
Kuang et al.

RESEARCH

Benchmark Performance of Homomorphic
Polynomial Public Key Cryptography for Key
Encapsulation and Digital Signature Schemes
Randy Kuang*, Maria Perepechaenko, Dafu Lou and Brinda Tank

*Correspondence:

randy.kuang@quantropi.com

Quantropi Inc., 1545 Carling Ave,

Suite 620, K1Z 8P9, Ottawa,

Canada

Full list of author information is

available at the end of the article
†Equal contributor

Abstract

This paper presents a comprehensive benchmarking analysis of the Homomorphic
Polynomial Public Key (HPPK) Key Encapsulation Mechanism (KEM) and
Digital Signature (DS), recently introduced by Kuang et al. Departing from
traditional cryptographic approaches, these schemes leverage the security of
homomorphic symmetric encryption across two hidden rings without relying on
NP-hard problems. HPPK can be considered a specialized variant of Multivariate
Public Key Cryptography (MPKC), intricately associated with two vector spaces:
the polynomial vector space for secret exchange and the multivariate vector space
for randomized encapsulation.
Given the unique integration of asymmetric, symmetric, and homomorphic

cryptography within HPPK, a meticulous examination of its performance metrics
is imperative. This study focuses on a comprehensive benchmarking of HPPK
KEM and DS, spanning key cryptographic operations, including key generation,
encapsulation, decapsulation, signing, and verification. The results underscore the
exceptional efficiency of HPPK, characterized by compact key sizes, cipher sizes,
and signature sizes. The incorporation of symmetric encryption enhances overall
performance. Key findings highlight the outstanding performance of HPPK KEM
and DS across various security levels, emphasizing their superiority in critical
cryptographic operations. This research positions HPPK as a promising and
competitive solution for post-quantum cryptographic applications across diverse
domains such as blockchain, digital currency, and Internet of Things (IoT)
devices.

Keywords: Post-Quantum Cryptography; Public-Key Cryptography; PQC; Key
Encapsulation Mechanism; KEM; Digital Signature; DS; HPPK; Asymmetric
Cryptography; Symmetric Cryptography; Homomorphic Cryptography

1 Introduction
In the dynamic realm of cryptography, the pursuit of robust and efficient crypto-

graphic schemes has recently achieved remarkable progress, particularly with the

groundbreaking innovations introduced by Kuang et al. These innovations include

the Homomorphic Polynomial Public Key (HPPK) Key Encapsulation Mechanism

(KEM) and Digital Signature (DS), both evolving from earlier stages like DPPK [1]

and MPPK [2, 3]. Departing from conventional cryptographic paradigms, these

schemes leverage homomorphic symmetric encryption across two concealed rings,

offering a distinct avenue for ensuring security without resorting to NP-hard prob-

lems.
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HPPK emerges as a specialized variant of Multivariate Public Key Cryptography

(MPKC) [4], intricately intertwining two vector spaces: a polynomial vector space

for secret exchange and a multivariate vector space for randomized encapsulation.

This departure from convention allows HPPK to seamlessly integrate asymmet-

ric, symmetric, and homomorphic cryptography, presenting a novel paradigm with

broad applications.

The security foundation of HPPK relies on symmetric encryption with a

self-shared key, manifesting as two co-prime pairs GCD(R1, S1) = 1 and

GCD(R2, S2) = 1 with S1 and S2 defining the rings. The symmetric encryption

key, not shared with the encryptor and verifier, necessitates partial homomorphic

properties like addition and scalar multiplication. These properties, inherent in mod-

ular multiplication encryption of polynomial coefficients, align with the polynomial

public key structure. The self-shared key serves a dual purpose: first, encrypting the

plaintext public key while preserving its mathematical structure, and subsequently,

decrypting the received ciphertext of the secret through the asymmetric mecha-

nism. The computational complexity of finding the pairs (R1, S1) and (R2, S2) for
HPPK KEM is O(η(S21 + S

2
2)) → O(η22L), with L = og2S1 = og2S2 being

the size of the rings and the constant η < 1 signifying reduced brute force searches

due to the co-prime condition. Once the symmetric key is revealed, there is no

additional computational difficulty in finding other private key elements.

In contrast, HPPK DS [5] requires a transformative approach to eliminate the

moduli S1 and S2 for signature verification. Utilizing the Barrett reduction al-

gorithm for efficient modular multiplication, it transforms verification polynomials,

establishing a non-linear relationship with the signature embedded coefficients. This

characteristic significantly mitigates the potential for forged signatures.

The primary objective of this paper is to conduct a comprehensive benchmarking

analysis of the performance of HPPK KEM and DS. Through a meticulous exam-

ination of key cryptographic operations, including key generation, encapsulation,

decapsulation, signing, and verification, we aim to provide a thorough understand-

ing of the schemes’ efficiency. This evaluation extends to comparisons of key sizes,

cipher sizes, and signature sizes, offering valuable insights into the practical viability

of these schemes.

This study positions HPPK at the forefront of post-quantum cryptographic solu-

tions, emphasizing its exceptional performance and adaptability across various se-

curity levels. Beyond theoretical considerations, the practical implications of HPPK

extend to applications such as blockchain, digital currency, and Internet of Things

(IoT) devices. Through this benchmarking analysis, we aim to contribute valuable

insights into the evolving landscape of cryptographic schemes and their practical

implications in contemporary security contexts.

2 Related Works
The domain of Post-Quantum Cryptography (PQC) encompasses a spectrum of

standardized schemes identified by the National Institute of Standards and Tech-

nology (NIST). This overview provides a succinct summary of noteworthy schemes

categorized based on their cryptographic foundations. For Key Encapsulation Mech-

anism (KEM), we have lattice-based Kyber [6], BIKE [7], HQC [8], and code-based
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McEliece [9]. Additionally, for Digital Signature (DS), the lattice-based Falcon [10],

Dilithium [11], and hash-based SPHINCS+ [12] are highlighted.

