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Abstract

A secure multiparty computation (MPC) allows several parties to
compute a function over their inputs while keeping their inputs pri-
vate. In its basic setting, MPC involves only parties that hold in-
puts. In distributed MPC, there are also external servers who perform
a distributed protocol that executes the needed computation, with-
out learning information on the inputs and outputs. We propose dis-
tributed protocols for several fundamental MPC functionalities. We
begin with a Distributed Scalar Product (DSP) protocol. We then
build upon DSP in designing various protocols for Oblivious Transfer
(OT): k-out-of-N OT, Priced OT, and Generalized OT. We also use
DSP for Oblivious Polynomial Evaluation (OPE) and Oblivious Mul-
tivariate Polynomial Evaluation (OMPE). All those problems involve
a sender and a receiver, both holding private vectors, and the goal
is to let the receiver learn their scalar product. However, in each of
these problems the receiver must submit a vector of a specified form.
Hence, a crucial ingredient in our protocols is the secure validation of
the receiver’s honesty. While previous studies presented distributed
protocols for 1-out-of-N OT and OPE, ours are the first ones that are
secure against dishonest receivers. Our distributed protocols for the
other OT variants and for OMPE are the first ones that handle such
problems. In addition, while previous art assumed semi-honest servers,
we present protocols that are secure even when some of the servers are
malicious. Our protocols offer information-theoretic security and they
are very efficient.1

∗Corresponding author. Email: tamir_tassa@yahoo.com
1A preliminary version of this paper appeared in Indocrypt 2023.
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1 Introduction
Secure multiparty computation (MPC) [42] is a central field of study in cryp-
tography that aims at designing methods for several parties to jointly com-
pute some function over their inputs while keeping those inputs private. In
the basic setting of MPC, there are n mutually distrustful parties, P1, . . . , Pn,
that hold private inputs, x1, . . . , xn, and they wish to compute some joint
function on their inputs, f(x1, . . . , xn). (The function can be sometimes
multi-valued and issue different outputs to different designated parties.) No
party should gain any information on other parties’ inputs, beyond what can
be inferred from their own input and the output.

Typically, the only parties that participate in the protocol are those that
hold the inputs or those who need to receive the outputs. However, some
studies considered a model of computation that is called the mediated model
[2, 3, 17, 22, 35, 38, 18], the client-server model, [11, 16, 24, 33], or the dis-
tributed model [8, 14, 15, 28, 30, 31]. Protocols in that model involve also
external servers (or mediators), M1, . . . ,MD, D ≥ 1, to whom the parties
outsource some of the needed computations. The servers perform the com-
putations while remaining oblivious to the private inputs and outputs. It
turns out that such a distributed model of computation offers significant ad-
vantages: it may facilitate achieving the needed privacy goals; it does not
require the parties to communicate with each other (a critical advantage in
cases where the parties cannot efficiently communicate among themselves, or
do not even known each other); in some settings it reduces communication
costs; and it allows the parties, that may run on computationally-bounded
devices, to outsource costly computations to dedicated servers [35].

In this work we focus on basic MPC problems that involve two (n = 2)
parties, Alice (the sender) and Bob (the receiver), and propose distributed
MPC protocols for their solution. In each of the studied problems, Alice’s
and Bob’s private inputs may be encoded as vectors in a vector space over
a finite field Zp; specifically, a = (a1, . . . , aN) ∈ ZN

p is Alice’s private vector
and b = (b1, . . . , bN) ∈ ZN

p is Bob’s, for some integer N . Alice and Bob
delegate to a set of D > 2 servers, M1, . . . ,MD, secret shares in their private
vectors. Subsequently, the servers perform a multiparty computation on the
received secret shares in order to validate the legality of the inputs, if the
problem at hand dictates rules by which the input vectors must abide. If the
inputs were validated, the servers proceed to compute secret shares in the
required output and then they send those shares to Alice and/or Bob who use
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those shares in order to reconstruct the required output. The computational
burden on Alice and Bob is thus reduced to secret sharing computations in
the initial and final stages.

Our contribution. We begin by discussing the generic problem of scalar
product, in which the required output is the scalar product, a ·b, of the two
private input vectors [19, 20, 40]. We propose a simple protocol in which
Alice and Bob only perform secret sharing computations while the servers
perform only local computations, without needing to communicate among
themselves. Our distributed scalar product protocol is then used in the
subsequent problems that we tackle.

Next, we consider the problem of oblivious transfer (OT) [21, 32], which
is a fundamental building block in MPC [25] and in many application sce-
narios such as Private Information Retrieval (PIR) [13]. We consider several
variants of OT: 1-out-of-N OT [1, 26, 27, 29], k-out-of-N OT [9], Priced OT
[1], and Generalized OT [23, 36]. While several previous studies proposed
distributed protocols for 1-out-of-N OT, N ≥ 2, ours is the first one that
does not rely on Bob’s honesty. Specifically, while previous distributed 1-
out-of-N OT protocols enabled Bob to learn any single linear combination of
Alice’s N secret messages, our protocol restricts Bob to learning just a single
message, as mandated in OT (see our discussion in Section 9). As for the
other OT variants that we consider, we are the first to propose distributed
protocols for their solution.

Then we deal with the problem of Oblivious Polynomial Evaluation (OPE)
[29, 39]. Here, Alice holds a private uni- or multivariate polynomial f(·) and
Bob holds a private value α. The goal is to let Bob have f(α) so that Alice
learns nothing on α while Bob learns nothing on f beyond what is implied by
α and f(α). Here too, while existing distributed OPE protocols allow Bob
to learn any single linear combination of f ’s coefficients (and thus amount to
protocols of distributed scalar product) ours is the first one that restricts Bob
to learning only point values of f , at a point of his choice. We are also the
first to propose a distributed protocol for OMPE — Oblivibious Multivariate
Polynomial Evaluation.

Our OT and OPE protocols demonstrate the advantages that the dis-
tributed model offers. The delegation of computation to dedicated servers
significantly simplifies computations that are typically more involved when
Alice and Bob are on their own. The bulk of the computation is carried out
by the servers, while Alice and Bob are active only in the initial and final
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stages, that are computationally lean. Another prominent advantage of the
distributed model is that it enables carrying out all of the MPC problems
that we consider even when Alice and Bob do not know each other and thus
cannot communicate among themselves. In fact, Alice can complete her part
in the protocol well before Bob starts his. For example, if Alice is a data
custodian that holds some database, her private vector could hold decryption
keys for the items in her database. The other party, Bob, can be any client
that wishes to retrieve one of the items in that database, while keeping Alice
oblivious of his choice, which is encoded in his private vector. Alice and Bob
can use our various OT protocols for that purpose. But as they need to
communicate only with the servers, Bob may perform his retrieval long time
after Alice had already uploaded all information relating to her database.
Moreover, in such an application scenario there is a single Alice but many
"Bobs". While other protocols (non-distributed or even distributed) require
Alice to be responsive to each Bob, our protocols allow Alice to act just once,
at the initialization stage, while from that point onward only the servers deal
with each of the future requests of potential clients (Bob). Our distributed
OMPE protocol also offers such advantages.

We consider first the case where the servers are semi-honest and have
an honest majority. Namely, the servers follow the prescribed protocol, but
a minority of the servers may collude among themselves or with Alice or
Bob and share their views in the protocol. We then extend our discussion
to include also malicious servers, and consider two adversarial assumptions:
one in which the number of malicious servers, denoted c, is smaller than D
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and another in which c < D
3
. Our protocols are information-theoretic secure

and provide unconditional security to both Alice and Bob.
Outline of the paper. Section 2 provides the relevant cryptographic

preliminaries and assumptions. In Section 3 we describe our distributed
scalar product protocol. Section 4 is devoted to the various distributed OT
protocols. In Section 5 we present the OMPE protocol. We analyze the
communication complexity of all protocols in Section 6, and report experi-
mental results in Section 7. In all of our discussion above we assumed that
the servers are semi-honest and have an honest majority. In Section 8 we
extend our discussion to the case in which c of the D servers are malicious;
we consider the cases c < D

4
and c < D

3
and describe the necessary enhance-

ments to our protocols that would render them information-theoretic secure
in those cases. In Section 9 we review the prior art on distributed OT and
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OPE protocols and compare those protocols to ours. We conclude in Section
10.

2 Preliminaries
Secret sharing. The main idea in our protocols for solving the various
MPC problems discussed herein is to use secret sharing. Alice and Bob
distribute among the D servers, M1, . . . ,MD, shares in each entry of their
private vectors, using t-out-of-D Shamir’s secret sharing scheme [34], with

t = ⌊(D + 1)/2⌋ . (1)

(Hereinafter we shall refer to such sharing as (t,D)-sharing.) Namely, Alice
generates for each entry an, n ∈ [N ] := {1, . . . , N}, a polynomial fA

n (x) =
an+

∑t−1
i=1 αix

i, where αi are secret random field elements, and then she sends
to Md the value [an]d := fA

n (d), d ∈ [D] := {1, . . . , D}. Bob acts similarly.
The servers then execute some distributed computation on the received shares
in order to arrive at secret shares in the needed output. At the end, they
distribute to Alice and/or Bob shares in the desired output from which Alice
and/or Bob may reconstruct that output. The underlying field Zp is selected
so that p is larger than all values in the underlying computation.

Computing arithmetic expressions in shared secrets. In our protocols
we will need to securely compute arithmetic expressions of shared secrets,
where the expressions are degree two polynomials in the secrets (namely,
they are sums of addends, each involving at most one multiplication of two
secrets). We proceed to describe how we execute such computations.

First, we recall that secret sharing is affine in the following sense: if s1 and
s2 are two secrets that are independently (t,D)-shared among M1, . . . ,MD,
and a, b, c are three public field elements, then the servers can compute shares
in as1+ bs2+ c. Specifically, if [si]d is Md’s share in si, i = 1, 2, d ∈ [D], then
{a[s1]d + b[s2]d + c : d ∈ [D]} is a proper (t,D)-sharing of as1 + bs2 + c.

We turn to discuss the multiplication of shared secrets. Assume that
the servers hold (t,D)-shares in si, i = 1, 2, where Md’s share in si is [si]d.
Assume that each server Md, d ∈ [D], multiplies the two shares that he
holds and gets cd = [s1]d[s2]d. It is easy to see that the set {cd : d ∈
[D]} is a (2t− 1, D)-sharing of s1s2. Therefore, the servers can recover s1s2
by computing cd = [s1]d[s2]d, then interpolate a polynomial F of degree
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2t − 2 based on {c1, . . . , cD}, and consequently infer that s1s2 = F (0). For
simplicity, we will assume hereinafter that D is odd, in which case 2t−1 = D.
Hence, {cd = [s1]d[s2]d : d ∈ [D]} constitute a (D,D)-sharing in s1s2.

We recall that the BGW protocol [7] enables computing polynomial func-
tions of shared secrets, where the polynomials can have any degree. The
main ingredient in the BGW protocol is the reduction of the degree of the
secret sharing polynomial of products of secrets back to the original degree.
That is also the most costly part of that protocol. Since for our purposes it
suffices to focus on degree two polynomials of shared secrets, we do not need
to perform such a reduction of the secret sharing polynomial’s degree and,
thus, we do not invoke the BGW protocol.

Scrambling shares. In some cases we shall perform the above described
multiplication procedure when s1 and s2 are related (specifically, when s2 =
s1− 1). In such cases, the above described practice is problematic since each
server Md would need to expose to his peers the product of his secret shares
[s1]d[s2]d, and due to the known relation between s1 and s2, that product
of shares may reveal information on [s1]d and [s2]d, and consequently also
information on the value of s1 and s2.

To avoid such potential information leakage, the servers perform a scram-
bling of the shares {c1, . . . , cD}, in the sense that they generate a new random
set of shares {c′1, . . . , c′D} that are also (D,D)-shares in s1s2. They do that
in the following manner. Each server Md, d ∈ [D], generates a random
(D,D)-sharing of 0 and distributes the resulting shares to all servers. Sub-
sequently, each server adds up the zero shares that he had received from all
D servers. As a result, the mediators will hold (D,D)-shares of 0, denoted
{[0]1, . . . , [0]D}, where each share distributes uniformly in Zp. Finally, each
server Md sets c′d = cd + [0]d, d ∈ [D]. Clearly, {c′1, . . . , c′D} are also (D,D)-
shares in s1s2, and their values do not leak any information on the original
shares in s1 and s2.

