
Designing homomorphic encryptions with rational functions

Gerald Gavin1 and Sandrine Tainturier2

1 Laboratory ERIC - University of Lyon
gerald.gavin@univ-lyon1.fr

2 Adecco - Geneve
sandrine-tainturier@orange.fr

Abstract. In [Gav16], [GB19] and [GT20], new ideas to build homomorphic encryption schemes have
been presented. The authors propose private-key encryption schemes whose secret key is a rational
function ϕ/ϕ′. By construction, these schemes are not homomorphic. To get homomorphic properties,
nonlinear homomorphic operators are derived from the secret key. In [GT20], an additive homomorphic
encryption is proposed. In this paper, we adopt the same approach to build a HE based on the same
private-key encryption scheme. We obtain a multivariate encryption scheme in the sense that the knowl-
edge of the CPA attacker can be turned into an over-defined system of nonlinear equations (contrarily
to LWE-based encryptions). The factoring assumption is introduced in order to make a large class
of algebraic attacks (based on Grœbner bases) irrelevant. We extensively analyze the security of our
scheme against algebraic attacks. In particular, we exhibit the fundamental role played by symmetry in
these attacks. We also formally show that some of these attacks are exponential-time. While we did not
propose a formal security proof relying on a classical cryptographic assumption, we hopefully provide
convincing evidence for security.

1 Introduction

The prospect of outsourcing an increasing amount of data storage and management to cloud services raises
many new privacy concerns for individuals and businesses alike. The privacy concerns can be satisfactorily
addressed if users encrypt the data they send to the cloud. If the encryption scheme is homomorphic, the
cloud can still perform meaningful computations on the data, even though it is encrypted.

The theoretical problem of constructing a fully homomorphic encryption scheme (HE) supporting ar-
bitrary functions f , was only recently solved by the breakthrough work of Gentry [Gen09]. More recently,
further fully homomorphic schemes were presented [SS10],[vDGHV10], [CNT12], [GHS12a],[GSW13] follow-
ing Gentry’s framework. The underlying tool behind all these schemes is the use of Euclidean lattices, which
have previously proved powerful for devising many cryptographic primitives. A central aspect of Gentry’s
fully homomorphic scheme (and the subsequent schemes) is the ciphertext refreshing Recrypt operation. Even
if many improvements have been made in one decade, this operation remains very costly [LNV11], [GHS12b],
[DM15], [CGGI18]. Indeed, bootstrapped bit operations are still about one billion times slower than their
plaintext equivalents (see [CGGI18]).

We adopt a recent approach developed in [Gav16], [GB19], [GT20] where the secret key is a (multivariate)
rational function ϕS/ϕ

′
S . A ciphertext is here a randomly chosen vector c satisfying ϕS/ϕ

′
S(c) = x. In

particular, an encryption c of 0 satisfied ϕS(c) = 0. It follows that the expanded representations of ϕS should
not be polynomial-size (otherwise the CPA attacker could recover it by solving a polynomial-size linear
system). In order to get polynomial-time encryptions and decryptions, ϕS/ϕ

′
S should be written in a compact

form, e.g. a factored or semi-factored form. By construction, the generic cryptosystem described above is
not homomorphic in the sense that the vector sum is not a homomorphic operator. To get homomorphic
properties, ad hoc nonlinear homomorphic operators Add and Mult (sometimes denoted by ⊕ or ⊗) will be
derived from the secret key.

1.1 A ”mathematical” approach

Craig Gentry advocates two ways to build homomorphic encryptions (HE) in his invited talk presented
at Eurocrypt 2021 [Gen21]: the cryptographic way and the mathematical way. The starting point of the



cryptographic way is an established cryptographic assumption. A HE based on this assumption is then built
when possible. Most of existing HE follow this way. Neverthess, after a decade of research, no HE proposed
in the literature is really efficient despite much improvement. It is maybe time to explore the second way.

In this paper, we adopt the mathematical way. This approach consists of exploring new cryptographic
assumptions from which it is known in advance that efficient HE can be derived. The main drawback of this
approach is that the HE obtained has not stood the test of time. Clearly, such approaches are relevant only
if the authors succeed in convincing the community that the obtained HE may be secure. This is the main
purpose of this paper.

As advocated by Gentry, the starting point of our HE is a ring homomorphism on which the decryption
function will be based. For concreteness, we consider the pseudo-ring R = (Zn×Z∗

n,+,×) defined as follows:

– (a, b)+ (a′, b′) = (ab′ + a′b, bb′)

– (a, b)× (a′, b′) = (aa′, bb′)

It is a pseudo-ring, and not a ring, because ’×’ is not distributive w.r.t. ’+’. It is important to notice that
’+’ is not the vector sum. This will be fundamental in our construction. Our HE is derived from the basic
pseudo-ring homomorphism δ : R → Zn defined by

δ(a, b) = a/b

Thanks to this basic pseudo-ring homomorphism, we will develop a HE whose homomophic operators ⊕ and
⊗ satisfy the two following fundamental properties:

– ⊕ and ⊗ are both nonlinear1.

– (C,⊕) is not a group.

The first property is necessary to be robust against linear algebra. As noticed by Gentry, the second one
is necessary to make subgroup attacks irrelevant. As the starting point of our HE is not an established
cryptographic assumption, it is not inherently secure. Nevertheless, breaking our HE consists of solving a
polynomial system, which was shown to beNP-hard [Gar97]. This worst-case result is obviously not sufficient,
but it does not close the door on the possibility of reaching security.

Why read this paper? We attempt to design a noise-free HE. As mentioned above, we do not propose a com-
plete security proof based on an established cryptographic assumption. Nevertheless, we propose a security
analysis, which may at least convince the reader that our scheme is not trivially insecure. In this sense, this
paper can be seen as a nice cryptanalysis challenge. If vulnerabilities are discovered, it may be possible to
reuse the underlying ideas of this scheme. Otherwise, it would close the door on such approaches, enhancing
the commonly accepted idea that noise is necessary to build HE.

Assume now that our HE is secure. It would be conceptually exciting to see that noise-free HE can be
designed. Moreover, our scheme deals only with elementary (high school) algebraic notions. This makes it
easy to understand and implement. Nevertheless, its efficiency makes it not really practical: homomorphic
operations are around hundreds of millions slower than plaintext ones. However, we are fully confident in the
community’s ability to provide improvements and developments.

1.2 Overview of the private-key encryption

We design a private-key encryption scheme where the secret key is a randomly chosen invertible 2κ− by− 2κ
matrix S defined over Zn, n being a RSA modulus. Encrypting x ∈ Zn simply consists of randomly choosing
a vector c satisfying

⟨s1, c⟩
⟨s2, c⟩

+ · · ·+ ⟨s2κ−1, c⟩
⟨s2κ, c⟩

= x (1)

1 In particular, ⊕ is not the vector sum.

2



where si refers to the ith row of S. Equivalently, one can randomly choose x1, . . . , xκ, r1, . . . , rκ in Zn s.t.
x1 + . . .+ xκ = x and output

c = S−1


r1x1
r1
· · ·
rκxκ
rκ


Throughout this paper, we will use the following convenient notation to encapsulate the internal randomness
of encryptions:

X(c)
def
= (x1, . . . , xκ)

R(c)
def
= (r1, . . . , rκ)

Clearly, c is an encryption of 0 if and only if

ϕS(c)
def
=

κ∑
ℓ=1

⟨s2ℓ−1, c⟩
∏
ℓ′ ̸=ℓ

⟨s2ℓ′ , c⟩ = 0

A basic attack of this scheme consists of recovering the monomial coefficients of ϕS by solving a linear
system. The key idea of our construction is that the expanded representation of ϕS is exponential-size (and
thus cannot be recovered) provided

κ = Θ(λ)

Surprisingly, a link with the famous problem LWE (see [Reg05]) can be established and the basic attack can
be seen as an adaptation of the Arora et Ge attack [AG11a].

Nevertheless, this private-key encryption is not homomorphic. More precisely, the vector sum is not
a homomorphic operator. Indeed, for any a ∈ Z∗

n, ac and c are encryptions of the same value. To get
homomorphic properties, additional material derived from the secret key should be publicized.

1.3 Overview of the homomorphic operators

The (basic) operator Add (also denoted by O0 or ⊕ in this paper) exactly follows the one considered in
[GT20]. It simply exploits the following basic equality

a

b
+
a′

b′
=
ab′ + a′b

bb′

This operator consists of evaluating 2κ quadratic variate-2κ polynomials p1, . . . , p2κ, i.e.

c⊕ c′ = (p1(c, c
′), . . . , p2κ(c, c

′))

A high-level description of this operator is proposed in Figure 1 (see Appendix A for a complete description
of this operator in the case κ = 1. As an exercise, the reader can try to define the polynomials p1, . . . , p2κ
when S is the identity matrix).

The (basic) operator Mult is based on the following equality

a

b
× a′

b′
=
aa′

bb′

Nevertheless, its implementation is a little bit more complex. It cannot be achieved by applying only one
quadratic operator. Indeed, it exploits the following equality

xx′ =

κ∑
i=1

κ∑
j=1

xix
′
j

3



O0

S−1


r1x1

r1
· · ·
rκxκ

rκ

 , S−1


r′1x

′
1

r′1
· · ·
r′κx

′
κ

r′κ


 = S−1


r1r

′
1(x1 + x′

1)
r1r

′
1

· · ·
rκr

′
κ(xκ + x′

κ)
rκr

′
κ


Fig. 1. Description of the basic operator Add = O0. This operator is nonlinear (quadratic) and ensures thatX(c⊕c′) =
(x1 + x′

1, . . . , xκ + x′
κ) and R(c⊕ c′) = (r1r

′
1, . . . , rκr

′
κ)

It follows that at least κ quadratic operators are necessary to store all the products xix
′
j in some intermediate

vectors: each operator outputs a vector storing at most κ products. In the basic implementation of Mult,
this is achieved by applying exactly κ quadratic operators O1, . . . ,Oκ. For concreteness, Oi(c, c

′) outputs
an encryption of

πi = x1x
′
i + x2x

′
i+1 . . .+ xκx

′
i−1

A high-level description of the basic operator Oi is given in Figure 2. As π1 + . . .+ πκ = xx′, it then suffices
to homomorphically add these vectors, i.e.

Mult(c, c′) = O1(c, c
′)⊕ · · · ⊕Oκ(c, c

′)

Oi

S−1


r1x1

r1
· · ·
rκxκ

rκ

 , S−1


r′1x

′
1

r′1
· · ·
r′κx

′
κ

r′κ


 = S−1



r1r
′
ix1x

′
i

r1r
′
i

r2r
′
i+1x2x

′
i+1

r2r
′
i+1

· · ·
rκr

′
i−1xκx

′
i−1

rκr
′
i−1


Fig. 2. Description of the basic operator Oi. This operator is nonlinear (quadratic) and ensures that X(Oi(c, c

′)) =
(x1x

′
i, . . . , xκx

′
i−1) and R(Oi(c, c

′)) = (r1r
′
i, . . . , rκr

′
i−1)

We obtain a HE, which is unfortunately insecure. It is subject to attacks called attacks by linearization, i.e.
attacks that do not require solving systems of nonlinear equations.

Example of attack by linearization. The vector v = S−1(0, 1, 0, 1, . . . , 0, 1) is the unique vector satisfying
Add(u,v) = u for any valid encryption u. It can be recovered by solving a size-2κ linear system. It follows
that O1(c,v) is equal to the vector w = S−1(0, r1, 0, r2, . . . , 0, rκ). By solving the size-2κ linear system of
equations Add(c̃,w) = c, we get the vector

c̃ = S−1


x1
1
· · ·
xκ
1


satisfying ⟨s̃, c̃⟩ = x with s̃ = s1 + s3 + · · ·+ s2κ−1. By sampling c, s̃ can be efficiently recovered by solving
a linear system of equations, breaking the security of our encryption scheme.

