
The Multiple Millionaires’ Problem

Tamir Tassa1 and Avishay Yanai2

1 The Open University, Israel. tamirta@openu.ac.il
2 VMware Research. ay.yanay@gmail.com

Abstract. We study a fundamental problem in Multi-Party Computa-
tion, which we call the Multiple Millionaires’ Problem (MMP). Given a set
of private integer inputs, the problem is to identify the subset of inputs
that equal the maximum (or minimum) of that set, without revealing any
further information on the inputs beyond what is implied by the desired
output. Such a problem is a natural extension of the Millionaires’ Prob-
lem, which is the very first Multi-Party Computation problem that was
presented in Andrew Yao’s seminal work [31]. A closely related problem
is MaxP, in which the value of the maximum is sought. We propose several
approaches towards the solution of those fundamental problems as well
as concrete solutions, and compare their performance. As applications
of privacy-preserving computation are more and more commonly imple-
mented in industrial systems, MMP and MaxP become important building
blocks in privacy-preserving statistics, machine learning, auctions and
other domains. One of the prominent advantages of our novel protocols
is their simplicity. As they solve fundamental problems that are essen-
tial building blocks in various application scenarios, we believe that our
systematic study of solutions to those problems, and the comparison be-
tween them, will serve well future researchers and practitioners of secure
distributed computing.

Keywords: Multi-party computation · Millionaires’ problem · The max-
imum problem · Privacy-preserving computation.

1 Introduction

Whenever the notion of Multi-Party Computation (MPC) is mentioned, it is
almost always followed by a citation of Andrew Yao’s seminal work from 1982,
entitled “Protocols for secure computation” [31]. Yao presented there the first
MPC protocol; the problem solved by that protocol was the Millionaires’ Prob-
lem (MP): given two parties, P1 and P2, each one holding a private nonnegative
integer – x1 and x2, respectively, determine whether x1 < x2 or not, without
revealing any further information on x1 and x2.

3

As MP is an essential building block for a vast array of MPC problems, many
studies have presented over the years additional solutions to it, e.g.
[3,7,9,13,14,18,20,22,26,27]. We proceed to define a natural extension of MP:

3 This problem is sometimes referred to as the Greater Than problem.

2

Definition 1. Let Pn, n ∈ [N] := {1, . . . , N}, be N mutually non-trusting par-
ties that hold private integer values xn ≥ 0. Let M := max{xn : n ∈ [N]}. Then
the Multiple Millionaires’ Problem (MMP) is the MPC problem of determining all
indices n ∈ [N] for which xn = M .

We note that MMP treats all N inputs similarly, while MP does not. Hence,
when N = 2, MMP coincides with MP only when x1 ̸= x2; if, however, x1 = x2,
then MP will issue a negative answer that implies that x1 ≥ x2, while MMP will
issue the accurate answer that x1 = x2.

A related but different MPC problem is the following.

Definition 2. In the same setting as in Definition 1, the Maximum Problem
(MaxP) is the MPC problem of computing M = max{xn : n ∈ [N]}.

As we show later, MMP can be reduced to MaxP with an additive overhead of
linear size and constant depth (see Definitions 3-4), while MaxP can be reduced
to MMP with an additive constant overhead of both size and depth.

The desired output in MMP is the identities of the “richest” members in some
group ofN parties (“millionaires”), and the goal is to carry out that computation
in a manner that prevents those parties from learning any further information
on the inputs of their peers, besides what they may infer from their own input
and the computed output.

Even though we focus here, for the sake of convenience, on the case of target
functions that need to be maximized, our discussion includes also the case where
the target function needs to be minimized. Namely, any algorithm for MMP can
be easily used to find all indices n ∈ [N] for which xn = m := min{xn : n ∈
[N]}, and any algorithm for MaxP can be easily converted to an algorithm that
computes the minimum m rather than the maximum M .

Identifying a set of parties that maximize (or minimize) some target func-
tion is a fundamental problem that is most useful in statistical analysis of
data. In particular, it is an essential building block in machine learning, as
many machine learning algorithms, such as K-means clustering [5,24], K-nearest
neighbors [8,21], or fingerprint-matching [4,19] include the identification of a
subset of points in an Euclidean space that are closest to a given point in
that space. For example, in K-means clustering one is given a set of K means
M := {m1, . . . ,mK} ⊂ Rd, and a set of observations X := {x1, . . . , xN} ⊂ Rd,
and for each given observation xn ∈ X , it is needed to find the mean (or means)
inM that minimize the distance to xn. In privacy-preserving machine learning,
and in particular in federated (collaborative) learning, the observations need to
remain secret; in such a case, all computations must be carried out in a privacy-
preserving manner and, therefore, one has to solve an instance of MMP. In the
K-nearest neighbors algorithm, on the other hand, the goal is to find the K
points out of a set of N points, X = {x1, . . . , xN} ⊂ Rd, that are closest to a
new observation y ∈ Rd; namely, the sought-after points here are the K points
that issue the smallest values for the target function, f(x) := ∥x − y∥, not the
minimal, as in MMP. When the k-nearest neighbors algorithm has to be applied

The Multiple Millionaires’ Problem 3

in a privacy-preserving manner, then the computational problem that it has to
solve may be reduced to a sequence of instances of MMP.

A different application where MMP plays a crucial role is that of privacy-
preserving (sealed-bid) auctions. There too, it is needed to identify a set of
parties (bidders) that maximize a target function (the bid), without revealing
any further information on the inputs (bids). See the seminal work of Naor et
al. [25] and the recent survey [2] and the references therein.

The cost of privacy-preserving computation can be roughly separated into
two metrics: communication and latency (being the time interval from submit-
ting the inputs until obtaining the output). Typically, there is a tradeoff between
the two, as expressed by the solutions presented in this paper (see Section 7.3).
Specifically, we study the tradeoff between the size of a protocol and its depth
(see Definitions 3-4). The communication-latency tradeoff is relevant in partic-
ular to GMW-style MPC protocols [16], in which the parties interact for every
non-linear gate, and to leveled fully homomorphic encryption (FHE) based pro-
tocols, in which circuit evaluation is done over ciphertexts. In the former, the
latency is affected mainly by the depth of the protocol, as the parties interact in
every non-linear operation. In the latter, the depth has an impact on the length
of the keys with which the inputs are encrypted, as well as on the computation
time for every operation. Indeed, deep circuits imply larger encryption keys,
what implies larger ciphertexts, which are presented as polynomials of larger
degree, and, consequently, multiplying polynomials incurs larger runtimes.

1.1 Our contributions and outline

Even though MMP is a very natural extension of the (two-party) Millionaires’
Problem, very few studies so far devised MPC protocols for solving it or other
related problems (see the survey of related work in Section 8.) In this study we
propose several approaches towards its solution as well as concrete solutions.

We begin with a discussion of essential preliminaries in Section 2: in Section
2.1 we present an abstraction method that will allow us to present and analyze
secure computation protocols in a general context that is indifferent to the un-
derlying setting and the implementation details; then, in Section 2.2, we present
the complexity measures for assessing the performance of such protocols. In Sec-
tion 3 we present a binary-tree-based protocol (Protocol 1) and a generalization
to any degree (Protocol 4); these protocols are based on a “tournament” between
the “candidates” (inputs) to determine the “winners” (maximal inputs), through
several rounds of comparisons. To the best of our knowledge, the general-degree
tree-based protocol (Protocol 4) is new, whereas the binary-tree based-protocol
was already proposed and used in the literature, e.g. [12,24]. In Section 4 we
present novel constant-depth protocols for solving MaxP and MMP (Protocols 5
and 6) that are tailored to cases where the inputs are drawn from a small do-
main. Then, we present in Section 5 protocols that are based on the inputs’
decomposition into bits (Protocol 7) or into digits in larger bases (Protocol 8).
In Section 6 we present a protocol for solving MaxP and MMP that is inspired by
the protocols of [1] for finding the k-th ranked element in a union of private

4

datasets (namely, the value in the k-th entry in the unified dataset when it is
sorted in an increasing order). We evaluate the performance of all of those proto-
cols in Section 7; the analysis is based on an implementation of passively secure
MPC protocols, which allows ignoring ‘noisy’ costs, like consistency checks of
inputs, that are typically added to actively secure protocols. Furthermore, the
asymptotic analysis of the cost of passively secure protocols capture the actively
secure ones as well, as there are efficient compilers from passive to active security
(e.g., [15]). We review related work in Section 8 and conclude in Section 9.

A prominent advantage of our novel protocols is their simplicity. Since MaxP
and MMP are essential building blocks in important applications, our systematic
study and comparison of solutions to those problems will serve well future re-
searchers of MPC and practitioners of secure distributed computing.

We conclude this introduction with a summary of the costs of the various
MMP protocols that we present here, see Table 1. Some of the protocols assume
that the inputs are given as field elements, while others assume that they are
given by their bits or digits. However, the form of the inputs does not affect the
asymptotic analysis since there are constant-depth bit-decomposition protocols
(e.g., [30]) that can be invoked prior to the execution of the protocols that rely on
bit-decomposed inputs, and that preprocessing stage incurs a constant additive
overhead.

size preDepth onDepth

Protocol 1 [12,24] O(NB +NK) 1 5 · ⌈logN⌉+ 4
Protocol 4 O(N ′NB +N ′NK) 3 3 + 12⌈logN′ N⌉
Protocol 6 (2BNK) 3 9
Protocol 7 O(NBK) 3 2 + 6B

Protocol 8 O(NBK2d

d
) 3 2 + 11B/d

Protocol 11 [1] O(NB2 +NBK) 3 8B + 4

Table 1. Analysis of the size, preprocessing depth and online depth of the protocols
presented in this paper, according to Definitions 3-4 (see Section 2.2), when instantiated
in a setting of honest majority, semi-honest adversary and statistical security (See
Section 7 for details). The size is given asymptotically, while the preprocessing depth
and online depth are given exatcly. The parameters are: K is the number of parties; N
is the number of inputs; each input is drawn from the domain [0, 2B − 1]; N ′ ∈ [2, N]
is the degree of the general comparison tree in Protocol 4; d is the bit-length of digits
in Protocol 8.

The Multiple Millionaires’ Problem 5

2 Preliminaries

2.1 The Arithmetic Black-Box (ABB)

Practical protocols for secure computation use a circuit representation of the
functionality that they compute. The gates in the circuit may be arithmetic,
where computation is carried out by addition and multiplication gates over an
agreed upon field, or Boolean, where computation is carried out by AND and
XOR gates. Note that Boolean gates adhere to arithmetics over Z2, thus, they
can use the arithmetic notation (‘+’, ‘·’) as well.

