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Abstract

Since the existing tropical cryptographic protocols are either susceptible to the
Kotov-Ushakov attack and its generalization, or to attacks based on tropical matrix
periodicity and predictive behaviour, several attempts have been made to propose pro-
tocols that resist such attacks. Despite these attempts, many of the proposed protocols
remain vulnerable to attacks targeting the underlying hidden problems, one of which
we call the tropical two-sided discrete logarithm with shift. An illustrative case is the
tropical Stickel protocol, which, when formulated with a single monomial instead of a
polynomial, becomes susceptible to attacks based on solutions of the above mentioned
tropical version of discrete logarithm. In this paper we will formally introduce the trop-
ical two-sided discrete logarithm with shift, discuss how it is solved, and subsequently
demonstrate an attack on a key exchange protocol based on the tropical semiring of
pairs. This particular protocol is compromised due to the existence of efficient (albeit
heuristic) solution of the tropical two-sided logarithm problem, and this highlights the
ongoing challenges in search of a “good” key exchange protocol in tropical cryptogra-
phy.

Keywords: public key cryptography; key exchange protocol; cryptographic attack; tropical
cryptography
Classification: 94A60, 15A80

1 Introduction

Tropical cryptography is a new and promising area that seeks to transform traditional public
key exchange methods in cryptography using tropical mathematics. Grigoriev and Shpilrain
pioneered the use of tropical algebra as an alternative framework for cryptographic proto-
cols [5]. They developed a tropical version of the original Stickel key exchange protocol,
which was vulnerable to common linear algebraic attacks. Their motivation came from the
non-invertible nature of matrices in tropical algebra, making the tropical implementation
resistant to attacks resembling the ones faced by the original Stickel protocol. However, this
tropical implementation has been attacked by Kotov and Ushakov [8]. The Kotov-Ushakov
attack was generalized in [11] where it was shown how to apply the same idea to other
implementations of Stickel protocol based on matrix commutativity. This has prompted
the exploration of alternative ideas beyond matrix commutativity in Stickel protocols to
implement tropical cryptographic protocols.
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In response, Grigoriev and Shpilrain [6] proposed two protocols based on tropical semi-
direct product, but one of them was shown to be invalid by Isaac and Kahrobaei [7] and
the other was successfully attacked by the same authors as well as by [14] and [12]. The
underlying problem that was solved and led to compromising the protocol was the tropical
one-sided discrete logarithm. Subsequently, several alternative tropical protocols have been
proposed that do not rely on this problem or matrix commutativity. Notably, one such
protocol is based on the tropical algebra of pairs, as presented by Ahmed, Pal, and Mohan [1].

The main ideas of the present paper are to formulate the problem which we call the “trop-
ical two-sided discrete logarithm with shift” and present some heuristic methods of solving
it, and then, based on a reduction of the matrix algebra over the tropical semiring of pairs to
the usual tropical matrix algebra, develop some attacks on the above mentioned protocol of
Ahmed, Pal, and Mohan [1] and demonstrate their efficiency and success rate. More specif-
ically, the paper is organized as follows. In Section 2 we start with some preliminaries and
basic definitions, particularly those related to tropical matrix periodicity. In Section 3 we
present the tropical two-sided discrete log with shift problem and two heuristic algorithms
to solve it, showing their efficiency and success rate. In Section 4 we recall the tropical
semiring of pairs and the implementation of Stickel protocol suggested in [1]. In Section 5
we cryptanalyze this implementation using the solution of the tropical two-sided discrete
log with shift problem, and present some numerical experiments showing the efficiency and
performance of the attacks.

2 Preliminaries

In this section, we present some of the standard definitions in tropical matrix algebra, for
most of this part closely following Butkovič [3]. Note that we use the standard notation
[m] = {1, . . . ,m} and [n] = {1, . . . , n} for most common index sets.

Definition 2.1 (Tropical Semiring and Tropical Matrix Algebra). We define the tropical/max-
plus semiring as Rmax = (R∪{−∞},⊕,⊗), where traditional addition + and multiplication
× are replaced by tropical addition ⊕ and tropical multiplication ⊗ respectively. These
new arithmetical operations are defined by x ⊕ y = max{x, y} and x ⊗ y = x + y for all
x, y ∈ Rmax.
The tropical arithmetic operations are naturally extended to include matrices and vectors.
In particular, the operation A ⊗ α = α ⊗ A, where α ∈ Rmax, A ∈ Rm×n

max and (A)ij = aij
for i ∈ [m] and j ∈ [n], is defined by

(A⊗ α)ij = (α⊗ A)ij = α⊗ aij ∀i ∈ [m] and ∀j ∈ [n].

The tropical addition A ⊕ B of two matrices A ∈ Rmxn
max and B ∈ Rm×n

max , where (A)ij = aij
and (B)ij = bij for i ∈ [m] and j ∈ [n], is defined by

(A⊕B)ij = aij ⊕ bij ∀i ∈ [m] and ∀j ∈ [n].

The tropical multiplication of two matrices is also similar to the “traditional” algebra.
Namely, we define A⊗B for two matrices, where A ∈ Rmxp

max and B ∈ Rp×n
max, as follows:

(A⊗B)ij =

p⊕
k=1

aik ⊗ bkj = (ai1 ⊗ b1j ⊕ ai2 ⊗ b2j ⊕ . . .⊕ ain ⊗ bnj) ∀i ∈ [m] and ∀j ∈ [n].
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Note that, despite introducing this tropical arithmetic, we will also quite often utilize the
usual arithmetical operations to introduce concepts and explain arguments.

Definition 2.2 (Tropical Matrix Powers). For M ∈ Rn×n
max , the n-th tropical power of M is

denoted by M⊗n, and is equal to

M⊗n = M ⊗M ⊗ . . .⊗M︸ ︷︷ ︸
n times

We now introduce elements of graph theory to define the upcoming concepts. We begin
by defining the directed graph (or digraph) associated with A and recalling the definitions
of cycles, strongly connected components and other related concepts.

Definition 2.3 (Digraphs, Walks and Cycles). The digraph associated with A ∈ Rn×n
max , where

(A)ij = aij for i, j ∈ [n], is the pair G(A) = (NA, EA), where NA = [n] is called the set of
nodes of G(A) and EA = {(i, j) : aij ̸= −∞} is called the set of arcs of G(A).
A walk on GA can be defined as a sequence of nodes (i1, . . . , im) where each (il, il+1) for
l = 1, . . . ,m − 1 is an arc. A closed walk is a walk that starts and finishes at the same
node, and a cycle is any closed walk that does not contain any repeated nodes, except for
the beginning node and the end node.

The tropical analogue of irreducible matrix can be now defined (closely following its
classical prototype).

Definition 2.4 (Irreducibility). A matrix A ∈ Rn×n
max is called irreducible if GA is strongly

connected, i.e, if for each i, j ∈ [n] there exists a walk on GA whose starting node is i and
end node is j. A is called reducible if it is not irreducible.

We now introduce the concept of a maximum cycle mean, which is the value of the cycle
that has the greatest average weight. We then also introduce a special subgraph of G(A)
called the critical digraph of A. Formal definitions are given below.

Definition 2.5 (Maximum Cycle Mean and Critical Digraph). For A ∈ Rn×n
max , the maximum

cycle mean λ(A) is defined in the usual notation as

λ(A) = max
k

max
i1,...,ik∈[n]

ai1i2 + . . .+ aiki1
k

,

which is the same as
λ(A) =

⊕
k

⊕
i1,...,ik∈[n]

⊗k
√

ai1i2 ⊗ . . .⊗ aiki1

in the tropical notation.
The critical graph of A, denoted by Gc

A = (N c
A, E

c
A) is the subgraph of GA which consists of

all nodes and arcs of GA that belong to the critical cycles. The nodes belonging to N c
A and

the arcs belonging to Ec
A are also called critical.

