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Abstract—Through tremendous efforts, the communication
cost of secure multi-party computation (MPC) in the honest-
majority setting has been significantly improved. In particular,
the state-of-the-art honest-majority MPC protocol by Escudero
et al. (CCS’22) takes 12 field elements in total per multiplication
gate for arithmetic circuits in the online phase. However, it still
requires 12 log(5n/4) bits of online communication per AND
gate for Boolean circuits. That is, for Boolean circuits, no MPC
protocol with constant online communication is known.

In this paper, we present an unconditionally secure MPC
protocol for Boolean circuits in the honest-majority setting,
which has constant online communication complexity and the
offline communication complexity linear to the number n of
parties. We first describe the semi-honest MPC protocol and
then show how to extend it to achieve malicious security, where
the maliciously secure protocol has the same communication cost
as the semi-honest protocol. In particular, our protocol achieves
the amortized communication cost 36 bits per AND gate in the
online phase and 30n+24 bits per AND gate in the offline phase.

Index Terms—Secure multi-party computation, honest major-
ity, information-theoretic security

I. INTRODUCTION

Secure multi-party computation (MPC) [1]–[4] allows a
number of parties to jointly compute a function over their
inputs while keeping their inputs private and only the output
of the function is disclosed after the execution of the protocol.
MPC integrates cryptography and distributed computing tech-
nology, which is an important research direction in the field of
information security. It has a very wide application prospect,
such as privacy preserving machine learning (PPML), privacy
preserving data mining, etc.

We focus on honest majority setting, where the number of
corrupted parties t, satisfies t ≤ (n−1)/2, n is the total num-
ber of parties. Communication complexity serves as a critical
metric in evaluating the performance of secure multiparty com-
putation protocols. In this work, we present a constant honest
majority multiparty computation protocol for Boolean circuits
with information theoretic security in the preprocessing model
that achieve the constant online communication complexity.
Here, the term ’constant’ signifies that the communication
complexity per AND gate is independent of the number of
parties involved. Several works [5]–[10] have achieved the
overall communication complexity O(|C| · n) elements in the
evaluation of arithmetic circuit C, where |C| is the number of
multiplication gates in the circuit. The protocol [9] achieves 4n

elements per multiplication gate, which includes 2n elements
in offline phase and 2n elements in online phase. And [11]
achieves 1.5n elements per multiplication gate in online phase
and 4n elements in the offline phase.

There are also several works achieve constant online com-
munication complexity for arithmetic circuits. For instance,
TURBOPACK [12] achieves 12 elements in online phase and
10n + 32 elements in offline phase ( includes 10n + 24 ele-
ments in circuit-independent phase and 8 elements in circuit-
dependent phase), which is roughly about 12 log(1.25n) bits in
online phase and (10n + 32) log(1.25n) bits in offline phase
per multiplication gate. Note for Shamir secret scheme, the
field size must be larger than n, and for packed secret sharing
scheme, the field size must be larger than n + k, where n is
the number of parties, k is parameter of packed secret sharing
scheme and k ≈ n/4 in the honest majority setting. The study
of [13] achieves 14n/k elements per multiplication gate and
addition gate for dishonest majority over arithmetic circuits.
The state-of-the-art dishonest majority protocol SUPERPACK
[14] achieves 6/ϵ elements per multiplication gate over arith-
metic circuits, which is about 6 · (log(n+ k))/ϵ bits and ϵ is
the percentage of honest parties among all parties.

Inspired by the works described above, we proposed a
constant online communication MPC protocol for Boolean
circuits. This protocol achieves amortized 36 bits per AND
gate in the online phase and 30n + 24 bits per AND gate in
the offline phase, in both semi-honest and malicious settings.
The potential application scenarios for our protocol are numer-
ous, such as multi-party PPML, privacy-preserving database
queries, and more. In PPML, when dealing with non-linear
operations such as ReLU, max-pooling, etc., elements in the
field are usually decomposed into bit representations, which
leads to significant communication overhead. Our constant
online MPC protocol, based on Boolean circuits, offers a
potential solution for reducing the communication overhead
associated with such operations. For instance, consider a ReLU
operation based on packed secret sharing (PSS). This operation
incurs a communication complexity of at least O(l2) in the
online phase, where l denotes the size of an element. When
taking l = 63, the complexity equates to an estimated 30,000
bits for a singular ReLU operation. In contrast, our protocol
slashes this number down to an estimated 2300 bits. This
significant reduction stems from the Boolean circuit’s ReLU



operation, which strategically uses the most significant bit to
perform an AND operation.

In some application scenarios, the primary burden is com-
munication overhead, a large portion of which is independent
of the input. Consequently, this part of the communication can
be conducted during the offline phase to enhance the efficiency
of the protocol during the online phase. These approaches of
dividing the protocol into online and offline phases are also
commonly used in dishonest majority multi-party computation
protocols, such as [15]–[17], and all other subsequent works
which based on these works. Thus we also divide our protocol
into an offline phase and an online phase.

A. Our Contribution

In this work, we propose an honest majority MPC protocol
that is the first constant online communication complexity
protocol for Boolean circuits, has an online phase whose
total communication complexity per AND gate is constant
and independent of the number of parties. Previous related
work [12]–[14], [18] was focused on arithmetic circuits not
for Boolean circuits, and did not achieve constant online
communication complexity in terms of bits. Our approach,
which is based on [12], achieves the first constant bits online
communication protocol for Boolean circuits. We also opti-
mize the offline communication complexity of [12], reducing
the communication overhead of the whole protocol. We split
our protocol into two phases:

1) Offline Phase: Requires 30n + 24 bits per AND gate
for both semi-honest security and malicious security in
honest majority setting.

2) Online Phase: Requires 36 bits per AND gate for both
semi-honest security and malicious security in honest
majority setting.

In the offline phase, parties generate two types of random-
ness: circuit-dependent randomness and circuit-independent
randomness. These random values are unrelated to the circuit
inputs. The generation of correlated randomness for each
AND gate in the offline phase incurs a total communication
complexity of 30n+ 24 bits.

In the online phase, the parties evaluate the AND gates
and XOR gates layer by layer. The communication complexity
for each AND gate in the online phase is 36 bits, while the
communication for XOR gates is free. It is important to note
that the communication complexity mentioned above is in
the average sense. In the case of our online protocol with
malicious adversaries, the parties also need to verify secrets
and ensure the correctness of computation results during the
online phase.

Recalling our protocol’s achievement of both semi-honest
and malicious security, our focus in this section will be primar-
ily on the semi-honest protocol. Due to space constraints, the
primary concept of our malicious security protocol is described
in Section V, while the detailed protocols are presented in
Appendix IX. To achieve a constant communication com-
plexity in the online phase for Boolean circuits, we leverage

two key techniques: packed secret sharing [19] and reverse
multiplication friendly embeddings [20]:

– Packed secret sharing is a technique that enables the
distribution and operation on multiple secrets simulta-
neously, while incurring the cost of a single secret. It
allows us to efficiently handle multiple inputs within a
single secret sharing scheme.

– Reverse multiplication friendly embeddings are employed
to map pairs of vectors from the binary field to its
extended field. This technique facilitates the mapping
of multiple inputs of gates in the binary field to a
single element in the extended field, reducing the overall
complexity.

By utilizing reverse multiplication friendly embeddings and
packed secret sharing, we can distribute and operate on mul-
tiple elements in the extended field simultaneously, further
optimizing the communication complexity. A more detailed
explanation of packed secret sharing and reverse multiplication
friendly embeddings will be provided later in the paper.

The comparison of the communication cost per AND gate
between our protocol and the state-of-the-art protocols appears
in Table I. For protocol in arithmetic circuits, we denote the
field size is log(n + k) ≈ log(1.25n) bits when the protocol
uses packed secret sharing scheme, and the field size is log(n)
bits when the protocol uses Shamir secret sharing scheme. For
the communication complexity of online phase per AND gate,
when the number of parties n ≥ 12, our result is superior to
[21], and when n ≥ 7, our result is superior to [12]. For the
communication complexity of offline phase per AND gate,
when the number of parties n ≥ 2, our result is superior to
[21], and when n ≥ 3, our result is superior to [12]. When the
number of parties n = 50, our communication complexity of
offline phase per AND gate is 2× better than [12], 1.57× better
than [21], and the communication complexity of online phase
is 1.98× better than [12], 4.16× better than [21]. When the
number of parties n = 100, our communication complexity of
offline phase per AND gate is 2.37× better than [12], 1.58×
better than [21], and the communication complexity of online
phase is 8.3× better than [21], 2.32× better than [12].

B. Related Work

We focus on the honest majority information-theoretic MPC
protocol in both semi-honest and malicious settings. The first
protocol which achieves linear communication complexity is
DN07 [7], commonly known as the DN protocol. Then there
are many works have utilized the DN protocol to achieve
security-with-abort [6], [8], [10], [11], [22] or guaranteed
output delivery [11], [23]. Some works even achieved better
performance, such as [11] achieves 5.5n elements per multi-
plication gate and [9] achieved 4n elements per multiplication
gate.

The Order-C protocol, as outlined in [18], proposed a
constant communication complexity for highly repetitive cir-
cuits, based on packed secret sharing scheme. However, it
is not optimized for common arithmetic or Boolean circuits.
While both our approach and Order-C employ packed secret



TABLE I
COMPARISON OF THE COMMUNICATION COST PER AND GATE BETWEEN OUR PROTOCOL AND THE STATE-OF-THE-ART PROTOCOLS.

Honest-majority MPC Offline communication (bits) Online communication (bits) Corruption threshold Security

[12] (10n+ 32) log(5n/4) 12 log(5n/4) (n− 1)/2 Information Theoretic and Active

[21] 48n 3n (n− 1)/2 Information Theoretic and Active

Our protocol 30n+ 24 36 (n− 1)/2 Information Theoretic and Active

sharing schemes, the methodologies diverge significantly. In
Order-C, packed secret sharing is directly applied to secret
operations, necessitating a rearrangement step after each layer
of circuit operations. In contrast, our approach obfuscates the
secret with random values. This allows us to minimize com-
munication overhead primarily when executing multiplication
via packed secret sharing. Moreover, addition operations are
executed locally by participating parties, and any necessary
rearrangement is performed on the masked plaintext rather
than on the shared secret. As a result, our scheme offers
greater versatility and is adaptable to a wider range of circuit
types compared to Order-C. Then [12] proposed a constant
online communication complexity MPC over arithmetic circuit
with the communication complexity of 12 log(1.25n) bits per
multiplication gate.

The work in [20] revisited the amortized complexity of
unconditional MPC and proposed the concept of Reverse Mul-
tiplication Friendly Embeddings (RMFE), which can embed
several instances of the computation of a Boolean circuit into
a single computation of an arithmetic circuit over an extension
field. By using RMFE, the work achieves communication com-
plexity of O(n) bits per gate for SIMD circuits. Subsequently,
[21] employed RMFE to propose a communication complexity
of O(n) bits per gate MPC protocol over binary fields.

II. TECHNICAL OVERVIEW

In this section, we aim to provide a high-level overview of
our techniques, illustrating how we achieve a constant online
communication complexity for Boolean circuits. Throughout
this explanation, we will use bold letters to denote vectors,
while n represents the number of parties and t represents
the number of corrupted parties. In the setting of the honest
majority, we have n = 2t+1. The packing parameter of packed
secret sharing is represented by k, which specifies the number
of secrets that can be stored within a single secret sharing
scheme, and d represents the degree of packed secret sharing.
By utilizing packed secret sharing with appropriate values of k
and d, we are able to achieve efficient and secure operations
on multiple secrets simultaneously, thereby reducing overall
communication complexity.

Throughout the subsequent sections, we will delve into the
details of our techniques in order to provide a comprehensive
understanding of our approach.

A. Starting Idea: Constant Online Protocol for Boolean cir-
cuits Based on [12], [13], [24]

TURBOPACK [12] serves as a constant online multi-party
computation protocol focused on arithmetic circuits, employ-
ing a method to aggregate multiple secrets into a single

polynomial over a large field. This innovation motivated us
to design a constant online protocol tailored for Boolean
circuits. One key challenge is efficiently packing multiple bits
into a single secret. While Packed Secret Sharing offers a
straightforward method, its reliance on using a field element to
represent each bit is both space-inefficient and non-constant in
terms of communication complexity, at O(log(n)) per AND
gate.

Our solution leverages Reverse Multiplication Friendly
Embeddings (RMFE) [20], perfectly suited for our needs.
RMFE allows us to fold multiple instances of Boolean circuit
computations into a singular arithmetic circuit operation over
an extension field. To be more precise, RMFE enables the
conversion of several bits into a single field element. This
conversion process is repeated to form multiple field elements,
which are then packed and shared via a packed secret sharing
scheme.

However, the use of RMFE introduces a new challenge:
each RMFE-mapped element necessitates an inverse transfor-
mation following each multiplication operation. Fortuitously,
the multiplication process in TURBOPACK inherently requires
masking the multiplication result and sending it to a designated
leader for repackaging. This step conveniently allows us to
perform the required RMFE inverse transformation without
adding extra communication overhead. Having addressed these
challenges, we successfully integrated the TURBOPACK to
realize a constant online MPC protocol tailored for Boolean
circuits.

Subsequently, we will delineate the particular architecture
of our protocol. To accomplish this, we will employ two types
of secret sharing schemes:

– The variant Shamir Secret Sharing scheme [25]: To
represent this scheme, we will use [x|si]t to denote a
degree-t Shamir secret sharing scheme that corresponds
to a degree-t polynomial f such that f(1), ..., f(n) are
the shares and f(si) as the secret.

– Packed Secret Sharing scheme [19]: For this scheme, we
will use the notation [[x]]d to denote a degree-d Packed
Secret Sharing scheme that corresponds to a degree-d
polynomial f such that f(1), ..., f(n) are the shares and
f(s1), ..., f(sk) are the secrets x1, ..., xk where x =
(x1, ..., xk) and (s1, ..., sk) are the default positions to
store the secrets (x1, ...., xk).

Packed secret sharing, proposed by [19], is a generic
approach for reducing the communication complexity which
based on Shamir secret sharing. To clarify, we employ the
variable k as the packing parameter, signifying that the Packed
Secret Sharing scheme can encapsulate k secrets within a



single instance of secret sharing. For a packed secret sharing
scheme of degree-d capable of accommodating k secrets, it is
imperative to secure the scheme by ensuring that d ≥ k+t−1.
Furthermore, when performing multiplication operations be-
tween two Packed Secret Sharing instances, one with a of
degree-d and another with d′, attentiveness to degree con-
straints is vital. Since d′ ≥ k − 1, and the combined degree
d + d′ must not exceed n − 1. This dictates that d should
be less than or equal to n − k, culminating in the inequality
n− k ≥ d ≥ t+ k − 1.

To increase the storage capacity for secrets, we set n−k =
d = t+k−1, which allows us to store more secrets. By solving
for k in terms of n and t, we derive k = (n− t+ 1)/2. This
selection maximizes the packing parameter, thereby enhancing
the efficiency of both storage and manipulation of multiple
secrets within our Packed Secret Sharing scheme.

