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Institut Polytechnique de Paris,
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123, avenue Albert Thomas

87060 Limoges Cedex, (France)
ilaria.zappatore@unilim.fr

Abstract. In this article, we discuss the decoding of Gabidulin and
related codes from a cryptographic point of view, and we observe that
these codes can be decoded solely from the knowledge of a generator
matrix. We then extend and revisit Gibson and Overbeck attacks on the
generalized GPT encryption scheme (instantiated with the Gabidulin
code) for different ranks of the distortion matrix. We apply our attack
to the case of an instantiation with twisted Gabidulin codes.
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Introduction

The most promising post-quantum alternatives to RSA and elliptic curve cryp-
tography are based on error–correction based paradigms. The metric which quan-
tifies the amount of noise, can be either Euclidean (lattice–based cryptography),
Hamming (code–based cryptography) or the rank metric. The latter has been
much less investigated than the first two. However, it offers an interesting range
of primitives with rather short keys [2,1,3]. In addition, the Gabidulin code
family benefits from a decoder that corrects any error up to a fixed threshold.
This makes it possible to design schemes with a zero failure rate, such as RQC
[1]. Although no rank–based submission was selected for standardization, NIST
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encouraged the community to continue the research efforts in the design and
security of rank–metric based primitives.

Historically, the first primitive based on rank metric was proposed by Gabidu-
lin, Paramonov and Tretjakov [22]. It was a McEliece–like scheme where the
structure of a Gabidulin code is hidden. This scheme was first attacked in ex-
ponential time by Gibson [26,27]. Then, Gabidulin and Ourivski proposed an
improvement of the system that was resistant to Gibson’s attack [21,38]. Later,
Overbeck [39,40] proposed a polynomial time attack which breaks both GPT
and its improvements. Gabidulin et. al. then introduced several variants of the
GPT based on a different column scrambler P , so that some entries of P−1

can be in Fqm [20,17,46]. However, in [37] the authors proved that for all of the
aforementioned versions, the shape of the public key is in fact unchanged and
remains subject to Overbeck–type attacks.

The natural approach to circumvent Overbeck’s attack is to replace the
Gabidulin codes with another family equipped with an efficient decoding al-
gorithm. However, only a few such families exist. On the one hand, there are
the LRPC codes [23] which lead to the ROLLO scheme [2]. On the other hand,
one can in a way deteriorate the structure of the Gabidulin codes, at the cost
of a loss of efficiency of the decoder. Loidreau [34] proposed to encrypt with
a Gabidulin code perturbed by some Fqm–linear operation. This proposal was
subject to polynomial–time attacks for the smallest parameters [11,25,41], while,
for larger parameters, it remains secure so far. In another direction, Puchinger
et. al. [43] proposed to replace Gabidulin codes with twisted Gabidulin codes.
However their proposal was only partial, since they could not provide an efficient
decoder correcting up to half the minimum distance.

Our contributions. The contribution we make in this article is threefold.

First, we discuss the decoding of Gabidulin codes and twisted Gabidulin
codes. Using the result of [8], we explain how to correct errors for such codes
without always being able to correct up to half of the minimum distance. From
a cryptographic point of view, we highlight an important observation: if in Ham-
ming metric, decoding Reed–Solomon codes requires the knowledge of the eval-
uation sequence, in the rank metric, Gabidulin codes can be decoded solely
from the knowledge of a generator matrix. This observation extends to twisted
Gabidulin codes as soon as the decoding radius is below a certain threshold.

Second, we revisit the Overbeck’s attack and propose an extension. Specif-
ically, from a public code Cpub, the original Overbeck’s attack is based on the

computation of Λi(Cpub) = Cpub +C q
pub + · · ·+C qi

pub. For the attack to succeed,
a trade–off on the parameter i must be satisfied. On the one hand, i must be
large enough to rule out the random part (called distortion matrix) in Cpub used
to mask the hidden code. On the other hand, i must be small enough so that
Λi(Cpub) does not to fill in the ambient space. In the this article, we propose an
extension of the Overbeck’s attack that limits our goal to the smallest possible i,
namely i = 1. This relaxation is based on calculations on a certain automorphism
algebra of the code Λ1(Cpub) and extends the range of the attack.



Third, we investigate in depth the behavior of twisted Gabidulin codes with
respect to the Λi operator.

The aforementioned contributions lead to an attack on a variant of GPT
proposed by Puchinger, Renner and Wachter–Zeh [43]. In this variant, the au-
thors used two techniques to resist Overbeck’s attack. First, they mask the code
with a distortion matrix of very low rank. Second, they replace Gabidulin codes
with twisted Gabidulin codes. The authors chose twisted Gabidulin codes C so
that for any positive i, the code Λi(C ) may never have co-dimension 1 (see [43,
Theorem 6]). In this article, we prove that the latter property is not a strong
enough security assessment for twisted Gabidulin codes and that the aforemen-
tioned contributions lead directly to an attack on the Puchinger et. al.’s variant
of GPT.

Outline of the article. The article is organized as follows. Section 1 introduces
some basic notations used in this paper, as well as Gabidulin codes, their twisted
version and the GPT cryptosystem. In Section 2 we first discuss the decoding of
Gabidulin codes and propose an algorithm (Algorithm 1), which does not need to
know the evaluation sequence. We then explain how to decode twisted Gabidulin
codes, under a certain decoding radius. In Section 3, we revisit the Overbeck’s
attack on the GPT scheme instantiated with Gabidulin codes and we make
some remarks on the structure of the generator matrix of the code obtained
by applying the q-sum operator to the public key. In Section 4, we propose
an extension of the Overbeck’s attack to the GPT scheme instantiated with
either Gabidulin or twisted Gabidulin codes. Finally, in Section 5 we examine
the behavior of the q-sum operator applied to the public key of the GPT system
instantiated with twisted Gabidulin codes. We then show that we can exploit the
structure of its generator matrix to break the corresponding scheme using either
the Overbeck’s attack, or more generally, its previously proposed extension.

1 Prerequisites

In this section we introduce the basic notions we will use throughout the paper,
starting with the notations used. Then, we briefly introduce the Gabidulin codes
and their twisted version, and finally the GPT cryptosystem.

1.1 Notation

Let q be a prime power, Fq be a finite field of order q, and Fqm be the extension
field of Fq of degree m. In this article, vectors are represented by lowercase bold
letters: a, b,x, and matrices by uppercase bold letters M ,G,H. We also denote
the space of m × n matrices with entries in a general field K, by Mm,n(K). In
the square case, i.e. m = n, we simplify the notation by writing Mn(K), and we
denote by GLn(K) the group of n× n invertible matrices.



1.2 Rank metric codes

Given x = (x1, . . . , xn) a vector in Fnqm , we can define its support as,

Supp(x)
def
= SpanFq

{x1, . . . , xn}

and

rankq(x)
def
= dim(Supp(x)).

The rank distance (briefly distance) of two vectors x,y ∈ Fnqm is

d(x,y)
def
= rankq(x− y).

A rank metric code C of length n and dimension k is an Fqm-vector subspace of
Fnqm . Its minimum distance is defined as,

dmin(C )
def
= min

x∈C\{0}
{rankq(x)}.

By choosing an Fq-basis B of Fqm , any codeword c ∈ C can be written as a
matrix MB(c) ∈ Mm,n(Fq) by representing any element ci ∈ Fqm as a column
vector whose entries are its coefficients in the basis B. With this point of view,
one can introduce a second notion of support which is less considered in the
literature but will be useful in the sequel.

Definition 1. The row support RowSupp(c) of a vector c ∈ Fnqm is the row span
of the m× n matrix MB(c).

Note that the row support of a vector is an intrinsic notion that does not
depend on the choice of the basis B. Moreover, as for the support, the rank of a
vector equals its row support.

Remark 1. One could have defined rank metric codes as spaces of matrices en-
dowed with the same rank metric. Such a framework is more general than ours
since a matrix subspace of Mm,n(Fq) is not Fqm–linear in general. But consid-
ering such rank metric codes would be useless in what follows.

Two codes C ,D ⊆ Fnqm are said to be right equivalent if there exists P ∈
GLn(Fq) such that for any c ∈ C , cP ∈ D . We denote this as “CP = D”. We
emphasize that P should have its entries in Fq and not in Fqm . In this way, the
map x 7→ xP is rank–preserving, i.e. is an isometry with respect to the rank
metric.

Finally, the dual C⊥ of a code C ∈ Fnqm is the orthogonal of C with respect
to the canonical inner product in Fqm ,{

Fqm × Fqm −→ Fqm
(x,y) 7−→

∑n
i=1 xiyi.



We frequently apply the component-wise Frobenius map to vectors and codes:,
given c = (c1, . . . , cn) ∈ Fnqm and 0 ⩽ i ⩽ m− 1, we denote

c[i]
def
= (cq

i

1 , . . . , cq
i

n ).