The matrix inverses in tropical algebra can be defined only for a limited class of matrices,
but the analogue of (I − A)−1 is more convenient to define.
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Definition 2.6 (Kleene Star and Tropical Identity Matrix). Let M ∈ Rn×n
max have λ(M) ≤ 0.

The Kleene star of M is defined by

M∗ = I ⊕M ⊕M⊗2 ⊕ . . .⊕M⊗(n−1),

where I is the tropical identity matrix, whose all diagonal entries are equal to 0 and all
off-diagonal entries are equal to −∞.

One of the key ideas of solving the discrete logarithm problems (or, more specifically,
Problems 1 – 4 formulated below) is to use the ultimate periodicity properties of tropical
matrix powers. Strictly speaking, 1) the ultimate periodicity (in the sense of Theorem 2.1
below) occurs with a certain shift, that is, instead of repeating themselves the powers get
multiplied in the tropical sense by some scalar, 2) the ultimate periodicity does not occur for
general square matrix A, but is guaranteed only under certain conditions which (at their best)
only slightly generalize the irreducibility property. For simplicity, the ultimate periodicity
theorem is stated below only for the irreducible case, close to the original formulation in
Cohen et al. [4].

Theorem 2.1 (Ultimate Periodicity of Tropical Matrix Powers [4]). Let A ∈ Rn×n
max be irre-

ducible and let λ = λ(A) be the maximum cycle mean of A. Then for some natural numbers
TA and γ we have

A⊗(t+γ) = λ⊗γ ⊗ A⊗t = γ · λ+ A⊗t ∀t ≥ TA (1)

Below we will also use the more particular ultimate periodicity of the ith columns and
the ith rows:

A
⊗(t+γ)
·i = λ⊗γ ⊗ A⊗t

·i = γ · λ+ A⊗t
·i ∀t ≥ (TA)

i, (2)

A
⊗(t+γ)
i· = λ⊗γ ⊗ A⊗t

i· = γ · λ+ A⊗t
i· ∀t ≥ (TA)i, (3)

The ultimate periodicity gives rise to a number of important concepts, of which we will
define the following one.

Definition 2.7 (Periodicity Transients). The smallest integer TA for which (1) holds or,
respectively, the smallest integers (TA)

i and (TA)i for which (2) and (3) hold, is called the
periodicity transient of (the tropical matrix powers of) A or, respectively, the periodicity
transient of the ith column and the ith row of those powers.

Obviously, the periodicity transients of ith row and ith column can be much smaller than
the periodicity transient of A, and this is particularly relevant in the case where i ∈ N c

A (i.e.,
when i is a critical node of A). It is also known that, for i ∈ N c

A, the properties (2) and (3)
take place also for general reducible matrices A. Below we will recall a particularly useful
result due to Nachtigall [13].

Theorem 2.2 (Ultimate Periodicity of Critical Rows and Columns [13]). Let A ∈ Rn×n

and k be a critical node on a critical cycle Z of length lZ. Then (TA)k ≤ (n − 1) · lZ and
(TA)

k ≤ (n− 1) · lZ.

To explain how to compute the critical rows and columns in the ultimately periodic
regime, let us also present the following result, which is a variation of the weak CSR theorems
of [9] and can be seen as a slight simplification of [12], Proposition 2.5.
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Theorem 2.3 (Weak CSR Expansion [9]). Let A ∈ Rn×n
max have λ = λ(A) ̸= −∞, and let Z

be a critical cycle of A with length lZ. Then for some integer Tweak we have

A⊗t = λ⊗t ⊗
(
CZ ⊗ S⊗t

Z ⊗RZ

)
⊕B⊗t

Z ∀t ≥ Tweak

= λ⊗t ⊗
(
CZ ⊗ S

⊗t(rem lZ)
Z ⊗RZ

)
⊕B⊗t

Z ∀t ≥ Tweak.

where t (rem lZ) is the remainder when t is divided by lZ and CZ , SZ , RZ and BZ are defined
by

(CZ)ij =

{
(UZ)ij if j is in Z

−∞ otherwise

(RZ)ij =

{
(UZ)ij if i is in Z

−∞ otherwise

(SZ)ij =

{
(aij ⊗ λ−1) if (i, j) is in Z

−∞ otherwise

(BZ)ij =

{
−∞ if i ∈ Z or j ∈ Z

aij otherwise

where UZ =
(
(A⊗ λ−1)

⊗lZ
)∗

(i.e., the Kleene star of
(
(A⊗ λ−1)

⊗lZ
)
).

Combining Theorem 2.2 with Theorem 2.3 as well as with [15] Corollary 3.7, we obtain
the following result, which we will be using below in some algorithms:

Theorem 2.4 (CSR Formula for Critical Rows and Columns). Let A ∈ Rn×n
max have λ =

λ(A) ̸= −∞, and let Z be a critical cycle of A with length lZ. Then for any i ∈ Z we have

A⊗t
i· = λ⊗t ⊗ (S

⊗t(rem lZ)
Z RZ)i·, A⊗t

·i = λ⊗t ⊗ (CZ ⊗ S
⊗t(rem lZ)
Z )·i, ∀t ≥ (n− 1)lZ .

This theorem can be utilized to solve the different forms of tropical discrete logarithm
problems, which are summarized below.

Problem 1. Given U,M,D ∈ Rn×n
max such that U = M ⊗D⊗t for some t ∈ N, find this t.

Problem 2. Given U,M,D ∈ Rn×n
max , such that U = α ⊗ M ⊗ D⊗t for some t ∈ N and

α ∈ Rmax, find τ and t′ such that U = τ ⊗M ⊗D⊗t′ .

Solution to Problem 1 was discussed in [12] and further in [10], and Problem 2 can be
solved by similar methods. However, since it involves a scalar, Problem 2 typically has an
infinite number of solutions, unlike Problem 1, whose solution is typically unique. Also note
that one can pose a version of Problem 1, respectively Problem 2, with D⊗t ⊗M instead of
M ⊗ D⊗t, which can be regarded as a transposition of Problem 1, respectively Problem 2,
and can be solved similarly.

Let us now pose two other problems, which will be referred to as tropical two-sided
discrete logarithm problems.
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Problem 3. Given D1, D2,M, U ∈ Rn×n
max such that U = D⊗t1

1 ⊗M⊗D⊗t2
2 for some t1, t2 ∈ N.

Find t′1, t
′
2 such that U = D

⊗t′1
1 ⊗M ⊗D

⊗t′2
2 .

Problem 4. Given D1, D2,M, U ∈ Rn×n
max such that U = α ⊗ D⊗t1

1 ⊗ M ⊗ D⊗t2
2 for some

t1, t2 ∈ N and α ∈ R. Find t′1, t
′
2 such that U = τ ⊗D

⊗t′1
1 ⊗M ⊗D

⊗t′2
2 , where τ ∈ Rmax.

An attempt to solve Problem 3 can be found in [10], where it is observed, in particular,
that the solution to this problem is in general non-unique. However, the number of solutions
to this problem (unlike the number of solutions to Problem 4 is typically finite).