In 2022, NIST took a significant stride by announcing its standardized algo-

rithms [13], endorsing Kyber for KEM and advancing McEliece, BIKE, and HQC

into round 4. Concurrently, NTRU [14] and Saber [15] were excluded from further

consideration, while new submissions for generic digital signature schemes were in-

troduced [13].

Lattice-based algorithms, such as Kyber, BIKE, HQC, and Falcon, typically rely

on the Short-Vector Problem (SVP) as the cornerstone of their security. Code-based

algorithms, exemplified by McEliece, hinge on the complexity of decoding random

linear codes, providing post-quantum security. Hash-based algorithms, as seen in

SPHINCS+ , are constructed on the security of one-way trapdoors in hash functions.

These NP-hard problems form the foundation of security against the impending

threat of quantum computing. In contrast, HPPK cryptography takes a distinctive

approach by building on the security of symmetric encryption, offering a unique

and innovative path in the landscape of post-quantum cryptographic solutions.

3 Brief HPPK Cryptography
We present a succinct overview of HPPK cryptography, emphasizing the shared

characteristics of the Key Encapsulation Mechanism (KEM) and Digital Signature

(DS) schemes. Subsequently, we delve into the details of KEM and DS in separate

subsections.

HPPK cryptography, as introduced by Kuang et al. [16, 5], starts from three

polynomials: two univariate polynomials ƒ () and h(), where  signifies the secret,

and one multivariate polynomial β(, 1, . . . , m) over the prime field Fp. The

latter involves noise variables j ∈ Fp for randomized encapsulations of the chosen

secret  and signature verification for a given message. These polynomials follow

general forms:

ƒ () = ƒ0 + ƒ1 + · · · + ƒλλ

h() = h0 + h1 + · · · + hλλ

β(, 1, . . . , m) =
n
∑

=0

β(1, . . . , m) =
n
∑

=0

m
∑

j=1

cj
j

Using polynomial multiplication, two product polynomials p(, 1, . . . , m) and
q(, 1, . . . , m) are constructed, leading to public key coefficients pj and qj.

HPPK cryptography introduces the homomorphic operator Ê(R,S) and its decryp-

tion counterpart. These operators can be applied to polynomials on their coeffi-

cients.

The HPPK KEM scheme involves creating two hidden rings marked by R1, S1
and R2, S2. The homomorphic operators Ê(R1,S1) and Ê(R2,S2) are applied to the

coefficients of public polynomials P(.) and Q(.). The key pair consists of private

keys R1, S1;R2, S2; ƒ [λ + 1], h[λ + 1] and public keys P[n + λ + 1][m] and

Q[n + λ + 1][m].
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In the encryption process, an encrypter randomly chooses a secret  and noise

variables 1, . . . , m. The resulting ciphertext, a tuple C = {P,Q}, is sent to the

decrypter. The decrypter calculates k based on the received ciphertext and solves

for  using the univariate polynomial equation ƒ () − kh() = 0 mod p.
It’s important to note that the benchmarking analysis considers specific choices

for parameters, such as λ = 1, to optimize the performance of HPPK cryptography.

3.1 HPPK KEM

Now the coefficients of public polynomials P(·) and Q(·) form the public key. Let’s

summarize the key pair:

• Security parameters: {n, λ, p};
• Private key: R1, S1;R2, S2; ƒ [λ + 1], h[λ + 1];
• Public key: P[n + λ + 1][m] and Q[n + λ + 1][m]

Using the public key, an encrypter randomly chooses a secret  in Fp to be

encapsulated. The encryption also requires randomly chosenm values 1, . . . , m ∈
Fp for the noise variables, and then evaluates two polynomial values as follows:

P = P(, 1, . . . , m) =
n+λ
∑

=0

m
∑

j=1

Pj(j mod p)

Q = Q(, 1, . . . , m) =
n+λ
∑

=0

m
∑

j=1

Qj(j mod p)

(1)

Then, the ciphertext is a tuple C = {P,Q} sent to the decrypter for the secret

extraction.

The decrypter receives the ciphertext tuple C = {P,Q}. Then, the decrypter

calculates:

k =
R−11 [P = P(, 1, . . . , m)] mod S1

R−12 [Q = Q(, 1, . . . , m)] mod S2
mod p

=
β(, 1, . . . , m)ƒ ()

β(, 1, . . . , m)h()
mod p

=
ƒ ()

h()
mod p

(2)

The value k in Eq. (2) is evaluated from the received ciphertext tuple. At this

point, the decrypter needs to solve for  from the following univariate polynomial

equation:

ƒ () − kh() = 0 mod p. (3)

Recall that ƒ () and h() are solvable polynomials of degree λ. Eq. (3) can be

solved with well-known radicals. Thanks to symmetric homomorphic encryption
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over hidden ring(s), the optimal choice for the order of polynomials ƒ () and h()
would be linear to avoid possible more than one root requiring an extra verification.

Therefore, this benchmark uses λ = 1.

3.2 HPPK DS

Based on Eq. (2), we can perform a cross-multiplication and obtain the following

equation:

[ƒ ()R−12 Q(, ⃗)mod S2] mod p = [h()R−11 P(, ⃗)mod S1] mod p

−→ [F()Q(, ⃗)mod S2] mod p = [H()P(, ⃗)mod S1] mod p (4)

where ⃗ denotes the vector (1, . . . , m) and Eq. (4) behaves like a verification

equation with signature elements defined as:

F() = ƒ ()R−12 mod S2; H() = h()R−11 mod S1 (5)

with ƒ () and h() to be evaluated with mod p then decrypted into rings ZS2
and ZS1 respectively. Considering the unknown moduli S1 and S2 in Eq. (4),

the signature verifier could not perform the verification. We have to transform

Eq. (4) into a new form without S1 and S2. The Barrett reduction algorithm is

applied for this transformation as described in the paper [5]. In order to apply the

