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  Abstract. Let n stands for the length of digital signatures with quadratic 

multivariate public rule in n variables. We construct postquantum secure procedure to 

sign O(nt),  t ≥1  digital documents with the signature  of size n in time O(n3+t). It 

allows to sign O(nt), t <1 in time  O(n4).  The procedure is defined in terms of 
Algebraic Cryptography. Its security rests on the semigroup based protocol of 

Noncommutative Cryptography referring to complexity of the decomposition of the 

collision element into composition into given generators. The protocol uses the 

semigroup of Eulerian transformations of variety (K*)n  where K* is a nontrivial 

multiplicative group of the finite commutative ring K.  Its execution complexity is 

O(n3).  Additionally we use this protocol to define asymmetric cryptosystem with the 

space of plaintexts and ciphertexts (K*)n  which allows users to encrypt and decrypt 

O(nt)  documents of size n in time O(n3+[t]) where [x] stands for the flow function 

from x. Finally we suggest protocol based cryptosystem working with plaintext space 

(K*)n and the space of ciphertext Kn which allows decryption of O(nt), t>1 documents 

of size n in time O(nt+3), t>1. The multivariate encryption map has linear degree O(n) 

and density O(n4). We discuss the idea of public key with Eulerian transformations 
which allows to sign O(nt), t≥0 documents in time O(nt+2). The idea of delivery and 

usage of several Eulerian and quadratic transformations is also discussed. 
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1. Introduction. 

Let us discuss the question about group or semigroups which are useful for Cryp-

tography. Specialist working in Noncommutative Cryptography may refer to  Thomp-

son or Grigorchuk groups, braids group or affine Cremona semigroups, but most of 

other cryptographers will mention cyclic groups or monogenic semigroups.  One can 

see that RSA cryptosystem uses cyclic subgroup of Zpq, Diffie Hellman protocol uses 

cyclic F*p. if we have some encryption public rule acting bijectively on the space of 

plaintext it is generating corresponding cyclic group. If the public rule is not bijective 

then it is generating of some monogenic semigroup of large order with some large 

index. 
    Noteworthy that the complexity of investigation the cyclic group depends heavily 

on the way its presentation in the memory of computer. In the case of F*p for large 

prime p we have discrete logarithm problem but in the case of additive group of Zp-1 

we have just a diophantine equation. Recall that formal Diffie Hellman protocol can 
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be established for each finite monogenic semigroup and the cryptanalytic studies of 

the semigroup case has to be continued. 

        In this paper we present some short digital signatures algorithms  with the use of 

Eulerian transformations  of affine spaces  Kn  over the commutative ring K with non-

trivial multiplicative group.  We use ideas of Multivariate and Noncommutative Cryp-

tographies, The paper reflects  

author’s  talk at the algebraic conference ‘’At the End of the Year’’  27.12.2024 (Ky-
iv, Ukraine, https://sites.google.com/view/aey2023). 

        The interest to serious algebraic studies was stimulated recently by the research 

in Post Quantum Cryptography where among 5 core areas there are Multivariate 

Cryptography and Code - based Cryptography which need serious algebraic cryptog-

raphy (linear codes, Goppa codes, Reed-Solomon codes used in McElise cryptosys-

tems and etc).  

        The NIST project since 2017 is concentrated on Public Keys. aimed for the pur-

poses to produce the encryption tools or instruments   for the design of digital signa-

tures (see [3], [4] and further references). We has to admit that PQC secure quadratic 

multivariate rules can serve to create the shortest digital signature procedures. Recall 

that we have to add to mentioned above two directions of PQC the Hash based cryp-

tography, Isogeny-based cryptography and Lattice based cryptography. We have to 
notice that all already NIST certified algorithms are not the public keys of Multivari-

ate Cryptography. Quite long standing ''The Rainbow Like Unbalanced Oil and Vine-

gar'' (RUOV) digital signature method was rejected due to cryptanalytic studies pub-

lished in the Proceedings of the Eurocrypt 2021 [3], [5]. 

        Essential part of algebraic PQC outside of the design of Public Keys is formed 

by various methods of Protocol developments where algebraic efforts are concentrat-

ed on Non Commutative Cryptography. In the case of Group-based protocols corre-

spondents (traditionally Alice and Bob) can use protocols with at least two  generators 

which can generate very large Noncommutative group. They can use semigroups 

instead of groups to elaborate the collision element g from the semigroup. The case 

when g is an element of affine Cremona semigroup  nCS(K)  of all endomorphisms of 
multivariate ring K[x1, x2…, xn]  over the finite  commutative K can be useful in Mul-

tivariate Cryptography. 