We note that it is essential to generate a new set of zero shares, [0]d,
d ∈ [D], for each operation of scrambling. However, it is possible to prepare
such shares offline, before running the protocol in which scrambling is needed.

Security assumptions. For the sake of clarity we allocate the lion’s part
of our discussion to the case in which the servers are semi-honest (i.e., they
follow the prescribed protocol, but try to extract from their view in the
protocol information on the private inputs) and have an honest majority
(i.e., if c of them collude, then c < t = ⌊(D + 1)/2⌋.) We then extend our
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discussion to the case in which c of the servers are malicious. We consider
two cases, one in which c < D

4
and one in which c < D

3
.

Communication assumptions. We assume that the servers have an au-
thenticated broadcast channel. Namely, each of the servers can broadcast a
message to all its peers and the identity of the broadcaster can be authenti-
cated.

3 Distributed scalar product
Here we deal with the following MPC problem.

Definition 1. (DSP) Assume that Alice has a private vector a = (a1, . . . , aN) ∈
ZN

p , and Bob has a private vector b = (b1, . . . , bN) ∈ ZN
p . They wish to com-

pute their scalar product a · b without revealing any other information on
their private vectors.

Protocol 1 solves that problem. In the first loop (Lines 1-3), Alice and
Bob distribute to the servers (t,D)-shares in each entry of their vectors.
Then, each server Md computes a (D,D)-share in an · bn for each n ∈ [N ],
and subsequently he computes a (D,D)-share in the scalar product into sd
(Line 5). He then sends that share to Alice and Bob (Line 6). So now Alice
and Bob have a full set of (D,D)-shares in a · b so they can recover the
needed scalar product by means of interpolation (Line 7).

The protocol is correct and secure as we state next.

Theorem 1. Protocol 1 is correct and provides information-theoretic security
to both Alice and Bob when all servers are semi-honest and have an honest
majority. Moreover, a coalition of one of the parties (Alice or Bob) with any
subset of t− 1 servers does not yield any information beyond what is implied
by that party’s input and the output.

Proof. The correctness of the protocol follows from our assumption that
the servers are semi-honest and from the discussion in Section 2, namely that
if {[si]d : d ∈ [D]} is a (t,D)-sharing of si, i = 1, 2, then {[s1]d ·[s2]d : d ∈ [D]}
is a (D,D)-sharing of s1·s2. The honest majority assumption ensures that the
maximal number of colluding servers is t − 1, where t is the secret sharing
threshold, Eq. (1). Hence, the information-theoretic security of Shamir’s
secret sharing scheme implies that Protocol 1 provides information-theoretic
security for both Alice and Bob.
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Protocol 1: Distributed Scalar Product
Parameters: p - field size, N - the dimension of the vectors, D -

number of servers, t = ⌊(D + 1)/2⌋.
Inputs: Alice has a private vector a = (a1, . . . , aN) ∈ ZN

p , Bob has
a private vector b = (b1, . . . , bN) ∈ ZN

p .
1 forall n ∈ [N ] do
2 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
3 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.
4 forall d ∈ [D] do
5 Md computes sd ←

∑
n∈[N ] ([an]d · [bn]d).

6 Md sends sd to Alice and Bob.
7 Alice and Bob use {s1, . . . , sD} to reconstruct a · b.

Output: Alice and Bob get a · b.

We now turn to prove the second claim. Assume that Bob colludes with
t− 1 servers in attempt to reap some additional information beyond what is
implied by his input and the output. Bob’s input b and the output α := a ·b
reveal that Alice’s vector is any vector in the (N − 1)-dimensional affine
space V := {a ∈ ZN

p : a · b = α}. Assume that Bob colludes with t − 1
servers, say M1, . . . ,Mt−1. We need to prove that the information that the
servers contribute does not yield any further information. The case b = 0
is straightforward, since then Bob contributes nothing to the servers, and by
the first part of the theorem, a coalition of t−1 servers learns no information
on the private inputs. Hence, we focus on the case where b ̸= 0. We may
assume, without loss of generality, that bN = 1. We will show that in such
a case, the information that Bob and M1, . . . ,Mt−1 hold together allow an,
1 ≤ n ≤ N − 1, to be any value in Zp; that implies that a can be any vector
in V .

Denote the secret sharing polynomial that Alice used for hiding an by
fn(x) =

∑t−1
j=0 cn,jx

j, where cn,0 = an, n ∈ [N ]. Then server Md contributes
the following N linear equations about the tN unknowns {cn,j : 0 ≤ j ≤
t− 1, n ∈ [N ]}:

t−1∑
j=0

cn,jd
j = fn(d) , n ∈ [N ] , 1 ≤ d ≤ t− 1 . (2)

To those (t− 1)N equations in the tN unknowns Bob adds a single equation
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N∑
n=1

cn,0bn = α . (3)

In order to prove that the partial system of (t − 1)N + 1 linear equations
in Eqs. (2)+(3) allows (a1, . . . , aN−1) = (c1,0, . . . , cN−1,0) to be any vector in
ZN−1

p we show that it is possible to add to that partial system the following
N − 1 equations,

cn,0 = γn , 1 ≤ n ≤ N − 1 , (4)

and it will be solvable, for any arbitrary selection of γn, 1 ≤ n ≤ N − 1.
Indeed, the resulting system of tN equations in tN unknowns has the form
Mc = r where the matrix of coefficients, the vector of unknowns, and the
right hand side vector are as shown below.
• M is an N ×N matrix of t× t blocks that is structured as follows:

M :=



Vt 0 0 · · · 0 0
0 Vt 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · Vt 0
0 0 0 · · · 0 Vt−1

b1 b2 b3 · · · bN−1 bN


. (5)

The first N−1 rows in Eq. (7) consist of t×t blocks where Vt is the following
Vandermonde matrix

Vt =


1 1 1 · · · 1
1 2 22 · · · 2t−1

...
...

...
...

...
1 t− 1 (t− 1)2 · · · (t− 1)t−1

1 0 0 · · · 0

 .

The Nth row in Eq. (7) consists of (t − 1) × t blocks, where Vt−1 is the
Vandermonde block of dimension (t− 1)× t,

Vt−1 =


1 1 1 · · · 1
1 2 22 · · · 2t−1

...
...

...
...

...
1 t− 1 (t− 1)2 · · · (t− 1)t−1

 . (6)

9



Finally, the last row in M , Eq. (7), is a single row in which bn is the t-
dimensional row vector (bn, 0, . . . , 0), n ≤ [N ]. Hence, M is a lower triangular
block matrix, where the blocks on its diagonal are Vt (recall that we assumed
that bN = 1).
• The vector of unknowns is c = (c1, . . . , cN)T , where cn = (cn,0, cn,1, . . . , cn,t−1),

n ∈ [N ].
• The right hand side vector is r = (r1, . . . , rN)T , where rn = (fn(1), . . . , fn(t−

1), γn), for 1 ≤ n ≤ N − 1, while rN = (fN(1), . . . , fN(t− 1), α).
Since detM = (detVt)

N ̸= 0, the system of equations has a unique solu-
tion for any selection of (γ1, . . . , γN−1). Hence, the joint view of Bob and the
t− 1 servers still allows a to be any vector in V = {a ∈ ZN

p : a · b = α}. 2

4 Distributed oblivious transfer
In this section we consider several variants of the Oblivious Transfer (OT)
protocol. We begin with the basic variants of 1-out-of-N and k-out-of-N OT
in Section 4.1. We then discuss Priced OT (Section 4.2). Finally, we consider
the case of Generalized OT in Section 4.3.

4.1 k-out-of-N oblivious transfer

The problem that we consider here is the following:

Definition 2. (OTN
k ) Assume that Alice has a set of N messages, m1, . . . ,mN ∈

Zp. Bob wishes to learn k of those messages, say mj1 , . . . ,mjk , for some
j1, . . . , jk ∈ [N ]. A k-out-of-N Oblivious Transfer (OTN

k ) protocol allows Bob
to learn mj1 , . . . ,mjk , and nothing beyond those messages, while preventing
Alice from learning anything about Bob’s selection.

We begin by considering the case k = 1 and then we address the general
case. The OTN

1 problem can be reduced to DSP (Section 3) if Alice sets
a := (m1, . . . ,mN) and Bob sets b := ej (the unit vector that consists of
N−1 zeros and a single 1 in the jth entry, where j is the index of the message
that Bob wishes to retrieve). However, the DSP protocol cannot be executed
naïvely, since Bob may cheat and send to the servers shares in a vector that is
not a unit vector and, consequently, he may obtain some linear combination of
the messages, and not just a single message as dictated by the OT definition.
Such an abuse of the protocol may sometimes enable a malicious Bob to

10



learn more than just one message. For example, if Bob happens to know
that m1 belongs to some one-dimensional subspace of ZN

p while m2 belongs
to another one-dimensional subspace of ZN

p , then by choosing to learn the
linear combination m1+m2 he will be able to infer both m1 and m2. To that
end, the DSP protocol can be executed only after the servers apply some
preliminary validation protocol:

Definition 3. (DVV) Assume that the servers M1, . . . ,MD hold (t,D)-shares
in a vector v ∈ ZN

p . Let W be a subset of ZN
p . A Distributed Vector Validation

(DVV) protocol is a protocol that the servers may execute on their shares that
outputs 1 if v ∈ W and 0 otherwise, and reveals no further information on
v in the case where v ∈ W .

In our case W = {ej : j ∈ [N ]}. The servers can validate that b ∈ W by
verifying the following two conditions: (1) bn · (bn − 1) = 0 for all n ∈ [N ];
and (2)

∑
n∈[N ] bn = 1. Indeed, the first condition implies that all entries

in b are either 0 or 1, while the second condition ascertains that exactly
one of the entries equals 1. Note that if the two conditions are verified,
then the servers may infer that Bob’s vector is legal, but nothing more than
that, as desired. Namely, if Bob is honest then his privacy is fully protected.
However, if Bob is dishonest and distributed shares in a vector b /∈ W , then
the above described DVV protocol will reveal some additional information
on b; however, that is acceptable since by acting dishonestly Bob looses his
right for privacy.

Protocol 2 implements those ideas. After Alice and Bob set their vectors
and distribute shares in them to the servers (Lines 1-5), the servers validate
Bob’s vector for compliance with conditions 1 (Lines 6-12) and 2 (Lines 13-
17). (The scrambling operation in Line 8 is as discussed in Section 2.) If
Bob’s vector was validated, they compute (D,D)-shares in the scalar product
and send them to Bob so that he can recover the scalar product that equals
his message of choice (Lines 18-21).

For a general k > 1, it is possible to solve OTN
k by running Protocol 2 k

times, with one exception: Alice needs to distribute shares in her vector only
once (Lines 1 and 4 in Protocol 2). We proceed to describe another solution
that is more efficient in terms of communication complexity.

Protocol 3 multiplies Alice’s vector a := (m1, . . . ,mN) with the vector
b =

∑k
i=1 eji where 1 ≤ j1 < . . . < jk ≤ m are the indices of the k messages

that Bob wishes to retrieve. But instead of computing their scalar product,∑N
n=1 anbn, the protocol computes shares in the products anbn for all n ∈ [N ]
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and sends them to Bob. Bob then uses the shares of anbn only for n ∈
{j1, . . . , jk} in order to recover the requested messages.

Here, the DVV sub-protocol consists of verifying two conditions: that
bn · (bn − 1) = 0 for all n ∈ [N ], and that

∑
n∈[N ] bn = k. The first condition

implies that all entries in b are either 0 or 1, while the second condition
ascertains that exactly k of the entries equal 1.

After Alice and Bob set their vectors and distribute shares in them to
the servers (Lines 1-5), the servers validate Bob’s vector for compliance with
conditions 1 (Lines 6-12) and 2 (Lines 13-17). If Bob’s vector was validated,
they compute (D,D)-shares in each of the N products between the com-
ponents of the two vectors and send them to Bob (Lines 18-21) for him to
recover the requested k messages (Lines 22-23).

The communication complexity of Protocols 2 and 3 as well as of the
protocols that we present later on (for Priced OT, Generalized OT, and
OMPE) is discussed in Section 6.

Theorem 2. Protocols 2 and 3 are correct and provide information-theoretic
security to both Alice and an honest Bob when all servers are semi-honest and
have an honest majority. Moreover, a coalition of one of the parties (Alice or
Bob) with any subset of t− 1 servers does not yield any information beyond
what is implied by that party’s input and the output.