Typically, privacy-preserving protocols abstract out the underlying tech-
niques through an abstraction called an “Arithmetic Black Box” (ABB). An
ABB is an ideal functionality that can be realized in many ways, depending on
the setting (e.g., network topology and synchrony assumptions) and the security
needs (i.e., semi-honest/malicious, static/adaptive adversaries, with/without abort,
perfect/statistical/computational security, and different collusion scenarios). The
privacy-preserving protocol directly inherits these properties from the sub-protocol
that realizes the ABB. This way, it is possible to describe a privacy-preserving
protocol that can fit several settings at the same time, given a suitable realization
of the ABB functionality in the protocol. Furthermore, by relying on the ABB
functionality, one does not have to analyse the communication and computa-
tion complexity of its operations, as they depend on the specific realization. The
ABB ideal functionality is given in Functionality 1. Abstraction using an ideal
functionality is a common practice in the art of secure protocol design, which
enables focusing on the logic of the application rather than on the underlying
infrastructure.

In the beginning of the protocol the parties initialize the ABB functionality
with the field F over which all computations take place. We assume hereinafter
that F = Zp for a sufficiently large prime p that is greater than all inputs of the
MMP problem. After that initialization the parties may use any interface listed
in Functionality 1 as many times as needed, as part of the privacy-preserving
protocol. See [6] for the syntax and usability of ideal functionalities and [10] for
the introduction of the arithmetic black-box.

In Functionality 1 we use the term handle. A handle can be seen as a public
pointer to the secret held by the ABB, so that the parties can relate to it in their
calls. A possible instantiation of a handle is as follows. On inputting a secret or a
public value x, the ABB picks a unique identifier (e.g., a long random string) and
outputs it as x’s handle. In addition, when the parties invoke a computation on
the secrets represented by handles h1, . . . , hk the ABB performs the computation
on the secrets and picks a new unique identifier for the result.

In a protocol description, instead of explicitly mentioning that the parties
send some message through the ABB interface, it is convenient to use a short-
hand. Specifically:

– instead of writing that party Pn calls (PrivateInput, n, a) and all other parties
call (PrivateInput, n) so that all parties obtain [a], we write simply [a] ←
(PrivateInput, n, a).

6

– instead of writing that all parties call (Add, [a], [b]) and obtain the handle
[c]’, we write [c]← [a] + [b];

– a call to (Multiply, [a], [b]) is replaced with [c]← [a] · [b];
– a call to (Duplicate, [a]) which returns to all parties a handle [b] with the

same value as [a] is replaced with [b]← [a];
– a call to (AffineComb, [a1], . . . , [ak], c0, c1, . . . , ck) is replaced with [c]← c0 +

c1 · [a1] + · · ·+ ck · [ak];
– a call to (Inverse, [a]) is replaced with [c]← [a−1];
– a call to (Compare, [a], [b]) is replaced with the handle that it returns, i.e.

[1a<b].
4

– a call to (Equal, [a], [b]) is replaced with the result 1a=b.
– a call to (ORm, [a1], . . . , [am]) is replaced with [c]←

∨m
i=1[ai].

There are plenty of potential instantiations for the ABB functionality, de-
pending on the number of parties (e.g., it is common to have more efficient
protocols for a small number of parties, say N ∈ {2, 3, 4, 5}), the adversarial
model (e.g., protocols that protect against a semi-honest and static adversary
who can corrupt only a few parties are obviously simpler and more efficient than
those protecting against an active and adaptive adversary who may corrupt al-
most all parties), the network topology (e.g., it is easier to communicate over a
full mesh rather than over a sparse network), and the underlying setting.

We conclude by noting that some of the interfaces in the ABB functionality
could be realized by other ones; see more on that in Appendix A.1.

2.2 Measures of protocols’ complexity

Hereinafter, when analyzing the complexity of a given MPC protocol we will
refer to the protocol’s size and depth, where the size addresses the protocol’s
communication complexity and the depth addresses its round complexity. Each
MPC protocol induces a tree of calls to the ABB functionality. Let I be the set
of all interfaces in the ABB Functionality 1. Then each node in the tree that is
induced by a given protocol is labeled by some A ∈ I. All nodes in the same
distance from the root node represent calls that can be executed in parallel. On
the other hand, a pair of a father node with a son node represents a pair of calls
to the ABB functionality where the latter call depends on the completion of the
former.

Definition 3 (Protocol’s size). Given an MPC protocol Π we let cA be the
number of invocations of the intereface A ∈ I during Π’s execution. Then the
size of protocol Π is defined as size(Π) =

∑
A∈I cA · size(A), where size(A) is the

message complexity of the invocation of A in a specific implementation of the
ABB functionality.

Definition 4 (Protocol’s depth). Let w := (A1, . . . ,Ad) be a path in the

tree that protocol Π induces. Its depth is defined as depthw :=
∑d

i=1 depth(Ai),

4 If P is a predicate then 1P is a bit that equals 1 if the predicate holds and 0 otherwise.

The Multiple Millionaires’ Problem 7

FUNCTIONALITY 1
(
Arithmetic Black-Box

)
Initialize. On input (Init,F) from all parties, store the field F.
Public Input. [PuI] On input (PublicInput, a) from all parties, where a ∈ F,

store a and return a handle [a] to the parties.
Private Input. [PrI] On input (PrivateInput, n, a) from party Pn, where

a ∈ F, and input (PrivateInput, n) from all other parties, store a and
return a handle [a] to the parties.

Public Output. [PuO] On input (PublicOutput, [a]) from all parties, reveal
a to all parties.

Private Output. [PrO] On input (PrivateOutput, n, [a]) from all parties,
reveal a to party Pn.

Random. [Rnd] On input (Random) from all parties, sample r ← F uni-
formly and return the handle [r] to the parties.

Addition. On input (Add, [a], [b]) from all parties, compute c = a + b in F
and return a handle [c] to all parties.

Multiplication. [Mul] On input (Multiply, [a], [b]) from all parties, compute
c = a · b in F and return a handle [c] to all parties.

Duplicate. On input (Duplicate, [a]) from all parties, the functionality gen-
erates a new handle [b] to a secret b where b = a, and returns the handle
[b] to all parties.

Affine combination. On input (AffineComb, [a1], . . . , [ak], c0, c1, . . . , ck)
from all parties, compute c = c0 +

∑k
i=1 ciai in F and return a handle

[c] to all parties.
Inverse. [Inv] On input (Inverse, [a]) from all parties, where a ∈ F \ {0},

compute c = a−1 and return a handle [c] to all parties.
Equality. [Equ] On input (Equal, [a], b) from all parties, compute and return

c← 1a=b.
Comparison. [Com] On input (Compare, [a], [b]) from all parties, compute

c← 1a<b and return a handle [c] to all parties. (We focus here on prime-
ordered fields F = Zp in which a < b means that a is smaller than b when
both a and b are viewed as integers.)

Or. [Or] On input (ORm, [a1], . . . , [am]) from all parties, if ai ∈ {0, 1} for
all i ∈ [m], compute c ←

∨m
i=1 ai and return a handle [c] to all parties;

otherwise, return ⊥ to all parties.

where depth(Ai) is the round complexity of the invocation of Ai in a specific
implementation of the ABB functionality. Then the depth of protocol Π is defined
as maxw depthw where the maximum is over all paths in the tree that Π induces.

In our analysis, we break the depth of the implementation of each interface
A to its part that is independent of the input and its part that does depend
on the input. For an interface A, we call the former the preprocessing depth
and denote it by preDepth(A), while the latter is called the online depth and is
denoted onDepth(A). Similarly, the depth of a protocol Π is also split into a pre-
processing depth and an online depth, depth(Π) = preDepth(Π) + onDepth(Π).
Note that if protocol Π invokes a set of interfaces J ⊆ I, then preDepth(Π) =
max{preDepth(A) : A ∈ J } because the preprocessing part for all interface in-

8

vocations can be done simultaneously. As for the online depth, the exact depth
depends on the invocation pattern in each protocol.

When analyzing the size and depth of our protocols, we use abbreviated no-
tations as listed in Functionality 1. So, for example, the notation [Com] denotes
the size of the Compare interface, when speaking about the size of a proto-
col, while it denotes the preprocessing depth (resp., online depth) of the interface
when discussing the protocol’s preprocessing depth (resp., online depth). In such
analysis we ignore calls to Add,AffineComb and Duplicate, since they incur no
communication at all.

3 Tree-based protocols

In this section we present protocols that solve MaxP (i.e., finding the maximum
of all inputs) by decomposing the original problem, that involves many inputs,
into a hierarchy (tree) of smaller instances of MaxP, each one consisting of a
smaller number of inputs. In Section 3.1 we describe a protocol that is based
on a binary tree; in that protocol, each smaller instance of MaxP involves just
two inputs. Then, in Section 3.2, we present a generalized protocol in which the
smaller MaxP instances involve up to N ′ (where 2 ≤ N ′ ≤ N) inputs.

3.1 A binary tree-based protocol

Here we present a basic MMP protocol that reduces the Multiple Millionaires’
Problem into the (Two) Millionaires’ Problem MP. Protocol 1 is executed by the
parties P1, . . . , PN towards identifying all maximal inputs. The protocol uses a
binary tree based comparison in order to compute the maximal value.

Initially, all parties input their secret inputs, x1, . . . , xN (Lines 1-2). The
computation that follows is performed in L rounds, where L = ⌈logN⌉ (here-
inafter, unless otherwise stated, log = log2). There are Nℓ candidates in the ℓ-th
round (ℓ ∈ {1, . . . , L}), denoted xℓ

1, . . . , x
ℓ
Nℓ

. In the first round the candidates
are x1

n = xn, n ∈ [N], so N1 is initialized to N (Line 3).
As mentioned, the computation of the maximal value M is done in L rounds

(Lines 4-10). In the ℓ-th round every two consecutive candidates, xℓ
k and xℓ

k+1,
are compared (Line 6). The comparison result is used in order to compute the
maximum of those two candidates using the equality max{a, b} = a+1a<b·(b−a);
it is then stored in [xℓ+1

(k+1)/2] and percolated to the next round (Line 7). If the

number of candidates in the ℓ-th round, Nℓ, is odd, then the last candidate
(xℓ

Nℓ
) is directly percolated to the next round (Lines 8-9). Finally, the number of

values in the next layer is updated (Line 10). After completing the L rounds, the
maximum M is the single value in the (L+ 1)-th layer (Line 11). The protocol
ends with a testing the equality of each of the inputs to the computed maximum
(Lins 12-13) and outputting the indices of all maximal inputs.