 We refer to the piece of information T as a trapdoor accelerator of the  elements 

σ of degree 2 from nCS(K)  if  the knowledge of T allows to compute the reimage of σ 

acting on Kn in time O(n3) (see [38]). In the Section 2 we present the algorithm to use 

the collision maps of several sessions of secure protocol of Noncommutative Cryptog-

raphy implemented with the platform-semigroup nES(K) of Eulerian transformation 

for the save delivery of quadratic endomorphism of K[x1, x2…, xn]  from one corre-

spondent to another one. We use this procedure  to define protocol based algorithm to 

make digital signatures. 

     In Section 3 we discuss the group of Eulerian transformations  nEG(K)  acting bi-
jectively on the variety (K*)n (subsection 3.1).  It can be used to make digital signa-

tures. In the subsection 3.2 we consider the protocol based cryptosystem with the 

platform  nES(K)  and encryption tool from  nEG(K). Both schemes use private infor-

mation which is the hidden -decomposition of the element into its product into  Jor-

dan-Gauss transformations. Schemes 3.1 and 3.2 can be used to make digital signa-

tures In the subsections 3.3 and 3.4 we combine procedure of section 1 for the safe 
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delivery of quadratic multivariate transformation with the similar procedure for deliv-

ery of Eulerian transformation to define two different asymmetric cryptosystems with 

the space of plaintexts (K*)n and the space of ciphertexts Kn. 

In unit 3.5 we mention  the idea of a  public key obtained as composition of Eulerian 

transformation and multivariate transformation of Kn. 

    For readers convenience section  4 contains description ofthe simplest version of 

hidden tame homomorphism protocol defined for the semigroups nES(K)  and their 
parabolic subgroups. More general version with ring extensions is described in [12] 

together with some other nES(K)-based protocols. 

     Section 5 is dedicated to discussions of sources of trapdoor accelerators of quadrat-

ic endomorphisms. They include the list of historical cryptosystems over finite fields 

for which corresponding cryptanalysis was discovered and recent constructions of 

trapdoor accelerators define over general commutative ring with unity. Section 6 is 

the Conclusion.  

 

2. Special endomorphisms of K[x1, x2…, xn]   and cryptosystems of 

Post Quantum Cryptography. 
 

2.1 Some definitions. 

Task of Affine Cremona Semigroup nCS(K) is defined as endomorphism group of 

polynomial ring K[x1, x2,..., xn] over the commutative ring K. It is an important object 

of Algebraic Geometry (see Max Noether paper ‘’Luigi Cremona’’ [34] about Math-

ematics of Luigi Cremona who was the prominent figure in Algebraic Geometry in 

the XIX century, [35] and further references on papers which use the term affine 

Cremona group).    Element of the semigroup  σ can be given via its values on varia-

bles, i. e. as the rule  xi→fi(x1, x2, …, xn), i=1, 2,…, n.  This rule induces the map σ’: 

(a1, a2,.., an)→(f1(a1, a2,.., an), f2(x1, x2, …, xn),…, fn(x1, x2,…, xn)) on the free module 

Kn. Automorphisms of K[x1, x2,..., xn] form affine Cremona Group nCG(K). In the case 

when K is a finite field or arithmetic ring Zm  of residues modulo m elements of affine 

Cremona Groups or Semigroups are used in algorithms of Multivariate Cryptography. 

Recall that we refer to the piece of information T as a trapdoor accelerator of the  

elements σ of degree 2  the knowledge of if  the knowledge of T allows to compute 

the reimage of σ’ in time O(n3) (see [38]). In this direction of PQC (Post Quantum 

Cryptography) we use to keep elements  fi(x1, x2, …, xn) of in their standard forms, i. e. 

lists of their monomial terms ordered lexicographically.   

In fact the pair (σ, T) such that the reimage of σ is not computable in polynomial 

time can be used as public key.  Alice has the whole pair (σ, T) but Bob has only the 

standard form of σ.  

If σ is an automorphism then it  acts bijectively on the space of plaintexts Kn  it can 

be used as encryption tool. Bob encrypts in time O(n3). The knowledge of T allows 

Alice to decrypt. 
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     The public key (σ, T) can be used as an instrument for digital signatures according-

ly to the following scheme. Assume that Alice has (F, T) and public user Bob poses F. 

    Let us assume that Alice and Bob use some symmetric cipher H and the hash func-

tion f. Bob receives encrypted by Alice document H(p)=c.  Correspondents compute 

‘’compressed’’ message f(c )=b. 

      Alice considers the equation F(y)=b. She uses her knowledge on T and reconstruct 

some reimage r of b. 

      Finally Alice sends r to Bob. He is checking the relation F(r )=b. So Bob is sure 

that the decrypted by him document p was genuine and was  sent to him   by Alice. 

    Assume that we want to use subsemigroups Sn of nCS(K) for the design of proto-

cols. 

 Then we have to look at Sn such the following multiple composition property 

(MCP) holds. 

Given elements 1s, 2s, …ns we are able to compute their composition in polynomial 

time. 

