
FlexHi: A Flexible Hierarchical Threshold
Signature Scheme

Muhammed Ali Bingol1 , Sermin Kocaman2 ,
Ali Doğan3,4 , and Sibel Kurt Toplu4

1 De Montfort University, Cyber Technology Institute, Leicester, United Kingdom
muhammed.bingol@dmu.ac.uk

2 Department of Cryptology, Institute of Applied Mathematics, METU, Turkey
sermin.cakin@metu.edu.tr

3 Istanbul Technical University, Informatics Institute, Istanbul, Turkey
4 Blockchain Technologies Unit, TUBITAK BILGEM, Kocaeli, Turkey

{doganali, sibel.toplu}@tubitak.gov.tr

Abstract. Threshold signature schemes have gained prominence in en-
hancing the security and flexibility of digital signatures, allowing a group
of participants to collaboratively create signatures while maintaining a
predefined threshold of participants for validity. However, conventional
threshold signatures treat all participants equally, lacking the capability
to accommodate hierarchical structures often seen in real-world applica-
tions. Hierarchical Threshold Signature Schemes (HTSS) naturally ex-
tend the concept of simple threshold signatures, offering a solution that
aligns with hierarchical organizational structures. Our paper introduces
a novel, efficient, and flexible HTSS that employs independent polyno-
mials at each hierarchical level, removing limitations on threshold val-
ues. This adaptability enables us to tailor the scheme to diverse require-
ments, whether signing requires only top-level nodes or lower-level par-
ticipants’ involvement. Based on our analysis, our FlexHi integrated into
the FROST scheme outperforms Tassa’s hierarchical scheme on FROST
and operates approximately 30% to 40% faster, depending on the num-
ber of participants and the chosen threshold values. This demonstrates
that, in addition to flexibility, our scheme has practical benefits through
improved performance.

Keywords: Hierarchical Threshold Signature, Secret-Sharing, Security,
Privacy

1 Introduction

In the rapidly evolving landscape of secure digital communication and decentral-
ized systems, cryptographic primitives play a pivotal role in ensuring data in-
tegrity, authenticity, and confidentiality. Digital signatures, a fundamental cryp-
tographic tool, enable the verification of the origin and integrity of digital mes-
sages, thereby establishing trust in electronic transactions and communications.
Threshold signature schemes have emerged as a prominent solution to enhance

https://orcid.org/0000-0002-5930-0521
https://orcid.org/0000-0001-8334-8587
https://orcid.org/0009-0009-4191-2982
https://orcid.org/0009-0005-1557-8619

2 M. A. Bingol et al.

the security and flexibility of digital signatures, allowing a group of participants
to collaboratively generate signatures while maintaining a predefined threshold
of participants necessary to create a valid signature.

While threshold signatures have many applications, all participants have been
assigned to the same weight in threshold signatures. This means they have equal
rights but in real life application hierarchy is necessary in many situations. One
such example is bank systems. Consider the management of a high-value trans-
action by two directors or a director and a president, but not by two presidents.
Since the threshold signature scheme does not fit this situation, the Hierar-
chical Threshold Signature Scheme (HTSS) emerged as a natural extension of
simple threshold signatures. Starting with the concept of hierarchical secret-
sharing scheme, several constructions of these schemes for different authorized
subsets of participants (access structure) have been proposed in the literature
[22,23,11,25,26,3,13,14,27,17,10,31].

HTSS represents a noteworthy advancement in this domain, offering a struc-
tured approach to manage signatures within hierarchical organizational struc-
tures. These schemes facilitate the delegation of signing authority across dif-
ferent hierarchical levels, thereby providing a versatile framework for scenarios
involving complex access control, distributed management, and efficient signa-
ture aggregation. While the concept of HTSS presents a promising avenue for
various applications, their practical adoption and robustness demand rigorous
exploration.

1.1 Related Work

In 1979, Shamir [22] pointed out a weighted threshold system as a version of a
hierarchical threshold scheme in which participants take the number of shares,
which are points on a polynomial, proportional to their level. In this scheme, the
ratio of the size of the participant’s share to the size of the secret equals the par-
ticipant’s assigned weight, which may be exponential in number of participants
[2]. Thus, it can be seen that this construction is not ideal [27].

In 1988, Simmons [23] introduced the notion of a disjunctive multilevel
threshold scheme and compartmented threshold scheme based on a geometric
construction presented by Blakley [7]. As in the Blakley threshold scheme, the
concept of intersecting hyperplanes is used. However, the proposed scheme is
not efficient in the secret reconstruction since it requires the dealer to check the
nonsingularity of the exponentially many matrices to prevent the unqualified set
from finding the secret [25]. Further, the scheme is not ideal [14].

In 1989, Brickell [9] introduced an ideal multi-threshold secret-sharing scheme.
Nonetheless, this scheme is inefficient, as it necessitates the dealer to compute an
exponential number of matrices to guarantee the non-singularity of matrices. Af-
terward, in 1998, Ghodosi [11] presented a scheme designed for compartmented
access structures by applying the Shamir secret-sharing scheme. Each level in
this scheme has its own polynomial; however, the degrees of these polynomials
are recursively defined. Since new participants cannot be added to any level ex-

FlexHi: A Flexible Hierarchical Threshold Signature Scheme 3

cept the last without resharing the secret, the scheme is not dynamic [30]. Also,
the proposed scheme only works for a small number of shareholders [3].

In 2007, Tassa [25] proposed a conjunctive hierarchical scheme based on
Birkhoff interpolation. In Tassa’s scheme, polynomial derivatives are used to
generate shares for participants of lower levels in the hierarchy. To generate the
additional shares, the scheme uses the vector of coefficients of the polynomial,
which is denoted by a = (a0, a1, . . . , at−1). The dealer then takes derivate of it
to generate a new vector of coefficients for the distribution according to partici-
pant indexes, which is denoted by a′ = (a1, 2.a2, . . . , (t−1).at−2). The derivative
operator can be applied t−1 times to generate different hierarchy levels. The dis-
tributed key generation, which is based on Tassa’s protocol and does not require
a dealer, is also available [18]. Later, in 2009, Tassa and Dyn [26] proposed an
ideal hierarchical secret-sharing scheme based on a bivariate interpolation tech-
nique. However, the proposed schemes ([25,26]) necessitate a large finite field
with some limitation in assigned identities of the users [3]. In the rest of the
paper, Tassa’s scheme will refer to the first construction [25]. It is important
to note that Tassa’s technique, whose matrix needs to satisfy necessary Polya’s
condition, does not necessarily exist in all scenarios and requires exponential
complexity due to the matrices’ nonsingularity check [31]. After selecting the
polynomial at the first level, it is not possible to increase the number of levels
in sub-hierarchies, thus this technique might not be appropriate for all kinds of
secrets or access hierarchies.

In 2008, Belenkiy [3] proposed disjunctive multi-level secret-sharing in which
the users learn a point on a polynomial or in its derivative as in Tassa. But
instead of classically choosing a constant number as the secret, the secret is
chosen as at−1 when the polynomial coefficients are a = (a0, a1, . . . , at−1). It is
shown that this technique can be used directly to construct disjunctive secret-
sharing without the need for an intermediary conjunctive scheme. However, the
scheme is not suitable for all scenarios and is not very efficient.