It is natural to solve the problems listed above by exploiting the ultimate periodicity prop-
erties of the tropical matrix powers or, in particular, by using the more precise information
about those powers in the ultimate periodic regime as given, e.g., by the CSR decomposi-
tion. Let us note, however, that this approach has some limitations. Firstly, tropical matrix
powers are not ultimately periodic in general (see, e.g., [3]), and both Alice and Bob can opt
to use matrices whose powers are not ultimately periodic, which offers them some protection
against attacks based on ultimate periodicity of entire tropical matrix powers. Secondly, the
periodicity transient of tropical matrix powers depends on the matrix entries and it can be
quite high.

In view of the above observations it looks more reasonable to exploit the ultimate pe-
riodicity of those columns and rows of tropical matrix powers whose indices correspond to
the critical nodes. These columns and rows are ultimately periodic for any matrix and some
of the known bounds on their periodicity transients are quadratic or even linear, if such
columns and rows belong to a critical cycle of a known length.

This was the approach adopted in [12] and [10] and the same approach will be developed
in the next section, see Algorithm 2 and Algorithm 4. The more “naive” approach, based
on the assumption that the tropical matrix powers are ultimately periodic, is more relevant
to Algorithm 1 and Algrorithm 3.

3 Heuristic attacks on the tropical two-sided discrete

logarithm with shift

In this section, we will discuss two approaches to how Problem 4 can be solved. Let us
first note that this problem differs from the tropical two-sided discrete logarithm problem
(Problem 3) since it includes a coefficient. The introduction of this coefficient enhances
the solvability of the problem since it becomes sufficient to find a pair of exponents t′1,t

′
2

that makes U a shifted version of D
⊗t′1
1 ⊗ M ⊗ D

⊗t′2
2 . For this reason, if there is a pair

(t′1, t
′
2) satisfying this equation, where t′1, respectively t′2, are above the ultimate periodicity

thresholds for D1, respectively D2, then there are infinitely many such pairs. The first
algorithm, which we are going to propose, will utilize this property, since we are relying on
the intuition that the smallest pair of exponents t′1 and t′2 satisfying the equation is small
enough, which is true if the sequences of matrix powers of D1 and D2 are ultimately periodic
in the sense of Theorem 2.1 and if the threshold of their ultimate periodicity is small enough.

Algorithm 1 has a perfect success rate in solving Problem 4 when maxt is equal to the
maximum exponent that could be used in the problem, but it is also expected to have a high
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Algorithm 1 Solving the tropical two-sided discrete logarithm with shift using the non-
uniqueness of exponents
Input: U,D1,M,D2,maxt
Output: t′1, t

′
2, τ

1: for t1 = 0 to maxt do
2: for t2 = 0 to maxt do
3: if (U −D⊗t1

1 ⊗M ⊗D⊗t2
2 )ij = β ∀i, j ∈ [n] for some β ∈ R then

4: t′1 = t1, t
′
2 = t2, τ = β.

success rate for lower values of maxt for the reasons outlined above.
For the second algorithm, we apply Theorem 2.4 for the powers of D1 and D2 to solve

Problem 4. Note that here we can find t′1, t
′
2 by only searching in a search space of a size

equal to the product of the two critical cycle lengths of the two matrices D1 and D2, while
the previous algorithm has a maximum search space equal to the product of the maximum
exponents that could be used in the problem (or, to be more precise, our estimates of such
maximum exponents).

Note that this algorithm is heuristic in nature in particular since the CSR formulas of
Theorem 2.4 are only guaranteed to hold when the exponent is larger than (n−1)·max(lZ , lW )
where lZ and, respectively, lW are the lengths of the critical cycle Z of D1 and, respectively,
the critical cycle W of D2. The algorithm might not solve the problem if the original
exponents t1, t2 are lower than this bound. One might add to the algorithm some parts
where the exponents lower than this bound are also checked, similarly to the algorithms in
[12] and [10].

To justify and explain the second algorithm we observe that we can use the CSR formulas
of Theorem 2.4 for the rows of powers of D1 with indices in Z and for the columns of powers
of D2 with indices in W , and then focus on the submatrix of U extracted from the rows with
indices in Z and columns with indices in W . We then obtain the following equation

(U)ij =

(
α⊗ λ⊗t1

1 ⊗ λ⊗t2
2 ⊗

(
S
⊗t1 rem(lZ)
Z ⊗RZ ⊗M ⊗ CW ⊗ S

⊗t2 rem(lW )
W

)
ij

∀(i, j) where i ∈ Z and j ∈ W and ∀t1 ≥ (n− 1)lZ and ∀t2 ≥ (n− 1)lW ,

where λ1,λ2 denote the maximum cycle means of the two matrices.
Then we want to solve the problem of finding (t′1, t

′
2, τ) for some t′1, t

′
2 ∈ N and τ ∈ R

such that

(U)ij =

(
τ ⊗ λ

⊗t′1
1 ⊗ λ

⊗t′2
2 ⊗

(
S
⊗t′1 rem(lZ)
Z ⊗RZ ⊗M ⊗ CW ⊗ S

⊗t′2 rem(lW )
W

)
ij

∀(i, j) where i ∈ Z and j ∈ W and ∀t′1 ≥ (n− 1)lZ and ∀t′2 ≥ (n− 1)lW ,

and this is achieved by firstly finding a pair of exponents (t′1 rem (lZ) , t
′
2 rem (lW )) among

lZ · lW possibilities such that it will make the above described submatrix of U and the same

submatrix of S
⊗t′1 rem(lZ)
Z ⊗RZ ⊗M ⊗ CW ⊗ S

⊗t′2 rem(lW )
W “in phase”.

We will denote t′1 rem (lZ) , t
′
2 rem (lW ) by t̄1, t̄2 respectively. In particular, we begin by

finding t̄1 ∈ {1, 2, . . . , lZ} and t̄2 ∈ {1, 2, . . . , lW} that makes the submatrix of U extracted
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from the rows with indices in Z and the columns with indices in W a shifted version of
the same submatrix of

(
S⊗t̄1
Z ⊗RZ ⊗M ⊗ CW ⊗ S⊗t̄2

W

)
ij
. Then we try to find (t′1, t

′
2, τ) by

solving the following equation

β = τ + t′1 · λ1 + t′2 · λ2, where

β =
(
U − S⊗t̄1

Z ⊗RZ ⊗M ⊗ CW ⊗ S⊗t̄2
W

)
ij

∀(i, j) : i ∈ Z, j ∈ W.
(4)

As it follows from numerical experiments, it is also reasonable to impose some lower bounds
on t′1 and t′2 which guarantee that the submatrix of U with rows in Z and columns in W is
in the ultimately periodic regime.

We now formulate (4) (with the above mentioned lower bounds on t′1 and t′2) in a more
precise way as a mixed-integer linear programming problem. Recall that t̄1 and t̄2 denote the
remainders when t′1, respectively t

′
2 are divided by lZ and, respectively, lW . Thus t′1 = lZ ·x+t̄1

and t′2 = lW · y + t̄2 where x, y ∈ N. We obtain

β = τ + (lZ · x+ t̄1) · λ1 + (lW · y + t̄2) · λ2,

which can be rearranged to give

β − τ − λ1 · t̄1 − λ2 · t̄2 = λ1 · lZ · x+ λ2 · lW · y

We also impose the lower bounds t′1 ≥ (n− 1)lZ and t′2 ≥ (n− 1)lW since we are counting
on the critical rows and columns reaching the ultimate periodic regime, which may not be
the case if these inequalities do not hold. We then have

t′1 = lZ · x+ t̄1 ≥ (n− 1)lZ and t′2 = lW · y + t̄2 ≥ (n− 1)lW ,

which we can rearrange to obtain

x ≥ (n− 1)lZ − t̄1
lZ

and y ≥ (n− 1)lW − t̄2
lW

Then we can find solutions (t′1, t
′
2, τ) by solving

β − τ − λ1 · t̄1 − λ2 · t̄2 = (λ1 · lZ)x+ (λ2 · lW )y

x ≥ (n−1)lZ−t̄1
lZ

y ≥ (n−1)lW−t̄2
lW

(5)

for (x, y) ∈ N2 and τ ∈ R. Note that this is a mixed integer linear programming problem
with unknowns x, y, τ . We are now ready to formulate the solution method, see Algorithm 2.

