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Abstract

We develop a new PT -symmetric approach for mapping three pure qubit states, implement it by

the dilation method, and demonstrate it with a superconducting quantum processor provided by

the IBM Quantum Experience. We derive exact formulas for the population of the post-selected

PT -symmetric subspace and show consistency with the Hermitian case, conservation of average

projections on reference vectors, and Quantum Fisher Information. When used for discrimination

of N = 2 pure states, our algorithm gives an equivalent result to the conventional unambiguous

quantum state discrimination. For N = 3 states, our approach provides novel properties unavail-

able in the conventional Hermitian case and can transform an arbitrary set of three quantum states

into another arbitrary set of three states at the cost of introducing an inconclusive result. For the

QKD three-state protocol, our algorithm has the same error rate as the conventional minimum

error, maximum confidence, and maximum mutual information strategies. The proposed method

surpasses its Hermitian counterparts in quantum sensing using non-MSE metrics, providing an

advantage for precise estimations within specific data space regions and improved robustness to

outliers. Applied to quantum database search, our approach yields a notable decrease in circuit

depth in comparison to traditional Grover’s search algorithm while maintaining the same average

number of oracle calls, thereby offering significant advantages for NISQ computers. Additionally,

the versatility of our method can be valuable for the discrimination of highly non-symmetric quan-

tum states, and quantum error correction. Our work unlocks new doors for applying PT -symmetry

in quantum communication, computing, and cryptography.

Keywords: PT -symmetric transformations; Quantum state discrimination; Quantum sensing; Quantum

database search; Quantum error correction; IBM Quantum Experience; Quantum key distribution.
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I. INTRODUCTION

The problem of identifying information stored in a quantum system is fundamental in

quantum computer science, and the simplest option is to use two-dimensional systems or

qubits to store quantum information. In classical physics, the state variables of the system

are also observables and there is no fundamental limitation on the precision with which

they can be determined. By contrast, the quantum observables are represented by operators

acting on the vector space, which in the general case do not commute, and the outcome of

the measurement has statistical rather than deterministic properties. Quantum systems in

different non-orthogonal states are impossible to perfectly distinguish even when arbitrary

large but finite number of samples for the measurements are available [1–6]. In other words,

no test exists which allows to guess correctly all of the time and this fact is highlighted by

the quantum Chernoff bound [7].

Quantum state discrimination involves two parties who agree on a set of allowed states

in which the system can be, and their prior probabilities of occurrence. A measurement can

obtain only a finite amount of information, and thus this set must be finite. Alice prepares

a state from this set and sends it to Bob, who must determine it using the appropriate

measurement. Quantum state discrimination has a number of important applications. In

particular, it is strongly linked to a dimension witness of quantum systems [8] and represents

an operational interpretation of conditional mutual entropy [9]. The quantum key distribu-

tion (QKD) security is based on the hardness of quantum state discrimination and on the

no-cloning theorem [10]. The search over an unstructured database can be mapped to the

discrimination of the states exponentially close to each other [11].

Quantum state discrimination is difficult apart from the N = 2 case, and the exist-

ing strategies for quantum state discrimination can be classified into the minimum error

discrimination [2], unambiguous discrimination [12, 13], and maximum confidence discrimi-

nation [14], each with its own advantages and drawbacks. The minimum error discrimination

solution was obtained for the states possessing particular symmetries such as “geometrically

uniform” states [15], and mirror-symmetric states [16]. In the general case of N = 3 states,

the minimum error discrimination solution for pure qubit states was obtained in [17, 18].

The analytic solution for mixed qubit states without necessary and sufficient conditions was

obtained in [19], and the complete analysis was performed in [20]. In the general case, how-

ever, the solution requires intricate computation. Unambiguous state discrimination can be

achieved only for linearly independent states [21], and therefore is not possible for N = 3

qubit states.

Meanwhile, recent developments in PT -symmetric quantum mechanics [22–24], where the

condition of Hermiticity is replaced by the condition of PT -symmetry, provide new opportu-
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nities for the quantum information science, that are not available in the usual Hermitian case.

Such theories possess an additional degree of freedom represented by the α parameter, and in

the limit α → 0, the intersection of PT -symmetric and Hermitian cases are real symmetric

Hamiltonians [25]. At certain values of the α parameter, the degeneracies occur, known as

exceptional points, which correspond to coalescing eigenvectors and eigenvalues [26, 27].

These points can be used in multiple applications. First, in the PT -symmetric system, the

time of quantum evolution may approach theoretically zero in the vicinity of the exceptional

point, while in the Hermitian one, a finite time is needed. This effect was demonstrated both

theoretically [28] and experimentally [29]. Second, it was used for enhanced sensing [30–35],

and it have been shown that PT -symmetric sensors are 8.856 times superior to Hermitian

ones [36]. Moreover, PT -symmetric operations increase the quantum Fisher information

needed to increase the accuracy of quantum parameter estimation [37, 38], which in turn

was used for the Bayesian parameter estimation [39–41]. The existence of exceptional points

was demonstrated in multiple classical systems as well [42–50], and they found applications

in laser mode management [51–53], and topological mode transfer [54–57]. For N = 2 states,

the PT -symmetric discrimination was developed in [58], and the focus of our work is an

extension of this method for N = 3 states. For the first time, we derive exact expressions

for the population of postselected space, enabling us to pinpoint scenarios in which PT -

symmetric systems outperform their Hermitian counterparts.

II. RESULTS

First, we provide a necessary background on PT symmetry in Section III. In Section IV,

we develop a PT symmetric approach for the N = 3 pure quantum states discrimination,

which consists of two stages of PT symmetric evolution. In the first one, two of the three

states are made mutually orthogonal in terms of the Hermitian scalar product. The second

stage enables the transformation of a given set of three arbitrary states into another set of

states as required. In the limiting case as α approaches ±π
2
, near the exceptional point, the

geometry of the postselected space closely resembles that of a two-state scenario. Our initial

findings regarding the PT -symmetric subsystem [59] were validated through experiments

conducted on an optical setup [60] (see Section III and Ref. [38] there for further informa-

tion). In comparison to prior studies where numerical computations and experimentation

were employed [61, 62] to embed PT -symmetric subsystem into a Hermitian Hamiltonian, in

Section V, we derive exact expressions for the population of the postselected PT -symmetric

subspace and show that for the case of N = 2 states, the proposed method is analogous

to conventional unambiguous quantum state discrimination [13]. In Section VI, we provide
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a comparison between our theoretical model and the results of the runs on IBM Quan-

tum Experience. The details of implementation are provided in Methods. In Section VII,

we demonstrate that our algorithm has an identical error rate when employed to attack

the trine state QKD protocol as compared to minimum error, maximum confidence, and

maximum mutual information strategies. We demonstrate consistency with the Hermitian

case, conservation of average projection on reference vectors, and Quantum Fisher Infor-

mation (QFI). In Section VIII, we discuss applications of our method where it outperforms

its Hermitian counterparts, in particular, quantum sensing with non-MSE loss performance

functions and paralleled Grover search algorithm. We show that our algorithm uses the

same average number of oracle calls as parallelized Grover’s search algorithm, but allows for

a significant reduction in scheme depth, which has significant implications, especially in light

of the NIST restrictions on the circuit depth used for quantum attacks. We hypothesize that

the ability of our method to transform a mixture of three arbitrary states into a standardized

set of three stabilizer states has significant implications for quantum error correction and

the discrimination of states with highly asymmetric geometries. We present our conclusions

and outline future work in Section IX.

III. BACKGROUND ON PT SYMMETRY

In order to have a complete description of the physical system, the energy eigenvalues must

be real-valued. Complex energies are often used to describe dissipative phenomena when the

probability of finding a particle decreases over time. The decaying particle, however, does

not vanish but transforms into other particles, and therefore such a description is incomplete.

The condition of reality of the spectra can be achieved by constraining the Hamiltonian to

be Hermitian H = H†. Nevertheless, this condition is not necessary and can be replaced by

a condition of an unbroken PT -symmetry [22–24] which guarantees that all eigenvalues of

the Hamiltonian are real. Additionally, it provides an extra degree of freedom not available

in the Hermitian case which we describe further.

The Hamiltonian is PT -symmetric if it satisfies the condition H = HPT . The signs of the

quantum mechanical coordinate and momentum, x̂ and p̂, are changed by the parity operator

P as Px̂P = −x̂, P p̂P = −p̂, and for the case of qubit, up to a unitary transformation, is

given by [28]:

P =

0 1

1 0

 (1)

Time-reversal operator T changes the signs of the imaginary unit and the momentum oper-

ator as T iT = −i and T p̂T = −p̂. The PT operator is a combination of P and T . For the
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case of qubit, the most general PT -symmetric depends on three real parameters r, s and β

as [58]:

H = HPT =

reiβ s

s re−iβ

 (2)

The PT -symmetric Hamiltonian is called to be possessing an unbroken PT symmetry if

each of its eigenfunctions is also an eigenfunction of the PT operator. This condition guar-

antees that all energy eigenvalues are real [63, 64]. Additionally, this condition provides an

extra C operator which is represented by the sum of all eigenfunctions of the PT -symmetric

Hamiltonian, Eqn. 2:

Hψn (x) = Enψn (x) , C (x, y) =
2∑

n=1

ψn (x)ψn (y) (3)

For the qubit case, it takes the form:

C =
1

cos (α)

i sin (α) 1

1 −i sin (α)

 , (4)

with α being expressed as sin (α) = r
s
sin (β). As a result, the set of commuting operators in

the PT -symmetric theory is bigger in comparison with the Hermitian case, [C,H] = 0 and

[C,PT ] = 0. The ket vector both in the Hermitian and PT -symmetric cases has the same

form:

|ψ⟩ =

 cos
(
θ
2

)
eiϕ sin

(
θ
2

)
 , (5)

with θ and ϕ being the meridian and parallel of the Bloch sphere of the qubit respectively.

