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Abstract. In this work we revisit the problem of using general-purpose
MPC schemes to emulate the trusted dataholder in central differential
privacy, to achieve same accuracy but without the need to trust one sin-
gle dataholder. In particular, we consider the two-party model of having
two computational parties (or dataholders) each with their own dataset
wishing to compute a canonical differentially private mechanism on their
combined data and to do so with active security. We start by remarking
that available definitions of computational DP (CDP) for protocols are
somewhat ill-suited for such a use-case, due to them using formalisms
that either are much weaker than one can typically get for MPC pro-
tocols, or they are too strict in the sense that they need significant
adjustment in order to be realisable by using common DP and MPC
techniques. With this in mind we propose a new version of simulation-
based CDP, called SIM∗-CDP, specifically geared towards being easy to
use for MPC practitioners and more closely capture guarantees granted
by using state-of-the-art MPC schemes to compute standard DP mecha-
nism. We demonstrate the merit of the SIM∗-CDP definition by showing
how to satsify it by use of an available distributed protocol for sampling
truncated geometric noise. Further, we use the protocol to compute two-
party inner products with computational DP and with similar levels of
accuracy as in the central model, being the first to do so. Finally, we
provide an open-sourced implementation and benchmark its practical
performance.
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1 Introduction

The study of differential privacy in various distributed settings has given rise to
a plethora of new definitions of DP, such as DP in the local model (LDP) [47], the
shuffle model [7, 17] and definitions with a computationally bounded adversary,
giving guarantees of computational DP (CDP) [28, 5, 58]. Each of the defini-
tions are subject to their own restrictions in the adversarial model and in the
accuracy that can be achieved within them. For instance is it well studied that
LDP, which is a computationally efficient model with very few trust assumptions,

⋆ Parts of this work was performed whilst at Know-Center, Graz, Austria.
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must add much more noise than the standard central model of DP [47, 35, 16, 5].
One popular remark is that one can use general-purpose multiparty computation
(MPC) to emulate a trusted central dataholder and thus one may get the accu-
racy that is possible in the central model of DP without having to trust a central
computational party [31, 17]. The troubles in realising this idea, which we can
call generic emulation of the dataholder (GED), are firstly that one must accept
the, potentially, large computational costs of MPC and secondly that it is not
necessarily clear how one should define DP in this new distributed and compu-
tational setting. In order to avoid or reduce the computational costs of using
MPC, up until now, most of the works in this area have opted for considering
passive adversaries [5, 33, 65], only allowing aggregate functions [20, 48] and/or
requiring honest majorities [28]. In this work, we focus on the case of two par-
ties, active (static) corruptions, and require efficient protocols1 for non-aggregate
functionalities that achieve the same accuracy as in the central model.

Existing CDP notions. In order to design practical protocols for GED, we
would want a DP notion that is directly compatible with the security notions of
state-of-the-art MPC schemes and that allows the emulated dataholder to com-
pute common DP mechanisms. Many such mechanisms, such as the Laplace [30],
geometric [40], Gaussian [31] and discrete Gaussian [14] mechanisms are not
computable exactly in strict probabilistic polynomial time (PPT) on a finite
computer.2 This means that, since general-purpose MPC only allow PPT com-
putable functionalities, the used definition needs to allow either that the proto-
col does not exactly emulate the dataholder (imperfect correctness) or that the
emulated dataholder does not exactly compute the DP mechanism, or both. Fur-
ther, since we consider the case of two parties and active corruptions, for which
information-theoretic general-purpose MPC is impossible [19, 41, 36], the only
candidates of a suitable DP definition are the CDP notions introduced in [58, 5].
Since we will refer to it recurrently, let us call the paper [58] MPRV, after its
authors.

Of the multiparty CDP definitions in MPRV, IND-CDP and SIM-CDP (Def-
inition 6 in MPRV, also reiterated in Appendix A) are defined such that they
allow inefficient protocols, precisely in order to allow them to compute inefficient
(non-PPT) DP mechanisms. However, there is no separation between the pro-
tocol (which we will want to be efficient) and the ideal DP mechanism (which
we will want to allow being inefficient), which makes using those definitions an
unnatural fit for the purpose of GED. Further, their simple structure and secu-
rity models means that whilst they are convenient to use for analysing specific
protocols [48, 62, 33] and for deriving theoretical bounds [56, 43, 45, 39, 8],
they do not harness the strong security guarantees oftentimes available for MPC

1 In particular, we require that the protocols are computable in strict polynomial time
in a finite computational model, as suggested in [3].

2 This is due to the need to represent probabilities that are not multiples of 2−l(κ) for
any polynomial l, as noted in, for instance, [14].
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schemes and thus potentially result in unnecessarily weak claims for the case of
GED. Similar arguments hold with regards to the CDP notion introduced in [5]
due to its similarity to IND-CDP.

The third multiparty CDP notion in MPRV, SIM+-CDP, on the other hand
uses the ideal/real world paradigm for security, allows the ideal functionality to
be inefficient but the protocol not and the CDP definition inherits security prop-
erties of a standard notion of security in MPC [41]. Still, SIM+-CDP requires
that the emulation of the dataholder has perfect correctness, which implies that
the definition is not satisfiable for non-PPT DP mechanisms, and one would need
to instantiate it with a finite version of them, for instance using the mechanisms
introduced in [3]. Whereas this is not necessarily an unsatisfying approach, it
does mean in some sense a less direct realisation of GED, since the intuition is
still to, say, ’use MPC to run the geometric mechanism’ and thus it is appeal-
ing to have a definition that can also be fulfilled when the ideal functionality is
inefficient. Further, SIM+-CDP is restricted to the functionality of secure func-
tion evaluation (SFE), whereas IND-CDP and SIM-CDP are not, and there are
other natural cryptographic functionalities for which one might want to apply
CDP, such as scenarios where SFE is done whilst allowing differentially private
leakage throughout the protocol [55, 44]. All in all, it therefore seems a more
appealing approach to define a CDP notion in the ideal/real paradigm with an-
other security notion than the one used in SIM+-CDP. In particular, using the
more expressive UC-security framework [13] as security notion, one can simul-
taneously solve the issue of requiring perfect correctness and open up for more
ideal functionalities. Finally, using UC security gives stronger security guaran-
tees with respect to composition of protocols and is it also the security notion
used by some of the most popular schemes for MPC, such as [23, 21, 38, 1].

A new definition. With this motivation, we propose a new version of SIM+-
CDP, which we call SIM∗-CDP. We underscore that the merit of our new def-
inition is not that it necessarily allows studying new scenarios altogether or is
to be preferred over previous definitions in all cases, indeed there are many rel-
evant cryptographic tasks for which a UC security proof is missing or for which
it is not the most desirable framework to use (as is, for instance, argued in [24]
for the case of verifiable distributed aggregate functions (VDAFs)). Rather the
merit is that for settings where UC secure protocols are readily available, then
we have a formulation that takes advantage of that to give results that are both
stronger and easier to obtain. Further, we also propose a generalised definition of
simulation-based CDP via the ideal/real paradigm, which we call SIM◦-CDP of
which both SIM+-CDP and SIM∗-CDP can be seen as instantiations. To demon-
strate the advantages of SIM∗-CDP over previous definitions, we give a generic
protocol for satisfying SIM∗-CDP for the ideal functionality computing the trun-
cated geometric mechanism in SFE. Further, we implement the protocol, use it
to compute differentially private inner-products and benchmark the implemen-
tation, hence showing its practical performance. The treatment of (non-binary)
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integer inner-products might be of independent interest, perhaps primarily due
to our considerations relating to the fact that the function sensitivity of the
inner-product is dependent on the data of the corrupted party, thus creating a
need for input validation.

Contributions:

– We identify aspects of existing CDP definitions that make them cumbersome
to work with in the context of generic emulation of a central trusted data-
holder that computes an inefficient DP mechanism. With these difficulties in
mind we present a new version of SIM+-CDP, which we call SIM∗-CDPẆe
also propose a generalised version of SIM+-CDP and SIM∗-CDP, which we
call SIM◦-CDP (Section 3).

– We demonstrate the usability of the SIM∗-CDP definition by showing how
it can be achieved for the truncated geometric mechanism by proving that
a slightly adapted version of the efficient MPC protocol by [33] for sampling
geometric noise satisfies our definition (Sections 4 and 5).

– We use the protocol to compute differentially private two-party inner-products
with security against active adversaries, to the best of our knowledge being
the first to do so with accuracy equal to that in the central model, and pro-
vide an open-sourced implementation3. Ours is the first implementation of
the noise generation protocol of [33]. We provide benchmarks of the imple-
mentation and thereby show that it is efficient in practice (Section 6).