The following numerical experiments show the success rate and time consumption for
Algorithm 1 and Algorithm 2 as a function of matrix dimension. For all experiments, the
entries of the matrices are random integers in [−1000, 1000], and 100 trials were performed
for each dimension.
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Algorithm 2 Solving the tropical two-sided discrete logarithm with shift using CSR
Input: U,D1,M,D2

Output: t′1, t
′
2, τ

1: Calculate λ(D1) = λ1, λ(D2) = λ2

2: Find a critical cycle Z from D1, and W from D2, let their lengths be lZ and lW , respec-
tively.

3: Calculate SZ , RZ , CW and SW as in Theorem 2.3
4: for t̄1 = 0 to lZ do
5: for t̄2 = 0 to lW do
6: if (U − (S⊗t̄1

Z ⊗RZ ⊗M ⊗ CW ⊗ S t̄2
W )ij = β for some β ∈ R and for all i, j where

i ∈ Z and j ∈ W then
7: Check if (5) is solvable. If it is, then return (t′1, t

′
2, τ) where t

′
1 = lZ ·x+ t̄1 and

t′2 = lW · y + t̄2.

Figure 1: Algorithm 1 success rate with maxt = n5 (left) and maxt = n3 (right)

Success rate for Algorithm 1 is shown in Figure 1. The exponents t1, t2 in Problem 4 are
randomly chosen among integers in [1, n5], and the scalar value α is in [1, 1000]. Algorithm 1
parameter maxt is n5 for the left hand side of the figure and n3 for the right hand side of
the figure.

We notice that Algorithm 1 never fails when the maximum searchable exponent maxt is
the same as the one used in Problem 4 since the algorithm searches for all possible matrix

exponents that make U in phase or equal to D
⊗t′1
1 ⊗ M ⊗ D

⊗t′2
2 . The guaranteed success

results from testing all potential exponent combinations. The efficiency and quickness of the
algorithm in finding appropriate exponents depends on the cyclicity pattern of the matrices
D1 and D2. When we limit maxt to a lower exponent, we lose the guaranteed success rate,
but we still achieve a high success rate with a faster time.

Success rate for Algorithm 2 is shown in Figure 2. The exponents t1, t2 in Problem 4 are
allowed to be less than (n − 1)lZ and (n − 1)lW for the left hand side, and are required to
be larger than (n− 1)lZ and (n− 1)lW for the right hand side, and the scalar value α is in
the interval [1, 1000].
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Figure 2: Algorithm 2 success rate when t1 < (n− 1)lZ and t2 < (n− 1)lW (left), and when
t1 ≥ (n− 1)lZ and t2 ≥ (n− 1)lW (right)

We notice that Algorithm 2 has a high success rate when the exponents used in Problem 4
are larger than (n− 1)lZ and (n− 1)lW for t1 and t2 respectively since the critical entries are
guaranteed to enter the ultimately periodic regime after such bounds. The attack however
does not perform so well when the used exponents are lower than this threshold which is
expected since the CSR formulas do not necessarily hold for such exponent values (i.e.,
entries in the critical rows or columns have not necessarily entered the ultimate periodicity).

The time consumption for the two algorithms is quite different, as shown in Figure 3.
Here, the exponents t1, t2 in Problem 4 are random integers larger than (n−1)lZ and (n−1)lW
respectively, and the scalar value α is in the interval [1, 1000].

Figure 3: Time taken for Algorithm 1 and Algorithm 2

We notice that Algorithm 2 is faster than Algorithm 1 since it limits its search to a
finite set of values equal to the product of the critical cycle sizes of the two matrices D1, D2.

10



However, for lower values of n, we note that Algorithm 1 is faster since the search space is
small and Algorithm 2 requires more steps such as computing the CSR terms and maximum
cycle means.

Note that one can combine the two algorithms to get better overall performance in terms
of success rate and execution time. One possible combination is to apply Algorithm 1 for t1
until (n− 1)lZ and t2 until a big enough number, then for t2 until (n− 1)lW and for t1 until
a big enough number, and then to perform Algorithm 2 for larger exponents.

4 The tropical semiring of pairs and the key exchange

protocol

In this section, we examine a key exchange protocol proposed in [1]. The protocol employs a
modified tropical structure and is claimed to resist the known attacks on conventional trop-
ical key exchange protocols. We will begin by introducing the modified tropical structure,
followed by presenting the associated protocol and outlining its construction.

4.1 The tropical semiring of pairs

Let Rmax be the tropical semiring defined in 2.1, then we have the following definition.

Definition 4.1. (Tropical Algebra of Pairs [2], [1]). We define the tropical algbera of pairs
R2

max as
R2

max = (Rmax × Rmax,⊕′,⊗′)

with elements of the shape (a(1), a(2)) such that a(k) ∈ Rmax for k ∈ {1, 2} denotes the first
and second element of a two-dimensional vector in R2

max with the operations (⊕′,⊗′) defined
as

(a(1), a(2))⊕′ (b(1), b(2)) = (a(1) ⊕ b(1), a(2) ⊕ b(2))

(a(1), a(2))⊗′ (b(1), b(2)) = ((a(1) ⊗ b(1))⊕ (a(2) ⊗ b(2)), (a(1) ⊗ b(2))⊕ (a(2) ⊗ b(1)))

such that (a(1), a(2)), (b(1), b(2)) ∈ R2
max and a(1), a(2), b(1), b(2) ∈ Rmax

The following example illustrates these operations.

Example 4.1. Let (1, 3), (2, 5) ∈ R2
max then

(1, 3)⊕′ (2, 5) = (1⊕ 2, 3⊕ 5) = (2, 5)

(1, 3)⊗′ (2, 5) = ((1⊗ 2)⊕ (3⊗ 5), (1⊗ 5)⊕ (3⊗ 2)) = (8, 6)

The operations of this semiring can also be extended to include matrices following the
same manner as the conventional tropical matrix operations in Definition 2.1 but with re-
placing the elements of Rmax by the elements of R2

max and (⊕,⊗) by (⊕′,⊗′). Thus, we will
denote the semiring of matrices over R2

max by R2n×n

max .
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4.2 Key exchange protocol based on the semiring of pairs

We now present the key exchange protocol proposed by the authors in [1] which is based on
the tropical algebra of pairs R2n×n

max . Note that the authors in this protocol altered the second
operation of R2

max to be (x, y)⊗c (z, w) = ((c⊗x⊗ z)⊕ (c⊗ y⊗w), (c⊗x⊗w)⊕ (c⊗ y⊗ z))
where 0 ̸= c ∈ Z. This modification constructs a new semiring R2

maxc
with multiplicative

identity (−c,−∞).

Protocol 1 (Key Exchange Protocol based on the Semiring of Pairs).

1. Alice and Bob agree upon two public matrices X, Y ∈ R2n×n

max .