The difference is in the scalar product which is fixed in the Hermitian case but in the PT -

symmetric one is defined by the C operator given in Eqn. 4 as (⟨ψ|)CPT = (CPT |ψ⟩)T ,
(⟨µ|ν⟩)CPT = (CPT |µ⟩)T · |ν⟩, here the over-script T is matrix transposition and the CPT
operation is a combination of C and PT operators which we defined previously. The limit

α → 0 recovers the regular Hermitian case since lim
α→0

(C) = P .

This property was used for N = 2 state discrimination [46] to manipulate the angle

between state vectors effectively converting them into orthogonal ones. The no-cloning

theorem [10] still applies both for the Hermitian and PT -symmetric case since this conversion

happens at the cost of introducing an inconclusive outcome meaning that the PT -symmetric

part of the total wave-function of the system has a norm less than one, in the general case.
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For two non-orthogonal states on the ϕ = −π
2
parallel:

|ψ1,2⟩ =

 cos
(
π∓2σ

4

)
−i sin

(
π∓2σ

4

)
 , (6)

this conversion may be obtained by two possible Solutions :

• Solution 1: zeroing the CPT product (CPT |ψ1⟩)T · |ψ2⟩ = 0 by setting the Hamiltinian

in Eqn. 2 to make sin (α) = r
s
sin (β) = cos (σ).

• Solution 2: performing PT -symmetric Hamiltonian evolution to (⟨ψ1|ψ2⟩)Hermitian = 0

for a time τPerp:

sin2 (ωτPerp) =
cos2 (α) cos (σ)

2 sin (α) (1− sin (α) cos (σ))
, ω =

√
s2 − r2 sin2 (β), (7)

effectively modifying the metrics as:

cos2 (α) e+iH†te−iHt =

cos2 (ωt− α) + sin2 (ωt) −2i sin2 (ωt) sin (α)

2i sin2 (ωt) sin (α) cos2 (ωt+ α) + sin2 (ωt)

 (8)

In contrast to the Hermitian case, in PT -symmetric dynamics, the states |0⟩ and |1⟩ exhibit
an angular separation of π − 2|α| [28]. As the system approaches the exceptional point in

the limit α → ±π
2
, these states merge.

In Section V, we show that for the case of two states, N = 2, and minimal value of α

allowed by Eqn. 7, this approach is equivalent to an unambiguous quantum state discrimi-

nation [13]. In Section IV, we extend the PT -symmetric approach to three states, N = 3,

through a double PT -symmetric evolution. By leveraging the properties of exceptional

points, we demonstrate novel features not present in the Hermitian case.

IV. SCHEME FOR PT -SYMMETRIC TRANSFORMATION OF N = 3 STATES

Our approach consists of three steps and can be summarized as:

• Step 1 : evolve two of the states, |ψ1⟩ and |ψ2⟩, into the orthogonal ones in terms of the

Hermitian scalar product, (⟨ψ1|ψ2⟩)Hermitian = 0, by applying the first PT -symmetric

evolution.
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• Step 2 : By applying a unitary rotation, convert these states into |ψ1,2⟩ → 1√
2

 1

±i

.

In these positions, they remain orthogonal under the PT operations with an arbitrary

value of α parameter, and we use it to adjust a relative angle to the third state.

• Step 3 : Perform a second PT -symmetric evolution to adjust the angle between |ψ1,2⟩
and |ψ3⟩, and perform the projective measurement in PT -symmetric subsystem.

Without loss of generality, an arbitrary set of three states |ψi⟩ =

 cos
(
θi
2

)
eiϕi sin

(
θi
2

)
, i ∈ [1, 3] can

be adjusted to the following positions by unitary rotations provided in Eqn. 88 in Methods:

|ψ1,2⟩ →

 cos
(
π∓2σ

4

)
−i sin

(
π∓2σ

4

)
 , |ψ3⟩ →

 cos
(
µ
2

)
eiν sin

(
µ
2

)
 , (9)

and σ, µ and ν parameters in the following equations.

In Step 1, we use PT -symmetric evolution controlled by the Hamiltonian in Eqn. 2, and

perform it for a time τPerp in Eqn. 7. As a result, the first pair of states takes the form:

|ψ1⟩ →

 cos
(
δ
2

)
−i sin

(
δ
2

)
 , |ψ2⟩ →

 sin
(
δ
2

)
i cos

(
δ
2

)
 , (10)

with the δ parameter provided by the Eqn. 11 and 12:

(11)cos

(
δ

2

)
=

cos (ωτPerp − α) cos
(
π−2σ

4

)
− sin (ωτPerp) sin

(
π−2σ

4

)
√
V

,

(12)V = 1− cos (2ωτPerp) sin
2 (α)

+ 2 sin (ωτPerp) sin (α) (cos (ωτPerp) cos (α) sin (σ)− sin (ωτPerp) cos (σ))

In Step 2, we apply the following gate with the χ parameter given by Eqn. 97 in Methods:

(13)W =
1√
2

1 i

i 1

 ·

1 0

0 ie−iχ

 ·

 cos
(
δ
2

)
i sin

(
δ
2

)
i sin

(
δ
2

)
cos
(
δ
2

)
 ,

∣∣χ(1,2,3)

〉
= W

∣∣ψ(1,2,3)

〉
(14)

The resulting states take the following form, with ρ = ξ + π
2
and ξ provided in Eqn. 97:

|χ1⟩ =
1√
2

1

i

 , |χ2⟩ =
1√
2

 1

−i

 , |χ3⟩ =

 cos
(
ρ
2

)
i sin

(
ρ
2

)
 (15)
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|ψ3〉|ψ1〉

|ψ2〉

α→ π
2

Figure 1. Geometry of posts-

elected space for α→ π
2 .

|ψ3〉

|ψ1〉

|ψ2〉

α→ −π
2

Figure 2. Geometry of posts-

elected space for α→ −π
2 .

|ψ′
3〉

|ψ3〉

|ψ1〉

|ψ2〉

α ∼ ρ′ − ρ

Figure 3. Geometry modifica-

tion by α variation.

We proceed to the second PT -symmetric evolution constituting Step 3. After Step 2, the

first two states are orthogonal, and we can adjust the relative angle to the third state. For

completeness, we consider both Hermitian and CPT measurements.

A. Step 3 by Hermitian measurement

We apply the second PT -symmetric evolution by the Hamiltonian in Eqn. 2 for a time

τ II , and the relative angles between the evolved states κ12, κ13 and κ23 are given by:

(16)


cos2PT (κ12) =

2 tan2(α) sin2(2ωτII)
1+sec2(α)−tan2(α) cos(4ωτII)

cos2PT (κ13, κ23) =

(
√
2 sin(π±2ρ

4 )[(1±2 sin(α)) sin2(ωτII)+cos2(ωτII+α)]+sin(2α) cos( ρ
2) sin(2ωτII))

2

2((1±sin(α))2 sin2(ωτII)+cos2(α) cos2(ωτII))(sin2(ωτII)(1+2 sin(α) sin(ρ))−sin(2α) sin2( ρ
2) sin(2ωτII)+cos2(ωτII−α))

By the subscript PT in cos2PT , we mean the effective cosine squared in PT -symmetric

subspace after postselection. We derive exact expressions for the probability of postselection

the next Section V. After the time τ II = π
2ω
, these expressions take the form:cos2PT (κ12) = 0

cos2PT (κ13, κ23) =
(1±sin(α))2(1±sin(ρ))

3+4 sin(α) sin(ρ)−cos(2α)

(17)

In the limit α → π
2
we obtain:

cos2PT (κ13) = 1− (1− sin (ρ))
(
π
2
− α

)4
16 (1 + sin (ρ))

+O

((π
2
− α

)5)
, (18)
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cos2PT (κ23) =
(1− sin (ρ))

(
π
2
− α

)4
16 (1 + sin (ρ))

+O

((π
2
− α

)5)
, (19)

and for α → −π
2
we have:

cos2PT (κ13) =
(1 + sin(ρ))

(
π
2
+ α

)4
16 (1− sin(ρ))

+O

((π
2
+ α

)5)
, (20)

cos2PT (κ23) = 1− (1 + sin(ρ))
(
π
2
+ α

)4
16 (1− sin(ρ))

+O

((π
2
+ α

)5)
(21)

The corresponding geometry of the states in these limits is shown in Fig. 1 and Fig. 2. These

results apparently seem contradictory to the well-known impossibility of unambiguous dis-

crimination of linearly dependent states [21]. However, such PT -symmetric transformation

inevitably involves postselection, and in the next Section V, we show that changing the angles

in the PT -symmetric subspace happens at the cost of reduction of postselection probability.

Considering the probability of postselection, these results align with those presented in [21].

As shown in Eqn. 15, in the general case, an arbitrary set of three states can be reduced to

the states in Eqn. 15 by PT -symmetric transformations. Thus an arbitrary set of three states

is uniquely characterized by its ρ value, up to the initial unitary transformation in Methods.

Therefore, the parameter α can be employed to convert a set of three states characterized

by the parameter ρ into another set of three states corresponding to the parameter ρ′. This

can be done by setting the value of α to be:

sin (α) = min
{cos(ρ+ρ′

2

)
sin
(
ρ′−ρ
2

) , sin
(

ρ′−ρ
2

)
cos
(
ρ+ρ′

2

) }, (22)

depending on the values of ρ and ρ′ to ensure that |sin (α) |≤ 1, as illustrated in Fig. 3. By

running Steps 1 and 2 backward, one can transform the second set of states to the first one.

As we discuss in Section V, when postselection probability is taken into account, this does not

lead to the reduction of error rate in comparison with conventional Hermitian approaches.

However, this property may be useful for the discrimination of states with highly asymmetric

geometries as we discuss in Section VIII.