Other attacks by linearization are given in Appendix B. To make these attacks irrelevant, we propose to
randomize the generation of the homomorphic operators. The underlying idea is very simple. The first step
consists of slightly modifying the above operators: instead of outputting encryptions relevant under S, they

4



output encryptions relevant under randomly chosen matrices Ti. For instance, the operator O1 becomes
OS→T1

1 satisfying

c′′ = OS→T1
1 (c, c′) = T−1

1


r1r

′
1x1x

′
1

r1r
′
1

· · ·
rκr

′
κxκx

′
κ

rκr
′
κ


By construction, it is ensured that Decrypt(T1, c

′′) = π1.

We then develop operators RandTi→S allowing to obtain a randomized encryption c′′′ valid under S
satisfying Decrypt(S, c′′′) = Decrypt(Ti, c

′′). Ideally,

c′′′ = RandTi→S(c′′) = S−1


η1r

′′
1 (x

′′
1 + ν1)

η1r
′′
1

· · ·
ηκr

′′
κ(x

′′
κ + νκ)

ηκr
′′
κ


where νℓ, ηℓ would be ideally randomly chosen in Zn ensuring that ν1+ . . .+νκ = 0. This would be sufficient
to ensure that c′′′ is a fresh encryption of Decrypt(Ti, c

′′).
Unfortunately, νℓ, ηℓ cannot be randomly chosen with deterministic operators. We propose to define

them as evaluations of randomly and secretly chosen polynomials over c′′. By doing this, the two sources of
randomness X(c′′) and R(c′′) are mixed, i.e. X(c′′′) (resp. R(c′′′)) depend on both X(c′′) and R(c′′) and
not only on X(c′′) (resp. R(c′′)). This is sufficient to make all the (listed) attacks by linearization irrelevant.

1.4 Organization of the paper

Section 2. We present some security results under the factoring assumption. In particular, we show that
recovering evaluations of non-symmetric polynomials only knowing evaluations of symmetric ones is hard.

Section 3. Grœbner bases are currently assumed to be key tools to solve systems of nonlinear equations in
finite fields. We propose a brief, high-level introduction to Grœbner bases and their applications.

Section 4. We detail the noise-free private-key encryption scheme sketched in Section 1.2. In particular, we
exhibit a strong algebraic link between this encryption scheme and the famous cryptographic problem LWE
[Reg05]. Moreover, we propose a new cryptographic problem, called sum of fractions problem (SOF), whose
hardness implies the semantic security of our private-key encryption scheme.

Section 5. The private-key encryption is not homomorphic in the sense that the vector sum is not a homo-
morphic operator. In Section 5, we propose a basic way to build homomorphic operators from the secret
key. Applying these operators consists of evaluating quadratic polynomials over encryptions. While the HE
obtained is not secure, this construction captures fundamental ideas. This insecure construction is here pre-
sented mainly to accompany the reader with a pedagogical approach.

Section 6. In order to overcome the vulnerabilities of the previous HE, we propose to randomize the generation
of the homomorphic operators. This is done by introducing operators Rand, as sketched in Section 1.2.

Section 7 (Security analysis). Considering operators Randmakes the attacks by linearization irrelevant. Hence,
our encryption scheme should be investigated as a system of nonlinear equations. Computing Grœbner bases
is a classical way to investigate such systems. Symmetry properties ensure that the internal randomness (i.e.
the secret matrices and polynomials) underlying our construction cannot be recovered under the factoring
assumption. This discards a large class of attacks. We then extensively study the security of our scheme
against algebraic attacks, i.e. attacks based on Grœbner bases. All our experiments will be done on the
computer algebra system SageMath (running on a single 64-bit Intel Core running at 3 Ghz ). The obtained
running times suggest that these attacks are not polynomial-time. The analysis of more formal criteria
(presented in Section 3) to investigate the complexity of algebraic attacks will enhance this idea. Finally, we
experimentally and theoretically show the fundamental role played by symmetry in our construction.

5



Appendix C.We propose a generalization of our construction by adding randomness. According to preliminary
experiments (omitted in this paper), we are relatively confident in the possibility of removing the factoring
assumption.

Remark 1. The source code of our HE and the sources of some attacks proposed in this paper can be found
in the following archive:

https://drive.google.com/drive/folders/1fkma-sacLO5LA7eqgln-D7OTpYXN6xCQ?usp=sharing

1.5 Notation

We use standard Landau notations. Throughout this paper, we let λ denote the security parameter: all known
attacks against the cryptographic scheme under scope should require 2Ω(λ) bit operations to mount. Let κ ≥ 2
be an integer and let n be a large prime or a RSA modulus. All the computations considered in this paper
will be done in Zn.

– ∆κ refers to the set of permutations over {1, . . . , κ}.
– Σκ = {σ1, . . . , σκ} ⊂ ∆κ defined by σi(j) = (i+j−2 mod κ)+1, , i.e. σi(1) = i;σi(2) = i+1; . . . ;σi(κ) =
i− 1.

– ’Choose at random x ∈ X’ will systematically mean that x is chosen according to uniform probability

distribution over X, i.e. x
$← X.

– The uniform probability distribution over a set X will be denoted by U(X).

– A vector v =

v1
· · ·
vt

 can be also denoted by v = (v1, . . . , vt).

– The inner product of two vectors v and v′ is denoted by ⟨v,v′⟩
– The set of all square t− by − t matrices over Zn is denoted by Zt×t

n .

– Given a matrix S ∈ Zt×t
n , LSi (or simply Li) will refer to the linear function defined by

LSi (u) = ⟨si,u⟩

where si denoted the ith row of S.

Remark 2. The numberM(m, d) of m-variate monomials of degree d is equal to

(
d+m− 1

d

)
. In particular,

M(2κ, κ) ≈ (27/4)κ is exponential in κ.

2 Some security results under the factoring assumption

Throughout this section, n denotes a randomly chosen RSA-modulus. Given a function ϕ : Zr
n → Zn,

zϕ
def
= #{x ∈ Zr

n|ϕ(x) = 0}/nr. Classically, a polynomial will be said null (or identically null) if each
coefficient of its expanded representation is equal to 0.

2.1 Roots of polynomials

The following result proved in [AM09] establishes that it is difficult to output a polynomial ϕ such that zϕ
is non-negligible. The security of RSA in the generic ring model can be quite straightforwardly derived from
this result (see [AM09]).

Theorem 1. (Lemma 4 of [AM09] and Proposition 1 of [GT20]). Assuming factoring is hard,
there is no p.p.t. algorithm A which inputs n and which outputs2 a {+,×}-circuit representing a non-null
polynomial ϕ ∈ Zn[X1, . . . , Xr] such that zϕ is non-negligible.

Thanks to this lemma, showing that a polynomial (built without knowing the factorization of n) is equal to
0 with non-negligible probability becomes an algebraic problem: it suffices to prove that it is identically null.

2 with non-negligible probability (the coin toss being the choice of n and the internal randomness of A)

6



2.2 Symmetry

Let κ ≥ 2 and t ≥ 1 be integers. Recall that ∆κ denotes the set of the permutations over {1, . . . , κ}.
Throughout this section, we will consider an arbitrary subset Σ ⊆ ∆κ. Let y1, y2 be randomly chosen in Zn.
It is well known that recovering y1 with non-negligible probability given only S = y1 + y2 or P = y1y2 is
difficult assuming the hardness of factoring (y1, y2 are the roots of the polynomial y2−Sy+P ). In this section,
we propose to extend this. The following definition naturally extends the classical definition of symmetric
polynomials.

Definition 1. Consider the tuples of indeterminate (Yℓ = (Xℓ1, . . . , Xℓt))ℓ=1,...,κ. A polynomial ϕ ∈ Zn[Y1, . . . , Yκ]
is Σ-symmetric if for any permutation σ ∈ Σ,

ϕ(Y1, . . . , Yκ) = ϕ(Yσ(1), . . . , Yσ(κ))

Let P be an arbitrary p.p.t. algorithm that inputs n and outputs m Σ-symmetric polynomials s1, . . . , sm
and a non-Σ-symmetric polynomial π. Evaluating π only given evaluations of s1, . . . ,sm is difficult.

Lemma 1. Let n be a randomly chosen RSA modulus and (s1, . . . , sm, π) ← P(n). Assuming the hardness
of factoring, there is no p.p.t algorithm which outputs π(y) given only s1(y), . . . , sm(y) with non-negligible

probability over the choice of n, y
$← Zκt

n .

Proof. See [GT20].

□

3 Solving polynomial systems

Solving polynomial systems is required in numerous applications. Grœbner bases are key tools to solve such
systems. A brief introduction to this algebraic notion is proposed in this section. Many details are here
omitted. Nevertheless, we think that this overview is sufficient to understand, analyze and interpret our
experiments.

3.1 Problem statement

Given a field k, k[x1, . . . , xm] refers to the ring of polynomials in them variables x1, . . . , xm with coefficients in
k. Given a set of polynomials F = {f1, . . . , ft}, the smallest ideal of k[x1, . . . , xm] containing the polynomials
f1, . . . , ft is denoted by ⟨F ⟩.

Definition 2. ⟨F ⟩ denotes the polynomial ideal generated by f1, . . . , ft, i.e.

⟨F ⟩ = {g1f1 + . . .+ gtft | g1, . . . , gt ∈ k[x1, . . . , xm]}

F = {f1, . . . , ft} is said to be a basis of ⟨F ⟩.

The system of polynomial equations (or simply polynomial system) denoted by F = 0 is the set of
simultaneous equations f1(x1, . . . , xm) = 0

· · ·
ft(x1, . . . , xm) = 0

A solution of a polynomial system is a set of values for the xi that make all equations true. For sake of
simplicity, we here assume this system has a unique solution x∗ = (x∗1, . . . , x

∗
m).

The concept of ideals is intimately linked to polynomial systems. Indeed, one can easily check that

∀g ∈ ⟨F ⟩, g(x∗) = 0

7



This straightforwardly implies that F = 0 and G = 0 have the same sets of solutions, provided ⟨F ⟩ = ⟨G⟩.
Grœbner bases G (defined in the next section) are special bases, ensuring that the polynomial system
G = 0 is easy to solve.

The ideal3 ⟨F ⟩ ∩ k[x1] is an ideal of k[x1]. It is well-known that rings of univariate polynomials are principal.
It follows that ⟨F ⟩ ∩ k[x1] (assumed to be not null) can be generated by a single polynomial g1, i.e.

⟨F ⟩ ∩ k[x1] = ⟨g1⟩

It is ensured that g1(x
∗
1) = 0. Moreover, if k is a finite field, this equation can be efficiently solved by using

Berlekamp’s algorithm [BRS67]. According to the elimination theorem (presented in the next section), g1
can be recovered by computing lex-Grœbner bases .

3.2 Grœbner Basis vs variable elimination

Univariate monomials are naturally ordered by their degree. This order is implicitly considered in the eu-
clidean division of univariate polynomials. To extend the division algorithm to multivariate polynomials, the
multivariate monomial set should also be totally ordered. Based on a variable ordering4, say x1 < x2 < . . . <
xm, several monomial orderings are classically considered:

– Lexicographic order (lex ).

– Graded reverse lexicagraphic order (grevlex ).

– Elimination monomial ordering (a mix of the two first ones)

A multivariate polynomial can be represented by a sum of monomials, called the expanded representation.
Classically, lt(f) refers to the leading monomial that is to say, the largest monomial in the expanded
representation of f for the chosen monomial ordering.

Definition 3. A finite basis G = {g1, . . . , gt} of a ideal I ⊂ k[x1, . . . , xm] is a Grœbner basis if

⟨lt(I)⟩ = ⟨lt(g1), . . . , lt(gt)⟩

where lt(I) = {lt(f)|f ∈ I}.