Proof. The proof of the first part goes along the same lines as the proof
of the first part of Theorem 1. The only distinction is that in Protocols 2 and
3 Bob may act dishonestly by submitting an illegal vector (while in Protocol
1 Bob, like Alice, is not restricted in any way). As we noted earlier, if Bob
acts dishonestly the servers may infer information on the way he cheated.
For example, if bn /∈ {0, 1} then the value bn · (bn − 1) allows the servers to
learn that bn is one of two values. As stated in the theorem, the protocol
preserves the privacy of Bob only when he is honest.

The proof of the second part for Protocol 2 is the same as the proof of
the second part in Theorem 1. The proof for Protocol 3 is different, since the
output that Bob receives is k out of the N messages, and not a single linear
combination as in Protocols 1 and 2. Assume, without loss of generality, that
the k messages that Bob selected are mn, N−k+1 ≤ n ≤ N . In that case Bob
and the t− 1 servers with whom he colluded (say, M1, . . . ,Mt−1) can reduce
the system of linear equations from tN unknowns to t(N − k) unknowns,
c = (c1, . . . , cN−k)

T , where cn = (cn,0, cn,1, . . . , cn,t−1), 1 ≤ n ≤ N − k,
are the coefficients of the share generating polynomials that Alice used for
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Protocol 2: 1-out-of-N Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of

servers, t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}; Bob has a selection index

j ∈ [N ].
1 Alice sets a = (m1, . . . ,mN).
2 Bob sets b = ej.
3 forall n ∈ [N ] do
4 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.
6 forall 1 ≤ n ≤ N do
7 Each Md, d ∈ [D], sets cd = [bn]d · ([bn]d − 1).
8 The servers perform scrambling of (c1, . . . , cD) and compute a

new set of (D,D)-shares in bn · (bn − 1), denoted (c′1, . . . , c
′
D).

9 Each Md, d ∈ [D], broadcasts c′d.
10 The servers use (c′1, . . . , c

′
D) in order to compute

ω := bn · (bn − 1).
11 if ω ̸= 0 then
12 Abort
13 forall d ∈ [D] do
14 Md computes cd ←

∑
n∈[N ][bn]d.

15 The servers use any t shares out of {c1, . . . , cD} to compute
ω :=

∑
n∈[N ] bn .

16 if ω > 1 then
17 Abort
18 forall d ∈ [D] do
19 Md computes sd ←

∑
n∈[N ] ([an]d · [bn]d).

20 Md sends sd to Bob.
21 Bob uses {s1, . . . , sD} to reconstruct a · b = mj.

Output: Bob gets mj.

hiding mn = cn,0, 1 ≤ n ≤ N − k. The matrix of coefficients in the system
of (t − 1)(N − k) linear equations that Bob and the servers hold in those
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Protocol 3: k-out-of-N Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of

servers, t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}; Bob has selection indices

1 ≤ j1 < . . . < jk ≤ N .
1 Alice sets a = (m1, . . . ,mN).
2 Bob sets b = (b1, . . . , bN), where bn = 1 for n ∈ {j1, . . . , jk} and

bn = 0 otherwise.
3 forall n ∈ [N ] do
4 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.
6 forall 1 ≤ n ≤ N do
7 Each Md, d ∈ [D], sets cd = [bn]d · ([bn]d − 1).
8 The servers perform scrambling of (c1, . . . , cD) and compute a

new set of (D,D)-shares in bn · (bn − 1), denoted (c′1, . . . , c
′
D).

9 Each Md, d ∈ [D], broadcasts c′d.
10 The servers use (c′1, . . . , c

′
D) in order to compute

ω := bn · (bn − 1).
11 if ω ̸= 0 then
12 Abort
13 forall d ∈ [D] do
14 Md computes cd ←

∑
n∈[N ][bn]d.

15 The servers use any t shares out of {c1, . . . , cD} to compute
ω :=

∑
n∈[N ] bn .

16 if ω ̸= k then
17 Abort
18 forall d ∈ [D] do
19 forall n ∈ [N ] do
20 Md computes [cn]d ← [an]d · [bn]d.
21 Md sends [cn]d to Bob.
22 forall n ∈ {j1, . . . , jk} do
23 Bob uses {[cn]1, . . . , [cn]D} to reconstruct cn = an · bn = mn.

Output: Bob gets mj1 , . . . ,mjk .

t(N − k) unknowns is

M :=


Vt−1 0 0 · · · 0
0 Vt−1 0 · · · 0
...

...
...

...
...

0 0 0 · · · Vt−1

 , (7)
14



where M consists of (N − k)× (N − k) blocks of dimension (t− 1)× t and
Vt−1 is as in Eq. (6). That system can be augmented with the additional
N − k linear equations

cn,0 = γn , 1 ≤ n ≤ N − k ,

for any arbitrary selection of (γ1, . . . , γN−k), and the augmented system will
have a unique solution. That proves that also here, a collusion of Bob with
any t − 1 servers does not yield additional information on the remaining
messages. 2

4.1.1 An efficient DVV sub-protocol

The most costly part in Protocols 2 and 3 is that in which the servers verify
that Bob’s vector is a binary vector (Lines 6-12 in both protocols), as the
communication cost of that part of the DVV depends linearly on N . Instead,
the servers may perform an alternative computation as described in Sub-
protocol 4.

First, they compute a joint random seed σ to any pseudorandom number
generator of their choice (Lines 1-2). Then, each server computes locally a
sequence of pseudorandom nonzero multipliers (Line 3). Because all servers
have the same seed and the same pseudorandom number generator, they
will all get the same sequence of multipliers (c1, . . . , cN). Then, each server
computes ωd (Line 4) which is a (D,D)-share in ω (Line 5). The servers
recover ω from {ωd : d ∈ [D]} (Line 5). If ω ̸= 0 then clearly there exists at
least one index n ∈ [N ] for which bn /∈ {0, 1}, what implies that Bob’s vector
is not binary. In that case the servers abort the computation (Lines 6-7).
Otherwise, the servers deduce that Bob’s vector is binary, with probability at
least 1− 1/p. Indeed, as the servers compute the pseudorandom multipliers
cn, n ∈ [N ], only after Bob had submitted shares in his input vector, then an
illegal input vector would pass the test (i.e., would yield ω = 0) in probability
1/p.

While the DVV sub-protocol in Protocols 2 and 3 is fully secure, Sub-
protocol 4 introduces a negligible probability of an error. However, the ad-
vantages in terms of communication costs and runtimes are dramatic, as we
show later on.

In what follows, we refer to Protocols 2 and 3 in which Lines 6-12 are
replaced with Sub-protocol 4 as Protocols 2* and 3*, respectively.
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Sub-protocol 4: A verification that Bob’s input vector is binary
1 Each Md generates a random seed σd, d ∈ [D].
2 The servers compute σ =

∑
d∈[D] σd.

3 Each Md uses σ in order to compute cn ∈ Z∗
p, for all n ∈ [N ].

4 Each Md broadcasts ωd :=
∑

n∈[N ] cn · [bn]d · ([bn]d − 1), d ∈ [D].
5 The servers recover ω :=

∑
n∈[N ] cn · bn · (bn − 1) from {ωd : d ∈ [D]}.

6 if ω ̸= 0 then
7 Abort

4.1.2 A 1-out-of-N distributed OT protocol with non-interacting
servers

In Appendix A we describe an alternative 1-out-of-N Oblivious Transfer
protocol that is also based on DSP. In that protocol, the DVV process is
replaced by another mechanism that is based on an idea that was presented
by Naor and Pinkas in [30] for their 1-out-of-2 OT protocol. The advantage
in that protocol is that it does not require the servers to communicate with
each other. However, on the down side, it enforces Alice to be responsive to
any OT request of any client (Bob), as opposed to Protocol 2 in which Alice
finishes her part in the initial phase.

4.2 Priced oblivious transfer

Consider a setting of OT in which each of Alice’s messages has a weight and
the retrieval policy allows Bob to learn any subset of messages in which the
sum of weights does not exceed some given threshold. For example, if Alice
holds a database of movies and each movie has a price tag, then if Bob had
prepaid some amount, Alice wishes to guarantee that he retrieves movies of
aggregated cost that does not exceed what he had paid, while Bob wishes to
prevent Alice from knowing what movies he chose to watch.

Definition 4. Let U = {m1, . . . ,mN} be the set of messages that Alice has.
Assume that each massage mn has a weight wn ≥ 0, n ∈ [N ], and let T > 0 be
some given threshold. Then a Priced OT protocol allows Bob to retrieve any
subset B ⊆ U for which

∑
mn∈B wn ≤ T . Bob cannot learn any information

on the messages in U \B, while Alice has to remain oblivious of Bob’s choice.
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We assume that the weights w1, . . . , wN are publicly known, since they
represent information that is supposed to be known to all. The threshold T ,
on the other hand, represents the amount that Bob had paid and, therefore,
it is private and should remain so.

Protocol 5 executes Priced OT. It coincides with Protocol 3 except for
the second part of the DVV sub-protocol (Lines 13-17). If in Protocol 3 the
servers obliviously verified in that part that

∑
n∈[N ] bn ≤ k, then here it is

necessary to obliviously verify that
∑

mn∈B wn =
∑

n∈[N ] wnbn ≤ T . (Recall
that in Lines 6-12 in Protocol 3 we have already verified that bn ∈ {0, 1}, for
all n ∈ [N ].) To enable that verification, the protocol starts by publishing
the vector of weights (Line 1). Then, both Alice and Bob distribute to the
servers (t,D)-shares in T (Lines 2-3) and then the servers verify that the two
underlying thresholds equal, without recovering that threshold (Lines 4-7).
Those steps are necessary in order to ascertain that Alice and Bob agree on
the same value of the threshold, before using that value in the DVV sub-
protocol. (Namely, Bob is ascertained that Alice did not provide a too low
value of T while Alice is ascertained that Bob did not provide a too high
value of T ).

The core of the protocol is the execution of the OTN
k protocol - Protocol 3

(Line 8). That protocol is executed as is except for the replacement of Lines
13-17 there with Sub-protocol 6. The sub-protocol begins with the servers
computing (t,D)-shares in the difference e := T −

∑
n∈[N ] wnbn (Lines 1-2).

Then, any subset of t servers can recover e (Line 3). Finally, if e ̸= 0 the
protocol aborts (Line 4), while otherwise it proceeds towards completing the
transfer.

Note that Bob is allowed to retrieve any subset of messages of aggregated
weight at most T . Sub-protocol 6, however, assumes that Bob had requested
a subset of messages of aggregated weight that equals exactly T . Such an
equality can be guaranteed as we proceed to describe. First, Bob can add to
his list of requested messages additional redundant messages that he will ig-
nore later on. By adopting such a practice, the difference e = T−

∑
n∈[N ] wnbn

can be made a nonnegative number smaller than w := maxn∈[N ] wn. Assume
that w < 2ℓ, for some ℓ > 0. Then Alice may add ℓ phantom messages m̂i,
0 ≤ i < ℓ, with the weights 2i, to her list of messages. Consequently, Bob will
add to his list of requested messages also the subset of phantom messages of
which the sum of weights equals exactly e. That way, the servers will always
recover in Line 3 in Sub-protocol 6 the value 0.

17



4.2.1 The case of secret weights

Even though the weights of messages are typically public, it is possible to
modify the protocol so that also the weights remain hidden from the servers.
To do that, instead of publishing the vector of weights w (as done in Line
1 of Protocol 5), Alice would distribute to the servers (t,D)-shares in them.
Let [wn]d denote Md’s share in wn, d ∈ [D], n ∈ [N ]. Then, in Sub-protocol
6, Line 2 will be replaced with [e]d ← [T ]d −

∑
n∈[N ][wn]d[bn]d. As discussed

in Section 2, the set {[e]1, . . . , [e]D} is a set of (D,D)-shares in e. The servers
may use those shares in order to reconstruct e = T−

∑
n∈[N ] wnbn. No further

changes are required.

Protocol 5: Priced Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of

servers, t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}, and corresponding weights

wn ≥ 0, n ∈ [N ]; Bob has a set of selection indices
j1, . . . , jk ∈ [N ]; Alice and Bob have T ≥ 0.