The protocol consists of N calls to PrivateInput (Line 2), followed by N − 1
calls to Compare and Multiply (Line 7). Afterwards, the protocol performs N
calls to Equality (Line 13) and PublicOutput. Note that all calls to PrivateInput

The Multiple Millionaires’ Problem 9

Protocol 1: A binary-tree-based protocol for solving MMP

Parameters: N - number of inputs; L = ⌈logN⌉.
Private Inputs: x1, . . . , xN ∈ F.

1 forall n ∈ [N] do
2 [x1

n]← (PrivateInput, n, xn)
3 N1 ← N .
4 forall ℓ = 1, 2, . . . , L do
5 forall Odd k s.t. k < Nℓ do
6 The parties compute [1xℓ

k
<xℓ

k+1
].

7 [xℓ+1
(k+1)/2]← [xℓ

k] + [1xℓ
k
<xℓ

k+1
] · ([xℓ

k+1]− [xℓ
k]).

8 if Nℓ is odd then

9 [xℓ+1
(Nℓ+1)/2]← [xℓ

Nℓ
].

10 Nℓ+1 ← ⌈Nℓ/2⌉.
11 [M]← [xL+1

1].
12 forall n ∈ [N] do
13 The parties compute 1x1

n=M .
Output: The indices n ∈ [N] for which xn = M := max{xi : i ∈ [N]}.

occur in parallel, as well as the calls to Equality and PublicOutput. In addition,
all calls to Compare and Multiply occur in ⌈logN⌉ iterations. Therefore, the size
and depth of Protocol 1 are:

size(Protocol 1) = N ·[PrI]+(N−1)·[Com]+(N−1)·[Mul]+N ·[Equ]+N ·[PuO] ,

preDepth(Protocol 1) = max([PrI], [Com], [Mul], [Equ], [PuO]) ,

onDepth(Protocol 1) = [PrI] + ⌈logN⌉ · ([Com] + [Mul]) + [Equ] + [PuO] .

3.2 A protocol based on higher degree trees

Here we present Protocol 4 for solving MMP and MaxP. That protocol is also based
on a comparison tree, only that here the degrees of all nodes are (at most) some
parameter N ′ ≥ 2. The depth of Protocol 4 is ⌈logN ′ N⌉. If we take N ′ = 2 we
restore Protocol 1. If, on the other hand, we take N ′ = O(1)

√
N , we get a shallow

tree with a depth of O(1).
Before presenting Protocol 4, we present two sub-protocols that it invokes,

for solving MMP and MaxP in constant depth. Sub-protocol 2 securely computes
the indices of the maximal value. It receives as input handles to N ′ candidate
values. First, it computes in parallel the comparison bits between every pair of
inputs (Line 1-2). It then uses those bits to compute a bit for each input that
indicates whether that input is maximal (Lines 3-4).

Sub-protocol 3 computes the maximal value. It too receives as input handles
to N ′ candidate values. It then invokes Sub-protocol 2 and gets hanldes to the
bits [bi], i ∈ [N ′], that inidcate the maximality of each input (Line 1). It then
proceeds to add up all maximal inputs into M̂ and count them into N̂ (Lines
2-3). The maximum is obtained by multiplying M̂ with the inverse of N̂ .

10

Sub-protocol 2: An all-to-all-comparison protocol for solving MMP

Inputs: Handles [x1], . . . , [xN′] where xi ∈ F.
1 forall 1 ≤ i ̸= j ≤ N ′ do
2 [bi,j]← [1xi<xj].
3 forall i ∈ [N ′] do
4 [bi]← 1−

∨
j∈[N],j ̸=i[bi,j].

Output: The handles ([b1], . . . , [bN′]).

Sub-protocol 3: A sub-protocol for solving MaxP

Inputs: Handles [x1], . . . , [xN′] where xi ∈ F.
1 ([b1], . . . , [bN′])← MMP([x1], . . . , [xN′]).

2 [M̂]←
∑

i∈[N′]([bi] · [xi]).

3 [N̂]←
∑

i∈[N′][bi].

4 [M]← [N̂−1] · [M̂].
Output: The handle [M] to M = max{xi : i ∈ [N ′]}.

We now turn to Protocol 4. Lines 1-3 in it are the same as in Protocol 1. Lines
4-7 are equivalent to Lines 4-10 in Protocol 1, with the only difference being the
fact that in the ℓ-th iteration, 1 ≤ ℓ ≤ ⌈logN ′ N⌉, the Nℓ candidates are grouped
into groups of at most N ′ candidates in each (instead of 2 in Protocol 1) and
then the maximum of each such group is percolated to the next iteration. The
conclusion of the protocol (Lines 8-10) is similar to the conclusion of Protocol 1
(Lines 11-13 there).

Protocol 4: A general-tree-based protocol for solving MMP

Parameters: N - number of inputs; N ′, where 2 ≤ N ′ ≤ N - number of
inputs that are compared in one call to Sub-protocol 3 (MaxP);
L′ = ⌈logN′ N⌉.

Private Inputs: x1, . . . , xN ∈ F.
1 forall n ∈ [N] do
2 [x1

n]← (PrivateInput, n, xn)
3 N1 ← N .
4 forall ℓ = 1, 2, . . . , L′ do
5 forall k s.t. k = 1 mod N ′ and k ≤ Nℓ do

6 [xℓ+1
1+(k−1)/N′]← MaxP([xℓ

k], [x
ℓ
k+1], . . . , x

ℓ
min{k+N′−1,Nℓ}).

7 Nℓ+1 ← ⌈Nℓ/N
′⌉.

8 [M]← [xL′+1
1].

9 forall n ∈ [N] do
10 The parties compute 1x1

n=M . (Recall that x1
n is the n-th input).

Output: The indices n ∈ [N] for which xn = M := max{xi : i ∈ [N]}.

The Multiple Millionaires’ Problem 11

We conclude with analyzing the costs of those protocols. Sub-protocol 2’s size
is ((N ′)2 −N ′) · [Com] +N ′ · [Or]N ′ , where the subscript N ′ in [Or]N ′ denotes
the number of operands in the Or operation. Sub-protocol 2’s preprocessing and
online depths are max([Com], [Or]N ′) and [Com] + [Or]N ′ , respectively. These
costs of Sub-protocol 2 imply that the costs of Sub-protocol 3 are:

size(Sub-protocol 3) = ((N ′)2−N ′)·[Com]+N ′ ·[Or]N ′+(N ′+1)·[Mul]+[Inv] ,

preDepth(Sub-protocol 3) = max([Com], [Or]N ′ , [Mul], [Inv]) ,

onDepth(Sub-protocol 3) = [Com] + [Or]N ′ + 2[Mul] + [Inv] .

Letting [MaxP] denote the costs of Sub-protocol 3, Protocol 4’s size is

size(Protocol 4) = N · [PrI] + T (N,N ′) · [MaxP] +N · [Equ] ,

where T (N,N ′) =
∑L′

ℓ=1⌈Nℓ/N
′⌉ and Nℓ is defined recursively in Lines 3 & 7.

(Note that if N = (N ′)L
′
the tree is regular, in the sense that all non-leaf nodes

have an out-degree N ′, and then T (N,N ′) = N−1
N ′−1 .) Protocol 4’s depths are:

preDepth(Protocol 4) = max([PrI], [MaxP], [Equ]) ,

onDepth(Protocol 4) = [PrI] + L′ · [MaxP] + [Equ] .

4 Constant-depth protocols for small domains

We begin this section by presenting a constant-depth protocol for solving MaxP

(Section 4.1). Then we use that protocol as a basis for a constant-depth protocol
for solving MMP (Section 4.2). The size of the protocols is proportional to the
underlying field size and, therefore, they are relevant in cases where there is a
small known upper bound on the inputs.

4.1 A protocol for solving MaxP

Protocol 5 starts with each Pn, n ∈ [N], submitting its input, which is an integer
xn ∈ [0, Q), for some publicly known upper bound Q, in the form of Q− 1 bits
yn,i that represent it (Lines 1-3). Specifically, each input x ∈ [0, Q) is represented
by a sequence of Q − 1 bits in which the first x bits are 1 and the proceeding
ones are all 0; it is that form of input encoding that restricts the scope of this
protocol to small domains. Then, the parties compute a similar representation
of M into the vector z = (z1, . . . , zQ−1), using the

∨
operator (Lines 4-5). The∨

operator can be computed by a constant-depth sub-protocol (see Appendix
A.2.3). Finally, the maximum M is computed by adding all entries in z (Line 6).

The protocol performs N(Q − 1) parallel invocations of PrivateInput (Lines
1-3) and Q− 1 parallel invocations of Or (Lines 4-5). Hence, its costs are:

size(Protocol 5) = N(Q− 1) · [PrI] + (Q− 1) · [Or]N ,

preDepth(Protocol 5) = max([PrI], [Or]N) , onDepth(Protocol 5) = [PrI]+[Or]N .

12

Protocol 5: Amonotone-representation-based protocol for solving MaxP

Parameters: N - number of inputs; Q - an upper bound on the inputs (each
input is in [0, Q− 1).

Private Inputs: x1, . . . , xN ∈ [0, Q).
1 forall n ∈ [N] do
2 forall i = 1, . . . , Q− 1 do
3 [yn,i]← (PrivateInput, n, yn,i), where yn,i = 1xn≥i

4 forall i = 1, . . . , Q− 1 do
5 [zi]←

∨
n∈[N][yn,i]

6 [M]←
∑Q−1

i=1 [zi]
Output: A handle [M] to M := max{xn : n ∈ [N]}.

4.2 A protocol for solving MMP

Here we present Protocol 6 – an MMP protocol that is based on the MaxP Protocol
5. It starts with an invocation of Protocol 5 to compute the maximum M of all
inputs (Line 1). Then, the parties go over all inputs and test their equality to
M (Lines 2-3). The protocol’s output identifies all inputs that equal M .

Protocol 6: A monotone-representation-based protocol for solving MMP

Parameters: N , Q - two positive integers, denoting the number of inputs and
an upper bound on them.