In 2009, Käsper et al. [14] proposed strongly multiplicative hierarchical thresh-
old secret-sharing in which players who have a share of the secret take the mul-
tiplication of these secret shares without knowing the original secrets, even if
the active adversary is present. They gave an efficient linear secret-sharing con-
struction for a hierarchical scheme contrary to the exponential construction in
the general linear secret-sharing scheme. However, their scheme requires stronger
conditions on the access structure [28].

In 2013, Tentu et al. [27] introduced a computationally perfect, conjunctive
hierarchical scheme based on the maximum distance separable (MDS) codes. In
the scheme, the dealer selects MDS codes, its codewords, and a distinct one-way
function, then each participant takes exactly one share. The codewords are cho-
sen in a way that they contain shared secret in its first component, next contain
images of shares of relative level participants under distinct one-way functions,
and the rest are chosen arbitrarily. This scheme does not require the ground field
to be extremely large or any restrictions on the users’ assigned identities. While

4 M. A. Bingol et al.

they pointed out that the idea is also applicable to the disjunctive scheme, they
just present a conjunctive scheme in their work.

In 2015, Nojoumian and Stinson [17] introduced sequential secret-sharing in
which a group of players with varying levels share different yet related secrets
with increasing thresholds. Multiple secrets are derived in this protocol by a
linear combination of previous secrets. During the reconstruction phase, each
subgroup of players can only recover secrets at their designated level. Conse-
quently, the master secret can only be revealed if all the secrets in the higher
levels are sequentially recovered. Considering FROST, since the secret needs to
be disclosed for signature verification, it cannot be used for threshold signatures.

In 2016, Ersoy et al.[10] presented a new disjunctive and conjunctive multi-
level secret-sharing scheme built around the anchor sequence, a unique primary
sequence. The literature’s CRT-based multilevel threshold secret-sharing scheme
of Harn-Fuyou [12] is not applicable to all threshold configurations. Ersoy et al.
presented their work and revealed that these new schemes can be integrated into
function-sharing schemes. However, the scheme employs sequences of primes that
could be widely spaced. Producing sequences of prime numbers that satisfy these
conditions is resource-intensive. The scheme relies on hash functions that must
be treated as random oracles for security purposes, and the information rate is
notably high.

In 2022, Yuan et al. [31] presented a new hierarchical scheme based on Linear
Homogeneous Recurrence (LHR) relations. In this scheme, linearly independent
homogeneous recurrence relations are chosen by the distributor, and then pseudo
shares of the participants from related levels are used to construct the related
LHR relation. In the reconstruction, a qualified subset of participants solve rela-
tions to get the required values, and then obtain shared secrets. The complexity
of hierarchical schemes is reduced from exponential to polynomial in this scheme.
However, the participants are assumed to be semi-honest, and there is no veri-
fication check in their scheme.

Our Contribution. In this paper, we propose a flexible hierarchical thresh-
old signature scheme, what we call FlexHi. Our scheme provides a simple and
efficient hierarchical threshold system based on Shamir’s secret-sharing [22]. As
mentioned above, existing hierarchical threshold schemes often impose ordering
and constraints on each level, limiting their flexibility. The core objective of this
paper is to introduce an architecture that breaks free from these constraints and
offers unparalleled flexibility. In our scheme, independent polynomials are uti-
lized at each level, enabling us to accommodate any number of participants and
define threshold values without limitation. This approach diverges from schemes
like Tassa [25], which rely on Polya’s condition that imposes restrictions. Our
approach eliminates restrictions on the threshold values for independent polyno-
mials at each level, making our scheme exceptionally adaptable. This flexibility
allows the scheme to meet a wide range of application requirements, dependent
on the chosen threshold values at each level. For instance, when the top-level
hierarchical nodes suffice for signing, the lower-level threshold number must be
less than or equal to the number of top-level hierarchical nodes. Conversely, if

FlexHi: A Flexible Hierarchical Threshold Signature Scheme 5

the involvement of individuals from lower-level sets is necessary for signing, the
lower-level threshold number must surpass the number of top-level hierarchical
nodes. Through our analysis, we demonstrate that our FlexHi integrated into the
FROST scheme outperforms Tassa’s hierarchical scheme on FROST, operating
approximately 30% to 40% faster, depending on the number of participants and
the chosen threshold values. This not only highlights the scheme’s flexibility but
also underscores its practical benefits through improved performance.

Paper Organization. The rest of the paper is organized as follows: Section
2 provides definitions of access structures as preliminaries. Section 3 describes
the architecture of our proposed FlexHi scheme and its generalization, followed
by its FROST application in Section 4. Section 5 provides a security and cost
analysis of FlexHi scheme. Section 6 concludes the paper.

2 Preliminaries on Access Structure

The access structure is the family of authorized subsets. Hierarchical access
structure consists of two classes: disjunctive and conjunctive access structures.
In a hierarchical structure, participants are divided into separate levels based on
their significance. These levels maintain a strict hierarchy, with parties in higher
levels holding greater importance compared to those in lower levels. In a typical
scenario involving a bank’s workforce, the higher level might be composed of
the board of directors. Simmons [23] introduced the initial hierarchical secret-
sharing scheme known as disjunctive multilevel secret-sharing. Later, Tassa [25]
modified this scheme into the conjunctive multilevel secret-sharing approach.
In both of these schemes, a secret is distributed among participants occupying
different authority tiers. The terms ”disjunctive” and ”conjunctive” were jointly
introduced in [3]. To understand the distinction between these two types of access
structures, we provide these definitions.

Definition 1 (Access structure [3]). Let U be a set of users. An access struc-
ture Γ ⊆ P (U) must satisfy these two conditions:

– monotonicity: if A ∈ Γ and A ⊆ B then B ∈ Γ
– non-triviality: if A ∈ Γ then |A| > 0.

If every set A is in Γ , A is authorized, and if every set B is not in Γ , B is
unauthorized.

Definition 2 (Threshold access structure [3]). We say that Γ is a threshold
access structure corresponding to threshold t if Γ = {A ⊆ U : |A| ≥ t}.

Each level L has a threshold tL such that t0 < t1 < . . . < tn. For the
conjunctive multi-level access structure, if there exists a minimum of tL users
at levels 0, 1, . . . , L for every level L, the secret can only be recovered. For a
disjunctive multi-level access structure, if for some level L, there are at least
tL users at level 0, . . . , L, the secret can be recovered.

6 M. A. Bingol et al.

In a hierarchical secret-sharing scheme, a secret α is shared among the players
with monotonically increasing thresholds t1 < t2 < . . . < tn. Let P be a set of n
players and assume P is composed of l disjoint levels:

P =

l⋃
i=1

Pi where Pi ∩ Pj = ∅ for all 1 ≤ i < j ≤ l and |Pi| ≥ ti for all i.