Reverse Multiplication Friendly Embeddings (RMFE), in-
troduced by [20], are a pair of specialized mapping techniques
that enable the transformation of a pair of vectors from a bi-
nary field to its corresponding extended field while preserving
certain operational properties.
Review of the Reverse Multiplication-Friendly Embeddings
[20]. Let Fl

2 denote a vector space of F2 with dimension
k, and let F2m denote the extension field of F2 with degree
m. A reverse multiplication-friendly embeddings consists of
a pair of F2-linear maps (ϕ, ψ), where ϕ : Fl

2 → F2m and
ψ : F2m → Fl

2. For all vectors x, y ∈ Fl
2, these maps satisfy

the condition:

x ∗ y = ψ(ϕ(x) · ϕ(y)).

Here, ∗ denotes the coordinate-wise product. The work [20]
proved that a family of RMFEs exists such that m = Θ(k).
Consider the superscript (2) to indicate a binary value, and let
vectors a = (a

(2)
1 , ..., a

(2)
l ), b = (b

(2)
1 , ..., b

(2)
l ) satisfy a, b ∈

Fl
2 and a(2)i , b

(2)
i ∈ F2 for all i ∈ {1, ..., l}. A pair of mappings

(ϕ, ψ) forms RMFE that satisfies a ∗ b = ψ(ϕ(a) · ϕ(b)),
where ϕ(a), ϕ(b) ∈ F2m . Moreover, [20] proved that for all
r < 33, there exists a (3r, 10r− 5)2-RMFE. In this work, we
set m ≈ 3l.

We utilize the combination of packed secret sharing and re-
verse multiplication friendly embeddings to construct an MPC
protocol with constant online communication complexity. In
our approach, we adopt the superscript (2) to denote binary
values.

To begin, we group each l·k values that need to be computed
by the same type of circuit gate on a given layer, denoted
as {v(2)i,1 , ..., v

(2)
i,l }ki=1. Next, employing the RMFE mapping

ϕ(·), we convert a set of l binary values to an element vi
within its corresponding extended field F2m . Specifically, for
all i ∈ {1, ..., k}, we have vi = ϕ(v

(2)
i,1 , ..., v

(2)
i,l ) ∈ F2m . Then

we use a degree-(n−k) packed secret sharing scheme to pack
the values and then secretly share v = (v1, ..., vk), obtaining
the sharing [[v]]n−k.

We use K to denote the set K = {1, ...k} and use L
to denote the set L = {1, ..., l}. Let α = {αi,j}i∈K,j∈L,

β = {βi,j}i∈K,j∈L denote the input wires of k · l XOR or
AND gates for Boolean circuit. Let v(2)αi,j be the value of the
wire αi,j , v(2)βi,j

be the value of the wire βi,j for all i ∈ K,
j ∈ L. As described above, we can compute the packed
sharing [[vα]]n−k, [[vβ]]n−k such that vα = (vα1

, ..., vαk
),

vβ = (vβ1 , ..., vβk
) and vαi = ϕ(v

(2)
αi,1 , ..., v

(2)
αi,l), vβi =

ϕ(v
(2)
βi,1

, ..., v
(2)
βi,l

) for all i ∈ K. This enables us to perform
batch computation of k · l gates at a time.

We have adopted the approach of TURBOPACK [12] as
a basis for achieving constant online communication com-
plexity. However, TURBOPACK was originally designed for
arithmetic circuits and cannot be directly applied to Boolean
circuits. Therefore, we have made significant modifications to
TURBOPACK in order to achieve constant online communica-
tion complexity specifically for Boolean circuits. Furthermore,
we have optimized the communication in the offline phase of
TURBOPACK to enhance its efficiency. In the following sec-
tions, we will provide a detailed introduction to TURBOPACK
and the modified version that we have developed.

Review of TURBOPACK [12]. In the offline phase of TUR-
BOPACK, every wire α that is not the output of an addition
gate is assigned to a uniformly random value λα. If a wire γ
is the output of an addition gate with input wire α, β, λγ
is defined as λα + λβ . Assume a group of multiplication
(or addition) gates in a given circuit level with input wires
α,β and output wires γ. Let λα, λβ, λγ represent the
random values associated with the wires α, β, γ, respectively.
The random sharings [[λα]]n−k, [[λβ]]n−k, [[λγ ]]n−1 and Beaver
triple ([[a]]n−k, [[b]]n−k, [[c]]n−1) are distributed to all parties in
the offline phase. Define µα = vα −λα and µβ = vβ −λβ,
where vα,vβ is the values associated with corresponding
wires α,β respectively.

For input gates with the output wires α, parties will group
and send the masks λα of input wires to the client who owns
the gates. Then client can compute and send µα = vα − λα

to P1 where vα is the input values of client.

For a group of addition gates with the input wires α, β
and output wires γ, note that P1 holds µα, µβ. Thus P1 can
locally compute µγ = µα + µβ.

Recall that random sharings [[λα]]n−k, [[λβ]]n−k, [[λγ ]]n−1

and Beaver triple ([[a]]n−k, [[b]]n−k, [[c]]n−1) have been dis-
tributed to all parties in the offline phase, where c = a ∗ b .
For a group of multiplication gates with the input wires α, β
and output wires γ:

1. All parties locally compute [[λα − a]]n−k = [[λα]]n−k −
[[a]]n−k, [[λα − b]]n−k = [[λβ]]n−k − [[b]]n−k and send
[[λα − a]]n−k, [[λβ − b]]n−k to P1.

2. P1 reconstructs λα−a,λα−b and computes vα−a =
µα + (λα − a),vβ − b = µβ + (λβ − b). Then P1

distributes shares [[vα − a]]k−1 and [[vβ − b]]k−1 to the
parties.

3. Using the [[vα − a]]k−1, [[vβ − b]]k−1 and



([[a]]n−k, [[b]]n−k, [[c]]n−1), parties can locally compute:

[[µγ ]]n−1 = [[vα − a]]k−1 ∗ [[vβ − b]]k−1

+ [[vα − a]]k−1 ∗ [[b]]n−k

+ [[vβ − b]]k−1 ∗ [[a]]n−k

+ [[c]]n−1 − [[λγ ]]n−1.

4. Parties send [[µγ ]]n−1 to P1 and P1 reconstructs µγ .
There are two methods to compute multiplication gates in

TURBOPACK. One is as described above, known as improved
multiplication. The other method, termed original multipli-
cation, requires all parties use a Beaver triple to compute
[[λα ∗ λβ − λγ ]]n−1 in the offline phase. In the online phase,
P1 sends [[µα]]k−1, [[µβ]]k−1 to the parties. Subsequently, the
parties can compute [[µγ ]]n−1 locally, and the rest of the
process is the same as above. In either method, parties need
to generate [[λα]]n−k, [[λβ]]n−k, [[λγ ]]n−1 and a packed Beaver
triple in the offline phase. We noticed that we can gener-
ate a packed Beaver triple ([[a]]n−k, [[b]]n−k, [[c]]n−k) and set
[[λα]]n−k = [[a]]n−k, [[λβ]]n−k = [[b]]n−k and [[λα ∗λβ]]n−k =
[[c]]n−k in the offline phase. This approach eliminates the
communication of assigning random values to the input wires
of each multiplication gate.

Note that TURBOPACK is designed for arithmetic circuits
and does not directly apply to binary circuits. However, we
have observed that the RMFE technique can convert a pair of
vectors from a binary field to its corresponding extended field
while maintaining specific operational properties. Therefore,
we can utilize the RMFE transformation to convert a vector of
inputs from a binary field to its extended field representation.
Subsequently, we can effectively perform computations on
these values using arithmetic circuits and achieve batch AND
gate computations by performing multiplications over the
extended field.

It should be noted that the properties of RMFE are not
preserved in all cases. RMFE can only guarantee a ∗ b =
ψ(ϕ(a) · ϕ(b)) where a, b are two binary vectors and a, b ∈
Fl
2. This does not imply any two elements in F2m will still

hold the properties. For instance, it may not be possible that
a∗b∗c = ψ(ϕ(a) ·ϕ(b) ·ϕ(c)). Therefore, when using RMFE
for multiplication operations, such as computing c′ = ϕ(a) ·
ϕ(b), it is necessary to re-encode c′ and compute c = ϕ(ψ(c′))
after each multiplication operation on F2m .
Summary of our protocol for each group of AND gates:

Recall that we use K to denote the set K = {1, ...k} and
use L to denote the set L = {1, ..., l}. For each group of AND
gates with input wires α = {αi,j}i∈K,j∈L, β = {βi,j}i∈K,j∈L
and output wires γ, let v(2)αi,j be the value of the wire αi,j

and v
(2)
βi,j

be the value of the wire βi,j for all i ∈ K, j ∈
L. We can compute the packed sharings [[vα]]n−k, [[vβ]]n−k

where vα = (vα1
, ..., vαk

) and vβ = (vβ1
, ..., vβk

). Here,
vαi = ϕ(v

(2)
αi,1 , ..., v

(2)
αi,l), vβi = ϕ(v

(2)
βi,1

, ..., v
(2)
βi,l

) for all i ∈ K.
Then we can generate the random sharings [[λα]]n−k, [[λβ]]n−k

and compute [[µα]]n−k = [[vα]]n−k − [[λα]]n−k, [[µβ]]n−k =
[[vβ]]n−k − [[λβ]]n−k.

For each group of AND gates:

1. Note that P1 holds µα,µβ. P1 computes and sends
[[µα]]k−1, [[µβ]]k−1 to the parties.

2. Parties receive [[µα]]k−1, [[µβ]]k−1 from P1. Note that the
parties hold [[λα∗λβ]]n−k, [[λα]]n−k, [[λβ]]n−k, [[λγ ]]n−1,
thus they can locally compute:

[[µγ ]]n−1 = [[µα]]k−1 ∗ [[µβ]]k−1 + [[µα]]k−1 ∗ [[λβ]]n−k

+[[µβ]]k−1 ∗ [[λα]]n−k + [[λα ∗ λβ]]n−k − [[λγ ]]n−1

3. Parties send [[µγ ]]n−1 to P1. P1 reconstructs µγ =
(µγ1

, ..., µγk
) ∈ Fk

2m

4. P1 computes {ψ(µγi)}ki=1 and rearranges the bits ac-
cording to the circuit’s next layer to get µ′(2)

γi
=

(µ′(2)
γi,1

, ..., µ′(2)
γi,l

) for i ∈ K. Then P1 computes µγi
=

ϕ(µ′(2)
γi

) for i ∈ K.
Correctness: µγ = vα ∗ vβ − λγ = (µα + λα) ∗ (µβ +

λβ)−λγ = µα ∗µβ +µα ∗λβ +µβ ∗λα +λα ∗λβ −λγ .
For each group of AND gates, P1 needs to distribute two

degree-(k− 1) packed Shamir sharings [[µα]]k−1, [[µβ]]k−1 to
all parties, and all parties need to compute [[µγ ]]n−1 and send
it to P1. As a result, the total communication complexity is
3n field elements per group of k · l AND gates. The amortized
communication complexity per AND gate is 3 · n · m/(k ·
l) ≈ 36 bits (note m is roughly equal to 3 · l [20], and k is
roughly equal to n/4). It should be noted that in Step 4, P1

performs a re-encoding of µγ to ensure that it satisfies the
RMFE properties. Because the random value of the next layer
of circuit wires is pre-generated and redistributed according to
the circuit structure in the offline phase, it is only necessary
for P1 to rearrange the bit vectors according to the circuit
structure. P1 needs to compute {ψ(µγi

)}ki=1 to get the masked
bit vectors, then P1 rearranges the bits according to the next
layer of circuits and use ϕ(·) to repack the bit vectors.

B. Instantiating the Offline Phase

In the offline phase, our goal is to prepare packed Beaver
triples ([[a]]n−k, [[b]]n−k, [[c]]n−k) for each group of AND gates
and assign random values λα for each group of wires α:

– For each group of AND gates with the input
wires α,β, all parties prepare a packed Beaver
triple ([[a]]n−k, [[b]]n−k, [[c]]n−k) and let [[λβ]]n−k =
[[a]]n−k, [[λα]]n−k = [[b]]n−k, [[λα ∗ λβ]]n−k = [[c]]n−k.

– For each group of AND gates with the output wires γ,
all parties prepare [[λγ ]]n−1.

– For each group of XOR gates with the input wires α,β
and output wires γ, all parties prepare [[λα]]n−k, [[λβ]]n−k

and let [[λγ ]]n−k = [[λα]]n−k + [[λβ]]n−k.
– For each group of input gates with the output wires α or

output gates with the input wires α, all parties prepare
[[λα]]n−1.

There are potential solutions from [12], [13], [24] that could
prepare random packed Shamir sharings. The approach in [24]
is not in the IT setting and need constant corrupted parties and
the approach in [13] requires interaction for addition gates. The
approach in [12] can potentially generate the random packed
Shamir sharings, but the protocol in [12] is for arithmetic



circuit, and the random sharings generated by [12] may not
satisfy the RMFE properties. Our approach first prepares
random Shamir sharings over Fl

2 and then use ϕ to map to
F2m .
Preparing Random Sharings. We make use of the following
functionality Frandom from [21] to let all parties prepare
random sharings in the form of [ϕ(r)]t. Recall that (ϕ, ψ)
is an (l,m)2-RMFE. Here each [ϕ(r)]t is a degree-t Shamir
sharing of the secret ϕ(r) where r is a random vector in Fl

2.
Let Σ be a linear secret sharing scheme in F. The description
of the functionality Frandom appears in Functionality 1. At a
high level, this approach is similar to [7]:

1. Each party Pi generates and distributes random Σ shar-
ings, denoted by S(i).

2. Let MT be a Vandermonde matrix of size n × (t + 1)
in F. All parties use M as a random extractor to
extract n − t = t + 1 random sharings. Parties compute
(R(1), ...,R(t+1))T = M(S(1), ...,S(n))T .

Because each R(i) is a linear combination of {S(j)}nj=1 and
any sub-matrix of size (t + 1) × (t + 1) of n × (t + 1)
Vandermonde matrix is invertible. Thus, for each random
sharing R(i) there is a one-to-one map between the random
sharings prepared by honest parties and the output sharings.
Therefore, the output sharings are still random.

It is important to emphasize here that the random sharings
we use must take the form of [ϕ(r)]t and cannot be generated
directly on the field F2m . This is because a random element
over F2m may not lie within the domain of the mapping ψ(·).
Mapping ψ(·) only guarantees ψ(ϕ(a)·ϕ(b)) = a∗b, meaning
that only an element c resulting from c = ϕ(a) · ϕ(b) is
guaranteed to be in the domain of ψ(·).
Preparing Packed Beaver Triples. Let ei denote the unit vector
where the length is k and i-th entry is 1, and all the other en-
tries are 0. Note that parties can convert ei to a degree-(k−1)
Packed Secret Sharings locally. Then, the parties can compute
degree-(n−k) packed secret sharing by degree-t Shamir secret
sharing. For Beaver triple ([[a]]n−k, [[b]]n−k, [[c]]n−k), the first
two sharings can be prepared as follows: First, the parties in-
voke Frandom to generate {[ϕ(r1,i)|i]t, [ϕ(r2,i)|i]t}ki=1 where
r1,i, r2,i ∈ Fl

2. Then:
– To compute [[a]]n−k, [[b]]n−k, parties calculate:

[[a]]n−k =

k∑
i=1

[[ei]]k−1 ∗ [ϕ(r1,i)|i]t,

[[b]]n−k =

k∑
i=1

[[ei]]k−1 ∗ [ϕ(r2,i)|i]t.