Barrett reduction algorithm for modular multiplications, let’s rewrite Eq’ (4) to the

following form by expanding polynomials P(·) and Q(·):

m
∑

j=1

n+λ
∑

=0

Vj(F)j mod p =
m
∑

j=1

n+λ
∑

=0

Uj(H)j mod p

−→ V(F, , 1, ..., m) = U(H,, 1, ..., m)mod p (6)

with polynomial coefficients Vj(F) and Uj(H) defined as:

Uj(H) = [H∗ Pj mod S1] mod p

Vj(F) = [F∗Qj mod S2] mod p.
(7)

where F = F() and H = H() are signature elements with  ←− HASH(M)
representing the hash code of a signing message M. Using the Barrett reduction

algorithm, we can transform coefficients of verification polynomials in Eq. (7) into

the following equations by multiplying a randomly chosen β ∈ Fp and then taking

mod p:

Uj(H) = H∗ p′
j
− s1⌊

Hμj

R
⌋ mod p

Vj(F) = F∗ q′
j
− s2⌊

Fνj

R
⌋ mod p. (8)
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with

s1 = βS1 mod p

s2 = βS2 mod p

p′
j
= βPj mod p

q′
j
= βQj mod p

μj = ⌊
RPj

S1
⌋

νj = ⌊
RQj

S2
⌋

(9)

to be the public key for signature verification. In Eq. (9), R = 2K is the Barrett

parameter as a security parameter with K >> L. HPPK signing is described by

Eq. (5) and verification by Eq. (6).

4 Security Summary
The detailed security analysis is available in HPPK KEM for dual hidden rings[16]

and for a single hidden ring[17]. In this paper, we provide a concise summary of the

conclusions. The security of HPPK KEM primarily stems from symmetric homo-

morphic encryption over hidden rings using the self-shared keys R1, S1;R2, S2 for

dual rings and R1, S1;R2, S2 = S1 for a single ring. Once the symmetric key is dis-

covered, all other private key elements can be easily unveiled without computational

difficulty.

Discovering the symmetric encryption key involves knowing R1 and S1 over a

hidden ring 1 and R2 and S2 over a hidden ring 2, achieved through random

guessing with a complexity of O(S21) and O(S22), respectively. For each guessed

S1, the attacker must bruteforce R1 and test if R1 is coprime with S1. For each

found coprime pair (R1, S1), the attacker must use it to decrypt the public key

P[n + λ + 1][m] and verify if all decrypted P[n + λ + 1][m] ∈ Fp. If not, the
process is repeated. This is why the complexity is O(S21). The same process applies

to ring 2. Therefore, the overall complexity is O(S21 + S22) = O(2 ∗ 22L) with

|S2|2 = |S1|2 = L, for dual hidden rings. For a single hidden ring, the complexity

could be just O(22L). We can safely include a factor η < 1 for the complexity

O(η22L) to consider the some effective way for coprime pair searches.

Considering ciphertext-only attacks, the complexity for the secret recovery attack

is O(pm−1), requiring the number of noise variables to be more than one for a

non-deterministic secret recovery attack, as we have two equations established from

the public polynomials P(.) with ciphertext P and Q(.) with Q.

For NIST security levels I, III, and V, we choose the bit length L = 2∗ |p|2 + 8
bits. Then the overall complexity is O(24 log2 p+16). Table 1 illustrates different

configurations for the three NIST security levels. It is evident that the two variants

OHR and THR of HPPK KEM only differ in private key, as there is no S2 for

HPPK-OHR. Therefore, their performance should be similar for encryption and

decryption, but HPPK-OHR might be slightly more efficient for key generation
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due to the smaller private key size. This paper will focus on benchmarking the

performance of HPPK-OHR for KEM.

Table 1 Configurations of HPPK KEM over One-Hidden-Ring or OHR and Two-Hidden-Rings or
THR, for different NIST security levels, given as a quadruple (logp,n,λ,m).

Security
Level I Level III Level V

Entropy against key recovery (bit) 144 208 272
Configurations (32, 1, 1, 2) (48, 1, 1, 2), (64, 1, 1, 2)

(PK, SK : OHR|THR,CT) in Bytes (108, 43|52, 224) (156, 63|76, 240) (204, 83|100, 208)
Configurations (32, 1, 1, 3) (48, 1, 1, 3), (64, 1, 1, 3)

(PK, SK : OHR|THR,CT) in Bytes (162, 43|52, 224) (234, 63|76, 240) (306, 83|100, 208)

Within the HPPK DS framework, Kuang et al. introduced a key recovery at-

tack leveraging specific public key values, denoted as s1 and s2 [5]. The initial

method for determining moduli S1 and S2 exhibited a computational complexity

of O(S1S2/p) = O(22L/p). This paper presents an optimized key recovery attack

directly utilizing public key elements μj and νj, defined as:

μj = ⌊
R · pj
S1

⌋ −→ pj = ⌈
S1 · μj
R

⌉

νj = ⌊
R · qj
S2

⌋ −→ qj = ⌈
S2 · νj
R

⌉
(10)

This streamlined attack involves iteratively searching for S1 within the range

2L−1 to 2L, calculating pj using the known public key μj, and recalculating μj
with S1 and pj. If the recomputed μj matches the public key μj, the attacker

deterministically identifies the private values S1 and pj. The computational com-

plexity of this approach is O(2L−1). A similar procedure applies to S2 and qj,

resulting in a total complexity of O(2L).
Additionally, the remaining private key elements can be effortlessly determined

by intercepting genuine signatures with the known values of pj, qj, S1, and S2.

This optimized key recovery attack exhibits a complexity of O(2L), showcasing
significantly enhanced computational efficiency compared to the previous approach

with a complexity of O(22L/p).
Table 2 demonstrates that different configurations do not affect private key and

signature sizes, only influencing public key sizes. For m = 2, as the Barrett pa-

rameter k decreases from K = 2L to K = L + 32, the public key size significantly

decreases from 544B to 376B for level I, from 792B to 528B for level III, and from

1040B to 680B for level V, respectively. On the other hand, the public key size

is reduced by almost 50% when m is changed from 2 to 1, as shown in the 4th

configuration for all three security levels.