Related works. The first work that aims to emulate a central trusted party for
DP by use of MPC is Our data, ourselves [28], where they propose a protocol
for computing sums with security against active adversaries corrupting less than
a third of the parties. As a part of this protocol, they propose a method for dis-
tributed noise generation. Following [28], other works have also proposed noise
sampling protocols for DP in an MPC setting [2, 15, 33, 66] and perhaps the
work most related to ours is EIKN [33]. EIKN gives an efficient MPC protocol for
sampling from an approximate truncated geometric distribution, which we use
in this work. Their results however only hold for passive corruptions and hon-
est majorities.4 In a recent preprint [49], the authors provide an efficient noise
sampling protocol for passive corruptions and dishonest majorities. The authors
of [49] note in passing that their protocols can easily be made secure against
active adversaries by implementing them in a framework with active security,
such as MP-SDPZ [50], but make no note of the type of CDP this could result
in. In that sense, our proposed SIM∗-CDP definition offers an immediate answer
to that.5 The work of [15] propose a method for performing Bernoulli trials that

3 https://extgit.iaik.tugraz.at/krypto/geometric_sampler
4 In a follow-up work [34], an extension to active corruptions was given but those
results require less than a third of the parties to be corrupted.

5 Another related paper is [2]. It is the only published work of which we are aware that
claims to provide a method for achieving CDP in the two-party case in the presence

https://extgit.iaik.tugraz.at/krypto/geometric_sampler


Practical 2PC Computational Differential Privacy with Active Security 5

is asymptotically superior to the one we use (Section 4) however their method
relies on implementing oblivious data structures hence making it unsuitable for
direct combination with the secret-sharing based MPC schemes that we use.

Another line of work that is of relevance to ours due to it dealing with com-
bining definitions of security for MPC schemes and DP is the string of papers
considering MPC with differentially private leakage [46, 55, 44], where the idea is
to improve the efficiency of an MPC protocol by allowing the protocol execution
itself (not the result) to leak some extra information, but to restrict this leakage
to be differentially private. Particularly relevant for our work is the work of [44]
where they combine DP with UC security and do so partially with the purpose
of introducing an ideal functionality that is not capturable in the security frame-
work of [41]. Our new definition (Section 3) thus is significantly influenced by
that of [44], as can be seen by the syntactic resemblance.

Finally, we note that the large line of work on differentially private data col-
lection, arguably centered around protocols related to the non-DP aggregation
protocol Prio [20, 61, 6, 48], is conceptually relevant due to being an important
topic of distributed CDP protocols. On the practical side, however, most of the
techniques used there (which yield very efficient and scalable systems) are not
applicable to our work. This includes techniques for distributed noise generation
via infinitely divisible distributions6, since it restricts the system to only com-
pute aggregate functions, operate under the assumption of passive corruptions
or have the data subjects (also called clients) encode their data points with re-
spect to the function that is then to be computed. As expanded on in the next
section, we focus primarily on joint computation of a DP mechanism where each
computational party has a specific part of the input database to the mechanism
in the clear, instead of having secret shares of the input as is typically the case
for private data collection.

2 Preliminaries

2.1 Differential privacy

The notion of differential privacy (DP) [30, 27] considers a probabilistic function,
algorithm, or mechanism, that maps databases, i.e. sets of elements from some
data universe χ, to some output range R. We think of databases as ordered sets
of some fixed (public) size N ′, and thus a database D is an element of χN ′

. We
say that two databases D,D′ are adjacent if they differ in at most one element,
i.e. there exists at most one index i ∈ {1, ..., N ′} such that Di ̸= D′

i. We recall
the standard definition of DP (reformulation of [27]) in Definition 1.

of active adversaries. Upon consideration, it is clear that the method they propose
does not fulfill the notion of CDP that they claim to achieve (SIM+-CDP) and this
is due to their mechanism (Laplace) not being PPT computable.

6 See, for instance, Section 2.2.5 in the phd thesis of Böhler [10].
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Definition 1 (ε-DP [30, 27]). A probabilistic function M : χN ′ → R is
ε-differentially private if for all pairs (D,D′) of adjacent databases in χN ′

and
all subsets S of R,

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S), (1)

where the probability is overM’s internal coin tosses.

We refer to DP as defined above as pure DP. We primarily use the common
relaxation of (ε, δ)-DP, called approximate DP7, which is the same as the defini-
tion above with the sole difference that the inequality also includes the additive
term δ. DP is typically studied in what is called the central model, of which
an illustration can be found in Figure 1. In the central model, the database is
simply a set of rows, each of which consists of information about one individual,
called a data subject. These data subjects send their data to a trusted data-
holder (without noise) that then computes a mechanism on the accumulated
data and then releases the result to an untrusted data analyst. In this work,
we rather consider DP in a distributed model, namely the two-party DP model,
as is for instance [58, 56], where each data subject holds two database rows
(xi, yi), each of which is sent to one of two computational parties (or servers)
that then stores their respective row into their database (x and y respectively)
in the clear. Then these two computational parties together wish to compute
the query f on the concatenation of their databases D := x||y, both learning
the result, and they wish to do this in a differentially private manner with re-
spect to their database. An illustration of this model can be seen in Figure 2.
We note that the two-party model is slightly but significantly different from the
two-server/multi-server models [6, 18], also called the multi-central model [64],
primarily in that those models do not allow any server to have any part of the
input dataset in the clear. This difference is of practical relevance because it
means the models are suitable for different scenarios. The two-party model is
mostly meant for joint computation between two entities each holding their own
dataset (which may have been collected over time and without respect to the
function evaluation in question) whereas the two-server model is rather tailored
towards data collection, where one entity or more entities are collecting the data
specifically for the purpose of performing the computation but wish to do so in
a way that they never see any part of the dataset in the clear.

When discussing DP mechanisms, it is critical to consider the usefulness of the
mechanism for approximating the query function f . We do this by using the fol-
lowing notion of usefulness, which is a reformulation of the notion of usefulness
in MPRV [58] to consider probabilistic functions rather than interactive protocol
ensembles.

7 See, for instance, Definition 7.1.4 in [65].
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Definition 2 (Usefulness). Let {fκ : Dκ → Rκ}κ∈N and {f̂κ : Dκ → R̂κ}κ∈N
be ensembles of probabilistic functions. We say that {f̂κ} provides ν-usefulness
with respect to the predicate P for {fκ} if for every sufficiently large κ and for

every D ∈ Dκ is holds that P(P (f̂κ(D), fκ(D)) = 0) ≤ ν(κ), with the probability

being over the internal randomness of both f̂κ and fκ.

A specific predicate we will consider is that which induces the notion of (s, ν)−additive-
usefulness. That is, P (a, b) = 1 iff |a− b| ≤ s. In particular, s can be a function
of ν(κ).

Data subjects

D1

D2

D3

...

Dataholder
Database D

Analyst

Output f(D) + noise

Fig. 1: In the central model, the data subjects trust the data holder with their
data (Di) but wish to keep it secret from an (possibly adversarial) analyst learn-
ing the (possibly noisy) function evaluation.

2.2 Mixed binary-arithmetic MPC schemes

In our definitions, we rely on MPC schemes with active security. In particular,
we work with MPC protocols with restricted computation domain, either in Fp

for arithmetic or F2k for binary circuits. For a discussion of active security in
these schemes, we refer to Appendix D. In general, MPC schemes in Fp provide
fast algorithms for addition and multiplication. In contrast, in F2k , comparisons,
bit-wise operations, and non-linear functions can be evaluated cheaply. However,
storing larger integers results in substantial overhead, and evaluating arithmetic
circuits in the binary domain incurs costs depending on the encoded values’ bit
size.

Several works have proposed solutions to convert shares between computation
domains. First, in ABY [25], the authors propose a semi-honest two-party MPC
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Data subjects

x1, y1

x2, y2

x3, y3

...

Party 1
Vector x

Party 2
Vector y

Output f(x||y) + noise

Fig. 2: In the two-party model, the data subjects trust two different data holders,
which we call parties, with a different part of their data, but not with the part
of the data that they send to the other data holder. Both parties then learns the
noisy function evaluation. Thus, in a sense, each party plays both the role of a
data holder and a data analyst.

scheme that allows switching between the binary, arithmetic, and garbled cir-
cuit domains (Garbled Circuits allow computation of binary circuits with low
communication rounds). More recently, Rotaru and Wood introduced doubly-
authenticated bits [60] and an efficient procedure to securely sample secret bits
in the arithmetic and binary domain in malicious settings. Given the shares of
an unknown random bit ([[b]]2, [[b]]p) we can transfer shared bits from the binary
to the arithmetic domain by computing the mask m← Reconstruct([[x]]2 ⊕ [[b]]2)
and setting [[x]]p ← m + [[b]]p − 2 ·m[[b]]p. Similarly, converting from arithmetic
to binary masks the value by addition and evaluates subtraction in the binary
domain. The conversion from the arithmetic to the binary domain gets more
expensive, depending on the field size. Subsequent work introduced extended
doubly-authenticated bits (eda-bits) [37], where masking values are shared along
with their binary decomposition in the respective domains. The eda-bits repre-
sent an improvement in efficiency when converting larger values, and [37] presents
dedicated protocols to speed up comparisons in Fp.
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3 A new version of simulation-based CDP in the
ideal/real paradigm

3.1 Wishes for a definition

As noted in the introduction, we consider CDP notions with respect to their
strength and ease-of-use in combining general-purpose MPC schemes, i.e. schemes
that can be used to compute any (efficiently computable) function, and standard
DP mechanisms. In other words, the optimal CDP definition would be one that is
well-suited for the practice of slotting a common DP mechanism into a state-of-
the art MPC protocol, which is the core idea of GED. In particular, ”well-suited”
here means that:

– Ease of use - The satisfaction of the definition follows directly, or via a very
simple process, from the security properties of the MPC scheme and the DP
mechanism.