1 Alice publishes the vector of weights w = (w1, . . . , wN).
2 Alice sends to Md, d ∈ [D], a (t,D)-share in T , denoted [T ]d.
3 Bob sends to Md, d ∈ [D], a (t,D)-share in T , denoted [T ′]d.
4 forall d ∈ [D] do
5 Md computes [e]d ← [T ]d − [T ′]d.
6 The servers use any t shares out of {[e]1, . . . , [e]D} to compute

e = T − T ′.
7 if e ̸= 0 then Abort.
8 Alice, Bob and the servers execute Protocol 3 in which Lines 13-17

are replaced with Sub-protocol 6.
Output: Bob gets {mj1 , . . . ,mjk} iff

∑k
i=1wji ≤ T .

As Protocol 5 coincides with Protocol 3 where only the DVV part is
slightly modified. Theorem 2 applies also to that protocol, in both cases
(public or secret weights).

4.3 Generalized oblivious transfer

Ishai and Kushilevitz [23] presented an extension of OT called Generalized
Oblivious Transfer (GOT). As in the basic version of OT, Definition 2, we
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Sub-protocol 6: Priced OT: verifying that
∑k

i=1 wji ≤ T .
1 forall d ∈ [D] do
2 Md computes [e]d ← [T ]d −

∑
n∈[N ] wn[bn]d.

3 The servers use any t shares out of {[e]1, . . . , [e]D} to compute
e = T −

∑
n∈[N ] wnbn.

4 if e ̸= 0 then Abort.

consider a setting with two parties, Alice and Bob. Alice has a set of N
messages, m1, . . . ,mN , that can be viewed as elements in a finite field Zp.
Bob wishes to learn a subset of those messages, according to some retrieval
policy. In OTN

k , the policy restricted Bob to learn any subset of at most k
messages. In GOT the policy is extended as described below.

Definition 5. Let U = {m1, . . . ,mN} be the set of messages that Alice has.
An access structure is a collection of subsets of U , A ⊆ 2U , which is monotone
decreasing in the sense that if B ∈ A and B′ ⊂ B then also B′ ∈ A. The
basis of A, denoted A0, is the collection of all maximal subsets in A; namely,
B ∈ A0 iff B ∈ A and for every B ⊊ B′ ⊆ U , B′ /∈ A.

Bob is allowed to retrieve any subset of messages B ⊂ U provided that
B ∈ A. As before, Bob cannot learn any information on the complement set
of messages, U \B, while Alice must remain oblivious to Bob’s selection.

The distributed GOT protocol that we present here, Protocol 7, is inspired
by the GOT protocol that was presented in [36], and it invokes the OTN

k

protocol, Protocol 3. Protocol 7 is designed for the case of uniform bases,
namely, the case where all subsets in A0 have the same size, denoted k. The
case of non-uniform bases can be reduced to the case of uniform bases as
described in [36]. We refer the reader to [36] for a detailed description of the
simple reduction.

Let us define the monotone increasing closure of A0 as follows:

Γ = Γ(A0) = {C ⊆ U : ∃B ∈ A0, B ⊆ C} . (8)

The collection Γ is monotone increasing, in the sense that if B ∈ Γ and
B ⊂ B′ ⊆ U , then also B′ ∈ Γ. Let Σ be a secret sharing scheme that
realizes Γ, in the following sense. It is a secret sharing scheme in which the
set of participants is U , and the access structure is Γ. Given a secret s, the
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scheme Σ assigns a share sn to each message mn ∈ U , n ∈ [N ], so that the
shares of any subset in Γ reveal s while the shares of any other subset reveal
no information on s. We note that any monotone increasing access structure
can be realized by a secret sharing scheme, see e.g. [4].

Protocol 7 starts with Alice selecting a secret s ∈ Zp (Line 1). Then she
computes corresponding shares in s according to the access structure Γ(A0)
(Line 2). Namely, if B = {mj1 , . . . ,mjk} ∈ A0 is a set of messages that Bob
is allowed to retrieve, the corresponding set of shares, {sj1 , . . . , sjk}, can be
used to reconstruct s; otherwise, those shares reveal no information on s.
Alice proceeds to distribute to the servers (t,D)-shares in the secret s (Line
3).

Afterwards, Alice distributes to the servers (t,D) shares in two private
vectors: the vector of private shares (Line 4) and the vector of private mes-
sages (Line 5). The mediators keep both sets of shares for use later on. At
this point Alice had completed her part in the protocol. The remainder of
the protocol is executed by Bob and the servers.

Bob and the servers execute a k-out-of-N OT for the k shares correspond-
ing to Bob’s k selected messages (Line 6). Note that at this stage Bob only
retrieves the shares sj1 , . . . .sjk but not the actual messages. He then proceeds
to reconstruct sB := s from those shares using the reconstruction function
of the secret sharing scheme Σ (Line 7). Subsequently, Bob distributes to
the servers (t,D)-shares in sB (Line 8). The servers proceed to verify that
sB = sA = s without actually recovering s (Lines 9-10). If the difference
e = sA − sB is non-zero, then Bob failed to prove that he attempted retriev-
ing an allowed subset of messages; in that case the protocol aborts (Line 11).
Otherwise, the servers are convinced that Bob did submit a selection vector
b that corresponds to an allowed subset of messages. Hence, they engage in
the completion of the k-out-of-N OT, where this time they use the shares
in the actual messages (Line 12). As a result, Bob retrieves his messages of
choice.

If Bob acts honestly then the security guarantees of Protocol 7 are as
those of Protocol 3, see Theorem 2. However, Bob may attempt guessing the
value of s ∈ Zp. The probability of a successful guess is 1/p; in that case
Bob may be able to learn any subset of k messages. However, the probability
of failing to guess s is overwhelming — 1 − 1/p; if Bob fails in his cheating
attempt then the servers would infer that he attempted cheating and could
refuse to engage in further attempts.

Note that Alice performs secret sharing on s in two different places in
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Protocol 7: Generalized Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of

servers, t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN} ⊂ Zp and an access structure

A on U , with a k-uniform basis A0; Bob has indices
1 ≤ j1 < . . . < jk ≤ N , where B := {mj1 , . . . ,mjk} ∈ A0.

1 Alice selects uniformly at random a secret s ∈ Zp.
2 Alice computes shares {s1, . . . , sN} ⊂ Zp in s using a secret sharing

scheme Σ that realizes the access structure Γ(A0) on U .
3 Alice distributes to the servers (t,D)-shares in sA := s; Md’s share is

denoted [sA]d, d ∈ [D].
4 Alice sets a = (s1, . . . , sN) and then performs Lines 3+4 in Protocol

3.
5 Alice sets a = (m1, . . . ,mN) and then performs Lines 3+4 in

Protocol 3.
6 Bob and the servers execute Lines 2,3+5,6-23 in Protocol 3, where

the servers use the shares in a = (s1, . . . , sN) that Alice had
distributed to them in Line 4 above.

7 Bob recovers sB := s from {sn : n ∈ {j1, . . . , jk}} using the
reconstruction function of the secret sharing scheme Σ.

8 Bob distributes to the servers (t,D)-shares in the secret sB that he
had computed above; Md’s share is denoted [sB]d, d ∈ [D].

9 Md, for all d ∈ [D], computes [e]d = [sA]d − [sB]d.
10 The servers recover e := sA − sB from any t shares out of
{[e]d : d ∈ [D]}.

11 if e ̸= 0 then Abort.
12 Bob and the servers execute Lines 18-23 in Protocol 3 where the

servers use the shares in a = (m1, . . . ,mN) that Alice had
distributed to them in Line 5 above.

Output: Bob gets mj1 , . . . ,mjk .

Protocol 7 and in two entirely different ways. In Line 2, Alice secret-shares s
among the set of participants U = {m1, . . . ,mN} where the access structure
is Γ; the secret sharing scheme here is Σ. Later on, in Line 6, Alice secret-
shares the same value s among the set of participants {M1, . . . ,MD}, i.e.,
the servers, where the access structure is a simple t-out-of-D threshold access
structure and t is as defined in Eq. (1); the secret sharing scheme here is
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the standard Shamir threshold secret sharing scheme [34]. The purpose of
the first secret sharing is to ensure that Bob can retrieve only subsets of k
messages from A0. The purpose of the second secret sharing scheme is to
enable the servers to verify that the value of s that Alice used equals the
value of s that Bob sends to them, without actually knowing s. (In a simpler
implementation, Alice could have sent the value of s to the servers, without
secret sharing. But then if Bob is able to corrupt a single server, he could
get from that server the value of s and then Bob would be able to learn any
subset of k messages. That is something that we prevent in Protocol 7 which
is secure under the assumption that the majority of servers are honest.)

Non-ideal access structures. We assumed that the access structure
Γ(A0), Eq. (8), is ideal in the sense that there exists a secret sharing scheme
Σ that realizes it in which all secret shares s1, . . . , sN are taken from the same
field Zp as the secret s. In cases where Γ(A0) is not ideal, or in cases where
Γ(A0) is ideal, but the selected secret sharing scheme Σ is not ideal2, then
the shares s1, . . . , sN cannot be taken from Zp. Assume that in such a case
all shares can be embedded in Zq for some prime q ≥ p. Then Protocol 7
works exactly as described, where the execution of Protocol 3 with the vector
a = (s1, . . . , sN) will be executed over Zq.

A concluding remark. As noted earlier, Alice and Bob do not need to
be active at the same time. In all OT variants that we considered (k-out-
of-N , Priced and Generalized OT), Alice can complete her part and then
go offline; only when the need arises, Bob can initiate the completion of the
protocol. For example, if Alice is a data custodian that serves many “Bob”
clients, Alice may complete her part and then let the servers attend to the
request of any future client Bob.

4.3.1 Exemplifying GOT for compartmented message sets

Assume that the set of messages, U = {m1, . . . ,mN}, is split into r disjoint
subsets, called compartments,

U =
r⋃

i=1

Ui , Ui ∩ Uj = ∅ , 1 ≤ i < j ≤ r .

2It is possible that a non-ideal secret sharing scheme could be simpler and easier to
implement than an equivalent ideal secret sharing scheme that realizes the same access
structure.
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Bob is allowed to retrieve messages only from one of those compartments.
Hence, the access structure here is

A = {B ⊂ U : |B| ⊆ Ui for some 1 ≤ i ≤ r} .

The basis of this access structure is A0 = {Ui : 1 ≤ i ≤ r}, and its monotone
increasing closure is

Γ = Γ(A0) = {B ⊂ U : B ⊇ Ui for some 1 ≤ i ≤ r} . (9)

The access structure in Eq. (9) is a simple case of a compartmented ac-
cess structure [10, 37], namely, one in which the participants (messages) are
split into disjoint compartments, and all participants within the same com-
partment play the same role in the access structure. The access structure
Γ can be easily realized as follows. (What follows is the computation that
Alice does in Line 2 of Protocol 7 in case her access structure is as described
above.)

Alice selects a random secret s ∈ Zp and then, for each compartment Ui,
1 ≤ i ≤ r, she will assign to all messages in that compartment random secret
shares that add up to s. Specifically, if Ui = {mjh : 1 ≤ h ≤ |Ui|} then Alice
selects uniformly at random |Ui|−1 secret shares, sjh ∈ Zp, 1 ≤ h ≤ |Ui|−1,
and then she sets sj|Ui|

= s−
∑|Ui|−1

h=1 sjh mod p.

5 Oblivious polynomial evaluation
The oblivious polynomial evaluation problem was presented in [29], and was
extended to the case of multivariate polynomials in [39]. We devise herein a
distributed protocol for the multivariate problem.

We begin by defining multivariate polynomials (Definitions 6 and 7) and
then define the corresponding MPC problem (Definition 8).

Definition 6. (Monomial) Let Zp be a finite field , x = (x1, . . . , xk) be a
k-dimensional vector over Zp and j = (j1, . . . , jk) be a k-dimensional vector
of nonnegative integers. Then the monomial xj is defined as xj :=

∏k
i=1 x

ji
i .

Definition 7. (Multivariate Polynomial) let Zk
+ := {j = (j1, . . . , jk) : ji ∈

Z+ = {0, 1, 2, . . .} : 1 ≤ i ≤ k} be the set of all k-tuples of nonnegative
integers, and Zk,N

+ be the subset of Zk
+ consisting of all tuples of which the

sum of components is at most N , i.e: Zk,N
+ := {j ∈ Zk

+ : |j| :=
∑k

i=1 ji ≤
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N}. An N-degree k-variate polynomial f(x) over the field Zp, where x =
(x1, . . . , xk) ∈ Zk

p, is defined as:

f(x) =
∑

j∈Zk,N
+

aj · x
j , aj ∈ Zp . (10)

Definition 8. (OMPE) Assume that Alice has an N-degree multivariate
polynomial f(x) = f(x1, . . . , xk), while Bob has a point α = (α1, . . . ,αk) ∈
Zk

p. They wish to enable Bob to learn f(α), and nothing else on f , while
keeping Alice oblivious to α.