It is evident that the hash algorithms SHA-256, SHA-384, and SHA-512 are rec-

ommended for security levels I, III, and V, respectively. The signature size will be

32B for level I, 48B for level III, and 64B for level V. With selected primes as shown

in Table 2, hash codes will be segmented into four segments, each being 8B for level

I, 12B for level 3, and 16B for level V. Form = 1, there are four quadratic equations
producing four sets of roots, creating 24 possible forked hash codes associated with

24 possible messages. This allows some forged messages to pass verification. Taking
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an example for the SHA-256 hash algorithm, the collision rate is generally 1
2256

, so

the probability of a forged signature is at a level of 24

2256
for m = 1 and 23

2256
for

m = 2. In practical terms, an attacker would not gain any meaningful advantage

for a forged signature attack by reducing m from 2 to 1. However, the public key

size would be dramatically reduced. In this benchmarking, we present the HPPK

DS performance of key generartion, signing, and verifying with m = 1.

Table 2 The key and signature sizes in bytes, as provided by the HPPK DS scheme for the
proposed parameter sets, are determined based on the optimal complexity of O(2L). In this
context, we choose the Barrett parameter R to be 32 bits longer than S1/S2, and the hidden
ring size is set to be L = 2 × |p|2 + 16. All data is presented in bytes. The configuration is
defined as (n,λ,m,L, og2R).

Security p Configuration Entropy (bits) PK SK Sg Hsh
I 264 − 59 (1,1,2, 144, 288) 144 544 104 144 SHA-256

264 − 59 (1,1,2, 144, 208) 144 424 104 144 SHA-256
264 − 59 (1,1,2, 144, 176) 144 376 104 144 SHA-256
264 − 59 (1,1,1, 144, 208) 144 220 104 144 SHA-256
264 − 59 (1,1,1, 144, 176) 144 196 104 144 SHA-256

III 296 − 17 (1,1,2, 208, 416) 208 792 152 208 SHA-384
296 − 17 (1,1,2, 208, 272) 208 576 152 208 SHA-384
296 − 17 (1,1,2, 208, 240) 208 528 152 208 SHA-384
296 − 17 (1,1,1, 208, 272) 208 300 152 208 SHA-384
296 − 17 (1,1,1, 208, 240) 208 276 152 208 SHA-384

V 2128 − 159 (1,1,2, 272, 544) 272 1040 200 272 SHA-512
2128 − 159 (1,1,2, 272, 336) 272 728 200 272 SHA-512
2128 − 159 (1,1,2, 272, 304) 272 680 200 272 SHA-512
2128 − 159 (1,1,1, 272, 336) 272 380 200 272 SHA-512
2128 − 159 (1,1,1, 272, 304) 272 356 200 272 SHA-512

5 Benchmarking Results
In this section, we will demonstrate the performance of HPPK KEM in Subsec-

tion 5.1 and HPPK DS in subsection 5.2. We used the SUPERCOP benchmarking

tool [18]. All schemes have been configured to achieve the NIST security levels I,

III, and V. The three levels correspond to the difficulty of breaking 128, 192, and

256-bit Advanced Encryption Standard (AES). We ran SUPERCOP on a 16-core

Intel®Core™i7-10700 CPU at 2.90 GHz system.

5.1 HPPK KEM

The fundamental operations of the HPPK Key Encapsulation Mechanism (KEM)

scheme, including key generation, encapsulation, and decapsulation, are outlined in

Algorithms 1, Algorithm 2, and Algorithm 3 correspondingly. Table 3 provides a

thorough comparison of key sizes and ciphertext sizes for the HPPK KEM, juxta-

posed with NIST-standardized Kyber and round 4 candidates McEliece, BIKE [7],

and HQC [8].

At Security Level I, which mandates a secret key size of 32 bytes or more, crypto-

graphic schemes display varied sizes for public keys, private keys, and ciphertexts.

McEliece exhibits large key sizes, boasting a public key of 261,120 bytes and a

private key of 6,492 bytes. In contrast, Kyber, BIKE, and HQC present relatively

smaller key sizes, ranging from a few hundred to a few thousand bytes. Notably,

HPPK-(32,1,1,2) and HPPK-(32,1,1,3) introduce compact key structures, featuring

a public key of 108 or 162 bytes, a private key ranging from 43 to 52 bytes, and a
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ciphertext of 224 bytes. The primary impact on the public key size stems from an

increase in the number of noise variables.

Security Level III imposes elevated security requirements, targeting 192 bits of

entropy, resulting in larger key sizes for most cryptographic schemes. McEliece

maintains substantial key sizes for resilience, and Kyber, BIKE, and HQC witness

incremental size adjustments. Conversely, HPPK-(48,1,1,2) and HPPK-(48,1,1,3)

efficiently adapt to the increased security level, offering smaller key sizes. They

feature a public key of 156 or 234 bytes, a private key ranging from 63 to 76 bytes,

and a ciphertext of 240 bytes.

Security Level V, demanding the highest security standards, leads to larger key

sizes across cryptographic schemes. McEliece continues to exhibit substantial key

sizes for robust security, while Kyber, BIKE, and HQC scale up, emphasizing their

adaptability to increased security requirements. Significantly, HPPK-(64,1,1,2) and

HPPK-(64,1,1,3) remain efficient at this high security level, featuring a public key

of 204 or 306 bytes, a private key ranging from 83 to 100 bytes, and a ciphertext

of 208 bytes. These reduced sizes underscore the effectiveness of HPPK KEM in

achieving a balance between security and efficiency at the highest security level.

Table 3 This table compares public key, private key, and ciphertext sizes for HPPK KEM,
NIST-standardized Kyber, and round 4 candidates McEliece, BIKE, and HQC. HPPK KEM offers
two modes—single and double hidden rings—impacting private key size denoted as SK1 and
SK2 : SK1/SK2. The analysis provides insights into key size efficiency and security trade-offs
across different security levels.