Affine Cremona group nCS(K) does not poses MCP. If one takes n quadratic elements 

is randomly their product with the probability close to 1 will have degree 2n. 

 So the computation is not feasible. 

EXAMPLE. Let us assume that we have secure protocol with the collision ele-
ment G 

x1 → ϻ1x1 a(1,1) x2 a(1,2) … xn a(1,n) ,  

x2 → ϻ2x1 a(2,1) x2 a(2,2) … xn a(2,n) , (1) 

… 

xm →ϻnx1 a(n,1) x2 a(n,2) … xn a(n,n)  

where ϻi are regular elements of finite commutative ring K with the unity.   

It is easy to see that the complexity of the composition of two elements of kind (1) 

is O(n3). 

We consider the protocol based on  computation of O(1) compositions of  ele-

ments from the semigroup. So the complexity of protocol is  O(n3). 

Such a protocol is based on the complexity of finding the decomposition  of the trans-
formation (1) into the composition of given generators is presented in  [12]. 

    The reprint [36] with this protocol description was posted on IACR e-print archive 

5 years ago, see  [37] where some of its applications were described. 

 

2.2 Quadratic map delivery procedure. 
 

Assume that K is a commutative ring with the nontrivial multiplicative group ( 
K=Fq, q>2 or K=Zm, m>2 are practical cases). So ϻi  are  elements of K*,  a(i,j) are 

elements of Zd, where d is the order of the multiplicative group K*. Alice can form a 

matrix  b(i,j)=(ϻiϻj) a(i,j). 

Alice can form the multivariate polynomial expression 

g=∑i=12,,…,n∑j=1,2,…,nb(i,j)yiyj+ϻ1y1+ϻ2y2+…+ ϻnyn+b(n,n) (1) 

   The complexity of computation of g is O(n2). 

If Alice and Bob conducts m, m=O(n) independent sessions and get outputs with co-

efficients kϻj , k=1,2,…m, j=1, 2,…,n, ka(i, j). 

They can form polynomials kg(y1, y2,…, yn),  k=1, 2,…,m in time O(n3). 
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Recall that the cost of single protocol is O(n3). So the total cost of forming the tu-

ple (1g, 2g,…, mg)  is O(n4). 

Alice can take some multivariate rule F given via the list of polynomials kf(y1, y2, 

…, yn), k=1, 2,…, m for which Alice knows polynomial invertor T, i. e the piece of 

information such that the knowledge about T allows her  to compute the reimages  of 

F in polynomial time. 

Alice sends expressions kh=kg+kf, k =1,2,…,m written in their standard forms (lists 
of monomial terms ordered lexicographically)  to her trusted partner Bob. 

   Bob can use form F to make digital signatures or encrypt messages (p1, p2, …, pn) in 

the case n=m and bjective F  for d=n2/3  (or n2a, 0<a<1/2 ) documents or messages. 

After that Alice and Bob makes a new session of protocol and use changed quadratic 

form  F’.  If they will make sessions periodically then adversary is not able to restore 

F which has 1/2n2m coefficients in its standard form. 

Adversary will have dm quadratic equations with 1/2n2m variables in the case 

when he/she intercepts all messages. Of kind image, reimage. It is not enough to 

compute the standard form of F and attack the problem of finding its reimages. 

    They can use for instance ''The Rainbow Like Unbalanced Oil and Vinegar'' 

(RUOV) digital signature method for the generation of F, F’, F’’, ... . 

      In terms of algebraic cryptography a post-quantum secure procedure for the elec-
tronic signature of O(nt), t ≥1 documents is defined where n is the number of variables 

of temporarily used multivariate rule (size of the signature) is executed  in time 

O(n3+t). This is the best known time for the completion of this  mass problem. The 

security of the procedure is based on the secure protocol of Non-Commutative Cryp-

tography on the platform of Eulerian transformations of the set (K*)n. Noteworthy that 

signing of O(nt), t<1 takes time O(n4) because of the cost of the protocol with O(n) 

outputs. 

REMARK 1. Secure classical quadratic multivariate rule with n variables will allow 

to sign O(nt), t≥0   documents in time O(n3+t). 

REMARK 2 (on (F, T)) . The method works in the case of arbitrary commutative 

ring K with nontrivial multiplicative group K*.   
      We construct the  method of construction of quadratic automorphism from  
nCS(K) with the trapdoor accelerator  for each pair (K, n) (see abstract of the confer-

ence [58] or [1] were the prove of this result can be found). Hope that multivariate 

cryptographic K-theory can bring interesting  for cryptanalysts  examples of public 

key candidates and protocol based cryptosystems. 