Private Inputs: x1, . . . , xN ∈ [0, Q);
1 The parties compute [M]← [MaxP{x1, . . . , xN}].
2 forall n ∈ [N] do
3 The parties compute 1xn=M .

Output: The indices n ∈ [N] for which xn = M := max{xi : i ∈ [N]}.

Protocol 6 consists of a call to Protocol 5 to compute M , followed by N
parallel procedures of testing the equality of each input to M (Lines 2-5). Hence,
its costs are as follows:

size(Protocol 6) = size(Protocol 5) +N · [Equ] +N · [PuO] ,

preDepth(Protocol 6) = max(preDepth(Protocol 5), [Equ], [PuO]) ,

onDepth(Protocol 6) = onDepth(Protocol 5) + [Equ] + [PuO] .

By plugging the size and the preprocessing and online depths of Protocol 5 as
derived in Section 4.1, we arrive at the final size and depths of Protocol 6:

size(Protocol 6) = N(Q− 1) · [PrI] + (Q− 1) · [Or]N +N · [Equ] +N · [PuO] ;

preDepth(Protocol 6) = max([Pri], [Or]N , [Equ], [PuO]) ,

onDepth(Protocol 6) = [PrI] + [Or]N + [Equ] + [PuO] .

The Multiple Millionaires’ Problem 13

5 Protocols based on the inputs’ digit decomposition

Here we present two protocols for solving MMP that are based on the digits of the
inputs’ representation in some number base. We begin with Protocol 7 (Section
5.1) that uses a binary representation of the inputs. We then present Protocol
8 (Section 5.2) that reduces depth by considering a representation of the inputs
in a 2d-base, for some d > 1.

5.1 Binary representation of inputs

Protocol 7 gets as inputs N integers, x1, . . . , xN . As stated earlier, we assume
that all inputs are smaller than some prime p, where the underlying field is
F = Zp. Hereinafter we let B = ⌈log p⌉ denote the number of bits in the binary
representation of elements in F. Hence, the input xn, n ∈ [N], has a binary
representation by B bits, (xn,B−1, . . . , xn,0), meaning that xn,b ∈ {0, 1} and

xn =
∑B−1

b=0 xn,b2
b. In addition, we define xn,B = 1 for all n ∈ [N]. The protocol

outputs an N -dimensional Boolean vector that identifies the maximal inputs.
The protocol starts by submitting all input bits (Lines 1-3). It then iterates

over the input bits from bit number b = B−1, the MSB, to bit number b = 0, the
LSB (Lines 4-7). We refer to the collection of all bits in the same bit position,
{xn,b : n ∈ [N]}, as the b-th bit column. For each of those bit columns the
protocol computes sb :=

∨
n∈[N](xn,b+1 · xn,b) (Line 5). If sb = 1 then there is

at least one input xn for which xn,b = 1 and, in addition, the current value of
xn,b+1 (after it may have been updated in the previous iteration) also equals
1; in that case, the protocol updates each entry in that column to equal the
product of that entry and the preceding one. Otherwise, if sb = 0, the protocol
updates the b-th bit column to be the same as the preceding bit column. This
computation is done in Lines 6-7. (Note that all computations are done in Z2

so that the minus and plus operations are just XORs). At the conclusion of this
loop, the protocol outputs the bits in the 0-th bit column (Line 8) since those
bits identify all maximal inputs, as we claim next:

Lemma 1. xn,0 = 1 if and only if xn = M = max{xi : i ∈ [N]}.

Proof. For each b = B − 1, . . . , 0 define xn|b =
∑B−1

i=b xn,i2
i; namely, xn|b

is the value that is obtained from xn by zeroing its b least significant bits,
xn,b−1, . . . , xn,0. We prove, by induction on b = B − 1, . . . , 0, that at the com-
pletion of the protocol xn,b = 1 iff xn|b = max{xi|b : i ∈ [N]}. The case b = 0
coincides with the statement of the lemma since xn|0 = xn.

The statement for the base case b = B − 1 is easily proven. There are two
cases to consider:

– If sb = 1 then at least one of the inputs has a 1-bit in this column and,
therefore, max{xi|B−1 : i ∈ [N]} = 1. Hence, after updating the shares in
xn,B−1 in Line 7, xn,B−1 equals the product between xn,B = 1 and the
original value of xn,B−1. That means that xn,B−1 remains unchanged in this
case and, consequently, xn,B−1 = 1 iff xn|B−1 = max{xi|B−1 : i ∈ [N]}.

14

– If sb = 0 then, because xn,B = 1 for all n, all inputs have a 0-bit in this
column and, therefore, max{xi|B−1 : i ∈ [N]} = 0. Hence, after updating
the shares in xn,B−1 in Line 7, xn,B−1 would equal xn,B = 1, for all n ∈ [N].
Indeed, in this case, as all bits in that column are zero, then xn|B−1 =
max{xi|B−1 : i ∈ [N]} for all n ∈ [N].

We proceed by induction to prove our claim for b = B − 2, . . . , 0. Namely,
we assume that xn|b+1 = max{xi|b+1 : i ∈ [N]}, and then prove that xn|b =
max{xi|b : i ∈ [N]}. Here too we distinguish between two cases:

– If sb = 0 then all inputs have a 0-bit in this column or in the preceding
column (that was already updated in the previous iteration). We claim that
in this case argmaxn{xn|b} = argmaxn{xn|b+1}; namely, that all inputs
that maximize xn|b+1 are exactly those that maximize xn|b. Indeed, if i /∈
argmaxn{xn|b+1} then clearly i /∈ argmaxn{xn|b}. If, on the other hand,
i ∈ argmaxn{xn|b+1} then, by the induction hypothesis, xi,b+1 = 1 and
therefore, because sb = 0, xi,b = 0. Hence, for all xi ∈ argmaxn{xn|b+1} we
have xi|b+1 = xi|b. Therefore, all inputs that maximize xn|b+1 also maximize
xn|b. Hence, since the computation in Line 7 updates the shares in xn,b so
that it equals xn,b+1, the a-posteriori values of the bits xn,b identify the
inputs that maximize xn|b.

– If sb = 1 then at least one of the inputs that maximized xn|b+1 has a 1-bit
in the b-th column. Therefore, argmaxn{xn|b} consists exactly of all inputs
in argmaxn{xn|b+1} that have also a 1-bit in the b-th column. Hence, since
in the case sb = 1 the computation in Line 7 updates the shares in xn,b so
that it equals the product between xn,b+1 and xn,b, the aposteriori values of
xn,b identify the set argmaxn{xn|b}. That completes the proof.

2

Protocol 7: A bit-decomposition-based protocol for solving MMP

Parameters: N - number of inputs; B > 0 - the number of bits in each of the
inputs.

Private Inputs: x1, . . . , xN ∈ [0, 2B); the bit decomposition of xn is
(xn,B−1, . . . , xn,0), n ∈ [N].

1 forall n ∈ [N] do
2 forall b = B − 1, . . . , 0 do
3 [xn,b]← (PrivateInput, n, xn,b).

4 forall b = B − 1, . . . , 0 do
5 Compute [sb]←

∨
n∈[N]([xn,b+1] · [xn,b]) .

6 forall n ∈ [N] do
7 [xn,b]← (1− [sb]) · [xn,b+1] + [sb] · [xn,b · xn,b+1].

8 The parties call (PublicOutput, [xn,0]) for all n ∈ [N].
Output: The indices n ∈ [N] for which xn = M := max{xi : i ∈ [N]}.

The Multiple Millionaires’ Problem 15

We proceed to discuss the protocol’s complexity. Each party breaks its input
to B binary bits and inputs each of them separately, so that there are in total BN
calls to PrivateInput (Lines 1-3). Then, there are BN calls to Multiply followed
by B calls to Or (Line 5) and 2BN additional calls to Multiply (Line 7). Finally,
there are N calls to PublicOutput (Line 8). In summary,

size(Protocol 7) = BN · [PrI] + 3BN · [Mul] +B · [Or]N +N · [PuO] .

It implies that

preDepth(Protocol 7) = max([PrI], [Mul], [Or]N , [PuO]) .

As for the online depth, let us concentrate on one of the B iterations. All mul-
tiplications in Line 5 can be executed in parallel. Once they are completed, the
Or in Line 5 can be computed. Finally, all 2N multiplications in Line 7 can be
also parallelized. In summary, we conclude that

onDepth(Protocol 7) = [PrI] +B · (2[Mul] + [Or]N) + [PuO] .

Example. We conclude our discussion of Protocol 7 by exemplifying its
operation. Assume that N = 4 and that x1 = 11, x2 = 7, x3 = 10, and x4 = 11.
In this case B = 4 and the inputs’ bits are as follows:

b = 3 b = 2 b = 1 b = 0
n = 1 1 0 1 1
n = 2 0 1 1 1
n = 3 1 0 1 0
n = 4 1 0 1 1

.

We begin with the MSB column, b = 3. Here, s3 = (1·1)∨(1·0)∨(1·1)∨(1·1) = 1
(since xn,b+1 = xn,B = 1 in all rows). Hence, the update of bits in that column
is xn,3 ← xn,3 · xn,4 and, because xn,4 = 1 for all n, the column b = 3 remains
unchanged.

↓
b = 3 b = 2 b = 1 b = 0

n = 1 1 0 1 1
n = 2 0 1 1 1
n = 3 1 0 1 0
n = 4 1 0 1 1

.

Next, we deal with b = 2. Here s2 = (1 ·0)∨ (0 ·1)∨ (1 ·0)∨ (1 ·0) = 0. Hence, the
update rule is xn,2 ← xn,3. Therefore, when completing this iteration we end up
with the following table of bits:

b = 3
↓

b = 2 b = 1 b = 0
n = 1 1 1 1 1
n = 2 0 0 1 1
n = 3 1 1 1 0
n = 4 1 1 1 1

.

16

Moving to b = 1 we see that s1 = 1 and, therefore, the update rule is xn,1 ←
xn,1 · xn,2. As a result, we end up with the following table:

b = 3 b = 2
↓

b = 1 b = 0
n = 1 1 1 1 1
n = 2 0 0 0 1
n = 3 1 1 1 0
n = 4 1 1 1 1

.

Finally, we reach the LSB, b = 0. Here too s0 = 1. Hence, after the update
xn,0 ← xn,0 · xn,1 we get

b = 3 b = 2 b = 1
↓

b = 0
n = 1 1 1 1 1
n = 2 0 0 0 0
n = 3 1 1 1 0
n = 4 1 1 1 1

.