– To compute [[c]]n−k, we need to calculate [ci|i]t where
ci = ϕ(r1,i) · ϕ(r2,i). Note that there is no need to
compute ϕ(ψ(ϕ(r1,i) ·ϕ(r2,i))), because in the last step
of evaluation of AND gate, P1 will always re-encode µγ .
We rely on the state-of-the-art multiplication protocol [9]
in the standard honest majority setting to compute [ci|i]t,
which costs 4n elements, the functionality appears in

Fsingle-mult. After obtained {[ci|i]t}ki=1 from [9], parties
can compute [[c]]n−k =

∑k
i=1[[ei]]k−1 ∗ [ci|i]t locally.

The communication complexity for preparing these packed
Beaver triples involves 8n elements over F2m per l AND gates
and 24n bits per AND gate.

With the above approach, we can instantiate the full offline
phase:

– For each group of k · l XOR gates with the input
wires α,β and output wires γ, parties use the above
approach to generate random sharings in the form of
{[ϕ(r1,i)|i]t, [ϕ(r2,i)|i]t}ki=1 and associate them with the
wires α,β, let [λαi

|i]t = [ϕ(r1,i)|i]t and [λβi
|i]t =

[ϕ(r2,i)|i]t for all i ∈ K. Let [λγi
|i]t = [ϕ(r1,i)|i]t +

[ϕ(r2,i)|i]t and associate them with the wires γ.
– For each group of k · l AND gates with the input wires

α,β and output wires γ, parties use the above approach
to generate a Beaver triple {([λαi

|i]t, [λβi
|i]t, [λαi

·
λβi

|i]t)}ki=1 and associate {[λαi
|i]t}ki=1, {[λβi

|i]t}ki=1

with the wires α,β. Parties use the above approach
to generate random values {[λγi |i]t}ki=1 and associate
these random values with the wires γ, which involves
2n elements over F2m per l AND gates.

In addition to generating random sharings as described
above, we also need to prepare three sets of random degree-
(n − 1) packed Shamir sharings of 0 ∈ Fk

2m . These sets
correspond to the each group of output wires of the AND
gates, the input wires of the output gates, and the output
wires of the input gates. These random sharings of 0 serve
to re-randomize the sharings and protect the shares of honest
parties. Utilizing the above approach for preparation, the
communication complexity of generating random zero sharing
for per AND gate is 2 · n ·m/(k · l) ≈ 24 bits.

In summary, our offline phase has communication complex-
ity of 6n+ 24n+ 24 = 30n+ 24 bits per AND gate.

C. Achieving Malicious Security
In this section, we will discuss how to attain malicious

security without compromising the practical efficiency of
the protocol. For degree-t Shamir secret sharing in honest
majority setting, the whole sharing is fully determined by the
shares of honest parties. But for the degree-(n − k) packed
secret sharing, malicious parties can modify the secret without
attracting the attention of honest parties, and this makes the
verification protocols in the recent IT MPC protocols with
honest majority setting [5], [9], [26] not work. We will explain
in more detail how malicious parties achieve this process in
Section V.

The approach proposed in [12] can achieve malicious se-
curity in a degree-(n − k) packed secret sharing scheme.
However, the Beaver triples and random values generated
using this approach are not guaranteed to satisfy the properties
of RFFEs, making it unsuitable for direct use. On the other
hand, the approach presented in [21] can generate shares
of random values and Beaver triples that satisfy the RMFE
properties while ensuring malicious security. However, this
approach is based on a degree-t Shamir secret sharing scheme.



To address this, we combine the ideas from both [12] and
[21]. We utilize the approach of [21] to generate the random
values and Beaver triples with malicious security in a degree-t
Shamir secret sharing scheme, ensuring that they satisfy the
RMFE properties. We then locally convert these shares from
the degree-t Shamir secret sharing to a degree-(n−k) packed
secret sharing. Subsequently, we can leverage the approach
proposed in [12], which is based on [22], to achieve malicious
security in the online phase. Due to space limitations, we only
show the main body of our malicious protocols in Section
V, the security proof and details of our malicious security
protocol can be found in the Appendix IX.

III. PRELIMINARIES

A. The Model and Notation

In this work, we use the client-server model. In this model,
clients only provide inputs to the functionality and receive
outputs, and servers can participate in the computation but
do not have inputs or get outputs. Each party may have a
different role in the computation, perhaps as both a client and
a server. We only focus on functions which can be represent
as a Boolean circuit with input, XOR, AND, and output gates.
We use C to denote the circuit, |C| to denote the size of the
circuit.

For clarity, we will use superscript (2) to denote a binary
value. If there is no superscript, the value defaults to F2m .
For example, v(2) represents a binary value and v represents
a value on F2m .

We use [[x]]d to represent a degree-d packed secret sharing
of x, where x is a vector of (x1, ..., xk) ∈ Fk

2m . We use [x]d
to denote a standard degree-d Shamir Secret Sharing of x. We
use n to denote the number of parties, use {P1, ..., Pn} to
denote the set of parties. We use [x|si]d to denote a degree-
d Shamir sharing of x such that the secret x is stored at
the evaluation point si, which represents the secret sharing
polynomial f(si) = x. We use A to denote the Adversary
and t to denote the size of corrupted parties by A. We use
F to denote the secure function evaluation functionality, C to
denote the set of all corrupted parties and H to denote the set
of all honest parties. We will use m, l to denote the parameters
of (l,m)2-RMFE, use L to denote the set {1, ..., l}, use K to
denote the set {1, ..., k} where k is the packing parameter of
the packed secret sharing scheme.

We use κ to denote the security parameter and we will use
an extension field of F2 denoted by F2m (of size 2m). We
always assume that |F2m | = 2m ≥ 2κ

B. Security Definition

We construct an ideal model that satisfies our security
requirements. If our real model is no different from our
constructed ideal model in a certain sense, it proves that the
real protocol we designed has the same security as the ideal
model. Our security definition and model are same as [8], [21],
reader can find more details from [8], [21]. A can corrupt at
most c clients and t servers. A can receive all messages sent
to corrupted parties.

– If A is semi-honest, then corrupted parties honestly
follow the protocol.

– If A is fully malicious, then corrupted parties can deviate
from the protocol arbitrarily, and A can provide inputs to
corrupted clients.

Due to space limitations, we will provide a more detailed
description of our security model and security definitions in
Appendix VII.

C. Secret Sharing Scheme

1) Shamir Secret Sharing. : Shamir Secret Sharing [25] is
a linear secret sharing scheme and Shamir secret shares are
homomorphic in a special way. Let n be the number of parties
and G be a finite field of size |G| ≥ n+ 1. Let α1, ..., αn be
n distinct non-zero elements in G. A degree-d Shamir Secret
Sharing of x ∈ G is a vector (y1, ..., yn) which satisfies that
there exists a polynomial f(·) ∈ G[X] of degree at most d
such that f(0) = x and f(αi) = yi for i ∈ {1, ..., n}. Each
party Pi holds a share yi and the whole sharing is denoted by
[x]d.

2) Packed Secret Sharing Scheme. : Franklin and Yung
proposed a vectorized version of Shamir Secret Sharing called
Packed Secret Sharing (PSS) [19] which can implement batch
computing based on Shamir Secret Sharing. Let n be the
number of parties and G be a finite field of size |G| ≥ n+1.
Let α1, ..., αn be n distinct non-zero elements in G. Let
x = (x1, ..., xk),(s1, ..., sk) are two vectors which satisfy
xi ∈ G, ei ∈ G for i ∈ {1, ..., k}. A degree-d Packed
Secret Sharing of x = (x1, ..., xk) is a vector (y1, ..., yn)
which satisfies that there exists a polynomial f(·) ∈ G[X]
of degree at most d such that f(si) = xi and f(αi) = yi for
i ∈ {1, ..., n}. Each party Pi holds a share yi and the whole
sharing is denoted by [[x]]d.

D. Reverse Multiplication Friendly Embeddings

Reverse Multiplication Friendly Embeddings can embed
several instances of the computation of a binary circuit into a
single computation of an arithmetic circuit over an extension
field, as proposed by [20].

Definition III.1 ( [20]). Let q be a power of a prime and Fq
a field of q elements, let l,m ≥ 1 be integers. A pair (ϕ, ψ) is
called an (l,m)q-reverse multiplication friendly embeddings
(RMFE for short) if ϕ : Fl

q → Fqm and ψ : Fqm → Fl
q are

two Fq-linear maps satisfying

x ∗ y = ψ(ϕ(x) · ϕ(y)) (1)

for all x,y ∈ Fl
q , where ∗ denotes coordinate-wise product.

Lemma III.1 ( [21]). Let l,m be integers and Fq be a
finite field. Suppose (ϕ, ψ) is an (l,m)q-reverse multiplication
friendly embedding. Then there exists an Fq-linear map ϕ̂−1:
Fqm → Fl

q such that for all x ∈ Fl
q ,

ϕ̂−1(ϕ(x)) = x. (2)



Functionality 1: Frandom

1. Frandom receives the set of corrupted parties, denoted by
Corr. And Frandom receives from the adversary a set of
shares {ui}{i∈Corr}. Then Frandom randomly samples
r ∈ Fk

2 and generates a degree-t Shamir sharing [ϕ(r)]t
such that the share of Pi ∈ Corr is ui.

2. Frandom distributes the shares of [ϕ(r)]t to honest par-
ties.

Fig. 1. Functionality for generating random sharings

E. Building Blocks

In this part, we will introduce some functionalities that will
be used in our main construction.

– Functionality Frandom allows all parties to generate a
random element which is a degree-t Shamir secret shar-
ing and satisfies RMFE properties (for instance, parties
generate [r]t such that r ∈ F2m and ψ(r · ϕ(1)) ∈ Fl

2).
The instantiation of Frandom for the malicious security version
is described in [21].

IV. EFFICIENT MPC FOR BOOLEAN CIRCUITS WITH
SEMI-HONEST SECURITY VIA RMFE AND PSS

Recall that we use c to denote the number of clients and n to
denote the number of parties. Recall the corruption threshold
t = (n − 1)/2 and the packing parameter k = (n − t +
1)/2 = (n+ 3)/4. We will use (ϕ, ψ), ϕ : Fl

q → Fqm and ψ :
Fqm → Fl

q to denote an (l,m)2-reverse multiplication friendly
embedding (RMFE), and m ≈ 3l. For r = (r1, ..., rk) ∈ Fk

2m ,
we will simplify the notation to use ψ(r) to represent ψ(ri)
for all i ∈ K.

A. Ideal Functionality for Offline Phase

We present the ideal functionality Foffline, as given in
Functionality 2, which prepares correlated randomness for the
online phase and associates random values with wires. We will
use superscript (2) to denote a binary value, use K to denote
the set {1, ..., k}, use L to denote the set {1, ..., l}.

B. Online Protocol

In the online phase, P1 will learn µα = vα − λα, where
vα = ϕ(v

(2)
α1 , ..., v

(2)
αl ) ∈ F2m and v

(2)
α1 , ..., v

(2)
αl are the real

values associated with the wire α1, ..., αl. At the end of
the online protocol, for each group of gates that belong to
some clients, all parties will send their shares of [[λα]]n−1

to clients, where α are the input wires associated with
these output gates. P1 will send µα to clients, allowing
them to reconstruct the output vα = µα + λα. Assumed
vα = (vα1

, ..., vαk
) ∈ Fl

2m , 1 = (1, 1, ..., 1) ∈ Fl
2, clients can

compute (v
(2)
αj,1 , ..., v

(2)
αj,l) = ψ(vαj

· ϕ(1)) for j ∈ K. Note
that we denote a group of l · k wires by α = {αi,j}i∈K,j∈L.

Input Phase. Recall that in the offline phase, for each
group of input gates that belong to some clients, Foffline

distributes a degree-(n− 1) packed Shamir sharing [[λα]]n−1

to all parties, where α refers to the output wires associated
with these input gates. To allow P1 to learn µα, clients
collect the whole sharing [[λα]]n−1 from all parties, then
they reconstruct the secret λα, and finally, they compute
and send µα = vα − λα to P1, where vα = (vα1

, ..., vαk
)

and vαi
= ϕ(v

(2)
αi,1 , ..., v

(2)
αi,l) for all i ∈ K, {v(2)αi,j}i∈K,j∈L

are the inputs of the client. The description of the protocol
Πinput appears in Protocol 1. The communication complexity
per batch of l · k input gates is (n + k) · m bits, and the
communication complexity per input gate is approximately
(n+ k) ·m/(k · l) ≈ 15 bits.

Computation Phase. Now we will introduce how P1 can
learn µα for every wire α in the circuit C. This follows
the idea in [12], [13], [24] with the change that we use the
technique of RMFEs introduced in [21] for converting AND
gate to multiplication gate.

Note that P1 has already learned µα for the first layer
(the input layer) and the circuit is evaluated layer by layer.
Assuming that P1 learns µα in previous layers for every group
of input wires α of the current layer since α serves as an
output wires in previous layers.

For a group of l XOR gates with input wires {αi, βi}li=1

and output wire {γi}li=1, the goal is to compute µγ =
vγ − λγ . Recall that vγ = vα + vβ ,λγ = λα + λβ and
vα = ϕ(v

(2)
α1 , ..., v

(2)
αl ),vβ = ϕ(v

(2)
β1
, ..., v

(2)
βl

), where ϕ(·) is an
F2-linear map. Therefore P1 can locally compute

µγ = vγ − λγ = µα + µβ .

We handle AND gates by converting them to multiplication
gates using packed secret sharing and RMFE. The description
of the protocol Πmult appears in Protocol 2. The communi-
cation complexity per AND gate is 3 · n · m/(k · l) ≈ 36
bits.