In other words, a Grœbner basis G = {g1, . . . , gt} of I is a special basis ensuring that the ideal generated by
the leading terms lt(g1), . . . , lt(gt) is equal to the ideal generated by the leading terms (lt(f))f∈I .

Proposition 1. Any ideal I ⊂ k[x1, . . . , xm] has a Grœbner basis.

An ideal I has even an unique reduced Grœbner basis. Informally speaking, it can be efficiently obtained
from any Grœbner basis by removing redundancy (see [CLO91]). Hence, there is an efficient algorithm to
decide whether two Grœbner bases G and G′ are equivalent, i.e. ⟨G⟩ = ⟨G′⟩.

Knowing a Grœbner basis of an ideal is very meaningful about this ideal. Many problems can be efficiently
solved from this knowledge, e.g. ideal membership, implicitization, variable elimination, etc. In this paper,
we mainly focus on variable elimination which is relevant to solve polynomial systems.

lex -Grœbner basis. Let I be an ideal of k[x1, . . . , xm]. The lex order is particularly relevant to eliminating
variables from an ideal and thus to solving polynomial systems. More precisely, computing Grœbner bases
dealing with the lexicographic order allows to recover the basis of I ∩ k[x1]. Indeed, assuming G is a lex -
Grœbner basis of I, it is ensured that

G ∩ k[x1]

is a Grœbner basis of the ideal I ∩ k[x1]. This is a special case of the famous Elimination theorem (see
[CLO91]).

3 It is well-known that the intersection of two ideals is also an ideal.
4 A variable is also a monomial.

8



Theorem 2. (Elimination theorem.) Let I be an ideal of k[x1, . . . , xm] and G be a lex-Grœbner basis of
I. It is ensured that

Gℓ = G ∩ k[x1, . . . , xℓ]
is a Grœbner basis of the ideal I ∩ k[x1, . . . , xℓ]

This theorem is fundamental in variable elimination theory. A system F = 0 can be seen as a set of constraints
between variables. The elimination theorem says how to eliminate some variables from these constraints in
order to obtain all the constraints between only a subset of variables: it suffices to compute the lex -Grœbner
basis of ⟨F ⟩.

3.3 Classical algorithms computing Grœbner bases

As far as we know, all algorithms for computing Grœbner bases input a finite basis F of a polynomial
ideal and return a Grœbner basis G of this ideal. Moreover, the polynomials should be described by their
expanded representation (sum of monomials). In particular, these algorithms are not efficient if the expanded
representation of the input or output polynomials is exponential-size.

Buchberger’s algorithm [Buc06] was the first algorithm to compute Grœbner bases. Faugere et al. [Fau99]
have significantly improved it with the algorithms F4 or F5. These two algorithms are currently assumed to
be the most efficient ones.

lex -Grœbner bases5 have the strongest algebraic structure making them convenient for variable elimina-
tion and thus for polynomial system solving. However, in many situations, it is a bit of overkill to compute
a Grœbner basis using lex order. Computing lex-Grœbner bases can be very inefficient in practice. More
efficient monomial orderings, defined especially for variable elimination, are considered in most computer
algebra systems (Maple, SageMath, Mathematica, etc.).

Conversely, in most cases, grevlex order produces Grœbner bases with polynomials of the smallest total
degree. This order is often considered to be the most efficient. It is the default order in most computer algebra
systems. In our experiments, we will consider this order as a reference. More precisely, we will systematically
compute grevlex -Grœbner bases. If we succeed in proving that such computations are hard, we will assume
that it is also hard for the other orders.

Implementation. All our experiments will be done with SageMath. Most of the recent Grœbner basis
algorithms are available on this free open-source mathematics software. In our experiments, we mainly use
the SageMath functions ideal elimination(.) and groebner basis(.).

– groebner basis(algorithm, deg bound,. . .)

– ideal elimination(variables, algorithm,. . .)

3.4 Complexity

While the worst-case complexity of Grœbner basis computation is doubly exponential in the number of
variables, this computation may be efficient in many applications. To prove that our scheme is secure against
attacks based on such computations, we need to show that these attacks are exponential-time w.r.t. the
security parameter λ. To achieve this, four criteria will be considered in our experiments: the three last ones
dealing with the grevlex order.

– Running time. It is the most obvious criteria. The running times will be measured for several toy parame-
ters. However, they quickly become prohibitive. In these conditions, it is difficult to measure complexity,
which captures asymptotic behaviors. This is the main obstacle to this approach.

– Size of the Grœbner basis. If the memory size of the Grœbner basis exponentially grows with the param-
eters, it is ensured that its computation is also exponential-time. By carefully examining the obtained
Grœbner basis, this criteria will be relevant in some cases. This criteria is surely the most significant
when it can be applied.

5 Grœbner basis w.r.t. the lexicographical order (lex ).

9



– Degree of semi-regularity (dreg). Informally speaking, dreg can be seen as the lowest degree at which the
system starts behaving irregularly, i.e. it does not behave like a random one. The algorithms F4 and F5

run in

O

((
m+ dreg

m

)ω)
arithmetic operations (with ω ≈ 2.39), and ω is the exponent in the complexity of efficient matrix
multiplication. The function degree of semi regularity() in SageMath efficiently computes dreg.

– Degree max (dmax). It is the highest degree reached during the computation of the Grœbner basis. To
measure it, we use the parameter deg bound in the function groebner basis(). If deg bound < dmax then
groebner basis() does surely not return a Grœbner basis. Hence, dmax can be defined as the smallest value
of deg bound such that groebner basis(., deg bound) returns a Grobner basis.

Remark 3. Only upper bounds can be derived from the criteria dreg and dmax. Hence, they cannot be used to
prove exponential-time complexities. Nevertheless, if they are in O(1), complexity is surely polynomial-time.

Remark 4. dreg is efficiently measured by SageMath while dmax requires to compute Grœbner bases.

4 A private-key encryption scheme

4.1 Definition

We design a private-key encryption scheme where the secret key K contains 2κ randomly chosen secret
vectors s1, . . . , s2κ belonging to Z2κ

n . Encrypting x ∈ Zn simply consists of randomly choosing c ∈ Z2κ
n

satisfying

⟨s1, c⟩
⟨s2, c⟩

+ · · ·+ ⟨s2κ−1, c⟩
⟨s2κ, c⟩

= x (2)

By assuming the vectors s1, . . . , s2κ are linearly independent, our scheme can be defined as follows:

Definition 4. Let λ be a security parameter. The functions KeyGen, Encrypt, Decrypt are defined as follows:

– KeyGen(λ). Let κ be a positive integer indexed by λ and let n be a randomly chosen RSA-modulus. Choose
at random an invertible matrix S ∈ Z2κ×2κ

n . Output

K = {S} ; pp = {n, κ}

– Encrypt(K, pp, x ∈ Zn). Choose at random r1, . . . , rκ in Z∗
n and x1, . . . , xκ in Zn s.t. x1 + · · ·+ xκ = x.

Output

c = S−1


r1x1
r1
· · ·
rκxκ
rκ


– Decrypt(K, pp, c ∈ Z2κ

n ). Output

x =

κ∑
ℓ=1

⟨s2ℓ−1, c⟩
⟨s2ℓ, c⟩

where si refers to the ith row of S.

Throughout this section, the linear function LSi will be simply denoted by Li, i.e.

Li(u) = ⟨si,u⟩

10



Moreover, pp = {n, κ} will be assumed to be public. The homomorphic operators, developed in the next
section, will be included in pp. For sake of simplicity, this parameter will often be omitted.

Proving correctness is straightforward by using the relation x = r1x1/r1 + . . . + rκxκ/rκ. The function
Decrypt can be represented by the ratio of the two degree-κ polynomials ϕS , ϕ

′
S ∈ Zn[X1, · · · , X2κ] defined

by

ϕS =

κ∑
ℓ=1

L2ℓ−1

∏
ℓ′ ̸=ℓ

L2ℓ′ ; ϕ
′
S =

κ∏
ℓ=1

L2ℓ (3)

with
Decrypt(K, c) = ϕS(c)/ϕ

′
S(c)

At this step, our scheme is not homomorphic in the sense that the vector sum is not a homomorphic operator.
Indeed, c and a · c are encryptions of the same message for any a ∈ Z∗

n.
We can identify two independent sources of randomness in Encrypt: the choice of the shares xi and the

choice of the masks ri. As mentioned in the introduction, we will consider the following convenient notation
for capturing these two types of randomness:

X(c)
def
= (x1, . . . , xκ) = (L1(c)/L2(c), . . . ,L2κ−1(c)/L2κ(c))

R(c)
def
= (r1, . . . , rκ) = (L2(c), . . . ,L2κ(c))

4.2 The factoring assumption

The factorization of n is not used in KeyGen. Consequently, the generation of n could be externalized6 (for
instance, generated by an oracle). In other words, n could be a public input of KeyGen. It follows that all
the polynomials considered in our security analysis are built without using the factorization of n. Hence,
Theorem 1 and Lemma 1 can be invoked.

4.3 The basic attack

The most natural attack consists of solving a linear system in order to recover ϕS . Let c← Encrypt(K,x) be
an encryption of an arbitrary x ∈ Zn. By definition, the polynomials ϕS and ϕ′S (see (3)) satisfy

ϕS(c)− xϕ′S(c) = 0

By sampling c, we get a system of equations. The expanded representation of ϕS and ϕ′S could be thus recov-
ered by solving a size-2 ×M(2κ, κ) linear system whose variables are their monomial coefficients. However,
this attack fails provided κ = Θ(λ) because M(2κ, κ) is exponential in λ in this case (see Remark 2). For
instance, by choosing κ = 13, the attack consists of solving a linear system dealing with approximately 1010

variables: this is currently assumed to be infeasible.

4.4 Algebraic link with LWE

The Learning With Errors (LWE) Problem was introduced by Regev [Reg09]. It is a generalisation for large
primes of the well-known LPN (Learning Parity with Noise) problem. Since its introduction, LWE has become
a source of many innovative cryptosystems, such as homomorphic encryption. Reasons of LWE’s success in
cryptography include its simplicity as well as convincing theoretical arguments regarding its hardness, a
reduction from (worst-case) assumed hard lattice problems to (average-case) LWE.

LWE problem. To fit to our needs, we propose a description of LWE problem that slightly differs (but
equivalent) from the usual one. For integers κ, n ≥ 2, a vector s ∈ {1}×Zκ−1

n and a probability distribution
χ on Zn, let As,χ be the distribution such that u ← As,χ is a randomly chosen vector of Zκ

n satisfying
⟨s,u⟩ = e where e← χ is a noise term randomly chosen.

6 ensuring that its factorization was forgotten just after its generation

11



Definition 5. For an integer n = n(κ), a distribution ψ over {1}×Zκ−1
n and an error distribution χ = χ(κ)

over Zn, the learning with errors problem LWEκ,n,m,χ,ψ is defined as follows: given m independent samples
from As,χ where s← ψ, output s with non-negligible probability.

The decision variant of the LWE problem, denoted by DLWEκ,n,m,χ,ψ is to distinguish (with non-negligible
advantage) m samples chosen according to As,χ from m samples chosen according to the uniform distribution
over Zκ

n .

The probability distribution χ is typically taken to be the discrete Gaussian distribution on Zn with mean
0 and standard deviation σ. To simplify our purpose, we will here assume that χ is uniform over {−σ, . . . , σ}.

Arora et Ge proposed to attack LWE with a linearization approach [AG11b]. This approach considers
the degree-(2σ + 1) polynomial p defined by p(x) = x

∏σ
i=1(x− i)(x+ i). By construction, it is ensured that

p(e) = 0 for any e ∈ {−σ, . . . , σ}. Hence, for any example u← As,χ, it is ensured that

ϕLWE(u)
def
= p(⟨s,u⟩) = 0

By definition, ϕLWE is a degree-(2σ + 1) polynomial whose coefficients are evaluations of polynomials over s.
Its expanded representation size is in Θ

(
κ2σ

)
.

