} ← {pk2-AS,e+1,j,P,k}j∈[N ]\S,k∈{0,1}
7: {pk2-AS,e+2,j,Op}j∈[N ]\S ← {pk2-AS,e+1,j,Op}j∈[N ]\S
8: {pkin,e+2,j}j∈[N ]\S ← {pkin,e+1,j}j∈[N ]\S
9: {pkmid,e+2,j}j∈[N ]\S ← {pkmid,e+1,j}j∈[N ]\S

10: {pkout,e+2,j}j∈[N ]\S ← {pkout,e+1,j}j∈[N ]\S
11: Forget data from epoch e− 1 // optimization
12: e← i+ 1 // if all goes well, before assignment it is i = e
13: end if

Process Bitcoin Clique construction – Op enters end-of-epoch buffer

Fig. 10. Bitcoin Clique construction – Epoch end

We assume that, during the interactions of Fig. 11, no new blocks are added to the
chain for all parties.
Run by Op, Pj and R:
1: Update epoch if needed, as in Fig. 10 for Op and Fig. 13 for Pj , R
2: Let h be the current block height
3: if he − r − κ ≤ h ≤ he − r + κ then return // no payments allowed within

end-of-epoch buffer

Run by Op:
4: Send e+ 1 to Pj and R

Run by Pj:

Process Bitcoin Clique construction – Pj gives R its output oj
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5: Assign received value to l′

6: if h < he − r − κ then ensure l′ = e+ 1
7: if he − r + κ ≤ h then ensure l′ = e+ 2
8: m← (j, R, l′)
9: σP ← Sign(m, skin,l′,j)

10: When we reach epoch l′ (i.e., when we run l. 23 of Fig. 13 with e+ 1 = l′),
send σ∗

out,l′+1,j ← 2-Adapt(pk2-AS,l′,j,Op, σ̃out,l′+1,j , skout,l′,j,P,(l′+1) mod 2) to R.
Then, keeping the rest of our current roles, give up the role of Pj . // We just
noticed that txstep,l′+1 is on-chain. This is the moment when the outgoing
payment is committed.

11: Send (m,σP ) to R

Run by R:
12: Assign value received by Op’s message to l′

13: Ensure m = (j, R, l′)
14: if Vrfy(pkin,l′,j ,m, σP ) = 0 then return
15: When we reach epoch l′, (i.e., when we run l. 24 of Fig. 13 with e+ 1 = l′),

wait for σ∗
out,l′+1,j from Pj and ensure that

Vrfy(pkout,l′,j,Op, txout,l′+1,j , σ
∗
out,l′+1,j) = 1. Then, additionally to our current

roles, also adopt the role of Pi // We just noticed that txstep,l′+1 on-chain.
This is the moment when the incoming payment is committed.

16: ((pk2-AS,l′,j,P,0, pk2-AS,l′,j,P,1), (sk2-AS,l′,j,P,0, sk2-AS,l′,j,P,1))← RGen(1k)

17: (skin,l′,j , pkin,l′,j)← Gen(1k); (skmid,l′,j , pkmid,l′,j)← Gen(1k);
(skout,l′,j , pkout,l′,j)← Gen(1k)

18: Send (pk2-AS,l′,j,P,0, pk2-AS,l′,j,P,1, pkin,l′,j , pkmid,l′,j , pkout,l′,j ,m, σP ) to Op

Run by Op:
19: Parse message by R as

(pk2-AS,e+1,j,P,0, pk2-AS,e+1,j,P,1, pkin,e+1,j , pkmid,e+1,j , pkout,e+1,j ,m, σP ) and m as
(j, R′, l′)

20: if Vrfy(pkin,e+1,j ,m, σP ) = 0 ∨ l′ = e+ 1 ∨R′ ̸= R then return // ensure
sender is payee

21: Let Pe+1,j ← R
22: (sk2-AS,e+1,j,Op, pk2-AS,e+1,j,Op)← Gen(1k)
23: Append pk2-AS,l′,j,Op, pk2-AS,e+1,j,P,0, pk2-AS,e+1,j,P,1, pkin,e+1,j ,

pkmid,e+1,j , pkout,e+1,j and e+ 1 to m
24: σOp ← Sign(m, skcont,Op)
25: Send (m,σP , σOp) to every P ∈ P

Run by P ∈ P:
26: try:
27: Verify epoch update if needed, as in Fig. 13
28: Parse m as (j, Pl′,j , pk2-AS,l′,j,Op, pk2-AS,l′,j,P,0, pk2-AS,l′,j,P,1, pkin,l′,j ,

pkmid,l′,j , pkout,l′,j , l
′)

29: Ensure Vrfy(pkcont,Op,m, σOp) = Vrfy(pkin,j , (j, R), σP ) = 1
30: Let h be the current block height
31: if h < he − r − κ then ensure l′ = e+ 1
32: if he − r − κ ≤ h ≤ he − r + κ then ensure l′ ∈ {e+ 1, e+ 2}
33: if he − r + κ < h then ensure l′ = e+ 2
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34: if any of ll. 28-33 fail then exit as in Fig. 16 with txstep,e+1