Furthermore, it is imperative to rearrange the computation
results’ bits for the next layer. Here, P1 possesses µγ , which
is masked by a random value vector λγ . Random values,
such as λα, intend for the next layer of circuit wires, have
been pre-generated and redistributed in accordance with the
circuit structure during the offline phase. P1 needs to compute
{ψ(µγi

)}ki=1 to get the masked bit vectors. Subsequently, P1

rearranges these bits {ψ(µγi)}ki=1 according to the structure of
the subsequent circuit layer. Following this, P1 will use ϕ(·)
to repack the bit vectors, resulting in a new λγ .
Output Phase. In the output layer, for each group of k ·l output
gates that belong to some Client, we use α to denote the input
wires of these output gates. Recall that all parties have re-
ceived a degree-(n−1) packed Shamir sharing [[λα]]n−1 from
Foffline in the offline phase and P1 holds µα = vα−λα. We
use {v(2)αi,1 , ..., v

(2)
αi,l}ki=1 to denote the output values of Client,

denote vα = (vα1
, ..., vαk

) and vαi
= ϕ(v

(2)
αi,1 , ..., v

(2)
αi,l) for

i ∈ K. The description of the protocol Πoutput appears in
Protocol 3.
Online Protocol. Once we have established the preceding
protocols, we can now provide a comprehensive description
of our online protocol, denoted as Πonline. The detailed



Functionality 2: Foffline

1. Preparing Packed Beaver Triples: Foffline receives the circuit from all parties, and receives the set of corrupted parties,
denoted by Corr. For each group of AND gates:

a. Foffline receives from the adversary a set of shares {u1,j , u2,j , u3,j}j∈Corr .
b. Foffline samples l · k uniform values {a(2)i,j , b

(2)
i,j }i∈K,j∈L, for each i ∈ K, j ∈ L. Then Foffline computes ai =

ϕ(a
(2)
i,1 , ..., a

(2)
i,l ), bi = ϕ(b

(2)
i,1 , ..., b

(2)
i,l ), ci = ai · bi for each i ∈ K.

c. Let a = (a1, ..., ak), b = (b1, ..., bk), c = (c1, ..., ck). Based on (a, b, c) and the shares of corrupted parties,
Foffline computes the packed Shamir sharings [[a]]n−k, [[b]]n−k, [[c]]n−k such that for all Pj ∈ Corr the j-th share of
([[a]]n−k, [[b]]n−k, [[c]]n−k) is (u1,j , u2,j , u3,j).

d. Foffline distributes the shares of ([[a]]n−k, [[b]]n−k, [[c]]n−k) to honest parties.
2. Prepare Random Zero Shaings: For each group of AND gates, input gates, output gates:

a. Foffline receives from the adversary a set of shares {uj}j∈Corr . Foffline sets 0 ∈ Fk
2m , samples a random degree-(n− 1)

packed Shamir sharings [[0]]n−1 such that for all Pj ∈ Corr, the j-th share of [[0]]n−1 is uj .
b. Foffline distributes the shares of [[0]]n−1 to honest parties.

3. Assign Random Values and Distribute Shares for each Wires: Foffline receives the circuit from all parties.
a. For each group of k · l output wires α = {αi,j}i∈K,j∈L of input gates and AND gates, Foffline samples k · l uniform

values {ϕ(ri)}i∈K and sets λαi = ϕ(ri), associates these random values with the wires α. The same step is done for the
input wires of each group of output gates.

b. Starting from the first layer of C to the last layer, for each group of XOR gates with input wires {(αi,j , βi,j)}i∈K,j∈L
and output wire {γi,j}i∈K,j∈L, Foffline samples random values in the form of ϕ(r1,i),ϕ(r2,i) for i ∈ K. Foffline sets
λαi = ϕ(r1,i), λβi = ϕ(r2,i) and λγi = λαi + λβi for all i ∈ K, associates these random values with the wires α,β,γ.

c. Starting from the first layer of C to the last layer, for each group of AND gates with input wires {(αi,j , βi,j)}i∈K,j∈L and
output wire {γi,j}i∈K,j∈L, Foffline sets λαi = ai, λβi = bi, λβi ·λβi = ci, associates these random values with the wires
α,β.

4. Preparing Packed Shamir Sharings: Foffline receives the set of corrupted parties, denoted by Corr. For each intermediate
layer in C:

a. For each group of l · k output wires{αi,j}i∈K,j∈L of input gates and AND gates, Foffline receives from the adversary a
set of shares {uj}j∈Corr . Foffline samples a random degree-(n − 1) packed Shamir sharing [[λα]]n−1 such that for all
Pj ∈ Corr, the j-th share of [[λα]]n−1 is uj . Foffline distributes the shares of [[λα]]n−1 to honest parties. The same step
is done for the input wires of each group of output gates.

b. For each group of XOR gates with input wires {(αi,j , βi,j)}i∈K,j∈L and output wires {γi,j}i∈K,j∈L, Foffline receives
from the adversary a set of shares {u1,j , u2,j}j∈Corr . Foffline computes degree-(n − k) packed Shamir sharings
[[λα]]n−k, [[λβ]]n−k such that for all Pj ∈ Corr, the j-th share of ([[λα]]n−k, [[λβ]]n−k) is (u1,j , u2,j). Foffline distributes
the shares of ([[λα]]n−k, [[λβ]]n−k) to honest parties.

c. For each group of XOR gates with input wires {(αi,j , βi,j)}i∈{1,...,k},j∈{1,...,l} and output wire {γi,j}i∈{1,...,k},j∈{1,...,l},
the random packed Shamir sharing has already distributed in step 1.

Fig. 2. Functionality for offline phase

Protocol 1: Πinput

1. For each group of input gates that belong to Client, let α
denote the batch of output wires of these input gates. All
parties receive the sharing [[λα]]n−1 from Foffline and
clients hold inputs {v(2)αi,1 , ..., v

(2)
αi,l}

k
i=1.

2. All parties send to Client their shares of [[λα]]n−1.
3. Client reconstructs the secret λα and computes vαi =

ϕ(v
(2)
αi,1 , ..., v

(2)
αi,l) for i ∈ {1, ..., k}, µα = vα − λα

where vα = (vα1 , ..., vαk ).
4. Client sends µα to P1.

Fig. 3. Protocol for Client input

description of our online protocol can be found in Protocol
4.

The online communication complexity of Πonline is 3n/(k ·
l) ≈ 36 bits per AND gate. Recall that k = (n + 3)/4 and
m = 3 · l.

Lemma IV.1. Protocol Πonline securely computes Fmain in
the Foffline-hybrid model against a semi-honest adversary
who controls t out of n = 2t+1 parties and corrupts up to c
of the clients.

The proof of Lemma IV.1 is given in the Appendix VIII-A.

C. Offline Protocol

In this section, we will show how to implement Foffline.
Recall that in Foffline, we need to prepare packed Shamir
sharings for the random values and Beaver triples, and assign
random value for each wire.

To prepare random sharings that satisfy RMFE properties,
we follow the technique in [21] as described in Functionality
1. The instantiation of Frandom in the semi-honest and honest
majority setting is Protocol 5.

For preparing Beaver triples {([ai|i]t, [bi|i]t, [ci|i]t)}ki=1,
we rely on the state-of-the-art multiplication protocol AT-
LAS [9] in the standard honest majority setting to compute
[ci|i]t, which costs 4n elements in F2m . In ATLAS [9], the



Protocol 2: Πmult

1. For each group of AND gates with input wires α,β and
output wires γ, P1 holds µα an µβ , and all parties have
received packed Shamir sharings [[λα]]n−k, [[λβ]]n−k,
[[λα ∗ λβ]]n−k, [[λγ ]]n−1 from Foffline.

2. P1 computes [[µα]]k−1, [[µβ]]k−1 and distributes the
shares to all parties

3. All parties locally compute:

‘

[[µγ ]]n−1 = [[µα]]k−1 ∗ [[µβ]]k−1 + [[µα]]k−1 ∗ [[λβ]]n−k

+ [[λα]]n−k ∗ [[µβ]]k−1 + [[λα · λβ]]n−k

− [[λγ ]]n−1

and send [[µγ ]]n−1 to P1.
3. P1 collects the whole sharing [[µγ ]]n−1 from all parties

and reconstructs µγ .
4. P1 computes ψ(µγ) and rearranges the bits according to

the next layer of circuits to get µ
(2)
γ , then sets µγ =

ϕ(µ
(2)
γ ).

Fig. 4. Protocol for evaluating AND gates by multiplication

Protocol 3: Πoutput

1. For each goup of k · l output gates that belong to some
Client, let α denote the input wires of these gates. All
parties send their shares of [[λα]]n−1 to Client.

2. P1 sends µα to Client.
3. Client reconstructs λα and computes vα = λα + µα,

(v
(2)
αi,1 , ..., v

(2)
αi,l) = ψ(vαi ·ϕ(1)) for i ∈ {1, ..., k}, where

1 = (1, 1, ..., 1) ∈ Fl
2.

Fig. 5. Protocol for output

communication complexity of preparing packed Beaver triple
is 8n elements. We use the ideal functionality Fsingle-mult

from [12] to perform the multiplication of degree-t Shamir
sharings. This functionality is described in Functionality 4.
The description of our offline protocol Πoffline appears in
Protocol 6.

We analyze the communication complexity of Πoffline:
– For each AND gate, the total communication complexity

is (8n+ 2n+ 2n/k) ·m/l = 30n+ 24 bits.
– For each input or output gate, the total communication

complexity is (2n+ 2n/k) ·m/l ≈ 6n+ 24 bits.

Lemma IV.2. Protocol Πoffline securely computes Foffline

in the Frandom-hybrid model against a semi-honest adversary
who controls t out of n = 2t+ 1 parties.

The proof of Lemma IV.2 is given in the Appendix VIII-B.

Recall the communication complexity of our AND gates:
– In the offline phase, the communication complexity for

each group of l · k AND gates consists of generating the
random values [[λγ ]]n−k, the random zero sharing [[0]]n−1,
and [[λα]]n−k, [[λβ]]n−k, [[λα∗λβ]]n−k. The total commu-
nication complexity per AND gate is (2n+(2n/k)+8n)·
m/l ≈ 30n+ 24 bits.

Protocol 4: Πonline

1. Offline Phase: All parties invoke Foffline to receive
correlated randomness that will be used in the online
phase.

2. Input Phase: In the input layer, for each group of k · l
input gates that belong to some Client, let α denote
the output wires of these input gates. All parties and
Client invoke Πinput. At the end of the protocol, P1

learns µα = vα − λα, where vα = (vα1 , ..., vαk )

and vαi = ϕ(v
(2)
αi,1 , ..., v

(2)
αi,l) for i ∈ K, {v(2)αi,j}i∈K,j∈L

are the input values of Client. And λα are the random
values associated with the batch of wires α generated by
Foffline.

3. Computation Phase:Note for each computation layer, P1

holds µα = vα − λα. The circuit is evaluated layer by
layer. Assume that the invariant holds for wires in previous
layers. Consider gates in the current layer:

– For each group of l XOR gates with input wires α,β
and output wires γ, P1 locally compute µγ = µα +
µβ .

– For each group of k · l AND gates with input wires
α,β and output wires γ, all parties invoke Πmult.
At the end of the protocol, P1 learns µγ .

4. Output Phase: For each group of k · l output gates,
all parties and Client invoke Πoutput. At the end of the
protocol, Client learns {v(2)αi,j}i∈K,j∈L.

Fig. 6. Protocol for online phase

Functionality 3: Fmain

1. Fmain receives the input from all clients. Let x denote
the input and C denote the circuit.

2. Fmain computes C(x) and distributes the output to all
clients.

Fig. 7. Functionality for main protocol

Protocol 5: Πrandom(Σ)

1. All parties agree on a Vandermonde matrix MT of size
n× (t+ 1) in F.

2. Each party Pi randomly samples a random-Σ sharing S(i)

and distributes the shares to other parties.
3. All parties locally compute (R(1), ...,R(t+1)) =

M(S(1), ...,S(n))T and output (R(1), ...,R(t+1)).

Fig. 8. Protocol for generating random sharing

– In the online phase, the communication complexity for
each group of l · k AND gates consists of P1 sending
µα, µβ to parties, and P1 collecting [[µγ ]]n−1, which is
3n bits. The total communication complexity per AND
gate is 3n ·m/(k · l) ≈ 36 bits.

V. ACHIEVING MALICIOUS SECURITY

In this section, we will show how to achieve malicious
security in the honest majority setting. Our main idea follows
the approach of [12], compiling our semi-honest protocol



Protocol 6: Πoffline

1. Preparing Packed Beaver Triples: For i ∈ {1, 2, ..., k}, let Σ be the secret sharing scheme corresponding to [ϕ(r)|i]t, parties
invoke Frandom to prepare random sharings in the form of [ϕ(r)|i]t.

a. For each group of AND gates, let {[ϕ(ai)|i]t, [ϕ(bi)|i]t}ki=1 be the unused random sharings.
b. For all i ∈ {1, ..., k}, parties invoke Fsingle-mult to compute {[[ϕ(ci)|i]]t}ki=1 which satisfied ϕ(ci) = ϕ(ai) · ϕ(bi).
c. Let ei ∈ Fk be the i-th unit vector, i.e., all entries of ei are 0 except the i-th entry is 1. All parties locally transform ei to

the degree-(k − 1) packed Shamir sharing [[ei]]k−1. Then, all parties locally compute :

[[a]]n−k =

k∑
i=1

[[ei]]k−1 ∗ [[ϕ(ai)|i]]t,

[[b]]n−k =

k∑
i=1

[[ei]]k−1 ∗ [[ϕ(bi)|i]]t,

[[c]]n−k =

k∑
i=1

[[ei]]k−1 ∗ [[ϕ(ci)|i]]t,

2. Preparing Degree-(n − 1) Zero Sharings: Let Σ be the secret sharing scheme corresponding to [[0]]n−1, where 0 ∈ Fk. For
each goup of AND gates, input gates, and output gates, all parties invoke Frandom to prepare random sharings in the form of
[[0]]n−1.

3. Assigning Random Sharing for Each Wire:
a. For each group of l · k output wires α of input gates and AND gates, or input wires of output gates. For all i ∈ {1, ..., k},

all parties invoke Frandom to prepare random sharings in the form of [ϕ(ri)|i]t. Let ei ∈ Fk be the i-th unit vector, all
parties locally transform ei to the degree-(k − 1) packed Shamir sharing [[ei]]k−1 and compute:

[[λα]]n−1 =

k∑
i=1

[[ei]]k−1 ∗ [[ϕ(ri)|i]]t + [[0]]n−1

Parties associate [[λα]]n−1 with the wires α.
b. For each group of l·k XOR gates with the input wires α,β and output wires γ, parties invoke Frandom to generate the random

sharings in the form of [ϕ(r1,i)|i]t, [ϕ(r2,i)|i]t for all i ∈ K. Parties set [[λα]]n−k =
∑k

i=1[[ei]] ∗ [ϕ(r1,i)|i]t, [[λβ]]n−k =∑k
i=1[[ei]] ∗ [ϕ(r2,i)|i]t, and let [[λγ ]]n−k = [[λα]]n−k + [[λβ]]n−k. Parties associate [[λα]]n−k, [[λβ]]n−k, [[λγ ]]n−k with the

wires α,β, γ.
c. For each group of l ·k AND gates with the input wires α,β, parties use the packed Beaver triples ([[b]]n−k, [[a]]n−k, [[c]]n−k)

generated by step 1, set [[λα]]n−k = [[a]]n−k, [[λβ]]n−k = [[b]]n−k, [[λα ∗ λβ]]n−k = [[c]]n−k. Parties associate
[[λα]]n−k, [[λβ]]n−k with the wires α,β.