Indeed, the bits in the column b = 0 identify the maximal inputs in rows n = 1
and n = 4.

5.2 Reducing depth by using larger bases

The number of iterations in the main loop in Protocol 7 directly determines its
depth, since each iteration is computed by a constant-depth sub-protocol. The
number of iterations equals the number B of bits in the representation of the
inputs. Protocol 7 can be modified so that a larger base 2d, d > 1, is used.
Such a modification yields a smaller number of iterations – B/d instead of B
(for the sake of simplicity we assume that d|B). The generalization is described
in Protocol 8, which uses a constant-depth sub-protocol for computing maxima
(the same technique as used in Protocol 5).

In Protocol 8 the parties decompose their inputs to digits in a 2d-base. Thus,
if xn ∈ [0, 2B), the number of 2d-digits in it is D = B/d, where the digit in
the ℓ-th position is denoted xn,ℓ, 0 ≤ ℓ < D. Each such digit is an integer in
the range [0, Q − 1] where Q = 2d. Then, each digit is provided as an input to
the protocol by its monotone representation; i.e., the digit xn,ℓ is represented by
Q− 1 bits – yn,ℓ,1, . . . , yn,ℓ,Q−1 – such that yn,ℓ,i = 1 iff xn,ℓ ≥ i. Therefore, the
representation is monotonically decreasing: yn,ℓ,i ≥ yn,ℓ,i+1 for every 1 ≤ i <
Q− 1. The input of all Q− 1 bits in the monotone representation of all D digits
in all N inputs is done in Lines 1-4.

The variables rn,ℓ, n ∈ [N], ℓ = D, . . . , 0, are binary flags that equal 1 iff the
n-th input is still a candidate to be the maximal input after scanning all inputs’
digits from the (D− 1)-th digit down to the ℓ-th digit. Since initially, before the
scan starts, all inputs are candidates, those variables are initialized to rn,D = 1
for all n ∈ [N] (Line 5).

The Multiple Millionaires’ Problem 17

Protocol 8: A digit-decomposition-based protocol for solving MMP

Parameters: N - number of inputs in [0, 2B); d ∈ N s.t. d|B; Q := 2d;
D := B/d is the number of base-2d digits in each of the inputs.

Private Inputs: x1, . . . , xN ∈ [0, 2B); the digit decomposition of xn, n ∈ [N],
is (xn,D−1, . . . , xn,0), where xn,ℓ ∈ [0, Q), 0 ≤ ℓ ≤ D − 1
(that is, xn =

∑D−1
ℓ=0 xn,ℓ ·Qℓ).

1 forall n ∈ [N] do
2 forall 0 ≤ ℓ ≤ D − 1 do
3 forall i ∈ [Q− 1] do
4 [yn,ℓ,i]← (PrivateInput, n, yn,ℓ,i), where yn,ℓ,i = 1xn,ℓ≥i.

5 Initialize [rn,D]← 1 for all n ∈ [N].
6 forall ℓ = D − 1, . . . , 0 do
7 forall n ∈ [N] and i ∈ [Q− 1] do
8 [y′

n,ℓ,i]← [yn,ℓ,i] · [rn,ℓ+1]
9 ([Mℓ,Q−1], . . . , [Mℓ,1])← MaxMonotone(N,Q, {[y′

n,ℓ,i]}n∈[N],i∈[Q−1]).
10 forall n ∈ [N] do
11 [1Mℓ=xn,ℓ] = EqualBits(Q, {[y′

n,ℓ,i]}i∈[Q−1], {Mℓ,i}i∈[Q−1]).

12 [rn,ℓ]← [rn,ℓ+1] · [1Mℓ=xn,ℓ].

13 The parties call (PublicOutput, [rn,0]) for all n ∈ [N].
Output: The indices n ∈ [N] for which xn = M := max{xi : i ∈ [N]}.

The main loop (Lines 6-12) scans the D digits of all inputs, from the most
significant one (ℓ = D− 1) to the least significant one (ℓ = 0). First, the parties
multiply the monotone bit representation of the current bit in each of the inputs
with the bit that indicates whether that input is still a potential candidate to
be the maximum (Lines 7-8). Then, the monotone representations of the current
digit in each of the relevant inputs are used to compute the monotone represen-
tation of the maximal digit in that position using the sub-protocol MaxMonotone
(Line 9). Then, we check the digits of all inputs against the computed maximum
(Lines 10-11) by calling the sub-protocol EqualBits. Subsequently (Line 12), we
update rn,ℓ to be 1 iff that input is still a candidate at this point (rn,ℓ+1 = 1)
and the current digit is maximal (Mℓ = xn,ℓ). At the conclusion of this loop, the
protocol outputs the bits rn,0, n ∈ [N], that identify the maximal inputs (Line
13). The proof of this protocol’s correctness is very similar to that of Protocol
7, see Lemma 1.

We now turn to describe the sub-protocols that Protocol 8 invokes. Sub-
protocol 9 computes the monotone representation of the maximum of inputs that
are also given through their monotone representation. It is called by Protocol
8 in Line 9. Sub-protocol 10, namely EqualBits(Q, {[xi]}i∈[Q−1], {[x′

i]}i∈[Q−1]),
is given handles to two bit-vectors and it outputs 1 iff they are equal in every
position. We rely here on the straightforward identity

∧
i∈[Q−1](1xi=x′

i
) = 1 −(∨

i∈[Q−1](xi − x′
i)

2
)
. This sub-protocol is called in Line 11 of Protocol 8.

18

Sub-protocol 9: MaxMonotone(N,Q, {[yn,i]}n∈[N],i∈[Q−1])

Parameters: N - number of inputs; Q - an upper bound on the inputs (each
input is in [0, Q− 1).

Inputs: Handles [yn,i], n ∈ [N], i ∈ [Q− 1], such that yn,i ∈ {0, 1} and
yn,i ≥ yn,i+1 for all i ∈ [Q− 2] and n ∈ [N].

1 forall i ∈ [Q− 1] do
2 [Mi]←

∨
n∈[N][yn,i].

Output: The handles ([MQ−1], . . . , [M1]) to the monotone representation of
M := maxn∈[N]{maxi∈[Q−1]{yn,i = 1}}.

Sub-protocol 10: EqualBits(Q, {[xi]}i∈[Q−1], {[x′
i]}i∈[Q−1])

Parameters: Q - determines the length of the two bit vectors.
Inputs: Handles to two bit vectors, {[xi]}i∈[Q−1] and {[x′

i]}i∈[Q−1].
1 [1x=x′]← 1−

(∨
i∈[Q−1]]([xi]− [x′

i])
2
)
.

Output: The handle [1x=x′].

The complexity of Protocol 9 is analyzed as follows. First, we analyse the
complexity of the sub-protocols. The costs of MaxMonotone are:

size(Protocol 9) = (Q− 1)[Or]N ,

preDepth(Protocol 9) = [Or]N , onDepth(Protocol 9) = [Or]N .

The costs of EqualBits are:

size(Protocol 10) = (Q− 1)[Mul] + [Or]Q−1 ,

preDepth(Protocol 10) = max([Mul], [Or]Q−1) , onDepth(Protocol 10) = [Mul]+[Or]Q−1 .

Hence, Protocol 8’s costs are:

size(Protocol 8) = ND(Q− 1)[PrI] +ND(Q− 1)[Mul] +D[MaxMonotone]

+ND
(
[EqualBits] + [Mul]

)
+N [PuO]

= ND(Q− 1)[PrI] +ND(Q− 1)[Mul] +D(Q− 1)[Or]N
+ND

(
(Q− 1)[Mul] + [Or]Q−1 + [Mul]

)
+N [PuO]

= ND(Q− 1)[PrI] +ND(2Q− 1)[Mul] +ND[Or]Q−1

+D(Q− 1)[Or]N +N [PuO] ,

preDepth(Protocol 8) = max
(
[PrI], [Mul], [Or]N , [Or]Q−1, [PuO]

)
,

onDepth(Protocol 8) = [PrI] +D
(
[Mul] + [MaxMonotone] + [EqualBits] + [Mul]

)
+[PuO] = [PrI] +D

(
3[Mul] + [Or]N + [Or]Q−1

)
+ [PuO] .

The Multiple Millionaires’ Problem 19

6 A protocol for solving MMP inspired by [1]

The study of Aggarwal et al. [1] presented a secure protocol for finding the k-th
ranked element in the union of private datasets. It can be used to solve MaxP, and
subsequently MMP, if we view the input to those problems as N private singleton
datasets and take k = N . We proceed to describe such a protocol, for the sake
of comparing it with the previous protocols that were presented in this study.

Protocol 11 computes the maximum by implementing a privacy-preserving
binary search over the interval [0, 2B−1], where 2B−1 is an upper bound on all
inputs (Lines 1-15). The lower and upper bounds of the search interval, denoted
a and b, are initialized in Line 1. A binary flag f is set to zero in Line 2; it will
be set to 1 once the maximum is found. The binary search loop is given in Lines
3-15. The contemplated value of the maximum, M , is set to the middle of the
current search interval (Line 4). Then, each of the parties set two local flags, ℓn
and gn, that indicate whether its input is larger or smaller than M (Lines 5-7).
Subsequently, all determine jointly whether there is at least one input larger
than M (u = 1) or not (u = 0), and whether all inputs are smaller than M
(v = 1) or not (v = 0) (Line 8). This is done by computing the OR (AND) of the
private bits ℓn (gn).

If xn ≤ M for all n (u = 0) and there exists at least one input xj such that
xj ≥M (v = 0) then M is the sought-after maximum. In that case f is set to 1
so that the loop terminates (Lines 9-10). Otherwise, if u = 1 then there is at least
one input larger than M so that the sought maximum is at least M +1. In that
case we update the search lower bound to that value (Line 11-12). Otherwise, if
v = 1 then all inputs are smaller than M and hence the search upper bound is
updated to M − 1 (Lines 13-14).

In the concluding stage, the protocol finds all private inputs that equal the
maximum (Lines 16-17) and outputs them.

7 Concrete evaluation

The goal of this section is to arm the reader with a methodology of measuring
and comparing the protocols presented in this paper for a given implementation
of the ABB functionality in a given setting. To demonstrate the methodology,
we pick the statistically secure implementation of Damg̊ard and Nielsen [11],
in the setting of semi-honest adversary, who statically corrupts a minority of
the parties (also known as the honest majority setting). In Section 7.1 we show
an implementation of the ‘high-level’ interfaces using the ‘low-level’ ones; then
we formulate the costs of all interfaces based on the specific parameters of the
Multiple Millionaires’ Problem in Section 7.2; these parameters consist of the
number of parties, number of inputs and the bit-length of the inputs; finally,
in Section 7.3 we compare the performance of the protocol for a set of specific
parameters.