35: if P = Pj then mark output oj as not owned by self // payment complete

Fig. 11. Bitcoin Clique construction – Payment during normal operation

1: Let i be the maximum integer such that txstep,i is on-chain
2: Let h be our view of the current block height
3: Ensure that the timelock of txstep,i−1 has expired // i.e., that h ≥ hi−1

4: // It should be h ≤ hi−1 + w to prevent honest party unilateral exit
5: for j ∈ [N ] do
6: pkx,j,y ← pkx,i+1,j,y

7: if Pi+1,j = Pi,j then // Output not transferred during previous epoch
8: pk∗2-AS,j,Op ← ⊥
9: else // Output transferred during previous epoch

10: pk∗2-AS,j,Op ← pk2-AS,i,j,Op

11: end if
12: pk′2-AS,j,P ← pk2-AS,i+1,j,P,0 + pk2-AS,i+1,j,P,1 // “+” is the public key group

operation
13: end for
14: Let O ← txstep,i−1.output, trest ← hi − h, tleave ← tleave,i+1 ← hi + t+ s,

tpunish ← tpunish,i+1 ← tleave + s+ 1 and obtain txstep,i+1, txTreei+1,
(txout,i+1,j)j∈[N ] according to Fig. 14 // using trest = hi − h to correct any time
drift

15: for all j ∈ [N ] do
16: σ̃out,i+1,j ← 2-pSign(sk2-AS,i+1,j,Op, txout,i+1,j , pk2-AS,i+1,j,P,(i+1) mod 2)
17: Send σ̃out,i+1,j to Pj

18: end for
19: Add Sign(txstep,i+1, skcont,Op) to txstep,i+1.input
20: Submit txstep,i+1 to GLedger

21: Let hi+1 the height of the block in which the timelock of txstep,i+1 expires
22: Send hi+1 to every P ∈ P

Process Bitcoin Clique construction – Op updates epoch

Fig. 12. Bitcoin Clique construction – Move to next epoch

1: Let h be our view of the current block height
2: if h > he + t− s then mark ourselves as negligent and return
3: Ensure h ≥ he + p // give time to Op to spend txstep,e
4: try:
5: Ensure we have received he+2 by Op

Process Bitcoin Clique construction – Pk ∈ P verifies epoch update
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6: Ensure he+1 + t+ 1 ≤ he+2 ≤ he+1 + t+ s // ensure next epoch will expire
within prescribed window

7: Ensure that at least one output of txstep,e with Nc coins is spent
8: Assign the spending tx to txstep,e+2

9: Assign the block height of txstep,e+2 to h′
e+2

10: for j ∈ [N ] do
11: pkx,j,y ← pkx,e+2,j,y

12: if Pe+2,j = Pe+1,j then // Output not transferred during previous
epoch

13: pk∗2-AS,j,P ← ⊥
14: else // Output transferred during previous epoch
15: pk∗2-AS,j,P ← pk2-AS,e+1,j,P,(e+2) mod 2

16: end if
17: pk′2-AS,j,P ← pk2-AS,e+2,j,P,0 + pk2-AS,e+2,j,P,1 // “+” is the public key

group operation
18: end for
19: Let O ← txstep,e.output, trest ← he+2 − h′

e+2 − t,
tleave ← tleave,e+2 ← he+1 + t+ s, tpunish ← tpunish,e+2 ← tleave + s+ 1 and obtain
txstep, txTreee+2, (txout,e+2,j)j∈[N ] according to Fig. 14

20: Ensure txstep = txstep,e+2

21: Ensure txTreee+2.root can spend an output of txstep,e+2 with Nc coins
22: Ensure we have received σ̃out,e+2,k and that

pVrfy(pk2-AS,e+2,k,Op, txout,e+2,k, σ̃out,e+2,k, pk2-AS,e+2,k,P,(e+2) mod 2) = 1
23: Commit any pending outgoing payments according to Fig. 11, l. 10 //

commit outgoing before incoming to avoid deadlocks
24: Wait at most until block height is up to he + t− s for the commitment of

any pending incoming payments according to Fig. 11, l. 15
25: if any of ll. 5-24 fail then exit as in Fig. 16 with txstep,e+1

26: Let S be the set of party indexes that have transferred their output during
epoch e (i.e., all j ∈ [N ] : Pj ran Fig. 11 and we received m = (j,_,_,_, e) of
l. 28)

27: {Pe+2,j}j∈[N ]\S ← {Pe+1,j}j∈[N ]\S
28: {pk2-AS,e+2,j,P,k}j∈[N ]\S,k∈{0,1} ← {pk2-AS,e+1,j,P,k}j∈[N ]\S,k∈{0,1}
29: {pk2-AS,e+2,j,Op}j∈[N ]\S ← {pk2-AS,e+1,j,Op}j∈[N ]\S
30: {pkin,e+2,j}j∈[N ]\S ← {pkin,e+1,j}j∈[N ]\S
31: {pkmid,e+2,j}j∈[N ]\S ← {pkmid,e+1,j}j∈[N ]\S
32: {pkout,e+2,j}j∈[N ]\S ← {pkout,e+1,j}j∈[N ]\S
33: Forget data from epoch e− 1 // optimization
34: e← e+ 1