Given an [n, k] code C ⊂ Fnqm , we write

C [i] def
= {c[i] | c ∈ C }.

We also define the (i-th) q-sum of C as,

Λi(C )
def
= C + C [1] + · · ·+ C [i].

We notice that if G ∈ Mk,n(Fqm) is a generator matrix of C , the matrix
G

G[1]

...

G[i]

 ∈ M(i+1)k,n(Fqm) (1)

is a generator of the q-sum of C , i.e. Λi(C ). By abuse of notation we sometimes
denote the matrix of (1) as Λi(G).

1.3 Gabidulin codes

q-polynomials were first introduced in [36]. They are defined as Fqm -linear com-

binations of the monomials X,Xq, Xq2 , . . . , Xqi , . . . respectively denoted by
X,X [1], X [2], . . . , X [i], . . . Formally, a nonzero q-polynomial F is defined as,

F =

d∑
i=0

fiX
[i]

assuming that fd ̸= 0. The integer d is called q–degree of F and we denote it
degq f . We equip the space of q–polynomial with a non-commutative algebra
structure, where the multiplication law is the composition of polynomials. In
particular, the product law is given by the following relations extended by Fqm–
linearity:

∀i, j ∈ N, ∀a ∈ Fqm , X [i]X [j] = X [i+j] and X [i]a = aq
i

X [i].

Any q–polynomial F induces an Fq–endomorphism Fqm → Fqm and the rank of
F will be defined as the rank of its induced endomorphism.

Denote by L the ring of all q–polynomial and by L<e the Fqm–linear space
of q–polynomials of q–degree less than e, namely:

L<e def
= {f ∈ L | degq f < e}.



Given two positive integers k, n, with k < n ⩽ m and g ∈ Fnqm of rankq(g) = n,
the Gabidulin code of length n and dimension k is defined as

Gk(g)
def
= {(F (g1), . . . , F (gn)) | F ∈ L<k}.

A generator matrix of this code is aMoore matrix (see for instance [28, § 1.3]),
i.e. a matrix of the form

Mk(g)
def
=


g
g[1]

...
g[k−1]

 =


g1 g2 . . . gn
gq1 gq2 . . . gqn
...

... . . .
...

gq
k−1

1 gq
k−1

2 . . . gq
k−1

n

 . (2)

Gabidulin codes are Maximum Rank Distance (MRD) codes, i.e. their min-
imum distance is dmin (Gk(g)) = n − k + 1 and they benefit from a decoding
algorithm correcting up to half the minimum distance (see [33]).

We now recall the following classical lemmas, that will be useful in the rest
of the paper.

Lemma 1. Let Gk(g) be a Gabidulin code and T ∈ GLn(Fq). Then Mk(g)T is
a generator matrix of the Gabidulin code Gk(gT ).

In short, a right–equivalent code to a Gabidulin code is a Gabidulin code
with another evaluation sequence.

Lemma 2 ([18, Theorem 7]). The dual of the Gabidulin code Gk(g) is the
Gabidulin code Gn−k(y

[−n+k+1]), where y is a nonzero vector in Gn−1(g)
⊥.

1.4 Twisted Gabidulin codes

Twisted Gabidulin codes were first introduced in [48] and contain a broad family
of MRD codes that are not equivalent to Gabidulin codes. The construction of
these codes was then generalized in [42,43]. We consider the q–polynomials of
the form

F =

k−1∑
i=0

fiX
[i] +

ℓ∑
j=1

ηjfhj
X [k−1+tj ], (3)

where the fi’a are in Fqm , ℓ ⩽ n−k, h ∈ {0, . . . , k−1}ℓ, t ∈ {1, . . . , n−k}ℓ (with
distinct ti) and η ∈ (F∗qm)ℓ. We denote by Ln,k

t,h,η the space of all q–polynomials
of the form (3) with parameters h, t,η. Now, given a vector g ∈ Fnqm , with
rankq(g) = n, the [g, t,h,η]-twisted Gabidulin code of length n, dimension k, ℓ
twists, hook vector h, twist vector t and evaluation sequence g is defined as

Cg,t,h,η[n, k]
def
= {(F (g1), . . . , F (gn)) | F ∈ Ln,k

t,h,η}.

We observe that in [48], Sheekey introduced a simplified version of these codes
with just one twist, i.e. n = m, ℓ = 1,h = (0), t = (1).



Assumption 1. Throughout this paper, according to [43], we consider a [g, t,h,η]-
twisted Gabidulin code with ℓ twists, and with the following parameters,

– ti
def
= (i+ 1)(δ + 1), where δ

def
= n−k−ℓ

ℓ+1 ,
– 0 < h1 < h2 < . . . < hℓ < k − 1 and |hi − hi−1| > 1.

for any i, 1 ⩽ i ⩽ ℓ.

This choice is particularly relevant because it allows us to quantify the dimension
of the q-sum operator applied to these codes (see Proposition 2).

We now observe that in general, a generator matrix of a Cg,t,h,η[n, k] is

g
g[1]

...
g[h1−1]

g[h1] + η1g
[k−1+t1]

g[h1+1]

...
g[hℓ−1]

g[hℓ] + ηℓg
[k−1+tℓ]

g[hℓ+1]

...
g[k−1]



. (4)

The decoding of twisted Gabidulin codes such as their additive variants has
recently been studied in [45,44,31,32,29,30]. However, in [45] there were proposed
some algorithms which allow to decode twisted Gabidulin codes with only one
twist and t = (1), for some special choices of parameters. They manage to correct
up to ⌊n−k−1

2 ⌋ errors. But their decoding up to half of the minimum distance
remains an open problem.

To the best of our knowledge, the decoding of twisted Gabidulin codes with
multiple twists, or one twist with t1 > 1 has not been studied in the literature. We
address this point in § 2 for decoding radii that remain below half the minimum
distance.

1.5 GPT system and variants

The GPT cryptosystem was introduced in 1991 by Gabidulin, Paramonov and
Tretjakov [22]. This system is a rank-metric variant of the classical McEliece
cryptosystem [35], in which the Goppa codes are replaced by Gabidulin codes.
The first version of GPT was first broken by Gibson in [26]. Gabidulin proposed
a new version in [19], which was later attacked again by Gibson in [27].

In this work we present the generalized version of GPT proposed by Gabidulin
and Ourivski in [21,38].



– Key Generation. Let,
• Gk(g) an [n, k]-Gabidulin code with generator matrix Gsec (as in (2));
• S a random invertible matrix in Mk(Fqm),
• X a random matrix in Mk,λ(Fqm) of fixed rank 1 ⩽ s ⩽ λ, called

distortion matrix,
• P a random matrix in GLn+λ(Fq), called column scrambler.

The secret key is the triple,

(S,Gsec,P )

and the public key is,

Gpub
def
= S(X | Gsec)P , (5)

where (X | Gsec) ∈ Mk,n+λ(Fqm) denotes the matrix whose columns are the
concatenations of those of X and of Gsec. We denote Cpub the linear code
with Gpub as generator matrix.

– Encryption. To encode a plaintext m ∈ Fkqm , choose a random vector e ∈
Fn+λ
qm of rankq(e) = t, where t = ⌊n−k

2 ⌋ and compute the ciphertext as,

c
def
= mGpub + e.

– Decryption. Apply the chosen decoding algorithm for Gabidulin codes to the
last n components of the vector,

cP−1 = mS[X|Gsec] + eP−1.

Since P ∈ GLn+λ(Fq), then rankq(eP
−1) = t and in particular, the rank

(over Fq) of the last n rows of this matrix is at most t. So, the decoder com-
putes mS, and by inverting S, the initial message can be finally encrypted.

The description of the secret key as the triple (S,Gsec,P ) is not the most
relevant one when it comes to instantiating the scheme with Gabidulin or twisted
Gabidulin codes. In particular, once we know the secret code Csec of the generator
matrix Gsec and the scrambling matrix, we are able to decode. So, the knowledge
of S is not relevant. Thus, in the following, we assume that Gpub as

Gpub = (X | Gsec)P . (6)

Remark 2. The previous scheme is instantiated with Gabidulin codes but can
actually be instantiated with any code family equipped with a decoder that
corrects up to t errors.

Remark 3. The original GPT scheme [22] did not involve the distortion matrix
X as it is. The seminal proposal was to use either a random generator matrix
G of a Gabidulin code or a matrix G + X0, where X0 had low rank. The
latter version required to reduce the weight of the error term in the encryption
process. In the following, we no longer consider this masking technique. The use
of a distortion matrix with a column scrambler appeared only ten years later
with the works of Ourivski and Gabidulin [21,38].