– Strength - The definition takes advantage of the strong results for both the
involved DP mechanism and MPC scheme, meaning that it is not signifi-
cantly weaker than directly granted by the constituent parts.

– Generality - The definition is able to be realised for a large set of DP mech-
anisms, and by use of a large part of current state-of-the-art MPC schemes.

Of course the first two properties can, for a specific use-case, be attained by using
the ad hoc approach of simply describing the MPC scheme and DP mechanism
in use, thus causing implicit CDP definitions. The problem of that approach is
that it does not offer generality, meaning partly that comparing different such
implicit definitions qualitatively becomes challenging (due to the dependence on
all aspects of the specific mechanism and MPC scheme) and partly that the
definition in itself as a source of confidence in the system is diminished due to
the increased inconvenience in using the definition as the object of theoretic
study. That is, whilst we want a definition that is essentially directly satisfied
by simply choosing a DP mechanism and an MPC scheme, it is not desirable to
have those choices as a part of the definition, because that would remove the
fruitful separation between the definition itself as an object of study and the
methodology we use to fulfill it. There are three main types of definitions for
CDP in the literature:

– Indistinguishability-based definitions such as IND-CDP in MPRV[58] and
the very similar CDP notion in the full version of [5]. The core idea of
these definitions is that all efficient functions taking as input the view of the
corrupted parties should be (ε, δ)-DP with a negligible δ.

– Simulation-based definitions not using the ideal/real paradigm, of which SIM-
CDP in MPRV is the only definition that we are aware of. The idea here is
rather that the view of the adversary is computationally indistinguishable
from the output of a (possibly inefficient) simulator with access to the inputs
of both parties.
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– Simulation-based definitions using the ideal/real paradigm, represented by
the SIM+-CDP definition in MPRV, where CDP is defined as that the pro-
tocol in question securely computes an ideal functionality that is ε-DP.

With respect to our wishlist of properties above, it should be immediate that
the first two classes of definitions primarily lack strength, in the sense that if
one computes a DP mechanism in a state-of-the-art MPC scheme then already
has stronger security/privacy properties than are required by the definition. One
example of this is that, as proven in the full version of MPRV, SIM+-CDP implies
SIM-CDP, which means that if one realises GED in the sense required by SIM+-
CDP, then using SIM-CDP to describe the CDP properties is to under-sell the
protocol in question. It should also be clear from the list above that simulation-
based CDP by use of the ideal/real paradigm seems to be a very promising
definitional approach, due to the intimate connection to the dominant flavor
of security definitions in general-purpose MPC. In the following, we consider
SIM+-CDP more carefully and remark on details in the definition that makes it
seem to not fulfill our wishlist entirely, primarily with regards to the generality
aspect.

3.2 The original SIM+-CDP definition

As noted, SIM+-CDP is a more direct realisation of GED than IND-CDP and
SIM-CDP, partly due to them not having the same clear separation between
functionality (mechanism) emulation and the DP properties of the mechanism
itself. The definition of SIM+-CDP in MPRV [58] is the following8.

Definition 3 (SIM+-CDP, Definition 8 in MPRV [58]). An interactive
protocol ensemble {⟨g1κ(·), g2κ(·)⟩}κ∈N is a (s, ν)εκ-SIM

+-CDP private two-party
computation protocol for f = (f1, f2) with respect to the predicate P if there

exists an εκ-DP randomized mechanism f̂ = (f̂1, f̂2) such that

– Mechanism f̂ provides (s, ν)-usefulness for f with respect to the predicate P .
– The protocol ensemble is a secure two-party computation protocol ensemble

for the randomized functionality f̂ as per the ”ideal/real”-style definition of
secure two-party computation (see full version of MPRV).

For more details on the ”ideal/real”-paradigm, the reader is in MPRV referred
to the standard texts [12, 41]. The full version of MPRV [58]9 provides an exact
definition of the used notion of secure two-party computation. To the best of
our understanding, the definition that they use is that of [41], with the sole
adjustments that the simulator is not required to be efficient. In particular,

8 For definitions of interactive functions, we refer to [42], and of protocol ensembles to
MPRV. For the notion of usefulness with respect to predicates, we refer to the full
version of MPRV. Note also that their notion of usefulness is slightly different from
the one we use although this is not of any real relevance to the present work.

9 The full version is available from the authors.
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the definition used in MPRV requires efficiency, i.e. that each of the parties
in the protocol can be computed by a PPT interactive Turing machine (ITM),
and perfect correctness, meaning that the output of the protocol in an honest
execution is identically distributed to f̂ . These details in the used notion of secure
computation leads to that many canonical DP mechanisms cannot be directly
slotted into the SIM+-CDP definition, as seen in the following example.

Infeasibility of GED with the Laplace mechanism in SIM+-CDP. Con-
sider using SIM+-CDP to describe realising GED with the Laplace mechanism.
The main question is whether there exists an efficient protocol that can re-
alise the Laplace mechanism in SIM+-CDP. Unfortunately, there is not, and the
problem lie in combining the efficiency requirement of the protocol and the re-
quirement for perfect correctness. The support of the Laplace mechanism is the
reals, and thus the output cannot even be written in strict finite time. Thus,
the two requirements above directly imply that any mechanism in the SIM+-
CDP definition must have a finite support. Further, even the (arguably) most
Laplace-like such distribution, the geometric distribution [40] truncated to the
output domain, cannot be realised in SIM+-CDP in general, since it requires
sampling probabilities that are not multiples of 2−poly(κ). This means that in
order to realise GED with distributions that cannot be sampled exactly in strict
polynomial time (as is the case for the Laplace, geometric, Gaussian, discrete
Gaussian distributions and truncated versions of them), there needs to be some
slack introduced. This could be, for instance, in the shape of allowing a small
statistical distance between the output of the ideal functionality and that of the
protocol (relaxing correctness) or relaxing the demand for strict polynomial time
to expected polynomial time, as is argued in [14].

3.3 Our new definition, SIM∗-CDP.

We now propose a new version of SIM+-CDP, which we call SIM∗-CDP and
then discuss its relationship to previous definition further.

Definition 4 ((εκ, δκ)−SIM∗-CDP). The two-party protocol π is (εκ, δκ)-SIM
∗

-CDP for the ideal functionality F and a given adjacency notion if π UC-realises
F and for all ideal-world adversaries S, the view of S is (εκ, δκ)-DP with respect
to the adjacency notion.

SIM∗-CDP is essentially the same as SIM+-CDP but with the following main
changes:

– UC-security is used as security notion.
– The ideal functionality is unspecified (and can be reactive).
– Correctness is computational rather than perfect.
– The ideal-world adversary (simulator) must be efficient (strict PPT).

Other minor changes are:
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– Using (ε, δ)-DP instead of ε-DP as the core notion of DP.
– The requirement of usefulness is removed from the CDP definition.

We now expand on the motivation behind these changes.

Using UC-security. Although the stand-alone security framework used in
SIM+-CDP (in a slightly tweaked form) is heavily used, in the last two decades
the security analyses of many popular schemes have taken place in the more
expressive UC framework [13]. The main merit of this framework is that the
security can be proven to be preserved under arbitrary composition of proto-
cols, leading to a stronger notion of security and an increased convenience when
proving the security of composed protocols. Thus, using UC security in the
CDP notion is natural for cases where this (stronger) type of security is already
achieved by the MPC scheme one intends to use. Further, as we will see below,
this change in security framework also directly leads to many other benefits.

An unspecified ideal functionality. The ideal functionality used in SIM∗-
CDP is explicitly that of the parties jointly computing a differentially private
function (with abort). With regards to capturing what it means for a protocol to
be computationally DP, this is a significant restriction as compared to IND-CDP
and SIM-CDP, where the protocols are defined to be CDP based on properties of
the view of the adversary, regardless what the computational task of the protocol
is. In particular, both IND-CDP and SIM-CDP allows direct modeling of reactive
tasks, and as such our new definition arguably lies closer to those definitions
conceptually than SIM+-CDP does, in the sense that it remains open to more
cryptographic tasks than non-interaction function evaluation being considered
CDP. On the practical side, one very relevant reactive functionality is that of
SFE with differentially private leakage as in, for instance, [44]. More details
about the setting of SFE with DP leakage in Section 3.4.

Computational correctness. Another positive consequence of using the UC
security framework is that the correctness of the protocol is explicitly compu-
tational rather than perfect. This resolves the complications of emulating in
polynomial time a trusted dataholder that computes a function which is not
computable in polynomial time since the protocol need not generate the exact
same output distribution as the dataholder but only something that is com-
putationally indistinguishable from it. We will see in coming sections that one
can efficiently sample a distribution that is statistically indistinguishable from a
geometric distribution.