 

2.3 On multiple usage of delivery procedure. 

  

Correspondents can take positive integer m, m=O(1),  m ≥2 and execute the following  

procedure of secure delivery of  m multivariate rules iF ϵnCS(K) given by 

 jF(yi) =jfi(y1, y2,…, yn), j=1,2,…m, i=1,2,…, n.  
   Let 1h, 2h,…, mnh is the list of jfi ordered lexicographically. Alice and Bob execute 

the protocol mn times and form the expression sg(y1, y2, …yn), s=1, 2, …, ml. So Alice 

sends ih+ig via an open channel. So Bob gets maps iF, i=1,2, …m  
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Option 1. 

 For the establishment of digital signature procedure Alice selects iF, i=1,2, …n as 

the maps with the trapdoor accelerators iT. She may check that the degree of composi-

tion  of selected maps is 2m. 

 Bob takes the hash value c=(c1, c2, …, cn) of the encrypted document. The knowledge 

of trapdoor accelerators allows Alice to compute recursively reimages 1c=(mF)-1(c ), 
2c= (m-1F) -1(1c ),…, mc==(1F)-1(m-1c )=(p1, p2, …, pn)=p. 
She sends p via an open channel. 

    Bob computes 1p=1F(p), 2p=2F(1p), … ,  mp=mF(m-1p). 

In the case of coincidence of  mp with c Bob knows that he gets the genuine document 

from Alice. 

      Correspondents can execute this digital signature procedure up to r=1/3nd, d=2m , 

m=0(1) and use parameter r as the period of repetition of protocol sessions. 

The cost of signature of O(nt), 1< t<d documents will  be O(nt+3) with the usage of a 

single session of the protocol. Alice and Bob can use the same length of digital signa-

tures as in the procedure with multivariate quadratic public keys. 

 

Option 2.  

Alice and Bob use the previous procedure (option 1) with parameter m=O(log2(n)).   
The cost of protocol in tis case is O(n4log2(n)) 

Then the composition F of iF  has a linear degree as the function from  n. 

In this case after the execution of the prococol the cost of signature of single docu-

ment will be O(n3log2(n)). So nt, t>1 documents will be signed in time O(nt+3log2n). 

 
Option 3.  

Let {z(1), z(2), …, z(m)} =Z, m=O(1), m >1  be the formal alphabet. Correspondents 

use the option to write nonempty word w=z(i(1)zi(2), …, z_(i(l), l=O(1) , l>0 where  

i(1), i(2),…, i(l) are elements of {1,2,…,m} and work with specialisation i(1)F 
i(2)F…i(l)F=F(w) (the composition of maps). Bob computes the value of F(w) iterative-

ly via the consecutive application of  i(s)F , s=1,2,…,m. Alice is able to compute the 

reimage of F(w) because she knows trapdoor accelerators. The word w is agreed via 

an open channel. 
Alice and Bob are able to use single word up to 1/3n2 times. 

Correspondents can use this option during practically unlimited period. 

Of course they can change generators iF via the new protocol session. 

 

3. Eulerian transformations and asymmetric cryptosystems. 
 

  3.1.On the group of Eulerian transformations. 

 

  Let nES(K) stands for the semigroup of all endomorphisms of K[x1, x2,…, xn] of 

kind (1) where K be a finite commutative ring with the multiplicative group K* of 

regular elements of the ring. We  consider the action of Eulerian semigroup nES(K) of 

transformation of kind 

x1 → ϻ1x1 a(1,1) x2 a(1,2) … xn a(1,n) ,  

x2 → ϻ2x1 a(2,1) x2 a(2,2) … xn a(2,n) ,          
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… 

xn →ϻnx1 a(n,1) x2 a(n,2) … xn a(n,n) , 

where a(i,j) are elements of arithmetic ring Zd, d=|K*|, ϻiϵK* on the set nE(K) =(K*)n 

.    Let nEG(K) stand for Eulerian group of invertible transformations from nES(K). 

They act as bijective maps on the variety (K*) n. 

    We can use  the following method of generating of invertible elements. 

          Let π and δ be two permutations on the set {1,2,..., n}. Let us consider a trans-

formation of (K*)n , d =|K*|. (the most important cases are K=Zm or K= Fq ).  We 

define transformation AJG(π, δ), where A is triangular matrix with positive integer 
entries 0≤a(i,j)≤d, i≥j defined by the following closed formula. 

yπ(1)= ϻ1xδ(1)
a(1,1)

 

yπ(2)= ϻ2 xδ(1)
a(2,1) xδ(2)

a(2,2)
  

… 

yπ(n)= ϻn xδ(1)
a(n,1) xδ(2)

a(n,2)
 …xδ(n)

a(n,n)   
where (a(1,1),d)=1, (a(2,2),d)=1,…,(a(n,n),d)=1. 