20

Protocol 11: Solving MMP by binary search [1]

Private inputs: Pn has xn ∈ [0, 2B − 1], n ∈ [N].
1 Set a← 0 and b← 2B−1

2 Set f ← 0.
3 repeat
4 Set M ← ⌈(a+ b)/2⌉
5 forall n ∈ [N] do
6 Pn sets ℓn ← 1 if xn > M and ℓn ← 0 otherwise.
7 Pn sets gn ← 1 if xn < M and gn ← 0 otherwise.

8 The parties set u←
∨

n ℓn and v ←
∧

n gn.
9 if u = 0 and v = 0 then

10 Set f ← 1.
11 else if u = 1 then
12 Set a←M + 1.
13 else if v = 1 then
14 Set b←M − 1.

15 until f = 1.
16 forall n ∈ [N] do
17 The parties compute 1xn=M .

Output: The indices n ∈ [N] for which xn = M := max{xi : i ∈ [N]}.

7.1 Interfaces

Here, we break down the high-level interfaces (like Equality and OR) into their
cost in terms of more primitive interfaces (like PrivateInput and Multiply), and
then derive their concrete costs, for a specific setting that we selected. Such a
detailed analysis is necessary in order to enable a comparison between protocols
and in order to get a more precise estimate of the costs of a given protocol.
However, we stress that such a breakdown analysis might be different for different
settings and, hence, it should be carried out independently for each such setting.

The cost analysis of interfaces [PrI], [PuO], [Rnd], [Mul] is based on the
passively secure MPC protocol of Damg̊ard and Nielsen [11]; the cost analysis of
interface [Inv] is trivial and given in Appendix A.2.1; and the cost of interfaces
[Com] and [Or]m is as derived in [17] and [26], respectively.

We examine a setting where the ABB is implemented by a protocol that
guarantees statistical security in the presence of a semi-honest adversary. We
choose a semi-honest adversary in order to avoid noisy costs that are typically
added to ensure input consistency when the adversary is malicious. These costs
might distract us from a clean and objective comparison between the protocols.

In our discussion we distinguish between the number of inputs, N , and the
number of MPC parties,K. For example, if the MPC parties are the owners of the
inputs, where party Pk holds nk private inputs, then N =

∑K
k=1 nk. In another

possible scenario, the N inputs are held by external clients who distribute shares
in them to K servers who act as the MPC parties. In our calculation of the

The Multiple Millionaires’ Problem 21

protocol’s size we are interested in the communication complexity per MPC
party (the number of field elements it sends/receives).

The setting that we picked allows us to use the concrete costs of Or and
Equality as given in Appendix A.2. In the following we present the final costs,
after integrating the concrete costs from Appendix A.2. Let us first provide
concrete costs to some of the interfaces in Functionality 1:

– PrivateInput: Submitting a private input boils down to a simple a secret
sharing, in which the party who acts as the dealer sends 1 field element to
every other party, in 1 round. Hence,

size([PrI]) = 1 , preDepth([PrI]) = 0 , onDepth([PrI]) = 1.

– PublicOutput is implemented by opening the secret to a single designated
party, who then announces the result to all other parties. This translates
into a communication of 2 field elements per party, in 2 rounds. The number
of communication rounds may be reduced, at the expense of increasing the
communication cost, in the following manner: each party sends its share in
the output to all other parties; that entails sending K field elements in 1
round. We use the latter protocol as the basis to our calculations, hence

size([PuO]) = K , preDepth([PuO]) = 0 , onDepth([PuO]) = 1.

– Random: Generating a single secret random field element and distributing
shares in it entails communicating 1 field element (per party) in 1 round.
Hence,

size([Rnd]) = 1 , preDepth([Rnd]) = 1, onDepth([Rnd]) = 0.

– (Multiply, [a], [b]) is implemented by the DoubleRandom technique presented
in [11]. The DoubleRandom procedure outputs two handles, [r] and [R], to
the same random field element, where [r] is a sharing of degree t and [R] is
a sharing of degree 2t, and t is an upper bound on the number of corrupted
parties. The parties locally compute [C] = [a] · [b], in order to get a sharing
[C] of the product a ·b which is of degree 2t. Then they perform PublicOutput
on c′ = [C]− [R] and locally compute [c] = [a · b] = c′ + [r]. DoubleRandom
requires twice more communication than Random and the same round com-
plexity (which is one round). Overall, the communication cost is 2 +K field
elements per party, and 2 rounds, where the DoubleRandom’s round occurs
in the preprocessing stage, whereas the PublicOutput’s round occurs in the
online phase. Then,

size([Mul]) = 2 +K , preDepth([Mul]) = 1 , onDepth([Mul]) = 1.

– (Inverse, [a]) can be computed by invoking Random,Multiplly and PublicOutput
(see Appendix A.2.1). The costs of that computation are as follows:

size([Inv]) = 3 + 2K , preDepth([Inv]) = 1, onDepth([Inv]) = 2.

22

– (Equality, [a], b) too (like Inverse) can be computed by invoking Random,Multiplly
and PublicOutput (see Appendix A.2.2). Hence, its costs are:

size([Equ]) = 3 + 2K , preDepth([Equ]) = 1, onDepth([Equ]) = 2.

– (Compare, [a], [b]): We use the comparison protocol of Goss and Jiang [17].
The costs of that protocol are as follows:

size([Com]) = 2B+5 logB+23 , preDepth([Com]) = 0 , onDepth([Com]) = 4 .

– (ORm, [a1], . . . , [am]): Nishide and Ohta [26] designed a protocol for comput-
ing

[∨
i∈[m] ai

]
in constant depth. We defer the description of their solution

to Appendix A.2.3. The costs of their protocol are:

size([Or]m) = 2m · [Rnd] + (3m− 1) · [Mul] + 2m · [PuO]

= 2m+ (3m− 1)(2 +K) + 2mK = 5NK + 8m−K − 2 .

In the preprocessing stage there are calls to Random, followed byMultiply and
then PublicOutput, which are dependent on each other. Therefore, the prepro-
cessing depth equals the sum of the total depths of these interfaces, which is 4,
because depth(Random) = depth(PublicOutput) = 1 and depth(Multiply) = 2.
However, note that Multiply consists of an invocation of Random on its own,
which can be executed in the first round (rather than in the second), and
that saves one round. Overall, there are 3 rounds in the preprocessing stage:

preDepth([Or]m) = [Rnd] + [Mul] + [PuO] = 3 .

As for the online depth, onDepth([Or]m) = 3 · [Mul] + [PuO] = 4.

7.2 Protocols’ costs

Now we may proceed to derive the costs of the protocols. We do so by taking the
costs (size and depth) of the protocols as we analyzed them in Sections 3–6 and
plugging in them the costs of the interfaces that they invoke, as given in Section
7.1. The parameters that determine those costs are: N - number of inputs, K -
number of MPC parties, and B - number of bits for representing all inputs. We
defer the detailed computation of those costs to Appendix B. Note that those
costs were already presented in Table 1 (where the size is shown there only
asymptotically, while the preprocessing and online depths are shown exactly).

7.3 Concrete costs in specific scenarios

We present the concrete cost for two scenarios: in the first (Figure 1, top), the
inputs xn are drawn from a small domain, 0 ≤ xn < 256 and so B = 8; and
in the second (Figure 1, bottom), the inputs are drawn from a large domain,
0 ≤ xn < 232, and so B = 32. In the figure, the protocols are distinguished
by color and line style: Protocol 1 is presented by a solid black line; Protocol 4

The Multiple Millionaires’ Problem 23

has three versions, each with a different setting of N ′, presented by green lines
(solid, dashed and dotted); Protocol 6 is presented by a solid blue line; Protocol
7 is presented by a pink line; Protocol 8 is presented by orange lines, where the
line style (solid, dashed or dotted) identify the setting of d, the digit length; and
Protocol 11 is presented by a solid cyan line. The two plots in the figure present
the trend of the costs as the number of inputs, N , grows. We evaluate the costs
forN ∈ {28, 216, 224, 232}, and each setting is presented by a different marker (see
the legend on the left side of each of the two plots). For other scenarios, the reader
may access the notebook with the source code that we used to calculate these
costs and change the parameters accordingly, see https://colab.research.

google.com/drive/1yjEt0lhFteSIUb06ipjxCzKSnnE5PTfA?usp=drive_link.
When latency is at premium (e.g., when a system invokes MMP repetitively)

one would prefer using a low depth protocol. The comparison in Figure 1 suggests
that when the inputs are taken from a small domain (e.g., B = 8) then the
monotone-representation-based protocol (Protocol 6) performs best. If, however,
the inputs are taken from larger domains (e.g., B = 32), Protocol 6 becomes
impractical and then one should consider Protocol 8 or Protocol 4, with a suitable
choice of their parameters (d and N ′, respectively). On the other hand, when
bandwidth is at premium, the “näıve” binary-tree-based protocol (Protocol 1)
performs better than others.

8 Related work

While many papers considered the (two party) Millionaires’ Problem, its multi-
party generalization, MMP, is introduced and studied herein for the first time (to
the best of our knowledge). We review here some of the papers that addressed
problems similar to MMP and MaxP.

Liu et. al. [23] considered a problem that is related to MaxP. They assumed
that all inputs in I := {xn : n ∈ [N]} are distinct non-negative integers that are
bounded by a small integer Q. They devised a protocol that outputs the set I
completely, while perfectly hiding the mapping between I and the set of parties
{Pn : n ∈ [N]}. While such a solution reveals the output of MaxP, it reveals
far more than what is desired in MaxP and MMP. In addition, the complexity of
their protocol scales linearly with Q (which is equivalent to our 2B), what limits
significantly its scalability.

The studies [28,29] concentrate on the sequencing problem: the setting in
that problem is as in MMP and MaxP but the required output is a set of ranks
{rm : m ∈ [N]}, where rm := |{n ∈ [N] : xn > xm}|, m ∈ [N]. Hence, all inputs
xm, m ∈ [N], for which rm = 0 are the maximum. Here, as opposed to the above
mentioned study of Liu et. al. [23], the values of the inputs remain hidden. But
the output is still far more elaborated than what is desired in MMP and MaxP.