Fig. 9. Protocol for offline phase

Functionality 4: Fsingle-mult

1. Fsingle-mult receives the secret position i from all parties.
Let [x|i]t denote the input sharings. Fsingle-mult receives
from honest parties their shares of [x|i]t,[y|i]t. Then
Fsingle-mult reconstructs the secret x, y and computes the
shares of [x|i]t, [y|i]t held by corrupted parties, and sends
these shares to the adversary.

2. Fsingle-mult receives from the adversary a set of shares
{zi}i∈Corr .

3. Fsingle-mult computes x · y. Based on the secret z =
x · y and t shares {zi}i∈Corr , Fsingle-mult reconstruct
the whole sharing [z|i]t and distributes the shares of [z|i]t
to honest parties which satisfied the shares of [z|i]t of
corrupted parties are {zi}i∈Corr .

Fig. 10. Functionality for single elements multiplication

to achieve malicious security. Due to space limitations, we
mainly introduce the main ideas of our malicious protocol
and the differences between it and the semi-honest protocol

here. The complete protocol and security proof will be shown
in Appendix IX.

Recall that for degree-t Shamir secret sharing of honest
majority setting, the whole sharing is fully determined by
the shares of honest parties, if malicious parties add a linear
error to the secret, it will be discovered by honest parties.
But for the degree-(n − k) packed secret sharing, malicious
parties can modify the secret without attracting the notice of
honest parties. Malicious parties can let the honest parties
hold the secret shares of 0 to generate a linear attack of
any error δ = (δ1, ..., δk−1). For example, assume the packed
secret sharing is [[x]]n−k, and the secret is store in the default
positions s1, ..., sk in the corresponding packed secret sharing
polynomial f(·) where f(si) = xi. Let Pi hold the packed
share f(pi), and let C denote the set of corrupted parties,
H denote the set of honest parties. Adversary can generate
a degree-(n − k) polynomial g(·) satisfying g(pj) = 0 for
all j ∈ H, and g(si) = δi for all i ∈ {1, ..., k − 1}. Thus,
depending on the g(·), the adversary can let the shares held
by malicious parties be g(i) + f(i) for all i ∈ Corr, then



honest parties can’t notice the error.
The previous works [13], [16] use information-theoretic

MACs, this method can detect attacks in the dishonest majority
setting, but increases the communication complexity at least
twice. The MPC protocols [5]–[12] in the honest majority
setting, compute degree-t Shamir sharings to detect attacks.
And [12] uses different evaluation points to store the se-
cret, computes k degree-t Shamir sharings and converts such
Shamir sharing into a packed secret sharing. We follow the
approach of [12], the difference is that we don’t assign a
random degree-t Shamir sharing for a single wire, but assign
a random degree-t Shamir sharing for a group of l wires.

For each group of l wires, we will assign a random degree-t
Shamir sharing. The degree-t random sharings used in what
follows have the form of [ϕ(r)]t, which we will abbreviate as
[r]t. For each group of k · l AND gates:

1. First, we will generate k Beaver triples in the form of
{([ai|i]t, [bi|i]t, [ci|i]t)}ki=1 such that ci = ai · bi.

2. Let α, β be the input wires, where α = {αi,j}, β =
{βi,j} for i ∈ K and j ∈ L. For each l wires of α, β,
let [λαi |i]t = [ai|i]t, [λβi |i]t = [bi|i]t, associate [λαi |i]t,
[λβi |i]t with the wires {αi,1, ..., αi,l}, {βi,1, ..., βi,l}.

3. In the online phase, P1 sends [[µα]]k−1, [[µβ]]k−1 to par-
ties, then parties can locally compute [[λα]]n−k, [[λβ]]n−k,
[[µγ ]]n−1. And all parties can locally compute [vαi

|i]t =
[[µα]]k−1 + [λαi |i]t, [vβi |i]t = [[µβ]]k−1 + [λβi |i]t for all
i ∈ K.

If we view [[µα]]k−1 as a degree-t Shamir sharing, we can
compute the degree-t Shamir sharings of input values [vβi

|i]t
locally. Recall that for degree-t Shamir secret sharing of honest
majority setting, the whole sharing is fully determined by the
shares of the honest parties. In the following, we will show that
this is sufficient to verify the correctness of the computation.

A. Offline Phase

In the offline phase, which diverges from its semi-honest
counterpart, parties will receive for each packed Beaver
triple ([[a]]n−k, [[b]]n−k, [[c]]n−k) and the output {([ai|i]t,
[bi|i]t, [ci|i]t)}ki=1. For each group of input gates or output
gates, all parties will prepare a set of random degree-t Shamir
sharing {[ri|i]t}ki=1. During the output phase, these degree-t
Shamir sharings can help Client to detect attacks launched by
corrupted parties. The functionality Foffline-mal and protocol
Πoffline-mal for the offline phase with malicious security are
given in Appendix IX Protocol 7.

The amortized communication complexity of preparing a
random degree-t sharing for l binary values with malicious
security is 2n elements.

The communication complexity of Πoffline-mal is as fol-
lows:

– For each AND gate, the amortized communication com-
plexity is (2n+ 8n+ 2n/k) ∗m/l ≈ 30n+ 24 bits.

– For each input gate, the amortized communication com-
plexity is (2n+2n+3n/k)∗m/l ≈ 12n+36 bits. For each
output gate, the amortized communication complexity is
12n+ 24 bits.

B. Online Phase

In the online phase, we compute degree-t Shamir sharings
for each l input wires of AND gates. Recall that in honest
majority setting, the degree-t Shamir sharing is totally decided
by honest parties. By using these degree-t Shamir sharing,
parties can verify the correctness of the secret.
Input Phase. Note that in Foffline-mal, for each group of input
gates with input wires α that belong to some Client, parties
hold [[λα]]n−1, {[ri|i]t}ki=1. We use {v(2)αi,j}i∈K,j∈L to denote
the input values of Client, let vαi

= ϕ(v
(2)
αi,1 , ..., v

(2)
αi,l) and

vα = (vα1
, ..., vαk

).

1. First, all parties send their shares of [[λα]]n−1, {[ri|i]t}ki=1

to Client.
2. Client reconstructs r = (r1, ..., rk), computes and dis-

tributes [[vα + r]]t to all parties.
3. Parties locally compute [vαi

|i]t = [[vα + r]]t − [ri|i]t for
i ∈ {1, ..., k}.

4. Client also computes µα = vα − λα and sends to P1.

Because the degree-t Shamir sharing [[vα+r]]t is determined
by t+1 parties, the honest parties can reconstruct these shares
by themselves, malicious parties are unable to alter these
values without being detected.

The description of Πinput-mal appears in Appendix IX
Protocol 8. The communication complexity of Πinput-mal is
(n · (k+1)+n+ k) ·m/(k · l) ≈ 3n+27 bits per input gate.
Computation Phase. For computing AND gates, we follow
the approach of semi-honest protocol of Πmult in general,
but the difference is that parties need to locally compute
[vαi

|i]t = [[µα]]k−1 + [λαi
|i]t and [vβi

|i]t = [[µβ]]k−1 +

[λβi |i]t, and [[λα]]n−k =
∑k

i=1[[ei]]k−1 ∗ [λαi
|i]t, [[λβ]]n−k =∑k

i=1[[ei]]k−1 ∗ [λβi |i]t, [[λα ∗λβ]]n−k =
∑k

i=1[[ei]]k−1 ∗ [λαi ·
λβi

|i]t.
The correctness of the protocol follows the same argument

as the semi-honest version. The description of Πmult-mal

appears in Appendix IX, Protocol 9. The communication
complexity of Πmult-mal is 12 ·m/l ≈ 36 bits per AND gate.
Output Phase and Validity Check. We use Πconsistency to
check the degree-(k − 1) packed sharings lie on a degree-
(k−1) polynomial. This is described in Appendix IX, protocol
10. We describe the functionality Fevaluate in Appendix IX,
Functionality 8. The protocol Πevaluate is an instantiation of
Fevaluate and appears in Appendix IX, Protocol 11.

We also follow the approach of [12], [24] to verify the
correctness of the secret, the functionality Fverify to check
the correctness of the computation, the instantiation of Fverify

can be found in [12]. The description of Fverify appears
in Appendix IX Functionality 10. we refer the readers to
Appendix IX for more details.

VI. CONCLUSION

Building upon previous research, we developed a constant
online communication MPC protocol for Boolean circuits
using RMFE and PSS. This protocol achieves amortized 36
bits per AND gate in the online phase and 30n + 24 bits



per AND gate in the offline phase, in both semi-honest and
malicious settings.

In multi-party PPML applications, non-linear operations of-
ten lead to significant communication overheads. Our protocol,
by leveraging the strengths of Boolean circuits, stands out in
situations like machine learning inference and training that
hinge on activation function computations. Moving forward,
our goal is to delve deeper into the practical application
of this protocol in the realm of PPML, capitalizing on the
unique benefits Boolean circuits offer in processing nonlinear
functions.
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APPENDIX

VII. THE MODEL

A. Security Definition

In the work, we focus on the honest majority setting. Let
t = (n − 1)/2 be an integer. Let F be a secure function
evaluation functionality. An adversary A can corrupt at most
t parties, provide inputs to corrupted parties, and receive all
messages sent to corrupted parties. In this work, we consider
both semi-honest adversaries and malicious adversaries.

– If A is semi-honest, then corrupted parties honestly
follow the protocol.

– If A is fully malicious, then corrupted parties can deviate
from the protocol arbitrarily.

Real-World Execution. In the real world, the adversary A
controlling corrupted parties interacts with honest parties. At
the end of the protocol, the output of the real-world execution
includes the inputs and outputs of honest parties and the view
of the adversary.

Ideal-World Execution. In the ideal world, a simulator
S simulates honest parties and interacts with the adversary
A. Furthermore, S has one-time access to F , which includes
providing inputs of corrupted parties to F , receiving the
outputs of corrupted parties, and sending instructions specified
in F (e.g., asking F to abort). The output of the ideal-world
execution includes the inputs and outputs of honest parties
and the view of the adversary.

Semi-honest Security. We say that a protocol Π computes F
with perfect security if for all semi-honest adversary A, there
exists a simulator S such that the distribution of the output of
the real-world execution is identical to the distribution in the
ideal-world execution.

Security-with-abort. We say that a protocol Π securely
computes F with abort if for all adversary A, there exists
a simulator S, which is allowed to abort the protocol, such
that the distribution of the output of the real-world execution
is statistically close to the distribution in the ideal-world
execution.

B. Hybrid Model

The hybrid model is used in [27] to prove security. In
the hybrid model, all parties are given access to a trusted

party (or alternatively, an ideal functionality) which computes
a particular function for them. The modular sequential com-
position theorem from [27] shows that it is possible to replace
the ideal functionality used in the construction by a secure
protocol computing this function. When the ideal functionality
is denoted by g, we say the construction works in the g-hybrid
model.

C. Client-server Model

To simplify the security proofs, we consider the client-
server model. In the client-server model, clients provide
inputs to the functionality and receive outputs, and servers
can participate in the computation but do not have inputs
or get outputs. Each party may have different roles in the
computation. Note that, if every party plays a single client and
a single server, this corresponds to a protocol in the standard
MPC model. Let c denote the number of clients and n denote
the number of servers. For all clients and servers, we assume
that every two of them are connected via a secure (private and
authentic) synchronous channel so that they can directly send
messages to each other. The communication complexity is
measured in the same way as that in the standard MPC model.

Security in the Client-server Model. In the client-server
model, an adversary A can corrupt at most c clients and t
servers, provide inputs to corrupted clients, and receive all
messages sent to corrupted clients and servers. The security
is defined similarly to the standard MPC model.

We say that a protocol Π securely computes F if there
exists a simulator Sim, such that for all adversaries A,
the distribution of the output of the real world execution is
statistically close to the distribution of the output of the ideal
world execution.

VIII. SECURITY PROOFS OF OUR SEMI-HONEST
PROTOCOL

A. Proof of Lemma IV.1

Lemma IV.1. Protocol Πonline securely computes Fmain

in the Foffline-hybrid model against a semi-honest adversary
who controls t out of n = 2t+ 1 parties and corrupts up to c
of the clients.

Proof. We use A to denote the adversary, use Corr to denote
the set of corrupted parties and H denote the set of honest
parties. We will construct a simulator S to simulate the
behaviors of honest parties.

The correctness of Πonline follows from the description.
Now we will describe the construction of the simulator S :

1. In the offline phase, S emulates the ideal functionality
Foffline and receives the shares of corrupted parties for
each packed Shamir sharing. Recall that Foffline does
not need to send any message to corrupted parties.



2. In the input phase, for each group of k · l input gates that
belong to some Client, let α denote the batch of output
wires of these input gates.

– If Client is honest, after receiving the shares of
[[λα]]n−1 from all parties. S samples random values
and converts them to µα by RMFE and sends them
to P1.

– If Client is corrupted, S samples random values and
converts them to λα by RMFE. Then based on the
secrets λα and the shares of corrupted parties, S
samples the whole sharing [[λα]]n−1 and sends the
shares of [[λα]]n−1 held by honest parties to Client.
From the inputs vα of Client, S computes µα =
vα − λα.

3. Note that in the computation phase, S will always know
µα for each group of wires. In the input layer S has
known µα. For each group of XOR gate with input wires
α,β and output wire γ, S honestly compute µγ = µα+
µβ. For each group of AND gates with input wires α,β
and output wires γ, S simulates Πmult as follows:

– If P1 is honest, S computes degree-(k − 1) packed
Shamir sharings [[µα]]k−1 and [[µβ]]k−1 based on µα

and µβ. Then S computes the shares of [[µγ ]]n−1 of
corrupted parties. S samples 2 · k · l random values
{(a(2)i,j , b

(2)
i,j )}i∈K,j∈L over F2 and uses RMFE to

convert them to 2·k random values as a, b over F2m ,
compute µγ = a ∗ b. Finally, based on the random
values µγ and the shares of corrupted parties, S
computes the shares of [[µγ ]]n−1 of honest parties.

– If P1 is corrupted, S receives from P1 the shares
of [[µα]]k−1 and [[µβ]]k−1 of honest parties. Then S
recovers the whole sharings [[µα]]k−1, [[µβ]]k−1, and
learns the shares of corrputed parties. Now S can
compute the shares of [[µγ ]]n−1 of corrupted parties.
S samples 2·k·l random values {(a(2)i,j , b

(2)
i,j )}i∈K,j∈L

over F2 and uses RMFE to convert them to 2 · k
random values as a, b over F2m , compute µγ = a∗b.
Based on the random values µγ and the shares of
corrupted parties, S computes the shares of [[µγ ]]n−1

of honest parties and sends them to P1.

4. In the output phase, for each group of k · l output gates
that belong to some Client, let α denote the batch of
input wires of these output gates.