Crypto Size (Bytes)
system Public key (PK) Private key(SK) Ciphertext Secret

Security Level I
McEliece 261,120 6,492 128 32
Kyber 800 1,632 768 32

BIKE [7] 1,541 281 1,573 32
HQC [8] 2,249 56 4,497 64

HPPK-(32,1,1,2) 108 43/52 224 32
HPPK-(32,1,1,3) 162 43/52 224 32

Security Level III
McEliece 524,160 13,608 188 32
Kyber 1,184 2,400 1,088 32

BIKE [7] 3,083 419 3,115 32
HQC [8] 4,522 64 9,042 64

HPPK-(48,1,1,2) 156 63/76 240 32
HPPK-(48,1,1,3) 234 63/76 240 32

Security Level V
McEliece 1,044,992 13,932 240 32
Kyber 1,568 3,168 1,568 32

BIKE [7] 5,122 581 5,904
HQC [8] 7,245 72 14,485 64

HPPK-(64,1,1,2) 204 83/100 208 32
HPPK-(64,1,1,3) 306 83/100 208 32

The comparative performance analysis of key generation, encapsulation, and de-

capsulation for different cryptographic schemes at Security Levels I, III, and V is

presented in Table 4. It is crucial to note that the performance metrics for BIKE

are derived from their AVX2 implementation due to susceptibility to side-channel

attacks in their reference implementation [7].

At Security Level I, McEliece exhibits a relatively high key generation time of

152,424,455 clock cycles, reflecting its design and larger key sizes. In contrast, Ky-

ber, BIKE(AVX2), and HQC offer more efficient key generation processes, with Ky-

ber leading in clock cycles. For encapsulation at Security Level I, HPPK-(32,1,1,2)
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Algorithm 1 Key generation of HPPK KEM.
1: procedure KeyGen(λ, n, m, p)
2: for ( = 0;  ≤ λ;  + +) do ▷ loop i
3: ƒ ← Rndom() mod p ▷ generate ƒ ()
4: h ← Rndom() mod p ▷ generate h()
5: end for
6: for ( = 0;  ≤ n;  + +) do ▷ loop i
7: for (j = 0; j < m; j + +) do ▷ loop j
8: cj ← Rndom() mod p ▷ generate β(, 1, . . . , m)
9: end for
10: end for
11:
12: for ( = 0;  ≤ n + λ;  + +) do ▷ Evaluate public key P(.), Q(.)
13: for (j = 0; j < m; j + +) do
14: for (s = 0; s < ; s + +) do
15: pj ← ƒsc(−s)j
16: Qj ← hsc(−s)j
17: end for
18: end for
19: end for
20:
21: ℓ← 2 log2 p + 8 ▷ Make the hidden field 8 bits larger than doubled prime field
22: S1 ← Rndom(ℓ) ▷ Generate the hidden ring Z/S1Z
23: R1 ← Rndom(ℓ)mod S1
24: while gcd(R1, S1) ̸= 1 do
25: R1 ← Rndom(ℓ)mod S1
26: end while
27:
28: S2 ← Rndom(ℓ) ▷ Generate the hidden ring Z/S2Z
29: R2 ← Rndom(ℓ)mod S2
30: while gcd(R2, S2) ̸= 1 do
31: R2 ← Rndom(ℓ)mod S2
32: end while ▷ Complete private key SK : ƒ [], h[], R1, S1, R2, S2
33:
34: for ( = 0;  ≤ n + λ;  + +) do ▷ Evaluate public key PK : P(.), Q(.)
35: for (j = 0; j < m; j + +) do
36: for (s = 0; s < ; s + +) do
37: Pj ← R1 ∗ Pj mod S1
38: Qj ← R2 ∗Qj mod S2
39: end for
40: end for
41: end for ▷ Complete public key PK : P[n + λ + 1][m], Q[n + λ + 1][m]
42: end procedure
43: return SK, PK ▷ Return private key SK and public key

Algorithm 2 HPPK encapsulation. P and Q are (n+λ+1)×m matrices with security

parameters p, n, λ.
1: procedure encapsulation(P, Q)
2: for (j = 1; j ≤m; j + +) do
3: j ← Rndom() mod p
4: end for
5:
6: P← 0
7: Q← 0
8: for ( = 0;  ≤ n + λ + 1;  + +) do ▷ Evaluate P,Q
9: for (j = 1; j ≤m; j + +) do
10: P← Pj(js mod p)
11: Q← Qj(js mod p)
12: end for
13: end for
14: end procedure

15: return P,Q ▷ Return ciphertext
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Algorithm 3 HPPK decapsulation. Inputs include ciphertext C = {P,Q}, prime p,

private key SK = {ƒ [λ + 1], h[λ + 1]}, R1, R2, S1, S2
1: procedure decapsulation(C, P,Q)

2: P←
�

P
R1

mod S1
�

mod p ▷ homomorphic decryption of P

3: Q←
�

Q
R2

mod S2
�

mod p ▷ homomorphic decryption of Q

4: k← P

Q
mod p

5:
6: s← soe ƒ (s) − kh(s) = 0 mod (p) ▷ use radical to solve the roots
7: end procedure
8: return s

and HPPK-(32,1,1,3) outperform other schemes with 25,963 and 65,776 clock cycles,

respectively, showcasing their efficiency. McEliece, BIKE(AVX2), and Kyber demon-

strate comparable performance for encapsulation, while HQC is relatively slower.

For decapsulation at Security Level I, HPPK-(32,1,1,2) and HPPK-(32,1,1,3) stand

out, requiring only 63 kilocycles, making them standout performers. McEliece is the

slowest, followed by BIKE and HQC, with Kyber being the second fastest.