OMPE can be solved by reducing it to DSP, with the needed prior val-
idations. The vector that Alice will submit to the protocol consists of the
coefficients of her polynomial, a = (aj : j ∈ Zk,N

+ ). The vector that Bob will
submit to the protocol is the following:

b = (bj : j ∈ Zk,N
+ ) , where bj := αj . (11)

It is easy to see that the dimension of these vectors is
(
N+k
k

)
.

First, it is necessary to agree upfront on an ordering of Zk,N
+ so that in the

scalar product between the two vectors, each power of α will be multiplied by
the corresponding polynomial coefficient. We suggest ordering the set Zk,N

+

by arranging its monomials into N+1 tiers, as follows. The 0th tier would be
T0 := Zk,0

+ , and then the nth tier, n = 1, . . . , N , would be Tn := Zk,n
+ \Z

k,n−1
+ ;

namely, the nth tier Tn consists of all monomials of degree exactly n ∈
{0, 1, . . . , N}. The order within each tier would be lexicographical.

Protocol 8 starts with Alice and Bob setting their input vectors a and
b in accord with the ordering convention (Lines 1-2). Then they distribute
to the servers (t,D)-shares in them (Lines 3-5). Observe that the first entry
in b, i.e. bj for j = (0, . . . , 0), equals 1 (see Eq. (11)). Hence, in Line 5
for j = (0, . . . , 0) Bob does not generate and distribute shares; instead, each
server Md, d ∈ [D], sets [bj]d = 1.

After completing the distribution of shares, the servers perform the rele-
vant DVV sub-protocol in order to validate that the secret input vector b is
of the form as in Eq. (11) (Lines 6-11). To that end we state the following
lemma, which we prove in Appendix B.

Lemma 1. The vector b = (bj : j ∈ Zk,N
+ ), where bj = 1 for j = (0, . . . , 0), is

of the form as in Eq. (11) if and only if ω = 0 in all stages of the validation
loop in Lines 6-11 of Protocol 8.
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Protocol 8: Oblivious Multivariate Polynomial Evaluation
Parameters: p - field size, k-number of variables, N - the degree of

the secret polynomial f , D - number of servers,
t = ⌊(D + 1)/2⌋.

Inputs: Alice has a secretN -degree k-variate polynomial f(x), Eq.
(10); Bob has a secret point α = (α1, . . . ,αk) ∈ Zk

p.
1 Alice sets a = (aj : j ∈ Zk,N

+ ), according to the ordering convention.

2 Bob sets b = (bj = αj : j ∈ Zk,N
+ ), according to the ordering

convention.
3 forall j ∈ Zk,N

+ do
4 Alice sends to Md, d ∈ [D], a (t,D)-share in aj, denoted [aj]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bj, denoted [bj]d.
6 forall 2 ≤ n ≤ N do
7 forall j ∈ Tn do
8 Select a monomial h ∈ Tn−1 such that j = h + ei for some

1 ≤ i ≤ k, where ei is the i-th unit vector.
9 The servers compute ω := bh · bei

− bj.
10 if ω ̸= 0 then
11 Abort
12 forall d ∈ [D] do
13 Md computes sd ←

∑
j∈Zk,N

+

(
[aj]d · [bj]d

)
.

14 Md sends sd to Bob.
15 Bob uses {s1, . . . , sD} to reconstruct a · b = f(α).

Output: Bob gets f(α).

In the final stage of Protocol 8, the servers compute (D,D)-shares in the
scalar product and send them to Bob (Lines 12-14) who uses them in order
to recover the scalar product (Line 15).

Example. We illustrate the validation process when k = 2 and N = 2.
Bob is expected to submit here vectors of the form

b = (b(0,0), b(1,0), b(0,1), b(2,0), b(1,1), b(0,2)) = (1, α1, α2, α
2
1, α1α2, α

2
2) .

Since the first entry is always 1, and the next two entries can be anything,
validation is applied only on the last three entries — b(2,0), b(1,1), and b(0,2):
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• To validate b(2,0), we observe that there is only one way to represent
the multi-index j = (2, 0) as a sum h + ei, namely, (2, 0) = (1, 0) +
(1, 0). Hence, the DVV sub-protocol checks whether b(2,0) = b(1,0) ·b(1,0).
Therefore, validation of this entry succeeds if and only if b(2,0) = α2

1.

• Similarly, b(0,2) is validated if and only if b(0,2) = α2
2.

• To validate b(1,1), we observe that j = (1, 1) = h + ei with h = (1, 0)
and ei = (0, 1) or with h = (0, 1) and ei = (1, 0). In either case, the
DVV sub-protocol checks whether b(1,1) = b(1,0) · b(0,1) = α1 · α2.

We conclude by noting that the security guarantees of Protocol 8 are as
stated in Theorem 2.

6 Communication complexity
Here we discuss the communication complexity of our protocols. We measure
the complexity by counting field (Zp) elements, where each field element can
be represented by ⌈log p⌉ bits,

We separate the overall communication traffic to three parts:

• ComAM: Messages sent between Alice and the servers.

• ComBM: Messages sent between Bob and the servers.

• ComMM: Messages sent among the servers.

For Protocol 1 (DSP) we have ComAM = ComBM = (N +1)D, since Alice
and Bob send to each of the D servers shares in each of the N entries in their
vectors and, at the end, each server sends a single share back to Alice and
Bob. As in this protocol the servers do not communicate among themselves,
we have ComMM = 0.

The communication costs of Protocol 2 for the OTN
1 problem are as fol-

lows: ComAM = ND (Line 4), ComBM = (N + 1)D (Line 5 and Line 20). As
for the communication between the servers, it is executed in the DVV sub-
protocol. We have here ND(D−1) due to the first part in the validation (Line
9) and t(D − 1) < D(D − 1) due to the second part (Line 15). In addition,
the servers have to communicate also in performing the scrambling (Line 8)
in order to generate random shares of 0. That communication can take place
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offline and its cost is ND(D − 1). Hence, the overall communication cost
among the servers is ComMM = (2N + 1)D(D − 1).

Before moving on, we consider Protocol 2* in which we replace Lines 6-12
of Protocol 2 with Sub-protocol 4. The communication cost of the original
DVV in Protocol 2 was 2ND(D − 1). However, the communication cost of
Sub-protocol 4 is due to Lines 2 and 4 there and it is only (θ + 1)D(D − 1),
where θ is the size of the random seeds σd, d ∈ [D], in terms of field elements.
(For example, we used a seed of 160 bits, so that θ = 160/⌈log p⌉.) Hence,
the communication cost among the servers in Protocol 2* is only ComMM =
(θ+2)D(D−1), and that is a significant improvement in comparison to what
we have in Protocol 2.

We move on to Protocol 3 for the OTN
k problem. Its communication costs

are as in Protocol 2 with one difference: at the end, Bob receives from each
server N field elements and not just one. Hence, the costs of this protocol
are:

ComAM = ND, ComBM = 2ND, ComMM = (2N + 1)D(D − 1) . (12)

The costs for Protocol 3*, that uses Sub-protocol 4 for DVV, are

ComAM = ND, ComBM = 2ND, ComMM = (θ + 2)D(D − 1) .

We note that the OTN
k problem could also be solved by invoking Protocol

2 k times, where Alice’s part has to be executed just once. The communica-
tion costs of this alternative course of action are:

ComAM = ND, ComBM = k(N+1)D, ComMM = k(2N+1)D(D−1) . (13)

Comparing Eq. (13) to Eq. (12) we see that such an alternative course of
action is less efficient than Protocol 3 for every k ≥ 2.

Next, we consider Protocol 5 for the problem of Priced OT. That proto-
col executes Protocol 3 (see Line 8 there), where part of the original DVV
process in Protocol 3 is replaced with Sub-protocol 6. That modification
leaves the communication costs of Protocol 3 unchanged. In addition, Pro-
tocol 5 includes Lines 1-7. Let us focus on the case where the weights are
publicly known. Then Alice has to send D shares in T and so does Bob, so
that adds D to both ComAM and ComBM. The computation in Line 6 adds
t(D− 1) < D(D− 1) to ComMM. Hence, we end up with the following costs:

ComAM = (N + 1)D, ComBM = (2N + 1)D, ComMM = 2(N + 1)D(D − 1) .
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The costs for Protocol 5*, that uses Sub-protocol 4 for DVV, are

ComAM = (N + 1)D, ComBM = (2N + 1)D, ComMM = (θ + 3)D(D − 1) .

Next, we consider the Generalized OT protocol, Protocol 7. The protocol
performs OTN

k (Protocol 3) twice, once for the vector of secrets (Line 4) and
once for the vector of messages (Line 5); however, Bob’s input vector is the
same in the two OTN

k executions, so the DVV sub-protocol is executed just
once (Line 6). In addition, Alice distributes to the servers shares in sA (Line
3), Bob does the same for sB (Line 8), and the servers communicate in order
to recover e (Line 10). Adding up everything yields the following costs:

ComAM = (2N +1)D, ComBM = (3N +1)D, ComMM = (2N +2)D(D− 1) .

The costs for Protocol 7*, that uses Sub-protocol 4 for DVV, are

ComAM = (2N + 1)D, ComBM = (3N + 1)D, ComMM = (θ + 3)D(D − 1) .

We proceed with Protocol 8 for the OMPE problem. The dimension of
Alice’s and Bob’s vectors is Nk :=

(
N+k
k

)
, and the number of entries in Bob’s

vector that need to be verified in the DVV sub-protocol is Nk − k − 1. In
Lines 4+5 both Alice and Bob send to the servers NkD shares. Then, in
the DVV sub-protocol, the servers send among themselves D(D − 1) field
elements Nk − k − 1 times (for reconstructing ω in Line 9 for all relevant
vector entries). Finally, the servers send to Bob D field elements (Line 14).
The overall communication costs are therefore

ComAM = NkD, ComBM = (Nk + 1)D, ComMM = (Nk − k − 1)D(D − 1) .

The communication costs of all protocols are summarized in Table 1.

7 Experiments
Implementation details. We implemented our protocols in Java on a
Lenovo Ideapad Gaming 3 laptop, powered by an AMD Ryzen 7 5800H
processor and 16GB of RAM. The operating system was Windows 11 64-
bit, and the environment was Eclipse-Workspace. A 64-bit prime number
p was chosen at random for the size of the underlying field Zp. To enable
computations modulo such prime, we used the BigInteger Java class. The
code is available at https://github.com/b1086960/Distributed_OT_OPE.
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Problem Protocol ComAM ComBM ComMM

SP 1 (N + 1)D (N + 1)D 0
OTN

1 2 ND (N + 1)D (2N + 1)D(D − 1)
2* ND (N + 1)D (θ + 2)D(D − 1)

OTN
k 3 ND 2ND (2N + 1)D(D − 1)

3* ND 2ND (θ + 2)D(D − 1)
Priced OT 5 (N + 1)D (2N + 1)D 2(N + 1)D(D − 1)

5* (N + 1)D (2N + 1)D (θ + 3)D(D − 1)

Generalized OT 7 (2N + 1)D (3N + 1)D 2(N + 1)D(D − 1)
7* (2N + 1)D (3N + 1)D (θ + 3)D(D − 1)

OMPE 8 NkD (Nk + 1)D (Nk − k − 1)D(D − 1)

Table 1: Communication costs of all distributed protocols with D servers.
N denotes the dimension of the vectors in SP, the number of messages in all
OT protocols, and the degree of the polynomials in the OMPE protocol. The
parameter k in Protocol 8 denotes the number of variables, while Nk =

(
N+k
k

)
.