Efficient simulators. As one main goal of our new definition is to have it
align closely to common practice in MPC, we choose to require efficient simula-
tion. Whereas this does make fulfilling the definition harder, it also makes the
definition stronger.
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Using approximate DP. The main motivation for using approximate DP in-
stead of pure DP is to allow for popular mechanisms, like the discrete Gaussian
and truncated discrete Laplace, that cannot give pure DP. One interesting ques-
tion here is whether the relaxation from pure to approximate DP is still needed
when the final DP notion we are aiming for is anyhow computational. Our ar-
gument for introducing this extra relaxation is that whilst mechanism that in
essence have the δ term introduced due to lack of precision in the sampling of a
distribution that would give pure DP (as with the truncated discrete Laplace)
could have this inexactness be handled by slack in other places of the CDP no-
tion (such as the correctness slack), this is not the case for mechanisms that are
”inherently” not giving pure DP, as is the case for all versions of the Gaussian
mechanism.

Another more fundamental question is whether motivational properties of using
approximate DP in the first place, such as arriving at more powerful composition
results, also can be done in computational DP where the core DP notion is pure
DP. That is, given a fixed CDP notion, can advanced composition theorems such
as those for approximate DP be obtained for CDP whilst having pure DP as the
core DP notion? We leave exploring this for future work.

Not including usefulness in the definition. A final minor difference between
SIM∗-CDP and SIM+-CDP is that we choose not to include the requirement for
usefulness in the definition of CDP itself. This is done primarily to more closely
correspond to how the matter of usefulness is handled for IND-CDP and SIM-
CDP in MPRV, namely that the CDP definition is agnostic to the notion of
usefulness (Definition 6 in MPRV [58]) and that usefulness is then added later
(Definition 7 in MPRV). Another advantage of not having the usefulness as a
part of the CDP definition is that one can choose to consider the usefulness
simply of the ideal functionality (as is done in SIM+-CDP) or to consider the
usefulness of the protocol directly and then take, for instance, failure probabili-
ties of the protocol into account.

To round this subsection off, we re-iterate the standard ideal functionality for
SFE with abort, see Figure 3. In Section 5 we propose a protocol for realising
this ideal functionality with the geometric mechanism as the functions f1 and
f2 and prove it is SIM∗-CDP in the presence of active corruptions.

3.4 On computing a mechanism with DP leakage in SIM∗-CDP

As noted shortly in the previous subsection, one cryptographic task that SIM∗-
CDP can handle but SIM+-CDP cannot is that of computing a differentially
private mechanism whilst allowing the adversary to receive leakage throughout
the protocol, as long as that leakage is DP, in particular when some leakage
occur before the corrupted party choose their input. Joint computation of func-
tions whilst allowing DP leakage has been studied in a few different setting with
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Functionality Ff
SFE

Parameters:

– A function f = (f1, f2) : ({0, 1}∗)2 → ({0, 1}∗)2.

No corruptions:

– Upon x1 from P1 and x2 from P2, deliver f1(x1,x2) to P1 and f2(x1,x2) to P2.

Party Pc corrupted (Ph is honest):

– Upon (Input,xh) from Ph and (Input,xc) from Pc, send fc(x1,x2) to Pc.
– Upon (Deliver, b) from Pc, if b = 1 then send fh(x1,x2) to Ph, otherwise send ⊥.

Fig. 3: The ideal functionality for SFE with abort.

regards to output functions and adversarial models [55, 44, 63, 6]. Of particular
interest to us is the work of [44] where they propose an ideal functionality in UC
for this setting and then realise it with respect to private set intersection (PSI)
in the presence of active corruptions. One reason that the ideal functionality of
[44] cannot be expressed in the security framework used in SIM+-CDP is that
the functionality relaxes the guarantee of input independence, meaning that the
corrupted party can choose their input based on the input of the honest party.

The PSI protocol of [44] outputs the exact set intersection (to only one of the
parties, the other get no output) and therefore their protocol as a whole intu-
itively cannot be SIM∗-CDP. If one would instead realise their ideal functionality
for computing a function with leakage, and enforce that all possible combina-
tions of leakage functions and the output function to the corrupted party is DP
(when seen as a composition), then SIM∗-CDP can be achieved. Below in Fig-
ure 4 we re-iterate the ideal functionality from [44] but augmented to have two
potentially different classes of leakage functions for each party. The need for this
is that since f1 and f2 need not be the same, as in the case when only one of
them gets an output, then one can allow the party whose output function is DP
with better parameters to have leakage functions that use up more of the privacy
budget.

The only work of which we are aware that compute a DP mechanism whilst
also allowing DP leakage is [6] where they compute sparse histograms. They
claim SIM+-CDP for their protocol but, somewhat implicitly, adapt the defini-
tion of SIM+-CDP to have computational correctness and to use approximate
DP as the core DP notion. The fact that these changes were necessary (to allow
their ideal functionality to compute a truncated discrete Laplacian) and that
they redefine the ideal functionality within the SIM+-CDP definition further
reinforce our arguments from above about the need for an ideal/real version
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of CDP where such relaxations and flexibility is built in. Further, it also moti-
vates us below proposing a generalised CDP definition, so that future use-case
dependent adjustments to existing ideal/real CDP notions can be phrased as in-
stantiations of this new definition rather than simply as (sometimes implicitly)
adjusted forms of SIM+-CDP. Finally we note that the seeming lack of protocols
combining DP leakage with computing a DP mechanism presents finding such
protocols as an intriguing direction for future work.

Functionality Ff,L1,L2
SFE with leakage

Parameters:

– A function f = (f1, f2) : ({0, 1}∗)2 → ({0, 1}∗)2.
– Two classes of functions Lj = {(Lpre, Lpost)j1, . . .}, j ∈ {1, 2}, with Lpre

ji , Lpost
ji :

{0, 1}∗ → {0, 1}∗.

No corruptions:

– Upon x1 from P1 and x2 from P2, deliver f1(x1,x2) to P1 and f2(x1,x2) to P2.

Party Pc corrupted (Ph is honest):

– Upon xh from Ph and (Leak, Lpre) from Pc, if there exists an element (Lpre, ·) in
Lc then send Lpre(xh) to Pc, otherwise send ⊥.

– Upon xc and (Leak, Lpost) from Pc, if there exists an element (Lpre, Lpost) in Lc

then send Lpost(xh) to Pc, otherwise send ⊥. Regardless, also send fc(x1,x2) to
Pc.

– Upon (Deliver, b) from Pc, if b = 1 then send fh(x1,x2) to Ph, otherwise send ⊥.

Fig. 4: The ideal functionality for reactive two-party SFE with abort and leakage.

3.5 A more general definition, SIM◦-CDP

To round of the part of this work concerning CDP definitions, we propose a
general definition meant to capture the design paradigm of simulation-based
CDP via the ideal/real paradigm, of which both SIM+-CDP and SIM∗-CDP are
instantiations. The point of introducing such a general definition is firstly to offer
a blueprint in which to formulate possible further versions of this type of CDP,
thereby hopefully avoiding new definitions being written using syntax making
the relation to earlier similar definitions muddled or being formulated solely in
terms of how they differ from some given existing definition. Secondly, having
a unified generalised definition might make studying its different instantiations
more convenient and similarly facilitates discussing the intuitive appeal of this
flavor of CDP without being weightened down by concrete details.



16 Meisingseth, Rechberger, Schmid

Definition 5 (SIM◦-CDP). The two-party protocol π is SIM◦-CDP with respect
to DP notion TYPE-DP and ideal/real security notion SEC for the ideal func-
tionality F and a given adjacency notion if π realises F in the sense of SEC
and for all ideal-world adversaries S, the view of S is TYPE-DP with respect to
the adjacency notion.

It is immediately clear that SIM+-CDP is the same as SIM◦-CDP with pure DP
as the core DP notion and their slightly adapted version of the security definition
in [41] as security notion. Then the bulk of the discussion in this section thus
far can be seen as concerning the ways in which we regard the specific choice
of security notion as being inconvenient with respect to GED. Similarly, SIM∗-
CDP is the same as SIM◦-CDP with approximate DP and UC security. Further,
we note that the adapted CDP notion used in [6] is indeed an instantiation of
SIM◦-CDP using approximate DP and standard standalone security (Definition
7.2.6 in [41]) but with computational correctness. This CDP notion is stronger
than SIM+-CDP in that it requires efficient simulators but weaker in the sense
of having relaxed correctness and approximate DP. One should also note that
since the protocol in [6] is not analysed in the UC framework it cannot claim
SIM∗-CDP thus causing the need for this ’intermediate’ CDP notion.

For future work there might be cause to consider other choices of DP notion,
such as f-DP [26] or zero-concentrated DP [32, 9], or security models, such as
the stand-alone model [41, 12] either unaltered or tweaked differently than in
SIM+-CDP.

4 A SIM∗-CDP version of the geometric mechanism

To demonstrate the use of our new definition, we now go through in detail how to
satisfy it for the standard SFE ideal functionality with the truncated geometric
mechanism as the function. Conceptually, this is very simple; one can simply use
any PPT algorithm that transforms a random seed into a distribution that has
sufficiently small statistical distance to a truncated geometric distribution (of
which there are available options such as [40, 3, 33]) and then compute that al-
gorithm in MPC via some general-purpose, active secure, protocol. It is however
worth to consider hurdles that arise in the details, such as how to handle the
mechanisms dependence on the query function, having a query function whose
sensitivity depends on the inputs of both parties and consequences of working
with modular arithmetics.