Aggarwal et al. [1] considered a setting with two or more parties possessing
large confidential datasets and designed secure protocols for computing the k-th
ranked element of the union of the datasets. Their protocol template Find-
Ranked-Element-MultiParty can be translated into a protocol for solving

https://colab.research.google.com/drive/1yjEt0lhFteSIUb06ipjxCzKSnnE5PTfA?usp=drive_link
https://colab.research.google.com/drive/1yjEt0lhFteSIUb06ipjxCzKSnnE5PTfA?usp=drive_link

24

Fig. 1. The size and depth the protocols presented in this paper.

MaxP. We presented that protocol as Protocol 11 in Section 6. The solution to
MaxP as issued by Protocol 11 can be securely converted to a solution of MMP (as
we do in Lines 12-13 in Protocol 1). In Section 6 we also analyzed the protocol’s
size and depth, and included it in our comparison in Table 1 in the Introduction
and in Figure 1 in Section 7.3.

David et al. [12] and Mohassel et. al. [24] solved the MMP problem as a build-
ing block for constructing privacy-preserving machine learning protocols. The
approach taken by these works is similar to the binary-tree-based protocol (Pro-
tocol 1) and has the same costs. Namely, they solve MMP by reducing it to a
sequence of (two party) MPs. In [12], they also mentioned a ‘flattened tree’ ap-
proach, in which the tree’s height is 1. This means that each leaf is compared to
every other leaf at the same round. This approach is captured by our general-
tree-based protocol (Protocol 4) by setting N ′ = N .

The Multiple Millionaires’ Problem 25

Recall that our bit-decomposition and digit-decomposition based protocols
(Protocols 7 and 8, respectively) have depth linear in the number of digits, D
(1 ≤ D ≤ B). On the other hand, protocols that solve the original (two-party)
Millionaires’ problem have depth that is only logarithmic in D, see [9,14,27].
These protocols use the following recurrence relation: to compare two numbers
x and y of B bits each, we can split them to the four integers [xhigh, xlow] and
[yhigh, ylow], where xhigh (resp. yhigh) is of Bhigh bits, xlow (resp. ylow) is of Blow :=
B − Bhigh bits, and x = xhigh · 2Blow + xlow (resp. y = yhigh · 2Blow + ylow). This
splitting enables computing the comparison bit 1x<y through the equation

1x<y = 1xhigh<yhigh
∨
(
1xhigh=yhigh

∧ 1xlow<ylow

)
, (1)

which leads to a binary tree of comparisons of depth logD. Let us try to extend
the above recurrence relation to MMP, and let us consider the case N = 3. Letting
x, y, z be the three private inputs, each consisting of B bits, and each is split
into lower and higher parts, as described above, then the natural extension of
Eq. (1) would be as follows:

1x=max(x,y,z) = 1xhigh=max(xhigh,yhigh,zhigh) ∨
(
1xhigh=yhigh=zhigh ∧ 1xlow=max(xlow,ylow,zlow)

)
.

However, it is incorrect. For instance, if xhigh = yhigh > zhigh and ylow > xlow, then
a protocol based on that relation would output both x and y as the maximal
values, whereas the correct output is only y. Therefore, it is not clear whether
the two-party recurrence relation can be extended to the multi-party setting.

9 Conclusion

We studied here two fundamental MPC problems — MMP and MaxP. Those prob-
lems are natural extensions of Yao’s classical Millionaires’ Problem [31]. As ap-
plications of privacy-preserving computation are more and more commonly im-
plemented in industrial systems, MMP and MaxP become important building blocks
in privacy-preserving statistics, machine learning, auctions and other domains.

While some prior studies considered problems related to MMP [1,23,28,29],
and others did solve MMP by reducing it to a sequence of MPs [12,24], it appears
that ours is the first study that introduces this fundamental MPC problem and
offers dedicated solutions, of different approaches, and systematically compares
between them in order to illustrate the tradeoff between the size and the depth
of the corresponding protocols.

A prominent advantage of our novel protocols is their simplicity. As they
solve fundamental problems that are essential building blocks in important ap-
plications, our systematic study of solutions to those basic problems, and the
comparison between them, will serve well future researchers of MPC and prac-
titioners of secure distributed computing.

26

References

1. Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Secure computation of the
median (and other elements of specified ranks). J. Cryptol., 23:373–401, 2010.

2. Ramiro Alvarez and Mehrdad Nojoumian. Comprehensive survey on privacy-
preserving protocols for sealed-bid auctions. Comput. Secur., 88, 2020.

3. Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer and
computing on intervals. In ASIACRYPT, pages 515–529, 2004.

4. Marina Blanton and Paolo Gasti. Secure and efficient protocols for iris and finger-
print identification. In ESORICS, pages 190–209, 2011.

5. Paul Bunn and Rafail Ostrovsky. Secure two-party k-means clustering. IACR
Cryptol. ePrint Arch., page 231, 2007.

6. Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptol., 13(1):143–202, 2000.

7. Yao-Jen Chang, Chia-Wei Tsai, and Tzonelih Hwang. Multi-user private com-
parison protocol using GHZ class states. Quantum Inf. Process., 12:1077–1088,
2013.

8. Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya P. Razenshteyn,
and M. Sadegh Riazi. SANNS: scaling up secure approximate k-nearest neighbors
search. In USENIX, pages 2111–2128, 2020.

9. Geoffroy Couteau. New protocols for secure equality test and comparison. In
ACNS, pages 303–320, 2018.

10. Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multi-
party computation from threshold homomorphic encryption. In CRYPTO, pages
247–264, 2003.

11. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure mul-
tiparty computation. In CRYPTO, pages 572–590, 2007.

12. Bernardo Machado David, Rafael Dowsley, Raj S. Katti, and Anderson C. A.
Nascimento. Efficient unconditionally secure comparison and privacy preserving
machine learning classification protocols. In ProvSec, pages 354–367, 2015.

13. Marc Fischlin. A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In Topics in Cryptology - CT-RSA, pages 457–472, 2001.

14. Juan A. Garay, Berry Schoenmakers, and José Villegas. Practical and secure so-
lutions for integer comparison. In PKC, pages 330–342, 2007.

15. Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer.
Circuits resilient to additive attacks with applications to secure computation. In
David B. Shmoys, editor, STOC 2014, pages 495–504. ACM, 2014.

16. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In STOC, pages
218–229, 1987.

17. Ken Goss and Wei Jiang. Efficient and constant-rounds secure comparison through
dynamic groups and asymmetric computations. IACR Cryptol. ePrint Arch., page
179, 2018.

18. Dima Grigoriev, Laszlo B. Kish, and Vladimir Shpilrain. Yao’s millionaires’ prob-
lem and public-key encryption without computational assumptions. Int. J. Found.
Comput. Sci., 28:379–390, 2017.

19. Yan Huang, Lior Malka, David Evans, and Jonathan Katz. Efficient privacy-
preserving biometric identification. In NDSS, 2011.

20. Ioannis Ioannidis and Ananth Grama. An efficient protocol for yao’s millionaires’
problem. In Hawaii International Conference on System Sciences (HICSS), page
205, 2003.

The Multiple Millionaires’ Problem 27

21. Kimmo Järvinen, Helena Leppäkoski, Elena Simona Lohan, Philipp Richter,
Thomas Schneider, Oleksandr Tkachenko, and Zheng Yang. PILOT: practical
privacy-preserving indoor localization using outsourcing. In European Symposium
on Security and Privacy, EuroS&P, pages 448–463, 2019.

22. Hsiao-Ying Lin and Wen-Guey Tzeng. An efficient solution to the millionaires’
problem based on homomorphic encryption. In ACNS, pages 456–466, 2005.

23. Xin Liu, Shundong Li, Xiubo Chen, Gang Xu, Xiaolin Zhang, and Yong Zhou. Effi-
cient solutions to two-party and multiparty millionaires’ problem. Secur. Commun.
Networks, 2017:5207386:1–5207386:11, 2017.

24. Payman Mohassel, Mike Rosulek, and Ni Trieu. Practical privacy-preserving k-
means clustering. Proc. Priv. Enhancing Technol., 2020:414–433, 2020.

25. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and
mechanism design. In EC-99, pages 129–139, 1999.

26. Takashi Nishide and Kazuo Ohta. Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol. In PKC, pages 343–360, 2007.

27. Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-party secure
inference. In CCS, pages 325–342, 2020.

28. Yi Sun, Qiaoyan Wen, Yudong Zhang, Hua Zhang, and Zhengping Jin. Efficient
secure multiparty computation protocol for sequencing problem over insecure chan-
nel. Artificial Intelligence and Its Applications, 2013. Article ID 172718.

29. ChunMing Tang, GuiHua Shi, and ZhengAn Yao. Secure multi-party computation
protocol for sequencing problem. Sci. China Inf. Sci., 54:1654–1662, 2011.

30. Tomas Toft. Constant-rounds, almost-linear bit-decomposition of secret shared
values. In CT-RSA, pages 357–371, 2009.

31. Andrew C. Yao. Protocols for secure computation. In FOCS, pages 160–164, 1982.

28

A Some comments about the ABB functionality

A.1 Reducing the ABB functionality

We note that some of the interfaces in the ABB functionality 1 could be realized
using other ones. Specifically:

– Given the handle [a], we could use the PrivateInput and PublicOutput inter-
faces to realize the PrivateOutput interface: party Pn (to whom the private
output is destined) calls (PrivateInput, n, r) with some uniformly random
value r ∈ F, followed by the other parties calling (PrivateInput, n). Then the
parties compute [∆a] ← [a] − [r] and call (PublicOutput, [∆a]), after which
Pn computes a = ∆a + r = a− r+ r = a. Clearly, while Pn gets the desired
output, all other parties learn nothing in the process.

– Given the handle [b], it is possible to realize Duplicate as follows: the parties
call [z]← (PublicInput, 0) and then they compute [b]← [a] + [z].

– Given the handles [a1], . . . , [ak] it is possible to realize AffineComb as follows:
the parties call [ci] ← (PublicInput, ci) for all 0 ≤ i ≤ k and then they
compute [c]← [c0] + [c1] · [a1] + · · · [ck] · [ak].

– Given handles [a] and [b], it is possible to realize the Compare interface using
other interfaces in Functionality 1. There are many such reductions, see [17]
and the reference therein.