Fig. 13. Bitcoin Clique construction – Epoch update verification
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Build a complete binary tree txTree of N − 1 transactions, each with 1 input and 2
outputs. The i-th tx of the j-th layer is denoted with txj,i. It is j ∈ [⌈log2 N⌉] and
i ∈ [2j−1] when j ∈ [⌈log2 N⌉ − 1], or i ∈ [N − 2⌈log2 N⌉−1] when j = ⌈log2 N⌉. Also
build a step transaction that is spendable by the root transaction of txTree and
one “out” transaction for each non-TSig output in txTree (i.e., for each leaf tx).
pk′2-AS,x,P keys are used for enabling punishment of P by Op. pk∗2-AS,x,Op keys are
used in outputs that have been just transferred and belong to the previous owner.
All pk∗2-AS,x,Op keys that are equal to ⊥ correspond to outputs that have not been
transferred and are omitted from the script.
The notation pk + t is used for relative timelocks, while pk ∧ t is used for absolute
timelocks.

– There are ⌊N
2
⌋ leaf transactions, v := N − 2⌈log2 N⌉−1 in the last level and

u := 2⌈log2 N⌉−1 − ⌈N
2
⌉ in the second-last level.

• Last level leaf and “out” txs: For each i ∈ [v], the “out” tx of party P2i−1

(txout,2i−1) has a single (c, (pkcont,Op ∧ pk′2-AS,2i−1,P ) ∨ (pkout,2i−1,P ∧ tpunish))
output. Likewise the “out” tx of party P2i (txout,2i) has a single
(c, (pkcont,Op ∧ pk′2-AS,2i,P ) ∨ (pkout,2i ∧ tpunish)) output. Also the i-th tx of the
last level tx⌈log2 N⌉,i has 2 outputs, namely
(c, (pk2-AS,2i−1,Op ∧ pk∗2-AS,2i−1,Op ∧ CTV(txout,2i−1)) ∨ (pkcont,Op ∧ tleave)) and
(c, (pk2-AS,2i,Op ∧ pk∗2-AS,2i,Op ∧ CTV(txout,2i)) ∨ (pkcont,Op ∧ tleave)).

• If N is odd, then the “out” tx of party P2v+1 (txout,2v+1) has a single
(c, (pkcont,Op ∧ pk′2-AS,2v+1,P ) ∨ (pkout,2v+1,P ∧ tpunish)) output. The second
output of the v+1

2
-th tx of the second-last level (tx⌈log2 N⌉−1, v+1

2
) is

(c, (pk2-AS,2v+1,Op ∧ pk∗2-AS,2v+1,Op ∧ CTV(txout,2v+1)) ∨ (pkcont,Op ∧ tleave)).
• Second-last level leaf and “out” txs: For each i ∈ {⌈ v

2
⌉+ 1, . . . , 2⌈log2 N⌉−2},

the “out” tx of party P2i+v−1 (txout,2i+v−1) has a single
(c, (pkcont,Op ∧ pk′2-AS,2i+v−1,P ) ∨ (pkout,2i+v−1,P ∧ tpunish)) output. Likewise
the “out” tx of party P2i+v (txout,2i+v) has a single
(c, (pkcont,Op ∧ pk′2-AS,2i+v,P ) ∨ (pkout,2i+v,P ∧ tpunish)) output. Also the i-th tx
of the second-last level tx⌈log2 N⌉−1,i has 2 outputs, namely
(c, (pk2-AS,2i+v−1,Op∧pk∗2-AS,2i+v−1,Op∧CTV(txout,2i+v−1))∨(pkcont,Op∧tleave))
and (c, (pk2-AS,2i+v,Op ∧ pk∗2-AS,2i+v,Op ∧ CTV(txout,2i+v)) ∨ (pkcont,Op ∧ tleave)).

– Second-last level non-leaf txs: For each i ∈ [⌊ v
2
⌋], the i-th tx of the second-last

level tx⌈log2 N⌉−1,i has 2 outputs, namely
(2c, (CTV(tx⌈log2 N⌉,2i−1) ∧ TSig(1, {pkmid,4i−3, pkmid,4i−2})) ∨ (pkcont,Op ∧ tleave))
and (2c, (CTV(tx⌈log2 N⌉,2i) ∧ TSig(1, {pkmid,4i−1, pkmid,4i})) ∨ (pkcont,Op ∧ tleave)).

– Non-leaf txs of remaining levels: For each j from ⌈log2 N⌉ − 2 to 1, i ∈ [2j−1],
the i-th tx of the j-th level txj,i has 2 outputs, namely

(
2∑

k=1

txj+1,2i−1.outputs[k].value, (CTV(txj+1,2i−1) ∧

TSig(1,
2⋃

k=1

txj+1,2i−1.outputs[k].TSigPubkeys)) ∨ (pkcont,Op ∧ tleave)) and

Process Generate step and tree transactions
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(
2∑

k=1

txj+1,2i.outputs[k].value, (CTV(txj+1,2i) ∧

TSig(1,
2⋃

k=1

txj+1,2i.outputs[k].TSigPubkeys)) ∨ (pkcont,Op ∧ tleave)).