At Security Level III, McEliece experiences increased key generation times,

demonstrating its resilience but highlighting scalability challenges. BIKE(AVX2)

is the second slowest, followed by HQC. Kyber maintains fast key generation, while

HPPK-(48,1,1,2) and HPPK-(48,1,1,3) variants exhibit efficient key generation,

adapting well to heightened security requirements. For encapsulation at Security

Level III, HPPK-(48,1,1,2) excels with 30,452 clock cycles, showcasing its efficiency.

McEliece and Kyber have comparable performance, while HQC is relatively slower.

For decapsulation at Security Level III, HPPK-(48,1,1,2) and HPPK-(48,1,1,3) con-

tinue their efficient performance, requiring only 54 kilocycles, one third of the cycles

of the fastest scheme Kyber. McEliece, BIKE(AVX2), and HQC are the slowest, sec-

ond slowest, and third slowest schemes, respectively.

At Security Level V, McEliece experiences substantial key generation times. Kyber

and HQC demonstrate increased cycles compared to lower security levels. HPPK-

(64,1,1,2) and HPPK-(64,1,1,3) variants stand out with efficient key generation,

requiring about 20 kilocycles. For encapsulation at Security Level V, HQC is the

slowest scheme, while McEliece and Kyber demonstrate comparable performance.

HPPK-(64,1,1,2) maintains efficiency with 16,941 clock cycles, less than 10

The performance trends of HPPK KEM from Security Level I to V for encapsu-

lation and decapsulation showcase intriguing characteristics. Performance at lower

security levels takes more clock cycles due to the smaller field size, necessitating

more segments for encapsulation and decapsulation for the given NIST-required

minimum 32 bytes of the secret. However, at Security Level III, where the field

size is 48 bits, the secret is 26 bytes long and segmented into 6 segments, en-

abling superior performance. This characteristic allows a single Security Level V

to be considered for both Security Level I and Security Level III, providing better

encapsulation and decapsulation performance, albeit with slightly larger key and

ciphertext sizes, as shown in Table 3. Considering key sizes and performance, opting

for the HPPK KEM scheme with two noise variables appears optimal, offering sizes

comparable to RSA-2048.
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Table 4 Comparison of key generation, encapsulation, and decapsulation performance for HPPK
KEM is illustrated with NIST standardized Kyber and round 4 candidates McEliece, BIKE, and
HQC. Performance data for BIKE and HQC are cited from your NIST submission specifications
and for McEliece and Kyber are directly computed from the the same SUPERCOP tool as HPPK
KEM schemes.

Crypto Performance (Clock cycles)
system KeyGen Encapsulation Decapsulation

Security Level I
McEliece 152,424,455 108,741 45,122,734
Kyber 72,403 95,466 117,406

BIKE(AVX2) [7] 589,000 97,000 1,135,000
HQC [8] 187,000 419,000 833,000

HPPK-(32,1,1,2) 12,665 25,963 63,365
HPPK-(32,1,1,3) 20,098 65,776 63,729

Security Level III
McEliece 509,364,485 172,538 93,121,707
Kyber 115,654 140,376 166,062

BIKE(AVX2) [7] 1,823,000 223,000 3,887,000
HQC [8] 422,000 946,000 1,662,000

HPPK-(48,1,1,2) 18,327 30,452 54,653
HPPK-(48,1,1,3) 22,831 40,495 53,164

Security Level V
McEliece 1,127,581,201 263,169 179,917,368
Kyber 177,818 205,504 237,484

HQC [8] 830,000 1,833,000 3,343,000
HPPK-(64,1,1,2) 19,416 16,941 29,026
HPPK-(64,1,1,3) 26,931 22,307 28,176

5.2 HPPK DS

The procedural details of HPPK DS are explicated in Algorithm 4 for key gener-

ation, Algorithm 5 for the signing process, and Algorithm 6 for the verification of

signatures. A comprehensive overview of key sizes and signature sizes for HPPK

DS is presented in Table 5, facilitating a comparative analysis with well-established

NIST-standardized algorithms, including the lattice-based Dilithium [11] and Fal-

con [10], as well as the hash-based SPHINCS+ [12].

Table 5 provides a visual representation of the comparisons in key size and signa-

ture size among various cryptographic schemes. Notably, SPHINCS+ stands out for

its smallest key sizes, not exceeding 128 bytes for all three security levels. However,

it demonstrates the largest signature sizes, measuring 7,856 bytes for Security Level

I, 16,224 bytes for Security Level III, and 29,792 bytes for Security Level V.

In the domain of lattice-based schemes, Dilithium exhibits larger sizes for public

key, private key, and signature compared to Falcon across all three security levels,

with sizes generally measured in kilobytes. In contrast, HPPK DS demonstrates a

remarkable optimization, presenting more compact sizes: 220 bytes for the public

key, 104 bytes for the private key, and 144 bytes for the signature at Security Level

I; 300 bytes, 152 bytes, and 208 bytes, respectively, at Security Level III; and 380

bytes, 200 bytes, and 272 bytes, respectively, at Security Level V.

Table 6 provides a comprehensive performance comparison for key generation,

signing, and verifying across various cryptographic schemes, including HPPK DS,

Dilithium, Falcon, and SPHINCS+ . The performance metrics are detailed for Se-

curity Levels I, III, and V, with the HPPK DS configuration considered involving

n = λ =m = 1 and utilizing the Barrett parameter K = L + 64 bits.