2. Alice chooses a semiring R2
maxc

= (Rmax × Rmax,⊕c,⊗c) where

(a(1), a(2))⊕c (b
(1), b(2)) = (a(1) ⊕ b(1), a(2) ⊕ b(2))

(a(1), a(2))⊗c (b
(1), b(2)) = ((c⊗ a(1) ⊗ b(1))⊕ (c⊗ a(2) ⊗ b(2)), (c⊗ a(1) ⊗ b(2))⊕ (c⊗ a(2) ⊗ b(1)))

Here, c ∈ Z is her fixed private parameter. Bob also picks R2
maxd

= (Rmax × Rmax,⊕d,⊗d)
where

(a(1), a(2))⊕d (b
(1), b(2)) = (a(1) ⊕ b(1), a(2) ⊕ b(2))

(a(1), a(2))⊗d (b
(1), b(2)) = ((d⊗ a(1) ⊗ b(1))⊕ (d⊗ a(2) ⊗ b(2)), (d⊗ a(1) ⊗ b(2))⊕ (d⊗ a(2) ⊗ b(1)))

and d ∈ Z is his fixed private parameter.

3. Alice picks two private natural numbers k, l and calculates A = X⊗ck⊗Y ⊗cl. She then
chooses another private integer p and sends A(p) to Bob, where A(p) is p⊗ A.

4. Bob also picks his private natural numbers r, s, calculates B = X⊗dr ⊗Y ⊗ds and sends
B(q) to Alice,where B(q) is q ⊗B and q ∈ Z is Bob’s private parameter.

5. Alice computes her key KAlice =
(
X⊗ck

)
(p)

⊗ B(q) ⊗ Y ⊗cl and Bob’s key is KBob =

(X⊗dr)(q) ⊗ A(p) ⊗ Y ⊗ds.

The two parties end up with the same key KAlice = KBob as proved in [1].

The following example illustrates the above key exchange protocol.

Example 4.2. Alice and Bob agree on the public matrices X and Y :

X =

[
(9, 6) (1,−2)
(8,−4) (4, 1)

]
and Y =

[
(−2, 0) (8,−2)
(6, 10) (8,−5)

]
and they choose the private parameters c = 3, k = 27, l = 18, p = −2 for Alice, and
d = 4, r = 17, s = 23, q = 5 for Bob.

Alice calculates A = X⊗327 ⊗ Y ⊗318 =

[
(532, 534) (532, 530)
(531, 533) (531, 529)

]
and sends

A(−2) =

[
(530, 532) (530, 528)
(529, 531) (529, 527)

]
to Bob.
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Bob calculates B = X⊗417 ⊗ Y ⊗423 =

[
(509, 511) (509, 511)
(508, 510) (508, 510)

]
and sends

B(5) =

[
(514, 516) (514, 516)
(513, 515) (513, 515)

]
to Alice.

Then Alice and Bob compute their keys using those received transmissions:

KAlice =
(
X⊗327

)
(−2)

⊗B(5) ⊗ Y ⊗318 =

[
(1048, 1046) (1048, 1046)
(1047, 1045) (1047, 1045)

]
KBob =

(
X⊗417

)
(5)

⊗ A(−2) ⊗ Y ⊗423 =

[
(1048, 1046) (1048, 1046)
(1047, 1045) (1047, 1045)

]
Thus they end up with the same shared key.

5 Cryptanalysis of the protocol

In this section, we introduce our attacks on the proposed protocol. It is claimed that it is
more resilient than its conventional tropical counterparts since it doesn’t reveal a cyclicity
pattern for high powers, but we will show otherwise. We begin by presenting an alternative
representation of matrices in R2n×n

max , providing a foundation for constructing our attacks
which are based on solving Problem 4. Subsequently, we implement our attacks showing
their efficiency and success rate.

5.1 Representing matrices in (R2)n×n
max as matrices in R2n×2n

max

Observe that a matrix with entries in the tropical semiting of pairs can be associated with
a conventional tropical matrix in R2n×2n

max by replacing each entry of the matrix over that
semiring with a 2× 2 square matrix. More formally this representation is defined as follows.

Definition 5.1. Suppose A ∈ (R2
max)

n×n is given by

A =


(a

(1)
11 , a

(2)
11 ) (a

(1)
12 , a

(2)
12 ) . . . (a

(1)
1n , a

(2)
1n )

(a
(1)
21 , a

(2)
21 ) (a

(1)
22 , a

(2)
22 ) . . . (a

(1)
2n , a

(2)
2n )

...
...

. . .
...

(a
(1)
n1 , a

(2)
n1 ) (a

(1)
n2 , a

(2)
n2 ) . . . (a

(1)
nn , a

(2)
nn)

 ,

then we define Ã ∈ R2n×2n
max as follows:

Ã =



a
(1)
11 a

(2)
11 a

(1)
12 a

(2)
12 . . . a

(1)
1n a

(2)
1n

a
(2)
11 a

(1)
11 a

(2)
12 a

(1)
12 . . . a

(2)
1n a

(1)
1n

a
(1)
21 a

(2)
21 a

(1)
22 a

(2)
22 . . . a

(1)
2n a

(2)
2n

a
(2)
21 a

(1)
21 a

(2)
22 a

(1)
22 . . . a

(2)
2n a

(1)
2n

...
...

...
...

. . .
...

...

a
(1)
n1 a

(2)
n1 a

(1)
n2 a

(2)
n2 . . . a

(1)
nn a

(2)
nn

a
(2)
n1 a

(1)
n1 a

(2)
n2 a

(1)
n2 . . . a

(2)
nn a

(1)
nn


.
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We now observe that this representation gives rise to an injective homomorphism from
the matrix algebra (R2

max)
n×n to the matrix algebra R2n×2n

max . In other words, each matrix
in (R2

max)
n×n is uniquely represented by a matrix in R2n×2n

max and this representation respects
the matrix addition (obviously), and also the matrix multiplication, due to the following
proposition.

Proposition 5.1. Let A,B ∈ (R2)n×n
max , then Ã⊗ B̃ = Ã⊗B where Ã, B̃, ˜(A⊗B) ∈ R2n×2n

max .

Proof. We infer from the definition of the multiplication over R2
max (Definition 4.1) that if

A =

(a
(1)
11 , a

(2)
11 ) . . . (a

(1)
1n , a

(2)
1n )

...
. . .

...

(a
(1)
n1 , a

(2)
n1 ) . . . (a

(1)
nn , a

(2)
nn)


and

B =

(b
(1)
11 , b

(2)
11 ) . . . (b

(1)
1n , b

(2)
1n )

...
. . .

...

(b
(1)
n1 , b

(2)
n1 ) . . . (b

(1)
nn , b

(2)
nn)


Then we have

(A⊗B)pq =

(
n⊕

k=1

a
(1)
pk ⊗ b

(1)
kq ⊕ a

(2)
pk ⊗ b

(2)
kq ,

n⊕
k=1

a
(1)
pk ⊗ b

(2)
kq ⊕ a

(2)
pk ⊗ b

(1)
kq

)
(A⊗B)pq = (z(1)pq , z

(2)
pq ) ∀p, q ∈ [n]

where z
(1)
pq =

⊕n
k=1 a

(1)
pk ⊗ b

(1)
kq ⊕ a

(2)
pk ⊗ b

(2)
kq and z

(2)
pq =

⊕n
k=1 a

(1)
pk ⊗ b

(2)
kq ⊕ a

(2)
pk ⊗ b

(1)
kq . Using

Definition 5.1 to obtain matrices Ã, B̃ and, respectively, ˜(A⊗B), we then observe that

(Ã⊗ B̃)ij =
n⊕

k=1

a
(1)
pk ⊗ b

(1)
kq ⊕ a

(2)
pk ⊗ b

(2)
kq = Z

(1)
ij ∀i, j ∈ [2n] such that(i+ j) mod 2n = 0

and

(Ã⊗ B̃)ij =
n⊕

k=1

a
(1)
pk ⊗ b

(2)
kq ⊕ a

(2)
pk ⊗ b

(1)
kq = Z

(2)
ij ∀i, j ∈ [2n] such that(i+ j) mod 2n ̸= 0.