– Every tx has nLockTime = 0, nVersion = 2 and 1 input with
nSequence = 0xffffffff, empty scriptSig and empty witness. // setting
nLockTime = 0 avoids having to sync with other parties on which is the current
block, but does not help prevent fee snipinga

– Step tx txstep ←
• input(s): O

• output: (Nc, (CTV(tx1,1) ∧ TSig(1,
2⋃

k=1

tx1,1.outputs[k].TSigPubkeys)) ∨

(pkcont,Op + (trest + t))
– The input of the root tx spends the unique output of txstep (i.e., has

prevout = H(txstep) + "/0").
– For each j from 2 to ⌈log2 N⌉ − 1, for each i ∈ [2j−1], as well as for

j = ⌈log2 N⌉ and for each i ∈ [N − 2⌈log2 N⌉−1] the input of the i-th tx of the
j-th level txj,i spends the 2− (i mod 2)-th output of txj−1,⌈i/2⌉ (i.e., has
prevout = H(txj−1,⌈i/2⌉) + "/1− (i mod 2)").

– For each i ∈ [v] each of the 2 corresponding “out” txs (txout,n2i−1 and txout,n2i)
has a single input that spends the first and the second output of tx⌈log2 N⌉,i
respectively (i.e., with prevout = H(tx⌈log2 N⌉,i) + "/0" and
H(tx⌈log2 N⌉,i) + "/1" respectively).

– If N is odd, then the “out” tx of party Pn2v+1 (txout,n2v+1) has a single input
that spends the second output of tx⌈log2 N⌉−1, v+1

2
(i.e., with

prevout = H(tx⌈log2 N⌉−1, v+1
2

) + "/0").

– For each i ∈ {⌈ v
2
⌉+ 1, . . . , 2⌈log2 N⌉−2} each of the 2 corresponding “out” txs

(txout,n2i+v−1 and txout,n2i+v ) has a single input that spends the first and the
second output of tx⌈log2 N⌉−1,i respectively (i.e., with
prevout = H(tx⌈log2 N⌉−1,i) + "/0" and H(tx⌈log2 N⌉−1,i) + "/1" respectively).

– return txstep, the set of all txj,i and the set of all txout,i
a https://bitcoinops.org/en/topics/fee-sniping/

Fig. 14. Step and Tree transactions generation

1: v ← 2⌈log2 N⌉−1

2: res← ∅
3: if j ≤ 2(N − v) then
4: for i from 1 to ⌈log2 N⌉ do
5: add tx⌈log2 N⌉+1−i,⌈ j

2i
⌉ of txTree to res

6: end for
7: else // j > 2(N − v)

Process myTXs(txTree, Pj)
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8: for i from 1 to ⌈log2 N⌉ − 1 do
9: add tx⌈log2 N⌉−i,⌈ j−(N−v)

2i
⌉ of txTree to res

10: end for
11: end if
12: return res

Fig. 15. myTXs(txTree, Pi)

Run when Pj is instructed by E to exit
1: if no txstep,i is specified then set it to txstep,e+1

2: Sign with skmid,j all transactions in myTXs(txTreei, Pj) that are not on GLedger

// Pj claims coins with at most O(logN) on-chain txs, each of size O(1)
3: Add 2-Adapt(pk2-AS,i,j,Op, σ̃out,i,j , sk2-AS,i,j,P,i mod 2) to txout,i,j
4: if Pi−1,j ̸= Pi,j /*received j-th output at epoch i*/ then add σ∗

out,i,j to
txout,i,j

5: Submit to GLedger all txs signed in ll. 2-4
6: Halt execution of role Pj // ensures we cannot reuse sk2-AS,i,j,P,i mod 2, which

would reveal it to Op, giving her our coins

Process Pj ∈ P exits unilaterally via txstep,i

Fig. 16. Unilateral (emergency) exit for party

If a txstep is spent by the root transaction of the corresponding txTree, then exit
as in Fig. 16 with this txstep

Process P ∈ P responds to Unilateral Exit

Fig. 17. Claim of a party’s coins when unilateral exit has started by other party

1: Let txstep,i, txstep,i+1 be the two step txs that have not been spent by a step tx
2: for tx ∈ {txstep,i, txstep,i+1} do
3: Wait for timelock of tx to expire
4: Move all coins from tx to own key
5: if moving fails then run Fig. 19 for tx // failure only happens if P ∈ P

spends tx with the corresponding root tx
6: end for

Process Op exits unilaterally
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Fig. 18. Unilateral (emergency) exit for operator

1: if we have not run Fig. 19 for tpunish − s− κ blocks then mark ourselves as
negligent and return

2: if txstep,i is spent by the root transaction of the corresponding txTree then
3: move every txTree output with an expired timelock to own key // Every

tx in every txTree can be spent by Op after a timelock
4: for each i, j ∈ N such that the leaf transaction of the j-th party of txTreei

is spent using a signature σ1 that has not been generated by us do
5: if no tuple (σ2, pk2-AS,i,j,P,(i+1) mod 2, tx2, i