All experiments were conducted on randomly generated vectors (or sets
of messages or polynomials). Each experiment was repeated ten times and
the average runtimes for Alice, Bob and the servers are reported (where the
runtimes for the servers are averaged over the ten runs as well as over the
D servers). The standard deviation is omitted from the graphical display of
our results since it is barely noticeable.
Results. In the first experiment we tested our basic protocol that solves
DSP, Protocol 1. Figure 1 shows the runtimes for Alice and Bob and the
average runtimes for the servers as a function of N (the dimension of the
two vectors). The runtimes in Figure 1 grow linearly in N . Figure 2 displays
those runtimes as a function of D. The runtimes for Alice and Bob grow
quadratically in D since they need to perform D polynomial evaluations
where the polynomial is of degree t − 1 = O(D). The servers’ runtime, on
the other hand, is not affected by D and only slightly fluctuates randomly
between 125 and 150 milliseconds for all tested values of D.

In the next experiment we tested Protocol 3 that solves the OTN
k problem.

Here we focus only on the servers, since Bob’s computations in that protocol
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Figure 1: Runtimes (milliseconds) for Protocol 1 (DSP), as a function of
log10(N), for D = 7. The left plot shows the runtimes for Alice and Bob;
the right plot shows the average runtimes for the servers. The runtimes are
presented on a logarithmic scale.

Figure 2: Runtimes (milliseconds) for Protocol 1 (DSP), as a function of D,
for N = 106. The left plot shows the runtimes for Alice and Bob; the right
plot shows the average runtimes for the servers. The runtimes are presented
on a linear scale.

are the same as in Protocol 1, while Alice’s computations are the same as in
the beginning of Protocol 1. The servers’ runtimes are shown in Figure 3.
The dependence on N is linear. As for D, while in Protocol 1 the servers’
runtimes do not depend on D, here they do depend on D, linearly, due to
the DVV part of the protocol. Their runtimes are not affected by k.

In addition, we ran Protocol 3*, in which the DVV sub-protocol is exe-
cuted by Sub-protocol 4. Here, the servers used a seed σ of 160 bits (see Lines
1-2 in Sub-protocol 4), and then, in order to generate a new random field
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Figure 3: Average runtimes (milliseconds) for the servers in Protocol 3
(OTN

k ). Left: runtimes, on a logarithmic scale, as a function of log10(N),
for D = 7 and k = 10. Right: runtimes as a function of D, for N = 106 and
k = 10.

element (as required in Line 3 in Sub-protocol 4) each server computes σ ←
SHA-1(σ) and takes σ mod p as the field element. The runtimes are given
in Figure 4. As expected from our analysis in Section 6, the improvement in
runtime is dramatic.

Figure 4: Average runtimes (milliseconds) for the servers in Protocol 3*
(OTN

k ), where DVV is executed by Sub-protocol 4. Left: runtimes, on a
logarithmic scale, as a function of log10(N), for D = 7 and k = 10. Right:
runtimes as a function of D, for N = 106 and k = 10.

We turn our attention to Protocol 5 (Priced OT). Like in Protocol 3,
we ignore the runtimes of Alice and Bob and focus on the servers’ average
runtime and demonstrate its linear dependence on N and on D, see Figure
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Figure 5: Average runtimes (milliseconds) for the servers in Protocol 5
(Priced OT)) . Left: runtimes as a function of N , for T = 100 and D = 7; the
runtimes are presented on a logarithmic scale. Right: runtimes as a function
of D, for T = 100 and N = 106.

5. Runtimes for Protocol 5* , in which the DVV sub-protocol is executed by
Sub-protocol 4, are shown in Figure 6.

Next, we tested Protocol 7 (Generalized OT) with the access structure
that we described in Section 4.3.1. In all of our experiments we used com-
partments of equal size, |Ui| = 10, 1 ≤ i ≤ r. The runtimes for Bob and
the servers, as a function of N and D, are reported in Figures 7 and 8. The
average runtimes for the servers in Protocol 7*, where the DVV is executed
by Sub-protocol 4, are shown in Figure 9. The comparison between those
runtimes and those as reported in Figures 7 and 8 illustrate the advantages
of Sub-protocol 4.

Finally, we consider Protocol 8 (OMPE). We ran that protocol with ran-
dom polynomials of degrees N ∈ {5, 10, 20, 30, 40, 50}, where the number
of variables was set to k = 3 — see Figure 10. The shown runtimes grow
linearly with

(
N+k
k

)
, since that is the size of the two vectors in the scalar

product.
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Figure 6: Average runtimes (milliseconds) for the servers in Protocol 5*
(Priced OT)), where DVV is executed by Sub-protocol 4. Left: runtimes
as a function of N , for T = 100 and D = 7; the runtimes are presented on
a logarithmic scale. Right: runtimes as a function of D, for T = 100 and
N = 106.

Figure 7: Runtimes (milliseconds) for Protocol 7 (GOT)), in the case of
compartmented access structures as a function of N , for D = 7. The left
plot shows the runtimes for Bob; the right plot shows the average runtimes
for the servers. The runtimes are presented on a logarithm scale.
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Figure 8: Runtimes (milliseconds) for Protocol 7 (GOT)), in the case of
compartmented access structures as a function of D, for N = 106. The left
plot shows the runtimes for Bob; the right plot shows the average runtimes
for the servers. The runtimes are presented on a linear scale.

Figure 9: Runtimes (milliseconds) for Protocol 7* (GOT)), where DVV is
executed by Sub-protocol 4, in the case of compartmented access structures.
The left plot shows the average runtimes for the servers as a function of N ,
for D = 7, on a logarithmic scale; the right plot shows the average runtimes
for the servers as a function of D, for N = 106 on a linear scale.
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Figure 10: Runtimes (milliseconds) for Protocol 8 (OMPE), as a function of
N , the polynomial degree, for k = 3. Left: runtimes for Bob; right: average
runtimes for the servers.

8 The case of malicious servers
In our discussion so far we focused on the case of semi-honest servers. Here
we describe cryptographic enhancements that render our protocols immune
also when some of the servers are malicious. Those enhancements consist of
modifications to the secret sharing sub-protocols only: dealing shares in a
given secret, and the reconstruction of secrets from its shares; hence, they do
not alter the information flow and logical structure of our distributed scalar
product, OT and OPE protocols.

We demonstrate those enhancements only for the distributed protocol for
the OTN

1 problem, as the modifications of other protocols go along the same
lines. Moreover, we focus on Protocol 2*, which is obtained from Protocol 2
by replacing Lines 6-12 in it with Sub-protocol 4 (that verifies that Bob had
submitted shares in a binary vector). We choose to focus on Protocol 2* as
it is much more efficient than Protocol 2 (see Sections 6 and 7) and thus it
is a more suitable starting point for security enhancements, as those impose
a toll on communication and computation costs.

This section is structured as follows: in Section 8.1 we provide a quick
overview of verifiable secret sharing; in Section 8.2 we describe the simple
enhancements that would render our protocol secure when the number of
malicious servers, denoted c, is smaller than D

4
; finally, in Section 8.3 we

describe the more involved enhancements that render our protocol secure
when c < D

3
.
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8.1 A crash course on verifiable secret sharing

Verifiable secret sharing [12] is a protocol for sharing a secret in the presence
of malicious adversaries. If the malicious adversary corrupts the dealer then
the dealer may distribute to all parties (M1, . . . ,MD in our case) shares that
are not point values of some polynomial of degree t − 1, where t − 1 is the
announced degree. If the malicious adversary corrupts some of the share-
holding parties, they may submit in the reconstruction phase wrong share
values, so that different subsets of t out of the D shares yield different secret
values.

We begin by discussing the second problem, as it is easier to solve than
the first one. Assume that the secret is s and that the dealer distributed to
Md, d ∈ [D], the share f(d), where f(x) =

∑t−1
i=0 aix

i is a random polynomial
of degree t− 1 and a0 = s. The collection of vectors

C := {(f(1), . . . , f(D)) : (a0, . . . , at−1) ∈ Zt
p}

is a [D, t,D − t + 1]-linear code over Zp. That means that it is a linear
subspace of ZD

p of dimension t, and the Hamming distance between every
two vectors in that subspace is at least D − t + 1.3 Such codes are called
Reed-Solomon codes and there exists an efficient decoding algorithm that
can correct in any given codeword w ∈ ZD

p up to (D− t)/2 errors by looking
for the codeword in C that minimizes the Hamming distance to w [41].

Hence, if in the reconstruction phase all D servers broadcast their shares,
then assuming that at most (D − t)/2 among those shares are wrong, the
servers can still reconstruct the correct codeword (f(1), . . . , f(D)), and thus
recover f , and consequently also s = f(0).

As an example, if the number of corrupted parties c is less than D
3
, the

dealer can use a share-generating polynomial of degree t− 1 where t = ⌈D
3
⌉.

First, this setting of t ensures that the corrupted parties cannot recover the
secret without at least one honest party, since if c < D

3
then c ≤ t − 1.

Moreover, as the Reed-Solomon decoding algorithm can correct up to D−t
2

errors, it can correct in this case all c wrong values that the corrupted parties
may submit, since D−t

2
≥ c. Indeed, t = ⌈D

3
⌉ satisfies 3t ≤ D+2 and therefore

D−t
2
≥ t− 1 ≥ c.

The first problem, in which the dealer is malicious and distributes shares
that are generated by a polynomial of degree greater than t−1, is somewhat

3Indeed, if f and g are two distinct polynomials of degree at most t− 1, they can agree
in at most t− 1 points.
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more involved. One way to prevent the dealer from cheating is described in
[5, Section 5] and is outlined below.

The main idea is that the dealer uses a bivariate polynomial

S(x, y) =
t−1∑
i=0

t−1∑
j=0

ai,jx
iyj

where S(0, 0) equals the underlying secret s. The dealer sends to each Md,
d ∈ [D], two univariate polynomials — fd(x) = S(x, d) and gd(y) = S(d, y).
It is easy to see that those univariate polynomials satisfy fd(d

′) = gd′(d), for
all d, d′ ∈ [D]. Any two parties, Md and Md′ , can then verify that

fd(d
′) = gd′(d) and fd′(d) = gd(d

′) . (14)

If the equalities in Eq. (14) are verified by all
(
D
2

)
pairs of parties, the parties

are ascertained that the dealer had used a single bivariate polynomial S(x, y)
of degree t − 1 [5, Claim 5.3]. In that case, the parties can recover the
secret s since the values fd(0) = S(0, d), d ∈ [D], induce a single univariate
polynomial S(0, y) of degree t − 1, and s = S(0, 0). Furthermore, it can be
shown that any t − 1 parties learn no information on s (see [5, Claim 5.4])
so that this secret sharing scheme offers perfect secrecy.

We conclude by noting that the above described scheme, that uses a
bivariate polynomial, requires private point-to-point channels between any
pair of parties. (That assumption comes on top of the general assumption,
as described in Section 2, that the servers have an authenticated broadcast
channel.)

8.2 The case c < D
4

In Protocol 2*, the only parties that act as dealers of secrets are Alice and
Bob (Lines 4 and 5). The servers validate the legality of Bob’s input vector
by reconstructing two secret values: one in Line 5 of Sub-protocol 4, and
another in Line 15 of the main Protocol 2. Afterwards, Bob reconstructs the
final output in Line 21.

First, we note that we should not worry about scenarios in which Alice or
Bob deal their secrets in a malicious manner. As for Bob, being the receiver
he is the only party that receives any output and, consequently, there is
no reason for him to cheat. As for Alice, she might want to sabotage the
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process, but then she could simply submit a wrong input vector or refrain
from participating in the protocol in the first place. Therefore, it makes no
sense to verify that either Alice or Bob dealt their secrets properly.

Next, we discuss the necessary modifications to Protocol 2* in order to
ascertain its correct and secure operation when c < D

4
of the servers are

malicious. The modifications are:

1. In Lines 4-5 of the protocol, Alice and Bob use (t,D)-sharing with
t = ⌈D/4⌉ instead of the original value of t = ⌊(D + 1)/2⌋ (Eq. (1)).

2. When the servers compute ω in Line 15 they use all D shares. If the
reconstruction procedure yields a polynomial of degree greater than
t−1, the servers apply the Reed-Solomon decoding procedure to recover
the correct value.

3. When the servers compute ω in Line 5 in Sub-protocol 4, if the D shares
induce a polynomial of degree greater than 2t − 2, the servers apply
the Reed-Solomon decoding procedure to recover the correct value.

4. When Bob computes the output in Line 21 in the main protocol, if the
D shares induce a polynomial of degree greater than 2t−2, Bob applies
the Reed-Solomon decoding procedure to recover the correct value.

Theorem 3. If c < D
4

then the above described modified Protocol 2* is correct
and is perfectly secure.