As an example, one can achieve effective mirror-symmetric geometry of postselected states

corresponding to ρ′ = 0, when cos2PT (κ13) = cos2PT (κ23) =
1
2
in Eqn.17, by choosing:

sin (α) =
{
− cot

(ρ
2

)
,− tan

(ρ
2

)}
(23)
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After application of S gate:

S =

1 0

0 i

 , (24)

this set of states is transformed to |+⟩, |−⟩, and |0⟩. These are stabilizer states [65], and we

discuss possible implications of this for quantum error correction in Section VIII. Finally, as

we show in Section V, even though the effective geometry of postselected states is mirror-

symmetric, the postselection changes the prior probabilities, so even though the effective

angles κ13 = κ23 = π
4
are the same, prior probabilities of |ψ1⟩ and |ψ2⟩ are different in the

general case.

B. Step 3 CPT measurement

The same result can be achieved using the CPT measurement, since for an arbitrary α

the states |ψ1⟩ and |ψ2⟩ are mutually orthogonal:

(⟨ψ1|ψ2⟩)CPT = 0; (⟨ψ1,2|)CPT =
(1± sin (α))√

2 cos (α)
(1, ∓ i) (25)

This allows to use the value of α to adjust the relative angles with the third state κ13 and

κ23: cos2PT (κ12) = 0

cos2PT (κ13, κ23) =
(1±sin(α))(1±sin(ρ))
2(1+sin(α) sin(ρ))

, (26)

and for α → π
2
represented in Fig. 1:

cos2PT (κ13) = 1−
(
π
2
− α

)2
(1− sin(ρ))

4(1 + sin(ρ))
+O

((π
2
− α

)3)
, (27)

cos2PT (κ23) =

(
α− π

2

)2
(1− sin(ρ))

4(1 + sin(ρ))
+O

((
α− π

2

)3)
(28)

In the limit α → −π
2
corresponding to Fig. 2:

cos2PT (κ13) =

(
π
2
+ α

)2
(1 + sin(ρ))

4(1− sin(ρ))
+O

((π
2
+ α

)3)
, (29)

cos2PT (κ23) = 1−
(
π
2
+ α

)2
(1 + sin(ρ))

4(1− sin(ρ))
+O

((π
2
+ α

)3)
(30)
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Analogously to the Hermitian case, the CPT projection operators can be introduced which

are the CPT observables:

P̂1,2 =

( |ψ1,2⟩⟨ψ1,2|
⟨ψ1,2|ψ1,2⟩

)
CPT

=
1

2

 1 ∓i
±i 1

 ,
[
CPT , P̂1,2

]
= 0 (31)

Similarly to the Hermitian case in Eqn. 22, it is possible to transform the states ρ → ρ′ by

choosing:

sin (α) =
sin (ρ′)− sin (ρ)

1− sin (ρ′) sin (ρ)
, (32)

and when α = −ρ three states are reduced to effectively mirror-symmetric corresponding to

ρ′ = 0, as illustrated in Fig. 3.

Since the PT -symmetric transformations involve postselection, in order for one to have

a fair comparison of their performance with their Hermitian counterparts, one needs to

compute the probability of successful postselection. Unlike prior studies where numerical

computations were employed [61, 62], in the next Section V, we formulate precise expressions

for the probability of achieving a definitive outcome following PT -symmetric evolution.

Figure 4. cos2PT in PT -symmetric subsystem and population of postselected space corresponding

to the state |ψ3⟩.

V. EMBEDDING BY THE DILATION METHOD

We implement the PT -symmetric Hamiltonian evolution by extending the original qubit

with ancilla and employing Neumark’s theorem [66], similarly to [61, 62]. The combined
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Figure 5. cos2PT in PT -symmetric subsystem and population of postselected space corresponding

to the state |ψ′
3⟩.

Figure 6. Stage 2 as α approaches the exceptional point π
2 .

ancilla-qubit wave function |Ψcombined (t)⟩ with the PT -symmetric subspace |ψPT (t)⟩ is:

|Ψcombined (t)⟩ = |ψPT (t)⟩ |0⟩ancilla + ζ (t) |ψPT (t)⟩ |1⟩ancilla , (33)

where operator ζ (t) = ζ† (t) =
(
N (t)− 1̂

) 1
2 must maintain all its eigenvalues to be real, and

the initial value N (0) must be correspondingly chosen in order to ensure it, with:

N (t) = T exp

[
−i
∫ t

0

dτ ′ H†
q (τ

′)

]
N (0) T̃ exp

[
i

∫ t

0

dτ ′ H (τ ′)

]
, (34)

where T and T̃ are the time and and anti-time-ordering operators, respectively.

Further in the text, we perform analytical computations to find the minimal value of

N (0) that maximizes the probability of the conclusive outcome. Thus, unlike numerical
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Figure 7. Stage 1 with σ = 4
5 correspoding to the probe state |ψ3⟩ in Eqn. 58.

Figure 8. Stage 1 with σ = 4
5 and ∆ = σ

2 correspoding to the probe state |ψ′
3⟩ in Eqn. 58.

computations in [61, 62], for both the first and second stages of PT -symmetric evolution,

we find the population of postselected space exactly as:

D =
⟨ψPT (t) |ψPT (t)⟩

⟨ψPT (t) |ψPT (t)⟩+ ⟨ψPT (t)| ζ2 (t) |ψPT (t)⟩ , (35)

A. First stage

As was shown experimentally in [60], at the critical value, PT -symmetric quantum state

discrimination is equivalent to the optimal unambiguous state discrimination in Hermitian

systems [13]. Our present work offers the analytical derivation that was lacking in the prior

literature.

First, the smallest value of α in Eqn. 7 allowing to perform PT -symmetric evolution

corresponding to sin2 (ωτPerp) = 1 is given by:

sin (α) = (1− sin (σ)) sec (σ) (36)
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Figure 9. Stage 1 with σ = 4
5 and ∆ = σ

4 correspoding to the probe state |ψ′
3⟩ in Eqn. 58.

Figure 10. Stage 1 with σ = 6
5 correspoding to the probe state |ψ3⟩ in Eqn. 58.

For added convenience, alongside the pair of reference vectors in Eqn. 6, we introduce the

vector situated between them, aligning along the same parallel of the Bloch sphere:

|ψm⟩ =

 cos
(
π+2m

4

)
−i sin

(
π+2m

4

)
 (37)

The resulting cos2PT (|ψm⟩ , |ψ1⟩) in the postselected subspace turns out to be the same as

computed by the CPT scalar product [39]:

cos2PT (|ψm⟩ , |ψ1⟩) =
1− cos (m− σ)

2 (1− cos (m) cos (σ))
(38)

By explicitly computing the eigenvalues of ζ (t), we find that the requirement that they

remain real throughout the evolution simplifies to the condition:

N (0) cot
(σ
2

)
− 1 ≥ 0 & N (0) tan

(σ
2

)
− 1 ≥ 0, (39)

and thus:

N (0) = max
{
tan
(σ
2

)
, cot

(σ
2

)}
(40)
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Figure 11. Stage 1 with σ = 6
5 and ∆ = σ

2 correspoding to the probe state |ψ′
3⟩ in Eqn. 58.

Figure 12. Stage 1 with σ = 6
5 and ∆ = σ

4 correspoding to the probe state |ψ′
3⟩ in Eqn. 58.

For 0 < σ < π
2
and cos (σ) > 0, one needs to choose N (0) = cot

(
σ
2

)
, and at the end of the

PT -symmetric evolution, the ζ operator can be found explicitly:

ζI+

(
τ I =

π

2ω

)
=

1

2

√
cos(σ) csc

(σ
2

) 1 −i
i 1

 , (41)

as well as the population of postselected space representing the probability of a conclusive

outcome:

DI
+ (m,σ) =

1

2
(1− cos (m) cos (σ)) sec2

(σ
2

)
(42)

On the edges corresponding to |ψ1⟩ and |ψ2⟩, one finds:

DI
+ (σ, σ) = DI

+ (−σ, σ) = 1− cos (σ) = 1− |cos (σ) | (43)

For π
2
< σ < π and cos (σ) < 0, one needs to choose N (0) = tan

(
σ
2

)
leading to the following

ζ operator at the end of evolution:

ζI−

(
τ I =

π

2ω

)
=

1

2

√
− cos(σ) sec

(σ
2

) 1 i

−i 1

 , (44)
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Figure 13. Stage 2 for α = π
2 − 1.

Figure 14. Stage 2 for α = π
2 − 0.7.

and the corresponding population of postselected space is:

DI
− (m,σ) =

1

2
(1− cos (m) cos (σ)) csc2

(σ
2

)
, (45)

DI
− (σ, σ) = DI

− (−σ, σ) = 1 + cos (σ) = 1− |cos (σ) | (46)

Combining Eqns. 43 and 46, one observes that when probability of successful outcome is

considered, the PT -symmetric discrimination of N = 2 quantum states developed in [58]

converts two reference vectors in Eqn. 6 to orthogonal ones with the probability of the

conclusive outcome being 1−|cos (σ) |, the same as in a conventional unambiguous quantum

state discrimination [13]. We extend this result for N = 3 states in the next subsection.

B. Second stage

Similarly, by explicitly computing the ζ operator in this case, we find that the condition

on reality of its eigenvalues reduces to:
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Figure 15. Stage 2 for α = π
2 − 0.5.

N (0) ≥ 1 + cos(2α)

2− cos(2ωτ II) + cos(2α) cos(2ωτ II)± 2 sin(α) sin(ωτ II)
√

3 + cos(2α)− 2 sin2(α) cos(2ωτ II)
(47)

For 0 ≤ α < π
2
, one needs to choose the “-” sign which leads to the following ζ operator at

the end of evolution:

ζII+

(
τ II =

π

2ω

)
=

√
sin(α)

1− sin(α)

 1 −i
i 1

 (48)

This leads to the following probability of decisive outcome:

DII
+ (α, ρ) =

3 + 4 sin(α) sin(ρ)− cos(2α)

3 + 4 sin(α)− cos(2α)
(49)

Observe that DII
+

(
α, ρ = π

2

)
= 1, and in the limit α → π

2
:

DII
+ (α, ρ) =

1

2
(1 + sin(ρ)) +

1

32

(π
2
− α

)4
(1− sin(ρ)) +O

((π
2
− α

)5)
(50)

Thus, in this limit, the position ρ = −π
2
becomes close to almost always inconclusive.