′) is stored locally then
6: store (σ1, pk2-AS,i,j,P,i mod 2, tx1, i) locally
7: else // a tuple (σ2, pk2-AS,i,j,P,(i+1) mod 2, tx2, i

′) is stored locally
8: for each output o3 spendable by pk2-AS,i,j,Op ∧ (pk2-AS,i,j,P,i mod 2 +

pk2-AS,i,j,P,(i+1) mod 2) do // “+” is the public key group operation
9: Retrieve corresponding pre-signatures σ̃1 = σ̃out,i,j , σ̃2 = σ̃out,i′,j

// generated in Fig. 9 l. 20/l. 21 or Fig. 12 l. 16
10: Build a tx that spends o3 using this spending method and

transfers coins to own key and sign it with sk2-AS,i,j,Op

11: Add Sign(
∑

2-Ext(σ1, σ2, σ̃1, σ̃2, pk2-AS,i,j,P,0, pk2-AS,i,j,P,1), tx) to
tx // “

∑
” is the secret key group operation

12: Publish tx to GLedger

13: end for
14: end if
15: end for
16: end if

Process Op responds to Unilateral Exit

Fig. 19. Claim of operator’s coins when unilateral exit has started by a party

C Bitcoin Clique Security

Lemma 5 (Setup security). For an honest, non-negligent Pi ∈ P that runs
the setup of the protocol, at least one of the following will be true:

– It will own output Oi,
– It will be able to exclusively spend the output of txout,1,i or txout,2,i, one of

which will be on-chain,
– It will be able to exclusively spend output O∗

i ,
– It will exclusively own the output of the transaction that spent O∗

i .

Note that all aforementioned outputs carry c coins.

Proof (Lemma 5). The relevant logic is in Fig. 9. If any of the agreement of l. 1,
exchanges of ll. 4, 6, 8, 17, 22 or the checks of ll. 9, 24 fail, then Pi will stop the
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protocol, never executing l. 25 and thus not losing ownership of O∗
i , a situation

that matches the third Lemma case.
In case the condition of l. 36 succeeds, then Pi tries to respend O∗

i – if this
succeeds then the situation matches the fourth Lemma case. The only way in
which this can fail is if txstep,1 spends O∗

i , since, other than the respending one,
the only transaction that can spend O∗

i and that Pi has ever signed is txstep,1. In
case txstep,1 wins the race but txstep,2 is not on-chain, then the condition of l. 37
triggers for txstep,1. Due to the same argument made in the proof of Lemmas 6
and 7 as to why Pi can always consume the output of a valid txstep,k and produce
a txout,k,i of which the output is exclusively spendable by Pi, the exit of l. 37
will succeed. This situation corresponds to the second case of the Lemma.

Lastly, if Pi runs the setup subprotocol of Fig. 9 to completion, then it owns
O∗

i by definition (l. 40), a situation that corresponds to the first Lemma case.

Lemma 6 (Leaf tx on-chain). If an honest, non-negligent P that owns output
O is instructed by E to exit, then eventually at least one output by a leaf tx which
can be spent by P ’s txout will be included on-chain.

Proof (Lemma 6). If P has already halted when it receives the exit instruction,
then P has already executed l. 6 of Fig. 16, since this is the only location in
which the protocol can halt. The txstep,j chosen in l. 1 of Fig. 16 is on-chain and
has previously been validated by P in ll. 20-22 of Fig. 13 – this can be proven
by induction, as failure to validate txstep,j would have triggered an exit with an
earlier, already validated txstep,k, k < j, as in l. 25, Fig. 13 and the base case
is guaranteed by Lemma 5, first bullet if P has owned O since the beginning
of the protocol or by the fact that, if P has received O after protocol start, P
checks then the validity of the then-current step tx (Fig. 11, l. 1). Then l. 2 of
Fig. 16 signs all transactions in the path between txstep,j and tx⌈logN⌉−y,⌊ i

2 ⌋
for

y = χ>N−2⌈log2 N⌉−1(i), where i is the party’s index, and subsequently submits
them to GLedger (Fig. 16, l. 5). As one can verify by inspection of Figs. 14 and 15,
each of these transactions except for the last one can be spent by the next one
without a timelock (due to the CTV rules of non-leaf txs) with a signature by
skmid,i.