Definition 3 (Disjunctive hierarchical access structure [17]). secret α
can be recovered by a set of players A, i.e., an authorized subset, only if

|A ∩ (

j⋃
i=1

Pi)| ≥ tj for at least one j where 1 ≤ j ≤ l,

i.e., at least one threshold must be satisfied at level 1 to j.

Definition 4 (Conjunctive hierarchical access structure [17]). Secret α
can be recovered by a set of players only if

|A ∩ (

j⋃
i=1

Pi)| ≥ tj for all j where 1 ≤ j ≤ l,

3 A Flexible Hierarchical Threshold Signature Scheme

In this section, we present a novel hierarchical threshold signature scheme called
a flexible hierarchical threshold signature (FlexHi) scheme. Our scheme utilizes
independent polynomials at each level, offering the flexibility to allow any num-
ber of participants and set threshold values without limitations as opposed to
the monotone threshold requirement in conjunctive or disjunctive hierarchical-
based schemes. This flexibility ensures that the scheme can adapt to various
hierarchical structures and security requirements, making it a versatile and ro-
bust solution for a hierarchical threshold signature. Now we define our flexible
hierarchical secret-sharing as follows.

Definition 5 (Flexible hierarchical secret-sharing). Let L denote a hier-
archical structure comprising multiple levels such that

L =

n⋃
j=1

Lj where Lj ∩ Lk = Lj for all 1 ≤ j < k ≤ n.

These levels are listed from the highest (L1) to the lowest (Ln) hierarchy level,
where each lower level includes all the nodes from the upper levels.Each Lj(tj ,mj)

level consists of
⋃j

s=1Ns,i nodes where 1 ≤ i ≤ mj and tj is the threshold value.

In FlexHi scheme, a private key share skj can be constructed when at least
tj nodes Nj,i ∈ Lj(tj ,mj) are engaged in a key construction algorithm (see
Figure 2). Then, public key shares are generated from the corresponding private

FlexHi: A Flexible Hierarchical Threshold Signature Scheme 7

key shares depending on the underlying signature scheme. These independent
the main public key. The hierarchical node has the advantage of extra secrets
over lower-level nodes, and the scheme requires the use of this secret. To clarify
the scheme, we begin with an example and then provide its definition and its
generalized form.

Example 1. Suppose the aim is to create a three-level flex hierarchical
threshold signature scheme with thresholds5 t1 = 2, t2 = 2, and t3 = 6 where
L1(2, 3), L2(2, 6), and L3(6, 9). Let the set of nodes be:

L1 = {N1,1,N1,2,N1,3}
L2 = {N1,1,N1,2,N1,3,N2,1,N2,2,N2,3}
L3 = {N1,1,N1,2,N1,3,N2,1,N2,2,N2,3,N3,1,N3,2,N3,3}

KeyGen:

1. (L1(2, 3)). Each node N1,i ∈ L1, where 1 ≤ i ≤ 3:
(a) Uses secret sampling in Figure 2 to create his secret s11,i for L1.
(b) Adds the related subshares obtained in L1 to construct his private key

share sk11,i using key construction in Figure 2. In this construction,
public key share pk11,i is also created from the underlying signature
scheme, and it is made public.

(c) Generates the first level public key pk1 from all published public key
shares.

2. (L2(2, 6)). Each node N1,i,N2,i ∈ L2, where 1 ≤ i ≤ 3:
(a) Uses secret sampling in Figure 2 to create his secret s21,i ,s22,i, respec-

tively, for L2.
(b) Adds the related subshares received in L2 to construct his private key

share sk21,i, sk22,i, respectively, using key construction in Figure 2. In
this construction, public key share pk21,i, pk22,i, respectively, is also cre-
ated from the underlying signature scheme, and they are made public.

(c) Generates the second level public key pk2 from all published public sign-
ing key shares

3. (L3(6, 9)). Each participant N1,i,N2,i,N3,i ∈ L3, where 1 ≤ i ≤ 3:
(a) Uses secret sampling in Figure 2 to create his secret s31,i, s32,i, s33,i,

respectively, for L3.
(b) Adds the related subshares received in L3 to construct his private key

share sk31,i, sk32,i, sk33,i, respectively, using key construction in Figure 2.
In this construction, public key share pk31,i, pk32,i, pk33,i respectively, is
also created from the underlying signature scheme, and they are made
public.

(c) Generates the third level public key pk3 from all published public signing
key shares

5 In our scheme, there is no requirement for threshold values to be in a specific order,
whether monotonous increasing or decreasing. Without loss of generality, these values
can be chosen arbitrarily depending on the application e.g. t1 = 2, t2 = 4, and t3 = 3.

8 M. A. Bingol et al.

KeyAgg: All level-based public keys pk1, pk2, pk3 are combined to generate the
main public key pk.
SignGen:

1. (L1(2, 3)). Any two ofN1,i use his private key share sk11,i to sign the message
partially as σ11,i, where 1 ≤ i ≤ 3

2. (L2(2, 6)). Any two of N1,i,N2,i use his private key share sk21,i, sk22,i, re-
spectively, to sign the message partially as σ21,i, σ22,i, where 1 ≤ i ≤ 3.

3. (L3(6, 9)).Any six ofN1,i,N2,i,N3,i use his private key share sk31,i, sk32,i, sk33,i,
respectively, to sign the message partially σ31,i, σ32,i, σ33,i, where 1 ≤ i ≤ 3.

SignAgg: The quorum partial signatures generate the main signature σ :

{σ11,i ∈ L1}t1=2 ∧ {σ21,i ∈ L2 ∨ σ22,i ∈ L2}t2=2

∧{σ31,i ∈ L3 ∨ σ32,i ∈ L3 ∨ σ33,i ∈ L3}t3=6

where 1 ≤ i ≤ 3, ∧ represents “and”, ∨ represents “or” notation

3.1 Generalization of FlexHi Scheme

We now formalize the notion of our proposed FlexHi scheme that uses the
FFlexHi function. FlexHi scheme consists of a tuple of six polynomial time algo-
rithms, FFlexHi = (Setup, KeyGen, KeyAgg, SignGen, SignAgg, Verif) as
introduced in Figure 1.

Flex Hierarchical Threshold Signature Scheme Functionality FFlexHi

Setup: On the input of the security parameter 1λ, public parameters pp are generated according
to the underlying signature scheme.

KeyGen: Taking public parameters pp, each node Ns,i in the same level Ls, where 1 ≤ s ≤ n:
– Runs the KeyGen as defined in Figure 2 to generate a public/private key shares

(pks,i, sks,i).
– Stores (pks,i, sks,i) and send pks,i to the other nodes in that level.
– Computes level’s public key pks by combining all received public key shares.
– Sets an internal flag ready to 1 and ignore further calls.

KeyAgg: Taking different level’s public keys pks from each level, do:

– Run the key aggregation algorithm in Figure 5, and construct the main public key pk.

SignGen: Taking (sid,m) from each node Ns,l in the same level Ls, sid = (Ns,l, sid
′) for some

sid′, if ready = 1 and the session identifier sid has not been used previously, then each node
Ns,i in the same level Ls:

– Generates partial signature σs,i on message m using the corresponding private key
share sks,i, then sends it to each node Ns,l in the same level Ls.