By considering sufficiently many samples u, the expanded representation of ϕLWE can be recovered by
solving a linear system. This is mainly the attack of DLWE proposed by Arora et Ge. Hence, κ2σ should be
exponential in the security parameter.

The analogy with our private-key encryption is now straightforward. Indeed, Encrypt(S, 0) outputs a
randomly chosen vector u satisfying ϕ(u) = 0 with ϕ = ϕS . Similarly, an example u ← As,χ of LWE is a
randomly chosen vector u satisfying ϕ(u) = 0 with ϕ = ϕLWE.

It follows that breaking the semantic security of our scheme or solving DLWE consist of distinguishing
between U({u ∈ Zκ

n |ϕ(u) = 0}) and U(Zκ
n): ϕ being a polynomial whose each monomial coefficient is a

polynomial defined over a secret set K of elements belonging to Zn, K = {S} in our scheme and K = {s}
in LWE.

This simple analysis shows an unexpected algebraic link between our private-key encryption and LWE.
In the next section, we propose a new cryptographic assumption whose semantic security of our scheme is a
special case.

4.5 Generalization: sum of fractions problem

Throughout this section, we mainly reuse the notation of Section 4.1. We here propose a new cryptographic
problem whose semantic security of our scheme is a special case. Let AS be the uniform distribution7 over
{u ∈ Z2κ

n |ϕS(u) = 0}.

Definition 6. For an integer n = n(κ), a distribution ψ over Z2κ×2κ
n , the sum of fractions problem SOFκ,n,m,ψ

is defined as follows: given m independent samples from AS where S ← ψ, output S with non-negligible prob-
ability.

The decision variant of the SOF problem, denoted by DSOFκ,n,m,ψ is to distinguish (with non-negligible
advantage) m samples chosen according to AS from m samples chosen according to the uniform distribution
over Z2κ

n .

The semantic security of our private-key encryption is equivalent to DSOFκ,n,m,ψ where n is a RSA
modulus and ψ is uniform over the set of invertible matrices S ∈ Z2κ×2κ

n .
As seen in the previous section, informally speaking, DSOF is algebraically equivalent to DLWE. Moreover,

as our scheme is noise-free, it should be not subject to lattice-based attacks. This gives us confident in the
hardness of DSOF.

In section 5.5, it will be proven that solving SOFκ,n,m,ψ is at least as hard as factoring n, for any κ ≥ 2.
In Section 7.4, algebraic attacks on DSOF (Attack 1 and its variants) are proposed. These attacks appear to
be totally inefficient, provided κ = Θ(λ).

7 The vector u← Encrypt(S, 0) is drawn according to AS .

12



5 A basic/naive implementation of the homomorphic operators

Let S ← KeyGen(λ). In this section, we will consider the quadratic polynomialsLij ∈ Zn[U1, . . . , U2κ, V1, . . . , V2κ]
defined by Lij(u,v) = Li(u)Lj(v) = ⟨si,u⟩⟨sj ,v⟩.
In this section, we propose a natural and simple way to implement the homomorphic operators. In the
following of this paper, we will consider the two encryptions c and c′ of respectively x and x′

c = S−1


r1x1
r1
· · ·
rκxκ
rκ

 ; c′ = S−1


r′1x

′
1

r′1
· · ·
r′κx

′
κ

r′κ


The homomorphic operators Add (also denoted by ⊕) and Mult (also denoted by ⊗) are output by the
function OGen. For concreteness, OGen(S, i) outputs a nonlinear operator Oi satisfying

c⊕ c′ = O0(c, c
′)

c⊗ c′ = O1(c, c
′)⊕ · · · ⊕Oκ(c, c

′)

5.1 The additive operator Add (also denoted by O0)

The additive operator exploits the basic equality

a

b
+
a′

b′
=
ab′ + a′b

bb′

We notice that the numerator and the denominator of this sum can be obtained by evaluating quadratic
polynomials over a, a′, b, b′. This is the starting point to build an additive operator Add satisfying (see Figure
1)

X(c⊕ c′) = (x1 + x′1, . . . , xκ + x′κ)

R(c⊕ c′) = (r1r
′
1, . . . , rκr

′
κ)

Definition 7. OGen(S, 0) outputs the expanded representation of the quadratic polynomials p1, . . . , p2κ de-
fined by

p1
· · ·
p2κ

 = S−1


L12 +L21

L22

· · ·
L2κ−1,2κ +L2κ,2κ−1

L2κ,2κ


and Add(c, c′) = (p1(c, c

′), . . . , p2κ(c, c
′))

A toy implementation of Add is given in Appendix A.

Proposition 2. Add← OGen(S, 0) is a valid additive homomorphic operator.

Proof. By construction, for any ℓ = 1, . . . , κ

⟨s2ℓ−1, (p1(c, c
′), . . . , p2κ(c, c

′))⟩ = L2ℓ−1,2ℓ(c, c
′) +L2ℓ,2ℓ−1(c, c

′) = rℓxℓr
′
ℓ + r′ℓx

′
ℓrℓ

= rℓr
′
ℓ(xℓ + x′ℓ)

and

⟨s2ℓ, (p1(c, c′), . . . , p2κ(c, c′))⟩ = L2ℓ,2ℓ(c, c
′) = rℓr

′
ℓ

It follows that

Decrypt(S,Add(c, c′)) =
r1r

′
1(x1+x

′
1)

r1r′1
+ . . .+

rκr
′
κ(xκ+x

′
κ)

rκr′κ
= x1 + x′1 + . . .+ xκ + x′κ = x+ x′

□

13



Example.

– n = 5, κ = 1

– S =

[
3 1
2 1

]
;S−1 =

[
1 4
3 3

]
– Add(u,v) = S−1

(
(u1 + 4u2)(3v1 + 3v2) + (3u1 + 3u2)(v1 + 4v2)
(3u1 + 3u2)(3v1 + 3v2)

)
=

(
3u1v1 + 3(u2v1 + u1v2) + u2v2
3u1v1 + (u2v1 + u1v2) + 4u2v2

)
– c1 =

(
1
1

)
; c2 =

(
2
3

)
– Decrypt(S, c1) =

3×1+1×1
2×1+1×1 = 3; Decrypt(S, c2) =

3×2+1×3
2×2+1×3 = 2

– c3 = Add(c1, c2) =

(
p1(c1, c2)
p2(c1, c2)

)
=

(
3× 1× 2 + 3(1× 2 + 1× 3) + 1× 3
3× 1× 2 + (1× 2 + 1× 3) + 4× 1× 3

)
=

(
4
3

)
= Add(c2, c1)

– Decrypt(S, c3) =
3×4+1×3
2×4+1×3 = 0 = Decrypt(S, c1) + Decrypt(S, c2)

5.2 The multiplicative operator Mult

The idea behind the operator ⊗ exploits the equality

xx′ =
∑

1≤i,j≤κ

xix
′
j =

κ∑
i=1

πi

with πi =
∑κ
j=1 xjx

′
σi(j)

(recall that σi is the permutation over {1, . . . , κ} defined by σi(1) = i, σi(2) =

i+ 1,. . . , σi(κ) = i− 1).
To build an encryption of xx′, we first build encryptions of π1, . . . , πκ. It then suffices to homomorphically

add these encryptions to obtain an encryption of xx′.
‘

Definition 8. Given i ∈ {1, . . . , κ}, OGen(S,i) outputs the expanded representation of the quadratic polyno-
mials p1, . . . , p2κ defined by

p1
· · ·
p2κ

 = S−1


L1,2σi(1)−1

L2,2σi(1)

· · ·
L2κ−1,2σi(κ)−1

L2κ,2σi(κ)


and Oi(c, c

′) = (p1(c, c
′), . . . , p2κ(c, c

′))

As highlighted in Fig. 2, Oi(c, c
′) is a valid operator which outputs an encryption of πi. More precisely,

X(Oi(c, c
′)) = (x1x

′
σi(1)

, . . . , xκx
′
σi(κ)

)

R(Oi(c, c
′)) = (r1r

′
σi(1)

, . . . , rκr
′
σi(κ)

)

The multiplicative operator can be then defined by

c⊗ c′
def
= O1(c, c

′)⊕ . . .⊕Oκ(c, c
′)

Proposition 3. The operator ⊗ is a valid multiplicative homomorphic operator.

Proof. It suffices to show that c′′ ← Oi(c, c
′) is an encryption of πi =

∑κ
j=1 xix

′
σi(j)

.

Decrypt(S, c′′) =
∑κ
ℓ=1

rℓr
′
σi(ℓ)

xℓxσi(ℓ)
′

rℓr′σi(ℓ)
= x1x

′
σi(1)

+ . . .+ xκx
′
σi(κ)

= πi

14



□

Case κ = 2. Given two encryptions c, c′ of x, x′, we have

O1(c, c
′) = S−1


r1r

′
1x1x

′
1

r1r
′
1

r2r
′
2x2x

′
2

r2r
′
2

 ; O2(c, c
′) = S−1


r1r

′
2x1x

′
2

r1r
′
2

r2r
′
1x2x

′
1

r2r
′
1


implying that c′′ = Mult(c, c′)

def
= Add(O1(c, c

′),O2(c, c
′)) is a valid encryption of xx′. Indeed,

c′′ = S−1


r21r

′
1r

′
2(x1x

′
1 + x1x

′
2)

r21r
′
1r

′
2

r22r
′
1r

′
2(x2x

′
1 + x2x

′
2)

r22r
′
1r

′
2


and Decrypt(S, c′′) = x1x

′
1 + x1x

′
2 + x2x

′
1 + x2x

′
2 = (x′

1 + x′
2)(x1 + x2) = xx′.

5.3 Efficiency

Each operator Oi consists of evaluating 2κ quadratic variate-2κ polynomials pi leading to a running time in
O(κ3). It follows that Add runs in O(κ3) and Mult runs in O(κ4). The running time of OGen(S, i) is O(κ4)
(2κ sums of 2κ quadratic polynomials). It follows that the generation of the homomorphic operators can be
done in O(κ5)

5.4 Towards a public-key encryption

The classic way (see [Rot11]) to transform a private-key cryptosystem into a public-key cryptosystem consists
of publicizing encryptions c1, . . . , cm of known values x1, . . . , xm and using the homomorphic operators to
encrypt x. Let Encrypt1 denote this new encryption function. Assuming the IND-CPA security of the private-
key cryptosystem, it suffices to prove that the CPA attacker cannot distinguish between Encrypt1(pk, x) and
Encrypt(K,x).

5.5 Security analysis

In order to make the basic attack fail,
κ = Θ(λ)

To simplify our security analysis, we propose to replace S−1 by detS×S−1 in the definitions of the encrypting
function and the homomorphic operators (see definitions 4, 7 and 8). This minor modification does not affect
the correctness of our construction. Indeed, as noticed previously, the message is not modified by multiplying
an encryption by a non-null scalar, here detS. This is done to ensure that each value known by the CPA
attacker can be written as a polynomial defined over the coefficients of S (instead of a rational function).

CPA attacker’s knowledge. There are classically two sources of randomness behind the knowledge of
the CPA attacker. The first source of randomness is the internal randomness of KeyGen, i.e. the choice of
K = {S}. The second source of randomness comes from the encryption oracle. After receiving the challenge
encryption c0 ← Encrypt(K,x0 ← {0, 1}), the CPA attacker requests the encryption oracle to get encryptions
c1, . . . , cm of arbitrarily chosen plaintexts x1, . . . , xm ∈ Zn. To simplify our purpose, we will here assume
that x1, . . . , xm are randomly chosen. The assumption could be removed in our security analysis by slightly
extending Lemma 1.