Therefore

Ã⊗ B̃ =


z
(1)
11 z

(2)
11 . . . z

(1)
1n z

(2)
1n

z
(2)
11 z

(1)
11 . . . z

(2)
1n z

(1)
1n

...
...

. . .
...

...

z
(1)
n1 z

(2)
n1 . . . z

(1)
nn z

(2)
nn

z
(2)
n1 z

(1)
n1 . . . z

(2)
nn z

(1)
nn

 = ˜(A⊗B)

.
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Example 5.1. Suppose we have

A =

[
(−7,−1) (6, 2)
(−4, 9) (4,−8)

]
and B =

[
(2, 2) (−6, 7)
(1, 10) (3,−2)

]
Then

A⊗B =

[
(−7,−1) (6, 2)
(−4, 9) (4,−8)

]
⊗
[

(2, 2) (−6, 7)
(1, 10) (3,−2)

]
=

[
(12, 16) (9, 5)
(11, 14) (16, 3)

]
The above operation can be equivalently calculated using the conventional tropical matrix
algebra, as we have

Ã =


−7 −1 6 2
−1 −7 2 6
−4 9 4 −8
9 −4 −8 4

 , B̃ =


2 2 −6 7
2 2 7 −6
1 10 3 −2
10 1 −2 3



Ã⊗ B̃ =


−7 −1 6 2
−1 −7 2 6
−4 9 4 −8
9 −4 −8 4

⊗


2 2 −6 7
2 2 7 −6
1 10 3 −2
10 1 −2 3



=


12 16 9 5
16 12 5 9
11 14 16 3
14 11 3 16

 = ˜(A⊗B)

Notice that the odd numbered rows of Ã ⊗ B̃ are identical to the rows of A ⊗ B. We will
exploit this observation to attack Protocol 1.

5.2 Attacks on Protocol 1 based on solving the tropical two-sided
discrete logarithm

After the suggested matrix transformation, we observe that the problem of attacking the
proposed protocol is essentially reduced to solving Problem 4. Thus, to attack the protocol,
it is sufficient to find a pair of exponents (k′, l′) that makes the tropical product of the public
matrices X⊗k′ ⊗ Y ⊗l′ in phase with the transmitted matrix A(p), and not necessarily the
exact exponents that generated the instance. In particular, we know from the definition of
the proposed protocol that

A = X⊗ck ⊗ Y ⊗cl

= (k − 1)c⊗X⊗k ⊗ (l − 1)c⊗ Y ⊗l

Then when the two sides are multiplied by p, we get

A(p) = p⊗ (k − 1)c⊗X⊗k ⊗ (l − 1)c⊗ Y ⊗l.

15



This A(p) can be intercepted by the attacker, and he can transform it to Ã(p) ∈ R2n×2n
max using

Definition 5.1. Similarly, the attacker also transforms public matrices X and Y to X̃ and Ỹ .
The attacker can then utilize the following equality, which holds by Proposition 5.1

Ã(p) = p⊗ (k + l − 2)c⊗ X̃⊗k ⊗ Ỹ ⊗l (6)

This equation resembles Problem 4 which can be solved by finding a pair of exponents k′, l′

such that Ã(p) is a shifted version of X̃⊗k′⊗Ỹ ⊗l′ by a fixed integer τ which equals to the scalar

part of the above equation (τ = p′ + (k′ + l′ − 2)c′). In other words, all entries of Ã(p) differ

by the same amount from the corresponding entry of X̃⊗k′ ⊗ Ỹ ⊗l′ . There are highly likely
infinite number of solutions due to the ultimate periodicity of tropical matrices. Note that
the attacker can find the private parameters p′, c′ by solving the equation τ = p′+(k′+l′−2)c′

for p′, c′. However, these parameters are not required to construct the shared key as it suffices
to use τ .
The shared key can then be computed using the found exponents (k′, l′) and τ and the other
intercepted massage B(q) as

KAttack = τ ⊗
(
X⊗k′ ⊗B(q) ⊗ Y ⊗l′

)
= (p′ + (k′ + l′ − 2)c′ + q + (r + s− 2)d)⊗

(
X⊗k′ ⊗X⊗r ⊗ Y ⊗s ⊗ Y ⊗l′

)
= (p′ + (k′ + l′ − 2)c′ + q + (r + s− 2)d)⊗

(
X⊗r ⊗X⊗k′ ⊗ Y ⊗l′ ⊗ Y ⊗s

)
= (p+ (k + l − 2)c+ q + (r + s− 2)d)⊗

(
X⊗k ⊗X⊗r ⊗ Y ⊗s ⊗ Y ⊗l

)
= KAlice = KBob

(7)

The attack is described in Algorithm 3. We also present an example illustrating this attack.

Algorithm 3 Attacking Protocol 1 by using Algorithm 1
Input: X, Y,A(p), B(q),maxt
Output: Key

1: Transform X, Y,A(p) to X̃, Ỹ , Ã(p) using Definition 5.1

2: Perform Algorithm 1 with Input:Ã(p), X̃, I, Ỹ ,maxt, then we get the output k′, l′, τ
3: Key = τ ⊗

(
X⊗k′ ⊗B(q) ⊗ Y ⊗l′

)
Example 5.2. Suppose that Alice and Bob agree on the public matrices X and Y that are
shown in Example 4.2, with the private parameters being c = 3, k = 27, l = 18, p = −2 for
Alice and d = 4, r = 17, s = 23, q = 5 for Bob. The attacker intercepts A(p) and transforms

it to a conventional tropical matrix Ã(p) in R2n×2n
max . He also transforms the public matrices

X and Y to X̃ and Ỹ , respectively. Let the results of this transformation be

Ã(p) =


530 532 530 528
532 530 528 530
529 531 529 527
531 529 527 529

 , X̃ =


9 6 1 −2
6 9 −2 1
8 −4 4 1
−4 8 1 4

 Ỹ =


−2 0 8 −2
0 −2 −2 8
6 10 8 −5
10 6 −5 8
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The attacker then searches for a pair of exponents k′ and l′ that satisfies the following
equation (

Ã(p) − X̃⊗k′ ⊗ Ỹ ⊗l′
)
ij
= τ for some τ ∈ R ∀i, j ∈ [2n]

The attacker notices that any pair from k′ ∈ {2, 3, 4, . . .} and l′ ∈ {10, 14, 18, . . .} satisfies
the above equality. Suppose the attacker picks k = 2 and l = 10(

Ã(p) − X̃⊗2 ⊗ Ỹ ⊗10
)
ij
= 424 ∀i, j ∈ [2n]

Then, the shared key can be computed as:

K̃Attack = τ ⊗
(
X̃⊗2 ⊗ B̃(q) ⊗ Ỹ ⊗10

)

= 424⊗


624 622 624 622
622 624 622 624
623 621 623 621
621 623 621 623

 =


1048 1046 1048 1046
1046 1048 1046 1048
1047 1045 1047 1045
1045 1047 1045 1047


which represents [

(1048, 1046) (1048, 1046)
(1047, 1045) (1047, 1045)

]
= KAlice = KBob

We notice that the attacker successfully recovered the secret key using smaller exponents
than those that generated the protocol instance.