– Stores internally (sid, delivered)
– Computes level’s signature σs after receiving all partial signatures in that level Ls.

SignAgg: Taking different level’s partial signatures σs from each level, construct the main sig-
nature σ.

Verif: If Verify(σ,m) = 1, then the verification is done.

Fig. 1. Our Flex Hierarchical Threshold Signature Scheme Functionality FFlexHi pro-
cedure

The KeyGen procedure in the Figure 2 algorithm consists of two rounds. In
Round 1, nodes select secrets, create secret polynomials, generate knowledge

FlexHi: A Flexible Hierarchical Threshold Signature Scheme 9

proofs, and verify these proofs to ensure the validity of the secrets. After secret
polynomials are constructed, in Round 2, nodes compute subshares and use them
to calculate private key shares. They also generate public key shares using the
underlying signature scheme. This process establishes the keys for the algorithm.

KeyGen of FFlexHi

Round 1. (Secret Sampling) On input security parameter 1λ, each Ns,i in the same level Ls

does the followings (1 ≤ i ≤ ms):
– Takes a secret ss,i ∈ Fq

– Creates a polynomial fs,i(x) = ss,i +
∑t−1

i=1 ai.xi where ai ∈ Fq is the randomly
chosen coefficients of the polynomial

– Runs ProofGen(1λ, ids,i, g
ss,i) algorithm in Figure 3 to prove knowledge of secret by

outputting PoK(ss,i), then broadcast it to all Ns,l node in the same level Ls (1 ≤
l ≤ ms, l ̸= i)

– Runs ProofVerify(1λ, ids,i, PoK(ss,i)) algorithm in Figure 4 to verify the knowledge
of secret ss,i

Round 2. (Key Construction)
After constructing secret polynomial fs,i(x) from Round 1, each Ns,i in the same level Ls

does the followings (1 ≤ i ≤ ms):
– Computes subshares ssi,l for Ns,l by evaluating a point on polynomial fs,i(l), then

sends these computed values to Ns,l

– When receiving (ms − 1) subshares, computes its private key share sks,i by adding
related subshares ssl,i where 1 ≤ l ≤ ms. Public key share pks,i is also generated
from sks,i using the underlying signature scheme.

Fig. 2. Our KeyGen of FFlexHi procedure

The ProofGen procedure in Figure 3 algorithm is responsible for generating
a proof of knowledge, denoted as PoK(ss,i), for a specific secret ss,i ∈ Fq. This
process is carried out by each node Ns,i within the same level Ls. The result-
ing proof, denoted as PoK(ss,i), ensures that the node possesses the knowl-
edge of the secret ss,i without revealing the secret. This proof is verified by the
ProofVerify procedure in Figure 4. The KeyAgg procedure in Figure 5 combines
level-based public keys to generate the main public key.

ProofGen of FFlexHi

On input security parameter 1λ, secret in commitment gss,i , and id ids,i, each Ns,i in the
same level Ls (1 ≤ i ≤ ms) calculates a proof of knowledge PoK(ss,i) to corresponding
secret ss,i ∈ Fq

Fig. 3. Our ProofGen of FFlexHi procedure

ProofVerify of FFlexHi

On input security parameter 1λ, a proof of knowledge PoK(ss,i), and id ids,i, each Ns,i in
the same level Ls (1 ≤ i ≤ ms) verifies a proof of knowledge of secret

Fig. 4. Our ProofVerify of FFlexHi procedure

10 M. A. Bingol et al.
KeyAgg of FFlexHi

The level-based public keys pks (1 ≤ s ≤ n) are combined to generate the main public key
pk = pk1 ∗ pk2 · · · pkn where ∗ denotes the combination operator.

Fig. 5. Our KeyAgg of FFlexHi procedure

4 FlexHi FROST Scheme Application

In this section, we apply our FlexHi scheme to the FROST (Flexible Round-
Optimized Schnorr Threshold) signature scheme. FROST [16] is a round-optimized
threshold signature scheme based on the Schnorr signature [21], which enhances
robustness by allowing a quorum of honest participants to identify instances of
misbehavior. FROST includes a semi-trusted role in the final stage of the sig-
nature, which is referred to as the signature aggregator SA. The purpose of SA
is to minimize communication between participants. Thus, it can also be imple-
mented without the need for a SA. We adhere to the algorithm in FROST and
apply our hierarchical model. Our scenario consists of two levels L1(1, 1) and
L2(t,m). The first level is hierarchically strong and has one hierarchical node,
the other is the level with m nodes and t threshold value.

Key Generation Stage. The key generation phase of our FROST applica-
tion is given in Figure 6. The key generation of FROST is based on Pedersen’s
Distributed Key Generation [19]. In addition to Pedersen DKG, participants
must prove the constant term of the polynomials (secret) they produce with
zero-knowledge proofs to prevent rogue key attacks [4] in which attackers are
allowed to arbitrarily choose their public keys. Since L1(1, 1) consists of a single
node N1,1 in our scenario, it does not need key generation rounds at his level.
It will be enough for him to generate the private key himself and publish its
public key. However, as stated in the previous section, N1,1 needs to join the
key generation of L2(t,m). In this case, N1,1 has an extra secret. On the other
hand, the nodes in L2(t,m) should run the protocol as is, adhering to the KeyGen
phase in FROST. Each node N2,i randomly selects a polynomial of degree t and
creates a Schnorr Proof for its constant term by running ProofGen. They then
broadcast the proof values and the commitment of the coefficients of the poly-
nomial. Nodes verify proof values from other nodes by running ProofVerify. If
there is no error during verification, each node sends subshare of secret values
to other nodes. After that, each node N2,i creates its private key share using
incoming subshares. After these steps, public key share, and level-based public
key are calculated.

Key Aggregation Stage. In the key aggregation algorithm of our FROST
application that is given in Figure 9, the main public key pk is generated with a
multiplication operator taken as a combination operator.

Preprocessing Stage. The preprocessing stage of our FROST application
in Figure 10 is performed before the signing operation. In this stage, every node
at every level generates a set of π random number pairs, which are one-time use

FlexHi: A Flexible Hierarchical Threshold Signature Scheme 11

KeyGen

For L1(1, 1):

1. N1,1 samples a random private key sk1
$← Zq

2. N1,1 computes level public key pk1 = gsk1

For L2(t,m):

Round 1 For 1 ≤ i ≤ m,

1. Every node N2,i chooses t random values
(
a2i,0, . . . , a2i,(t−1))

) $← Zq , and uses them

as coefficients to define a degree t− 1 polynomial f2i(x) = a2i,0 +
∑t−1

j=1 a2i,jx
j where

a2i,0 is chosen secret.

2. Node N2,i runs ProofGen(1λ, id2i, Φ, ga2i,0) in Figure 7 for L2(t,m) to demonstrate

PoK(a2i,0) by outputting κ2i and commitment C⃗2i.