– If Client is honest, S does nothing.
– If Client is corrupted, S sends the inputs of corrupted

clients to Fmain (note S can access to the inputs
and random tapes of corrupted clients and corrupted
parties). Then S receives the output vα of Client
from Fmain. S computes λα = vα−µα. Based on
the secrets λα and the shares of corrupted parties,
S randomly samples the whole sharing [[λα]]n−1.
S sends to Client the shares of [[λα]]n−1 of honest
parties. If P1 is honest, S also sends µα to Client.

This completes the description of S .

Now we will show that S can perfectly simulate the
behaviors of honest parties. It is sufficient to focus on the
places where honest parties and clients need to communicate
with corrupted parties and clients:

1. In the input phase, for each group of k · l input gates of
honest parties that belong to some Client, let α denote
the batch of output wires of these input gates. If Client
is honest, then S needs to simulate the values µα sent
from Client to P1. In the ideal world, S samples l · k
random values and converts them to µα by RMFE. Since
µα = vα − λα and λα are uniformly random, both
vα and λα satisfy the properties of RMFE. Therefore
µα are uniformly random and satisfy the properties of
RMFE, the distribution of µα simulated by S has the
same distribution as that in the real world.
If Client is corrupted, then S needs to simulated the
shares of [[λα]]n−1 of honest parties. In real world, parties
need to send the shares of [[λα]]n−1 to Client. In the
ideal world, S randomly samples λα which satisfies the
properties of RMFE. Note the degree of [[λα]]n−1 is n−1,
at least n values can totally decide the polynomial. Then
S randomly samples the shares of honest parties based
on the secrets λα and the shares of corrupted parties.
Therefore, the distribution of the shares of λα of honest
parties is identical to that in the real world. And from
the inputs of Client, S can also compute µα. Therefore,
S perfectly simulates the behaviors of honest parties and
clients in the input phase.

2. In the computation phase, we will show that S can always
learn µα for each group of wires α in the circuit, and µα

has the same distribution with µα in real world. Recall
that S already learns µα in input layer. For each group
of XOR gates with input wires α, β and output wires γ,
S can compute µγ = µα+µβ. For each group of AND
gates with input wires α, β and output wires γ, we will
divide the case into whether P1 is honest or not:

– If P1 is honest, S honestly computes and dis-
tributes [[µα]]k−1,[[µβ]]k−1. Therefore the distribu-
tion of the µα,µβ and the distribution of sharings
[[µα]]k−1,[[µβ]]k−1 is the same in both worlds. Then
for [[µγ ]]n−1, in real word parties compute [[µγ ]]n−1

as follow:

[[µγ ]]n−1 = [[µα]]k−1 ∗ [[µβ]]k−1

+ [[µα]]k−1 ∗ [[λβ]]n−k + [[λα]]n−k ∗ [[µβ]]k−1

+ [[λα · λβ]]n−1 − [[λγ ]]n−1

send to P1, P1 reconstructs µγ and rearranges the
bits according the next layer of circuit, computes
µγ = ϕ(ψ(µγ)). Because λγ are uniformly random
and generated by Foffline, the shares of [[µγ ]]n−1

of honest parties are also uniformly random. In the
ideal world, S samples 2 · k · l random values
{(a(2)i,j , b

(2)
i,j )}i∈K,j∈L over F2 and uses RMFE to

convert them to 2 · k random values as a, b over
F2m , compute µγ = a∗b, and based on the shares of



corrupted parties compute [[µγ ]]n−1. Thus, the values
of µγ and the shares of [[µγ ]]n−1 all have the same
distribution in both worlds.

– If P1 is corrupted, S receives the shares of
[[µα]]k−1,[[µβ]]k−1, and computes the shares of hon-
est parties. Then S computes the shares of [[µγ ]]n−1

of corrupted parties. With the same argument as
above, the shares of [[µγ ]]n−1 of honest parties are
uniformly random. In the idea world, S samples
2 · k · l random values {(a(2)i,j , b

(2)
i,j )}i∈K,j∈L over F2

and uses RMFE to convert them to 2 · k random
values as a, b over F2m , computes µγ = a ∗ b, and
based on the shares of corrupted parties computes the
shares of [[µγ ]]n−1 of honest parties and send to P1.
Thus, the values of µγ and the shares of [[µγ ]]n−1

all have the same distribution in both worlds.
3. In the output phase, for each group of k·l output gates that

belong to some Client, let α denote the batch of input
wires of these output wires. If Client is honest, honest
parties and clients do not need to send any messages to
corrupted parties and clients. If Client is corrupted, S can
learn the output of Client from Fmain. Since S learns
µα, S can compute λα. In both worlds, [[λα]]n−1 is a
random degree-(n− 1) packed Shamir sharing given the
secrets λα and the shares of corrupted parties. Thus, the
shares of honest parties generated by S have the same
distribution as that in the real world.

B. Proof of Lemma IV.2

Lemma IV.2. Protocol Πoffline securely computes Foffline

in the Frandom-hybrid model against a semi-honest adversary
who controls t out of n = 2t+ 1 parties.

Proof. We will prove that the secrets of the output sharings
of Πoffline have the same distribution of these of Foffline.
We will construct a simulator S to simulate the behaviors of
honest parties. Let Corr denote the set of corrupted parties
and H denote the set of honest parties. First, recall the
structure of Protocol Πoffline:

1. Preparing Packed Beaver Triples.
2. Preparing Degree-(n− 1) Zero Sharings.
3. Computing Random Sharing for Each Group of Wires.

Now, we will construct the simulator S to simulate the
behaviors of honest parties:

1. In the phase of preparing packed Beaver triples, S
emulates the ideal functionality of Frandom to gener-
ate random sharings [ϕ(ai)|i]t and [ϕ(bi)|i]t for i ∈
{1, 2, ..., k}, and receives the shares of corrupted par-
ties of [ϕ(ai)|i]t, [ϕ(bi)|i]t. Then S emulates the ideal
functionality of Fsingle-mult to obtain ϕ(ci), such that
ci = ai ∗ bi, receives the shares of ϕ(ci) of corrupted
parties. Finally, S computes the packed Beaver triples
([[a]]n−k, [[b]]n−k, [[c]]n−k) following the same local com-
putations as in the protocol.

2. In the phase of preparing random degree-(n − 1) zero
sharings, S simulates the invocation of Frandom to gen-
erate random sharings [[0]]n−1, where 0 ∈ Fk.

3. In the phase of computing random sharings for each
group of wires,

a. For each group of output wires of input gates and
AND gates, and input wires of output gates, S
emulates the functionality of Frandom to prepare
[ϕ(ri)|i]t and receives the shares of corrupted par-
ties. S follow the protocol compute [[λα]]n−1.

b. For each group of XOR gates, S emulates
the Frandom the generation of random sharings
[[λα]]n−k, [[λβ]]n−k and receives the sharings of cor-
rupted parties as above, and computes [[λγ ]]n−k =
[[λα]]n−k + [[λβ]]n−k.

c. For each group of AND gates, S uses the packed
Beaver triples generated in step 1 to set [[λα]]n−k =
[[a]]n−k, [[λβ]]n−k = [[b]]n−k, [[λα ∗ λβ]]n−1 =
[[c]]n−k.

Next, we will show S perfectly simulate the behaviors of
honest parties.

– In the phase of preparing packed Beaver triples, in the real
world, the parties invoke Frandom to generate random
sharings, and S does the same in the ideal world, the
sharings have the same distribution in both world. Simi-
larly, the invocation of Fsingle-mult generated the share
of ([ai|i]t, [bi|i]t, [ci|i]t), which has the same distribution
in both worlds.

– In the phase of computing random sharing for each group
of wires:

– For each group of output wires of input gates and
AND gates, and input wires of output gates, in the
real world, [[λα]]n−1 is a random degree-(n − 1)
packed Shamir sharing given the secrets λα and
the shares of corrupted parties. In the ideal world,
Foffline generates a random degree-(n− 1) packed
Shamir sharing of λα given the shares of corrupted
parties. Therefore, the sharing [[λα]]n−1 has the same
distribution in both worlds.

– For each group of XOR gates with the input
wires α, β and output wires γ, in the real
world, the random sharings [[λα]]n−k,[[λβ]]n−k gen-
erated by degree-t random Shamir sharing, which
has the same distrbution in both worlds, thus
[[λα]]n−k,[[λβ]]n−k,[[λγ ]]n−k = [[λα]]n−k + [[λβ]]n−k

has the same ditribution in both worlds.
– For each group of AND gates with the input wires

α, β, the [[λα]]n−k, [[λβ]]n−k generated by Step
1, which has been proved that they have the same
distribution in both worlds.

Thus, we can conclude that Protocol Πoffline securely com-
putes Foffline in the Frandom-hybrid model against a semi-
honest adversary who controls t out of n = 2t+ 1 parties.



IX. POTOCOL AND PROOF OF MALICIOUS SECURITY

In this section, we will show how to achieve malicious
security in the honest majority setting. Our main idea follows
the approach of [12], compiling our semi-honest protocol to
achieve malicious security.

Recall that for degree-t Shamir secret sharing of honest
majority setting, the whole sharing is fully determined by the
shares of honest, if malicious parties add a linear error to
the secret, it will be discovered by honest parties. But for
the degree-(n − k) packed secret sharing, malicious parties
can modify the secret without attracting the notice of honest
parties. Because for a degree-(n − k) packed secret sharing,
malicious parties can let the honest parties hold the secret
shares of 0 to generate a linear attack of any error δ =
(δ1, ..., δk−1). For example, assumed the packed secret sharing
is [[x]]n−k, and the secret is store in default positions s1, ..., sk
in the corresponding packed secret sharing polynomial f(·)
where f(si) = xi, and Pi hold the packed share f(pi), let C
denote the set of corrupted parties, H denote the set of honest
parties. Adversary can generate a degree-(n − k) polynomial
g(·) satisfied g(pj) = 0, for all j ∈ H and g(si) = δi, for
alli ∈ {1, ..., k − 1}. Thus depend on the g(·), the adversary
can let the shares held by malicious parties be g(i)+ f(i) for
all i ∈ Corr, then honest party can’t notice the error.

The previous work [13], [16] use information-theoretic
MACs, this method can detect attack in the dishonest majority
setting, but increases the communication complexity at least
twice. The state-of-the-art MPC protocol [5]–[12] in the honest
majority setting, compute degree-t Shamir sharing. And [12]
uses different evaluation points to store the secret, computes
k degree-t Shamir sharings and convert such Shamir sharing
into a packed secret sharing. We follow the approach of [12],
the difference is we don’t assign a random degree-t Shamir
sharing for a single wire, but assign a random degree-t Shamir
sharing for a group of l wires.

For each l wires, we will assign a random degree-t Shamir
sharing. Note in honest majority setting, the degree-t Shamir
sharing is totally decided by honest parties. For each group of
k · l AND gates:

1. First we will generate k Beaver triples in the form of
{([ai|i]t, [bi|i]t, [ci|i]t)}ki=1 and satisfy ci = ai · bi.

2. Let α, β be the input wires, where α = {αi,j}, β =
{βi,j} for i ∈ K and j ∈ L. For each l wires of α, β,
let [λαi

|i]t = [ai|i]t, [λβi
|i]t = [bi|i]t, associates [λαi

|i]t,
[λβi |i]t with the wires {αi,1, ..., αi,l}, {βi,1, ..., βi,l}.

3. In online phase, P1 sends [[µα]]k−1, [[µβ]]k−1 to parties,
then parties can locally compute [[λα]]n−k, [[λβ]]n−k,
[[µγ ]]n−1. And all parties can locally compute [vαi

|i]t =
[[µα]]k−1 + [λαi

|i]t, [vβi
|i]t = [[µβ]]k−1 + [λβi

|i]t for all
i ∈ {1, ..., k}.

If we view [[µα]]k−1 as a degree-t Shamir sharing, we can
compute the degree-t Shamir sharings of input values [vβi |i]t.
And recall that for degree-t Shamir secret sharing of honest
majority setting, the whole sharing is fully determined by

the shares of honest. In the following, we will show this is
sufficient to verify the correctness of the computation.

A. Offline Phase

In the offline phase, different from the semi-
honest offline phase, for each packed Beaver triple
([[a]]n−k, [[b]]n−k, [[c]]n−k), parties will also take {([ai|i]t,
[bi|i]t, [ci|i]t)}ki=1 as output. And for each group of input
gates or output gates, all parties will prepare a set of random
degree-t Shamir sharing {[ri|i]t}ki=1. In the output phase,
these degree-t Shamir sharings can help Client to detect
attacks launched by corrupted parties. The functionality
for the offline phase with malicious security appears in
Functionality 5.

Now we will describe the protocol Πoffline-mal that real-
izes Foffline-mal. It follows the semi-honest protocol Πoffline

and we use the ideal functionality Fsingle-mult-mal from [9],
[12], use the ideal functionality Frandom from [21]. The
ideal functionality Fsingle-mult-mal allows an additive attack
towards the multiplication result, and can be instantiated by
the protocol in [9]. we refer the readers to [9], [21] for more
details. The amortized communication complexity of preparing
a random degree-t sharing for l binary values with malicious
security is 2n elements. The protocol Πoffline-mal appears in
Protocol 7.

The communication complexity of Πoffline-mal:
– For each AND gate, the amortized communication com-

plexity is (2n+ 8n+ 2n/k) ∗m/l ≈ 30n+ 24 bits.
– For each input gate, the amortized communication com-

plexity is (2n+2n+3n/k)∗m/l ≈ 12n+36 bits, for each
output gate, the amortized communication complexity is
12n+ 24 bits.

Lemma IX.1. Protocol Πoffline-mal securely computes
Foffline-mal in the Fsingle-mult-mal-hybrid model against a
fully malicious adversary who controls t = (n− 1)/2 parties.

Proof. We will construct a simulator S to simulate the
behaviors of honest parties. Let Corr denote the set of
corrupted parties and H denote the set of honest parties.

The simulator S works as follows.
1. In Step 1, S emulates the functionality Frandom to

prepare the random sharing in the form of {[ϕ(ai)|i]t},
{[ϕ(bi)|i]t} for i ∈ {1, ..., k}. Then, for each pair
([ϕ(ai)|i]t, [ϕ(bi)|i]t), S emulates the functionality
Fsingle-mult-mal and receives from the adversary the
shares of [ϕ(ci)|i]t of corrupted parties and the additive
error δi. Then for each pair of ([ϕ(ai)|i]t, [ϕ(bi)|i]t), S
sends the shares of [ϕ(ci)|i]t of corrupted parties and the
additive error δi to Foffline-mal.

2. In step 2, S emulates the ideal functionality Frandom

to prepare the random sharing in the form of [[0]]n−1

and receives the shares of [[0]]n−1 of corrupted parties. S
sends the shares of corrupted parties to Foffline-mal.