Definition 9. Let S ← KeyGen(λ), let (xi1, ri1, . . . , xiκ, riκ) be the values (randomly) chosen by the encryp-
tion oracle to produce8 ci. For any ℓ ∈ {1, . . . , κ}, the random vector θℓ is defined by

θℓ = (s2ℓ−1, s2ℓ, (xiℓ, riℓ)i=0,...,m)

The random vector (θ1, . . . , θκ) is denoted by θ.

8 ci = detS × S−1(ri1xi1, ri1, . . . , riκxiκ, riκ).

15



The knowledge of the CPA attacker can be represented as a vector α ∈ Z
m+O(κ4)
n .

Definition 10. The CPA attacker’s knowledge (c0, . . . , cm, x1, . . . , xm,Add,Mult) can be represented by a

vector α, the ith component of α being the evaluation of a polynomial αi over θ, i.e. α = (α1(θ), α2(θ), . . .)
def
=

α(θ).

The polynomials αi have intrinsical symmetry properties.

Lemma 2. Each polynomial αi is Σκ-symmetric (see Definition 1).

Proof. See [GT20]

□

This result means that αi(θ1, . . . , θκ) = αi(θσ(1), . . . , θσ(κ)) for any σ ∈ Σκ. For instance, the opera-
tors O0, . . . ,Oκ remain unchanged by permuting θ1, . . . , θκ according to σj , i.e. replacing (θ1, . . . , θκ) by
(θj , . . . , θκ, θ1, . . . , θj−1).

A fundamental result. By mixing Lemma 1 and Lemma 2, we get the following fundamental result.

Proposition 4. Assuming the hardness of factoring, π(θ) cannot be evaluated, provided π is a polynomial
that is not Σκ-symmetric. In particular, the CPA attacker cannot recover any:

1. coefficient of S,

2. product of strictly less than κ coefficients of S,

3. polynomial9 Li1 × · · · ×Lit provided t < κ

Proof. A direct consequence of lemmas 1 and 2.

□

The knowledge of the polynomial

ϕS =

κ∑
ℓ=1

L2ℓ−1

∏
ℓ′ ̸=ℓ

L2ℓ′

would allow to distinguish between encryptions of 0 and encryptions of 1. Clearly, each monomial coefficient
of ϕS is Σκ-symmetric (and thus could perhaps be recovered). However, the expanded representation of ϕS
(or its multiples) is exponential-size provided κ = Θ(λ) and thus cannot be recovered.

By construction, ϕS (or its multiples) could nevertheless be efficiently represented with the linear functions
Li (or O(1)-products of these linear functions). However, these compact semi-factored representations do not
deal with symmetric polynomials, and they cannot be recovered according to Proposition 4.

Vulnerabilities. Unfortunately, our scheme suffers from some vulnerabilities detailed in Appendix B. These
attacks, called attacks by linearization, do not deal with nonlinear equations but only systems of linear
equations. They exploit the fact that the function OGen is deterministic. As a countermeasure, we propose
to randomize the generation of the homomorphic operators. This is the object of the next section.

9 and thus cannot be evaluated

16



6 Randomizing OGen()

In this section, we propose a way to randomize the function OGen() while keeping true the symmetry proper-
ties encapsulated in Lemma 1. As a consequence, this will ensure that Proposition 4 remains true. Consider
an encryption c of x and an invertible matrix T ∈ Z2κ×2κ

n . By construction of our private-key encryption,
c′ = T−1Sc is also an encryption of x under the key T . In the following of this paper, OS→T

i will refer to
the operator defined by

OS→T
i (c, c′) = T−1SOi(c, c

′)

where Oi ← OGen(S, i) (recall that O0 = Add). Hence, by construction, we have

Decrypt(T,OS→T
i (c, c′)) = Decrypt(S,Oi(c, c

′))

It follows that c′′ = OS→T
0 (c, c′) is a valid encryption of x + x′ under T and c′′ = OS→T

i (c, c′) is a valid
encryption of πi under the key T . In the next sections, we propose operators building randomized encryptions
c′′′ satisfying

Decrypt(S, c′′′) = Decrypt(T, c′′)

6.1 Operator Rand

We here develop operators Rand to switch keys and to randomize encryptions (without modifying the plain-
texts). The function RandGen() outputs such operators.

Definition 11. Let R, T be two invertible matrices of Z2κ×2κ. RandGen(R, T ) randomly chooses variate-
2κ degree-1 polynomials η1, . . . , η2κ and ν0, ν1, . . . , ν2κ ensuring that ν1 + . . . + νκ = 0. It then outputs the
expanded representations of the polynomials p1, . . . , p2κ defined as follows10.

p1
· · ·
p2κ

 = T−1


η1

(
ν0L

R
1 + ν1L

R
2

)
η1ν0L

R
2

· · ·
ηκ

(
ν0L

R
2κ−1 + νκL

R
2κ

)
ηκν0L

R
2κ


The operator Rand← RandGen(R, T ) (sometimes denoted by RandR→T ) consists of evaluating the polynomials
(p1, . . . , p2κ), i.e. Rand(c) = (p1(c), . . . , p2κ(c)).

We first notice that Rand(c) may be an invalid encryption, i.e. Decrypt(T,Rand(c)) may be not defined. Indeed,
nothing ensures that η1ν0L

R
2ℓ ̸= 0. Nevertheless, this happens with overwhelming probability provided c is

built by applying homomorphic operators over encryptions output by the encryption oracle.

Proposition 5. Let Rand ← RandGen(R, T ). Assume c is built by applying the homomorphic operators on
the encryptions c1, . . . , cm output by the encryption oracle. With overwhelming probability, it is ensured that

Decrypt(R, c) = Decrypt(T,Rand(c))

Proof. By definition of Decrypt,

Decrypt(T,Rand(c)) =
∑κ
ℓ=1

ηℓ(c)(ν0(c)L
R
2ℓ−1(c)+νℓ(c)L

R
2ℓ(c))

ηℓ(c)ν0(c)LR
2ℓ(c)

The denominators ηℓ(c)ν0(c)L
R
2ℓ(c) can be expressed as a non-null polynomial defined over θ

s≡ Zt
n. According

to Theorem 1, they are equal to zero with negligible probability. Hence, with overwhelming probability,

Decrypt(T,Rand(c)) =
∑κ
ℓ=1

LR
2ℓ−1(c)

LR
2ℓ(c)

+ νℓ(c)
ν0(c)

= x1 + . . .+ xκ +
ν1(c)+...+νκ(c)

ν0(c)

= x

□
10 Recall that LR

j refers to the linear function defined by LR
j (u) = ⟨rj ,u⟩ where rj is the jth row of R.

17



6.2 Randomizing OGen (parameter γ)

Applying operators Rand allows to randomize encryptions. This randomization can be chained, i.e. by com-
posing the operators RandT1→T2 , RandT2→T3 , . . . ,RandTγ→S where γ is a parameter indexed by λ. Following
this idea, the function OGen(S, i) can be naturally extended to OGen(S, i, γ).

Definition 12. OGen(S, i, γ) outputs the operators OS→T1
i and

(
RandTj→Tj+1

)
j=1,...,γ

where

– the matrices T1, . . . Tγ are randomly chosen and Tγ+1 = S

– OS→T1
i = T−1

1 SOi with Oi ← OGen(S, i)

– RandTj→Tj+1 ← RandGen(Tj , Tj+1).

The operator O
[γ]
i ←− OGen(S, i, γ) is defined by

O
[γ]
i (c, c′) = RandTγ→S ◦ . . .RandT2→T3 ◦ RandT1→T2 ◦OS→T1

i (c, c′)

Thanks to Proposition 5, it is quite straightforward to show that O
[γ]
i is valid.

Proposition 6. Let O
[γ]
i ←− OGen(S, i, γ). It is ensured that

Decrypt(S,O
[γ]
i (c, c′)) =

{
x+ x′ if i = 0
πi otherwise

Remark 5. By convention, O
[0]
i will refer to the basic operators defined in previous sections.

6.3 Efficiency

Each operator Rand runs in O(κ4). Thus, the running time of OS→Ti
i can be neglected. It follows that O

[γ]
i

runs in

O(γκ4)

Hence, the additive operator runs in O(γκ4) and the multiplicative one runs in O(γκ5)

7 Security analysis

Our homomorphic encryption scheme is parameterized by κ and γ. As discussed previously, to protect our
scheme against attacks by linearization

κ = Θ(λ)

γ > 0

Classically, to prove IND-CPA security (semantic security), we need to prove that the CPA attacker cannot
efficiently decrypt the challenge encryption

c0 ← Encrypt(K,x0 ← {0, 1})

from its knowledge.

18



7.1 Overview

In Section 7.2, a security result based on the factoring assumption is proposed. This is mainly an extension
of Proposition 4. This result is useful to circumscribe the class of algebraic attacks, say, attacks dealing with
Grœbner bases, by discarding some of them.

We then extensively analyze the security of our scheme against algebraic attacks. For concreteness, our
scheme will be seen as a system of equations that can be classically solved with variable elimination tech-
niques (classically based themselves on Grœbner bases). All our experiments will be done on SageMath. The
running times suggest that the proposed attacks are not polynomial-time. While the results obtained are
very encouraging, deeper investigations will be proposed to characterize the complexity of these attacks.
As explained in Section 3, we will check that the degrees dmax and dreg are not in O(1) but linearly grow
with κ, γ. Moreover, we will show that computing the Grœbner basis of some natural ideals is intrinsically
exponential-time because the size of the obtained Grœbner basis is exponential-size itself. Finally, we will
highlight the significant impact of symmetry on algebraic attacks.

7.2 A fundamental result (extension of Proposition 4)

We took care to preserve symmetry properties in the construction of the operators Rand. Thanks to this,
Proposition 4 can be naturally extended. To achieve this, it suffices to include the internal randomness of
RandGen in θ. For concreteness, θℓ will include the coefficients of the polynomials νℓ, ηℓ and the rows 2ℓ and
2ℓ + 1 of each matrix involved in each operator Rand. Definition 10 and Lemma 2 can be straightforwardly
extended by including the knowledge derived from these operators.

Lemma 3. The CPA attacker’s knowledge (c0, . . . , cm, x1, . . . , xm,O
[γ]
0 , . . . ,O

[γ]
κ ) can be represented by a

vector α, the ith component of α being the evaluation of a Σκ-symmetric polynomial αi over θ, i.e. α =

(α1(θ), α2(θ), . . .)
def
= α(θ).

Proof. (Sketch.) It suffices to check that each operator RandR→T is stable by permuting (r2ℓ−1, r2ℓ, t2ℓ−1, t2ℓ, νℓ, ηℓ)ℓ=1,...,κ

according to any σ ∈ Σκ. We conclude by invoking Lemma 2 for the remaining knowledge.

□

By mixing Lemma 1 and Lemma 3, we get the following fundamental result.

Proposition 7. Assuming the hardness of factoring, π(θ) cannot be evaluated, provided π is a polynomial
that is not Σκ-symmetric. In particular, for any matrix Tj and any polynomial νjℓ, ηjℓ randomly (and secretly)
chosen by OGen, the CPA attacker cannot recover any:

1. coefficient of Tj,

2. product of strictly less than κ coefficients of Tj,

3. polynomial11 L
Tj1
i1
× · · · ×L

Tjt
it

provided t < κ,

4. polynomial νjℓ, ηjℓ

Proof. A direct consequence of lemmas 1 and 3.

□

Remark 6. This proposition does not ensure anything about the polynomials ν0. In consequence, throughout
our security analysis, ν0 will be assumed to be known, i.e.

ν0(u) = u1 + . . .+ u2κ

This result is fundamental. It can be used to discard some algebraic attacks12. It excludes, for instance,
algebraic attacks aiming to recover the secret matrices or the secret polynomials considered in the operators
Rand. Indeed, thanks to symmetry, such attacks would lead to nonlinear univariate equations that cannot be
solved under the factoring assumption.

11 and thus cannot be evaluated
12 which are efficient without the factoring assumption.