3. Upon receiving C⃗2ℓ, κ2ℓ from other nodes 1 ≤ ℓ ≤ n, ℓ ̸= i, Node N2,i runs

ProofVerify(1λ, id2ℓ, Φ, κ2ℓ, C⃗2ℓ) in Figure 8 for L2(t,m) to verify proof of their cor-
responding secret.

Round 2 For 1 ≤ i ≤ m,

1. Each node N2,i securely sends to each other level 2 node N2ℓ a secret share (subshare)
(2ℓ, f2i(id2ℓ)), deleting f2i and each share afterward except for (id2i, f2i(id2i)) which
they keep for themselves.

2. Each node N2,i verifies their shares by calculating: gf2ℓ(id2i)
?
=

∏t−1
k=0 ϕ

id2i
k

2ℓ,k mod q,

aborting if the check fails.

3. Each node N2,i calculates their long-lived private key share by computing sk2i =∑n
ℓ=1 f2ℓ(id2i), stores sk2i securely, and deletes each f2ℓ(i).

4. Each node N2,i calculates their public verification share pk2i = gsk2i , and the level’s
public key pk2 =

∏m
j=1 ϕ2,j,0. Any node can compute the public verification share of

any other node by calculating

pk2i =

n∏
j=1

t−1∏
k=0

ϕ
idk2i mod q

2,j,k .

Fig. 6. Our FlexHi KeyGen procedure for FROST scheme

ProofGen

For L1(1, 1):
1. N1,1 calculates a proof of knowledge to the corresponding private key sk1 by calcu-

lating κ1 = (R1, µ1), such that r1
$← Zq , R1 = gr1 , c1 = H

(
id1,1, Φ, gsk1 , R1

)
,

µ1 = r1 + sk1 · c1 with Φ being a context string to prevent replay attacks. Note that
N1,1 has already computed commitment gsk1 as Pk1 value.

For L2(t,m):
1. Every node N2,i calculates a proof of knowledge to the corresponding secret

a2i,0 by calculating κ2i = (R2i, µ2i), such that r
$← Zq , R2i = gr, c2i =

H (id2i, Φ, ga2i,0 , R2i), µ2i = r + a2i,0 · c2i with Φ being a context string to pre-
vent replay attacks.

2. Also, every node N2,i calculates a commitment C⃗2i =
〈
ϕ2i,0, . . . , ϕ2i,(t−1)

〉
such that

ϕ2i,j = ga2i,j , where 0 ≤ j ≤ t− 1.

Fig. 7. Our FlexHi ProofGenprocedure for FROST scheme

12 M. A. Bingol et al.

ProofVerify

For L1(1, 1):

1. Upon receiving pk1, κ1 from N1,1, each level 2 nodes 1 ≤ i ≤ m, N2,i veri-

fies κ1 = (R1, µ1), aborting on failure, by checking R1
?
= gµ1 · pk−c1

1 , where

c1 = H
(
id1,1, Φ, gsk1 , R1

)
.

For L2(t,m):

1. Upon receiving C⃗2ℓ, κ2ℓ from level 2 nodes 1 ≤ ℓ ≤ m, ℓ ̸= i, node N2,i verifies

κ2ℓ = (R2ℓ, µ2ℓ), aborting on failure, by checking R2ℓ
?
= gµ2ℓ · ϕ−c2ℓ

2ℓ,0 , where c2ℓ =

H (id2ℓ, Φ, ϕ2ℓ,0, R2ℓ).

Fig. 8. Our FlexHi ProofVerifyprocedure for FROST scheme

KeyAgg

1. Node N1,1 runs ProofGen(1λ, id1,1, Φ, gsk1) for L1(1, 1) that outputs κ1 to demonstrate
zero knowledge proof of corresponding private key sk1, then broadcasts κ1 and pk1 to all
other level 2 nodes.

2. Node N2,i runs ProofVerify(1λ, id1,1, Φ, κ1, pk1) for L1(1, 1) to verify zero knowledge proof
of corresponding private key sk1.

3. After the proof verification, each level 2 node 1 ≤ i ≤ m, N2,i sends pk2i to N1,1.

4. For 1 ≤ i ≤ m, each level 2 nodes N2,i and N1,1 compute main public key

pk = pk1 ∗ pk2

Fig. 9. Our FlexHi KeyAgg procedure for FROST scheme

Preprocessing

For L1(1, 1):

1. N1,1 creates an empty list L11. Then, for 1 ≤ j ≤ π where j be a counter for a specific
commitment share pair, and π be the number of pairs generated at a time perform the
following:

(a) Sample single-use nonces (d11,j , e11,j)
$← Z∗

q × Z∗
q

(b) Derive commitment shares (D11,j , E11,j) =
(
gd11,j , ge11,j

)
.

(c) Append (D11,j , E11,j) to L11.
(d) Store ((d11,j , D11,j) , (e11,j , E11,j)) for later use in signing operations.

2. Publish (id1,1, L11) to a predetermined location.

For L2(t,m):

1. For 1 ≤ i ≤ m, every node N2,i creates an empty list L2i. Then, for 1 ≤ j ≤ π where
j be a counter for a specific commitment share pair, and π be the number of pairs
generated at a time perform the following:

(a) Sample single-use nonces (d2i,j , e2i,j)
$← Z∗

q × Z∗
q

(b) Derive commitment shares (D2i,j , E2i,j) =
(
gd2i,j , ge2i,j

)
.

(c) Append (D2i,j , E2i,j) to L2i.

(d) Store ((d2i,j , D2i,j) , (e2i,j , E2i,j)) for later use in signing operations.

2. Publish (id2i,L2i) to a predetermined location.

Fig. 10. Our FlexHi Preprocessingprocedure for FROST scheme

FlexHi: A Flexible Hierarchical Threshold Signature Scheme 13

private nonces and their corresponding commitment shares. Each node calculates
its own commitment shares using these number pairs and shares them with the
other participants. The value of π determines how many signing operations can
be performed before the next preprocess stage.

Signing Stage. In the signing phase of our FROST application, N1,1 and
each level 2 node N2,i perform similar operations as defined in Figure 11. Each
node creates the same group commitment by using the nonces they choose during
the preprocessing phase and creates a partial signature by processing them with
their private keys. Finally, they send these signatures to SA.

SignGen

Let S2 be set of α : t ≤ α ≤ n nodes that are selected for signing in the second level threshold
scheme. Let B = ⟨(id2i, id1,1, D2i, E2i, D11, E11)⟩i∈S2

denote the ordered list of node indices

corresponding to each node Ns,i. Let H1, H2 be hash functions whose outputs are in Z∗
q

– For each i ∈ S, SA sends N2,i and N1,1 the tuple (m,B)

For L1(1, 1):

1. After receiving (m,B), N1,1 first validates the message m, and then checks D11, E11 ∈
G∗ in B, aborting if either check fails.

2. N1,1 computes the set of binding values ρ2ℓ = H1(id2ℓ,m,B), and ρ11 =
H1(id1,1,m,B), ℓ ∈ S2. N1,1 then derives the group commitment R =

∏
ℓ∈S2

D2ℓ ·
D11 · (E2ℓ)

ρ2ℓ · (E11)
ρ11 , and the challenge c = H2(R, pk,m).