At Security Level I, Dilithium 2 demonstrates competitive key generation per-

formance at about 300 kilocycles, while HPPK-(64,1,1,1) showcases a significantly
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Algorithm 4 Key generation of HPPK DS.
1: procedure KeyGenDS(λ, n, m, p)
2: for ( = 0;  ≤ λ;  + +) do ▷ loop i
3: ƒ ← Rndom() mod p ▷ generate ƒ ()
4: h ← Rndom() mod p ▷ generate h()
5: end for
6: for ( = 0;  ≤ n;  + +) do ▷ loop i
7: for (j = 0; j < m; j + +) do ▷ loop j
8: cj ← Rndom() mod p ▷ generate β(, 1, . . . , m)
9: end for
10: end for
11:
12: for ( = 0;  ≤ n + λ;  + +) do ▷ Evaluate public key P(.), Q(.)
13: for (j = 0; j < m; j + +) do
14: for (s = 0; s < ; s + +) do
15: pj ← ƒsc(−s)j
16: Qj ← hsc(−s)j
17: end for
18: end for
19: end for
20:
21: ℓ← 2 log2 p + 16 ▷ Make the hidden field 16 bits larger than doubled prime field
22: S1 ← Rndom(ℓ) ▷ Generate the hidden ring Z/S1Z
23: R1 ← Rndom(ℓ)mod S1
24: while gcd(R1, S1) ̸= 1 do
25: R1 ← Rndom(ℓ)mod S1
26: end while
27:
28: S2 ← Rndom(ℓ) ▷ Generate the hidden ring Z/S2Z
29: R2 ← Rndom(ℓ)mod S2
30: while gcd(R2, S2) ̸= 1 do
31: R2 ← Rndom(ℓ)mod S2
32: end while ▷ Complete the private key SK : ƒ [], h[], R1, S1, R2, S2
33:
34: β← Rndom()mod p ▷ Randomly choose β to provide extra protection of S1, S2
35: for ( = 0;  ≤ n + λ;  + +) do ▷ Evaluate public key P(.), Q(.)
36: for (j = 0; j < m; j + +) do
37: for (s = 0; s < ; s + +) do
38: Pj ← R1 ∗ Pj mod S1
39: Qj ← R2 ∗Qj mod S2
40: p′ ← β∗ Pj mod p ▷ DS public key

41: q′
j
← β∗Qj mod p

42: μj ← ⌊
Pj>>K

S1
⌋ ▷ K: the Barrett parameter

43: νj ← ⌊
Qj>>K

S2
⌋

44: s1 ← β∗ S1 mod p
45: s2 ← β∗ S2 mod p
46: end for
47: end for
48: end for ▷ Complete the public key PK : p′[], q′[], μ[][], ν[][], s1, s2
49: end procedure
50: return SK, PK ▷ Return public key
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Algorithm 5 HPPK DS signing. P and Q are N×m matrices with security parameters

p, n, λ.
1: procedure encrypt(ƒ [], h[], R1, S1, R2, S2,m, )
2:
3: F← 0
4: H← 0
5: for ( = 0;  ≤ n + λ + 1;  + +) do ▷ Evaluate signature elements F and H
6: for (j = 1; j ≤m; j + +) do
7: F← ƒ ∗  mod p)
8: F← ƒ ∗  mod p)
9: end for
10: end for
11: F← R−12 ∗ Fmod S2 ▷ map to hidden rings

12: H← R−11 ∗Hmod S1
13: end procedure
14: return F,H ▷ Return signature

Algorithm 6 HPPK DS verification. Inputs include signature F,H, PK, prime p
1: procedure Verify(F,H, PK)
2: Rest← tre
3: for (j = 1; j ≤m; j + +) do
4: LHS← 0 ▷ LHS: the verification polynomial value on the left hand side.
5: RHS← 0 ▷ RHS: the verification polynomial value on the right hand side.
6: for ( = 0;  ≤ n + λ + 1;  + +) do ▷ Evaluate scoefficients Uj and Vj

7: Uj ← H∗ p′
j
− s1 ∗ ⌊

H∗μj
R ⌋ mod p) ▷ Barrett’s parameter R = 2k

8: Vj ← F∗ q′
j
− s1 ∗ ⌊

F∗νj
R ⌋ mod p)

9: LHS← LHS + Uj ∗  mod p
10: RHS← RHS + Vj ∗  mod p
11: end for
12: if (LHS! = RHS) then
13: Rest← ƒse
14: brek;
15: end if
16: end for
17: end procedure
18: return Rest

Table 5 Comparison of public key size, private key size, and signature size for HPPK DS is
illustrated with NIST standardized Dilithium and finalists. L is selected to be 2∗ |p|+ 16 and the
Barrett parameter K = L + 64 bits is used in this benchmarking. Optimized HPPK DS refers to a
configuration (64,1,1,1) with L = 168 bits.

Crypto Size (Bytes)
system Public key Private key Signature

Security Level I
Dilithium 2 1312 2420
Falcon512 897 1281 690

SPHINCS+ -128s [12] 32 64 7856
HPPK-(64,1,1,1) 220 104 144

Security Level III
Dilithium 3 1592 4016 3293

SPHINCS+ -192s [12] 32 64 16224
HPPK-(96,1,1,1) 300 152 208

Security Level V
Dilithium 5 2592 4880 4595
Falcon1024 1793 2305 1330

SPHINCS+ -256s [12] 64 128 29792
HPPK-(128,1,1,1) 380 200 272
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lower number of cycles at about 26 kilocycles. Falcon512 key generation exhibits

comparatively higher values with more than 38 million cycles. Notably, SPHINCS+ -

128s requires a substantial number of cycles, with 358 million cycles for key gener-

ation. For signing operations, HPPK-(64,1,1,1) stands out as the most efficient, re-

quiring only 12,510 cycles, whereas Dilithium 2 and Falcon512 demonstrate higher

cycle counts, exceeding one million cycles. SPHINCS+ -128s exhibits the highest

number of cycles, over 2.7 billion, reflecting its hash-based nature. In terms of ver-

ification, HPPK-(64,1,1,1) continues to perform exceptionally well, requiring only

18,349 cycles. Dilithium 2 and Falcon512, although higher than HPPK DS, demon-

strate reasonable verification performance. SPHINCS+ -128s again exhibits the high-

est cycle count due to its hash-based approach.