Proof. Assume that D = 4j − i for j ≥ 1 and i ∈ {0, 1, 2, 3}. Then
t = ⌈D/4⌉ = j and c ≤ t − 1. The degree of the secret sharing polynomials
that Alice and Bob use is t − 1 and, therefore, at least t servers need to
collaborate in order to recover any of the secrets. Since c ≤ t − 1, the
malicious servers cannot learn any information on the shared secrets.

When the servers compute ω in Line 15, the secret sharing polynomial is
of degree t− 1. In that case, the underlying Reed-Solomon code can correct
up to (D − t)/2 errors. But D−t

2
= 3j−i

2
≥ j − 1, where the last inequality is

equivalent to j ≥ i − 2, which obviously holds for j ≥ 1 and i ∈ {0, 1, 2, 3}.
Since j − 1 ≥ c, it follows that the code can correct all (up to) c errors.

In the other two places where a secret is interpolated (Line 5 in Sub-
protocol 4 and Line 21 in the main protocol) the underlying polynomial is of
degree 2t − 2. In that case, the underlying Reed-Solomon code can correct
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up to (D − (2t− 1))/2 errors. In this case we have

D − (2t− 1)

2
=

4j − i− 2j + 1

2
≥ j − 1 ,

where the last inequality follows from the fact that i ≤ 3. Since j − 1 ≥ c,
here too it is possible to correct all (up to) c errors. 2

We note that the communication and computational costs of the above
described modified protocol are almost the same as those of Protocol 2*.
Indeed, if there are no malicious servers then no Reed-Solomon decoding
needs to be executed and the only difference is in Line 15 of the main protocol,
where this time the servers need to use all D shares for interpolation and not
just ⌊(D + 1)/2⌋ of the shares as done in the original Protocol 2*. In case
there are malicious servers, then the servers and Bob would need to run the
Reed-Solomon decoding algorithm up to three times, where the complexity
of this operation is independent of N , hence, the added cost is negligible.

8.3 The case c < D
3

So far we were able to dodge the need to run the BGW protocol [7] since
all of the arithmetic expressions that we compute are polynomials of degree
at most 2 in the shared secrets. Hence, by using secret sharing polynomials
of degree at most ⌊(D + 1)/2⌋ − 1, it is possible to compute polynomials
of degree at most 2 (namely, polynomials in which each term has no more
than a single multiplication of secrets), without performing degree reduction,
which is the essence and the most costly part of the BGW protocol.

However, if we aim to strengthen our protocols so that they would be
immune against higher numbers of malicious servers, we would need to ap-
ply the BGW protocol, which involves degree reduction. That part of the
computation requires each server to act also as a dealer of secret shares. Ma-
licious servers may try to seize this opportunity in order to distribute shares
that do not correspond to a share-generating polynomial of the proper de-
gree. Hence, it would be necessary to implement techniques, such as the one
described in Section 8.1, to prevent such malicious conduct.

Therefore, one can enhance the protocol by implementing the BGW pro-
tocol with verifiable secret sharing that offers security in the presence of a
malicious adversary who controls c < D

3
servers. That protocol, as described

in [7], was shown in [5, Section 6] to be perfectly secure when c < D/3. The
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interested reader is referred to [5, 7] for a detailed description and analysis
of that protocol.

We proceed to summarize the needed modifications in Protocol 2* that
would render it secure against an adversary that corrupts c < D

3
of the

servers:

1. In Lines 4-5 of the protocol, Alice and Bob use (t,D)-sharing with
t = ⌈D/3⌉.

2. When the servers compute ω in Line 15 they use all D shares. If the
reconstruction procedure yields a polynomial of degree greater than
t−1, the servers apply the Reed-Solomon decoding procedure to recover
the correct value.

3. The computation in Line 4 in Sub-protocol 4 is carried out by applying
the BGW multiplication procedure in the presence of adversaries.

4. When computing ω in Line 5 of Sub-protocol 4, if the D shares induce
a polynomial of degree greater than t− 1, the servers apply the Reed-
Solomon decoding procedure to recover the correct value.

5. The computation in Line 19 in the main protocol is carried out by
applying the BGW multiplication procedure in the presence of adver-
saries.

6. When Bob computes the output in Line 21 in the main protocol, if the
D shares induce a polynomial of degree greater than t− 1, Bob applies
the Reed-Solomon decoding procedure to recover the correct value.

As noted earlier, the costly part in those enhancements is the multiplica-
tion procedure. If the servers generate offline (before Bob submits his input)
a sufficient number of Beaver triplets [6], those triplets can be later used in
order to significantly reduce response time to queries that receivers submit.

9 Related work
Naor and Pinkas [30] introduced the first version of a distributed OT. Their
setting is similar to the one that we consider here: (a) apart from the sender
(Alice) and the receiver (Bob) there are external servers that participate in
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the computation; (b) Alice sends information only to the servers and her
role ends after doing so; (c) Bob can perform his part in a later time by
communicating solely with the servers.

They considered OT2
1: namely, Alice has m1 and m2, Bob has a selection

index j ∈ {1, 2}, and the goal is to let Bob have mj and nothing else, while
Alice should remain oblivious of j. Their protocols are referred to as ℓ-out-
of-D distributed OT2

1, meaning that Bob has to communicate with ℓ out of
the D servers in order to receive his message of choice.4.

The two protocols that are proposed in [30] are based on secret sharing
of some univariate polynomial. Specifically, Alice chooses a random bivari-
ate polynomial Q(x, y) that encodes m1 and m2, Bob chooses some random
univariate polynomial S(x) that encodes j, and then, by carefully select-
ing the degrees of those polynomials, they induce a univariate polynomial
R(x) = Q(x, S(x)) of degree ℓ − 1. The free coefficient in R(x) is mj and,
consequently, Bob can get that value by obtaining the value of R(x) in ℓ
points. Bob does that by receiveing information from ℓ servers.

The first protocol uses a simple bivariate polynomial Q(x, y). It suffers
from two shortcomings: each server learns the difference m2 − m1 and, in
addition, if a single server colludes with Bob, they obtain both of Alice’s
messages. The second protocol uses a more involved bivariate polynomial,
that prevents the above described breach in Alice’s privacy. However, that
protocol still allows Bob to learn any linear combination of the two messages,
rather than just m1 or m2. Later on they outline a manner which enforces
Bob to learn just m1 or m2 but not any other linear combination of the two
messages. The idea is to perform the protocol twice: in one execution Alice
submits her two messages masked by random multipliers, c1m1, and c2m2; in
the second execution Alice submits the two multipliers, c1 and c2. They then
argue that if m1 ̸= m2, such a course of action disables Bob from inferring
any linear combination of m1 and m2 which is not one of the two messages.

Blundo et al. [8] generalized the protocols of [30] to distributed OTN
1 . In

their generalization, Alice uses an N -variate polynomial. Q(x, y1, . . . , yN−1)
that encodes her N messages, m1, . . . ,mN . Bob, on the other hand, encodes
his index j by N − 1 univariate polynomials, Z1, . . . , ZN−1. Those poly-
nomials implicitly induce a univariate polynomial of degree ℓ − 1, R(x) =
Q(x, Z1(x), . . . , ZN−1(x)), such that R(0) = mj. As in [30], Bob contacts

4In our discussion of related work we replace the original parameter notations with the
ones that we used in the present work, for consistency and clarity.
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ℓ servers in order to get ℓ point values of R that enable him to recover
R(0) = mj. They showed that any coalition of up to ℓ − 1 servers cannot
obtain any information on j, and that any coalition of up to ℓ − 1 servers
with Bob cannot obtain any information on Alice’s messages. However, their
protocol has the same vulnerability as that of [30]: each server learns the
differences mn −m1 for all 1 ≤ n ≤ N ; and a coalition of Bob with a single
server enables the recovery of all N messages.

Hence, the protocols of [30] and [8] are vulnerable to a collusion of Bob
with just a single server. Blundo et al. defined the following privacy goal:
a coalition of Bob with any subset of ℓ − 1 servers should not be able to
infer any information on Alice’s messages, beyond the message that Bob had
selected. They proved that such a goal cannot be achieved in a one-round
distributed OT protocol.

Nikov et al. [31] presented an analysis of the ℓ-out-of-D distributed OTN
1

framework used in the above described studies. Namely, they considered pro-
tocols that involve a sender (Alice), a receiver (Bob) and D servers, through
which Bob can retrieve a single message out of Alice’s N messages by con-
tacting ℓ of the D servers. They considered such a scheme to be (t, k)-secure
if (a) any coalition of t− 1 servers cannot infer anything on Bob’s selection
index, and (b) a coalition of Bob with k corrupt servers does not yeild to
Bob any further information. They then showed [31, Corollary 1] that such a
scheme can exist iff ℓ ≥ t+k. They continued to demonstrate a construction
of such a scheme with a minimal threshold of ℓ = t + k. Later on, they
considered settings in which not all servers enjoy the same level of trust and
presented a distributed OTN

1 protocol in which Bob can recover his message
of choice by contacting an authorized subset of servers, where the authorized
subsets are defined by a general access structure.

We note that the protocols of [8, 31] enable Bob to learn any single linear
combination of Alice’s messages, and not just a single message; hence, they
implement only a weaker version of OT.

Corniaux and Ghodosi [15] took a different approach in their solution
of the distributed OTN

1 problem. As opposed to the above described works,
they allow the servers to communicate with each other, thus breaching out of
the framework of one-round distributed OT. Their protocol is similar to our
distributed OTN

1 protocol (Protocol 2): Alice distributes to the servers secret
shares in her vector of messages, while Bob distributes secret shares in the
binary vector that encodes his selection index. The requested message is the
scalar product between those two private vectors. However, the protocol in
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[15] lacks the DVV part, which is at the heart of our Protocol 2 (Lines 6-15).
Consequently, Bob can create any selection vector and hence can recover any
linear combination of the messages m1, . . . ,mN . Hence, the protocol in [15]
too does not implement OT but a weaker form of that problem. (We note
that there are other technical differences between our Protocol 2 and the one
in [15], e.g., the fact that we do not need to perform a transformation from
one threshold scheme to another, as they do; we omit further details.)

The problem of OPE (Oblivious Polynomial Evaluation) was introduced
by Naor and Pinkas in [29]. It is closely related to OT: here, too, Alice
has a set of secrets and Bob is allowed to get a single linear combination of
those secret while Alice should remain oblivious of his choice. While in OT
the secrets are messages and the allowed linear combinations are the ones
that consist of a single message, in OPE the secrets are the coefficients of
a private polynomial, f(x), and the allowed linear combinations are those
that relate to a point value of that polynomial, f(α). In the OPE protocol
of [29] Alice hides her secret polynomial f(x) in some bivariate polynomial
while Bob hides his secret point α in some univariate polynomial. Those two
polynomials induce a univariate polynomial R(x) such that R(0) = f(α).
Bob then learns dR + 1 point values of R, where dR is the degree of R, and
then proceeds to recover R(0). He does that by invoking dR + 1 instances of
1-out-of-m OT, where m is a small security parameter.

We are interested here with distributed protocols for OPE. The first such
protocol was introduced by Li et al. [28]. They suggested three protocols
for that matter, which are based on secret sharing and polynomial inter-
polation. In the first and simplest method, Alice secret shares each of her
polynomial coefficients among the servers, while Bob distributes secret shares
in the corresponding powers of his selected point. The desired value is then
obtained by computing the scalar product between the two shared vectors.
The two subsequent versions of this basic protocol are designed in order to
increase the immunity of the protocol to collusion between the servers and
Bob. The protocols assume that all parties are semi-honest. Since Bob is also
assumed to be semi-honest, Bob can submit to the protocol secret shares in
any vector, not necessarily one of the form (0, α, α2, . . . , αN) (where N is the
degree of Alice’s polynomial f). Hence, their protocols amount to protocols
of distributed scalar product.