19



7.3 Representing CPA attacker’s Knowledge by ideals of polynomials

Classically, solving a polynomial system F = 0 can be achieved by invoking algorithms dealing with the ideal
I = ⟨F ⟩ (see Section 3). In this section, a system of equations will be always seen as a polynomial ideal and

reciprocally. The sum of two ideals I = ⟨F ⟩ and J = ⟨G⟩ is defined by I + J
def
= ⟨F ∪G⟩.

As seen in the previous section (see Lemma 3), the knowledge of the CPA attacker can be expressed
as evaluations of Σκ-symmetric-polynomials αi over θ. Hence, our scheme can be seen as the over-defined
system of nonlinear equations

α1 − α1(θ) = 0

α2 − α2(θ) = 0

· · ·

Moreover, the challenge encryption c0 is an encryption of an unknown value x0 ∈ {0, 1}. This knowledge can
be integrated into the previous system by introducing the variable x0 and adding the two following equations:

x01 + . . .+ x0κ = x0

x0(x0 − 1) = 0

Thanks to symmetry properties (see Lemma 3), the obtained system has at least κ solutions. Indeed, for any
σ ∈ Σκ,

(x0,θσ(1), . . . ,θσ(κ))

is a solution. In the following of this section, we will rewrite13 and detail these equations and we will group
them in natural sub-systems/ideals.

Ideal I0 (dealing with the challenge encryption). The CPA attacker first receives the challenge en-
cryption c0 of x0 ∈ {0, 1}. The ideal I0 refers to the system of κ + 2 degree-2 equations satisfied by c0 and
x0:

variables: sij , x0, x0j

– ⟨s1, c0⟩ − x01 × ⟨s2, c0⟩ = 0

– . . .

– ⟨s2κ−1, ci⟩ − x0κ × ⟨s2κ, c0⟩ = 0

– x01 + . . .+ x0κ − x0 = 0

– x0(x0 − 1) = 0

Ideal I1 (dealing with the encryption oracle). The CPA attacker may request the encryption oracle
to receive c1, . . . , cm of chosen plaintexts x1, . . . xm. From each encryption ci, the following system of κ+ 1
degree-2 equations, denoted by I1(x1, . . . , xm), can be derived:

variables: sij , xij

– ⟨s1, ci⟩ − xi1 × ⟨s2, ci⟩ = 0

– . . .

– ⟨s2κ−1, ci⟩ − xiκ × ⟨s2κ, ci⟩ = 0

– xi1 + . . .+ xiκ − xi = 0

13 To get polynomial-size equations.

20



Ideal I2 (dealing with the homomorphic operators). Let O be one of the operators output by OGen.
For instance, consider O = (p1, . . . , p2κ) = OS−→T

1 output by OGen(S, 1, γ). By construction, the following
2κ polynomial equalities hold:

– ⟨t1, (p1, . . . , p2κ)⟩ = LS11
– . . .
– ⟨t2κ, (p1, . . . , p2κ)⟩ = LS2κ,2κ

where ti refers to the ith row of T . By equalizing each monomial coefficient, 4κ2 equations can be then derived
from each equality. Hence, we get 8κ3 equations dealing with the variables sij , tij .

Example. For instance, by considering the first polynomial equality ⟨t1, (p1, . . . , p2κ)⟩ = LS11 and the mono-
mial u21v

2
1, we obtain an equation in the form

a1t11 + . . .+ a2κt1,2κ − s211 = 0 (4)

where a1, . . . , a2κ are the monomial coefficient of u21v
2
1 of the public polynomials p1, . . . , p2κ. By considering

the second polynomial equality, we notice that (t2, s21) is also a solution of (4) i.e.

a1t21 + . . .+ a2κt2,2κ − s221 = 0

This is a direct consequence of symmetry.

This system of equations will be denoted by I2(O
S→T=T1
1 ). This can be straightforwardly extended to all the

other public operators OS−→Ti
i .

The same can be done for each operator (p1, . . . , p2κ) ←− RandR→T by considering the following 2κ
polynomial equalities:

– ⟨t2ℓ−1, (p1, . . . , p2κ)⟩ = ηℓ(ν0L
R
2ℓ−1 + νℓL

R
2ℓ)

– ⟨t2ℓ, (p1, . . . , p2κ)⟩ = ηℓν0L
R
2ℓ

for any ℓ = 1, . . . , κ. In the following of this section, I2 will refer to the ideal coming from all the public
operators output by OGen, i.e. OS→Ti

i and the γ(κ+1) operator Rand. The variables involved in this ideal are
the coefficients of all the matrices and all the polynomials ηℓ, νℓ involved in the operators output by OGen.
According to remark 6, ν0 will be assumed to be known in all our experiments, say ν0(u) = u1 + . . .+ u2κ.

7.4 Algebraic attacks

We here propose some attacks dealing with the ideals designed above. These attacks aim to solve or partially
solve polynomial systems by using elimination variable techniques. Typically, these attacks aim to recover
x0 ∈ {0, 1}.

All these attacks were obviously implemented and evaluated. The implementation of these attacks simply
consists of running SageMath’s function named ’ideal elimination(.)’ on the above ideals.

It is important to note that we paid attention to memory swapping. In particular, we did not take into
account running times when memory swapping was observed.

Attack 1. We here propose to attack the private-key encryption without considering the homomorphic
operators. In other words, this attack deals with I0 + I1. For concreteness, it consists of decrypting the
challenge encryption c0 knowing only encryptions c1, . . . , cm of known plaintexts x1, . . . , xm: in particular
without considering the homomorphic operators. This attack deals with the same system of equations as the
one considered in the basic attack except that it is not seen as linear anymore.

• Objective: recovering x0

• Assumptions: s11 = 1

• Number of variables: 4k2 + (m+ 1)κ+ 1

21



• Number of equations: (m+ 1)κ+ 1

• Ideal: I0 + I1(x1, . . . , xm) where (x1, . . . , xm)
$←− Zm

n

• Eliminated variables: all except x0

• Details. The SageMath function I.ideal elimination([all variables except x0]) with I = I0 + I1 outputs the
ideal ⟨x0 − 1⟩ if x0 = 1 and ⟨x0⟩ if x0 = 0.

• Experimental results.

Consider now κ = 2. We obtain the following results

m 17 18 19 20 · · · 25
time(s) 952 378 155 2.1 · · · 4.8
dmax 6 6 6 5 · · · 5
dreg 14 13 13 12 · · · 12

By noticing that M(4, 2) = 10, we notice a major threshold effect when

m < 2×M(2κ, κ)

In other words, when it is irrelevant to consider the system of equations as linear (because the number of
equations is too small, i.e. strictly smaller than 2×M(2κ, κ), see Section 4.3), elimination techniques seem
dramatically inefficient to recover x0. This would be sufficient to prove the inefficiency of such attacks by
recalling that M(2κ, κ) is exponential in κ. Because of prohibitive running times, this threshold effect was
unfortunately not confirmed for higher values of κ, i.e. we did not obtain any result within 36h for κ ≥ 3
except that dreg grows quickly with κ, e.g. for any m, dreg ≥ 42 for κ = 3 and dreg ≥ 112 for κ = 4. In our
opinion, this clearly suggests the inefficiency of these attacks.

• Variant. Consider only encryptions of 0, i.e. x1 = . . . = xm = 0 and test if (the polynomial) x0 belongs to
the ideal I0 + I1.

• Analogy with LWE. In Section 4.4, we have seen that breaking the semantic security of our private-key
encryption and solving LWE are algebraically close problems. Albrecht et al. [ACF+12] proposed algebraic
attacks of LWE (inspired by Arora and Ge’s attack). Attack 1 can be seen as an adaptation of their attacks.

Attack 2. This attack aims to decrypt the challenge encryption c0 from the whole knowledge of the CPA
attacker, i.e. considering the ideal I0 + I1 + I2. The parameters κ, γ,m are thus involved in this attack.

• Objective: recovering x0

• Assumptions: s11 = 1

• Number of variables: O(γκ3)

• Number of equations: O(γκ4)

• Ideal: I0 + I1(x1, . . . , xm) + I2 where (x1, . . . , xm)
$←− Zm

n

• Eliminated variables: all except x0

• Overview of the results. We did not get any result within 36h for any (κ, γ,m) ≥ (3, 1, 0) (assuming the
running times grow with the parameters).

• Experimental results. We first do not consider the encryption oracle, i.e. we consider the ideal I0 + I2. We
obtain the following results (’me’ means memory error and ’−’ means the running time is larger than 36h).

22



κ γ 0 1 2 3

time(s) 0.06 423 8200 179000
2 dmax 4 10 me me

dreg 3 9 17 26
time(s) 0.8 − − −

3 dmax 4 − − −
dreg 3 13 26 39

Considering encryptions c1, . . . , cm (represented by the ideal I1) degrades performance.

• Analysis. The operators Rand were introduced as a countermeasure against attacks by linearization (see
Appendix B). A major effect of these operators against algebraic attacks can also be observed. While the
attack is quite instantaneous for γ = 0, it takes more than 36h for γ ≥ 1 and κ ≥ 3. In our opinion, this
clearly validates the fundamental role played by the parameter γ.

As expected, dmax and dreg grow with κ, γ. This enhances the idea that this attack is not polynomial-time.
The next attack can be seen as a variant of this one. While it is experimentally more efficient than this one,
evidence about its exponential-time complexity will be given.

• Variant. Considering only a subset of operators output by OGen.

Attack 3. This attack aims to decrypt the challenge encryption c0, considering a sub-ideal I ⊂ I0 + I1 +
I2(Add

S→T ). In particular, the operators Rand are not considered. While this is experimentally the most
efficient attack that we tested, we will provide strong evidence about its inefficiency.

• Objective: recovering x0

• Assumptions: s11 = 1

• Ideal: I ⊂ I0 + I1 + I2(Add
S→T ). More precisely, I contains the following polynomials:

– ⟨s1, ci⟩ − xi1 × ⟨s2, ci⟩ for any i = 0, . . . ,m

– the polynomials coming from the two polynomials equalities

⟨t1, (p1, . . . , p2κ)⟩ = L12 +L21

⟨t2, (p1, . . . , p2κ)⟩ = L22

where (p1, . . . , p2κ) = AddS→T .

• Intuition: reducing the number of involved variables

• Number of variables: 8κ+m+ 1

• Number of polynomials: 4κ2 +m+ 1

• Eliminated variables: all except x01, x11, . . . , xm,1

• Obtained results: a linear combination between x01, x11, . . . , xm,1

• Remark. The parameter γ is not involved.

• Details. By eliminating all the variables except x01, x11, . . . , xm,1, we expect to obtain a linear equation
between these variables, i.e.

a0x01 + a1x11 + . . .+ amxm,1 = 0

Symmetry ensures that the variables x0i, x1i, . . . , xm,i satisfy the same equation for any i = 1, . . . , κ. It follows
that this equation is also satisfied by x0, x1, . . . , xm, i.e.

a0x0 + a1x1 + . . .+ amxm = 0

23



As x1, . . . , xm are known values, x0 could be thus recovered. Clearly, asm variables should satisfy κ equations,
m should be greater than κ. We experimentally observe that it works provided

m ≥ κ+ 2

• Experimental results. In our experiments, we choose m = κ+ 2 which is experimentally optimal.

κ 2 3 4 5 6 7 . . . 10

time(s) 10 50 647 3500 25700 − . . . −
dmax 6 7 8 9 10 − . . . −
dreg 5 5 5 6 6 7 . . . 10

• Exponential-size of the grevlex-Grœbner basis. We compute the (reduced) grevlex -Grœbner basis G for
κ = 2, 3, 4, 5, 6. By carefully examining these bases, one can make the following fundamental observation:

For any E ∈ {0, . . . , κ+ 1}, there is a multiple of the monomial14
∏
i∈E xi1 which is involved in at least one

polynomial of G.