3. In Step 3, S emulates the ideal functionality Frandom to
prepare the random sharings in the form of [ϕ(ri)|i]t and



Functionality 5: Foffline-mal

1. Preparing Beaver Triples: Foffline-mal receives the circuit C from all parties, and receives the set of corrupted parties, denoted
by Corr. For each group of AND gates, Foffline-mal prepares a set of Beaver triples
{([ϕ(ai)|i]t, [ϕ(bi)|i]t, [ϕ(ci)|i]t)}ki=1, which satisfy that ai,bi are random values and ci = ai ∗ bi. This is done by the
following:

a. For all i ∈ {1, ..., k}, Foffline-mal receives from the adversary a set of shares {ui
1,j , u

i
2,j , u

i
3,j}j∈Corr and an additive δi.

Foffline-mal samples two random values ϕ(ai), ϕ(bi) ∈ F2m and computes ϕ(ci) = ϕ(ai) ·ϕ(bi)+δi. Then Foffline-mal

computes three degree-t Shamir sharings [(ϕ(ai)|i]t, [ϕ(bi)|i]t, [ϕ(ci)|i]t), such that for all Pj ∈ Corr, the j-th share of
[(ϕ(ai)|i]t, [ϕ(bi)|i]t, [ϕ(ci)|i]t) is {ui

1,j , u
i
2,j , u

i
3,j}j∈Corr .

b. For all i ∈ {1, .., k}, Foffline-mal dsitrbutes the shares of
[(ϕ(ai)|i]t, [ϕ(bi)|i]t, [ϕ(ci)|i]t) to honest parties.

2. Preparing Degree-(n− 1) Zero Sharings: For each group of l · k AND gates, input gates, and output gates:
a. Foffline-mal receives from the adversary a set of shares {uj}j∈Corr . Then Foffline-mal prepares a random degree-(n− 1)

packed Shamir sharings of 0 ∈ Fk
2m , denote by [[0]]n−1 such that for all Pj ∈ Corr, the j-th share of [[0]]n−1 is uj .

b. Foffline-mal distributes the shares of [[0]]n−1 to honest parties.
3. Preparing Shamir sharings for Input and Output Gates: For each group of k · l input gates or output gates:

a. For all i ∈ {1, ..., k}, Foffline-mal receives from the adversary a set of shares {ui,j}j∈Corr . Foffline-mal samples a random
value in the form of ϕ(ri). Then Foffline-mal computes a degree-t Shamir shaings [ϕ(ri)|i]t such that for all Pj ∈ Corr,
the j-th shares of [ϕ(ri)|i]t is ui,j .

b. For all i ∈ {1, ..., k}, Foffline-mal distributes the shares of [ϕ(ri)|i]t to honest parties.
4. Assigning Random Sharings for Each Group of Wires:

a. For each group of k · l output wires α = {αi,j}i∈K,j∈L of input gates and AND gates, Foffline-mal samples a random
values in the form of ϕ(ri). Let λαi = ϕ(ri) for all i ∈ K, and λα = (λα1 , ..., λαk ). Foffline-mal receives from the
adversary a set of shares {uj}j∈Corr and a vector δ. Foffline-mal samples a random degree-(n−1) packed Shamir sharings
[[λα + δ]]n−1 such that for all Pj ∈ Corr, the j-th share of [[λα + δ]]n−1 is uj . Then, Foffline-mal distributes the shares
of [[λα + δ]]n−1 to honest parties.

b. For each group of k · l XOR gates with α,β and output wires γ, Foffline-mal samples random values ϕ(r1,i), ϕ(r2,i).
Foffline-mal receives from the adversary a set of shares {ui

1,j , u
i
2,j}j∈Corr . Based on the {ui

1,j , u
i
2,j}j∈Corr and ϕ(r1,i),

ϕ(r2,i), Foffline-mal computes [ϕ(r1,i)|i]t, [ϕ(r2,i)|i]t such that the j-th shares of [ϕ(r1,i)|i]t, [ϕ(r2,i)|i]t are ui
1,j , u

i
2,j .

Foffline-mal sets [λαi |i]t = [ϕ(r1,i)|i]t, [λβi |i]t = [ϕ(r2,i)|i]t, [λγi |i]t = [ϕ(r1,i)|i] + [ϕ(r2,i)|i].
c. For each group of k · l AND gates with the input wires α,β and output wires γ, Foffline-mal set [λαi |i]t = [ϕ(ai)|i]t,

[λβi |i]t = [ϕ(bi)|i]t, [λαi · λβi |i]t = [ϕ(ci)|i]t
d. For each group of output gates with the input wires α, Foffline-mal receives from the adversary a set of shares {ui,j}j∈Corr .

Foffline-mal samples k random elements in the form of {ϕ(r′
i)}ki=1. Based on the {ui,j}j∈Corr and {ϕ(r′

i)}ki=1,
Foffline-mal computes the degree-t sharings [ϕ(r′

i)|i]t where j-share of [ϕ(r′
i)|i]t is ui,j for all i ∈ {1, ..., k}. Let

[λαi |i]t = [ϕ(ri)|i]t and λα = (λαi , ..., λαk ), {[ϕ(ri)|i]t}ki=1 are the random sharings that prepared in Step 3. Foffline-mal

receives from the adversary a vector δ = (δ1, ..., δk). Then Foffline-mal computes λα + r + δ and sends these values to
P1.

Fig. 11. Functionality for offline phase with malicious security

Functionality 6: Fsingle-mult-mal

1. Fsingle-mult-mal receives the secret position i from
all parties. Let [x|i]t,[y|i]t denote the input sharings.
Fsingle-mult-mal receives from honest parties their shares
of [x|i]t,[y|i]t. Then Fsingle-mult-mal reconstructs the
secrets x, y. Fsingle-mult-mal further computes the shares
of [x|i]t, [y|i]t held by corrupted parties, and sends these
shares to the adversary.

2. Fsingle-mult-mal receives from the adversary a set of
shares {zi}i∈Corr and an additive error δ.

3. Fsingle-mult-mal computes x · y+ δ. Based on the secret
z = x·y+δ and the t shares {zi}i∈Corr , Fsingle-mult-mal

reconstructs the whole sharing [z|i]t and distributes the
shares of [z|i]t to honest parties.

Fig. 12. Functionality for single element multiplication with malicious
security

receives the shares of [ϕ(ri)|i]t of corrupted parties. S
sends the shares of corrupted parties to Foffline-mal.

4. In Step 4,
a. For each group of k · l output wires α of input gates

and AND gates, S emulates the ideal functionality
Frandom to prepare the random sharings in the form
of [ϕ(ri)|i]t as described above, and receives the
shares of [ϕ(ri)|i]t of corrupted parties. Then S uses
the zero sharing generated in Step 2 and follows the
same step as the protocol to compute [λγ ]n−1.

b. For each group of k · l XOR gate with the input
wires α, β and output wires γ, S emulates the ideal
functionality Frandom to prepare random sharings in
the form of {[ϕ(r1,i)|i]t}ki=1, {[ϕ(r2,i)|i]t}ki=1 as
described above. Then S follows the same step as
the protocol to [λαi

|i]t, [λβi
|i]t, [λγi

|i]t.
c. For each group of k · l AND gates, S use the Beaver

triples prepared above, follow the protocol to get



Protocol 7: Πoffline-mal

1. Preparing Packed Beaver Triples: For each group of AND gates, all parties invoke Frandom to prepare random sharings in the
form of [ϕ(r)|i]t.

a. For each group of k · l AND gates, let {([ϕ(ai)|i]t, [ϕ(bi)|i]t)}ki=1 be the unused random sharings.
b. For all i ∈ {1, ..., k}, all parties invoke Fsingle-mult-mal on (i, [ϕ(ai)|i]t, [ϕ(bi)|i]t) and receives [ϕ(ai) · ϕ(bi)|i]t.

2. Preparing Degree-(n− 1) Zero Sharings:
a. For each group of AND gates, all parties invoke Frandom to prepare random sharings in the form of [[0]]n−1 where 0 =

(0, 0, ..., 0) ∈ Fk
2m .

b. For each group of k · l input gates or output gates, all parties invoke Frandom to prepare random sharings in the form of
[[0]]n−1.

3. Preparing Random Sharing for Input and Output Gates: For each group of k · l input gates or output gates, parties invoke
Frandom to prepare k random sharings in the form of [ϕ(ri)|i]t for all i ∈ {1, ..., k}.

4. Assigning Random Sharing for Each Wires:
a. For each group of k · l output wires α of input gates and AND gates, all parties invoke Frandom to prepare random sharings

in the form of [ϕ(ri)|i]t for all i ∈ {1, ..., k}. Let ei ∈ Fk be the i-th unit vector, all parties locally transform ei to the
degree-(k − 1) packed Shamir sharing [[ei]]k−1 and use the [[0]]n−1 which generated by Step 2 to compute:

[[λα]]n−1 =

k∑
i=1

[[ei]]k−1 ∗ [[ϕ(ri)|i]]t + [[0]]n−1

b. For each group of k · l XOR gate with the input wires α, β and output wires γ, parties invoke Frandom to prepare
random sharings in the form of {[ϕ(r1,i)|i]t}ki=1, {[ϕ(r2,i)|i]t}ki=1. Let [λαi |i]t = [ϕ(r1,i)|i]t, [λβi |i]t = [ϕ(r2,i)|i]t. For
all i ∈ {1, ..., k}, parties associate values [λαi |i]t with the wires α, associate values [λβi |i]t with the wires β, compute
[λγi |i]t = [λαi |i]t + [λβi |i]t and associate values {[λγi |i]t} with the wires γ.

c. For each group of k · l AND gates with the input wires α, β. Let ([ϕ(ai)|i]t, [ϕ(bi)|i]t, [ϕ(ci)|i]t) be the packed Beaver
triples associated with these gates generated by Step 1. Let [λαi |i]t = [ϕ(ai)|i]t, [λβi |i]t = [ϕ(bi)|i]t, [λαi · λβi |i]t =
[ϕ(ai) · ϕ(bi)|i]t, associate {([λαi |i]t, [λβi |i]t, [λαi · λβi |i]t)} with the wires α, β.

d. For each group of output gates with input wires α, all parties invoke Frandom to generate the random sharings in the form
of [ϕ(r′

i)|i]t and let [λαi |i]t = [ϕ(r′
i)|i]t for all i ∈ K. Then parties use the random sharings {[ϕ(ri)|i]t}ki=1 that generated

by Step 3 and random zero sharing that generated in Step 2, locally compute [[λα + r]]n−1 =
∑k

i=1[[ei]]k−1 ∗ [ϕ(ri)|i]t +∑k
i=1[[ei]]k−1 ∗ [λαi |i]t + [[0]]n−1 and send the shares to P1. P1 reconstructs λα + r.

Fig. 13. Protocol for offline phase with malicious security

[λαi
|i]t, [λβi

|i]t, [λγi
|i]t

d. For each group of k · l output gates with the input
wires α, S follows the protocol and computes [[λα+
r+]]n−1 held by corrupted parties.
– If P1 is honest, S receives from the adversary the

shares oƒ [[λα+r]]n−1 of corrupted parties, which
can be different from those computed by S. Let
[[λα + r]]n−1 denote the degree-(n − 1) packed
Shamir sharing where the shares of corrupted par-
ties are those computed by S. S locally compute
the shares of

[[δ]]n−1 = [[λα + r]]n−1 − [[λα + r]]n−1

of corrupted parties and sets the shares of honest
parties to be 0. Then, S reconstructs the secrets δ
and sends to Foffline-mal.

– If P1 is corrupted, S sets δ = 0 ∈ Fk
2m . Then, S

sends to Foffline-mal the vector of additive errors
and receives λα+r. S generates a random degree-
(n− 1) packed secret sharing [λα + r]]n−1 based
on the λα+ r and the shares of corrupted parties
computed by S. Finally, S sends the shares of
[[λα + r]]n−1 of honest parties to P1.

This completes the description of S .

Now we will show that S perfectly simulate the behaviors
of honest parties.

1. In Step 1, S emulates Frandom to generate the random
sharings in the form of [ϕ(ai)|i]t, [ϕ(bi)|i]t and emulates
Fsingle-mult-mal to generate [ϕ(ai)·ϕ(bi)|i]t. The inputs
of S is random elements as these in real world. There-
fore, the distribution of ([ϕ(ai)|i]t, [ϕ(bi)|i]t), [ϕ(ai) ·
ϕ(bi)|i]t is identical in both worlds.

2. In Step 2, S emulates Frandom to generate the random
sharings in the form of [[0]]n−1. Note a degree-(n − 1)
packed secret sharing requires n values to reconstruct the
whole sharing, and given the shares of corrupted parties,
the sharings are still random. As same described in Step
1, the sharings have the same distribution in both worlds.

3. In Step 3, as described above, the sharings have the same
distribution in both worlds.

4. In Step 4.a, S emulates Frandom to generate degree-
t random sharings and uses a random degree-(n − 1)
zero sharing, as described above, the sharings have the
same distribution in both worlds. In Step 4.b, the degree-t
Shamir sharing has the same distribution in both worlds
as described above. In Step 4.c, there is no interaction and
correlated random sharings generated in Step 1. In Step
4.d, if P1 is honest, because P1 collects and reconstruct



shares, adversary will not get any new information from
P1, and the shares of corrupted parties are degree-t
Shamir sharing and random zero sharing, as described
above, the distribution of shares of corrupted parties
is same in both world. If P1 is corrupted, in the real
world, the degree-(n − 1) sharings which P1 received
are masked by degree-(n− 1) random zero sharing, thus
the [[λα + r]]n−1 is uniformly random in real world.
And in the ideal world, the shares of [[λα + r]]n−1 are
also uniformly. Thus the distribution of the shares of
[[λα + r]]n−1 is same in both worlds.

B. Online Phase

In the online phase, we will compute degree-t Shamir
sharings for each l input wires of AND gates. Recall that in
honest majority setting, the degree-t Shamir sharing is totally
decided by honest parties. By using these degree-t Shamir
sharings, parties can verify the correctness of the secret. Recall
that in our semi-honest online protocol, for each group of
AND gates with input wires α, β and output wires γ, P1

distributes [[µα]]k−1, [[µβ]]k−1 to all parties, and parties can
compute [[µγ ]]n−1 by using these two sharings.

Input Phase. Note in Foffline-mal, for each group of input
gates with the input wires α that belong to some Client,
parties hold [[λα]]n−1, {[ri|i]t}ki=1. We use {v(2)αi,j}i∈K,j∈L to
denote the input values of Client, let vαi

= ϕ(v
(2)
αi,1 , ..., v

(2)
αi,l)

and vα = (vα1
, ..., vαk

). First, All parties send their shares
of [[λα]]n−1, {[ri|i]t}ki=1 to Client. Client reconstruct r =
(r1, ..., rk), computes and distributes [[vα + r]]t to all parties.
Because [[vα+r]]t is a degree-t packed secret sharing, honest
parties can totally decide the secret, parties can locally com-
pute [vαi

|i]t = [[vα + r]]t − [ri|i]t for i ∈ {1, ..., k}. Client
also computes and sends µα = vα − λα to P1.