One core step is, naturally, to sample a distribution that is statistically close
to a range-truncated geometric distribution. Such a truncated geometric distri-
bution can be found in [40, 3, 33], however they truncate to a range between 0
and some fixed positive integer, which is also the range of the counting queries
they consider. Their results and methods however extend to Zq, and general
queries of bounded magnitude.
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Definition 6 (Truncated geometric distribution). Define the truncated
geometric distribution Z ∼ Geoq,λ(f̄) centered at f̄ ∈ Zq, truncated to Zq :=
[⌈−q/2⌉, ⌊q/2⌋), by its pmf:

fZ(z) =
e1/λ − 1

e1/λ + 1
e

−|z−f̄|
λ (2)

for z /∈ {⌈−q/2⌉, ⌈q/2− 1⌉}, and

fZ(z) =
1

e1/λ + 1
e

−|z−f̄|
λ (3)

for z ∈ {⌈−q/2⌉, ⌈q/2− 1⌉}.

Definition 7 (Range-truncated geometric mechanism). Let λ ∈ N−1 and
let f : D → Zq be a deterministic function. The Range-truncated geometric mechanism
over Zq for f is defined as

Mq,f,λ
RTGeo(D) := Geoq,λ(f(D)). (4)

It is easy to verify thatMq,f,λ
RTGeo(D) is an (ε, 0)-DP mechanism as long as λ =

ε
∆f , where ∆f denotes the l1-sensitivity of f . In line with [3], we only allow

λ ∈ N−1, in order to avoid the need to represent real numbers, and this also
implies ε ∈ N−1. Whereas the mechanism above gives DP, it is inconvenient to
sample the noise distribution directly, partly because it requires knowledge of
f(D) and partly because it may require sampling probabilities that cannot be
generated from a polynomial number of fair coins. Therefore we consider the
following mechanism.

Definition 8 (Subrange-truncated geometric mech.). Let B ∈ {1, . . . , ⌈q/2⌉−
1} and λ ∈ N−1. Let the Subrange-truncated geometric mechanism over Zq with

noise truncation to Z2B, for a function f : D → Zq, be defined asM2B,f,λ
SRTGeo(D) :=

f(D) +Geo2B,λ(0), with the addition performed over Zq.

In the simple lemma below we give a bound on the statistical distance between
the two mechanisms we have introduced this far. The proof is found in Ap-
pendix C.1. We note that we need to introduce a bound on the absolute value
of the query function, as to not have the sensitivity of the function be affected
by the modular arithmetics.

Lemma 1. Let fmax := max
D∈D
|f(D)|, B ∈ N, λ ∈ N−1 and q > 2fmax+2B. Then

the statistical distance betweenM2B,f,λ
SRTGeo(D) andMq,f,λ

RTGeo(D) for all D ∈ D is
at most e−B/λ.

We are now one step closer to a functionality that can be efficiently realised,
since the noise sampling is no longer dependent on the function evaluation and
the support of the noise is potentially much smaller than the entire Zq and
the support of f . The trouble still remains that the probabilities might not be
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negative polynomial powers of two. In [28, 33] they give distributions that can be
exactly sampled under this constraint and that has a small statistical distance
from a truncated geometric distribution. We use the procedure FDL (Finite-range
Discrete Laplacian) introduced in EIKN [33].

Definition 9 (FDL function and procedure). Let r ∈ {0, 1}Bd+1 be inde-

pendent fair coins and 0 < e−1/λ < 1. Let α̂1 ← 1−e−1/λ

1+e−1/λ and α̂i ← 1 − α̂1 for
i = 2, ..., B be public parameters. Let ⊕ and ∧ denote addition and multiplication
over the binary field and let ∨ be shorthand for computing the OR operation by
using binary addition and multiplication. Let all other operands be defined as
normally over the arithmetic field Zq.

Define the function FDLλ,B,d : {0, 1}Bd+1 → Z2B ⊆ Zq by the procedure in
Algorithm 1. Let α = (α1, α2, ...) be the bit decomposition of α̂. The subproce-
dure Berα̂ : {0, 1}d×{0, 1}d → {0, 1} for generating approximate Bernoulli trials
with parameter α̂ using a randomness seed in {0, 1}d is defined the procedure in
Algorithm 2.

Procedure FDL

Input: r ∈ {0, 1}Bd+1

1. Sample B approximate Bernoulli trials βi ← Berα̂i((rd(j−1)+1, ..., rdj)) for
i = 1, ..., B.

2. For i = 1, ..., B: set ci ← ∧i
j=1βj .

3. Set l← B −
∑B

i=1 ci.
4. Set σ ← 2 · rBd+1 − 1.
5. Output σ · l.

Algorithm 1: The algorithm description for the FDL procedure.

Procedure Ber

Input: r ∈ {0, 1}d, α ∈ {0, 1}d
1. For i = 1, ..., d, set ci ← αi ⊕ ri.
2. For i = 1, ..., d, set ei ← ∨i

j=1cj .
3. For i = 1, ..., d, set vi ← ei ⊕ ei−1, with e0 ← 0.
4. Set β ← 1⊕d

i=1 (ri ∧ vi) and output β.

Algorithm 2: The algorithm description for the Ber procedure.

Note that FDL is an exact method for turning Bd + 1 fair coins into a sample
of a distribution that is statistically close to a truncated geometric one. It is
clear that if the number of fair coins is polynomial in κ then FDL runs in strict
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polynomial time. With some abuse of notation, we use FDL to denote both the
procedure and the probability distribution it generates upon being given fair
coins.10

Definition 10 (FDL mechanism). Let B ∈ {1, . . . , ⌈q/2⌉ − 1}. Let the Finite
Discrete Laplace mechanism (FDL) over Zq for a function f : D → Zq be defined

asMλ,B,d,f
FDL (D) := f(D) + FDLλ,B,d, with the addition performed over Zq.

The following lemma is proven in EIKN [33]. For completeness, we also include
a proof in Appendix C.2.

Lemma 2. Let fmax := max
D∈D
|f(D)|, q > 2fmax+2B and B ∈ {1, . . . , ⌈q/2⌉−1}.

If FDL is given independent fair coins and all the arithmetics are done over Zq,

then the statistical distance between Mλ,B,d,f
FDL (D) and M2B,f,λ

SRTGeo(D) is at most
B · 2−d.

Further, we have thatMq,f,ε/∆f
RTGeo (D) is a useful approximation of f , as we show

in the following lemma. The proof is found in Appendix C.3

Lemma 3. Let q > 2fmax + 2B, B ∈ {1, . . . , ⌈q/2⌉ − 1}. Let f : D → Zq be

an arbitrary deterministic function with fmax := max
D∈D
|f(D)| and let f̂(D) :=

Mq,f,λ
RTGeo(D) : D → Zq. Then f̂ is

(
ν, 2e−1/λ

e−1/λ+1
e−ν/λ

)
-additive-useful for f for

any positive integer ν.

5 A protocol for the FDL mechanism

From the previous section we know that the FDL mechanism is statistically
close to the Range-truncated geometric mechanism, which is pure DP, and that
this holds under some restrictions on the query function and on the parameter
choices. At the same time, it is immediate that the Range-truncated geometric
mechanism is statistically close to the untruncated geometric mechanism (i.e.
when the noise is not truncated and that the modular arithmetics thus might
cause overflows), as long as the value of the query function is somewhat far away
from q/2 and −q/2. Therefore, there is a choice to be made which mechanism
one chooses to have in the ideal functionality (call this the ideal mechanism),
given that we will of course have the protocol compute the FDL mechanism via
general-purpose MPC (in particular, we will use the arithmetic black-box (ABB)
level of abstraction). The trade-off in this choice is that having RTGeo as the
ideal mechanism will lead to (εκ, 0)-SIM

∗-CDP as long as the statistical distances
mentioned above are negligible in κ, essentially having the statistical distance
be dealt with as part of the slack of the correctness of the protocol. On the other
hand can this be avoided by lettingMFDL be the ideal mechanism, thus leading

10 We also note that the requirement that e−1/λ < 1 is equivalent to λ > 0, which is
already guaranteed by λ ∈ N−1.
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to (εκ, δκ)−SIM∗-CDP where the statistical distance is rather incorporated into
the δκ term. As having an ideal mechanism as close as possible to standard DP
mechanism is to be seen as a more direct realisation of GED, we opt for having
RTGeo as the ideal mechanism.

As stated in the preliminaries, we consider two-party computation schemes that
operate in Fq with q being either a prime larger than 2 or a power of 2. We elab-
orate on active secure schemes for both domains in Appendix D. Implementing
the FDL algorithm in either domain comes at a significant cost. Note that the
Ber procedure and the first 2 steps of the FDL procedure consist of only binary
arithmetics. However, the remainder of the FDL procedure consists of integer
arithmetic. While there are protocols to evaluate these binary steps in the arith-
metic domain, they are usually very costly. On the other hand, evaluating the
algorithm in the binary domain comes with two problems: the summation and
addition in binary would incur a significant cost, and second, the result would
be a shared noise in the binary domain. Thus, applying the noise is limited
to the binary domain. The mixed circuit approach (see Section 2.2) gives us a
well-performing trade-off while maintaining the highest security guarantees.