Similarly, for −π
2
< α ≤ 0, one chooses the “+” in Eqn. 47 and obtains:

ζII−

(
τ II =

π

2ω

)
=

√
− sin(α)

1 + sin(α)

 1 i

−i 1

 , (51)

DII
− (α, ρ) =

3 + 4 sin(α) sin(ρ)− cos(2α)

3− 4 sin(α)− cos(2α)
, (52)

and for this case, DII
−
(
α, ρ = −π

2

)
= 1, and in the limit α → −π

2
:
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DII
− (α, ρ) =

1

2
(1− sin(ρ)) +

1

32

(
α +

π

2

)4
(1 + sin(ρ)) +O

((
α +

π

2

)5)
(53)

Importantly, combining two cases DII
±, we observe that:

cos2PT (κ23)DII
+ (α, ρ) =

(1− sin(α))2(1− sin(ρ))

3 + 4 sin(α)− cos(2α)
, (54)

cos2PT (κ13)DII
− (α, ρ) =

(1 + sin(α))2(1 + sin(ρ))

3− 4 sin(α)− cos(2α)
(55)

And similarly:

cos2PT (κ13)DII
+ (α, ρ) =

1 + sin (ρ)

2
= cos2

( π
2
− ρ

2

)
, (56)

cos2PT (κ23)DII
− (α, ρ) =

1− sin (ρ)

2
= cos2

( π
2
+ ρ

2

)
(57)

From Eqns. 54 and 55, one can observe that when the probability of the decisive outcome is

taken into account, the PT -symmetric transformation on the second stage does not improve

the state distinguishability. The state in the PT -symmetric exceptional point (|χ1⟩ or |χ2⟩)
has a low probability of the conclusive outcome. The state |χ3⟩ has a small projection on the

reference vector corresponding to the exceptional point, but its decisiveness is much higher,

as one can observe in Eqns. 49 and 52, in such a way that average error rate remains the

same since all values of ρ in Eqns. 54 and 55 are rescaled by the same factor. Similarly, from

Eqns. 56 and 57, one observes that an increase in cos2PT is accompanied by reduction of DII
±

and thus on average one obtains the same result as in the Hermitian case.

However, as we discuss in Section VIII, the capability to consolidate all relevant informa-

tion regarding the parameter of interest within a small subset of events can be inherently

advantageous. Furthermore, when utilizing a non-MSE performance metric—such as, for

instance, cos4PT ×DII
± instead of cos2PT ×DII

±—it becomes evident that PT -symmetric sensing

can offer advantages over its Hermitian counterpart.

In the next Section VI, we confirm our analytical results by numerical computations and

simulation on IBM Quantum Experience.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

IBM Quantum Experience [67] is a quantum processor operating on superconducting

qubits that has become a leading candidate for scalable quantum computing platform, see
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a review [68]. These devices already enabled proof-of-concept results such as quantum error

correction [69], fault-tolerant gates [70], experimental evidence of the violation of Mermin

and Leggett-Garg inequalities [71, 72], non-local parity measurements [73, 74], simulations

of paradigmatic models in open quantum systems [75], creation of highly entangled graph

states [76], determining the ground-state energies of the molecules [77] as well as imple-

mentation of quantum witnesses [78]. Moreover, PT -symmetric quantum mechanics can

enhance entanglement by local operations, a possibility prohibited in the Hermitian case, as

demonstrated experimentally by IBM Quantum Experience [62] based on theoretical findings

from [79].

We implement Stage 1 of our algorithm for σ = 4
5
and 6

5
. To illustrate the changes in the

geometry of the postselected space, we examine the third state in two forms, |ψ3⟩ and |ψ′
3⟩:

|ψ3⟩ =

 cos
(
π+2δ
4

)
−i sin

(
π+2δ
4

)
 , |ψ′

3⟩ =

 cos
(
π+2∆

4

)
eiφ sin

(
π+2∆

4

)
 (58)

In Figs. 4 and 5, theoretical predictions from Section V are shown. One can observe that

a higher value of σ corresponds to the higher value of the population of the postselected

subspace and steeper curves. Fig. 6 corresponds to the Stage 2 as α parameter approaches

the exceptional point π
2
, and one can observe that as the value of cos2PT flattens out, the

probability of a decisive outcome at ρ = −π
2
approaches zero.

We implemented both Stage 1 and 2 on IBM Quantum Experience with the details

provided in Methods. We performed experiments on all processors provided by IBM

Quantum Experience, namely ibm perth, ibmq jakarta, ibm lagos, ibm nairobi, ibm oslo,

ibmq manila, ibmq quito, ibmq belem, ibmq lima, simulator mps, simulator extended stabilizer,

ibmq qasm simulator, simulator statevector. In each experiment, total number of shots was

kept Nshots = 8192, and N (|ij⟩), i ∈ [0, 1] is a number of outcomes corresponding to |ij⟩,
such that

∑
i,j=1,2 N (|ij⟩) = Nshots.

For both Stages, the cosine squared between the reference vectors in PT -symmetric sub-

space is measured by the postselection as shown in Eqn. 59:

cos2PT (|χ1⟩ , |χ3⟩) =
N (|00⟩)

N (|00⟩) +N (|10⟩) , (59)

while the population of the PT -symmetric subsystem is shown in Eqn. 60, correspondingly:

D =
⟨ψPT |ψPT ⟩

⟨ψPT |ψPT ⟩+ ⟨ψPT | ζ2 |ψPT ⟩
=

N (|00⟩) +N (|10⟩)
N (|00⟩) +N (|10⟩) +N (|01⟩) +N (|11⟩) (60)

For Stage 1, the comparison between theoretical predictions and experimental results

are shown in Figs. 7, 8, 9, 10, 11, and 12. For Stage 2, the corresponding comparison is
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Figure 16. Stage 1 for the states in Eqn. 37 with σ = 2π
3 andN (0) ≈ Nmin. The state corresponding

to m = 0 always yields a conclusive result D = 1.

provided in Figs. 13, 14, and 15. In both Stages, it is evident that the simulator mps, simu-

lator extended stabilizer, ibmq qasm simulator, and simulator statevector provided by IBM

processors, as indicated by circles, consistently exhibit superior agreement with theoretical

predictions. Other processors, while successfully capturing the overall shapes of the theoret-

ical curves, have significant deviations. This may imply that quantum processors employing

a Matrix Product State representation, ranked-stabilizer decomposition, Open Quantum As-

sembly Language, and those characterizing the quantum state of a system through a state

vector are particularly well-suited for performing PT -symmetric algorithms on IBM Quan-

tum Experience [67].

Thus, we used these four simulators, namely simulator mps, simulator extended stabilizer,

ibmq qasm simulator, and simulator statevector, to perform simulation of attack three-state

QKD protocol [80]. The states used in this QKD protocol have 2π
3
angular separation:

|A⟩ =

1

0

 , |B⟩ =

 1
2

−
√
3
2

 , |C⟩ =

 −1
2

−
√
3
2

 (61)

The following operation:

K =

 1√
2

i√
2

1√
2
− i√

2

 , (62)

converts the reference states in Eqn. 61 our conventions in Eqn. 37 as: |ψm,m = 0⟩ → |A⟩,∣∣ψm,m = 2π
3

〉
→ |B⟩,

∣∣ψm,m = −2π
3

〉
→ |C⟩. Since cos

(
2π
3

)
< 0, we use Eqn. 45 for the

probability of decisive outcome.

In Fig. 16, one can observe a remarkable agreement between theoretical predictions for

Stage 1 from Section V and experimental results from simulator mps, simulator extended stabilizer,
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ibmq qasm simulator, and simulator statevector. For the specific geometry of states de-

scribed in Eqn.61, it can be observed that Stage 1, with the value of α determined by Eqn.36

and N (0) = Nmin, transforms these states into a mirror-symmetric configuration. In this

configuration, |B⟩ and |C⟩ become orthogonal to each other, with |A⟩ positioned between

them. Regarding the probability of a decisive outcome, one can observe in Fig. 16 that:

D (|B⟩) = D (|C⟩) = 1
2
while D (|A⟩) = 1. Thus, the states |B⟩ and |C⟩ are 50% conclusive

while the state |A⟩ is always conclusive. In the upcoming Section VII, we delve into the im-

plications of these observations and conduct a comparative analysis of our protocol against

existing approaches for attacking this QKD protocol.

VII. ATTACK ON THE TRINE-STATE QKD PROTOCOL

The available strategies for the attack on three-state QKD protocol are minimum error

and maximum mutual information approaches [80]. For the geometry of states in Eqn. 61,

minimum error and maximum confidence strategies coincide [3], and thus we do not consider

the latter.

If the encoded state is |A⟩, minimum error discrimination strategy yields correct result

with the probability 2
3
, and misclassifies |A⟩ as being |B⟩ or |C⟩ with the probability 1

6
. The

same applies for |B⟩ and |C⟩ through the permutation A → B → C. For minimum error

strategy obtaining |A⟩ after the measurement, the resulting density matrix is [80]:

ρMin.err. =
2

3
|A⟩ ⟨A|+ 1

6
|B⟩ ⟨B|+ 1

6
|C⟩ ⟨C| (63)

The maximum mutual information strategy excludes one of the states with certainty, but

the other two states remain equiprobable each with 50% probability and the resulting density

matrix:

ρMax.mut.inf. =
1

2

∣∣B̄〉 〈B̄∣∣+ 1

2

∣∣C̄〉 〈C̄∣∣ , (64)

where
∣∣B̄〉 and ∣∣C̄〉 are complementary to |B⟩ and |C⟩ [80]. However, both of these strategies

yield the same error rate, as demonstrated by [80], attributed to the inherent geometric

properties of these states since:

ρMin.err. = ρMax.mut.inf. =
1

2
|A⟩ ⟨A|+ 1

4
(65)

Now, consider the case when the attacker uses our PT -symmetric approach for N = 3

states we developed in the previous Sections. If Stage 1, as described in the preceding

Section VI, produces an inconclusive result, the attacker immediately eliminates one of the
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states with 100% confidence. This is because the probability of obtaining a decisive outcome

for one state is 100%, while the other two states are equiprobable, as illustrated in Fig. 16.