Cianciullo and Ghodosi [14] described another DOPE protocol that offers
better security and complexity than the protocols of Li et al. [28]. Specif-
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ically, their protocol offers security for both Alice and Bob against collu-
sion of up to t − 1 out of the D servers, for some threshold t that can be
tuned by the degrees of the secret sharing polynomials that the protocol
uses. If f(x) =

∑N
n=0 anx

n, Alice generates random values r1, . . . , rN and
then distributes to the servers shares in an, 0 ≤ n ≤ N , and in γn := rnan,
1 ≤ n ≤ N , where the secret sharing polynomials are of degree t − 1. In
addition, she sends r1, . . . , rN to Bob. Subsequently, Bob broadcasts to all
servers the values en := αn − rn, 1 ≤ n ≤ N . Then, a subset of t servers,
say M1, . . . ,Mt, respond to Bob as follows: server Md, 1 ≤ d ≤ t, sends to
Bob the value [z]d := [a0]d +

∑N
j=1 (en[an]d + [γn]d), where [x]d denotes Md’s

share in the value x. Those values enable Bob to reconstruct a polynomial
Z(x) of degree t such that Z(0) = f(α). Despite the advantages that their
protocol offers with respect to that of Li et al. [28], it too does not restrict
Bob to learning only point values of f(x), as it allows Bob to learn any linear
combination of f ’s coefficients. In addition, it requires Alice to communicate
with Bob and generate a new set of secret shares per each request. Protocol
8 that we presented herein allows Alice to act just once and by thus serve
an unlimited number of future queries of "Bobs"; it allows the computation
only of point values of f ; and it is the first protocol that is designed for
multivariate polynomials.

We note that all of the related work discussed above assumes a passive
adversarial model. Namely, an adversary may corrupt some of the servers
in order to get hold of their view in the protocol, but it cannot actively
change the messages that they send. Namely, those protocols provide security
against a collusion between some of the servers, assuming that they are still
semi-honest, but not against malicious servers who may act arbitrarily. In
our discussion in Section 8 we explained how to enhance our protocols so
that they provide protection even when some of the servers are malicious.

10 Conclusion
We presented here distributed MPC protocols for three fundamental MPC
functionalities: scalar product, oblivious transfer (k-out-of-N , Priced, and
Generalized OT), and oblivious (multivariate) polynomial evaluation (OMPE).
While previous studies offered distributed MPC protocols for 1-out-of-N OT
and for (univariate) OPE, ours are the first ones that consider malicious re-
ceivers and restrict them to receive only the outputs that the MPC problem
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allows. To the best of our knowledge, our study is also the first one that
suggests distributed MPC protocols for k-out-of-N OT, Priced OT, Gener-
alized OT, and OMPE. Finally, ours are the first distributed MPC protocols
that are designed also for the case of malicious servers. Our protocols are
information-theoretic secure and provide unconditional security to both Alice
and Bob, even when some of the parties collude, and they are very efficient.

The protocols that we presented herein demonstrate the advantages that
the distributed model offers: the existence of external servers enables much
simpler and more efficient MPC protocols; it allows the MPC parties (the
sender Alice and the receiver Bob) to delegate the bulk of the computation
to the dedicated servers; and it completely disconnects Alice from Bob so
that they do not need to communicate with each other, or even to know each
other or to be active at the same time. Moreover, in cases where the sender
wishes to serve a multitude of receivers, she can perform her part just once,
and from that point onward only the servers attend to any request of any
future receiver.

While OT and OPE can serve as building blocks for general MPC prob-
lems [25, 28], it would be interesting to use the ideas presented here in order to
develop distributed protocols for the following fundamental two-party MPC
problems:
• Oblivious Function Evaluation (OFE): Alice has a function that is rep-

resented by a Boolean circuit and Bob has a suitable input binary vector.
The goal is to let Bob learn the output of Alice’s circuit over his input and
nothing else, while Alice remains oblivious of Bob’s input. We note that
Boolean circuits can be represented as multivariate polynomials over Z2 in
the k binary input wires; hence, that problem is a special case of OMPE.
However, as it can be impractical to represent a Boolean circuit by a poly-
nomial, another approach that evaluates the circuit gate by gate seems more
suitable.
•Oblivious Automaton Evaluation (OAE): Alice has a deterministic finite

or pushdown automatonA with an input alphabet Σ; Bob has a word w ∈ Σ∗.
The goal is to let Bob learn whether w is a word that A accepts without
learning any other information on A, while Alice remains oblivious of w.
• Oblivious Turing Machine Evaluation (OTME): Alice has a Turing Ma-

chine M with an input alphabet Σ and Bob has a word w ∈ Σ∗. The goal
is to let Bob know the output M(w) without learning any other information
on M , while Alice remains oblivious of w.

We believe that the distributed model can be most effective in designing
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solutions to such fundamental problems of multiparty computation as well
as in practical problems that arise in privacy-preserving distributed compu-
tation.
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A A 1-out-of-N distributed OT protocol with
non-interacting servers

The central part in Protocol 2 was the DVV sub-protocol, namely, the part
in which the servers validate that Bob had submitted a legal vector b ∈
W = {ej : j ∈ [N ]}. That part is essential in order to verify that Bob learns
exactly one of the secret messages and not an arbitrary linear combination of
them. This is the only part in the protocol where the servers communicate
with each other.

The alternative protocol achieves the same goal as the DVV sub-protocol
by applying a different mechanism. In that protocol Alice generates a random
vector of nonzero multipliers α = (α1, . . . , αN) ∈ (Z∗

p)
N (where Z∗

p = Zp \
{0}). Then, she performs her part in Protocol 2 (Lines 1 and 3-4) twice: once
with the vector of masked messages aα = (α1m1, . . . , αNmN), and once with
the vector of random multipliers α. Bob performs his part in the initial stage
of Protocol 2 (Lines 2, 3+5) exactly the same. After completing this initial
stage, the servers skip to the last stage in Protocol 2 (Lines 18-21). But now
that part is performed twice so that Bob recovers two scalar products — aα ·b
and α ·b. If Bob had submitted a legal selection vector b = ej, j ∈ [N ], then
aα · b = αjmj and α · b = αj. Since αj ̸= 0 Bob can recover the message of
his choice, mj. However, if Bob had submitted b /∈ W = {ej : j ∈ [N ]}, he
will get no information at all.

Theorem 4. If Bob submits an illegal vector b /∈ W = {ej : j ∈ [N ]}, the
two scalar products aα · b and α · b reveal no information on the messages
m1, . . . ,mN .

The proof of Theorem 4 is given below. We note that the mechanism that
we used here to ensure that Bob respects the protocol is based on an idea
that was presented in [30] for their 1-out-of-2 OT protocol. This approach is
advantageous with respect to our DVV mechanism as it does not require
the servers to communicate with each other. However, it enforces Alice
to be online whenever a client (Bob) wishes to engage in an information
retrieval since she needs to generate a new set of random masks for each
request. So, for example, if Alice holds some database that serves multitude
of clients ("Bob"s), while our approach enables Alice to act only once and
then, whenever a client wishes to retrieve a record from the database he only
needs to communicate with the servers, in the approach presented here Alice
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(as well as the servers) have to be responsive to each client. Another problem
with the approach presented here is that it is tailored to 1-out-of-N OT. We
solve herein many other problems of OT and OPE: while the approach that
we used here for 1-out-of-N OT does not extend to such problems, the DVV
approach does, as we show hereinafter.

Proof of Theorem 4. Denote by q the number of entries in b that are
nonzero. Let us assume, without loss of generality, that bn ̸= 0 for all 1 ≤
n ≤ q and bn = 0 for all q < n ≤ N . Then Bob will receive two values
from the two stages in the distributed OT protocol —

∑q
n=1 bnαnmn and∑q

n=1 bnαn. Since αn distribute uniformly in Z∗
p = Zp \ {0} and bn ̸= 0,

1 ≤ n ≤ q, those two values are of the form

U :=

q∑
n=1

βnmn and V :=

q∑
n=1

βn , (15)

where βn distribute uniformly in Z∗
p.

Our goal is now to show that U and V reveal no information on any
given linear combination of (m1, . . . ,mq). Namely, that if (c1, . . . , cq) is any
arbitrary nonzero vector in Zq

p and X =
∑q

n=1 cnmn, then U and V reveal
no information on X. To do that we view U , V and X as random vari-
ables in Zp. Their value is determined by the random vectors (β1, . . . , βq)
and (m1, . . . ,mq). The first distributes uniformly in (Z∗

p)
q, while the second

distributes uniformly in Zq
p. Our goal is to show that H(X|U, V ) = H(X),

namely, that the conditional entropy of X, given U and V , equals the a-priori
entropy of X. We show that by proving that for any three scalars u, v, x we
have

P (X = x|U = u, V = v) = P (X = x) . (16)

We begin by the considering the case (c1, . . . , cq) = (1, 0, . . . , 0). In this
case X = m1. Hence, as we assume that Bob has no prior knowledge on the
value of the messages m1, . . . ,mN , the probability on the right hand side of
Eq. (16) equals

P (X = x) =
1

p
, ∀x ∈ Zp . (17)

The conditional probability on the left hand side of Eq. (16) is

P

(
m1 = x

∣∣∣ q∑
n=1

βnmn = u and
q∑

n=1

βn = v

)
. (18)
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Let us fix a specific tuple (β′
1, . . . , β

′
q) such that

∑q
n=1 β

′
n = v. Then

P

(
m1 = x

∣∣∣ q∑
n=1

β′
nmn = u

)
=

P (m1 = x and
∑q

n=1 β
′
nmn = u)

P (
∑q

n=1 β
′
nmn = u)

. (19)

As the messages m1, . . . ,mN are independent, the probability in the numer-
ator on the right hand side of Eq. (19) equals

P

(
m1 = x and

q∑
n=1

β′
nmn = u

)
= P (m1 = x) · P

(
q∑

n=2

β′
nmn = u− β′

1x

)
.

(20)
Since all messages distribute uniformly in Zp we infer that each of the two
multiplicands on the right hand side of Eq. (20) equals 1

p
. For the same

reason also the probability in the denominator on the right hand side of Eq.
(19) equals 1

p
. It follows that

P

(
m1 = x

∣∣∣ q∑
n=1

β′
nmn = u

)
=

p−1 · p−1

p−1
=

1

p
. (21)

Since (β′
1, . . . , β

′
q) is an arbitrary tuple that satisfies

∑q
n=1 β

′
n = v, Eqs.

(18)+(21) imply that

P (X = x|U = u, V = v) =
1

p
. (22)

Hence, Eq. (16) follows from Eqs. (17)+(22).
The general case where (c1, . . . , cq) is any nonzero vector in Zq

p can be
reduced to the case (c1, . . . , cq) = (1, 0, . . . , 0) by applying a suitable linear
transformation. As (c1, . . . , cq) ̸= 0 we can assume, without loss of generality,
that c1 = 1. Define m′

1 =
∑q

n=1 cnmn, and m′
n = mn for all 2 ≤ n ≤ q. Then

the conditional probability on the lefy of Eq. (16) equals

P

(
m′

1 = x
∣∣∣ q∑

n=1

β′
nm

′
n = u, and

q∑
n=1

βn = v

)
, (23)

where β′
n = βn − β1cn, 1 ≤ n ≤ q. Since also m′

n, 1 ≤ n ≤ q, distribute
independently and uniformly on Zp, arguing along the same lines as above
shows that the probability in Eq. (23) equals 1

p
, and also P (m′

1 = x) = 1
p
.

That settles our claim for any arbitrary linear combination of m1, . . . ,mN in
which there are q > 1 nonzero coefficients. 2

53



B Proof of Lemma 1
Assume that b is as in Eq. (11). Then for every multi-index j ∈ Zk,N

+ , the
corresponding entry in b is bj := αj. Hence, for any 2 ≤ n ≤ N and for any
j ∈ Tn, there exists at least one monomial h ∈ Tn−1 such that j = h+ ei, for
some 1 ≤ i ≤ k. Let us compare the monomial bj := αj with the monomial

bh := αh. The two multi-indices j and h equal in all entries except for the
ith entry, where ji = hi + 1. Therefore,

bj := αj = αh · αi = bh · bei
.

Hence, such a vector will pass all stages of the DVV in Lines 6-11.
Assume next that b does not comply with the form as in Eq. (11). That

means that
b = (1, α1, . . . , αk, bj : 2 ≤ |j| ≤ N) ,

where there exists at least one entry bj, where 2 ≤ |j| ≤ N , that is not of
the form as in Eq. (11). Let us focus on the first multi-index j that is not of
that form. Namely, j is the first multi-index for which

bj ̸= αj , (24)

where α = (α1, . . . , αk). Assume that |j| = n ∈ [2, N ] and let i be any index
between 1 and k such that j = h+ ei for some h ∈ Tn−1. By the minimality
of j it means that

bh = αh . (25)

From Eqs. (24) and (25) it follows that the validation check in Lines 9+10
would fail for those multi-indices. That completes the proof. 2
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