     We refer to  AJG(π, δ) as Jordan - Gauss multiplicative transformation or simply 

JG element. It is an invertible element of  nES(K) with the inverse of kind  BJG(δ, π) 

such that a(i,i)b(i,i)=1 (mod d). Notice that in the case K= Zm  straightforward process 

of computation of the inverse of JG element is connected with the factorization prob-

lem of integer m. 
   So Alice can generate g and h as a product of several Jordan Gauss transformations.  

The simplest case in a spirit of LU factorization is the composition of lower and upper 

triangular transformations. 

The cryptosystem is the following procedure. 

    Alice can select several Jordan-Gauss transformations J1, J2, …, Jd , d>1 from 
mEG(K) and compute their product J  

She can use J as a public rule. 

Public user works with the space of plaintexts (K*)m. 

He writes his message  (p)=(p1, p2,…,pm) and form the ciphertext (c1, c2,…, cm) as 

J(p). The knowledge of the decomposition of J into the generators Ji allows her to 

decrypt. 

   REMARK. Adversary has solve the equation J(x)=c. The polynomial algorithm to 
solve this general problem with the use of deterministic machine together with Quan-

tum Computer  is not known.  Hope that this public key algorithm attracts attention of 

Cryptanalysts. 

      It can be used as digital signatures instrument, The length of signature n  can be 

the same with the case of quadratic multivariate map. The theoretical cost of the exe-

cution of the procedure for one document is O(n2). 

 It is better estimation then in the case of quadratic multivariate rule. 

 

3.2. Protocol based cryptosystem. 

     

Alice and Bob conduct already mentioned  protocol and elaborate the collision ele-
ment C from the  mES(K).  

She compute the product of monomials J(xi)C(xi), i=1,2,…,m and sends it to Bob. 
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    Bob uses J to encrypt his plaintext (p1, p2,…, pm) from (K*)m. Alice decrypts the 

ciphertext (J(p1), J(p2),…, J(pm)) because her knowledge on the decomposition of J 

into Ji.  

     To prevent the linearization attacks by the Adversary  Alice has to sign  just an, 

a<1 documents after that Alice and Bob repeat the protocol. In fact they use protocol 

periodically with the period an. It allows   her   to sign in a secure way O(nt), t≥1 

documents of size n  within time O(n2+t). 
   For O(nt) documents with t<1 is required O(n3) elementary operations. This algo-

rithm has advantage in the comparison with the quadratic public key of Multivariate 

Cryptography in the case of   O(nt), 0<t<1 documents. It requires time O(n3) but not 

O(n3+t). 

Option of multiple generators from nES(K).  
Like in the case of the  Option 1 of the  Section 2 correspondents can use multiple 

session of protocol to elaborate  several elements  1C, 2C,…, mC where m=0(1). It 

costs time  O(n3).  Alice constructs elements jJ, j=1, 2,…m 

as products of several Jordan-Gauss elements. They use the formal alphabet   
{z(1), z(2), …, z(m)} =Z to agree on the word w=z(i(1)z_{i(2), …, z_(i(l), l=O(1) , l>0 

where  i(1), i(2),…, i(l) are elements of {1,2,…,m}. Bob uses specialisation J(w)= i(1)J 
i(2)J…i(l)J for signatures verification. Alice can compute reimages of J(w) because she 

knows the decompositions of jJ, j=1, 2,…m into Jordan-Gauss generators.They can 

use single word up to 1/2n times. 

The complexity of signing O(nt), t>1 documents is O(nt+2). 

 

3. 3 Combined cryptosystem. 

         We  start of algorithms (1) and (3) with one session of protocol with n+1 out-

puts.  

They elaborate collision maps 1C,  2C, ...,  n+1C.  

Alice takes bijective quadratic  rule F=G1 given by   kf(y1, y2,…, yn) with the corre-
sponding trapdoor accelerator  T.  

   Alice and Bob form  kg(y1, y2,…, yn), k=1, 2,…,n accordingly to the described above  

procedure for 1C,  2C, ...,  nC..  She sends kg (y1, y2,…, yn)+ kf (y1, y2,…, yn) to Bob. 

   Additionally Alice forms invertible transformation J= G2 from nEG(K) obtained as 

a product of several Jordan Gauss transformations and sends the products  J(yi) 
n+1C(yi) (monomials) to Bob. 

    He restores J= G2 and F=G1. Assume that he uses  them for the encryption process. 

Bob uses combined encryption which transforms open text (x) from  (K*)n  into the 

ciphertext  G1(G2(x)) from the affine space (K)n.  Alice has trapdoor accelerator T and 

the knowledge on the decomposition of J into Jordan -Gauss generators  for the com-

putation of reimages of   G1 and G2 . So Alice decrypts . 
 

       The complexity of Bob’s encryption of O(nt), t≥1 plaintexts is  O(nt+3). In the 

case when the quantity of documents  O(nt), t<1 the complexity will be O(n4). The 

composition of G1, G2 has polynomial degree  cn, n>0 and the density dn3 , d>0 . 