For a particular choice in Fig. 16, the attacker eliminates the state |A⟩ leaving |B⟩ and |C⟩
equiprobable. The probability of an inconclusive result in Stage 1 is given by:

p
(
|1⟩Iancilla

)
=

1

3
· 1
2
+

1

3
· 0 + 1

3
· 1
2
=

1

3
(66)

Thus, with probability 1
3
, our approach yields the result equivalent to the maximum mutual

information strategy.

In case the first postselection is successful, which happens with 2
3
probability, the resulting

postselected geometry of the states is mirror-symmetric. However, since the postselection

probability is nonuniform and varies for different states, their prior probabilities used as

input for the next Stage change from equiprobable to the values:

p
(
|A⟩ , |0⟩Iancilla

)
=

1 · 1
3

2
3

=
1

2
, p
(
|B⟩ , |0⟩Iancilla

)
= p

(
|C⟩ , |0⟩Iancilla

)
=

1
2
· 1
3

2
3

=
1

4
(67)

At this point, the attacker may choose to apply the strategy for mirror-symmetric configu-

ration [16] with p = 1
4
. In this scenario, the success probability rate remains 2

3
, consistent

with the original attack outlined in [80], as indicated by Eqn.(14) in [16]. Despite the change

in the geometry of the postselected space, the success rate remains unchanged due to the

varying probabilities of successful postselections for the states in Eqn. 61.

Alternatively, if the attacker proceeds with Stage 2, as discussed in Section V, one of

the states—|B⟩ or |C⟩—will have a 100% probability of successful postselection, depending

on whether α is greater or less than zero. Thus, if postselection of the Stage 2 fails, the

attacker immediately eliminates one of these states. For definiteness, let α > 0 and consider

the probability of a decisive outcome as given in Eqn. 49. In this case, one finds:

1−DII
+

(
α, ρ = −π

2

)
= 2

(
1−DII

+ (α, ρ = 0)
)
=

4 sin(α)

(1 + sin(α))2
(68)

Considering Eqns. 67 and 68, it is observed that the states |A⟩ and |C⟩ become equiprobable

while the state |B⟩ is eliminated:

p
(
|A⟩ , |1⟩IIancilla

)
p
(
|A⟩ , |0⟩Iancilla

)
= p

(
|C⟩ , |1⟩IIancilla

)
p
(
|C⟩ , |0⟩Iancilla

)
(69)

As a result, the scenario in which the second postselection fails, |1⟩IIancilla, is equivalent to a

maximum mutual information strategy.

If the postselection for Stage 2 is successful but the measurement returns the value cor-

responding to the projection on ρ = π
2
, the attacker eliminates the state |C⟩ corresponding
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to ρ = −π
2
since in this case cos2PT

(
ρ = −π

2

)
= 0, as illustrated in Fig. 6. Similarly, the

remaining two states, |A⟩ and |B⟩, remain equiprobable since:

p
(
|B⟩ , |0⟩Iancilla

)
cos2PT

(
κ13, ρ =

π

2

)
DII

+

(
α, ρ =

π

2

)
=

1

4
, (70)

p
(
|A⟩ , |0⟩Iancilla

)
cos2PT (κ13, ρ = 0)DII

+ (α, ρ = 0) =
1

4
(71)

Finally, if the postselection at the Stage 2 is successful, and the measurement yields the

state with ρ = −π
2
projection corresponding to |C⟩, the state |B⟩ is excluded. Similarly, one

observes that:

p
(
|C⟩ , |0⟩Iancilla

)
DII

+

(
α, ρ = −π

2

)
= p

(
|A⟩ , |0⟩Iancilla

)
DII

+ (α, ρ = 0) cos2PT (κ23, ρ = 0) ,

(72)

and thus the states |A⟩ and |C⟩ remain equiprobable.

In summary, coupling Stage 1 of our algorithm with a strategy for discriminating mirror-

symmetric states, as developed in [16], results in an outcome equivalent to the maximum

mutual information strategy in 1
3
of the cases and, in 2

3
of the cases, yields the same result as

the minimum-error strategy. If both Stages are employed, our approach yields an equivalent

result to the maximum mutual information strategy. Given that the minimum error and

maximum mutual information strategies exhibit the same error rate for this QKD protocol

due to Eqn. 65, our algorithm achieves precisely the same error rate as these strategies in

both cases. However, in the next Section VIII, we pinpoint applications where our algorithm

is advantageous to its Hermitian counterparts.

VIII. DISCUSSION AND APPLICATIONS

While our algorithm does not provide an advantage for the specific states used in the three-

states QKD protocol, as given in Eqn. 61, it can be advantageous in other scenarios. In cases

involving highly nonsymmetric states, where explicit solutions are not readily available and

intricate computations are required [18], our approach’s ability to map three arbitrary states

to a predefined and standardized set can be beneficial in practical applications.

As discussed in Section IV, our algorithm enables the mapping of three arbitrary states to

stabilizer states, albeit with the adjustment of their prior probabilities. Stabilizer states play

a pivotal role in quantum error correction, serving as the operational foundation for numerous

quantum error correction codes [65, 81]. They enable the detection and correction of errors in

quantum systems, thereby proving essential for the development of reliable and fault-tolerant

quantum computers [65, 81]. This capability holds significant implications for quantum error

24



Figure 17. Comparison of cos4PT in PT -

symmetric subsystem weighted by the popu-

lation of postselected space to its Hermitian

counterpart.

Figure 18. Minimization of the average num-

ber of oracle calls and maximization of prob-

ability over the average number of oracle

calls corresponding to T (k) and R (k).

correction, particularly considering the absence of a single, universally applicable quantum

error correction code for an arbitrary set of states [82]. The ability to map arbitrary three

states onto stabilizer states while conserving their projections on reference vectors has the

potential to enhance error protection, encompassing a broader spectrum of errors and thereby

contributing to the advancement of quantum memory capabilities.

With the explicit expressions for the probability of the decisive outcome of PT -symmetric

evolution derived in Section V, we can now assess its implications for quantum sensing

applications. It has been demonstrated that probabilistic metrology, evaluated based on

the mean-square estimation error (MSE), fails to enhance the quantum limits of single-

parameter estimation [83]. Remarkably, it has been highlighted that this conclusion might

not hold true when alternative non-MSE performance metrics are used [83]. Furthermore,

the usage of non-Hermitian single-qubit gates for quantum sensing was proposed [84] since

such systems exhibit divergent susceptibility promising an enhanced sensitivity. At the same

time, it was recently shown that when the postselection probability is taken into account,

the average QFI does not increase [85].

Our results align with the findings of all the aforementioned works. Namely, in Fig. 6,

one can observe a sharp spike in sensitivity at ρ = −π
2
in terms of cos2PT reminiscent of [84].

At the same time, similarly to [37, 38], for the density matrix ρinit corresponding to the pure

state |χ3⟩ in Eqn. 15, we compute QFI FPure
ρ after the Stage 2 of PT -symmetric evolution:

ρStage 2 (t) =
e−iHtρinite

iH†t

Tr
(
e−iHtρiniteiH

†t
) , FPure

ρ = 2Tr

[(
∂ρρ

Stage 2
(
t = τ II =

π

2ω

))2]
(73)
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One observes at ρ = −π
2
an apparently divergent QFI, similarly to [84]:

FPT (α, ρ) =
4 cos4(α)

(3 + 4 sin(α) sin(ρ)− cos(2α))2
=

(
α− π

2

)4
4(1 + sin(ρ))2

+O

((
α− π

2

)5)
, (74)

However, by an explicit computation, one obtains:

FPT
(
α, ρ = −π

2

)
DII

+

(
α, ρ = −π

2

)
= 1 (75)

Thus, an average QFI remains the same as in the Hermitian case, in complete agreement

with [85].

These results have several implications for practical applications. First, as discussed

in [86], even though an average QFI after the postselection remains the same as in the

Hermitian case, the ability to “condense” all QFI about the detected parameter into a small

fraction of events by itself gives technical advantages. Also, given that the value of cos2PT in

the postselected space is larger than its Hermitian counterpart, this property can be useful

for realistic detectors with the sensitivity threshold.

Secondly, when non-MSE performance metrics are utilized, PT -symmetric metrology can

be notably superior to the Hermitian counterpart. For instance, replacing cos2PT (|χ1⟩ , |χ3⟩)×
DII

+ by cos4PT (|χ1⟩ , |χ3⟩) × DII
+ illustrates this potential advantage. The ratio of the fourth

power of the cosine in postselected space, weighted by the probability of the decisive outcome

cos4PT (|χ1⟩ , |χ3⟩)×DII
+, to the fourth power of the corresponding cosine in Hermitian space

is depicted in Fig. 17. One can observe a notable peak in Fig. 17 at ρ = −π
2
when α → π

2
,

since using Eqn. 56:

cos4PT (|χ1⟩ , |χ3⟩)×DII
+

cos4 (|χ1⟩ , |χ3⟩)
=

cos2PT (|χ1⟩ , |χ3⟩)
cos2 (|χ1⟩ , |χ3⟩)

(76)

This result is consistent with [83], where it was emphasized that for non-MSE loss functions,

PT -symmetric metrology can be superior to the Hermitian one. This property can be useful

in quantum sensing which involves dealing with noisy data. Given the sensitivity of MSE to

outliers and its tendency to overestimate noisy data points, using a non-MSE loss function

that penalizes deviations from the true value more strongly than a quadratic loss function

can improve robustness to outliers and improve overall performance.