– Given the handle [a], it is possible to realize Equal to some value b by calling
[b] ← (PublicInput, b), and then computing [1a<b] and [1b<a]. Clearly, a = b
if and only if 1a<b = 1b<a = 0. So the parties compute [1a=b]← [1− 1a<b] ·
[1− 1b<a]. We present a more efficient instantiation in Appendix A.2.2.

A.2 Secure computation of some of the ABB interfaces

A.2.1 Secure computation of an inverse Given a handle [a] to an element
a ∈ F \ {0}, we want to obtain a handle [b] to b = a−1, namely, the inverse of a
in the field F. This can be done as follows:

1. The parties invoke [Rnd] and obtain the handle [c] for a random c ∈ F.
2. The parties compute [C] = [a · c].
3. The parties invoke [PuO] on the handle [C].

4. The parties locally compute [a−1]← [c] · C−1, and output that handle.

Hence, the costs of this computation are:

size([Inv]) = [Rnd] + [Mul] + [PuO] ,

preDepth([Inv]) = max([Rnd], [Mul], [PuO]) ,

onDepth([Inv]) = [Rnd] + [Mul] + [PuO] .

The Multiple Millionaires’ Problem 29

A.2.2 Secure testing of equality The Equality interface can be instantiated
as follows: Given [a] and b, compute [z] = [a] − b and test whether the value
behind the handle [z], denoted z, equals zero. Equality to zero can be tested by
multiplying z with a random value from the field, r, and output the result. If the
result is zero then it implies that z is zero (with high probability - except in the
case r = 0). Otherwise, it implies with certainty that z is non-zero. Obviously, in
order to not reveal z (in case it is not zero) we must keep r secret. So the parties
invoke [r] ← Random, then compute [t] = [r] · [z] and then PublicOutput([t]).
Therefore, the costs of Equality are:

size([Equ]) = [Rnd] + [Mul] + [PuO] ,

preDepth([Equ]) = max([Rnd], [Mul], [PuO]) .

and
onDepth([Equ]) = [Rnd] + [Mul] + [PuO] .

A.2.3 Secure computation of the OR operation [26] The idea in [26]
was to consider the scalar A = 1 +

∑
i∈[m] ai ∈ {1, . . . ,m + 1}, and the unique

m-degree polynomial f(x) =
∑m

i=0 αix
i that satisfies f(1) = 0 and f(i) = 1 for

all i ∈ {2, . . . ,m + 1}. Since f(A) =
∨

i∈[m] ai, the protocol evaluates f(A) =∑m
i=0 αiA

i. To do this, the protocol proceeds as follows.
First, the parties perform a sub-protocol that generates m secret random

values bi, i ∈ [m], as well as their inverses, b−1
i .5 The sub-protocol starts by

the parties invoking Random 2m times in order to obtain handles to 2m secret
random values: [bi] and [b′i], i ∈ [m]. Then, they compute [Bi] = [bi] · [b′i] for
every i ∈ [m] and call PublicOutput([Bi]). Finally, they locally compute [b−1

i] =
B−1 ·[b′i]. Hence, the size of this sub-protocol is 2m·[Rnd]+m·[Mul]+m·[PuO],
and its depth is [Rnd] + [Mul] + [PuO]. Note that this depth affects only the
preprocessing depth of the protocol.

To compute f(A) the parties proceed as follows. First they compute

[c1] = [A] · [b−1
1]

[c2] = [A] · [b1] · [b−1
2]

...

[cm−1] = [A] · [bm−2] · [b−1
m−1]

[cm] = [A] · [bm−1] · [b−1
m]

Note that c1, . . . , cm can be computed in parallel in a depth-2 sub-protocol,
since each of the values is the result of (up to) two products. Then, they call

5 Note that the parties could randomly generate bi = 0. However, as the underlying
field F is large, the probability of such event is negligible. In addition, if the parties
do generate bi = 0, then they will discover it during the invocation of inverse Inv
(see Section A.2.1) and then they could select a new random value.

30

PublicOutput(ci) for all i ∈ [m]. Subsequently, each party computes locally [Ai] =

[bi] ·
∏i

j=1 ci for all i = 2, . . . ,m. Finally they compute [
∨m

i=1 ai] = [f(A)] =∑m
i=0 αi ·[Ai]. Hence, the size of above computation is (2m−1)·[Mul]+m·[PuO],

and its depth is 2[Mul] + [PuO].
Combining all of the above we get:

size([Or]) = 2m · [Rnd] + (3m− 1) · [Mul] + 2m · [PuO] ,

preDepth([Or]) = [Rnd] + [Mul] + [PuO]

and
onDepth([Or]) = 3 · [Mul] + [PuO] .

B Derivation of the protocols’ costs

Protocol 1. The size and depth of this protocol were analyzed in Section 3.1.
They depend on the interfaces [PrI], [Com], [Mul], [Equ], and [PuO]. Plugging
the concrete costs of those interfaces as given in Section 7.1 we arrive at the
following concrete costs of Protocol 1:

size(Protocol 1) = N + (N − 1)(2B + 5 logB + 23) + (N − 1)(2 +K) +N(3 + 2K) +NK

= N(2B + 5 logB + 29 + 4K)− (2B + 5 logB + 25 +K) ,

preDepth(Protocol 1) = 1 ,

onDepth(Protocol 1) = 1 + ⌈logN⌉ · (4 + 1) + 2 + 1 = 5 · ⌈logN⌉+ 4 .

Protocol 4. This protocol depends on another parameter, N ′, which is the
number of items passed to Sub-protocol 3 (MaxP). We begin by analyzing the
size and depth of Sub-protocol 3:

size(Sub-protocol 3) = (N ′2 −N ′)(2B + 5 logB + 23)

+N ′ · (5N ′K + 8N ′ −K − 2) + (N ′ + 1)(2 +K) + 3 + 2K

= (N ′2 −N ′)(2B + 5 logB + 23) +N ′2(5K + 8) + 5 + 3K ,

preDepth(Sub-protocol 3) = 3 , onDepth(Sub-protocol 3) = 12 .

Now we turn to analyze Protocol 4. The number of times that it invokes Sub-
protocol 3 (MaxP) was denoted in Section 3.2 by T (N,N ′). It approximately

equals
∑⌈logN′ N⌉

ℓ=1
N

(N ′)ℓ
≈ N−1

N ′−1 . Hence, the costs of Protocol 4 are:

size(Protocol 4) = T (N,N ′) ·
(
size(Sub-protocol 3)

)
+N(4 + 2K) ,

preDepth(Protocol 4) = 3 , onDepth(Protocol 4) = 3 + 12⌈logN ′ N⌉ .

Protocol 6. The costs of this protocol were analyzed in Section 4.2. After
plugging in them the concrete costs of the interfaces that it invokes, and after

The Multiple Millionaires’ Problem 31

changing the notation for the upper bound that we used in Section 4.2 from Q
to 2B , we arrive at the following costs:

size(Protocol 6) = N(2B − 1) + (2B − 1)(5NK + 8N −K − 2) +N(3 + 2K) +NK

= (2B − 1)(5NK + 9N −K − 2) +N(3 + 3K) ,

preDepth(Protocol 6) = 3 , onDepth(Protocol 6) = 1 + 4 + 2 + 1 = 8 .

Protocol 7. The concrete costs of this protocol, as implied by the analysis in
Sections 5.1 and 7.1, are as follows:

size(Protocol 7) = BN + 3BN(2 +K) +B(5NK + 8N −K − 2) +NK

= BN(15 + 8K) +K(N −B)− 2B ,

preDepth(Protocol 7) = 3 , onDepth(Protocol 7) = 2 + 6B .

Protocol 8. Protocol 8 involves the following parameters: d is a tunable parame-
ter that determines the number base Q = 2d in which the inputs are represented,
and D = B/d is the number of digits in the representation. Its concrete costs,
as implied by the analysis in Sections 5.2 and 7.1, are as follows:

size(Protocol 8) = ND(Q− 1) +ND(2Q− 1)(2 +K)

+ND (5K(Q− 1) + 8(Q− 1)−K − 2)

+D(Q− 1)(5NK + 8N −K − 2) +NK

= D(Q− 1)(N(12K + 21)−K − 2) +NK ,

preDepth(Protocol 8) = 3 , onDepth(Protocol 8) = 1+D(3+4+4)+1 = 11D+2 .

Protocol 11. Cast in our ABB terminology, such a protocol starts with N calls
to PrivateInput; the main loop consists of (up to) B iterations where each iter-
ation includes 2N calls to Compare (for computing the bits 1xn<M and 1xn>M ,
where xn is one of the inputs and M is the current guess for the value of the
maximum) followed by two calls to Or of N bits (note that Or and And have
similar costs). That final computation entails N calls to Equality, followed by N
calls to PublicOutput. Hence,

size(Protocol 11) = N · [PrI]+2B · (N · [Com]+ [Or]N)+N · [Equ]+N · [PuO] ,

preDepth(Protocol 11) = max([PrI], [Com], [Or]N , [Equ], [PuO]) ,

and

onDepth(Protocol 11) = [PrI] +B · ([Com] + [Or]N) + [Equ] + [PuO] .

32

The concrete costs for the setting considered in Section 7 are therefore:

size(Protocol 11) = N + 2B · (N · (2B + 5 logB + 23) + (5NK + 8N −K − 2)) +

N · (3 + 2K) +NK

= NB(4B + 10 logB + 10K + 62) +N(3K + 4)− 2B(K + 2) ,

preDepth(Protocol 11) = max(0, 0, 3, 1, 0) = 3 ,

onDepth(Protocol 11) = 1 +B · (4 + 4) + 2 + 1 = 8B + 4 .

	The Multiple Millionaires' Problem
	Introduction
	Our contributions and outline

	Preliminaries
	The Arithmetic Black-Box (ABB)
	Measures of protocols' complexity

	Tree-based protocols
	A binary tree-based protocol
	A protocol based on higher degree trees

	Constant-depth protocols for small domains
	A protocol for solving MaxP
	A protocol for solving MMP

	Protocols based on the inputs' digit decomposition
	Binary representation of inputs
	Reducing depth by using larger bases

	A protocol for solving MMP inspired by AggarwalMP10
	Concrete evaluation
	Interfaces
	Protocols' costs
	Concrete costs in specific scenarios

	Related work
	Conclusion
	Some comments about the ABB functionality
	Reducing the ABB functionality
	Secure computation of some of the ABB interfaces
	Secure computation of an inverse
	Secure testing of equality
	Secure computation of the OR operation NO07

	Derivation of the protocols' costs