We will now show that the timelocked spending option of txstep,j or of any
tx of the aforementioned path (the ones that are not encumbered with a CTV)
cannot be used. If a party other than P has already put the root tx on-chain,
then the race against the timelock of txstep,j has been already won, likewise for
any tx on the path. If P is exiting because it ran l. 37 of Fig. 9, then the root tx
needs until block t0+p+s to be included (cf. Fig. 9, l. 31), whereas the timelock
of txstep,j expires at block t0+ t+1 at the earliest (i.e., in case j = 1 and txstep,j
is included in the first block after the protocol starts). Since t ≥ p+ s (Fig. 8),
the root tx will always enter the chain before the timelock expires. Regarding
any tx on the path, it is submitted at most at block t0 + p together with all
txs connecting it to txstep,j and thus it will be included by t0 + p + s, which is
before the expiration of the timelock tleave,j (tleave,1 = t0 + t+ s > t0 + p+ s and
tleave,2 = t0 + 2t+ s > t0 + p+ s cf. ll. 16, 18 of Fig. 9 and Fig. 8).
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In case P is exiting because it ran l. 34 of Fig. 11, P has already updated its
epoch (Fig. 11, l. 1 or l. 27 depending on whether P is implicated in the output
transfer or not) and no blocks have been mined since then (cf. assumption of
Fig. 11), thus the current block height is at most he−1 + t− s. We furthermore
can see that he+1 ≥ he+ t+1 ≥ he−1+2t+2 (Fig. 13, l. 6 and Fig. 9, ll. 16, 18),
therefore the root tx is published in time to be on-chain before he+1. Regarding
the txs on the path, they are also published at most at block he + t − s. The
timelocks of those txs are all tleave,e+1. If e = 1 then tleave,2 = t0 + 2t+ s (l. 18,
Fig. 9) and the txs are published at block h1 + t− s at the latest (l. 2, Fig. 13).
h1 ≤ t0+p+t (ll. 16, 31, Fig. 9), thus they need at most until block t0+p+2t−s
to be included on-chain. Indeed it is t0+p+2t−s < t0+2t+s = tleave,2 (cf. Fig. 8),
so all path txs will be included on-chain. If e > 1, then tleave,e+1 = he + t + s
(l. 14, Fig. 12) and P publishes the path txs at block he + t − s at the latest.
Since tleave,e+1 = he + t+ s > he + t, all path txs will be on-chain before any of
their timelocks expire.

In case P is exiting because it ran l. 25 of Fig. 13, then the block height when
running l. 25 is at most he+ t− s (Fig. 13, ll. 2 and 24). Since he+1 ≥ he+ t+1,
there are at least s blocks until the timelock of txstep,e+1 expires, thus the root
tx will always enter the chain before expiration of their timelock. Similarly to
the line of reasoning of the previous paragraph, path txs will also be submitted
by block he + t− s and tleave,e+1 = he + t+ s > he + t, thus all path txs will be
on-chain before any of their timelocks expire.

Therefore either P ’s transactions will be included in time or they will lose
the race to identical transactions signed by other parties (identity is guaranteed
due to the aforementioned CTV constraint).

If P is still active when it receives the exit instruction then it runs Fig. 16 right
away. The timelock of txstep,e+1 has not expired, since P , being non-negligent,
has run its last epoch update verification (Fig. 13) when the block height was at
most he−1+t−s (Fig. 13, l. 2 – the e in that line is one less than the e used here,
because e is incremented at the end of Fig. 13), thus the current block height is
at most he + t− s. We furthermore can see that he+1 ≥ he + t+ 1 (Fig. 13, l. 6
and Fig. 9, ll. 16, 18), therefore the root tx is published in time to be on-chain
before he+1. The rest of the analysis above applies to this case as well, therefore
in every case P ’s leaf tx will be included on-chain, proving the Lemma.

Lemma 7 (Out tx on-chain). If P is honest and non-negligent and at least
one P ’s leaf tx output is on-chain, then P will sign and broadcast exactly one
txout that spends said output, which will eventually be included in the chain.

Proof (Lemma 7). Let i be P ’s index and txstep,j the tx chosen in l. 1 of Fig. 16,
which is necessarily the most recent ancestor of the leaf tx of the hypothesis. We
can check that txout,j,i spends the leaf tx by inspection of Fig. 14. Furthermore,
as we saw in the proof of Lemma 6, the txstep,j that is the ancestor of the leaf tx
has been validated by P and the validation of the corresponding epoch has not
failed in any other check since P has not exited with an earlier txstep,k, k < j,
therefore the check of Fig. 13, l. 22, verifying that a correct σ̃out,j,i has been
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received, had succeeded. We thus deduce that the Adapt of Fig. 16, l. 3 succeeds.
Due to the pre-signature adaptability property of the underlying 2-AS scheme
(Def. 3), it is guaranteed that the output of Adapt is a valid signature on txout,j,i
with respect to pk2-AS,j,i,Op. Furthermore, in case P did not own the i-th output
during epoch j − 1 (in other words, if P did not fulfill the role of Pi during
epoch j − 1) it must have adopted this role for the first time for epoch j. This
can only happen in Fig. 11, l. 15. The same line ensures that P has received a
valid signature σ∗

out,j,i on txout,j,i with respect to pkout,j−1,i,Op. Therefore P will
publish a valid txout,j,i transaction, spending the leaf tx. The same arguments
made in the proof of Lemma 6 as to why the timelocked spending method of
the leaf tx will not be used can be made here as well, therefore txout,j,i will be
included in the chain.

Lastly, P will not publish a second “out” tx, since it halts right after pub-
lishing the first valid “out” tx (Fig. 16, l. 6) and only the Pi role stores the
secret keys needed to create and complete the valid signatures needed for such
a transaction. The proof of Lemma 7 is complete.

Lemma 8 (Timelock expiry). If P is honest and non-negligent and exactly
one of P ’s txout is on-chain, then the timelock will expire (i.e., the non-timelocked
spending method will not be used) therefore P exclusively owns the output on-
chain.