We now describe the attack based on the CSR solution to the two-sided discrete logarithm
problem. Starting from (6) we focus on the submatrix extracted from the rows with indices
in a critical cycle Z of X̃ and the columns with indices in a critical cycle W of Ỹ , for which
we obtain(

Ã(p) = τ ⊗ λ⊗k
1 ⊗ λ⊗l

2 ⊗ S
⊗k rem(lZ)
Z ⊗RZ ⊗ CW ⊗ S

⊗l rem(lW )
W

)
ij

∀i ∈ Z, j ∈ W

k ≥ (2n− 1)lZ , l ≥ (2n− 1)lW .

Here lZ , lW denote the lengths of Z and W , and τ = p⊗ (k+ l−2)c. Then, we want to find a

pair of exponents k′, l′ such that (Ã(p))ij is a shifted version of (S
⊗k′ rem(lZ)
Z ⊗RZ ⊗ CW ⊗ S

⊗l′ rem(lW )
W )ij

by a fixed integer β which equals to the scalar part (β = τ ⊗ λ⊗k′

1 ⊗ λ⊗l′

2 ). To achieve that,
we firstly need to find k̄ = k′ rem (lZ) and l̄ = l′ rem (lW ) ∈ {1, 2, . . . , lZ} × {1, 2, . . . , lW}
that satisfies this shift requirement, and then find (k′, l′, τ) by solving the following mixed
integer linear programming problem

β − τ − λ1 · k̄ − λ2 · l̄ = (λ1 · lZ)x+ (λ2 · lW )y

x ≥ (2n−1)lZ−k̄
lZ

y ≥ (2n−1)lW−l̄
lW

(8)

with unknowns τ, x and y. Then we obtain k′ = x · lZ + k̄ and l′ = y · lW + l̄. If it happens
that (6) holds for the pair of exponents thus found, then this method also yields a common
key, by applying the same argument as in (7). The attack is formally written as Algorithm 4.
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Algorithm 4 Attacking Protocol 1 by Using Algorithm 2
Input: X, Y,A(p), B(q)

Output: Key

1: Transform X, Y,A(p) to X̃, Ỹ , Ã(p) using Definition 5.1

2: Calculate λ(X̃) = λ1, λ(Ỹ ) = λ2

3: Find a critical cycle Z from X̃, andW from Ỹ , let their lengths be lZ and lW , respectively.
4: Calculate SZ , RZ , CW and SW as in Theorem 2.3
5: Perform Algorithm 2 with Input:Ã(p), X̃, I, Ỹ , then we get the output k′, l′, τ
6: Key = τ ⊗

(
X⊗k′ ⊗B(q) ⊗ Y ⊗l′

)

Figure 4: Attack 3 success rate with maxt = n5 and maxt = n3

5.3 Numerical experiments

Both of the suggested attacks on Protocol 1 have been tested numerically. Specifically, we
looked at the success rate for each attack as a function of matrix dimension. Additionally, we
analyzed the time required for the attacker to construct the secret shared key. This analysis
serves as a basis for comparison with the process of original secret key generation. For all
experiments, the protocol parameters p, q, c, d and the matrix entries are random integers in
[−1000, 1000], and 100 trials are performed for each dimension.

Success rate for Algorithm 3 is presented on Figure 4. Here, the private exponents k, l, r, s
in the protocol are random integers in [1, n5], where n is the dimension of the matrices, and
the parameter maxt is n

5 (on the left) and n3 (on the right).
Since Algorithm 3 uses Algorithm 1, it never fails when the maximum searchable exponent

maxt is the same as the one used in the protocol since the algorithm searches for all possible
matrix exponents that make A(P ) in phase or equal to X⊗k ⊗ Y ⊗l. The guaranteed success
results from testing all potential exponent combinations. The efficiency and quickness of the
algorithm in finding appropriate exponents depends on the ultimate periodicity threshold of
the public matrices X and Y .

Success Rate for Algorithm 4 is shown in Figure 5. The private exponents k, r are random
integers less that (n−1)lZ , in [(n−1)lZ , (2n−1)lZ ], larger than (2n−1)lZ for the left, middle
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Figure 5: Attack 4 success rate with protocol’s exponents less than (n − 1)lZ , in [(n −
1)lZ , (2n− 1)lZ ] and larger than (2n− 1)lZ respectively

and right figure, respectively. The same follows for l, s but with lW as the critical cycle length.
For easier notations, we will denote both lZ , lW as lZ in what follows.

We notice that it is sufficient for Attack 4 to perform almost optimally when the original
protocol’s exponents are larger than (n − 1)lZ and not necessarily larger than (2n − 1)lZ ,
which is the guaranteed threshold for the CSR fomulas of Theorem 2.4 to hold. This might
indicate that after transforming the matrices from R2n×n

max to R2n×2n
max , the periodicity behaviour

is still maintained. The small number of failures are probably due the critical graph of 1
or more of the public matrices having multiple strongly connected components. We also
notice that Algorithm 4 does not perform as well when the used exponents are lower than
(n− 1)lZ which is expected since the CSR decomposition does not necessarily hold for such
exponent values (i.e., entries in the critical rows or columns haven’t necessarily converged
yet to ultimate periodicity).

The time consumption comparison between the protocol and the two attacks is presented
on Figure 6.The private exponents k, l, r, s in the protocol are random integers larger than
(2n− 1)lZ .

We notice that recovering the key with Algorithm 4 is faster than Algorithm 3 since it
limits its search to a finite set of values equal to the product of the critical cycle sizes of the
two public matrices. We see that there is no significant difference between the attacker’s
time and the users’ time in generating the secret key.

5.4 An attack based on absolute values of tropical pairs

In this section, we describe another attack that does not require the attacker to double
the matrices sizes, which makes it more efficient than the previous ones. However, while
performing this attack we lose some information and this worsens the success rate. We
firstly present the following definition, inspired by the symmeterized semiring introduced
in [2].

Definition 5.2 (Absolute Value). Let (a(1), a(2)) ∈ R2
max. Then the absolute value of this

pair is defined by |(a(1), a(2))| = a(1) ⊕ a(2).

For two pairs (a(1), a(2)), (b(1), b(2)) ∈ R2
max the following properties hold:

|(a(1), a(2))⊕ (b(1), b(2))| = |(a(1) ⊕ b(1), a(2) ⊕ b(2))|
= a(1) ⊕ a(2) ⊕ b(1) ⊕ b(2) = |(a(1), a(2))| ⊕ |(b(1), b(2))|

19



Figure 6: Time taken to attack and to generate Protocol 1

and

|(a(1), a(2))⊗ (b(1), b(2))| = |(a(1) ⊗ b(1) ⊕ a(2) ⊗ b(2)), (a(1) ⊗ b(2) ⊕ a(2) ⊗ b(1))|
= (a(1) ⊗ b(1) ⊕ a(2) ⊗ b(2))⊕ (a(1) ⊗ b(2) ⊕ a(2) ⊗ b(1))

= (a(1) ⊕ a(2))⊗ (b(1) ⊕ b(2)) = |(a(1), a(2))| ⊗ |(b(1), b(2))|

The first of them is rather unusual, since we only have |a+ b| ≤ |a|+ |b| in the usual algebra.
These properties can be also extended to matrices over tropical pairs, as we have

|(A⊕B)ij| = |A|ij ⊕ |B|ij,

which directly follows from the above definition, and

|(A⊗B)ij| =

∣∣∣∣∣
n⊕

k=1

aik ⊗ bkj

∣∣∣∣∣ =
n⊕

k=1

|aik ⊗ bkj|

=
n⊕

k=1

|aik| ⊗ |bkj| = (|A| ⊗ |B|)ij

Here A,B ∈ R2n×n

max and aij, bij ∈ R2
max∀i, j ∈ [n].