Moving to Security Level III, Dilithium 3 showcases competitive key generation

performance [11]. Our Supercop results for Dilithium 3 are about 2x faster than their

performance for key generation, signing, and verification [11]. While SPHINCS+ -

192s requires a significant number of cycles, more than 524 million cycles for key

generation. HPPK DS showcases a reasonable increase in clock cycles due to the

bigger finite field size, ranging from 25 to 35 kilocycles. For signing operations,

HPPK-(64,1,1,1) maintains efficient performance with 14,382 cycles, outperforming

Dilithium 3 with about 1 million cycles. SPHINCS+ -192s exhibits a higher cycle

count, almost doubling its cycles from security level I, reaching 5 billion cycles,

reflective of its hash-based structure. Signature verification sees HPPK-(64,1,1,1)

once again demonstrating efficiency with 21,145 cycles, slightly increasing from its

cycles at security level I. Dilithium 3 would be 15x slower than HPPK. SPHINCS+ -

192s requires a substantial number of cycles due to its hash-based nature.

At Security Level V, Dilithium 5 [11] exhibits competitive key generation perfor-

mance with 819 kilocycles, while Falcon1024 requires a significantly higher number

of cycles, over 100 million cycles. Our Supercop results for Dilithium 5 are again

about 2x faster than their performance for key generation, signing, and verifica-

tion [11]. HPPK-(128,1,1,1) maintains its efficient key generation with 42 kilocycles,

again slightly increasing its cycles from security level III. SPHINCS+ -256 show-

cases the highest cycle count of 346 million cycles for key generation, interestingly

lower than their cycles at security level III [12]. For signing operations, HPPK-

(128,1,1,1) demonstrates efficient performance with 16,046 cycles, showcasing the

fastest scheme. Dilithium 5 is the second fastest scheme with about 2.8 million cy-

cles, over 100x slower than HPPK DS. SPHINCS+ -256 exhibits the highest cycle

count of almost 4.5 billion cycles. Falcon1024 is the second slowest scheme with over

22 million cycles. Verification sees HPPK-(128,1,1,1) maintaining efficiency with

22,285 cycles, outperforming Dilithium 5 and Falcon1024. SPHINCS+ -256 requires

a substantial number of cycles due to its hash-based nature.

In summary, the performance of HPPK DS, particularly in signing and verification

operations, is highly competitive across different security levels when compared to

established NIST standardized schemes. The efficient use of cycles in HPPK DS,

especially in scenarios with varying hash sizes, makes it a promising candidate for

post-quantum cryptographic applications.
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Table 6 Comparison of signing and verification performance for HPPK DS is illustrated with NIST
standardized schemes. It should be noticed that the performance of HPPK DS is given based on
sizes of hash algorithms: 32 bytes for level I, 48 bytes for level III, and 64 bytes for level V
comparing with performance of NIST standardized algorithms using 32-byte hash-code. The
performance in this table is from the HPPK DS configuration with n = λ =m = 1 and the
Barrett parameter K = L + 64 bits. Performance data for Falcon and Dilithium without citations
are directly computed from the NIST SUPERCOP tool.

Crypto Performance (Cycles)
system KeyGen Singing Verifying

Security Level I
Dilithium 2 [11]1 300,751 1,355,434 327,632

Falcon512 38,194,993 10,303,471 68,621
SPHINCS+ -128s [12]2 358,061,994 2,721,595,944 2,712,044

HPPK-(64,1,1,1) 25,696 12,510 18,349

Security Level III
Dilithium 3 [11]1 544,232 2,348,703 522,267

Dilithium 3 323,071 1,418,393 313,271
SPHINCS+ -192s [12]2 524,116,024 5,012,149,284 4,333,066

HPPK-(64,1,1,1) 35,313 14,382 21,145

Security Level V
Dilithium 5 [11]1 819,475 2,856,803 871,609

Dilithium 5 454,296 1,479,623 483,62
Falcon1024 101,629,055 22,423,017 138,671

SPHINCS+ -256 [12]2 346,844,762 4,499,800,456 6,060,438
HPPK-(128,1,1,1) 42,355 16,046 22,285

1 Average performance data are taken from their submission specification [11]
2 Performance data are taken from their NIST submission with hash SHA-256-simple in Table 4,

using a single core of a 3.1 GHz Intel Xeon E3-1220 CPU (Haswell).

6 Conclusion
This study provides a comprehensive evaluation of two innovative cryptographic

schemes, HPPK KEM and HPPK DS, designed for post-quantum cryptographic

applications. Through extensive benchmarking and comparisons with NIST-

standardized algorithms, we have highlighted the key features and advantages of

these schemes across various security levels.

For HPPK KEM, our analysis reveals a well-balanced combination of security

and efficiency. The scheme’s adaptability to different security requirements is ev-

ident in its key sizes, ciphertext sizes, and overall performance. The introduction

of multiple noise variables adds a dynamic element to the encapsulation process,

ensuring randomized operations even for the same secret. The efficient key gener-

ation, encapsulation, and decapsulation operations, particularly at higher security

levels, position HPPK KEM as a promising solution for secure communication in a

post-quantum era.

Regarding HPPK DS, our evaluation highlights its superiority in terms of compact

key sizes and signature sizes across various security levels. The scheme demonstrates

notable efficiency in key generation, signing, and verification operations. The inno-

vative use of hidden rings, coupled with considerations for hash algorithm sizes,

contributes to the compactness and efficiency of HPPK DS. Its competitive perfor-

mance, especially in signing and verification, establishes it as a robust option for

applications requiring secure and efficient digital signatures.

The comparative analysis with NIST-standardized algorithms, including Dilithium,

Falcon, and SPHINCS+ , underscores the competitive nature of HPPK KEM and

HPPK DS. These schemes outperform established algorithms in various perfor-

mance metrics, showcasing their potential for practical deployment in real-world
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scenarios. Their robust security in homomorphic symmetric encryption, efficient

performance, and adaptability to different security levels make them compelling

choices for securing digital communication in the face of evolving cryptographic

challenges. Future research directions may explore optimizations, conduct further

security analyses, and investigate potential applications in emerging technologies.
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