That is why successful linearisation attacks on this cryptosystem are not feasible in a 

polynomial time. One of the protocol session is sufficient, no need to use periodical 

sessions. 
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3.4. Modified algorithm.  

       

 Alice has the following option to hide the map F from Bob. 

She can compute the composition H of J=G2 and F=G1. This endomorphism  will 

have a density O(n 3) (number of monomial terms) and degree cn. 

Additionally Alice will compute the composition Z of n+1C and G  sending xi to 

G(x1)= ig(x1, x2,…, xn), i=1,2,…,n. 
      She sends Z(xi)+H(xi) to Bob. 

He restores the map H and uses it for the encryption of plaintexts from (K*)n. 

Encryption by Bob takes time O(n 4). 

   Alice can decrypt because of her knowledge about the polynomial invertor T and 

decomposition of J into Gauss-Jordan generators.  

3.5.  Some public keys. Without usage of the protocol Alice creates G1 (quadratic or 

cubic) and G2 computes the standard form   H=G1(G2) and announce it as a public 

rule. Such public keys were a suggested in 2017 ([56], [57]). 

      During the period more than 6.5 years instruments to break these public keys are 

not discovered. 

 

3.6. Option of multiple Eulerian and quadratic generators. 
 

We suggest generalisation of algorithm 3.3 with several Eulerian transformations  

1J, 2J,…,  lJ, l=O(1) and several quadratic transformations 1F, 2F,…, mF, m=O(1). 
Alice can use several protocols with Bob and safely  deliver these transformation to 

Bob in time O(n4). 
Correspondents use two alphabets {u1, u2, …, ul} and {z1, z2,…, zm}. They agree via 

open channel on words  w(1)=ui(1)ui(2)…ui(s), s>0, s=O(1), i(k)ϵ{1,2,…, l} and 

w(2)=zj(1)zj(2) … zj(d), d=O(1) , d>0 where  j(1), j(2),…, j(d) are elements of 
{1,2,…,m} and work with specialisations i(1)J i(2)J…i(s)J=J(w(1)) and  i(1)F 
i(2)F…i(d)F=F(w(2)). 

To encrypt  Bob consecutively applies i(1)J, i(2)J, …, i(s)J to his plaintext pϵ(K*)n and 

gets uϵ(K*)n. Secondly he applies consecutively (1)F, i(2)F,…, i(d)F to u and gets ci-

phertext cϵKn. 
Alice can decrypt because of her knowledge on trapdoor accelerators of  jF and de-

compositions of iJ into products of Jordan-Gauss decompositions. They can use se-

lected pair w(1),w(2) safely  up to 1/3n2 times. 

 

3.7 Option with single Eulerian transformation and multiple quadratic 

maps. 
 

   We can use previous scheme 3.6 with l=1 and m=O(log2(n)). 
The  protocol for the delivery of 1J and 1F, 2F,…, mF,  m=c log2(n) from Alice to 

Bob will cost time O(n4log2(n)).  
Alice constructs  1J as a product of O(1) Jordan-Gauss transformations. She selects 

quadratic maps  1F, 2F,…, mF with the trapdoor accelerators. 
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Bob encrypts his message (p) from (K*)n via the consecutive application of 1J,  1F, 
2F,…, mF.  It takes him time O(n3log2(n)). Alice decrypts because of her knowledge 

on the trapdoor accelerators of iF and the decomposition of 1J into the Jordan-Gauss 

elements.   

 

4. Hidden tame homomorphism protocols on platforms of  special mul-

tivariate transformations.  
 

4.1. Abstract scheme. 

    

 The following abstract scheme can be used (see [20]). Assume that there are two 

families of subsemigroups  En(K) and Ln(K) of nCS(K)  (En(K)>Ln(K)) together with 

two families   E’m(K) and Mm(K) of subsemigroups mSC(K) (E’m(K)>Mm(K)) such that 

n>m, m=O(n) and there is a feasible homomorphism ψ  from Ln(K) into Mm(K) (com-

putable in time O(nk)).  
We assume that  En(K) and E’m(K) has rather large subgroups of invertible elements. 

 

Alice and Bob can execute the following protocol  

 

Alice selects generators g 1 , g2 ,…, gd , d≥2 from Ln(K) and the invertible elements 

g and h from En(K) and E’m(K) respectively. 

She computes images h1=ψ(g1), h2=ψ(g2),…, hd=ψ(gd). After that Alice computes- 

(ai=ggig-1, bi=hhih-1 ), i=1,2,…,d  and sends it to his partner Bob via open channel. 

 

He take an alphabet z1, z2,…, zd  and writes the word 

zi(1)zi(2)…zi(l) of the length l=O(1), l>d,  i(1), i(2),…, i(l) are elements from 

{1,2,…,d}. Bob computes the standard form of a=ai(1)ai(2)…ai(l) and sends it to Alice. 
He computes b= bi(1)bi(2)…bi(l) and keeps it for himself. 