Our methodology has the potential to be advantageous in the parallelization of quan-

tum computations, aiming to decrease circuit depth. The depth parameter is crucial for

Noisy Intermediate Scale Quantum (NISQ) computers defined by Preskill [87]. These quan-

tum computers feature noisy qubits and have the potential to solve practical problems of

commercial significance faster than conventional supercomputers or with lower energy con-

sumption. To address the challenges posed by error accumulation, decoherence, and error
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correction, it is recommended that the corresponding quantum circuits exhibit a shallow

depth corresponding to a small number of qubit gate cycles [88]. Additionally, the NIST call

for proposals on Post-Quantum Cryptography (PQC) [89, 90] emphasized a specific form

of the quantum circuit model. In this variant, the adversary is constrained to executing a

maximum of MAXDEPTH gates in series.

Our algorithm may find application in the parallelization of quantum phase estimation,

a critical component of Shor’s algorithm [91, 92]. To illustrate, consider the case of a single

qubit, represented as |ψΦ⟩ = 1√
2

(
|0⟩+ e2πiΦ |1⟩

)
, where Φ denotes the phase to be estimated.

For a single qubit, the inverse Quantum Fourier Transform (QFT) is represented by the

Hadamard gate. This operation alters the state of the qubit to:

|ψΦ⟩ →

 cos (πΦ)

−i sin (πΦ)

 , (77)

To enhance the measurement accuracy of a small value of Φ, one can apply the unitary

operator of interest multiple times in series before performing the measurement. However,

it is important to note that in this approach, the depth of the quantum circuit would become

substantial, rendering it more susceptible to the accumulation of errors. An alternative

strategy that we propose involves applying Stage 2, as described in Section V. This effectively

increases the value of Φ at the expense of reducing the probability of a decisive outcome.

Eqn. 56 shows that, on average, the increase in the phase needed to be estimated will be

the same in both cases. However, by employing Stage 2 of PT -symmetric evolution from

Section V, this increase will be executed in parallel. This parallel implementation holds

significant potential for reducing susceptibility to errors.

Finally, consider our approach in application for the search over an unstructured database

of size M = 2n. The renowned Grover’s search algorithm [93] finds the solution in time ∼√
M and is optimal in terms of the number of oracle calls required for the search process [94].

The possibility to improve the search over an unstructured database by using PT symmetry

was introduced in [58] (referring to [11]) and further discussed in [95]. In the conventions

of [11], following the application of the oracle only once, the state of the last qubit is:

2n√
22n − 2n+1s+ 2s2

(
2n − s

2n
|0⟩+ s

2n
|1⟩
)
, (78)

where s represents the number of solutions. For simplicity, we consider the case of s = 1

solution further in the text. According to [11], the ability to exponentially separate the

states |0⟩ and |1⟩ implies the capability to search exponentially large databases in polynomial

time. However, as discussed in [95], achieving such an operation is only possible with an

exponentially small probability of success. Consequently, it is not feasible to search over an
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unstructured database using a fewer number of oracle calls than in Grover’s algorithm. Our

results in Eqns. 56 and 57 are in complete agreement with [95]. After applying the following

unitary transformation:

Q =

 1√
2

1√
2

− i√
2

i√
2

 , (79)

and using Stage 2, it is possible to exponentially increase the value of cos2PT as shown in

Section V. However, this enhancement is counterbalanced by an exponential decrease in

postselection probability DII, resulting in no improvement in the average number of oracle

calls.

However, Grover’s search algorithm was shown to be not depth-optimal [96]. Thus, in-

stead of attempting the impossible task of reducing the number of oracle calls [94], our pro-

posal involves leveraging our PT -symmetric algorithm to optimize the depth of the quantum

circuit required for a quantum database search, as demonstrated further in the text.

As the quantum state of Grover’s algorithm remains in a two-dimensional subspace after

each application of the oracle [93], our results developed for the qubit case in Section V

are directly applicable to the unstructured database search as well. Let |ω⟩ be the state to

be identified, |s⟩ = 1√
M

∑M−1
x=0 |x⟩ the initial state before applying the oracles, and |s′⟩ =

1√
M−1

∑
x ̸=ω |x⟩ the state orthogonal to |ω⟩. In the limit M ≫ 1, the state of the system

after applying the oracle k times, in the two-dimensional basis formed by orthogonal states

|s′⟩ and |ω⟩, is given by [93]:

|ΨG⟩ =

cos
(

2k√
M

)
sin
(

2k√
M

)
 , (80)

After applying the oracle kf = π
4

√
M times, the probability of correctly identifying the state

p+ (k) = sin2

(
2k√
M

)
, (81)

approaches 100% [93].

The parallelized version of Grover’s algorithm [97] provides a decrease in the average

number of oracle calls by minimizing:

T (k) =
∞∑
i=1

(1− p+ (k))i−1 p+ (k) ik = k csc2
(

2k√
M

)
→ min (82)

This improvement capitalizes on the observation that the convergence towards the end of the

complete Grover’s search algorithm is slow, as indicated in Eqn. 80. The search is stopped
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after approximately 0.5828
√
M oracle applications, earlier than in the original version of

Grover’s algorithm (π
√
M
4

). While the probability of correctly identifying the state is approx-

imately 84.458%, with the risk of having to restart the search, the average number of oracle

calls is reduced by 12% [97].

Our objective is to decrease the depth of the circuit while maintaining the same average

number of oracle calls. This will be achieved through the application of the PT -symmetric

transformation, as elaborated in Section V. After an initial application of the oracle kInit

times, the Q transformation in Eqn. 79 on the two-dimensional subspace of Eqn. 80 converts

|ΨG⟩ to:

|ΨG⟩ →

 cos
(

2kInit√
M

− π
4

)
−i sin

(
2kInit√

M
− π

4

)
 (83)

One can use Stage 2 outlined in Section V, guided by Eqn.56, along with the inverse of Q as

defined in Eqn.79. This enhances the projection of |ΨG⟩ onto |ω⟩ but comes at the expense

of diminishing the likelihood of a conclusive outcome.

Before application of the PT -symmetric evolution:

p+ (kInit) = sin2

(
2kInit√
M

− π

4

)
, DII

+ (kInit) = 1 (84)

After the application of Stage 2, one observes an effective value kEff exceeding the initial

value kInit, as depicted in Fig. 6. However, in accordance with Eqn.56, the following quantity

remains constant:

p+ (kEff )DII
+ (kEff ) = sin2

(
2kInit√
M

− π

4

)
· 1, (85)

and as a result of Stage 2 :

p+ (kEff ) = sin2

(
2kEff√
M

− π

4

)
, DII

+ (kEff ) =
sin2

(
2kInit√

M
− π

4

)
sin2

(
2kEff√

M
− π

4

) (86)

By analogy to minimizing the average number of oracle calls, as expressed in Eqn. 82 in the

conventional parallelized Grover’s search algorithm [97], the maximization of probability of

successful database search while minimizing the average number of oracle calls through the

utilization of PT -symmetric transformation:

R (kEff ) =
∞∑
i=1

(
1−DII

+ (kEff )
)i−1DII

+ (kEff ) p+ (kEff )

kEff

=
sin2

(
2kEff√

M

)
kEff

→ max, (87)
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leads to the same optimal value of oracle calls kOpt = 0.5828
√
M as shown in Fig. 18. Ac-

cording to Eqn. 56, the average number of oracle calls remains unchanged from the original

parallelized version of Grover’s algorithm. Nonetheless, it allows the application of oracles

in parallel rather than in series. As a result, the initial circuit depth of kOpt = 0.5828
√
N

can be significantly reduced to kInit as α approaches π
2
, resulting in kInit ≪ kOpt. This has

promising implications for improving the fault tolerance of Grover’s algorithm, in particu-

lar for mitigating the effects of a faulty oracle [98]. In practical scenarios, as depicted in

Figs. 13, 14, and 15, the aforementioned advantage may be constrained by the noise effects

inherent in real-life quantum processors, particularly as α approaches π
2
.

IX. CONCLUSIONS AND FUTURE WORK

We developed a new PT -symmetric algorithm for mapping three arbitrary quantum states

and verified it using IBM Quantum Experience. Our framework is very flexible and general,

accommodating several important partial cases. By deriving exact expressions for the prob-

ability of successful postselection, we demonstrated consistency with the Hermitian cases

considered in the literature. We demonstrated that in a partial case of N = 2 states, our

approach provides an equivalent result to the conventional unambiguous quantum state dis-

crimination. When applied for the attack on the three-state QKD protocol, our approach

gives the same error rate as other approaches available in the literature and thus is consistent

with the security proof of this QKD protocol. By explicit computation, we show the invari-

ance of QFI by the PT -symmetric operation, in agreement with other results available in the

literature. However, we identify the scenarios where our proposed scheme has the potential

to outperform its Hermitian counterparts. First, we show when non-MSE performance met-

rics is used, our scheme is advantageous. Second, when applied for quantum database search,

while our scheme uses the same number of oracle calls, it provides a notable reduction of the

circuit depth in comparison to the conventional parallelized Grover’s search algorithm. We

argue that in the same way quantum phase estimation, which is an important part of Shor’s

algorithm, can be parallelized using our proposed algorithm. Additionally, our methodol-

ogy can be beneficial in practical scenarios for quantum error correction and quantum state

discrimination of highly asymmetric states. With our approach already implemented as an

optical scheme [60], our work lays the foundation for leveraging the unique properties of PT
symmetry to advance quantum information processing, communication, cryptography, and

sensing.
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METHODS

Adjusting to convenient positions

A set of arbitrary three states |ψi⟩ =

 cos
(
θi
2

)
eiϕi sin

(
θi
2

)
 , i ∈ [1, 3] can be adjusted to the

starting positions in Eqn. 9 by the following unitary rotation:

R =

 cos
(
π−2σ

4

)
−i sin

(
π−2σ

4

)
−i sin

(
π−2σ

4

)
cos
(
π−2σ

4

)
 ·

1 0

0 −ie−iλ−iϕ2

 ·

 cos
(
θ1
2

)
sin
(
θ1
2

)
e−iϕ1

− sin
(
θ1
2

)
eiϕ1 cos

(
θ1
2

)

(88)

The parameters of the starting position in Eqn. 9 are expressed as:

(89)cos
(µ
2

)
= |β|=

√
(Re (β))2 + (Im (β))2,

(90)ν = arctan

(
Im (γ)

Re (γ)

)
− arctan

(
Im (β)

Re (β)

)
,

with σ, and λ parameters given by the Eqns. 91, 92, 93, and 94 as:

(91)cos (σ) =

√
1 + cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2)

2
,
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(92)

λ = arctan

(
sin
(
θ1
2

)
cos
(
θ2
2

)
sin (ϕ2 − ϕ1)

cos
(
θ1
2

)
sin
(
θ2
2

)
− sin

(
θ1
2

)
cos
(
θ2
2

)
cos (ϕ2 − ϕ1)

)
−

− arctan

(
sin
(
θ1
2

)
sin
(
θ2
2

)
sin (ϕ2 − ϕ1)

cos
(
θ1
2

)
cos
(
θ2
2

)
+ sin

(
θ1
2

)
sin
(
θ2
2

)
cos (ϕ2 − ϕ1)

)
,

β = cos

(
θ1
2

)
cos

(
θ3
2

)
cos

(
π − 2σ

4

)(
1 + tan

(
θ1
2

)
tan

(
π − 2σ

4

)
eiϕ1−iϕ2−iλ

)
+

+sin

(
θ1
2

)
sin

(
θ3
2

)
cos

(
π − 2σ

4

)
eiϕ3−iϕ1

(
1− cot

(
θ1
2

)
tan

(
π − 2σ

4

)
eiϕ1−iϕ2−iλ

)
,

(93)

(94)

γ = i cos

(
θ1
2

)
cos

(
θ3
2

)
sin

(
π − 2σ

4

)(
tan

(
θ1
2

)
cot

(
π − 2σ

4

)
eiϕ1−iϕ2−iλ − 1

)
−

−i sin
(
θ1
2

)
sin

(
θ3
2

)
sin

(
π − 2σ

4

)
eiϕ3−iϕ1

(
1 + cot

(
θ1
2

)
cot

(
π − 2σ

4

)
eiϕ1−iϕ2−iλ

)

Unitary rotation, Step 2

The unitary rotation adjusting the states into the starting positions for the Step 3 and

the second PT -symmetric evolution has the following parameters:

(95)
κ = cos

(µ
2

)(
cos (ωτ − α) cos

(
δ

2

)
+ sin (ωτ) sin

(
δ

2

))
+ ieiν sin

(µ
2

)(
cos (ωτ + α) sin

(
δ

2

)
− sin (ωτ) cos

(
δ

2

))
,

(96)
ζ = i cos

(µ
2

)(
cos (ωτ − α) sin

(
δ

2

)
− sin (ωτ) cos

(
δ

2

))
+ eiν sin

(µ
2

)(
cos (ωτ + α) cos

(
δ

2

)
+ sin (ωτ) sin

(
δ

2

))
,

cos

(
ξ

2

)
=

|κ|√
|κ|2+|ζ|2

, χ = arctan

(
Im (ζ)

Re (ζ)

)
− arctan

(
Im (κ)

Re (κ)

)
(97)

32



Implementation of PT symmetry by the dilation method

The combined qubit-ancilla system is governed by the following Hermitian Hamiltonian:

HTotal
a,q (t) = 1̂⊗ Σ (t) + σy ⊗Υ(t) , (98)

and its elements are given by:

Σ (t) =

[
Hq (t) + i

dζ (t)

dt
ζ (t) + ζ (t)Hq (t) ζ (t)

]
N−1 (t) , (99)

Υ (t) = i

[
Hq (t) ζ (t)− ζ (t)Hq (t)− i

dζ (t)

dt

]
N−1 (t) , (100)

N (t) = T exp

[
−i
∫ t

0

dτ H†
q (τ)

]
N (0) T̃ exp

[
i

∫ t

0

dτ H (τ)

]
, (101)

where T and T̃ are the time and and anti-time-ordering operators, respectively. The operator

ζ (t) =
(
N (t)− 1̂

) 1
2 must maintain all its eigenvalues to be real, and the initial value N (0)

must be correspondingly chosen to ensure it. The following system of equations:Σ (t)− iΥ(t) ζ (t) = Hq (t)

Σ (t) ζ (t) + iΥ(t) = idζ(t)
dt

+ ζ (t)Hq (t)
, (102)

ensures that the driven qubit is evolved by the PT -symmetric Hamiltonian in Eqn. 2. The

ancilla qubit must be initialized as |ψ (0)⟩a = 1√
ζ(0)2+1

(|0⟩a + ζ (0) |1⟩a). For both stages of

the PT -symmetric evolution, 4× 4 evolution matrix was obtained by numerical solution of

differential equations by Mathematica [99]. Finally, the evolution matrices UEvolution were

decomposed into the elementary gates U3 as defined by IBM. For the first part of the PT -

symmetric evolution, they are denoted as U i
j , and V

i
j for the second part, where i, j ∈ [1, 4].

This was done employing the method defined in [100, 101]. First, the rotation to the “magic

basis” defined as: |ϕ1⟩ = 1√
2
(|00⟩+ |11⟩) ; |ϕ2⟩ = −i√

2
(|00⟩ − |11⟩)

|ϕ3⟩ = 1√
2
(|01⟩ − |10⟩) ; |ϕ4⟩ = −i√

2
(|01⟩+ |10⟩)

, (103)

was performed. As a result, the evolution matrix was factorized as:

UEvolution = (UA ⊗ UB) · UD · (VA ⊗ VB) , (104)
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PT -symmetric evolution #1
Postselection |0⟩

|0⟩ A1 U2
1 U2

2 U2
3 U2

4

∣∣ψ(1,2,3)

〉
U1
1 U1

2 U1
3 U1

4

∣∣ψ(1,2,3)

〉
evolved to

cos2 (κ12) = 0

Figure 19. Step 1 and the first stage of the PT -symmetric evolution.

UD = eiθ0MatrixExp

(
i

3∑
k=1

θkσk ⊗ σk

)
=

4∑
k=1

eIΦk |ϕk⟩⟨ϕk| (105)

The final transformation is carried out by M and Λ matrices:

M =
1√
2


1 0 0 i

0 i 1 1

0 i −1 0

1 0 0 −i

 , Λ =


1 1 −1 1

1 1 1 −1

1 −1 −1 −1

1 −1 1 1

 , (106)

θ = (θ0, θ1, θ2, θ3)
T ; Φ = (Φ0,Φ1,Φ2,Φ3)

T ; θ = Λ · Φ (107)

The numerical results are as follows.

1. First PT -symmetric evolution for σ = 4
5 , α = π

2 − 1, N (0) = 3

UFirstStage =
0.142552 − 0.235663i −0.650522− 0.393504i 0.2897 − 0.478919i −0.155267− 0.0939248i

−0.650482− 0.393478i 0.257979 − 0.426478i −0.155257− 0.0939158i −0.194071 + 0.320825i

−0.289696 + 0.478909i 0.155284 + 0.0939324i 0.142546 − 0.23565i −0.650547− 0.393515i

0.15525 + 0.0939129i 0.194076 − 0.320837i −0.650472− 0.393474i 0.257971 − 0.42646i


(Φ0,Φ1,Φ2,Φ3) = (1.61364, 1.61364, 2.61598, 2.61598) , (108)

UA =

 0.553173− 0.0868701i 0.128532 + 0.818494i

0.818494− 0.128536i −0.0868671− 0.553173i

 , (109)

UB =

 0.27538 − 0.495893i 0.823563

0.252434 − 0.783922i −0.556431 + 0.110127i

 , (110)
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VA =

 −0.35228i −0.9359i

−0.9359 0.35228

 , (111)

VB =

 0.1277 − 0.81357i 0.19514 − 0.53266i

0.53266 − 0.19514i −0.81357 + 0.1277i

 (112)

2. First PT -symmetric Evolution for σ = 6
5 , α = π

2 − 1, N (0) = 2

UFirstStage =


0.49542 − 0.32066i −0.28774− 0.44456i 0.50219 − 0.32504i −0.06318− 0.09762i

−0.28768− 0.44447i 0.66023 − 0.42733i −0.06317− 0.0976i −0.24838 + 0.16076i

−0.50223 + 0.32506i 0.06318 + 0.09761i 0.49546 − 0.32069i −0.28773− 0.44455i

0.06318 + 0.09762i 0.24838 − 0.16076i −0.28769− 0.44449i 0.66024 − 0.42733i



(Φ0,Φ1,Φ2,Φ3) = (−0.09904,−0.09904,−1.04982,−1.04984) , (113)

UA =

 0.32195 + 0.35488i −0.65003 + 0.5898i

0.58977 + 0.65006i 0.35485 − 0.32198i

 , (114)

UB =

 −0.68589 + 0.4424i 0.57779

−0.57506 + 0.05604i −0.72556− 0.37379i

 , (115)

VA =

 0. − 0.27972i −0.00004− 0.96008i

−0.96008− 0.00002i 0.27972

 , (116)

VB =

 −0.42795− 0.38828i −0.78849− 0.21068i

0.21067 + 0.78849i −0.38827− 0.42795i

 (117)
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PT -symmetric evolution #2
Postselection |0⟩

Result
∣∣ζ(1,2,3)〉

|0⟩ A2 V 2
1 V 2

2 V 2
3 V 2

4

∣∣ψ(1,2,3)

〉 ∣∣χ(1,2,3)

〉
= W

∣∣ψ(1,2,3)

〉
V 1
1 V 1

2 V 1
3 V 1

4

Figure 20. Steps 2 and 3. Unitary rotation W puts the evolved state into conventional positions,

and the second PT -symmetric evolution eliminates one of three states or reduces them to the

mirror-symmetric ones.