3. Using the first level private key sk1, N1,1 computes z1 = d11 + (e11 · ρ11) + sk1 · c,

4. N1,1 securely deletes ((d11, D11) , (e11, E11)) from the local storage, and returns z1 to
SA.

For L2(t,m):

1. After receiving (m,B), each N2,i first validates the message m, and then checks
D2ℓ, E2ℓ ∈ G∗ for each commitment in B, aborting if either check fails.

2. Each N2,i then computes the set of binding values ρ2ℓ = H1(id2ℓ,m,B), and
ρ11 = H1(id1,1,m,B), ℓ ∈ S2. Each N2,i then derives the group commitment
R =

∏
ℓ∈S2

D2ℓ ·D1,1 · (E2ℓ)
ρ2ℓ · (E11)

ρ11 and the challenge c = H2(R, pk,m).

3. Each N2,i computes their response using their long-lived private key share sk2i by

computing z2i = d2i +(e2i · ρ2i)+λ2i · sk2i · c, using S2 to determine the ith Lagrange
coefficient λ2i.

4. Each N2,i securely deletes ((d2i, D2i) , (e2i, E2i)) from their local storage, and then
returns z2i to SA.

Fig. 11. Our FlexHi SignGenprocedure for FROST scheme

Signature Aggregation Stage. In the signature aggregation phase defined
in Figure 12, SA verifies each signature and creates the signature of the level.
Finally,SA creates the signature by combining these two signatures.

Signature Verification Stage.As in the standard Schnorr’s verification [21]
operation, the main signature σ = (R, z) on message m is verifiable with main
public key pk.

14 M. A. Bingol et al.

SignAgg

1. SA derives ρ2i = H1(id2i,m,B), ρ11 = H1(id1,1,m,B), R2i = D2i,j · (E2i,j)
ρ2i , and

R11 = D11,j · (E11,j)
ρ11 for i ∈ S. Subsequently, SA derives R =

∏
i∈S R2i · R11 and

c = H2(R, pk,m) .

2. SA verifies the validity of each response by checking gz2i
?
= R2i · pk

c·λ2i
2i for each signing

share z2i, i ∈ S. Also, gz1
?
= R11 · pkc

11 is checked. If the equality does not hold, identify
and report the misbehaving node and then abort. Otherwise, continue.

3. SA computes the level’s response z2 =
∑

z2i

4. SA computes z = z1 + z2, then broadcasts the main signature as σ = (R, z) along with m.

Fig. 12. Our FlexHi SignAggprocedure for FROST scheme

5 Our Analysis

We now proceed to our analysis section, which comprises two essential compo-
nents: security and cost analysis. In the security analysis, we first examine in-
distinguishability and unforgeability properties using game-based security then
address ideality, perfectness, and collusion attack resistance. In the cost analy-
sis, we assess the efficiency of our scheme in comparison to the FROST protocol
and Tassa’s hierarchical threshold signature scheme integrated with the FROST
scheme.

5.1 Security Analysis

Definition 6 (Lagrange interpolation [1]). For every field F, and a given
t different points (xi, yi), 1 ≤ i ≤ t, there exits a unique polynomial P of degree
at most t− 1 over F such that P (xi) = yi, 1 ≤ i ≤ t.

The Lagrange interpolating polynomial is calculated as follows:

P (x) =

t∑
i=1

Pi(x) , Pi(x) = yi.

t∏
j=1,j ̸=i

x− xj

xi − xj
.

Game-based Security. In this subsection, we show the indistinguishability
and unforgeability properties of FlexHi scheme using game-based security where
the adversary is modeled as a polynomial time algorithm. We denote the security
parameter by λ, and the negligible success probability of an adversary by negl(λ),
which means it is so small as to be zero [8].

Based on the game-based security proofs for secret-sharing schemes in [29],
we can prove the secret indistinguishability of the proposed FlexHi scheme by
defining the following experiment ExpSecInd,b

A (λ) between the challenger C and
the adversary A:

– The challenger C generates the field F as public parameter.

FlexHi: A Flexible Hierarchical Threshold Signature Scheme 15

– Adversary A chooses two distinct but the same length secret s0 and s1 in
that field, then sends them to the challenger C.

– The challenger C selects uniformly random bit b
$← {0, 1}, then sends chal-

lenge subshare (ssbi,j)j∈A′ ← Share(sb) to A using oracle (A′ represents an
unauthorized subset)

– Adversary A outputs a guess bit b′ ∈ {0, 1}

The output of the experiment is defined to be 1 if b′ = b

Theorem 1. FlexHi scheme satisfies secret indistinguishability property given
that ∣∣∣∣Pr[ExpSecInd,bA (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

Proof. FlexHi scheme uses the key generation of Shamir’s secret-sharing scheme
without a trusted dealer version [19]. Based on this, in our scheme (see Figure 2)
each node chooses uniformly random secret si, then creates their private key
share ski by taking all related subshares ssi. Thus, each node contributes one
piece of that private key share. Since the secrets are chosen uniformly randomly,
the distribution of subshares is indistinguishable from uniform distribution.

Unforgeability is another important security property in signature schemes,
demonstrating an adversary’s inability to create a valid signature for a message
that hasn’t been previously signed. In the context of threshold unforgeability,
the assumption is that the adversary has compromised t−1 servers. This notion
is captured by the following game GameUnf

A (λ):

– The challenger C generates the public key of the scheme, and provides access
to signing oracle OSign.

– When adversaryA requests a signature σ for some messagesm, the challenger
C outputs their signatures.

– Eventually A generates a new signature σ∗ for message m∗ that is not asked
to C

The adversary succeeds in the game if the verification of the signature σ∗ for
message m∗ is correct, but m∗ is not the same as any of the queried inputs to
the oracle.

Theorem 2. FlexHi scheme satisfies unforgeability property if the adversary’s
advantage is negligible ∣∣∣Pr[GameUnfA (λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. In FlexHi scheme, the message is signed partially by the eligible node’s
private key share. These shares are constructed from the subshares of the chosen
secret in Shamir. Thus, the security of FlexHi scheme is based on Lagrange’s
interpolation as in Definition 6. According to this, the private key share can
be generated by only an authorized subset of participants who hold t points
(subshare) of the polynomial P . On the other hand, an authorized subset t− 1
of participants who hold t − 1 points (subshare) of the polynomial P cannot
generate the secret polynomial, and thus cannot forge private key share.

16 M. A. Bingol et al.

Ideality and Perfectness. The most important parameter for the secret-
sharing system is the perfectness of the system that is required to protect the
secret. Perfect schemes are referred to as unconditionally secure schemes [24].
The other desirable property is the ideality of the scheme. However, it should be
noted that for every access structure, we cannot find an ideal scheme [5].

Definition 7 (Perfectness [24]). A secret-sharing scheme is a perfect realiza-
tion of access structure Γ if

– An authorized subset of participants A ∈ Γ can always reconstruct the secret,
– An unauthorized subset t− 1 of participants A′ ∈ Γ cannot obtain any infor-

mation about the secret.