Alice computes the collision element b accordingly to the following procedure. 

1) She computes g-1ag =1g    2) she gets the standard form of ψ( 1g)=2g   3) com-

putes b as h(2g)h-1. 

   The adversary has to decompose of a in its standard form into the word w(a1, a2,…, 

ad) of given generators a1, a2,…, ad. If he/she solves this NP-hard problem then the 

adversary has  the collision element as w(b1, b2,…, bd). 

 

4.2. The implementation with Eulerian transformation. 

 

Let K be a finite commutative ring with the multiplicative group K* of regular ele-
ments of the ring. We take Cartesian power nE(K) =(K*)n  and consider an Eulerian 

semigroup nES(K) of transformations of kind  

 

Let nEG(K) stand for Eulerian group of invertible transformations from nES(K). 

They act as bijective maps on the variety (K*) n. 

 

Let J={1, 2,…,m} we consider totality mPn(K) of all transformation of kind 
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x1 → ϻ1x1 a(1,1) x2 a(1,2) … xm a(1,m)   

x2 → ϻ2x1 a(2,1) x2 a(2,2) … xm a(2,m)  

… 

xm → ϻmx1 a(m,1) x2 a(m,2) … xm a(m,m)   

xm+1 → ϻm+1x1 a(m+1,1) x2 a(m+1,2) … xm a(m+1,m) xm+1 a(m+1,m) … xn a(m+1,n)  

xm+2 → ϻm+2x1 a(m+2,1) x2 a(m+2,2) … xm a(m+2,m) xm+1 a(m+2,m) … xn a(m+2,n)  

…… 
 

 

xn →ϻnx1 a(n,1) x2 a(n,2) … xm a(n,m) xm+1 a(n,m+1) … xn a(n,n)  

 

Let ψ: mPn(K)→mES(K) be the homomorphism sending   ϭ from mPn(K) into its re-

striction onto K[x1, x2,…, xm]. 

 

We can use described above protocol in the case of En(K)=nES(K),  Ln(K)=mPn(K) 

and E’m(K)=Mm(K)=mES(K). 

 

.Alice and Bob conduct the protocol and elaborate the collision element C from 

the  mEG(K). 

 

5. On the sources of trapdoor accelerators. 
 

5.1. Historical cryptosystems defined over finite fields. 

 

The major stream of Multivariate Cryptography is a search for pairs (F,T) forming the 
quadratic or cubic trapdoor accelerator where F is the transformation of the vector 

space defined over the finite field. Developers were hoped that the recovery of the 

reimage of F given in its standard form without a knowledge of T will stay as un-

solved NP-hard problem. The fact that quadratic transformations of public key (F,T) 

can provide the shortest known digital signatures is motivating  a further search for 

appropriate trapdoor accelerators. 

This search was started by Imai and Matsumoto [39] (see also [24]) who constructed a 

trapdoor accelerator in the case of finite fields of characteristic 2. They use quadratic 

extensions F2 of a finite field F1=Fq, q=2m of characteristics 2 of degree n. They ex-

pressed a bijective transformation of Fr, r=qn  of kind x→x t, t=qa +1 where  (a+1, qr-

1)=1  as quadratic transformation F of the vector space (F1)n. Authors suggested to 

use the standard form G=L1FL2 where L1 and L2 are elements of AGLn(F1) as the pub-
lic rule corresponding to trapdoor accelerator (G, T), T=(L1, L2, a). 

     The cryptanalytic  tools to break this potential cryptosystem were found by J. Pa-

tarin (see  [10] and further references). 

Long history of various modifications of Imai-Matsumoto cryptosystems is partially 

reflected in [23] or [7] . All of them were broken via corresponding cryptanalytic 

tools. We just mentioned some other cryptosystems inclusive  Hidden Fields Equa-

tions suggested by J. Patarin and recent Unbalanced Oil and Vinegar cryptosystem for 

which corresponding cryptanalysis can be found in [5]. This search is continue. We 

believe in a future success of this direction. Incomplete list of publication with multi-

variate constructions  surveys  and  cryptanalytic studies is [4], [5], [9], [15], [16], 
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[17], [18], [19], [40]-[52]  . We contributed description of two different families of 

quadratic cryptosystems [8], [13]-[14]. 

Recall that we suggest to combine former or current candidate  to quadratic 

Multivariate public rules with the protocol of Noncommutative Cryptography imple-

mented with the platform of Eulerian transformation of the variety (Fq) n. 

 

5. 2-Stable semigroups over general commutative ring and alternating protocol. 
 

 We say that subsemigroup S is k-stable if the maximal degree of its representative 

equals k, k>0. 

As it follows instantly from the definition k-stable S poses MCP property.  