We accept inputs represented in the binary domain, perform all operations until
the fourth step through a binary circuit, translate all shares to the arithmetic
domain, and perform the rest of the operations through an arithmetic circuit. For
each of these ”phases”, we use protocols introduced before. We use SPDZ2k [21]
for the arithmetic computations, the FKOS protocol [38] for binary circuits and
daBits (doubly-authenticated bits) [60] for translating between the domains.
With correct parametrization, we can achieve the same security guarantees in
different computation domains. Thus, the feasibility of the mixed circuit ap-
proach is easily tested. The mixed circuit approach is feasible if switching be-
tween circuits is cheaper than the computation overhead in either domain. In
our application (Section 5.1), we will, as typically for DP applications, focus on
arithmetic computations. Evaluating the FDL mechanism in the binary domain
would, therefore, incur a cost that scales with the underlying application. For
the arithmetic case, we have an additional cost of assuring all input ranges (e.g.,
assert that binary coins ∈ {0, 1}) and evaluate binary gates with arithmetic
circuits. Section 6 has a longer discussion about input validation.

We describe our protocol using the Arithmetic Black Box (ABB), which is an
ideal functionality in the UC framework. Very roughly, the ABB is a functionality
that can take inputs from the parties and compute linear combinations and
multiplications between stored values and output stored values. We use a flavor
of the ABB that can do these operations over F2k and Fq. Additionally, the ABB
can translate values stored as elements of the binary field to binary values within
the larger field. More concretely, we use the formulation of the ABB that can be
found in [37] and we include a definition of the ideal functionality in Appendix
B. Our protocol is presented in Figure 5.
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Protocol πMFDL

Parameters: Natural numbers B, d, q,N , bit decomposition α̂1, ..., α̂d and an
efficiently computable function f : Z2N

q → Zq, meaning it can be computed using
polynomially many multiplications and linear combinations in Zq. Assume access to
FABB .

Initialisation:

1. Player i locally samples Bd+ 1 fair coins and stores them as ei.
2. Player i sends random seed vector ei ∈ ZBd+1

2 as Bd+ 1 consecutive inputs to
FABB to be stored as elements of the binary field.

3. For j = 1, ..., Bd+ 1 the players compute ri ← e1j ⊕ e2j via FABB .

Noise sampling:

1. Each operation in the first two steps of the FDL specification is performed via
FABB .

2. In FABB , the values c1, ..., cB and rBd+1 are transformed to elements in the
arithmetic field.

3. All remaining operations in the FDL specification are performed via FABB .

Finishing:

1. Player 1 sends x ∈ ZN
q and player 2 sends y ∈ ZN

q to FABB and then f is
computed via FABB according to its specification. The result is stored as f̄ .

2. The sum of f̄ and the FDL sample is computed via FABB and the result is output
to the players.

Fig. 5: The protocol description for the FDL mechanism in the FABB-hybrid
world.

We are now ready to present our main theorem, namely that the protocol we
have introduced indeed is (εκ, 0)-SIM

∗-CDP. Let decomp(λ, d) be short for the
bit-decomposition of λ truncated to d bits.

Theorem 1. Let q > 2fmax
κ + 2Bκ, Bκ ∈ {1, . . . , ⌈q/2⌉ − 1}, λκ = εκ

∆fκ
and let

e−Bκ/λκ and Bκ2
−dκ be negligible in κ. Let {fκ : Z2N

q → Zq}κ∈N be an ensemble
of efficiently computable deterministic functions with fmax

κ := max
D∈Z2N

q

|fκ(D)|∀κ.

Let {f̂κ(D)}κ∈N be {Mq,fκ,λκ

RTGeo (D)}κ∈N. Then πMFDL
(Bκ, dκ, q,N, decomp(λκ, dκ), fκ)

is an (εκ, 0)-SIM
∗-CDP protocol for the ideal functionality F f̂κ

SFE with respect to
the same adjacency notion as in the calculation of ∆fκ in the FABB-hybrid
world.

Proof. The definition of SIM∗-CDP demands two things to be shown, namely
that the view of the simulator is approximate DP and that the protocol UC-
realises the ideal functionality. The first requirement is fulfilled as the only mes-

sage sent from F f̂κ
SFE to the corrupted party isMq,fκ,λκ

RTGeo (D) and this is pure DP
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due to the fact that the range-truncated geometric mechanism is pure DP under
the standard parametrisation specified in the theorem. The other parts of the
view of S (like its input and randomness tape) are independent of the inputs
of the honest party, thus making the view of S as a whole (εκ, 0)-DP. Further,
this holds for all types of malicious behavour of S since, due to the formulation
of FSFE , the only way S can change its view is to refuse to collaborate in the
protocol or change its inputs and both of those decisions would have to be made
independently of the inputs of the honest party (thus making those decisions
(0, 0)-DP as well).

The UC-realisation of the ideal functionality follows directly from the use of
the arithmetic black-box and the statistical indistinguishability between MFDL

and MRTGeo, which follows from lemmas 1 and 2 together with the assump-
tions of the theorem. In particular, due to the use of FABB , the view of the
corrupted party in the hybrid world consists of only its input, random coins
and the output returned from FABB , which is exactlyMFDL. Similarly, the view
of the corrupted party in the ideal world is also only its input, random coins

and output returned from F f̂κ
SFE . Therefore the simulator that simply outputs

its view (after having changed its inputs and/or aborted with respect to its
random coins as the hybrid-world adversary does) yields a view that is com-
putationally indistinguishable from that of the hybrid-world adversary. Further,
this simulator is strict PPT due to it performing only the same operations as the
hybrid-world adversary (choosing input and abort behaviour based on its coins
and then receive one Zq element), hence the theorem follows.

⊓⊔

Asymptotic computational cost. We consider the computational cost of
πMFDL

in terms of calls to the ABB, ignoring the cost of computing f . This rough
model for calculating computation cost is reasonable in two ways: Firstly, local
operations are canonically negligible in terms of computation cost compared to
operations that require interaction. Secondly, in practice, the instantiation of the
ABB greatly influences the computation cost in practical terms. As is shown in
EIKN [33], the asymptotic computational cost of the FDL function (here in terms
of the number of multiplications) is O(Bd). This complexity follows directly from
Definition 9 since all steps of the FDL procedure are repeated B times (that is,
B Bernoulli trials are sampled and there are B elements in the sum) and within
the Bernoulli trial subprocedure, all steps consist of d arithmetic operations.

It is important to note that the cost of sampling the noise is independent of
the data query f . Relative DP usefulness intuitively increases as the number of
elements in the input dataset grow. However, the performance of the sampling
protocol scales with the number of queries and not with the size of the input
dataset, thus amortizing its execution time further.
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5.1 Application: Integer inner-products with bounded elements

We now compute integer inner-products using the πMFDL
protocol. This query

type is particularly interesting for a few reasons. First, it is non-linear and cannot
be expressed as an aggregate function without knowledge of the other party’s
inputs. Second, it is a fundamental building block for more complicated queries
like matrix multiplications with vast applications in data processing such as
machine learning. In order to use πMFDL

, the query needs a bounded maxi-
mal absolute value, and for accuracy, we want the sensitivity of the query to
be small. Therefore, we consider only inner products where the input vectors
have elements between a ∈ Zq and b ∈ Zq. We assume that the difference be-
tween a and b is a power of 2, to facilitate inserting an input as a sequence of bits.

We consider DP with the bounded (’change-one’ ) adjacency notion, and the
data universe is ([a, b])∗, such that each input D to f (as well as the protocol
and the mechanism) is a tuple of 2N elements from [a, b]. Let D := x||y. The
inner product f(D) is defined as ⟨x,y⟩ := ∑N

i=1 xiyi with operations over Zq.
The sensitivity ∆f of the inner product is max(|a2 − ab|, |b2 − ab|), under the
assumption that |f(x,y)| is smaller than ⌊q/2⌋ such that field operations mimic
integer behavior. We also have that fmax = N ·max(a2, b2).

Parameter choices. From the properties above, the following parameter con-
siderations follow: Let the security parameter be the bit-length of a field ele-
ment, i.e. κ = ⌈log2(q)⌉, as is canonical. Let both εκ and ∆f (that is, by choice
of a, b) be independent of κ. Further, we can set the FDL specific parameters as
B = d = κ. Finally, we have q > 2fmax + 2B = 2N · max(a2, b2) + 2B, where
the inequality holds for sufficiently large κ.

In practice, one strategy is to choose κ as a canonical value for statistical security
in cryptography, e.g., κ = 40, and then let this also be B and d. The practical
choice of ε is highly challenging, and there is a lively discussion in the literature
on it, although consensus is largely lacking [29, 53, 57, 52]. Luckily, there is no
direct dependence on the choice of ε in the other parameters. Finally, this leaves
the choices of a, b, and N . Here, we care about the distance |a− b| and the size
of N . Both parameters allow for wider usage scenarios when increased. How-
ever, increasing N has adverse effects on runtime, and a larger distance causes a
higher sensitivity and decreased usefulness (if ε is kept fixed). Finally, there is a
trade-off between N and the sizes of a, b due to their dependence on q. In prac-
tice, this can be circumvented by increasing the modulus size q in the underlying
MPC instantiation.
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6 Implementation and Practical performance

We tested our protocol by implementing it in the multi-protocol SPDZ (MP-
SPDZ) [50] library. Among other things, they provide efficient implementations
of the SPDZ2k [21] and the FKOS [38] MPC schemes, and da-bit [60] and eda-
bit [37] implementations. We implement procedure Ber in the FKOS scheme
and procedure FDL in the mixed-circuit setting with FKOS and SPDZ2k . We
find that only one switch between computation domains is necessary, making
mixed-circuit computation very competitive in performance. More precisely, this
approach is faster than previous instantiations if the conversion cost is lower than
the additional overhead in the unfit computation domain. Given the protocol in
EIKN [33], circuit conversion has to be faster than the overhead of computing
the Bernoulli and prefix-or functionality in the arithmetic domain.