The description of Πinput-mal appears in Protocol 8, the
communication complexity of Πinput-mal is (n · (k+1)+n+
k) ·m/(k · l) ≈ 3n+ 27 bits per input gate.
Computation Phase. For computing AND gates, We follow the
approach of semi-honest protocol of Πmult in general, but the
difference is parties will locally compute [vαi

|i]t, [vβi
|i]t, and

[[λα]]n−k,[[λα]]n−k. The correctness of the protocol follows the
same argument as the semi-honest version. The description
of Πmult-mal appears in Protocol 9. The communication
complexity of Πmult-mal is 12 ·m/l ≈ 36 bits per AND gate.
Output Phase and Validity Check. The main goal of output
phase is send the output of the circuit to Client and verify the
correctness of the computation. Recall that all parties have
received {[ri|i]t}ki=1 in offline phase. And P1 has received
λα + r in offline phase, P1 also holds µα = vα − λα.

Now we will show how to achieve these goals:
P1 locally compute vα+r = µα+(λα+r) and distributes

the degree-(k−1) packed sharing [[vα+r]]k−1 to all parties. In
this way, all parties can locally compute the degree-t Shamir
sharings for input wires of output gates. But before this,
parties need to verify the correctness of the computation. The
verification contains two parts:

Protocol 8: Πinput-mal

1. For each group of input gates that belong to Client,
let α = {αi,j}i∈K,j∈L denote the batch of output
wires of these input gates. All parties receive {[ri|i]t}ki=1

and [[λα]]n−1 from Foffline and Client holds vα =

(vα1 , ..., vαk ) where vαi = ϕ(v
(2)
αi,1 , ..., v

(2)
αi,l) for each

i ∈ {1, ..., k} and v(2)αi,j is the input value of wire αi,j .
2. All parties send to Client their shares of {[ri|i]t}ki=1 and

[[λα]]n−1.
3. For all i ∈ {1, ..., k}, Client checks whether the shares

of {[ri|i]t}ki=1 lie on a same degree-t polynomial. If not,
Client aborts.

4. Client reconstruct the secrets r = (r1, ..., rk) and λα,
then samples a random degree-t packed Shamir sharing
[[vα + r]]t and computes µα = vα − λα.

5. Client distributes the shares of [[vα + r]]t to all parties
and sends µα to P1.

6. For all i ∈ {1, ..., k}, all parties locally compute
[vαi |i]t = [[vα + r]]t − [ri|i]t.

Fig. 14. Protocol for input phase with malicious security

Protocol 9: Πmult-mal

1. For each group of AND gates with input wires α,β and
output wires γ, all parties receive from Foffline-mal

– {([λαi |i]t, [λβi |i]t, [λβi · λαi |i]t)}ki=1

– A random degree-(n − 1) packed Shamir sharing
[[λγ ]]n−1

2. Note P1 learns µα, µβ during the online phase. P1 locally
computes [[µα]]k−1, [[µβ]]k−1 distributes the shares of and
[[µα]]k−1, [[µβ]]k−1 to all parties.

3. All parties locally compute

[[λα]]n−k =

k∑
i=1

[[ei]]k−1 ∗ [λαi |i]t

[[λβ]]n−k =

k∑
i=1

[[ei]]k−1 ∗ [λβi |i]t

[[λα ∗ λβ]]n−k =

k∑
i=1

[[ei]]k−1 ∗ [λαi · λβi |i]t

[[µγ ]] = [[µα]]k−1 ∗ [[µβ]]k−1 + [[µα]]k−1 ∗ [[λβ]]n−k

+[[µβ]]k−1 ∗ [[λα]]n−k + [[λα + λβ]]n−k − [[λγ ]]n−1

4. P1 collects the whole sharing [[µγ ]]n−1 from all parties
and reconstructs µγ and computes ψ(µγ), rearranges the
bits according to the next layer of circuits to get µ

(2)
γ ,

then sets µγ = ϕ(µ
(2)
γ ).

5. For all i ∈ {1, ..., k}, all parties locally compute
[vαi |i]t = [[µα]]k−1 + [λαi |i]t and [vβi |i]t = [[µβ]]k−1 +
[λβi |i]t.

Fig. 15. Protocol for evaluating AND gate by multiplication with malicious
security



Functionality 7: Fcoin

1. Fcoin samples a random field element r.
2. Fcoin sends r to the adversary.

– If the adversary replies continue, Fcoin sends r to
honest parties.

– If the adversary replies abort, Fcoin sends abort to
honest parties.

Fig. 16. Functionality for generating random elements to all parties

Protocol 10: Πconsistency

1. Let {[[wi]]k−1}Ni=1 denote all degree-(k−1) packed secret
sharings distributed by P1.

2. All parties invoke Fcoin to generate a random element
r ∈ F.

3. All parties locally compute

[[w]]k−1 =

N∑
i=1

ri−1 · [[wi]]k−1.

4. Each party Pi sends its share of [[w]]k−1 to all other
parties. Then each party Pj checks whether the shares
of [[w]]k−1 lie on a degree-(k−1) polynomial. If true, Pj

acceptes the check. Otherwise, Pj aborts.

Fig. 17. Protocol for check the consistency

– Parties need to verify the degree-(k − 1) packed Shamir
sharings distributed by P1 are valid. Parties need to
check each degree-(k− 1) packed Shamir sharing which
distributed by P1 lie on a degree-(k − 1) polynomial.

– Then parties need to check that for each group of input
wires of AND gate or output gate, the secret of the
corresponding degree-t Shamir sharing is the correct wire
value.

Then we will discuss how to check the shares lie on a degree-
(k − 1) polynomial. We follow the approach of [12], use the
ideal functionality Fcoin to samples random field element to
all parties, the instantiation of Fcoin can be found in [26].
We also use the Πconsistency from [12] to check the degree-
(k−1) packed sharings lie on a degree-(k−1) polynomial. We
refer the readers to [12], [26] for more details. The description
of Fcoin appears in Functionality 7, and the description of
Πconsistency appears in Protocol 10.

Let K be an extension field of F such that |K| ≥ 2κ where κ
is the security. All parties use Fcoin to generate a random field
element r ∈ K. Let {[[wi]]k−1}Ni=1 denote all degree-(k − 1)
packed Shamir sharings distributed by P1. All parties locally
compute: [[w]]k−1 =

∑N
i=1 r

i−1 · [[wi]]k−1.
Then each party collects the whole sharing [[w]]k−1 and

checks whether the shares form a valid degree-(k−1) packed
Shamir sharing. The description of Πconsistency appears in
Protocol 10. The communication complexity of Πconsistency

is O(n2) elements in K, which is independent of the number
of sharings.

Functionality 8: Fevaluate

1. Fevaluate receives the input from all clients. Let C denote
the circuit.

2. Fevaluate receives the set of corrupted parties, denoted
by Corr. For each group of input gates with output wire
α, let vα denote the input values associated with α. For
all i ∈ {1, ..., k}, Fevaluate receives from the adversary
a set of shares {ui,j}j∈Corr . Then Fevaluate computes
a degree-t Shamir sharing [vαi |i]t such that for all Pj ∈
Corr, the j-th share of [vαi |i]t is ui,j . Finally, Fevaluate

distributes the shares of [vαi |i]t to honest parties.
3. Fevaluate evaluates the circuit C layer by layer. For each

group of addition gates with input wires α, β and output
wires γ, Fevaluate computes vγ = vα + vβ . For each
group of AND gates with input wires α, β:

a. Fevaluate receives two vectors of additive errors
δ(vα), δ(vβ) from the adversary. Then Fevaluate

sets vα = vα + δ(vα) and vβ = vβ + δ(vβ).
b. For all i ∈ {1, ..., k}, Fevaluate receives from

the adversary a set of shares {(ui
1,j , u

i
2,j)}j∈Corr .

Then Fevaluate computes degree-t Shamir sharings
[vαi |i]t and [vβi |i]t such that for all Pj ∈ Corr,
the j-th share of [vαi |i]t is ui

1,j and the j-th share
of [vβi |i]t is ui

2,j . Finally, Fevaluate distributes the
shares of [vαi |i]t, [vβi |i]t to honest parties.

c. Fevaluate computes vγ = ϕ(ψ(vα ∗ vβ)).
4. For each group of output gates with input wires α:

a. Fevaluate receives a vector of additive errors δ(vα)
from the adversary. Then, Fevaluate sets vα = vα+
δ(vα)

b. For all i ∈ {1, ..., k}, Fevaluate receives from the ad-
versary a set of shares {ui,j}j∈Corr . Then Fevaluate

computes a degree-t Shamir sharing [vαi |i]t such that
for all Pj ∈ Corr, the j-th share of [vαi |i]t is ui,j .
Finally, Fevaluate distributes the shares of [vαi |i]t to
honest parties.

5. On receiving abort, Fevaluate sends abort to all parties.

Fig. 18. Functionality for evaluating Boolean circuits

Lemma IX.2. If there exists i ∈ {1, ..., N} such that [[wi]]k−1

is not a vaild degree-(k − 1) packed Shamir sharing, then
all honest parties abort in Πconsistency with overwhelming
probability. ([[wi]]k−1 is vaild means the shares of [[wi]]k−1 of
honest parties lie on a degree-(k − 1) polynomial) [12].

After check the validity of degree-(k − 1) packed secret
sharing that distributed by P1, all parties can locally compute
[vαi

|i]t = [[vα + r]]k−1 − [ri|i]t for all i ∈ {1, ..., k}.
We describe the functionality Fevaluate in Functionality

8 from [12] for the evaluation of the circuit in the online
phase. The protocol Πevaluate is the instantiation of Fevaluate,
appears in Protocol 11.

Lemma IX.3. Protocol Πevaluate securely computes
Fevaluate in the Foffline-mal-hybrid model against a fully
malicious adversary who controls t parties and up to c
clients. [12]

We will follow the approach of [12], [24] to verify the



Protocol 11: Πevaluate

1. Offline Phase: All parties invoke Foffline-mal to receive
correlated randomness that will be used in the online
phase.

2. Input Phase: In the input layer, for each group of k ·
l input gates belong to some Client, let α denote the
output wires of these input gates. All parties and Client
invoke Πinput-mal. At the end of the protocol, all parties
hold {[vαi |i]t}ki=1. And P1 learns µα = vα−λα where
vα = (vα1 , ..., vαk ) and vαi = ϕ(v

(2)
αi,1 , ..., v

(2)
αi,1) for i ∈

{1, ..., k}, {v(2)αi,j}i∈K,j∈L is the input values of Client.
3. Computation Phase: Note that P1 holds µα.

a. For each group of XOR gates with input wires α,
β and output wires γ, P1 locally compute µγ =
µα + µβ

b. For each group of AND gates with input wires
α, β and output wires γ, all parties invoke
Πmult-mal. At the end of the protocol, all parties
hold {[vαi |i]t, [vβi |i]t}

k
i=1, and P1 learns µγ .

4. Output Phase and Validity Check: For each group of k
output gates with input wires α, recall that all parties have
received {[ri|i]t}ki=1 from Foffline-mal. P1 has received
λα + r from Foffline-mal and P1 has been learned µα.

a. P1 computes vα + r = µα + (λα + r), distributes
the degree-(k−1) packed Shamir sharing [[vα+r]]t
to all parties.

b. For all i ∈ {1, ..., k}, parties locally compute
[vαi |i]t = [[vα + r]]t − [ri|i]t.

c. Let {[[u]]k−1}N denote all degree-(k − 1) packed
Shamir sharings distributed by P1, all parties invoke
Fconsistency to check the validity of these sharings.

Fig. 19. Protocol for evaluating Boolean circuits

Functionality 9: Fmain-mal

1. Fmain-mal receives the input from all clients. Let x
denote the input and C denote the circuit.

2. Fmain-mal computes C(x). Fmain-mal first distributes
the output of corrupted clients to the adversary.

– If the adversary replies continue, Fmain-mal dis-
tributes the output to all clients.

– If the adversary replies abort, Fmain-mal sends
abort to all clients.

Fig. 20. Functionality for main protocol with malicious security

correctness of the secret, the functionality Fverify to check
the correctness of the computation, the instantiation of Fverify

can be found in [12]. The description of Fverify appears in
Functionality 10.

C. Main Protocol with Malicious Security

Now we will introduce our main protocol Πmain-mal with
malicious seurity in Protocol 12. The ideal functionality
Fmain-mal appears in Functionality 9.

Functionality 10: Fverify

1. Let C denote the Circuit.
a. For each group of input gates with output wires

α, Fverify receives from honest parties their shares
of {[vαi |i]t}ki=1. For all i ∈ {1, ..., k}, Fverify

recovers the whole sharing [vαi |i]t and reconstructs
the secret vαi . Then Fverify sends the shares of
[vαi |i]t of corrupted parties to the adversary.

b. For each group of AND gates with input wires α, β,
Fverify receives from honest parties their shares of
{[vαi |i]t, [vβi |i]t}

k
i=1. For all i ∈ {1, ..., k}, Fverify

recovers the whole sharings [vαi |i]t, [vβi |i]t and
reconstructs the secrets ṽαi , ṽβi . Then Fverify sends
the shares of [vαi |i]t, [vβi |i]t of corrupted parties to
the adversary.

c. For each group of output gates with input wires
α, Fverify receives from honest parties their shares
of {[vαi |i]t}ki=1. For all i ∈ {1, ..., k}, Fverify

recovers the whole sharings [vαi |i]t and reconstructs
the secrets ṽαi . Then Fverify sends the shares of
[vαi |i]t of corrupted parties to the adversary.

2. Fverify evaluates the circuit C by using the secrets of the
degree-t Shamir sharings associated with input gates.

a. For each group of XOR gates with input wires α, β
and output wires γ, Fverify computes vγ = vα +
vβ .

b. For each group of AND gates with input wires α,
β and output wires γ, Fverify computes δ(vα) =
ṽα − vα and δ(vβ) = ṽβ − vβ . Then, Fverify

sends δ(vα), δ(vβ) to the adversary. Finally, Fverify

computes vγ = ṽα ∗ ṽβ .
c. For each group of output gates with input wires α,

Fverify computes δ(vα) = ṽα−vα. Then, Fverify

sends δ(vα) to the adversary.
3. Fverify checks whether there exists an input wire α of

AND gates and output gates such that δ(vα) ̸= 0. If true,
Fverify sends abort to all parties. Otherwise, Fverify

sends accept to all parties.
4. On receiving abort, Fverify sends abort to all parties.

Fig. 21. Functionality for verify the result

Protocol 12: Πmain-mal

1. All parties and clients invoke Fevaluate to compute a
degree-t Shamir sharing for each group of output wires
of input gates, and for each group of input wires of AND
gates and output gates.

2. All parties invoke Fverify to check the correctness of the
computation.

3. For each group of output gates that belongs to some
Client, all parties hold a set of degree-t Shamir sharing
{[vαi |i]t}ki=1 that is associated with these gates.

a. All parties send their shares of [vαi |i]t to Client.
b. Client checks whether the shares of [vαi |i]t lie on a

degree-t polynomial. If true, Client reconstructs the
secret vαi and computes ψ(vαi ·ϕ(1)) and take it as
the output of this gate. Otherwise, Client aborts.

Fig. 22. Our main malicious security protocol