Definition 8 (Ideality [24]). A secret-sharing scheme is ideal if the length of
the share of all participants is less than or equal to the size of the secret.

Lemma 1. The proposed scheme is not ideal, but it is perfect.

Proof. In our approach, the secret is divided into shares for each level, and the
shares in each level generate the polynomial of that level. Each level’s polynomial
is based on Shamir secret-sharing which is perfect since its coefficient matrix is
a square Vandermonde matrix and it is always nonsingular [30]. This makes our
scheme is also perfect. On the other hand, our scheme uses a general flexible
access structure that allows us to choose which subset of participants can re-
construct the secret. However, since each participant takes a certain number of
shares in proportion to their levels, the length of the shares at a higher level be-
comes larger than the secret. Thus, we cannot expect our general flexible access
structure to be ideal.

Collusion attack resistance. In our scheme, the shares of secret signing keys
are maintained by level-based polynomials. However, there is no correlation be-
tween each of the level-based polynomials. Considering a collusion attack, the
attackers need to get all level polynomials carrying the secret key shares, but this
is not practical in a real-world scenario. Thus, our scheme provides resistance
against collusion attacks.

5.2 Cost Analysis

To illustrate the overhead of our hierarchical threshold signature scheme, we
conduct a comparative analysis with two key reference points. We compare the
efficiency of our scheme to the FROST scheme [16], examining the overhead
introduced by the hierarchical structure in contrast to a basic threshold signature
scheme. Second, we evaluate our system against Tassa’s hierarchical threshold
signature scheme [25] applied to the FROST scheme. Tassa’s pioneering work is
rooted in the construction of a polynomial based on an unstructured set of point
and derivative values, offering a novel approach. By making this comparison, we
provide a practical benchmark and highlight the strengths of our system.

FlexHi: A Flexible Hierarchical Threshold Signature Scheme 17

Theoretical Complexity Analysis. We first analyze the theoretical com-
plexity in Table 1. The symbols E, M , and I in the analysis stand for modular
exponentiation, modular multiplication, and modular inverse operation, respec-
tively.

Table 1. Cost Analysis of the Algorithms in FlexHi scheme Application to FROST

Scheme KeyGen KeyAgg SignGen SignAgg
Plain FROST
without hierarchy
(t+ 1, m+ 1)

(2(m+1)(t+1)−2(m+1)+2)(m+1) E
(2(m+1)(t+1)−(t+1))(m+1) M
m(m+1) I

— (t+1)2+3(t+1) E
(2(t+1)+2)(t+1)+4(t+1)−1 M

—

Tassa’s HTSS
on FROST
(L1(1, 1) + L2(t,m))

(2mt+2t−m+2)(m+1) E
(3mt+2t−m−1)(m+1) M

— (t+1)2+3(t+1) E
(2(t+1)+2)(t+1)+4(t+1)−1 M

—

Our FHTSS
on FROST FFlexHi

(L1(1, 1) + L2(t,m))

(2mt−2m+2)m+1 E
(2mt−t)m M
(m−1)m I

(m+1) E
(2m+2) M
m I

(t+1)2 E
(2(t+1)+2)(t+1) M

3t+3 E
3t+2 M

Since modular exponentiation and modular inverse operations can be written
in terms of modular multiplication, the computation cost of these schemes can
finally be examined in terms of modular multiplications. As stated in [15], modu-
lar exponentiation E takes 240 times longer than modular multiplication M , and
modular inverse I requires 3 modular multiplication M . Using this information,
Figure 13 shows the total modular multiplication cost for key generation and
aggregation algorithms. According to the Figure 13, the first bar chart shows
our FlexHi FROST application runs 29 percent faster than Tassa’s FROST ap-
plication in the (t,m) = (6, 7) case, and 36 percent faster in the (t,m) = (3, 7)
case. Also, the second bar chart shows that our FlexHi FROST application runs
28 percent faster than Tassa’s FROST application in the (t,m) = (4, 10) case,
and 38 percent faster in the (t,m) = (4, 5) case. It is clear from this that our
scheme works faster than Tassa’s scheme.

Fig. 13. Modular Multiplication Cost of Key Generation and Key Aggregation Phases
of FROST and its variants where the first bar chart represents m = 7 and the second
bar chart represents t = 4

18 M. A. Bingol et al.

Implementation. To substantiate our argument concerning theoretical ef-
ficiency, we have implemented our FlexHi scheme on the FROST as an open-
source code 6. Specifically, our efforts centered around a comprehensive compar-
ative analysis of three distinct variants of FROST: Plain FROST with threshold
signing scheme (Plain TSS), Tassa’s HTSS on FROST, and our FlexHi scheme
on FROST. The primary objective was to evaluate their computational efficiency
and suitability across a spectrum of threshold values and participant counts in
alignment with the theoretical framework. Table 2 displays the calculated times
for different parameters. The results of the tests are performed on a computer
with i7-1165g7 @ 2.80 GHz and 16 GB RAM. The test environment incorporated
two distinct elliptic curves, P256 [20] and ed25519 [6]. In Table 2, only results
with the ed25519 curve are available, tests with the P256 curve are available
in our GitHub codes. Throughout our experiments, we maintained a consistent
threshold value while varying the number of participants. This empirical evidence
underscores the efficiency of our proposed scheme, particularly in contexts that
prioritize computational efficiency and resource optimization.

Table 2. The calculated times for different threshold values and the number of partici-
pants in different algorithms where Plain TSS (threshold signature scheme) corresponds
to the plain FROST [16] Scheme, Tassa’s HTSS refers to its application on FROST
scheme, and Our FlexHi scheme refers to its application on FROST scheme

Scheme (Curve) Threshold (t) Time (ms) Threshold (t) Time (ms)
Plain TSS (ed25519) L(4, 5) 10.104 L(3, 7) 13.453

Tassa’s HTSS (ed25519) L1(1, 1) + L2(3, 4) 8.996 L1(1, 1) + L2(2, 6) 12.213
Our FlexHi (ed25519) L1(1, 1) + L2(3, 4) 6.498 L1(1, 1) + L2(2, 6) 10.781
Plain TSS (ed25519) L(4, 7) 17.139 L(5, 7) 19.147

Tassa’s HTSS (ed25519) L1(1, 1) + L2(3, 6) 15.952 L1(1, 1) + L2(4, 6) 17.829
Our FlexHi (ed25519) L1(1, 1) + L2(3, 6) 13.280 L1(1, 1) + L2(4, 6) 15.127
Plain TSS (ed25519) L(4, 10) 32.196 L(6, 7) 22.288

Tassa’s HTSS (ed25519) L1(1, 1) + L2(3, 9) 29.006 L1(1, 1) + L2(5, 6) 20.624
Our FlexHi (ed25519) L1(1, 1) + L2(3, 9) 25.768 L1(1, 1) + L2(5, 6) 17.584

6 Conclusion

Traditional threshold signature schemes, while essential, have limitations when
applied to hierarchical structures, where varying levels of authority and access
control are required. Our proposed FlexHi scheme, built upon Shamir’s construc-
tion, enhanced with independent polynomials at each hierarchical level, offers
a novel and adaptable solution. It eliminates the rigid constraints on thresh-
old values, enabling the scheme to conform to a variety of real-world scenar-
ios. Therefore, our scheme is capable of seamlessly adapting to a wide range
of real-world scenarios and organizational structures. Our hierarchical thresh-
old scheme is adaptable and can be applied to most existing threshold schemes.