2 On the decoding of Gabidulin codes and their twists

In this section, we discuss further the decoding of Gabidulin and twisted Gabidulin
codes. We show that, although decoding twisted Gabidulin codes up to half the
minimum distance remains an open problem, their decoding up to a smaller ra-
dius is possible, using the same decoder as for Gabidulin codes. This approach
was developed in [8] and is related to that of Gaborit, Ruatta and Schrek in [24,
§ V–VI].

We begin by examining the decoding of Gabidulin codes.

2.1 An important remark on the decoder of Gabidulin codes

It is well–known that the Gabidulin codes have a decoder that corrects up to
half the minimum distance (see for instance [33]). This algorithm is analogous
to the Welch–Berlekamp algorithm for Reed–Solomon codes. An important fact
from a cryptographic point of view is that, given a Reed–Solomon code

RS(k)
def
= {(f(x1), . . . , f(xn)) | f ∈ Fq[X], deg f < k} ,

where x = (x1, . . . , xn) ∈ Fnq has distinct entries, the knowledge of the vector x is
necessary to run the decoding algorithm. However, given a Gabidulin code Gk(g),
it is possible to decode without knowing g. Indeed, given as input y = c + e

where c ∈ Gk(g) and rankq(e) ⩽ t
def
= n−k

2 , the decoding algorithm first consists
in finding a q–polynomial P (x) of degree at most t which vanishes at the entries
of e. This can be done by solving the Fqm–linear system

P (y)
def
= (P (y1), . . . , P (yn)) ∈ Gk+t(g) (7)

whose unknowns are the coefficients of P ∈ L⩽t. Next, the code Gk+t(g) can
be computed by simply knowing a generator matrix of Gk(g), thanks to the
following well–known statement.

Proposition 1 ([40, Lem. 5.1]). Let g ∈ Fnqm , with rankq(g) = n and Gk(g)
an [n, k] Gabidulin code. Then,

Λi(Gk(g)) = Gk+i(g).

In particular,
dim(Λi(Gk(g))) = min{n, k + i}.

Next, for any P satisfying (7), we have P (y) = P (c)+P (e). By construction,
P (c) ∈ Λt(Gk(g)) = Gk+t(g) and hence, P (e) ∈ Gk+t(g). Moreover, we have
rankq(P (e)) ⩽ rankq(e) ⩽ t, while Λt(Gk(g)) = Gk+t(g) has minimum distance
n−k−t+1. Therefore, for t ⩽ n−k

2 , which entails t < n−k−t+1, we should have
P (e) = 0 for any P satisfying (7). Thus, the kernel of P contains the support
of e and the knowledge of the support of the error allows to solve the decoding
problem by solving a linear system. See for instance [24, § IV.a], [4, § III.A].



Algorithm 1: Decoding algorithm of Gabidulin codes without knowing
the evaluation sequence

Input: A Gabidulin code C represented by a generator matrix G, an integer t
and a vector y ∈ Fn

qm

Output: A vector c ∈ C such that rankq(y − c) ⩽ t if exists and ‘?’
otherwise.

1 Compute P ∈ L⩽t \ {0} such that P (y) ∈ Λt(C )
2 Compute (if exists) e ∈ Fqm such that Supp(e) ⊆ Ker(P ) and y − e ∈ C
3 if e exists then
4 Return y − e

5 else
6 Return ‘?’

Algorithm 1 summarizes the previous discussion. Note that, with the knowl-
edge of the evaluation sequence g, the algorithm could be terminated by per-
forming an Euclidean division or using the Extended Euclidean Algorithm in
the non-commutative ring L instead of using [24, § IV.a], [4, § III.A].

The key observation here is the following : decoding a Gabidulin code
Gk(g) is possible without knowing the vector g.

Remark 4. In GPT original public key encryption scheme [22] the public code
is a Gabidulin code with no distortion matrix. In this situation, the previous
discussion shows that this proposal is immediately broken without trying to
compute a description (i.e. an evaluation sequence) of the public code.

2.2 Decoding twisted Gabidulin codes

If some twisted Gabidulin codes are proven to be MRD without being equivalent
to Gabidulin codes, the question of decoding them up to half the minimum
distance remains open. For twisted Reed–Solomon codes, the Hamming metric
analogues introduced in [7], it is shown in [6] how they can be decoded up to half
the minimum distance at the cost of an exhaustive search on the terms associated
with the twists. Thus, the decoding complexity of a twisted Reed–Solomon code
with ℓ twists is O(qℓ) times the complexity of the decoding of a Reed–Solomon
code. This can be transposed to twisted Gabidulin codes but the cost overhead
is O(qmℓ) times the cost of decoding a Gabidulin code, which is exponential in
m and so in the code length n (since n ⩽ m).

Although one does not know how to efficiently decode twisted Gabidulin
codes up to half the minimum distance, one can apply the Algorithm 1 to them.
Given y = c + e, where c is a codeword of a twisted Gabidulin code C and
rankq(e) ⩽ t for some t we will discuss later, compute P ∈ L⩽t such that

P (y)
def
= (P (y1), . . . , P (yn)) ∈ Λt(C ). (8)



Such a solution P satisfies P (e) ∈ Λt(C ). The difference with the Gabidulin
case is that we do not have an a priori lower bound on the minimum distance
of Λt(C ). However we have the following result.

Proposition 2 ([43, Theorem 4]). Given a twisted Gabidulin code Cg,t,h,η[n, k]
(where parameters are chosen according to Assumption 1), then

∀i ⩾ 0, dim(Λi(Cg,t,h,η[n, k])) = min{k + i+ ℓ(i+ 1), n}.

Proposition 2 entails that for a twisted Gabidulin code C with ℓ twists, we have

dimFqm
Λt(C ) ⩽ k − 1 + (t+ 1)(ℓ+ 1). (9)

Now, let us consider the dimension of Λt(E ). Since Λt(E ) is the image of L⩽t by
the map Q 7→ Q(e), we have

dimFqm
(Λt(E )) = dimFqm

(L⩽t)− dimFqm
{Q ∈ L⩽t | Q(e) = 0}.

First, dim(L⩽t) = t + 1. Second, recall that there exists a unique monic q–
polynomial P of q–degree rankq(e) such that P (e) = 0. Therefore,

{Q ∈ L⩽t | Q(e) = 0} = {F ◦ P | F ∈ L⩽t−rankq(e)}

and the latter space has dimension t − rankq(e) + 1 ⩾ 1. Putting all together,
we deduce that

dimFqm
(Λt(E )) ⩽ t.

We claim that if
dimFqm

Λt(C ) + t ⩽ n, (10)

the spaces Λt(C ) and Λt(E ) are very likely to have a zero intersection. The
validity of this claim are given in § 2.3. This would entail that for any P ∈ L⩽t

satisfying (8), we have P (e) = 0. Therefore, from (9) and (10) we can conclude
that if,

t ⩽
n− k − ℓ

ℓ+ 2
·

then we can decode twisted Gabidulin codes as classical Gabidulin codes : form
the kernel of P , we get the error support and finally the error itself is deduced
using [24, § IV.a], [4, § III.A]. This decoding radius is rather pessimistic since
the dimension of Λt(C ) may be much smaller depending on the way the twists
are chosen. Therefore, the above bound is what we can expect in the worst case.

2.3 Discussion about the claim

Suppose that the error e is obtained as follows: draw a uniformly random sub-
space V ⊆ Fnq of dimension t and then draw a uniformly random vector e among
the vector with row support contained in V . One can easily prove that all the
elements of Λt(e) have their row support contained in V .



Therefore, the intersection Λt(E )∩Λt(C ) consists in elements of Λt(C ) whose
row support is in V . So, consider the subcode ShV (Λt(C )) called shortening of
Λt(C ) defined as the subcode of Λt(C ) of vectors whose row support is contained
in V . This space can be obtained as follows. Consider a basis (v1, . . . ,vn−t) of
the dual V ⊥ ⊆ Fnq of V for the canonical inner product. Then, ShV (Λt(C )) is
the kernel of the map {

Λt(C ) −→ Fn−t
qm

c 7−→ (c · v⊤
1 , . . . , c · v⊤

n−t).

Remark 5. Note that in the above equation, c and the vi’s have different nature,
c has entries in Fqm while the vi’s have their entries in Fq.

Finally, since V is uniformly random, and dimΛt(C ) ⩽ n− t, it is likely that
the above map is injective and hence its kernel ShV (Λt(C )) is likely to be zero.
Since the latter kernel contains Λt(E )∩λt(C ), we conclude that this intersection
is likely to be zero.

2.4 A remark on the code that is actually decoded

To conclude, let us notice an important fact for the sections to follow. The
previously described decoder may decode a slightly larger code than C defined
below.

Definition 2. Let C ⊆ Fnqm be a code and s be a positive integer. We denote by

C
s
the largest code C ′ containing C such that Λs(C ) = Λs(C ′).

It is easy to check that, the aforementioned decoder actually decodes C
t
and

not only C .