We can use the above operations to perform the (R2)n×n
max matrix addition and multiplica-

tion, and we will get a half sized conventional Rn×n
max matrix. These operations with half sized

result are often sufficient to attack the proposed protocol. The following example illustrates
these operations.
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Example 5.3. Take

A =

[
(5, 3) (10, 10)
(3, 8) (10, 5)

]
, B =

[
(6, 0) (6, 4)
(8, 4) (−1, 2)

]
Then we have

A⊕B =

[
(6, 3) (10, 10)
(8, 8) (10, 3)

]
, A⊗B =

[
(18, 18) (12, 12)
(18, 4) (12, 14)

]
.

Performing the absolute values of these matrices we see that

|A| =
[
5 10
8 10

]
, |B| =

[
6 6
8 2

]
|A| ⊕ |B| =

[
6 10
8 10

]
= |A⊕B|, |A| ⊗ |B| =

[
18 12
18 14

]
= |A⊗B|

The attack utilizing these properties is very similar to the previous attack presented in
Attack 4, but they only differ in the type of matrix transformation. Thus, we will describe
the attack by presenting Algorithm 5.

Algorithm 5 Attacking Protocol 1 using the absolute values
Input: X, Y,A(p), B(q)

Output: Key

1: Transform X, Y,A(p) to |X|, |Y |, |A(p)| using Definition 5.2
2: Calculate λ(|X|) = λ1, λ(|Y |) = λ2

3: Find a critical cycle Z from |X|, and W from |Y |, let their lengths be lZ and lW ,
respectively.

4: Calculate SZ , RZ , CW and SW as in Theorem 2.3
5: Perform Algorithm 2 with Input:|A(p)|, |X|, I, |Y |, then we get the output k′, l′, τ
6: Key = τ ⊗

(
X⊗k′ ⊗B(q) ⊗ Y ⊗l′

)
We expect this attack to have a lower success rate than the previous ones due to the

observation that α⊗|X|⊗t1 ⊗|Y |⊗t2 = |U | does not always imply that α⊗X⊗t1 ⊗Y ⊗t2 = U .
Hence, the attack in this case will not successfully recover the secret key since the found
exponents do not really solve the original tropical two-sided discrete log with shift problem
over the tropical pairs. We will look at the following example, where this attack fails while
the previous attacks succeed.

Example 5.4. Suppose Alice chooses the private exponents k = 43 and l = 33 and private
parameters c = 9 and p = −2, with the two public matrices being:

X =

[
(1, 1) (8,−4)
(−8, 9) (5,−7)

]
, Y =

[
(−5, 9) (2, 5)
(−8, 5) (8, 10)

]
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then she computes A(p) and send it to Bob:

A(p) = −2 + (43 + 33− 2)(9)⊗X⊗43 ⊗ Y ⊗33 =

[
(1354, 1352) (1359, 1357)
(1351, 1350) (1356, 1355)

]
The attacker then intercepts A(p) and applies the attacks described in Algorithm 4 and
Algorithm 5.
Algorithm 4 starts by computing

X̃ =


1 1 8 −4
1 1 −4 8
−8 9 5 −7
9 −8 −7 5

 , Ỹ =


−5 9 2 5
9 −5 5 2
−8 5 8 10
5 −8 10 8

 , Ã(p) =


1354 1352 1359 1357
1352 1354 1357 1359
1351 1350 1356 1355
1350 1351 1355 1356

 .

We find k = 93 and l = 100, which make the original A(p) in phase with X⊗93 ⊗ Y ⊗100.
Indeed,

A(p) −X⊗93 ⊗ Y ⊗100 =

[
(−431,−431) (−431,−431)
(−431,−431) (−431,−431)

]
Algorithm 5 first computes

|X| =
[
1 8
9 5

]
, |Y | =

[
9 5
5 10

]
, |A(p)| =

[
1354 1359
1351 1356

]
and finds k = 11 and l = 20, but they do not make the originalA(p) in phase withX⊗11⊗Y ⊗20.
Indeed, we see that

A(p) −X⊗11 ⊗ Y ⊗20 =

[
(1068, 1064) (1068, 1064)
(1067, 1065) (1067, 1065)

]
Algorithm 5 does not reconstruct the secret key successfully. We have:

KeyAlice = KeyBob =

[
(2634, 2632) (2639, 2637)
(2631, 2630) (2636, 2635)

]
KeyAlg 4 =

[
(2634, 2632) (2639, 2637)
(2631, 2630) (2636, 2635)

]
= KeyAlice = KeyBob

KeyAlg 5 =

[
(2632, 2634) (2637, 2639)
(2630, 2631) (2635, 2636)

]
̸= KeyAlice = KeyBob

Due to this counterexample we expect Algorithm 5 to have a lower success rate than the
previous ones. However, it is going to be faster since it does not require doubling the matrix
size.

We now examine the success rate for this attack as a function of matrix dimension.
Additionally, we analyze the time required for the attacker to construct the secret shared
key. The protocol parameters p, q, c, d and the matrix entries are random integers from
−1000 to 1000, and 100 trails were performed for each dimension. The exponents k, l, r, s
are random integers larger than (2n − 1)lZ . The success rate for Algorithm 5 is shown on
Figure 7. We notice that Algorithm 5 has a relativity lower success rate compared to the
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Figure 7: Success rate of Attack 5

Figure 8: Time taken to perform Algorithm 5 and Algorithm 4
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previous ones due to an extra source of failures that was illustrated in Example 5.4. The
time comparison between Algorithm 5 and Algorithm 4 is shown in Figure 8.

As anticipated, Algorithm 5 is more efficient as it operates on matrices with half the size
of the original ones, which expedites the process of computing the CSR terms and finding
the exponents through solving the tropical two-sided discrete logarithm with shift, but it is
losing quite a lot in terms of success rate.

6 Conclusion

In this paper, we presented the tropical two-sided discrete logarithm with shift problem and
its solution. We showed that two algorithms solve the problem with a high success rate. The
first algorithm relies on the non-uniqueness of the exponents that can satisfy the problem’s
equation, and it showed a perfect success rate but potentially slower convergence. The other
algorithm heuristically solves the problem using the CSR decomposition, demonstrating a
high success rate and a much faster execution time. We then presented a key exchange
protocol that is based on the tropical semiring of pairs. We firstly showed that the matrix
operations over the tropical semiring of pairs can be equivalently calculated using the con-
ventional tropical semiring by doubling the matrices’ size. After the transformation to the
conventional tropical semiring, the problem was reduced to the tropical two-sided discrete
logarithm with shift, which can be solved using the two proposed algorithms. Lastly, we
introduced an even faster approach that does not require the attacker to double the matrix
size, showing roughly twice the speed of the previous heuristic attack, but it has a lower
success rate.

We also note that the proposed protocol remains vulnerable to the known tropical cryp-
tographic attacks even if the parties use matrix polynomials over the semiring of pairs. If
Alice and Bob use matrix polynomials over the semiring of pairs, then the problem will not
reduce to the tropical two-sided logarithm with shift, but in this case it is possible to apply
the Kotov-Ushakov attack [8] (which, however, shows an exponential blow up in the number
of operations as the maximal degree of the polynomials increases). The main reason for
insecurity of the protocols using the matrix algebra over the tropical semiring of pairs is
the existence of injective homomorphism from this matrix algebra to the ordinary tropical
matrix algebra.
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