3. Second PT -symmetric Evolution, α = π
2 − 1

USecond stage =


0.20775i −0.75471 0.55429i 0.28286

−0.75471 −0.2077i 0.28292 −0.55429i

−0.55429i −0.28286 0.20775i −0.75471

−0.28292 0.55429i −0.75471 −0.2077i

 (118)

UA =

 −0.35523− 0.0003i −0.94791− 0.00081i

0.94791 + 0.00081i −0.35523− 0.0003i

 , (119)

UB =

 0.00085− i 0.00005

−0.00005 −0.00085 + i

 , (120)

VA = VB = 1̂; (Φ0,Φ1,Φ2,Φ3) = (0.93734,−0.93734, 0.93734,−0.93734) (121)

4. Second PT -symmetric Evolution, α = π
2 − 0.7

USecond stage =


0.29118i −0.68017 0.57944i 0.3418

−0.68017 −0.29097i 0.34196 −0.57945i

−0.57944i −0.3418 0.29118i −0.68017

−0.34197 0.57946i −0.68016 −0.29098i

 (122)

UA =

 −0.44888− 0.00094i −0.89359− 0.00187i

0.89359 + 0.00187i −0.44888− 0.00094i

 , (123)

36



UB =

 −0.0021− i 0.00011

−0.00011 0.0021 + i

 , (124)

VA = VB = 1̂; (Φ0,Φ1,Φ2,Φ3) = (0.86525,−0.86525, 0.86525,−0.86525) (125)

5. Second PT -symmetric Evolution, α = π
2 − 0.5

USecond stage =


0.3604i −0.62104 0.5786i 0.38684

−0.6211 −0.36067i 0.3866 −0.57852i

−0.5786i −0.38684 0.36039i −0.62105

−0.3866 0.57852i −0.62111 −0.36067i

 (126)

UA =

 0.52887 0.8487 + 0.00001i

−0.8487− 0.00001i 0.52887

 , (127)

UB =

 0.00001 + i 0.00017

−0.00017 −0.00001− i

 , (128)

VA = VB = 1̂; (Φ0,Φ1,Φ2,Φ3) = (0.82071,−0.82071, 0.82071,−0.82072) (129)

The first part of the PT -symmetric evolution is shown in Fig. 19, and the unitary rotation

with the second part of the PT -symmetric evolution in Fig. 20 respectively.

6. Attack on the three-state QKD protocol

UThree State QKD =


−0.09739i −0.87214 0.43866i −0.1937

−0.87215 0.0974i −0.19372 −0.43864i

−0.4386i 0.19367 −0.09744i −0.87212

0.19366 0.43861i −0.8721 0.09742i

 (130)

UA =

 −0.2167 + 0.00644i 0.97579− 0.02899i

−0.97579 + 0.02899i −0.2167 + 0.00644i

 , (131)
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UB =

 −0.02969 + 0.99956i 0.00001

−0.00001 0.02969− 0.99956i

 , (132)

VA = VB = 1̂; (Φ0,Φ1,Φ2,Φ3) = (1.10479,−1.10479, 1.10482,−1.10482) (133)
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[49] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip,

Observation of parity–time symmetry in optics, Nature physics, vol. 6, no. 3, pp. 192–195,

2010, Nature Publishing Group.
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[53] B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter,

and L. Yang, Chiral modes and directional lasing at exceptional points, Proceedings of the

42



National Academy of Sciences, vol. 113, no. 25, pp. 6845–6850, 2016, National Acad Sciences.

[54] X.-L. Zhang, S. Wang, B. Hou, and C. T. Chan, Dynamically encircling exceptional points:

in situ control of encircling loops and the role of the starting point, Physical Review X, vol. 8,

no. 2, p. 021066, 2018, APS.

[55] Y. Choi, C. Hahn, J. W. Yoon, S. H. Song, and P. Berini, Extremely broadband, on-chip optical

nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional

points, Nature communications, vol. 8, no. 1, p. 1–9, 2017, Nature Publishing Group.
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[75] G. Garćıa-Pérez, M. A. C. Rossi, and S. Maniscalco, IBM Q Experience as a versatile experi-

mental testbed for simulating open quantum systems, npj Quantum Information, vol. 6, no. 1,

pp. 1–10, 2020, Nature Publishing Group.

44



[76] Y. Wang, Y. Li, Z.-q. Yin, and B. Zeng, 16-qubit IBM universal quantum computer can be

fully entangled, npj Quantum information, vol. 4, no. 1, pp. 1–6, 2018, Nature Publishing

Group.

[77] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gam-

betta, Hardware-efficient variational quantum eigensolver for small molecules and quantum

magnets, Nature, vol. 549, no. 7671, pp. 242–246, 2017, Nature Publishing Group.

[78] H.-Y. Ku, N. Lambert, F.-J. Chan, C. Emary, Y.-N. Chen, and F. Nori, Experimental test of

non-macrorealistic cat states in the cloud, npj Quantum Information, vol. 6, no. 1, pp. 1–9,

2020, Nature Publishing Group.

[79] S.-L. Chen, G.-Y. Chen, and Y.-N. Chen, Increase of entanglement by local PT-symmetric

operations, Physical Review A, vol. 90, no. 5, p. 054301, 2014, APS.

[80] S. J. D. Phoenix, S. M. Barnett, and A. Chefles, Three-state quantum cryptography, Journal

of modern optics, vol. 47, no. 2-3, pp. 507–516, 2000, Taylor & Francis.

[81] D. Poulin, Stabilizer formalism for operator quantum error correction, Physical Review Let-

ters, vol. 95, no. 23, p. 230504, 2005, APS.

[82] B. M. Terhal, Quantum error correction for quantum memories, Reviews of Modern Physics,

vol. 87, no. 2, p. 307, 2015, APS.

[83] J. Combes, C. Ferrie, Z. Jiang, and C. M. Caves, Quantum limits on postselected, probabilistic

quantum metrology, Physical Review A, vol. 89, no. 5, p. 052117, 2014, APS.

[84] Y. Chu, Y. Liu, H. Liu, and J. Cai, Quantum sensing with a single-qubit pseudo-Hermitian

system, Physical Review Letters, vol. 124, no. 2, p. 020501, 2020, APS.

[85] Wenkui Ding, Xiaoguang Wang, Shu Chen, Fundamental Sensitivity Limits for non-

Hermitian Quantum Sensors, Physical Review Letters, vol. 131, 160801, 2023, APS.

[86] A. N. Jordan, J. Mart́ınez-Rincón, and J. C. Howell, Technical advantages for weak-value

amplification: when less is more, Physical Review X, vol. 4, no. 1, p. 011031, 2014, APS.

[87] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum, vol. 2, p. 79, 2018,

Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.

[88] O. Ezratty, Where are we heading with NISQ?, arXiv preprint arXiv:2305.09518, 2023.

[89] G. Alagic et al., Status report on the third round of the NIST post-quantum cryptography

45



standardization process, US Department of Commerce, NIST, 2022.

[90] National Institute of Standards and Technology, Submission Requirements and Evaluation

Criteria for the Post-Quantum Cryptography Standardization Process, 2016, Avail-

able at https://csrc.nist.gov/CSRC/media/Projects/Post-QuantumCryptography/

documents/call-for-proposals-final-dec-2016.pdf.

[91] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Pro-

ceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, 1994,

IEEE.

[92] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer, SIAM Review, vol. 41, no. 2, pp. 303–332, 1999, SIAM.

[93] L. K. Grover, Proceedings of the twenty-eighth annual ACM symposium on Theory of com-

puting, STOC’96, pp. 212–219, 1996, Association for Computing Machinery New York.

[94] C. Zalka, Grover’s quantum searching algorithm is optimal, Physical Review A, vol. 60, no. 4,

p. 2746, 1999, APS.

[95] S. Croke, PT-symmetric Hamiltonians and their application in quantum information, Physical

Review A, vol. 91, no. 5, p. 052113, 2015, APS.

[96] K. Zhang and V. E. Korepin, Depth optimization of quantum search algorithms beyond

Grover’s algorithm, Physical Review A, vol. 101, no. 3, p. 032346, 2020, APS.

[97] R. M. Gingrich, C. P. Williams, and N. J. Cerf, Generalized quantum search with parallelism,

Physical Review A, vol. 61, no. 5, p. 052313, 2000, APS.

[98] O. Regev and L. Schiff, Impossibility of a quantum speed-up with a faulty oracle, in Interna-

tional Colloquium on Automata, Languages, and Programming, pp. 773–781, 2008, Springer.

[99] Wolfram Mathematica software, https://www.wolfram.com/mathematica/.

[100] P. B. M. Sousa and R. V. Ramos, Universal quantum circuit for n-qubit quantum gate: A

programmable quantum gate, arXiv preprint quant-ph/0602174, 2006.

[101] F. Vatan and C. Williams, Optimal quantum circuits for general two-qubit gates, Physical

Review A, vol. 69, no. 3, p. 032315, 2004, APS.

46

https://csrc.nist.gov/CSRC/media/Projects/Post-QuantumCryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-QuantumCryptography/documents/call-for-proposals-final-dec-2016.pdf

	PT-symmetric mapping of three states and its implementation on a cloud quantum processor
	Abstract
	Introduction
	Results
	Background on PT symmetry
	Scheme for PT-symmetric transformation of N = 3 states
	Step 3 by Hermitian measurement
	Step 3 CPT measurement

	Embedding by the dilation method
	First stage
	Second stage

	Implementation and experimental results
	Attack on the trine-state QKD protocol
	Discussion and applications 
	Conclusions and future work
	Acknowledgements
	Data and code availability
	Methods
	Adjusting to convenient positions
	Unitary rotation, Step 2
	Implementation of PT symmetry by the dilation method
	First PT-symmetric evolution for = =24  =1=+15=0, = =2  =1=+12=0 - 1, N(0) = 3
	First PT-symmetric Evolution for = =26  =1=+15=0, = =2  =1=+12=0 - 1, N(0) = 2
	Second PT-symmetric Evolution, = =2  =1=+12=0 - 1
	Second PT-symmetric Evolution, = =2  =1=+12=0 - 0.7
	Second PT-symmetric Evolution, = =2  =1=+12=0 - 0.5
	Attack on the three-state QKD protocol


	References