Proof (Lemma 8). Let txout,j,i be the transaction of the Lemma hypothesis.
Its non-timelocked spending method needs a signature σ′ valid w.r.t. the key
pk2-AS,j,i,P,0 + pk2-AS,j,i,P,1 (Fig. 12, l. 12). P , who generates sk2-AS,j,i,P,0 and
sk2-AS,j,i,P,1 (Fig. 9, l. 5 or Fig. 11, l. 16) and keeps them secret, never pro-
duces such a signature. However there is a single way in which sk2-AS,j,i,P,k,
k ∈ {0, 1} can be leaked: If P publishes a signature σ produced by completing a
pre-signature σ̃ of which the “relation statement” Y is sk2-AS,j,i,P,k. If one knows
the public key pk that corresponds to the secret key with which the pre-signature
was created, they can get sk2-AS,j,i,P,k as the output of Ext(pk, txout,j,i, σ, σ̃). In-
deed, by publishing txout,j,i P publishes such a signature for k = j mod 2.
Nevertheless, since P only publishes a single “out” tx, the other necessary secret,
sk2-AS,j,i,P,1−(j mod 2), will not be leaked in this way. Due to the unforgeability of
Schnorr AS [16], sk2-AS,j,i,P,1−(j mod 2) cannot be leaked in any other way with
overwhelming probability. The unforgeability of the underlying Digital Signa-
tures scheme prevents any other way of producing a valid signature σ′. There-
fore no signature σ′ can be created, so the timelock of txout,j,i will expire and
its output will be exclusively spendable by P .

Proof (Theorem 2). Since P ∈ P assumes (Fig. 11, l. 15/Fig. 9, l. 40) or gives
up (Fig. 11, l. 10) the role of the owner of the i-th output when it receives or
offers it respectively, we only need to prove the theorem for Pi that owns only
the i-th output. This is a direct result of Lemmas 6, 7 and 8.

Proof (Theorem 3). If either move of Fig. 18, l. 4 succeeds, then the theorem is
satisfied, as each of these outputs carries coins equal to the required sum.

42



If neither move succeeds, then both tx ∈ {txstep,i, txstep,i+1} have been
spent by txTreei.root and txTreei+1.root respectively. Due to the CTV rules
(Fig. 14), parties other than Op can only spend the root tx using txs from
the respective txTree. We will prove that for each j ∈ [N ], Op will obtain
at least c coins. If for some k ∈ {i, i + 1}, Op moves to its own key an out-
put of a tx of txTreek that is the ancestor of {txTreek.txout,l|l ∈ {a, . . . , b}}
but not of {txTreek.txout,l|l ∈ [N ] \ {a, . . . , b}} using the timelocked spend-
ing method (Fig. 19, l. 3), then Op obtains (b − a + 1)c coins, i.e., c coins per
party of which the out tx has the aforementioned spent output as an ances-
tor. If on the other hand both txTreei.txout,j and txTreei+1.txout,j are on-
chain, then Op can get the signature σ1 = σ2-AS,i,j from txTreei.txout,j and
the signature σ2 = σ2-AS,i+1,j if the j-th output has not changed owners be-
tween epochs i and i + 1 or σ2 = σ∗

2-AS,i+1,j else from txTreei+1.txout,j . These
two signatures are valid with respect to Op’s “ots” keys (cf. Fig. 14), but Op
has only ever produced pre-signatures with pk2-AS,k,j,P,k mod 2 as statements for
txTreek.txout,j , k ∈ {i, i+1} respectively, therefore the two signatures can only
be the result of Pj adapting the pre-signatures with pk2-AS,k,j,P,k mod 2 with over-
whelming probability and thus, due to the extractability property of the 2-AS
scheme, Op will extract with overwhelming probability a pair of secret keys that
correspond to the public keys pk2-AS,i,j,P,0 and pk2-AS,i,j,P,1 (Fig. 19, l. 11), the
sum of which is the key needed to use the non-timelocked spending method of
txout,i,j , in l. 11 of Fig. 19. Additionally, it is impossible for the timelock of
txout,i,j to have expired for the next s blocks after txout,i+1,j enters the chain
from the point of view of Op, since tpunish,i > tleave,i+1+ s (Fig. 8). Therefore the
transaction published by Op in l. 12 of Fig. 19 will enter the blockchain with
overwhelming probability, giving Op the c coins that correspond to Pj .

D Bitcoin Clique Healing

In its previously described form, Bitcoin Clique is vulnerable to a DoS attack:
When the exit phase is initiated by any user, the entire Clique is torn down
for everyone. We here propose an extension to the protocol, named healing,
which allows active users to reinstate the Clique securely with minimal on-chain
overhead.

At a high level, healing works by enabling a new way to spend tree txs which
needs the active participation of all relevant users and Op. After some users
exit, some tree tx outputs remain unspent. The users that want to stay in the
Clique collaborate with each other and with Op to create a single transaction
that spends all remaining tree tx outputs using the new spending method and
produces a suitable step tx output. The protocol is resilient to inactive users.