This straightforwardly implies that the size of G is larger than 2κ. It is tempting to assume that these
observations can be extrapolated to larger values of κ. Under this assumption, we could conclude that
computing G is exponential-time. In our opinion, it is perhaps the most convincing evidence in favor of
the inefficiency of Grœbner basis attacks.

• The fundamental role of symmetry. The attack considered in the section clearly seems exponential-time.
We here propose to examine the crucial role played by symmetry (see Lemma 2) in these results.

To achieve it, we remove symmetry by modifying the operator Add as follows:

AddS→T =


L12 +L21

L22

randomPoly1
. . .
randomPoly2κ−2


where randomPolyi are randomly chosen degree-2 polynomials. The implementation of the attack does not
require any modification. Moreover, the polynomials and the shape of the involved polynomials are exactly
the same (with exactly the same monomials). We obtain the following results:

κ 2 3 4 5 6
time(s) 0.04 0.18 0.28 0.37 0.46
dmax 3 3 3 4 4
dreg 3 3 3 3 3

This attack clearly becomes very efficient. This clearly suggests the fundamental role played by symmetry,
In particular, dreg does not grow with κ anymore while symmetry experimentally ensures that dreg = Θ(κ).

• Variant. Sampling (u,v)←− Z2κ
n ×Z2κ

n , computing w = AddS→T (u,v) and replacing I2(Add
S→T ) by the

equations coming from the following equality

⟨s1,u⟩
⟨s2,u⟩

+
⟨s1,v⟩
⟨s2,v⟩

=
⟨t1,w⟩
⟨t2,w⟩

14 For instance s11x11x31x41

24



Hybrid attacks. More guided strategies can be imagined. Typically, one can be interested in recovering
intermediate values with algebraic attacks before running efficient attacks by linearization. For instance, each
monomial coefficient of ϕS is Σκ-symmetric15 and could be thus recovered (see Proposition 7). However, as
mentioned above, ϕS is exponential-size provided κ = Θ(λ).

The CPA attacker could also be interested in recovering the naive/basic operators Oi (see Section 5).
Indeed, the knowledge of these operators leads to efficient attacks by linearization. The CPA attacker knows
OS→Ti
i . Hence, it could be interested in recovering Ai = S−1Ti by noticing that

Oi = AiO
S→Ti
i

To achieve this, we introduce new variables aijk representing Ai = [aijk]. Then, we add the quadratic
polynomials coming from the matrix equality SAi = Ti, i.e. for any j, k ∈ {1, . . . , 2κ},

κ∑
ℓ=1

sjℓaiℓk − tijk = 0

where S = [sjk] and Ti = [tijk], to the ideal I0 + I1 + I2 or to sub-ideals. We did not manage to recover Ai
by this way. Moreover, this attack appears inefficient in the sense that computing grevlex -Grœbner basis is
experimentally totally inefficient.

Imagine that it were not the case, i.e. Ai can be efficiently recovered. The naive operators could thus be
efficiently recovered by running this attack. It would then suffice to run Attack 2, which was shown efficient
with the naive operators (dealing with the case γ = 0). This would lead to an algorithm much more efficient
than the one proposed by SageMath to eliminate variables in I0 + I1 + I2. This would contradict the implicit
idea underlying our security analysis: the algorithms implemented in SageMath are the most efficient ones to
compute Grœbner bases.

In [BFP12], Bettale et al. propose to combine exhaustive search (by fixing some variables) with Grœbner
basis. The efficiency of this hybrid approach is related to the choice of a trade-off between the two methods.
Nevertheless, the exhaustive search is here totally inefficient because n is assumed to be large.

Subgroup attacks. Let C ⊂ Z2κ
n denote the set of valid encryptions and let ⊕ be the naive operator Add

(dealing with the case γ = 0). It is not difficult to show that (C,⊕) is an abelian group. Moreover, the set
C0 ⊂ C of encryptions of 0, i.e.

C0 = {c ∈ C|Decrypt(S, c) = 0}
is a subgroup of C. This scheme could be subject to subgroup attacks consisting of distinguishing between
C0 and C. In particular, there is an efficient quantum algorithm for solving Hidden Subgroup Problem (HSP).

However, thanks to the operators Rand, it does not work anymore provided γ > 0. In this case, (C,⊕)
is not a group anymore: ⊕ is not associative, there does not exist an identity element e and it is even not
stable (c⊕ c′ may be an invalid encryption).

7.5 Discussion

In this section, we mainly investigate the security of our scheme against algebraic attacks. We obviously tested
many variants of the above attacks. We systematically obtained results consistent with the ones presented
here.

The running times obtained in our experiments suggest that these attacks are not polynomial-time. This
is obviously not sufficient. To go further, we investigated this question more formally.

We exhibited the fundamental role played by symmetry. Under the factoring assmuption, this property
discards a large class of algebraic attacks aiming to recover non-symmetric values (see Proposition 7). More-
over, this property ensures that the systems of equations considered in our attacks have at least κ solutions.
This ensures that the degree dmax reached by the polynomials considered during the computation of Grœbner
bases grows with κ. Attack 3 (which can be seen as a variant of Attack 2) appears to be the most efficient
attack that we tested. Strong evidence in favor of its inefficiency was provided.

Claim 1. Assuming the hardness of factoring, algebraic attacks based on Grœbner bases are not efficient
provided κ = Θ(λ) and γ > 0.

15 can be expressed as an evaluation of Σκ-symmetric polynomials over θ.

25



7.6 Efficiency

As mentioned above, the running time of Add is O(γκ3) and the running time of Mult is O(γκ4).
Attack 3 is the most efficient tested attack. By extrapolating our experimental results, it would suffice

to choose κ = 30 and γ = 1 for a security parameter λ = 100. Under this choice, Add would require
approximatively 2.3× 106 multiplications in Zn and Mult approximatively 108 multiplications.

It should be noticed that evaluating these operators consists of evaluating expanded polynomials. It can
thus be highly parallelized. Moreover, some significant improvements can be imagined, but this is not the
object of this paper.

8 Future Work / Open questions

Several ways can be chosen to extend our work. The most formal one would consist of formally reducing
a classical cryptographic problem to the security of our scheme. According to our security analysis, we are
convinced that symmetry should play a central role in such a reduction.

Algebraic attacks based on Grœbner basis should be deeper investigated. In our opinion, it is a nice
cryptanalysis challenge. More generally, new attacks should be experimented with.

The factorization of n is not used in KeyGen. The factoring assumption is mainly introduced to ensure
that univariate nonlinear equations cannot be solved. The security of our private-key encryption (without
considering the homomorphic operators) is a priori not related to the factoring assumption. In section 4.4,
we have seen a strong link between our scheme and LWE. Further investigations should be done in this sense.

Nevertheless, the factoring assumption is required to make some algebraic attacks based on Grœbner bases
irrelevant. For instance, let us consider the public operator OS→T

1 = (p1, . . . , p2κ). Without the factoring
assumption, the rows tℓ could be efficiently recovered16 by solving the polynomial system derived from the
following equality

⟨tℓ, (p1, . . . , p2κ)⟩ = ηℓν0Lℓ,ℓ

Indeed, by eliminating all the variables except tℓ,1 (for instance), we obtain a nonlinear equation in tℓ,1 which
can be efficiently solved in finite fields.

To remove the factoring assumption, it is necessary to make such variable elimination inefficient. In our
opinion, there is hope to remove this assumption by adding randomness in the generation of the homomor-
phic operators. We carried out preliminary experiments in this sense, leading to promising results. Roughly
speaking, we add redundancy in encryptions in order to add randomness in homomorphic operators. This is
detailed in Appendix C.

Finally, our scheme can be straightforwardly turned into a HE over real numbers. To achieve this, it
suffices to choose S over the reals, e.g. S ← [0, 1]2κ×2κ. Indeed, c and a × c are encryptions of the same
value for any a ∈ R∗. Moreover, c and c + ε are encryptions of close values. Hence, the ciphertexts can be
normalized after each homomorphic operation, avoiding ciphertext-size leaks information. We carried out
promising experiments in this sense.

References

[ACF+12] Martin Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Perret. On the
complexity of the Arora-Ge Algorithm against LWE. In SCC 2012 – Third international conference on
Symbolic Computation and Cryptography, pages 93–99, Castro Urdiales, Spain, July 2012.

[AG11a] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Automata, Languages
and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011,
Proceedings, Part I, pages 403–415, 2011.

[AG11b] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Luca Aceto, Monika
Henzinger, and Jǐŕı Sgall, editors, Automata, Languages and Programming, pages 403–415, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

16 This is excluded under the factoring assumption according to Proposition 7.

26



[AM09] Divesh Aggarwal and Ueli M. Maurer. Breaking RSA generically is equivalent to factoring. In Advances in
Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, pages 36–53, 2009.

[BFP12] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving Polynomial Systems over Finite Fields:
Improved Analysis of the Hybrid Approach. In ISSAC 2012 - 37th International Symposium on Symbolic
and Algebraic Computation, pages 67–74, Grenoble, France, July 2012. ACM.

[BRS67] Elwyn R. Berlekamp, H. Rumsey, and G. Solomon. On the solution of algebraic equations over finite
fields. Information and Control, 10(6):553–564, 1967.

[Buc06] Bruno Buchberger. Bruno buchberger’s phd thesis 1965: An algorithm for finding the basis elements of the
residue class ring of a zero dimensional polynomial ideal. Journal of Symbolic Computation, 41(3):475–
511, 2006. Logic, Mathematics and Computer Science: Interactions in honor of Bruno Buchberger (60th
birthday).

[CGGI18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: fast fully homomorphic
encryption over the torus. IACR Cryptology ePrint Archive, 2018:421, 2018.

[CLO91] David Cox, John Little, and Donald O’Shea. Ideals, Varieties and Algorithms: An Introduction to Com-
putational Algebraic Geometry and Commutative Algebra. Springer, 1991.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In EUROCRYPT, pages 446–464, 2012.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less than a second.
In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I,
pages 617–640, 2015.

[Fau99] Jean-Charles Faugere. A new efficient algorithm for computing groebner bases (f4). Journal of Pure and
Applied Algebra, 139(1):61–88, 1999.

[Gar97] Michael R Garey. Computers and intractability: A guide to the theory of np-completeness, freeman.
Fundamental, 1997.

[Gav16] Gı̈¿½rald Gavin. An efficient somewhat homomorphic encryption scheme based on factorization. Cryp-
tology ePrint Archive, Report 2016/897, 2016. http://eprint.iacr.org/2016/897.

[GB19] Gı̈¿½rald Gavin and Sẗı¿½phane Bonnevay. Fractional lwe: a nonlinear variant of lwe. Cryptology ePrint
Archive, Report 2019/2502, 2019. http://eprint.iacr.org/2019/2502.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.
[Gen21] Craig Gentry. A decade (or so) of fully homomorphic encryption, 2021. Invited talk.
[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead.

In EUROCRYPT, pages 465–482, 2012.
[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the aes circuit. In CRYPTO,

pages 850–867, 2012.
[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:

Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part
I, pages 75–92, 2013.

[GT20] Gérald Gavin and Sandrine Tainturier. New ideas to build noise-free homomorphic cryptosystems. In
Abderrahmane Nitaj and Amr M. Youssef, editors, Progress in Cryptology - AFRICACRYPT 2020 - 12th
International Conference on Cryptology in Africa, Cairo, Egypt, July 20-22, 2020, Proceedings, volume
12174 of Lecture Notes in Computer Science, pages 423–451. Springer, 2020.

[LNV11] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practical?
IACR Cryptology ePrint Archive, 2011:405, 2011.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005,
pages 84–93, 2005.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. 56(6), 2009.
[Rot11] Ron Rothblum. Homomorphic Encryption: From Private-Key to Public-Key, pages 219–234. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2011.
[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT, pages 377–394,

2010.
[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption

over the integers. In EUROCRYPT, pages 24–43, 2010.