Remark 6. It can be proved that for a random code C with dimension k < n
s ,

then C = C
s
with a high probability. It ca also be proved that a Gabidulin code

C of dimension k satisfies C
i
= C for any i < n− k.

Remark 7. An alternative definition of C
s
is given by.

C
s def
=

s⋂
j=0

(Λs(C ))
[−j]

3 Revisiting Overbeck’s attack

In this section we revisit the Overbeck’s attack of GPT instantiated with Gabidulin
codes to introduce the extension presented in § 4, which will allow us to break
[43].



3.1 A distinguisher

The core of the Overbeck’s attack consists in the application of the q-sum opera-
tor, which allows to distinguish Gabidulin codes from random ones. In particular,
the following proposition observes the behavior of random codes w.r.t. the i-th
q-sum operator.

Proposition 3 ([10, Prop. 1]). If C ⊂ Fnqm is a k-dimensional random code,
then for any 0 < i < k,

dim(Λi(C )) ⩽ min{n, (i+ 1)k}.

Moreover, for any a ⩾ 0, we have

Prob(dim(Λi(C )) ⩽ min{n, (i+ 1)k} − a) = O(q−ma).

Gabidulin codes have a significantly different behavior with respect to the
q–sum compared to random codes (see Proposition 1). In fact, we observe that
if i < n− k,

dim(Λi(Gk(g))) = k + i < (i+ 1)k = dim(Λi(C )),

where Gk(g) is a n-Gabidulin code of dimension k, and C is a random code, and
we know from the previous proposition that the last equality is true with high
probability.

In the Overbeck’s attack, the operator Λi(·) is used for two related reasons.

1. It provides a distinguisher on the public key based on the peculiar behavior of
Gabidulin codes with respect to Λi(·). This permits to rule out the distortion
matrix [40] and to recover a decomposition of the form (6), in order to
decrypt any ciphertext computed with this public key.

2. Once we have discarded the distortion matrix, we have access to the secret
Gabidulin code and we can recover its hidden structure, i.e. an evaluation
sequence.

We observe that the second step is not necessary since, using Algorithm 1,
one can directly decode any message, without knowing the evaluation sequence.
Thus, in the sequel, we focus on the first step.

3.2 The structure of Λi(Gpub)

Let i be a positive integer and Gpub = (X | Gsec)P a public key as in (6).
Recall that, in the present section, we suppose that Gsec is a generator matrix
of a Gabidulin code. Observe that, since P ∈ GLn+λ(Fq), we have P [i] = P
and hence,

Λi(Gpub) = (Λi(X) | Λi(Gsec))P . (11)



We now assume that i < n−k and we focus on the matrix (Λi(X) | Λi(Gsec)).
If we denote the distortion matrix X according to its rows, i.e.

X =


x0

x1

...
xk−1

 ,

where xj ∈ Fλqm for any 0 ⩽ j ⩽ k − 1, then

(Λi(X) | Λi(Gsec)) =



x0 g
x1 g[1]

...
...

xk−1 g[k−1]

...
...

x
[i]
0 g[i]

x
[i]
1 g[i+1]

...
...

x
[i]
k−1 g[k−1+i]


.

Now, after performing some row elimination, we finally get

x0 g
x1 g[1]

...
...

xk−1 g[k−1]

...
...

x
[i]
k−1 g[k−1+i]

...
...

x
[i]
0 − x

[i−1]
1 0

x
[i]
1 − x

[i−1]
2 0

...
...

x
[i]
k−2 − x

[i−1]
k−1 0



.

Thus, we have the following.

Lemma 3. Let i < n− k. Then, up to row elimination,

(Λi(X) | Λi(Gsec)) =

(
X ′ Mk+i(g)

Λi−1(X
′′) 0

)
, (12)



where,

X ′ =



x0

...
xk−1

x
[1]
k−1
...

x
[i]
k−1


and X ′′ = X

[1]
{0,...,k−2} −X{1,...,k−1}.

In detail, X
[1]
{0,...,k−2} is the submatrix of X [1] composed by its first k − 1 rows

and X{1,...,k−1} is the submatrix of X composed by its rows starting from the
second one.

We now observe that the row space of X ′′, denoted RowSpFqm
(X ′′), is con-

tained in the sum of the row spaces of X and X [1], which is RowSpFqm
(Λ1(X))

and so rank(X ′′) ⩽ min{2s, λ}, where we recall that s = rank(X).
More generally, RowSpFqm

(Λi−1(X
′′)) ⊆ RowSpFqm

(Λi(X)) for any i ⩾ 1.

And rank(Λi−1(X
′′)) ⩽ min{(i+ 1)s, λ}.

3.3 Overbeck’s attack

The attack consists in finding an i < n− k, for which rank(Λi−1(X
′′)) = λ. In

this case,
dim(Λi(Gpub)) = k + i+ λ

and the dimension of the dual is

dim(Λi(Gpub)
⊥) = n− k − i.

So, the code Λi(Gpub) admits a parity check of this form

(0 | Hi)(P
−1)⊤, (13)

where Hi is a parity check matrix of Λi(Gk(g)) = Gk+i(g).
After finding such an i, we can easily find a valid column scrambler T ∈

GLn+λ(Fq),which will allow us to attack the system (see Theorem 2 ([40, Thm 5.3])).

Therefore, the crucial part of the Overbeck’s attack consists in find-
ing (if there exists) a positive integer i, for which dim(Λi−1(X

′′)) = λ
and Λi(Csec) ̸= Fnqm or equivalently dim(Λi(Cpub)) = dim(Λi(Csec)) + λ.

Remark 8. If for i = n − k − 1, we have dim(Λn−k−1(Cpub))
⊥ = 1, then we

can perform the attack quite straightforwardly. Indeed, in this case there ex-
ists v ∈ Fnqm which spans the entire dual. Many papers in the literature de-
scribe the attack just for this choice i, claiming that we can perform it only if
dim(Λn−k−1(Cpub))

⊥ = 1. We stress out that this is not the only possible
choice for i: one only needs an i < n−k for which Λi(Cpub)

⊥ has the structure
(13).



Description of the attack. We now briefly detail the procedure of the attack
(partially presented in the proof of [40, Thm. 5.3]).

We know that Λi(Cpub) admits a parity check matrix Hpub (for simplicity,
we omit the dependency on i) of the form (13). Thus, we look for some T ∈
GLn+λ(Fq) for which

HpubT
⊤ = (0 | H ′) (14)

The matrix T is not unique. Furthermore, the following statement taken from
[40, Thm 5.3] asserts that every invertible T satisfying (14) is suitable to com-
plete the attack. For the sake of completeness, we give the proof of this result.

Theorem 2 ([40, Thm 5.3]). If there exists a positive integer i < n − k for
which the dimension of Λi(Gpub)

⊥ is n − k − i and if we denote by Hpub a
generator matrix of this dual, then any T ∈ GLn+λ(Fq) such that

HpubT
⊤ = (0 | H ′)

for some H ′ ∈ Mn−k−i,n(Fqm) is a valid column scrambler, i.e. there exists
Z ∈ Mk,λ(Fqm) and g⋆ ∈ Fnqm of rank n, such that

Gpub = S(Z | Mk(g
⋆))T ,

where Mk(g
⋆) denotes the Moore matrix with generator vector g⋆(see (2)).

Proof. Since dim(Λi(Gpub)
⊥) = n − k − i, then this dual admits a generator

matrix of the form (13). Now, consider T ∈ GLn+λ(Fq) such that

(0 | Hi)(P
−1)⊤T⊤ = (0 | H ′) (15)

for some H ′ ∈ Mn−k−i,n(Fqm). Denote,

TP−1 =

(
A B
C D

)
where A ∈ Mλ(Fq), B ∈ Mλ,n(Fq), C ∈ Mn,λ(Fq) and D ∈ Mn(Fq). From
(15),we have that

HiB
⊤ = 0 =⇒ B = 0.

Since PT−1 is invertible, this entails in particular that A ∈ GLλ(Fq) and D ∈
GLn(Fq). Then, we have that

(TP−1)−1 = PT−1 =

(
A−1 0

−D−1CA−1 D−1

)
and so we get,

GpubT
−1 = S(X | Mk(g))PT−1 = S(Z | G′)

for some matrix Z, where G′ is a generator matrix of Gk(g)D
−1, which also

equals Gk(gD
−1) since D is nonsingular with entries in Fq (see Lemma 1). ⊓⊔



In order find such a T , we compute the space of the matrices T ∈ Mn+λ(Fq)
such that the λ leftmost columns of HpubT

⊤ are zero. Then , we need to extract
a nonsingular matrix from this solution space. This last step can be done by
picking random elements in this space until we find a nonsingular matrix.