D.1 Healing extension details

In more detail, the solution is as follows: Consider an output of an arbitrary
tree tx, which is spendable by the subset of users T ⊂ P. We add an alternative
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spending method, named healing, to the tree tx. Its script is
∧

P∈T
P ∧ Op. This

modification is done to every tree tx of every epoch.
s + 1 blocks after an exit phase is initiated, a user P that wishes to keep

its coins in the Clique first initializes C ⊂ P as the set of users that have not
exited (i.e., the users of whom the out tx is not on-chain) and then repeats the
following steps until either healing is complete (step 2) or the need for P to exit
arises (discussed after the healing steps).

1. Generate and sign a new step tx that spends all currently unspent tree
outputs using the healing spending method and has a single output with
the coins and script of a step tx for users C (with the same b as the step tx
that was exited from). See also Fig. 14. If the current block is within the
epoch update period (Fig. 12) of the exited-from step tx, then produce the
successor to the exited-from step tx instead (i.e., produce the step tx that
would spend the exited-from step tx, two epochs later). Gossip signatures
with other users and Op.

2. Wait for treconcile blocks (a system-wide parameter, discussed in D.2). If all
users in C and Op sign the new step tx as well within this period, then publish
it to the ledger. Healing is complete.

3. Else:
(a) Remove from C the users that have not provided the aforementioned

signature.
(b) Publish to the ledger the minimum set of tree txs on the path from the

root to P ’s leaf so that all users that can spend the resulting tree output
are in C. (This action ostracizes inactive users on P ’s path.)

(c) Wait for s+ 1 blocks (giving time to our and other branches to finalize
on-chain).

(d) Remove from C all users that can spend an unspent tx tree output that
can also be spent by a user in P \ C. (This action ostracizes users that
did not ostracize inactive users on other paths by following step 3b. This
is needed because the healing spending method needs the signature of
all relevant users.)

The procedure needs to be repeated potentially many times because previously
active users may become uncooperative in the process.

The need for P to exit arises if the new step tx has not been published by
block tleave − s. In that case, P exits by publishing its branch of the tx tree and
out tx as usual. This scenario can happen if Op becomes malicious and does not
sign the new step tx, or if the other users maliciously classify P as inactive and
do not include its tree output in the step tx. This, together with the fact that all
relevant users (including P ) need to sign for the healing spending method to be
used and the fact that P only uses it to return to a normal step tx, guarantees
that the healing extension safeguards balance security.

Op follows the same procedure as the users, apart from step 3b. Since its
signature is needed for all healing spending methods and it only uses it to return
to a normal step tx, operator balance security is guaranteed.
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It is possible for the protocol to be executed on both active step txs simulta-
neously — balance security and healing are maintained.

D.2 Discussion and Future Work

Note that treconcile does not appear in any timelock, as it only dictates off-chain
communication timeouts. It could therefore be alternatively expressed in terms
of time. We here however express treconcile in terms of blocks for homogeneity of
notation. We recommend using the shortest treconcile value that ensures each user
has enough time to do a communication round-trip with every other user.

During healing, users might end up being too quick to assume another user is
inactive and publish a tree tx that is not strictly needed. This incurs unneeded
on-chain fees. A practical system would need to experiment with concrete pa-
rameters to minimize such events while promoting quick healing. Users are en-
couraged to be online and share as many signatures as possible as early and
widely as possible to minimize such events, as well as being Bitcoin peers with
each other in order to minimize discrepancies in their ledger views. To further
mitigate this effect, it is possible to design a more elaborate synchronization
protocol that allows users that were erroneously assumed inactive in step 3d to
be re-included in the set of active users during the subsequent signature gossip
step 1. We leave this as future work.

The above shows that this is a best-effort mechanism and does not benefit
from uniquely attributable faults, which would in turn enable exclusion of mali-
cious users from the healed Clique. There are specific cases in which it is possible
to uniquely attribute faults, such as when a user publishes the root tx and no
subsequent tree tx. We leave detecting and punishing uniquely attribute faults
as future work.

Nevertheless, the healing mechanism can save a lot of on-chain transactions
in many realistic scenarios of DoS attempts and always leads to reinstating and
continuing the Clique with all honest, active users irrespective of the number of
malicious users if Op is honest and network delays are bounded.

Let us give us two example scenarios: In case a single user unilaterally exits
and everyone else cooperates, then the on-chain footprint is log2(N) transactions
of the tree, 1 out tx, and 1 healing step tx. On the other hand, if at least one
user of each leaf tx is malicious and publishes its entire branch of the tx tree,
but not its out tx, then healing results in putting the entire tree tx on-chain and
then recreating the exact same step tx output that was initially spent, for a total
of 2N on-chain txs. The latter is the worst case scenario. We observe that even
in this case, honest users can still successfully heal.

In a practical deployment, Op can facilitate the protocol by being the pri-
mary point of contact for users and leveraging its (presumably) better network
connection to enhance coordination, collect and distribute signatures, and sig-
nal which users are inactive. Still, users must not rely solely on Op for message
passing, lest they want to give it the ability to suppress an honest, active user.

45


	Bitcoin Clique: Channel-free Off-chain Payments using Two-Shot Adaptor Signatures