27



A Implementation of the basic Add in the case κ = 1

In this section, we provide an example of the implementation of the homomorphic scheme for κ = 1. Let
S = [sij ] ∈ Z2×2

n and ∆ = s11s22 − s12s21.

Add = (p1, p2)← OGen(S, i) is defined by

(
p1
p2

)
= S−1

(
⟨s1,u⟩⟨s2,v⟩+ ⟨s2,u⟩⟨s1,v⟩
⟨s2,u⟩⟨s2,v⟩

)
= S−1

(
⟨s1,u⟩⟨s2,v⟩+ ⟨s2,u⟩⟨s1,v⟩
⟨s2,u⟩⟨s2,v⟩

)
= S−1

(
2s11s21u1v1 + (s11s22 + s21s12)(u1v2 + u2v1) + 2s12s22u2v2
s221u1v1 + s21s22(u1v2 + u2v1) + s222u2v2

)
= ∆−1

[
s22 −s12
−s21 s11

](
2s11s21u1v1 + (s11s22 + s21s12)(u1v2 + u2v1) + 2s12s22u2v2
s221u1v1 + s21s22(u1v2 + u2v1) + s222u2v2

)
It follows that

∆ · p1(u,v) =(2s22s11s21 − s12s221)u1v1
+s222s11(u1v2 + u2v1)

+s12s
2
22u2v2

∆ · p2(u,v) =− s11s221u1v1
−s221s12(u1v2 + u2v1)

+(s11s
2
22 − 2s21s12s22)u2v2

Numerical application.

– n = 5, κ = 1

– S =

[
3 1
2 1

]
;S−1 =

[
1 4
3 3

]
– Add(u,v) = S−1

(
(u1 + 4u2)(3v1 + 3v2) + (3u1 + 3u2)(v1 + 4v2)
(3u1 + 3u2)(3v1 + 3v2)

)
=

(
3u1v1 + 3(u2v1 + u1v2) + u2v2
3u1v1 + (u2v1 + u1v2) + 4u2v2

)
– c1 =

(
1
1

)
; c2 =

(
2
3

)
– Decrypt(S, c1) =

3×1+1×1
2×1+1×1 = 3; Decrypt(S, c2) =

3×2+1×3
2×2+1×3 = 2

– c3 = Add(c1, c2) =

(
p1(c1, c2)
p2(c1, c2)

)
=

(
3× 1× 2 + 3(1× 2 + 1× 3) + 1× 3
3× 1× 2 + (1× 2 + 1× 3) + 4× 1× 3

)
=

(
4
3

)
= Add(c2, c1)

– Decrypt(S, c3) =
3×4+1×3
2×4+1×3 = 0 = Decrypt(S, c1) + Decrypt(S, c2)

B Attacks by linearization

Attack 1. By definition of our operator ⊗, we can write (u ∼ v meaning that ∃k s.t. u = kv),

28



c⊗ c ∼ S−1


rκ1x1(x1 + x2 + . . .+ xκ)
rκ1
· · ·
rκκxκ(x1 + x2 + . . .+ xκ)
rκκ

 ∼ S−1


rκ1x1x
rκ1
· · ·
rκκxκx
rκκ


This is obviously a disaster in term of security. Indeed, if c is an encryption of 0 then

c⊗ c ∼ S−1


0
rκ1
· · ·
0
rκκ


Let c1, . . . , cκ be encryptions of 0. To test whether a challenge encryption c is an encryption of 0, it suffices
to check that c⊗ c belongs to the vectorial space spanned by the vectors c1 ⊗ c1,. . . , cκ ⊗ cκ.

Attack 2. Let us consider the operator O1 defined in the previous section, i.e. applying O1 consists of
evaluating the polynomials p1, . . . , p2κ defined byp1

· · ·
p2κ

 = S−1


L11

L22

· · ·
L2κ,2κ


As the vector v = S−1(0, 1, 0, 1, . . . , 0, 1) is the unique vector satisfying Add(u,v) = u for any valid encryption
u, it can be recovered by solving a linear system. It follows that O1(c,v) is equal to the vector w =
S−1(0, r1, 0, r2, . . . , 0, rκ). By solving the equation Add(u,w) = c, we get the vector

c̃ = S−1


x1
1
· · ·
xκ
1


satisfying ⟨s1 + s3 + · · ·+ s2κ−1, c̃⟩ = x. This leads to an efficient attack consisting of solving a linear system
of size 2κ.

Attack 3. Let us consider the vector v = uκ−1 built as follows:

– u0 = c

– ui = Oi+1(ui−1, c) for any i = 1, . . . , κ− 1

By construction,

v = S−1



r1 . . . rκ−1x1 . . . xκ−1

r1 . . . rκ−1

r2 . . . rκx2 . . . xκ
r2 . . . rκ
· · ·
rκr1 . . . rκ−2xκx1 . . . xκ−2

rκr1 . . . rκ−2


Il follows that

φ(c,v)
def
= L14(c,v) +L36(c,v) + . . .+L2κ−1,2(c,v)

= r1 · · · rκ (x1 + . . .+ xκ)

= ϕS(c)

29



can be used to distinguish encryptions of 0 from random ones. Moreover, as this polynomial is quadratic, it
expanded representation can be polynomially recovered by solving a linear system (by considering sufficiently
many encryptions of 0).

C Removing the factoring assumption

Throughout this section, n will be a large prime. Proposition 7 excludes some algebraic attacks which become
relevant without the factoring assumption (see Section 8). In order to make these attacks irrelevant, we
propose to redundancy in encryptions allowing to add randomness in homomorphic operators. The idea is to
exploit the following assertion:

a

b
=
a′

b′
⇒ a

b
=
η1a+ η2a

′

η1b+ η2b′
(5)

ensuring that η1b+ η2b
′ ̸= 0. Concretely, an encryption c ∈ Z2τκ

n could be defined as follows

c = S−1



r11x1
r11
· · ·
r1τx1
r1τ
· · ·
· · ·
rκ,1xκ
rκ,1
· · ·
rκ,τxκ
rκ,τ


Equivalently, we have

X(c) = (x1, . . . , x1︸ ︷︷ ︸
τ

, x2, . . . , x2︸ ︷︷ ︸
τ

, . . . , xκ, . . . , xκ︸ ︷︷ ︸
τ

)

R(c) = (r11, . . . , r1τ , r21, . . . , r2τ , . . . , rκ1, . . . , rκτ )

The homomorphic operators should be then adapted. Assertion 5 can be used to dramatically increase
internal randomness of these operators. For instance, Assertion 5 ensures that

η11L11(c, c
′) + η12L33(c, c

′)

η11L22(c, c′) + η12L44(c, c′)
=
η11r11r

′
11x1x

′
1 + η12r12r

′
12x1x

′
1

η11r11r′11 + η12r12r′12
= x1x

′
1

By extending this idea, the operator O1 = (p1, . . . , p2κ) in the case κ = τ = 2 (extension to the other
operators for any κ ≥ 2, τ ≥ 2 is straightforward) can be redefined as follows:

p1
· · ·
p8

 = S−1



ν0 (η11L11 + η12L33 + η13L13 + η14L31) + ν1 (η11L22 + η12L44 + η13L24 + η14L42)
ν0 (η11L22 + η12L44 + η13L24 + η14L42)
ν0 (η21L11 + η22L33 + η23L13 + η24L31) + ν1 (η21L22 + η22L44 + η23L24 + η24L42)
ν0 (η21L22 + η22L44 + η23L24 + η24L42)
ν0 (η31L55 + η32L77 + η33L57 + η34L57) + ν2 (η31L66 + η32L88 + η33L68 + η34L86)
ν0 (η31L66 + η32L88 + η33L68 + η34L86)
ν0 (η41L55 + η42L77 + η43L57 + η44L75) + ν2 (η41L66 + η42L88 + η43L68 + η44L86)
ν0 (η41L66 + η42L88 + η43L68 + η44L86)


30



where ν0, ν1, ν2, ηij are polynomials satisfying ν1 + ν2 = 0. By construction, it is ensured that O1(c, c
′) is

equal to

S−1



ν0x1x
′
1(η11r11r

′
11 + η12r12r

′
12 + η13r11r

′
12 + η14r12r

′
11)+ ν1(η11r11r

′
11 + η12r12r

′
12 + η13r11r

′
12 + η14r12r

′
11)

ν0(η11r11r
′
11 + η12r12r

′
12 + η13r11r

′
12 + η14r12r

′
11)

ν0x1x
′
1(η21r11r

′
11 + η22r12r

′
12 + η23r11r

′
12 + η24r12r

′
11) + ν1(η21r11r

′
11 + η22r12r

′
12 + η23r11r

′
12 + η24r12r

′
11)

ν0(η21r11r
′
11 + η22r12r

′
12 + η23r11r

′
12 + η24r12r

′
11)

ν0x2x
′
2(η31r21r

′
21 + η32r22r

′
22 + η33r21r

′
22 + η34r22r

′
21) + ν2(η31r21r

′
21 + η32r22r

′
22 + η33r21r

′
22 + η34r22r

′
21)

ν0(η31r21r
′
21 + η32r22r

′
22 + η33r21r

′
22 + η34r22r

′
21)

ν0x2x
′
2(η41r21r

′
21 + η42r22r

′
22 + η43r21r

′
22 + η44r22r

′
21) + ν2(η41r21r

′
21 + η42r22r

′
22 + η43r21r

′
22 + η44r22r

′
21)

ν0(η41r21r
′
21 + η42r22r

′
22 + η43r21r

′
22 + η44r22r

′
21)


with νi = νi(c, c

′) and ηij = ηij(c, c
′). It follows that

c′′ = ν0S
−1



(η11r11r
′
11 + η12r12r

′
12 + η13r11r

′
12 + η14r12r

′
11)(x1x

′
1 + ν1/ν0)

(η11r11r
′
11 + η12r12r

′
12 + η13r11r

′
12 + η14r12r

′
11)

(η21r11r
′
11 + η22r12r

′
12 + η23r11r

′
12 + η24r12r

′
11)(x1x

′
1 + ν1/ν0)

(η21r11r
′
11 + η22r12r

′
12 + η23r11r

′
12 + η24r12r

′
11)

(η31r21r
′
21 + η32r22r

′
22 + η33r21r

′
22 + η34r22r

′
21)(x2x

′
2 − ν1/ν0)

(η31r21r
′
21 + η32r22r

′
22 + η33r21r

′
22 + η34r22r

′
21)

(η41r21r
′
21 + η42r22r

′
22 + η43r21r

′
22 + η44r22r

′
21(x2x

′
2 − ν1/ν0)

(η41r21r
′
21 + η42r22r

′
22 + η43r21r

′
22 + η44r22r

′
21)


If follows that O1 is valid, i.e. c′′ is a valid encryption of π1 = x1x

′
1+x2x

′
2. The running time of this operator

is polynomial as long as κ, τ are polynomials and the polynomials νi, ηij are polynomial-size. We propose to
choose these polynomials in the form ∑

0<i,j,k,ℓ≤2κ;0≤e,e′≤d

aijkℓe,e′U
e
i U

d−e
j V e

′

k V
d−e′
ℓ

where d is a parameter indexed by λ. Such polynomials are polynomial-size as long as κ, d are polynomial-size,
i.e. they have O(κ4d2) monomials. It follows that the running time of homomorphic operators is polynomial
as long as κ, τ, d are polynomials in λ.

We did not identify any efficient algebraic attack, i.e. we did not obtain any relevant results (in less than
36h) for any (κ, τ, d) ≥ (2, 2, 1). More precisely, we have mainly experimented attacks that are irrelevant
under the factoring assumption according to Proposition 7. In particular, we propose to partially recover θ:

– coefficients sij of S

– the polynomials νi, ηij involved in the operators, in particular ν0.

Claim 2. Algebraic attacks based on Grœbner bases are not efficient provided κ, τ, d = Θ(λ).

31