Once such a column scrambler T is computed, we can compute cT−1 and
remove the leftmost λ entries. By Theorem 2, each of these T ’s is a valid column
scrambler and it suffices to apply the Gabidulin codes decoder to the former
vector to recover the plaintext. Recall that, from § 2.1, the decoder works inde-
pendently on the knowledge of g.

3.4 Analyzing the dimension of Λi(Cpub) for small i’s.

In this section we study what happens if we apply the q-sum operator to the
public key for small i’s, namely i = 1. In particular, we will see that in this case
we can always attack the system by applying either strategies described in § 4
or the classical Overbeck attack.

First, we recall that, by Lemma 3, the matrix (Λ1(X) | Λ1(G)) (see (12))
can be transformed into a matrix(

X ′ Mk+1(g)
X ′′ 0

)
(16)

In this case, rank(X ′′) ⩽ min{2s, λ}, where s = rank(X). We now introduce
the following useful lemma.

Lemma 4. If k ⩾ 4s+ 1, then, up to row multiplications,

[Λ1(X) | Λ1(G)] =

(
0 Mk+1(g)
X ′′ 0

)
(17)

with a high probability.

Proof. We need to prove that RowSpFqm
(X ′) ⊆ RowSpFqm

(X ′′). We first

claim that RowSpFqm
(X ′′) = RowSpFqm

(Λ1(X)) with a high probability. We

consider the submatrix of X ′′ in M⌊ k−1
2 ⌋,λ(Fqm) obtained by selecting alternate

rows of X ′′. This is a uniformly random matrix in M⌊ k−1
2 ⌋,λ(Fqm). By the as-

sumption k−1
2 ⩾ 2s, it has rank equal to min{2s, λ} = rank(Λ1(X)) with a

high probability (by Proposition 3). Thus, rank(X ′′) ⩾ rank(Λ1(X)) with a
high probability and so the claim follows. The result derives from remarking that
RowSpFqm

(X ′) ⊆ RowSpFqm
(Λ1(X)). ⊓⊔

We remark that if rank(X) = s ⩾ λ/2, then rank(X ′′) = λ with high prob-
ability and so we can apply straightforwardly the Overbeck’s attack (§ 3). One
could then think that it suffices to take a sufficiently small s in order to repair
the system. In the following section we show that thanks to the structure of the
matrix (17), we can construct an attack, which is an extension of the Overbeck’s
one, which allows us to break the system independently from the rank of the
distortion matrix, even for the twisted Gabidulin GPT scheme.



Remark 9. The condition k ⩾ 4s + 1 required in Lemma 4, yields a range of
parameters for which we can assert the validity of the result. Nevertheless, it is
probably highly conservative and one could expect result to hold for smaller k
or equivalently larger s.

3.5 Puchinger, Renner and Wachter–Zeh variant of GPT

In [43], the authors use simultaneously two distinct techniques in order to resist
to Overbeck’s attack:

1. they impose the distortion matrix to have a low rank (e.g. s = 1 or 2),
2. they replace Gabidulin codes by twisted ones (with parameters specified in

Assumption 1).

The rationale behind the use of twisted Gabidulin codes is that, one step of
Overbeck’s attack consists in obtaining Λn−k−1(Csec) where Csec is the hidden
Gabidulin code. Then the dual Λn−k−1(C ) has dimension 1 and immediately
provides the evaluation sequence. Based on this observation, the authors select
parameters for twisted Gabidulin codes such that none of the Λi(Csec)’s for i > 0
may have codimension 1 (see [43, Thm. 6]).

Table 1. Parameters from [43]

q k n m ℓ λ s

2 18 26 104 2 6 1

2 21 33 132 2 8 1

2 32 48 192 2 12 2

As mentioned in Remark 8, the choice of computing Λn−k−1(Csec) is only
technical and can be circumvented in many different ways. In fact, once the dis-
tortion matrix X is discarded, we can access to Csec and, using the discussion
in § 2.2, just knowing this code is generally enough to decode. However, their
approach presents another difficulty for the attacker if one wants to apply Over-
beck’s attack. Indeed, the proposed parameters consider a distortion matrix of
low rank, e.g. s = 1 or 2 (see Table 1). Then, to get for Λi(Cpub) a generator
matrix of the form (17) with Λi−1(X

′′) of full rank, one needs i to be large,
while the dimensions of the Λi(Csec) increase faster than for a Gabidulin code.
Thus, for some parameters it is possible that the computation of the successive
Λi(Cpub) provide successive codes with generator matrices of the form (17), so
that Λi(Csec) becomes the full code Fnqm before Λi−1(X

′′) reaches the full rank
λ. The core of our extension in § 4 is the observation that there is no need for
X ′′ to have full rank to break the scheme.

Example 1. According to the Table 1, suppose that n = 26, k = 18, λ = 6 and
s = 1. Then, for X ′′ to have full rank λ = 6, while X has rank 1, we need



to compute Λ6(Cpub). But since the secret code has dimension 18 and it is a
twisted Gabidulin code, we deduce that dimΛ6(Csec) ⩾ 26 and, since n = 26,
this code is nothing else than F26qm . Thus, for such parameters, we cannot apply
the Overbeck’s attack. In fact, even if instantiated with a Gabidulin code, the
Overbeck’s attack would fail for such parameters.

4 An extension of Overbeck’s attack

As explained earlier, Overbeck’s technique consists in applying the q–sum oper-
ator Λi to the public code, for an i such that the public code has a generator
matrix of the form (

Iλ 0
0 Λi(Gsec)

)
P , (18)

where Λi(Csec) ̸= Fnqm . This entails that the dual code has a generator matrix of
the form

(0 | H) (P−1)
⊤
, (19)

where H⊤ is a parity–check matrix of Λi(Csec). Then, a valid column scrambler
can be computed by solving a linear system. The point of this section is to
prove that one can relax the constraint on i and only expect Λi(Gpub) to have
a generator matrix “splitting in two blocks”, i.e.(

Y 0
0 Λi(Gsec)

)
P , (20)

without requiring Y to have full rank λ.
Note that the above-described setting is precisely what happens to Λ1(Gpub)

when s = rank(X) < λ/2, see § 3.4, Example 1 or § 5.3.

Example 2. Back to Example 1, for such parameters, even instantiated with
a Gabidulin code, the Overbeck’s attack fails because there is not any i > 0
which gives a matrix of the shape (18). However, under some assumptions on
the parameters of the code, it is likely that Λ1(Gpub) has a generator matrix of
the shape (20).See for instance Lemmas 4 and 6.

4.1 Sketch of the attack

Now, let us explain how to find the hidden splitting structure (20) without any
knowledge of the scrambling matrix P . Assume that Λi(Cpub) has a generator
matrix of the form (

Y 0
0 Gi

)
P , (21)

where Y is a matrix with λ columns, Gi is a generator matrix of Λi(Csec) and
Csec is the hidden code of dimension k. The code Csec could be either a Gabidulin
code in the case of classical GPT or a twisted Gabidulin code (see respectively
§ 1.5 and the beginning of § 5).



The idea consists in computing the right stabilizer algebra of Λi(Cpub):

Stabright(Λi(Cpub))
def
= {M ∈ Mn+λ(Fq) | Λi(Cpub)M ⊆ Λi(Cpub)}.

This algebra can be computed by solving a linear system (see § 4.2). It turns
out that it contains two peculiar matrices, namely:

E1 = P−1

(
Iλ 0
0 0

)
P and E2 = P−1

(
0 0
0 In

)
P . (22)

The core of the attack consists in computing these two matrices, or more pre-
cisely conjugates of these matrices, and then consider the code CpubE2 which
is somehow right equivalent to Csec. In particular, the right multiplication by
E2 will annihilate the distortion matrix X. Let us now present the approach in
more detail.

4.2 Some algebraic preliminaries

Split and indecomposable codes. The first crucial notion is that of split or
decomposable codes.

Definition 3. A code C ⊆ Fnqm of dimension k is said to split if it has a gen-
erator matrix of the form (

G1 0
0 G2

)
Q,

for some matrices G1 ∈ Ma,b(Fqm),G2 ∈ Mk−a,n−b(Fqm) and Q ∈ GLn(Fq).
If no such block–wise decomposition exists, then the code is said to be indecom-
posable.

Remark 10. Considering the code as a space of matrices, being split means that
the code is the direct sum of two subcodes whose row supports (i.e. the sum
of the row spaces of their elements) are in direct sum. This is the rank metric
counterpart of Hamming codes which are the direct sum of two subcodes with
disjoint Hamming supports. Note that this property is very rare and corresponds
to somehow very degenerated codes.

Stabilizer algebras and conductors. We now define the notions that we will
use throughout this section. Stabilizers are useful invariants of codes, also called
idealizers in the literature. Conductors, are used for instance in [12] and have
often been used in cryptanalysis of schemes based on algebraic Hamming metric
codes, for instance [14,13,5].