In MPC schemes, communication is typically the bottleneck of efficient func-
tion evaluation. While some communication is necessary during the computa-
tion, much of the data transfer happens in a pre-processing phase. In our setup,
we have three main components that require expensive pre-processing: shared
randomness for inputs, authenticated multiplication triples, and doubly authen-
ticated bits. In our inner-product use case, we only generate one FDL sample.
However, most pre-processing operations come in blocks of size B or d. In our
implementation, we take special care to minimize the communication rounds and
adapt the pre-processing batch sizes to accommodate our protocol execution.

Our setting provides security in the presence of active adversaries. Since these
parties can deviate arbitrarily from the protocol, they might send input out of
range. It is, therefore, necessary to prove the correctness of the input domain in
both the FDL mechanism and the query function. There are different strategies
to achieve such a feat. We note that the ABB accepts inputs of two types, either
elements in the binary field or the larger finite field. We need to restrict the val-
ues to the pre-defined range for inputs in the arithmetic domain. Were we not to
perform such an input validation, this would result in an increased sensitivity of
the function (in relationship to what is a priori agreed upon by the two parties),
thwarting the privacy level of the DP mechanism. In the presence of passive
adversaries, however, there is of course no need to validate the inputs since the
adversary will per definition not give out-of-range inputs. This requirement of a
proof of function sensitivity also arises in other scenarios where the sensitivity
is directly dependent on the secret data of multiple parties.

To provide such a range-proof of the inputs of each party, we consider two
main options: Firstly, one could accept the inputs as elements in the larger field
and then perform a zero-knowledge range proof11 within the MPC domain, and
secondly, one could accept the inputs bit-by-bit and re-compose those bits into
elements of the larger field. These approaches present a trade-off in input and

11 For instance, such as described in the Bulletproofs paper [11].
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proof complexity. In the first approach, the cost of inputting a value is constant
(i.e., depending on 2k in our example) while proving the range is linear in the
bound. In the bit-by-bit setting, the input and proving cost are logarithmic in
the bound. The second approach is thus more efficient for larger bound values
depending on the specific scheme.

6.1 Benchmarks

In this section, we present benchmarks of our FDL mechanism with B = d = κ
and measure performance for different settings12. Relevant for parameter α̂, the
bit decomposition of the Bernoulli bias, is the decomposition length d. When set-
ting a value α, the binary decomposition truncates this value to the predefined
precision. Although our code can be instantiated with any number of parties, we
fixed the number of parties to 2 as to align with the formalities of earlier section.
We provide exemplary data points at 40- and 80-bit, typical statistical security
parameters. Next, we evaluate the mechanism at 128-bit, a usual conservative
choice as a computational security parameter. Note that the underlying security
parameters for SPDZ2k are fixed to 64-bit computational and 64-bit statistical
security. We run all benchmarks on a Linux server with an AMD Ryzen 9 7900X
CPU (4.7 GHz). Each party only has access to one thread for computations.
We separate our results into single sample computation and amortized evalu-
ation for 1000 sampels. The single sample evaluation is further split into the
pre-processing and online phases of MPC, where the pre-processing step con-
sists of generating necessary multiplication triples and da-bits.

Table 1 presents the runtime metrics for different network settings. In Setting
1, we have an unrestricted LAN setup. Setting 2 simulates a less powerful LAN
setup by limiting the network to 1Gbit/s and the round-trip time (RTT) to 1ms.
Finally, in Setting 3, we simulate a WAN network with 100Mbit/s and 100ms
RTT, reflecting a solid but distant connection (e.g., intercontinental). Given the
asymptotic complexity O(Bd), the runtime results reflect the expected quadratic
growth in the security parameter. Regarding the network settings, communica-
tion is needed for inputs, binary AND gates, arithmetic multiplication, secret
share conversion, and outputs. Since inputs, conversions, and computations de-
pend on one or both parameters B, or d, the negative impact of a reduced net-
work speed and increased RTT is increased. Compared to concurrent work [49],
our mechanism outperforms their result in runtime and memory for the overall
computation.13 Arguably, their setup heavily optimizes the online phase, making
it more efficient if pre-processing can be off-loaded or performed in advance. How-
ever, sampling Laplacian noise in MPC can generally be seen as pre-processing
since the sensitivity of a function is known before the data is processed, and the

12 The code for our implementation can be found at https://extgit.iaik.tugraz.

at/krypto/geometric_sampler.
13 One should further note that [49] is in the more efficient setting of passive adversaries,

thus making direct comparisons skewed in their favor.

https://extgit.iaik.tugraz.at/krypto/geometric_sampler
https://extgit.iaik.tugraz.at/krypto/geometric_sampler
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parties can already engage in the noise sampling procedure before their inputs to
the query function have been fixed. Comparing with [33] is challenging as they
only provide asymptotic complexities and base their results on arithmetic eval-
uations of binary computations from [59]. Our approach, on the other hand, is
based on mixed circuits [60] and includes substantial performance improvements
by dedicated parameter optimizations.

Table 1: Runtime in seconds of benchmarks with different security levels. Total
computes a single sample, while amortized runtime assumes 1000 samples.

Protocol κ Prep. Online Total Amort.

10 Gbit/s with RTT of 1 ms

40 74.7 42 116.6 34.6
Ours 80 94.2 119.9 214.1 118.5

128 130 276.9 406.9 283.4

[49] 40 1606 37.72 1 643 992†

1 Gbit/s with RTT of 1 ms

40 182.9 248.4 431.2 69.7
Ours 80 245.6 650.2 895.7 209.7

128 345.6 1 362 1 707 520.3

[49] 40 4 707 4.81 − 4 711‡

100 Mbit/s with RTT of 100 ms

40 11 256 20 486 31 742 577.9
Ours 80 15 215 51 794 67 009 1 604

128 20 795 105 350 126 145 3 558

[49] 40 42 352 47.99 − 42 400‡

† Amortized over 40 samples
‡ Amortized over 10 samples, no single sample performance provided.

In Table 2, we present benchmarks for network costs for each security parameter.
We see that the network cost of our implementation is lower than that of [49],
further showing that their round complexity is much lower than that of the
malicious secure SPDZ2k protocol. Given the network cost, we could further
reduce the network bandwidth before its limiting impact equals a slow RTT.

7 Conclusions and outlooks

In this work we revisit the idea of generic emulation of the central dataholder
(GED) as a method to achieve accuracy equal to that of the central model of
DP without the need for a single trusted dataholder. The bulk of our work is
spent analysing previous definitions of CDP in the multiparty setting, noting
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Table 2: Network cost in MB of different laplace sampling settings. The amortized
cost assumes 1000 samples.

Protocol κ Prep. Online Total Amort.

40 14.7 17.9 65.3 16.7
Ours 80 20.9 58.3 158.3 75.3

128 29.2 143.4 345.2 173.6

[49] 40 − − 492.7† −

† Run with single sample, no amortized network cost provided.

that whereas they are very well-suited for theoretic study and use with special-
purpose MPC schemes, they all fit somewhat suboptimally to the task of GED.
Since one of them, SIM+-CDP, appears to fit very well conceptually but has some
details preventing its use together with canonical DP mechanisms, we propose
both a generalised version of it, SIM◦-CDP, and another instantiation of that
generalised definition, SIM∗-CDP, that we argue is more fitting to the current
state-of-the-art in both general-purpose MPC and DP.

As always when formulating new definitions in cryptography questions arise,
such as whether the definition is intuitive, practically usable, and not overly
relaxed or strict. On the usability front, we present evidence that SIM∗-CDP
is practical since it allows us to design efficient, quite general protocols of nat-
ural tasks that fulfill it, and the proof that the definition is satisfied follows
essentially directly from the use of general-purpose MPC and a DP mechanism.
Further, the definition appears intuitive due to its closeness to both previous
definitions and established formalities in both the DP and MPC domains. There
is, however, much need for additional scrutiny, and this is the case also for the
question about balance in the definition. Interesting open questions here are, for
instance, to relate the definition back to previous ones and see whether there
is some characteristic trait of DP that is captured in the previous ones but not
in SIM∗-CDP, and analyse under what criteria the definitions imply each other.
Another interesting avenue of questions is that regarding properties of the def-
inition itself, perhaps primarily when it comes to composition. Since both UC
security and DP in general are highly advanced when it comes to the composi-
tion of protocols, SIM∗-CDP gives us a new and more nuanced definition to use
when it comes to the analysis of compositional properties.