 Examples of such subsemigroup are constructed in the cases of arbitrary k and arbi-

trary commutative ring K. 

   We can slightly modify previous protocol in the case when subgroups En(K) and 

E’m(K) are 2-stable. 

Recall  that we have two families of subsemigroups En(K) and Ln(K) of nCS(K)  

(En(K)>Ln(K)) together with two families   

 E’m(K) and Mm(K) of subsemigroups mSC(K) (E’m(K)>M m (K)) such that n>m, 

m=O(n) and there is a feasible homomorphism ψ  from Ln(K) into Mm(K) (computable 
in time O(nk)).  

Alice and Bob can execute the following protocol . 

Alice selects generators g 1 , g2 ,…, gd , d≥2 from Ln(K) and the invertible elements 

g and h from En(K) and E’m(K) respectively. Additionally she take l1 from AGLn(K)  

and l2 from AGLm(K). 

She computes images h1=ψ(g1), h2=ψ(g2),…, hd=ψ(gd). After that Alice computes 

(ai=l1ggig-1 l1-1,  bi=l2hhih-1 l2 -1), i=1,2,…, d  and sends it to his partner Bob via 

open channel. 

Bob conducts the same steps as in the previous algorithm, 

Alice computes the collision map b with  almost the same procedure. She need 

just to change conjugators g an h on l1g and l2h. 
This protocol can be used for the delivery multivariate rule F from Alice to Bob. Al-

ice (or Bob) sends F+b to her (his) partner. 

Noteworthy that the costs of this protocol is O(n7).  

So the usage of transported  F with the trapdoor accelerator  for the encryption of 

O(nt) , 0<t<2 costs O(n7). Correspondents can use this quite expensive scheme to sign 

important documents. The period of usage has to be an2, 0<a<1/2.   

  In [8] (see also [1]) we propose a new family of  large nonlinear platforms of Non-

commutative Cryptography which is a subsemigroups m,kCn(K),  n>k>m>0 of 

  m(n-m)CS(K) formed by the elements of degree ≤2. There is a homomorphism of this 

semigroup onto ASLk(n-k)(K) which is a semigroup of all linear transformation of affine 

space Kk(n-k)  and has dimension >k 2(n-k)2 as algebraic variety. These constructions 
generalise previous platforms [20],[21], [22] in terms of Double Schubert Graphs. 

 Let m,kGn(K) be the subgroup of all automorphisms of K[x1, x2,…, xm(n-m)] from 

m,kCn(K). Then there is a homomorphism of m,kGn(K) onto AGLk(n-k)(K). 

  

Proposition. For each quadratic representative of m,kCn(K) a trapdoor accelerator 

can be constructed. 
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Elements from the m,kGn(K) with a trapdoor accelerator can not be used as public 

key rules because  their inverses are also quadratic transformations but they can be 

used in the protocol based cryptosystems.  

In fact large subsets m,kC’n(K) ,  m,kC’n(K)> m,kCn(K)  of elements from  m(n-m)CS(K) 

with a trapdoor accelerator were constructed in [8],[1]. Elements from 

 m,kC’n(K)- m,kCn(K)  are not stable, some of them can be used for the constructions 

of public keys see [8].  
  The constructions of other 2 -stable transformation based  can on graphs of in-

creasing girth  can be found in [13], [14]. 

Not so economic schemes for digital signature are considered in [53], [54], [55]. 

 

6. Conclusion. 
 

Many  schemes of Noncommutative  Cryptography (see [11], [25]-[33]) are given 
in terms of abstract groups (or semigroups). Users has to select a family of groups or 

semigroups which usually are defined  in terms of generators and relations . We sug-

gest some schemes  in terms of special transformations semigroups which are the 

subgroups of affine Cremona semigroup forme by endomorphisms of K[x1, x2,…, xn] 

where K is some finite commutative  with the nontrivial multiplicative group. To 

make symbolic computations feasible er require multiple composition property 

(MCP) which insures the computation  of n elements from the subsemigroup of 

End(K[x1, x2,…, xn]) in a polynomial time.  

In this paper we consider an application of this approach to the construction of the 

digital signatures or encryption schemes with a quadratic multivariate transformation 

F. We can use mentioned above protocols in terms of polynomial transformations of 
Kn for secure delivery of standard form F from one correspondent to another. Adver-

sary  can intercept many pairs of kind plaintext/ciphertext or hashed document/ its 

signature and try to reconstruct the map  F. Alice and Bob can work with periodical 

sessions of protocols. 

So we suggested several cryptosystems which can work with the tuples of size 

comparable with the length of digital signatures of quadratic multivariate public rule. 

We expect that some quadratic multivariate public keys will be certified in future 

while the proposed in this paper  secure protocol based cryptosystems currently can 

serve as encryption schemes or systems for digital signatures. 
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