Definition 4. Let C ⊆ Fn1
qm and D ⊆ Fn2

qm be two Fqm–linear codes of respective
length n1, n2. The conductor of C into D is defined as:

Cond(C ,D)
def
= {A ∈ Mn1,n2(Fq) | ∀c ∈ C , cA ∈ D .}



It is an Fq–vector subspace of Mn1,n2
(Fq). Moreover, when C = D , then the

conductor is an algebra which is usually called right stabilizer or right idealizer
of C and denoted

Stabright(C )
def
= Cond(C ,C ) = {A ∈ Mn1

(Fq) | ∀c ∈ C , cA ∈ C } .

Relation to our problem. The first important point is that almost any code of
length n+λ has a trivial right stabilizer, i.e. a stabilizer of the form {αIn+λ | α ∈
Fq}. However, the stabilizer of Λi(Cpub) is non trivial, since it contains the
matrices (22).

The second point is that Stabright(Λi(Cpub)) can be computed by solving a
linear system. In general, given a parity–check matrix H for C , the elements of
Stabright(C ) are nothing but the solutions M ∈ Mn+λ(Fq) of the system

GMH⊤ = 0. (23)

Idempotents and decomposition of the identity. The matrices E1 and E2

of (22) are idempotents of the right stabilizer algebra of Λi(Cpub), i.e. elements
satisfying E2

1 = E1 and E2
2 = E2. In addition, they provide what is usually

called a decomposition of the identity with orthogonal idempotents. The general
definition is given below.

Definition 5. In a matrix algebra A ⊆ Mn(Fq), a tuple E1, . . . ,Er of nonzero
idempotents are said to be a decomposition of the identity into orthogonal idem-
potents if they satisfy,

∀1 ⩽ i, j ⩽ r, EiEj = 0 and E1 + · · ·+Er = I.

Such a decomposition is said to be minimal if none of the Ei’s can be written as
a sum of two nonzero orthogonal idempotents.

Proposition 4. A code C ⊆ Fnqm is split if and only if Stabright(C ) has a non-
trivial decomposition of the identity into orthogonal idempotents.

Proof. Suppose that Stabright(C ) contains such a decomposition of the identity
into orthogonal idempotents I = E1+· · ·+Er. Since the Ei’s commute pairwise
and are diagonalizable (indeed, being idempotent, they all cancelled by the split
polynomial X2 −X), they are simultaneously diagonalizable. Thus, there exists
Q ∈ GLn(Fq) such that

E1 = Q−1

In1
(0)

. . .

(0) (0)

Q, . . . , Er = Q−1

(0) (0)
. . .

(0) Inr

Q,

for some positive integers n1, . . . , nr such that n1 + · · ·+ nr = n.



The code C ′ = CQ has the matrices

E′
1 =

In1 (0)
. . .

(0) (0)

 , . . . , E′
r =

(0) (0)
. . .

(0) Inr

 (24)

in its right stabilizer algebra, and one can easily check that C ′ = C ′E′
1 ⊕ · · · ⊕

C ′E′
r, leading to a block–wise generator matrix of C ′. Thus, C has a generator

matrix of the form G1 (0)
. . .

(0) Gr

Q−1. (25)

Conversely, if C has a generator matrix as in (25), one can easily deduce a
decomposition of the identity in Stabright(C ) into the idempotents (24). ⊓⊔

In particular, a code is indecomposable if and only if its right stabilizer
algebra has no nontrivial idempotent. Such an algebra is said to be local.

A crucial aspect of minimal decompositions of the identity is the following,
sometimes referred to as the Krull–Schmidt Theorem.

Theorem 3 ([15, Thm. 3.4.1]). Let A ⊆ Mn(Fq) be a matrix algebra and
E1, . . . ,Er and F 1, . . . , F s be two minimal decompositions of the identity into
orthogonal idempotents. Then, r = s and there exists A ∈ A× such that, after
possibly re-indexing the F i’s, we have F i = AEiA

−1, for any i ∈ {1, . . . , s}.

In short: a minimal decomposition of the identity into idempotents is unique
up to conjugation.

Algorithmic aspects. Given a matrix algebra, a decomposition of the identity
into minimal idempotents can be efficiently computed using Friedl and Ronyái’s
algorithms [16,47]. Such a calculation is presented in the case of stabilizer alge-
bras of codes in [12]. Further, in § 4.5, we present the calculation in a simple
case which turns out to be the generic situation for our cryptanalysis.

4.3 Description of our extension of Overbeck’s attack

The attack summarizes as follows. Recall that the public code Cpub has a gen-
erator matrix

Gpub = (X | Gsec)P .

Step 1. Compute i so that the code Λi(Cpub) splits as in (21), i.e. has the shape(
Y 0
0 Gi

)
P (26)



where Gi is a generator matrix of Λi(Csec) and P the column scrambler. In the
sequel, we suppose that Λi(Csec) is indecomposable. This assumption is
discussed further in § 4.5.

Step 2. Compute Stabright(Λi(Cpub)). We know that this algebra contains the
matrices

E1 = P−1

(
Iλ 0
0 0

)
P and E2 = P−1

(
0 0
0 In

)
P . (27)

Next, using the algorithms described in [16,47,12], compute a minimal decom-
position of the identity of Stabright(Λi(Cpub)) into orthogonal idempotents. The
following statement relates any such minimal decomposition to the matrices E1

and E2 in (27).

Lemma 5. Assume that λ < n. Under the assumption that Λi(Csec) is an in-
decomposable code, any minimal decomposition of the identity into orthogonal
idempotents in Λi(Cpub) contains a unique element F of rank n. Moreover, there
exists A ∈ Stabright(Λi(Cpub))

× such that F = A−1E2A where E2 is the matrix
introduced in (27).

Proof. Consider the pair E1,E2 introduced in (27). The matrix E2 has rank n
and projects the code Λi(Cpub) onto the code with generator matrix (0 Gi)P ,
where Gi is a generator matrix of Λi(Csec). Since Λi(Cpub) is supposed to be
indecomposable, E2 cannot split into E2 = E21 + E22 such that E21E22 =
E22E21 = 0, since this would contradict the indecomposability of Λi(Csec).
Next, either E1,E2 is a minimal decomposition or, E1 splits into a sum of
orthogonal idempotents (if the code with generator matrix Y splits). In the
latter situation, one deduces a minimal decomposition of the identity of the
form E11, . . . ,E1r,E2. Now, Theorem 3, permits to conclude that any other
minimal decomposition is conjugate to the previous one and hence contains a
unique element of rank n which is conjugate with E2. ⊓⊔

Step 3. Once we have computed a minimal decomposition of the identity into
minimal idempotents, according to Lemma 5 and Theorem 3, we have computed
F ∈ Stabright(Λi(Cpub)) of rank n satisfying F = A−1E2A for some unknown
matrix A ∈ Stabright(Λi(Cpub))

×.

Proposition 5. The code, CpubF is contained in the code with generator matrix(
0 | Gi

sec

)
PA,

where G
i

sec is a generator matrix of the code C
i

sec introduced in Definition 2.

Before proving the previous statement, let us discuss it quickly. The result
may seem disappointing since, even if we discarded the distortion matrix, we do
not recover exactly the secret code. However,



1. the approach is relevant for small i’s, and if i ⩽ t, where t is the rank of the
error term in the encryption process, then, the algorithm described in § 2.2

decodes C
t

sec (and hence C
i

sec since it is contained in C
t

sec) as efficiently as
Csec itself.

2. In § 4.5, we provide some heuristic claiming that, most of the time, CpubF
is nothing but the code with generator matrix

(0 | Gsec)PA.

Proof (of Proposition 5). Recall that F = A−1E2A for some matrix A ∈
Stabright(Λi(Cpub)). Then, since A is invertible, we deduce that Λi(Cpub)A

−1 =
Λi(Cpub). Therefore,

Λi(Cpub)F = Λi(Cpub)E2A.

From (26) and (27), the code Λi(Cpub)E2 has a generator matrix of the form
(0 | Gi)P and hence the code Λi(Cpub)F has a generator matrix

(0 | Gi)PA. (28)

Next, the code Cpub is contained in Λi(Cpub) but also in Λi(Cpub)
i
. Moreover,

according to Remark 7, we have

Cpub ⊆ C
i

pub =

i⋂
j=0

(Λi(Cpub))
[−j]

.

Since both P and A have their entries in Fq, they commute with the operations
of raising to any q–th power and we deduce that

CpubF ⊆ Λi(Cpub)
i
F .

Then, from (28), we deduce that CpubF is contained in the code with generator
matrix (

0 | Gi

sec

)
PA.

⊓⊔

Step 5. With the previous results at hand, given a ciphertext y = mGpub + e
with rank(e) ⩽ t, we can compute

yF = mGpubF + eF .