Regarding more practical outlooks, one interesting avenue of study is the de-
sign of protocols fulfilling a version of SIM◦-CDP for ideal functionalities other
than SFE, such as SFE with leakage. Hopefully, the ease with which SIM◦-CDP
can be adapted to specifics in the used MPC scheme and then directly applied
can further the ongoing push to combine MPC and DP, leading both to protocols
of increased efficiency and more nuanced privacy guarantees.
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A Other CDP definitions

Below we recall the definitions of IND-CDP and SIM-CDP from [58], although
reformulated to fit our notation. Let x and y denote the inputs of party 1 and
party 2 respectively. That is, D := x||y ∈ D.

Definition 11 (IND-CDP of two-party protocols [58]). An interactive
protocol ensemble {⟨g1κ(·), g2κ(·)⟩}κ∈N ensures for {g1κ(·)}κ∈N εκ-IND-CDP if for
every ensemble {g̃2κ(·)}κ∈N of efficiently computable randomised interactive func-
tions, and all sufficiently large κ, it holds that the ensemble {VIEWκ,g̃2

κ
(x)}κ∈N

provides εκ-IND-CDP (as in Definition 12) with respect to x. The definition is
symmetric for {g2κ(·)}κ∈N.

Definition 12 (IND-CDP of interactive functions [58]). An interactive
function ensemble {gκ(·)}κ∈N of randomised functions gκ : D → Rκ provides
εκ-IND-CDP if there exists a negligible function negl(·) such that for every non-
uniform PPT Turing Machine A, every polynomial p(·), every sufficiently large
κ, all datasets D,D′ ∈ D of size at most p(κ) differing in at most one row, and
every advice string zκ of size at most p(κ), it holds that

P(Aκ(gκ(D)) = 1) ≤ eεκP(Aκ(gκ(D
′)) = 1) + negl(κ),

where we write Aκ(x) for A(1κ, zκ, x) and the probability is taken over the ran-
domness of mechanism gκ and the adversary Aκ.

Definition 13 (SIM-CDP of two-party protocols [58]). An interactive
protocol ensemble {⟨g1κ(·), g2κ(·)⟩}κ∈N ensures for {g1κ(·)}κ∈N εκ-SIM-CDP if for
every ensemble {g̃2κ(·)}κ∈N of efficiently computable randomised interactive func-
tions, there exists an ensemble {Sκ(·)}κ∈N of εκ-DP mechanisms Sκ(·) such that
for every x, the probability ensembles {VIEWκ,g̃2

κ
(x)}κ∈N and {Sκ(x)}κ∈N are

computationally indistinguishable.

B The arithmetic black-box

In Figure 6 we present the ideal functionality FABB of the arithmetic black-
box. The ABB is at times formulated slightly differently, such as only operating
within the arithmetic domain, not including conversions between the domains
or including conversions in both directions in between the binary and arithmetic
representations. We choose the flavor of ABB that is used in [37], simply because
it includes the operations we need but nothing more. For more details on the
ABB see, for instance, [22, 54].
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Functionality FABB

Parameters: A modulus q that is either a prime or a power of 2.

Input:

– Upon input (Input, Pi, type, id, x) from Pi and input (Input, Pi, type, id) from all
other parties, if id is a fresh identifier and (type, x) ∈ {{binary}×Z2, {arithmetic}×
Zq)} then store (type, id, x).

Linear combination:

– Upon input (LinComb, type, id, (idj)
m
j=1, c, (cj)

m
j=1) from all parties, if

• each idj is stored in memory, and,
• c, cj ∈ Z2 if type is binary and c, cj ∈ Zq if type is arithmetic,

then
• retrieve ((type, id1, x1), . . . , (type, idm, xm)),
• compute y ←

∑
cj · xj mod 2 if type is binary and y ←

∑
cj · xj mod q if

type is arithmetic,
• store (type, id, y).

Multiplication:

– Upon input (Mult, type, id, id1, id2) from all parties, if id1, id1 are stored in memory
then
• retrieve (type, id1, x1), (type, id2, x2)),
• compute y ← x1 · x2 mod 2 if type is binary and y ← x1 · x2 mod q if type is

arithmetic,
• store (type, id, y).

Converting from binary to arithmetic:

– Upon input (ConvertB2A, id, id′) from all parties, if id′ is present in memory then
retrieve (binary, id′, x) and store (arithmetic, id, x).

Output:

– Upon input (Output, type, id) from all honest parties, if id′ is present in memory
then retrieve (type, id, x) and output it to the adversary. Wait for input from the
adversary of the form (Deliver, b), where b ∈ Z2. if b = 1 then output x to all
parties, otherwise output ⊥.

Fig. 6: The ideal functionality for the arithmetic black-box.
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C Proofs

C.1 Proof of Lemma 1

Proof. Let Z ∼ Mp,f,λ
RTGeo(D) and Y ∼ M2B,f,λ

SRTGeo(D) for arbitrary λ,D. Let pZ
and pY denote the probability density functions of Z and Y respectively and
let F denote their cumulative distribution functions in the same manner. Since
the parameter restrictions guarantee that the final sum in Y does not overflow
(the result is as if the sum was done over the integers), the statistical distance
between the two distributions is exactly twice the total probability mass that is
affected by the truncation in Y . That is,

SD(Z, Y ) =
1

2

∑
z∈Zp

|pX(z)− pY (z)|

=
∑

z∈Zp\(f̄−B,f̄+B)

|pX(z)− pY (z)|

= |FX(f̄ −B) + (1− FX(f̄ +B))|

=

∣∣∣∣ e1/λ

e1/λ + 1
e−(f̄−f̄+B)/λ

+
1

e1/λ + 1
e−(f̄+B−f̄)/λ

∣∣∣∣
= e−B/λ,

where f̄ is shorthand for f(D). The equalities follow by inserting the formulas
from Definition 6 and direct simplifications.

⊓⊔

C.2 Proof of Lemma 2

Proof. Firstly, Berα̂ exactly samples a Bernoulli trial with parameter equal to
the recomposition of the first d elements of α. Call this parameter value α′.
This means that the statistical distance between Ber(α̂) and an exact Bernoulli
trial with parameter α̂ is the same as between two exact Bernoulli trials with
parameter α̂ and α′, respectively. This statistical distance is equal to |α̂ − α′|,
which is at most 2−d since the first 2d bits of their decomposition are identical.
Secondly, the statistical distance betweenMλ,B,d,h

FDL (D) andM2B,h,λ
SRTGeo(D) is at

most equal to the probability of any of the Bernoulli trials being incorrect, which
due to independence is at most B2−d.

⊓⊔
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C.3 Proof of Lemma 3

Proof. The additive usefulness follows from a standard tail bound on the geo-
metric distribution, since the truncated geometric is at least as concentrated as
the untruncated one:

P(|Geoq,λ(f(D))− f(D)| ≥ ν) = P(|Geoq,λ(0)| ≥ ν)

≤ P(|Geoλ(0)| ≥ ν)

= 2FGeoλ(0)(−ν)

=
2e1/λ

e1/λ + 1
e−ν/λ.

We may note that the same result holds regardless of how narrowly the trunca-
tion is done.

⊓⊔

D Techniques for achieving secure MPC

In the context of MPC, we typically distinguish binary and arithmetic proto-
cols. This classification describes the possible computations. In other words, we
perform addition and multiplication in F2 and Fp, respectively. In this work,
we rely on secret sharing-based (SS) MPC protocols. More precisely, we use ad-
ditive secret sharing (ASS). In the following, we will use notation for addition
and multiplication, referring to the XOR and AND operations in the binary do-
main. In such protocols, secret values x are shared among n parties by sampling
n − 1 random values x1, . . . , xn−1 ← U(F), setting x0 ← x −∑n

i=1 xi, and dis-
tributing xi to every party pi. We denote secret shared values as [[x]]. We further
denote [[x]] ← Share(x), and x ← Reconstruct([[x]]) as sharing and reconstruct-
ing secrets. ASS schemes are additively homomorphic, allowing the addition of
shares without interaction and hiding underlying secrets as long as there is one
honest party. To allow multiplications with an ASS, one can use multiplication
triples, introduced by Beaver [4]. Triples are three shared values ([[a]], [[b]], [[c]]),
that no party knows and that fulfil a · b = c. When multiplying two shared
values ([[x]], [[y]]), one reconstructs masked versions α ← Reconstruct([[x]] − [[a]]),
β ← Reconstruct([[y]]−[[b]]), and computes14 [[z]] = αβ+β[[x]]+α[[y]]+[[c]] = [[x · y]].
Given these ingredients, we can instantiate a malicious secure MPC protocol if
we have access to a secure sampling method for multiplication triples, and adver-
saries cannot tamper with the reconstruction procedure. In the SPDZ paper [23],
the authors introduced solutions to both problems. They propose an additively
homomorphic encryption scheme for sampling triples and information-theoretic
message authentication codes (MACs) to secure the reconstruction procedure.
Subsequent work introduced several performance improvements by instantiating

14 This step requires multiplication and addition with constant terms which follows
from the ASS properties.
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the ASS over the ring F2k [21] or replacing the expensive homomorphic encryp-
tion with oblivious transfer [51]. Note that both improvements, to some degree,
accept a higher communication for a lower computation complexity.
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