6 https://github.com/midmotor/hierarchical-threshold-signature

FlexHi: A Flexible Hierarchical Threshold Signature Scheme 19

We demonstrated its applicability by implementing it on the state-of-the-art,
round-optimized FROST scheme. In our comparison, our FROST-based FlexHi
application significantly outperforms Tassa’s FROST application. Based on our
analysis, our scheme runs about 30% - 40% faster, depending on the number of
participants and the threshold values. Our FlexHi scheme not only introduces
a more adaptable approach to hierarchical threshold signature but also demon-
strates its practical advantages through faster execution.

Future research in this field could concentrate on key areas, such as integrat-
ing FlexHi into various threshold schemes and identifying the optimal schemes
that align best with hierarchical settings. Additionally, there is potential for
improvement by adding dynamic functionality to FlexHi, enabling the adjust-
ment of the threshold without the need for regenerating the master public key.
However, these aspects are left as subjects for future research.

References

1. Beimel, A.: Secret-sharing schemes: A survey. In: International conference on cod-
ing and cryptology. pp. 11–46. Springer (2011)

2. Beimel, A., Tassa, T., Weinreb, E.: Characterizing ideal weighted threshold secret
sharing. In: Theory of Cryptography: Second Theory of Cryptography Conference,
TCC 2005, Cambridge, MA, USA, February 10-12, 2005. Proceedings 2. pp. 600–
619. Springer (2005)

3. Belenkiy, M.: Disjunctive multi-level secret sharing. Cryptology ePrint Archive
(2008)

4. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient en-
cryption schemeas. In: Public Key Cryptography—PKC 2003: 6th International
Workshop on Practice and Theory in Public Key Cryptography Miami, FL, USA,
January 6–8, 2003 Proceedings 6. pp. 85–99. Springer (2002)

5. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions.
Springer (1990)

6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of cryptographic engineering 2(2), 77–89 (2012)

7. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing Requirements
Knowledge, International Workshop on. pp. 313–313. IEEE Computer Society
(1979)

8. Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.5 (2020)
9. Brickell, E.F.: Some ideal secret sharing schemes. In: Workshop on the Theory and

Application of of Cryptographic Techniques. pp. 468–475. Springer (1989)
10. Ersoy, O., Kaya, K., Kaskaloglu, K.: Multilevel threshold secret and function shar-

ing based on the chinese remainder theorem. Preprint arXiv:1605.07988 (2016)
11. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Secret sharing in multilevel and com-

partmented groups. In: Information Security and Privacy: ACISP’98 Brisbane,
Australia. pp. 367–378. Springer (1998)

12. Harn, L., Fuyou, M.: Multilevel threshold secret sharing based on the chinese re-
mainder theorem. Information processing letters 114(9), 504–509 (2014)

13. Karaoglan Altop, D., Bingol, M.A., Levi, A., Savas, E.: Dkem: Secure and effi-
cient distributed key establishment protocol for wireless mesh networks. Ad Hoc
Networks 54, 53–68 (2017)

20 M. A. Bingol et al.

14. Käsper, E., Nikov, V., Nikova, S.: Strongly multiplicative hierarchical threshold se-
cret sharing. In: Information Theoretic Security: Second International Conference,
ICITS 2007, Madrid, Spain, May 25-29, 2007. pp. 148–168. Springer (2009)

15. Koblitz, N., Menezes, A., Vanstone, S.: The state of elliptic curve cryptography.
Designs, codes and cryptography 19, 173–193 (2000)

16. Komlo, C., Goldberg, I.: FROST: flexible round-optimized schnorr threshold signa-
tures. In: Selected Areas in Cryptography: 27th International Conference, Halifax,
NS, Canada, October 21-23, 2020. pp. 34–65. Springer (2021)

17. Nojoumian, M., Stinson, D.R.: Sequential secret sharing as a new hierarchical
access structure. Cryptology ePrint Archive (2015)

18. Pakniat, N., Noroozi, M., Eslami, Z.: Distributed key generation protocol with
hierarchical threshold access structure. IET Information Security 9(4), 248–255
(2015)

19. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Advances
in Cryptology—EUROCRYPT’91: Workshop on the Theory and Application of
Cryptographic Techniques Brighton, UK, April 8–11, 1991 Proceedings 10. pp.
522–526. Springer (1991)

20. Qu, M.: Sec 2: Recommended elliptic curve domain parameters. Certicom Res.,
Mississauga, ON, Canada, Tech. Rep. SEC2-Ver-0.6 (1999)

21. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Bras-
sard, G. (ed.) Advances in Cryptology — CRYPTO’ 89 Proceedings. pp. 239–252.
Springer New York, New York, NY (1990)

22. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (nov 1979),
https://doi.org/10.1145/359168.359176

23. Simmons, G.J.: How to (really) share a secret. In: Conference on the Theory and
Application of Cryptography. pp. 390–448. Springer (1988)

24. Stinson, D.R.: An explication of secret sharing schemes. Designs, Codes and Cryp-
tography 2(4), 357–390 (1992)

25. Tassa, T.: Hierarchical threshold secret sharing. In: Theory of Cryptography Con-
ference. pp. 473–490. Springer (2004)

26. Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. Journal
of Cryptology 22, 227–258 (2009)

27. Tentu, A.N., Paul, P., Venkaiah, V.C.: Ideal and perfect hierarchical secret sharing
schemes based on mds codes. Cryptology ePrint Archive (2013)

28. Traverso, G., Demirel, D., Buchmann, J.: Performing computations on hierarchi-
cally shared secrets. In: Progress in Cryptology–AFRICACRYPT 2018: 10th In-
ternational Conference on Cryptology in Africa, Marrakesh, Morocco, May 7–9,
2018, Proceedings 10. pp. 141–161. Springer (2018)

29. Xia, Z., Yang, Z., Xiong, S., Hsu, C.F.: Game-based security proofs for secret
sharing schemes. In: Second International Conference on Security with Intelligent
Computing and Big Data Services (SICBS-2018). pp. 650–660. Springer (2020)

30. Yılmaz, R.: Some ideal secret sharing schemes. Ph.D. thesis, Bilkent Universitesi
(Turkey) (2010)

31. Yuan, J., Yang, J., Wang, C., Jia, X., Fu, F.W., Xu, G.: A new efficient hierarchi-
cal multi-secret sharing scheme based on linear homogeneous recurrence relations.
Information Sciences 592, 36–49 (2022)

https://doi.org/10.1145/359168.359176

	FlexHi: A Flexible Hierarchical Threshold Signature Scheme