Then, we remove its λ leftmost entries. Since F has its entries in Fq, rank(eF ) ⩽
rank(e). Next, mGpubF with the λ leftmost entries removed is a codeword in

Λi(Csec)
i
which can be decoded using the algorithm introduced in 2.2. This yields

the plaintext m.



Algorithm 2: Summary of the attack

Input: Gpub, a ciphertext y and the rank of the error term t
Output: A pair (me) ∈ Fk

qm × Fn
qm such that rank(e) = t and

y = mGpub + e or ‘?’ if fails

1 Compute a generator matrix of Λi(Cpub) for the least i for which the code
splits.

2 if no such i exists then
3 Return ‘?’

4 Compute a minimal decomposition of the identity of Stabright(Λi(C )) and
extract its unique term F of rank n.

5 if no such F exists then
6 Return ‘?’

7 Compute yF and apply to it the decoder described in 2.2.
8 return the output m of the decoder (possibly ‘?’ if the decoder fails).

4.4 Summary of the attack

According to the description in § 4.3, the attack is now summarized in Algo-
rithm 2 below.

4.5 Discussions and simplifications

For the attack presented in Algorithm 2 to work, several assumptions are made.
Here we discuss these assumptions and their rationale. We also point out that in
our specific case, the algebra Stabright(Λi(Cpub)) will be very specific. This may
permit to avoid to consider the difficult cases of Friedl Ronyái’s algorithms.

Indecomposability of Λi(Csec). An important assumption for the attack to
succeed is that Λi(Csec) does not split. Note first that in the classical GPT case,
Csec is a Gabidulin code. And so, this always holds as soon as i < n− k.

This is a consequence of the following statement and the fact that if Csec is
a Gabidulin code, and so for any i > 0, also Λi(Csec) is a Gabidulin code. Thus,
according to the following statement it is indecomposable.

Proposition 6. An MRD code C ⊊ Fqm never splits.

Proof. Let C ⊆ Fnqm be an MRD code of dimension k. Suppose it splits into a
direct sum of two codes C1,C2 of respective lengths n1, n2 and dimensions k1, k2.
Then, C1 has codewords of rank weight n1 − k1 + 1 and C2 has words of weight
n2 − k2 + 1. Such words are also words of C and, since C is MRD, we have

n1 − k1 + 1 ⩾ n− k + 1

n2 − k2 + 1 ⩾ n− k + 1

Summing up these two inequalities and using the fact that n1 + n2 = n and
k1 + k2 = k, we get a contradiction. ⊓⊔



In the general case of twisted Gabidulin codes the situation is more com-
plicated. However, twisted Gabidulin codes are contained in Gabidulin codes of
larger dimensions, hence so are their images by the Λi operator. It seems very
unlikely that a Gabidulin code could contain large subcodes that split.

On the structure of Stabright(Λi(Cpub)). A crucial step of the attack is
the computation of a decomposition of the identity of Stabright(Λi(Cpub)) into
a sum of orthogonal idempotents. For this, we referred to Friedl Ronyái [16,47].
Actually, our setting is rather specific and the structure of this stabilizer algebra
is pretty well understood. Let us start with a proposition.

Proposition 7. Let C be an Fqm–linear code of length n+ λ and dimension K
with a generator matrix of the shape (21), i.e.(

G1 0
0 G2

)
,

with G1 ∈ Mk1,λ(Fqm) for some integer k1 and G2 ∈ Mk2,n(Fqm) for some
integer k2 so that k1 + k2 = K. Denote by C1 and C2 the codes with respective
generator matrices G1 and G2. Then any M ∈ Stabright(C ) has the shape

M =

(
A B
C D

)
,

where A ∈ Stabright(C1), B ∈ Cond(C2,C1), C ∈ Cond(C1,C2) and D ∈
Stabright(C2). ⊓⊔

Proof. Let c1 ∈ C1, then (c1 0) ∈ C and by definition of M , (c1 0)M =
(c1A c1B) ∈ C . By definition of C , we have c1A ∈ C1 and c1B ∈ C2. Since the
previous assertions hold for any c1 ∈ C1, then we deduce that A ∈ Stabright(C1)
and B ∈ Cond(C1,C2).

The result for C,D is obtained in the same way by considering (0 c2)M for
c2 ∈ C2. ⊓⊔

Consequently considering the generator matrix (26) of Λi(Cpub), elements of
Stabright(Λi(Cpub)) have the shape(

A B
C D

)
, (29)

where A ∈ Stabright(CY ) (CY being the code with generator matrix Y ), B ∈
Cond(Λi(Csec),CY ), C ∈ Cond(CY , Λi(Csec)) and D ∈ Stabright(Λi(Csec)).

Here again, we claim that is very likely that the stabilizer algebras of CY and
Λi(Cpub) are trivial, i.e. contain only scalar multiples of the identity matrix and
that the conductors Cond(CY , Λi(Csec)) and Stabright(Λi(Csec)) are zero. This
claim is discussed further in § 4.7.



In such a situation, we have:

Stabright(Λi(Cpub)) =

{
P−1

(
aIλ 0
0 bIn

)
P

∣∣∣∣ a, b ∈ Fq} . (30)

Hence this algebra has dimension 2 and the calculation of the matrix

P−1

(
0 0
0 In

)
P (31)

can be performed as follows.

1. First extract a singular matrix of Stabright(Λi(Cpub)). For that, take U ,V a
basis of Stabright(Λi(Cpub)). If V is singular we are done. Otherwise, compute
a root of the univariate polynomial det(U + XV ). This yields a singular
element R of Stabright(Λi(Cpub)) corresponding either to a = 0 or b = 0 in
the description (30).

2. Next, rescale R as νR in order to get an idempotent element. If the obtained
idempotent has rank n set F = νR, otherwise (it will have rank λ), set
F = In+λ − νR.

The obtained matrix F is nothing but the target matrix in (31). Therefore,
one can even skip the proof of Proposition 5 and observe that the code CpubF
will be exactly the code with generator matrix

(0 | Gsec)P .

4.6 Complexity

Considering the previous simple case which remains very likely, we analyze the
cost of the various computation steps.

– The computation of Λi(Cpub) can be done by iterating i successive Gaussian
eliminations (we assume that raising an element of Fqm to the q–th power
can be done for free, for instance by representing Fqm with a normal basis).
Thus, a cost O(inω) operations in Fqm and hence O(im2nω) operations in
Fq. Here, ω denotes the usual exponent for the cost of the product of two
n× n matrices.

– The computation of Stabright(Λi(Cpub)) is done by solving the linear system
(23). The system has n2 unknowns in Fq and ki(n− ki) = O(n2) equations
in Fqm and hence O(mn2) equations in Fq. This yields a cost of O(mn2ω)
operations in Fq (see [9, Thm. 8.6] for the complexity of the resolution of a
non square linear system).

In the aforementioned simple case, the remaining operations are negligible com-
pared to the calculation of the stabilizer algebra, which turns out to be the
bottleneck of the calculation. This overall cost is hence in

O(mn2ω) operations in Fq.



4.7 Discussion about the claims on conductors and stabilizers

Back to the description (29) of the elements of Stabright(Λi(Cpub)). Let us discuss
the validity of the claim.

Conductors are likely to be zero. Let C ∈ Cond(CY , Λi(Csec)), then the
code CY C is a subcode of Λi(Csec) and one proves easily that any element of
CY C has a row support contained in the row space ofC. SinceC ∈ Mλ,n(Fq), its
rank is at most equal to λ and hence the code CY C has a row space contained in
a space of dimension ⩽ λ. It seems unlikely that the code Λt(Csec) contains such
a space. In particular, this cannot happen if the minimum distance of Λi(Csec)
exceeds λ.

Now, consider B ∈ Cond(Λi(Csec),CY ). Suppose first that B has full rank.
Since dim(Λi(Csec)) ≫ λ, the code Λi(Csec)B is likely to be equal to Fλqm and
hence cannot be contained in CY , a contradiction. If B has not full rank, then,
the code Λi(Csec)B is likely to be equal to the subspace of Fλqm of all the vectors
whose row support is in the row space of B and we can assume that CY has no
such subspace. Indeed, if it did, it would entail that C⊥

Y (and hence Λi(Cpub)
⊥

too) would have a parity-check matrix of the form (0 | H ′)(P−1)⊤ as in (19).
Details are left to the reader.

Stabilizers are likely restrict to scalar matrices. For CY , this code is
close to be random and random codes have trivial stabilizer algebras with a high
probability.

For Λi(Csec) the right stabilizer algebra might be a larger one. Indeed, re-
garding the proof of Proposition 2 (see [43, Thm. 4]) we can see that Λt(C )
is a code generated by the evaluations of q-monomials and such a code, when
n = m has a right stabilizer algebra equal to a matrix representation of Fqm .
This is a consequence of the fact that an Fqm–space spanned by q–monomials is
Fqm–linear on the left but also on the right. Thus, Stabright(Λi(Csec)) might be
such a larger algebra. In this situation, the calculation of a decomposition of the
identity into orthogonal idempotents is slightly more complicated but remains
definitely possible in polynomial time using Friedl Ronyái algorithms.

5 Don’t twist again

In this section we first show that, even for twisted Gabidulin codes, the applica-
tion of the q-sum operator allows to distinguish them from random codes. It is
therefore possible to apply the attack described in § 4 to the GPT cryptosystem
instantiated with these codes. In the first part of this section we discuss the
behaviour of raw twisted Gabidulin codes with respect to the operator Λi or
equivalently, how the use of Λi allows to distinguish them from random codes.
In the second part, we focus on q-operator applied to the corresponding public
key and we will prove that even in this case, we have a generator matrix with a
structure similar to (16) and that the corresponding codes split. This allows us
to apply the results of § 4.



5.1 A distinguisher

First, recall Propositions 2 and 3 about the dimension of the q-sum operator ap-
plied respectively to twisted Gabidulin codes and to random codes. In particular,
recall that if C is a random code, dim(Λi(C )) = (i+ 1)k with high probability.
Then, we remark that, if i < n−k−ℓ

ℓ+1

dim(Λi(Cg,t,h,η[n, k])) = k + i+ ℓ(i+ 1) < (i+ 1)k = dim(Λi(C )) (32)

⇐⇒ i > ℓ/(k − ℓ− 1), (33)

where Cg,t,h,η[n, k] is a twisted Gabidulin code (see § 1.4).

Thus, the inequality i > ℓ/(k−ℓ−1) is satisfied by any positive i, if k > 2ℓ+1.
We notice that this is often the case if we consider a small number of twists as
in Table 1. This means that, even if the dimension of the q-sum applied to these
codes is greater than that of the q-sum of a Gabidulin code, we can however still
distinguish them for random codes.

Thus, this distinguisher can be exploited to construct an attack against the
GPT cryptosystem instantiated with twisted Gabidulin codes, instead of classical
ones.

5.2 The structure of Λi(GTpub)

From now on, we consider the GPT cryptosystem instantiated with a twisted
Gabidulin code Cg,t,h,η[n, k] with the parameters defined in Assumption 1. We
denote by GTpub the corresponding public key, obtained as (5) by just replacing
Gsec with a generator matrix GT (of the form (4)) of the code Cg,t,h,η[n, k] and
by GTpub the linear code which has GTpub as generator matrix. Again, as for
the Gabidulin codes scheme, we can discard the matrix S.

We now apply the q-sum operator to GTpub, and as (11), we get

Λi(GTpub) = [Λi(X)|Λi(GT)]P ,

where P ∈ GLn+λ(Fq) is the column scrambler.

Let i < n−ℓ−k
l+1 and write X (as in § 3.2) according to its rows.



Now, for simplicity we consider that ℓ = 1, η1 = 1 and i = 1. Recall that the
structure of GT is given in (4). Then, we have

(Λ1(X) | Λ1(GT)) =



x0 g
x1 g[1]

...
...

xh1
g[h1] + g[k−1+t1]

...
...

xk−1 g[k−1]

x
[1]
0 g[1]

x
[1]
1 g[2]

...
...

x
[1]
h1−1 g[h1]

x
[1]
h1

g[h1+1] + g[k+t1]

...
...

x
[1]
k−2 g[k−1]

x
[1]
k−1 g[k]



−→



x0 g
x1 g[1]

...
...

xh1−1 g[h1−1]

x
[1]
h1−1 g[h1]

xh1+1 g[h1+1]

...
...

xk−1 g[k−1]

x
[1]
k−1 g[k]

x
[1]
0 g[1]

x
[1]
1 g[2]

...
...

x
[1]
h1−2 g[h1−1]

xh1
g[h1] + g[k−1+t1]

x
[1]
h1

g[h1+1] + g[k+t1]

x
[1]
h1+1 g[h1+2]

...
...

x
[1]
k−2 g[k−1]


where the second matrix is obtained by permuting the rows of the first one.
We now observe that the first block of the second matrix can be rewritten as
[X̃ ′|Mk+1(g)] and so, after performing row elimination, we get

X̃ ′ Mk+1(g)

xh1
− x

[1]
h1−1 g[k−1+t1]

x
[1]
h1

− xh1+1 g[k+t1]

x
[1]
0 − x1 0

x
[1]
1 − x2 0

...
...

x
[1]
h1−2 − xh1−1 0

x
[1]
h1+1 − xh1+2 0

...
...

x
[1]
k−2 − xk−1 0


Therefore, we have the following result.



Lemma 6. Let i < n−ℓ−k
ℓ+1 . Then, up to row elimination

(Λi(X) | Λi(GT )) =

(
Y Λi(GT)

X̃ 0

)
(34)

where,

X̃ =


(
X ′′

T

)
∈ Mk−1−2ℓ(Fqm) if i = 1(

Λi−1(X
′′
T )

X ′′′

)
∈ Mi(k−1−2ℓ)+(i−1)ℓ(Fqm) if i > 1

Y ∈ Mk+i+ℓ(i+1),λ(Fqm) and the matrix X ′′
T is defined as,

X ′′
T = X

[1]
{0,...,k−2}\{hi−1,hi|1⩽i⩽ℓ} −X{1,...,k−1}\{hi,hi+1|1⩽i⩽ℓ}, (35)

where X
[1]
{0,...,k−2}\{hi−1,hi|1⩽i⩽ℓ} is a submatrix of X [1] composed by the first

k − 1 rows except all the (hi − 1)-th, hi-th rows and X{1,...,k−1}\{hi,hi+1|1⩽i⩽ℓ}
is a submatrix of X determined by all the rows, starting from the second one,
except the hi-th, hi + 1-th ones. Finally, X ′′′ ∈ Mi−1,λ(Fqm).

Proof. Using the same elimination techniques as before, we can extend the proof
to the case ℓ > 1, η ∈ (Fqm \ {0})ℓ and i > 1. ⊓⊔

Even in this case, we show that it suffices to consider i = 1 to attack the
corresponding GPT scheme.

5.3 Attacking the system for small i’s.

We now consider i = 1. Then by Lemma 6, (Λi(X) | Λi(GT )) can be transformed
into (

Y Λ1(GT)
X ′′

T 0

)
As in § 3.4 (see Lemma 4), under some assumptions on the parameters, we can
split the previous matrix into two blocks.

Lemma 7. If k ⩾ 4s+ 2ℓ+ 1, then, with a high probability,(
0 Λ1(GT)

X ′′
T 0

)
(36)

up to row eliminations.

Proof. The proof is analogous to the proof of Lemma 4. First we prove that
RowSpFqm

(X ′′
T ) = RowSpFqm

(Λ1(X)) with a high probability. Again, we con-

sider the submatrix ofX ′′
T inM⌊ k−1−2ℓ

2 ⌋(Fqm) obtained by alternatively selecting

rows of X ′′
T . This matrix is uniformly random and by Proposition 3, if k−1−2ℓ

2 ⩾
2s (which is true by assumption), it has rank equal to the rank of Λ1(X) with
a high probability. Thus the equality RowSpFqm

(X ′′
T ) = RowSpFqm

(Λ1(X))
holds.

The result follows by noting that RowSpFqm
(Y ) ⊆ RowSpFqm

(Λ1(X)). ⊓⊔



Therefore we can apply the attack of § 4 in order to break the corresponding
GPT cryptosystem.

Remark 11. Notice that, if rank(X) = s ⩾ λ/2, then rank(XT ) = λ with high
probability and we can apply the Overbeck’s attack to this scheme. In fact, in
this case (as in § 3.3), dim(Λ1(GTpub)

⊥) = n − k − 1 − 2ℓ, and so the code
Λ1(GTpub) admits a parity check matrix whose first λ columns are 0. We can
then compute a valid column scrambler and attack the system.

More generally, we can apply this attack to any i < n−ℓ−k
ℓ+1 for which

rank(X̃) = λ,

where X̃ is defined in Lemma 6.

Conclusion

In this paper, we present new observations on the decoding of Gabidulin codes.
These allow us to introduce a decoder for twisted Gabidulin codes up to a certain
threshold, which may be less than half of the minimum distance.

We then propose an extension of the Overbeck’s attack on GPT-like systems
instantiated on Gabidulin or related codes such as twisted Gabidulin codes.
This attack is efficient as soon as the secret code Λi(Csec) has a small dimension
compared to the dimension of Λi(C ), where C is a random code. One of the
interesting things about our approach is that it succeeds even when the distortion
matrix has a low rank, which might cause the Overbeck’s attack fails. Our attack
extension allows to break the proposal of [43].
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